linux_compat.c revision 341850
1/*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/compat/linuxkpi/common/src/linux_compat.c 341850 2018-12-12 10:09:23Z hselasky $");
32
33#include "opt_stack.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/sysctl.h>
40#include <sys/proc.h>
41#include <sys/sglist.h>
42#include <sys/sleepqueue.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/bus.h>
46#include <sys/fcntl.h>
47#include <sys/file.h>
48#include <sys/filio.h>
49#include <sys/rwlock.h>
50#include <sys/mman.h>
51#include <sys/stack.h>
52#include <sys/user.h>
53
54#include <vm/vm.h>
55#include <vm/pmap.h>
56#include <vm/vm_object.h>
57#include <vm/vm_page.h>
58#include <vm/vm_pager.h>
59
60#include <machine/stdarg.h>
61
62#if defined(__i386__) || defined(__amd64__)
63#include <machine/md_var.h>
64#endif
65
66#include <linux/kobject.h>
67#include <linux/device.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/moduleparam.h>
71#include <linux/cdev.h>
72#include <linux/file.h>
73#include <linux/sysfs.h>
74#include <linux/mm.h>
75#include <linux/io.h>
76#include <linux/vmalloc.h>
77#include <linux/netdevice.h>
78#include <linux/timer.h>
79#include <linux/interrupt.h>
80#include <linux/uaccess.h>
81#include <linux/list.h>
82#include <linux/kthread.h>
83#include <linux/kernel.h>
84#include <linux/compat.h>
85#include <linux/poll.h>
86#include <linux/smp.h>
87
88#if defined(__i386__) || defined(__amd64__)
89#include <asm/smp.h>
90#endif
91
92SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
93
94MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
95
96#include <linux/rbtree.h>
97/* Undo Linux compat changes. */
98#undef RB_ROOT
99#undef file
100#undef cdev
101#define	RB_ROOT(head)	(head)->rbh_root
102
103static struct vm_area_struct *linux_cdev_handle_find(void *handle);
104
105struct kobject linux_class_root;
106struct device linux_root_device;
107struct class linux_class_misc;
108struct list_head pci_drivers;
109struct list_head pci_devices;
110spinlock_t pci_lock;
111
112unsigned long linux_timer_hz_mask;
113
114int
115panic_cmp(struct rb_node *one, struct rb_node *two)
116{
117	panic("no cmp");
118}
119
120RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
121
122int
123kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
124{
125	va_list tmp_va;
126	int len;
127	char *old;
128	char *name;
129	char dummy;
130
131	old = kobj->name;
132
133	if (old && fmt == NULL)
134		return (0);
135
136	/* compute length of string */
137	va_copy(tmp_va, args);
138	len = vsnprintf(&dummy, 0, fmt, tmp_va);
139	va_end(tmp_va);
140
141	/* account for zero termination */
142	len++;
143
144	/* check for error */
145	if (len < 1)
146		return (-EINVAL);
147
148	/* allocate memory for string */
149	name = kzalloc(len, GFP_KERNEL);
150	if (name == NULL)
151		return (-ENOMEM);
152	vsnprintf(name, len, fmt, args);
153	kobj->name = name;
154
155	/* free old string */
156	kfree(old);
157
158	/* filter new string */
159	for (; *name != '\0'; name++)
160		if (*name == '/')
161			*name = '!';
162	return (0);
163}
164
165int
166kobject_set_name(struct kobject *kobj, const char *fmt, ...)
167{
168	va_list args;
169	int error;
170
171	va_start(args, fmt);
172	error = kobject_set_name_vargs(kobj, fmt, args);
173	va_end(args);
174
175	return (error);
176}
177
178static int
179kobject_add_complete(struct kobject *kobj, struct kobject *parent)
180{
181	const struct kobj_type *t;
182	int error;
183
184	kobj->parent = parent;
185	error = sysfs_create_dir(kobj);
186	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
187		struct attribute **attr;
188		t = kobj->ktype;
189
190		for (attr = t->default_attrs; *attr != NULL; attr++) {
191			error = sysfs_create_file(kobj, *attr);
192			if (error)
193				break;
194		}
195		if (error)
196			sysfs_remove_dir(kobj);
197
198	}
199	return (error);
200}
201
202int
203kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
204{
205	va_list args;
206	int error;
207
208	va_start(args, fmt);
209	error = kobject_set_name_vargs(kobj, fmt, args);
210	va_end(args);
211	if (error)
212		return (error);
213
214	return kobject_add_complete(kobj, parent);
215}
216
217void
218linux_kobject_release(struct kref *kref)
219{
220	struct kobject *kobj;
221	char *name;
222
223	kobj = container_of(kref, struct kobject, kref);
224	sysfs_remove_dir(kobj);
225	name = kobj->name;
226	if (kobj->ktype && kobj->ktype->release)
227		kobj->ktype->release(kobj);
228	kfree(name);
229}
230
231static void
232linux_kobject_kfree(struct kobject *kobj)
233{
234	kfree(kobj);
235}
236
237static void
238linux_kobject_kfree_name(struct kobject *kobj)
239{
240	if (kobj) {
241		kfree(kobj->name);
242	}
243}
244
245const struct kobj_type linux_kfree_type = {
246	.release = linux_kobject_kfree
247};
248
249static void
250linux_device_release(struct device *dev)
251{
252	pr_debug("linux_device_release: %s\n", dev_name(dev));
253	kfree(dev);
254}
255
256static ssize_t
257linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
258{
259	struct class_attribute *dattr;
260	ssize_t error;
261
262	dattr = container_of(attr, struct class_attribute, attr);
263	error = -EIO;
264	if (dattr->show)
265		error = dattr->show(container_of(kobj, struct class, kobj),
266		    dattr, buf);
267	return (error);
268}
269
270static ssize_t
271linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
272    size_t count)
273{
274	struct class_attribute *dattr;
275	ssize_t error;
276
277	dattr = container_of(attr, struct class_attribute, attr);
278	error = -EIO;
279	if (dattr->store)
280		error = dattr->store(container_of(kobj, struct class, kobj),
281		    dattr, buf, count);
282	return (error);
283}
284
285static void
286linux_class_release(struct kobject *kobj)
287{
288	struct class *class;
289
290	class = container_of(kobj, struct class, kobj);
291	if (class->class_release)
292		class->class_release(class);
293}
294
295static const struct sysfs_ops linux_class_sysfs = {
296	.show  = linux_class_show,
297	.store = linux_class_store,
298};
299
300const struct kobj_type linux_class_ktype = {
301	.release = linux_class_release,
302	.sysfs_ops = &linux_class_sysfs
303};
304
305static void
306linux_dev_release(struct kobject *kobj)
307{
308	struct device *dev;
309
310	dev = container_of(kobj, struct device, kobj);
311	/* This is the precedence defined by linux. */
312	if (dev->release)
313		dev->release(dev);
314	else if (dev->class && dev->class->dev_release)
315		dev->class->dev_release(dev);
316}
317
318static ssize_t
319linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
320{
321	struct device_attribute *dattr;
322	ssize_t error;
323
324	dattr = container_of(attr, struct device_attribute, attr);
325	error = -EIO;
326	if (dattr->show)
327		error = dattr->show(container_of(kobj, struct device, kobj),
328		    dattr, buf);
329	return (error);
330}
331
332static ssize_t
333linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
334    size_t count)
335{
336	struct device_attribute *dattr;
337	ssize_t error;
338
339	dattr = container_of(attr, struct device_attribute, attr);
340	error = -EIO;
341	if (dattr->store)
342		error = dattr->store(container_of(kobj, struct device, kobj),
343		    dattr, buf, count);
344	return (error);
345}
346
347static const struct sysfs_ops linux_dev_sysfs = {
348	.show  = linux_dev_show,
349	.store = linux_dev_store,
350};
351
352const struct kobj_type linux_dev_ktype = {
353	.release = linux_dev_release,
354	.sysfs_ops = &linux_dev_sysfs
355};
356
357struct device *
358device_create(struct class *class, struct device *parent, dev_t devt,
359    void *drvdata, const char *fmt, ...)
360{
361	struct device *dev;
362	va_list args;
363
364	dev = kzalloc(sizeof(*dev), M_WAITOK);
365	dev->parent = parent;
366	dev->class = class;
367	dev->devt = devt;
368	dev->driver_data = drvdata;
369	dev->release = linux_device_release;
370	va_start(args, fmt);
371	kobject_set_name_vargs(&dev->kobj, fmt, args);
372	va_end(args);
373	device_register(dev);
374
375	return (dev);
376}
377
378int
379kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
380    struct kobject *parent, const char *fmt, ...)
381{
382	va_list args;
383	int error;
384
385	kobject_init(kobj, ktype);
386	kobj->ktype = ktype;
387	kobj->parent = parent;
388	kobj->name = NULL;
389
390	va_start(args, fmt);
391	error = kobject_set_name_vargs(kobj, fmt, args);
392	va_end(args);
393	if (error)
394		return (error);
395	return kobject_add_complete(kobj, parent);
396}
397
398static void
399linux_kq_lock(void *arg)
400{
401	spinlock_t *s = arg;
402
403	spin_lock(s);
404}
405static void
406linux_kq_unlock(void *arg)
407{
408	spinlock_t *s = arg;
409
410	spin_unlock(s);
411}
412
413static void
414linux_kq_lock_owned(void *arg)
415{
416#ifdef INVARIANTS
417	spinlock_t *s = arg;
418
419	mtx_assert(&s->m, MA_OWNED);
420#endif
421}
422
423static void
424linux_kq_lock_unowned(void *arg)
425{
426#ifdef INVARIANTS
427	spinlock_t *s = arg;
428
429	mtx_assert(&s->m, MA_NOTOWNED);
430#endif
431}
432
433static void
434linux_file_kqfilter_poll(struct linux_file *, int);
435
436struct linux_file *
437linux_file_alloc(void)
438{
439	struct linux_file *filp;
440
441	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
442
443	/* set initial refcount */
444	filp->f_count = 1;
445
446	/* setup fields needed by kqueue support */
447	spin_lock_init(&filp->f_kqlock);
448	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
449	    linux_kq_lock, linux_kq_unlock,
450	    linux_kq_lock_owned, linux_kq_lock_unowned);
451
452	return (filp);
453}
454
455void
456linux_file_free(struct linux_file *filp)
457{
458	if (filp->_file == NULL) {
459		if (filp->f_shmem != NULL)
460			vm_object_deallocate(filp->f_shmem);
461		kfree(filp);
462	} else {
463		/*
464		 * The close method of the character device or file
465		 * will free the linux_file structure:
466		 */
467		_fdrop(filp->_file, curthread);
468	}
469}
470
471static int
472linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
473    vm_page_t *mres)
474{
475	struct vm_area_struct *vmap;
476
477	vmap = linux_cdev_handle_find(vm_obj->handle);
478
479	MPASS(vmap != NULL);
480	MPASS(vmap->vm_private_data == vm_obj->handle);
481
482	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
483		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
484		vm_page_t page;
485
486		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
487			/*
488			 * If the passed in result page is a fake
489			 * page, update it with the new physical
490			 * address.
491			 */
492			page = *mres;
493			vm_page_updatefake(page, paddr, vm_obj->memattr);
494		} else {
495			/*
496			 * Replace the passed in "mres" page with our
497			 * own fake page and free up the all of the
498			 * original pages.
499			 */
500			VM_OBJECT_WUNLOCK(vm_obj);
501			page = vm_page_getfake(paddr, vm_obj->memattr);
502			VM_OBJECT_WLOCK(vm_obj);
503
504			vm_page_replace_checked(page, vm_obj,
505			    (*mres)->pindex, *mres);
506
507			vm_page_lock(*mres);
508			vm_page_free(*mres);
509			vm_page_unlock(*mres);
510			*mres = page;
511		}
512		page->valid = VM_PAGE_BITS_ALL;
513		return (VM_PAGER_OK);
514	}
515	return (VM_PAGER_FAIL);
516}
517
518static int
519linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
520    vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
521{
522	struct vm_area_struct *vmap;
523	int err;
524
525	linux_set_current(curthread);
526
527	/* get VM area structure */
528	vmap = linux_cdev_handle_find(vm_obj->handle);
529	MPASS(vmap != NULL);
530	MPASS(vmap->vm_private_data == vm_obj->handle);
531
532	VM_OBJECT_WUNLOCK(vm_obj);
533
534	down_write(&vmap->vm_mm->mmap_sem);
535	if (unlikely(vmap->vm_ops == NULL)) {
536		err = VM_FAULT_SIGBUS;
537	} else {
538		struct vm_fault vmf;
539
540		/* fill out VM fault structure */
541		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
542		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
543		vmf.pgoff = 0;
544		vmf.page = NULL;
545		vmf.vma = vmap;
546
547		vmap->vm_pfn_count = 0;
548		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
549		vmap->vm_obj = vm_obj;
550
551		err = vmap->vm_ops->fault(vmap, &vmf);
552
553		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
554			kern_yield(PRI_USER);
555			err = vmap->vm_ops->fault(vmap, &vmf);
556		}
557	}
558
559	/* translate return code */
560	switch (err) {
561	case VM_FAULT_OOM:
562		err = VM_PAGER_AGAIN;
563		break;
564	case VM_FAULT_SIGBUS:
565		err = VM_PAGER_BAD;
566		break;
567	case VM_FAULT_NOPAGE:
568		/*
569		 * By contract the fault handler will return having
570		 * busied all the pages itself. If pidx is already
571		 * found in the object, it will simply xbusy the first
572		 * page and return with vm_pfn_count set to 1.
573		 */
574		*first = vmap->vm_pfn_first;
575		*last = *first + vmap->vm_pfn_count - 1;
576		err = VM_PAGER_OK;
577		break;
578	default:
579		err = VM_PAGER_ERROR;
580		break;
581	}
582	up_write(&vmap->vm_mm->mmap_sem);
583	VM_OBJECT_WLOCK(vm_obj);
584	return (err);
585}
586
587static struct rwlock linux_vma_lock;
588static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
589    TAILQ_HEAD_INITIALIZER(linux_vma_head);
590
591static void
592linux_cdev_handle_free(struct vm_area_struct *vmap)
593{
594	/* Drop reference on vm_file */
595	if (vmap->vm_file != NULL)
596		fput(vmap->vm_file);
597
598	/* Drop reference on mm_struct */
599	mmput(vmap->vm_mm);
600
601	kfree(vmap);
602}
603
604static void
605linux_cdev_handle_remove(struct vm_area_struct *vmap)
606{
607	rw_wlock(&linux_vma_lock);
608	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
609	rw_wunlock(&linux_vma_lock);
610}
611
612static struct vm_area_struct *
613linux_cdev_handle_find(void *handle)
614{
615	struct vm_area_struct *vmap;
616
617	rw_rlock(&linux_vma_lock);
618	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
619		if (vmap->vm_private_data == handle)
620			break;
621	}
622	rw_runlock(&linux_vma_lock);
623	return (vmap);
624}
625
626static int
627linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
628		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
629{
630
631	MPASS(linux_cdev_handle_find(handle) != NULL);
632	*color = 0;
633	return (0);
634}
635
636static void
637linux_cdev_pager_dtor(void *handle)
638{
639	const struct vm_operations_struct *vm_ops;
640	struct vm_area_struct *vmap;
641
642	vmap = linux_cdev_handle_find(handle);
643	MPASS(vmap != NULL);
644
645	/*
646	 * Remove handle before calling close operation to prevent
647	 * other threads from reusing the handle pointer.
648	 */
649	linux_cdev_handle_remove(vmap);
650
651	down_write(&vmap->vm_mm->mmap_sem);
652	vm_ops = vmap->vm_ops;
653	if (likely(vm_ops != NULL))
654		vm_ops->close(vmap);
655	up_write(&vmap->vm_mm->mmap_sem);
656
657	linux_cdev_handle_free(vmap);
658}
659
660static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
661  {
662	/* OBJT_MGTDEVICE */
663	.cdev_pg_populate	= linux_cdev_pager_populate,
664	.cdev_pg_ctor	= linux_cdev_pager_ctor,
665	.cdev_pg_dtor	= linux_cdev_pager_dtor
666  },
667  {
668	/* OBJT_DEVICE */
669	.cdev_pg_fault	= linux_cdev_pager_fault,
670	.cdev_pg_ctor	= linux_cdev_pager_ctor,
671	.cdev_pg_dtor	= linux_cdev_pager_dtor
672  },
673};
674
675#define	OPW(fp,td,code) ({			\
676	struct file *__fpop;			\
677	__typeof(code) __retval;		\
678						\
679	__fpop = (td)->td_fpop;			\
680	(td)->td_fpop = (fp);			\
681	__retval = (code);			\
682	(td)->td_fpop = __fpop;			\
683	__retval;				\
684})
685
686static int
687linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, struct file *file)
688{
689	struct linux_cdev *ldev;
690	struct linux_file *filp;
691	int error;
692
693	ldev = dev->si_drv1;
694
695	filp = linux_file_alloc();
696	filp->f_dentry = &filp->f_dentry_store;
697	filp->f_op = ldev->ops;
698	filp->f_mode = file->f_flag;
699	filp->f_flags = file->f_flag;
700	filp->f_vnode = file->f_vnode;
701	filp->_file = file;
702	filp->f_cdev = ldev;
703
704	linux_set_current(td);
705
706	/* get a reference on the Linux character device */
707	if (atomic_long_add_unless(&ldev->refs, 1, -1L) == 0) {
708		kfree(filp);
709		return (EINVAL);
710	}
711
712	if (filp->f_op->open) {
713		error = -filp->f_op->open(file->f_vnode, filp);
714		if (error) {
715			atomic_long_dec(&ldev->refs);
716			kfree(filp);
717			return (error);
718		}
719	}
720
721	/* hold on to the vnode - used for fstat() */
722	vhold(filp->f_vnode);
723
724	/* release the file from devfs */
725	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
726	return (ENXIO);
727}
728
729#define	LINUX_IOCTL_MIN_PTR 0x10000UL
730#define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
731
732static inline int
733linux_remap_address(void **uaddr, size_t len)
734{
735	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
736
737	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
738	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
739		struct task_struct *pts = current;
740		if (pts == NULL) {
741			*uaddr = NULL;
742			return (1);
743		}
744
745		/* compute data offset */
746		uaddr_val -= LINUX_IOCTL_MIN_PTR;
747
748		/* check that length is within bounds */
749		if ((len > IOCPARM_MAX) ||
750		    (uaddr_val + len) > pts->bsd_ioctl_len) {
751			*uaddr = NULL;
752			return (1);
753		}
754
755		/* re-add kernel buffer address */
756		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
757
758		/* update address location */
759		*uaddr = (void *)uaddr_val;
760		return (1);
761	}
762	return (0);
763}
764
765int
766linux_copyin(const void *uaddr, void *kaddr, size_t len)
767{
768	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
769		if (uaddr == NULL)
770			return (-EFAULT);
771		memcpy(kaddr, uaddr, len);
772		return (0);
773	}
774	return (-copyin(uaddr, kaddr, len));
775}
776
777int
778linux_copyout(const void *kaddr, void *uaddr, size_t len)
779{
780	if (linux_remap_address(&uaddr, len)) {
781		if (uaddr == NULL)
782			return (-EFAULT);
783		memcpy(uaddr, kaddr, len);
784		return (0);
785	}
786	return (-copyout(kaddr, uaddr, len));
787}
788
789size_t
790linux_clear_user(void *_uaddr, size_t _len)
791{
792	uint8_t *uaddr = _uaddr;
793	size_t len = _len;
794
795	/* make sure uaddr is aligned before going into the fast loop */
796	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
797		if (subyte(uaddr, 0))
798			return (_len);
799		uaddr++;
800		len--;
801	}
802
803	/* zero 8 bytes at a time */
804	while (len > 7) {
805#ifdef __LP64__
806		if (suword64(uaddr, 0))
807			return (_len);
808#else
809		if (suword32(uaddr, 0))
810			return (_len);
811		if (suword32(uaddr + 4, 0))
812			return (_len);
813#endif
814		uaddr += 8;
815		len -= 8;
816	}
817
818	/* zero fill end, if any */
819	while (len > 0) {
820		if (subyte(uaddr, 0))
821			return (_len);
822		uaddr++;
823		len--;
824	}
825	return (0);
826}
827
828int
829linux_access_ok(int rw, const void *uaddr, size_t len)
830{
831	uintptr_t saddr;
832	uintptr_t eaddr;
833
834	/* get start and end address */
835	saddr = (uintptr_t)uaddr;
836	eaddr = (uintptr_t)uaddr + len;
837
838	/* verify addresses are valid for userspace */
839	return ((saddr == eaddr) ||
840	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
841}
842
843/*
844 * This function should return either EINTR or ERESTART depending on
845 * the signal type sent to this thread:
846 */
847static int
848linux_get_error(struct task_struct *task, int error)
849{
850	/* check for signal type interrupt code */
851	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
852		error = -linux_schedule_get_interrupt_value(task);
853		if (error == 0)
854			error = EINTR;
855	}
856	return (error);
857}
858
859static int
860linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
861    u_long cmd, caddr_t data, struct thread *td)
862{
863	struct task_struct *task = current;
864	unsigned size;
865	int error;
866
867	size = IOCPARM_LEN(cmd);
868	/* refer to logic in sys_ioctl() */
869	if (size > 0) {
870		/*
871		 * Setup hint for linux_copyin() and linux_copyout().
872		 *
873		 * Background: Linux code expects a user-space address
874		 * while FreeBSD supplies a kernel-space address.
875		 */
876		task->bsd_ioctl_data = data;
877		task->bsd_ioctl_len = size;
878		data = (void *)LINUX_IOCTL_MIN_PTR;
879	} else {
880		/* fetch user-space pointer */
881		data = *(void **)data;
882	}
883#if defined(__amd64__)
884	if (td->td_proc->p_elf_machine == EM_386) {
885		/* try the compat IOCTL handler first */
886		if (filp->f_op->compat_ioctl != NULL)
887			error = -OPW(fp, td, filp->f_op->compat_ioctl(filp, cmd, (u_long)data));
888		else
889			error = ENOTTY;
890
891		/* fallback to the regular IOCTL handler, if any */
892		if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL)
893			error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data));
894	} else
895#endif
896	if (filp->f_op->unlocked_ioctl != NULL)
897		error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data));
898	else
899		error = ENOTTY;
900	if (size > 0) {
901		task->bsd_ioctl_data = NULL;
902		task->bsd_ioctl_len = 0;
903	}
904
905	if (error == EWOULDBLOCK) {
906		/* update kqfilter status, if any */
907		linux_file_kqfilter_poll(filp,
908		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
909	} else {
910		error = linux_get_error(task, error);
911	}
912	return (error);
913}
914
915#define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
916
917/*
918 * This function atomically updates the poll wakeup state and returns
919 * the previous state at the time of update.
920 */
921static uint8_t
922linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
923{
924	int c, old;
925
926	c = v->counter;
927
928	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
929		c = old;
930
931	return (c);
932}
933
934
935static int
936linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
937{
938	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
939		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
940		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
941		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
942		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
943	};
944	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
945
946	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
947	case LINUX_FWQ_STATE_QUEUED:
948		linux_poll_wakeup(filp);
949		return (1);
950	default:
951		return (0);
952	}
953}
954
955void
956linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
957{
958	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
959		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
960		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
961		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
962		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
963	};
964
965	/* check if we are called inside the select system call */
966	if (p == LINUX_POLL_TABLE_NORMAL)
967		selrecord(curthread, &filp->f_selinfo);
968
969	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
970	case LINUX_FWQ_STATE_INIT:
971		/* NOTE: file handles can only belong to one wait-queue */
972		filp->f_wait_queue.wqh = wqh;
973		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
974		add_wait_queue(wqh, &filp->f_wait_queue.wq);
975		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
976		break;
977	default:
978		break;
979	}
980}
981
982static void
983linux_poll_wait_dequeue(struct linux_file *filp)
984{
985	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
986		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
987		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
988		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
989		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
990	};
991
992	seldrain(&filp->f_selinfo);
993
994	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
995	case LINUX_FWQ_STATE_NOT_READY:
996	case LINUX_FWQ_STATE_QUEUED:
997	case LINUX_FWQ_STATE_READY:
998		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
999		break;
1000	default:
1001		break;
1002	}
1003}
1004
1005void
1006linux_poll_wakeup(struct linux_file *filp)
1007{
1008	/* this function should be NULL-safe */
1009	if (filp == NULL)
1010		return;
1011
1012	selwakeup(&filp->f_selinfo);
1013
1014	spin_lock(&filp->f_kqlock);
1015	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1016	    LINUX_KQ_FLAG_NEED_WRITE;
1017
1018	/* make sure the "knote" gets woken up */
1019	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1020	spin_unlock(&filp->f_kqlock);
1021}
1022
1023static void
1024linux_file_kqfilter_detach(struct knote *kn)
1025{
1026	struct linux_file *filp = kn->kn_hook;
1027
1028	spin_lock(&filp->f_kqlock);
1029	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1030	spin_unlock(&filp->f_kqlock);
1031}
1032
1033static int
1034linux_file_kqfilter_read_event(struct knote *kn, long hint)
1035{
1036	struct linux_file *filp = kn->kn_hook;
1037
1038	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1039
1040	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1041}
1042
1043static int
1044linux_file_kqfilter_write_event(struct knote *kn, long hint)
1045{
1046	struct linux_file *filp = kn->kn_hook;
1047
1048	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1049
1050	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1051}
1052
1053static struct filterops linux_dev_kqfiltops_read = {
1054	.f_isfd = 1,
1055	.f_detach = linux_file_kqfilter_detach,
1056	.f_event = linux_file_kqfilter_read_event,
1057};
1058
1059static struct filterops linux_dev_kqfiltops_write = {
1060	.f_isfd = 1,
1061	.f_detach = linux_file_kqfilter_detach,
1062	.f_event = linux_file_kqfilter_write_event,
1063};
1064
1065static void
1066linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1067{
1068	int temp;
1069
1070	if (filp->f_kqflags & kqflags) {
1071		struct thread *td = curthread;
1072
1073		/* get the latest polling state */
1074		temp = OPW(filp->_file, td, filp->f_op->poll(filp, NULL));
1075
1076		spin_lock(&filp->f_kqlock);
1077		/* clear kqflags */
1078		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1079		    LINUX_KQ_FLAG_NEED_WRITE);
1080		/* update kqflags */
1081		if (temp & (POLLIN | POLLOUT)) {
1082			if (temp & POLLIN)
1083				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1084			if (temp & POLLOUT)
1085				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1086
1087			/* make sure the "knote" gets woken up */
1088			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1089		}
1090		spin_unlock(&filp->f_kqlock);
1091	}
1092}
1093
1094static int
1095linux_file_kqfilter(struct file *file, struct knote *kn)
1096{
1097	struct linux_file *filp;
1098	struct thread *td;
1099	int error;
1100
1101	td = curthread;
1102	filp = (struct linux_file *)file->f_data;
1103	filp->f_flags = file->f_flag;
1104	if (filp->f_op->poll == NULL)
1105		return (EINVAL);
1106
1107	spin_lock(&filp->f_kqlock);
1108	switch (kn->kn_filter) {
1109	case EVFILT_READ:
1110		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1111		kn->kn_fop = &linux_dev_kqfiltops_read;
1112		kn->kn_hook = filp;
1113		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1114		error = 0;
1115		break;
1116	case EVFILT_WRITE:
1117		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1118		kn->kn_fop = &linux_dev_kqfiltops_write;
1119		kn->kn_hook = filp;
1120		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1121		error = 0;
1122		break;
1123	default:
1124		error = EINVAL;
1125		break;
1126	}
1127	spin_unlock(&filp->f_kqlock);
1128
1129	if (error == 0) {
1130		linux_set_current(td);
1131
1132		/* update kqfilter status, if any */
1133		linux_file_kqfilter_poll(filp,
1134		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1135	}
1136	return (error);
1137}
1138
1139static int
1140linux_file_mmap_single(struct file *fp, vm_ooffset_t *offset,
1141    vm_size_t size, struct vm_object **object, int nprot,
1142    struct thread *td)
1143{
1144	struct task_struct *task;
1145	struct vm_area_struct *vmap;
1146	struct mm_struct *mm;
1147	struct linux_file *filp;
1148	vm_memattr_t attr;
1149	int error;
1150
1151	filp = (struct linux_file *)fp->f_data;
1152	filp->f_flags = fp->f_flag;
1153
1154	if (filp->f_op->mmap == NULL)
1155		return (EOPNOTSUPP);
1156
1157	linux_set_current(td);
1158
1159	/*
1160	 * The same VM object might be shared by multiple processes
1161	 * and the mm_struct is usually freed when a process exits.
1162	 *
1163	 * The atomic reference below makes sure the mm_struct is
1164	 * available as long as the vmap is in the linux_vma_head.
1165	 */
1166	task = current;
1167	mm = task->mm;
1168	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1169		return (EINVAL);
1170
1171	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1172	vmap->vm_start = 0;
1173	vmap->vm_end = size;
1174	vmap->vm_pgoff = *offset / PAGE_SIZE;
1175	vmap->vm_pfn = 0;
1176	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1177	vmap->vm_ops = NULL;
1178	vmap->vm_file = get_file(filp);
1179	vmap->vm_mm = mm;
1180
1181	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1182		error = linux_get_error(task, EINTR);
1183	} else {
1184		error = -OPW(fp, td, filp->f_op->mmap(filp, vmap));
1185		error = linux_get_error(task, error);
1186		up_write(&vmap->vm_mm->mmap_sem);
1187	}
1188
1189	if (error != 0) {
1190		linux_cdev_handle_free(vmap);
1191		return (error);
1192	}
1193
1194	attr = pgprot2cachemode(vmap->vm_page_prot);
1195
1196	if (vmap->vm_ops != NULL) {
1197		struct vm_area_struct *ptr;
1198		void *vm_private_data;
1199		bool vm_no_fault;
1200
1201		if (vmap->vm_ops->open == NULL ||
1202		    vmap->vm_ops->close == NULL ||
1203		    vmap->vm_private_data == NULL) {
1204			/* free allocated VM area struct */
1205			linux_cdev_handle_free(vmap);
1206			return (EINVAL);
1207		}
1208
1209		vm_private_data = vmap->vm_private_data;
1210
1211		rw_wlock(&linux_vma_lock);
1212		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1213			if (ptr->vm_private_data == vm_private_data)
1214				break;
1215		}
1216		/* check if there is an existing VM area struct */
1217		if (ptr != NULL) {
1218			/* check if the VM area structure is invalid */
1219			if (ptr->vm_ops == NULL ||
1220			    ptr->vm_ops->open == NULL ||
1221			    ptr->vm_ops->close == NULL) {
1222				error = ESTALE;
1223				vm_no_fault = 1;
1224			} else {
1225				error = EEXIST;
1226				vm_no_fault = (ptr->vm_ops->fault == NULL);
1227			}
1228		} else {
1229			/* insert VM area structure into list */
1230			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1231			error = 0;
1232			vm_no_fault = (vmap->vm_ops->fault == NULL);
1233		}
1234		rw_wunlock(&linux_vma_lock);
1235
1236		if (error != 0) {
1237			/* free allocated VM area struct */
1238			linux_cdev_handle_free(vmap);
1239			/* check for stale VM area struct */
1240			if (error != EEXIST)
1241				return (error);
1242		}
1243
1244		/* check if there is no fault handler */
1245		if (vm_no_fault) {
1246			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1247			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1248			    td->td_ucred);
1249		} else {
1250			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1251			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1252			    td->td_ucred);
1253		}
1254
1255		/* check if allocating the VM object failed */
1256		if (*object == NULL) {
1257			if (error == 0) {
1258				/* remove VM area struct from list */
1259				linux_cdev_handle_remove(vmap);
1260				/* free allocated VM area struct */
1261				linux_cdev_handle_free(vmap);
1262			}
1263			return (EINVAL);
1264		}
1265	} else {
1266		struct sglist *sg;
1267
1268		sg = sglist_alloc(1, M_WAITOK);
1269		sglist_append_phys(sg,
1270		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1271
1272		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1273		    nprot, 0, td->td_ucred);
1274
1275		linux_cdev_handle_free(vmap);
1276
1277		if (*object == NULL) {
1278			sglist_free(sg);
1279			return (EINVAL);
1280		}
1281	}
1282
1283	if (attr != VM_MEMATTR_DEFAULT) {
1284		VM_OBJECT_WLOCK(*object);
1285		vm_object_set_memattr(*object, attr);
1286		VM_OBJECT_WUNLOCK(*object);
1287	}
1288	*offset = 0;
1289	return (0);
1290}
1291
1292struct cdevsw linuxcdevsw = {
1293	.d_version = D_VERSION,
1294	.d_fdopen = linux_dev_fdopen,
1295	.d_name = "lkpidev",
1296};
1297
1298static int
1299linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1300    int flags, struct thread *td)
1301{
1302	struct linux_file *filp;
1303	ssize_t bytes;
1304	int error;
1305
1306	error = 0;
1307	filp = (struct linux_file *)file->f_data;
1308	filp->f_flags = file->f_flag;
1309	/* XXX no support for I/O vectors currently */
1310	if (uio->uio_iovcnt != 1)
1311		return (EOPNOTSUPP);
1312	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1313		return (EINVAL);
1314	linux_set_current(td);
1315	if (filp->f_op->read) {
1316		bytes = OPW(file, td, filp->f_op->read(filp, uio->uio_iov->iov_base,
1317		    uio->uio_iov->iov_len, &uio->uio_offset));
1318		if (bytes >= 0) {
1319			uio->uio_iov->iov_base =
1320			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1321			uio->uio_iov->iov_len -= bytes;
1322			uio->uio_resid -= bytes;
1323		} else {
1324			error = linux_get_error(current, -bytes);
1325		}
1326	} else
1327		error = ENXIO;
1328
1329	/* update kqfilter status, if any */
1330	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1331
1332	return (error);
1333}
1334
1335static int
1336linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1337    int flags, struct thread *td)
1338{
1339	struct linux_file *filp;
1340	ssize_t bytes;
1341	int error;
1342
1343	error = 0;
1344	filp = (struct linux_file *)file->f_data;
1345	filp->f_flags = file->f_flag;
1346	/* XXX no support for I/O vectors currently */
1347	if (uio->uio_iovcnt != 1)
1348		return (EOPNOTSUPP);
1349	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1350		return (EINVAL);
1351	linux_set_current(td);
1352	if (filp->f_op->write) {
1353		bytes = OPW(file, td, filp->f_op->write(filp, uio->uio_iov->iov_base,
1354		    uio->uio_iov->iov_len, &uio->uio_offset));
1355		if (bytes >= 0) {
1356			uio->uio_iov->iov_base =
1357			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1358			uio->uio_iov->iov_len -= bytes;
1359			uio->uio_resid -= bytes;
1360		} else {
1361			error = linux_get_error(current, -bytes);
1362		}
1363	} else
1364		error = ENXIO;
1365
1366	/* update kqfilter status, if any */
1367	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1368
1369	return (error);
1370}
1371
1372static int
1373linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1374    struct thread *td)
1375{
1376	struct linux_file *filp;
1377	int revents;
1378
1379	filp = (struct linux_file *)file->f_data;
1380	filp->f_flags = file->f_flag;
1381	linux_set_current(td);
1382	if (filp->f_op->poll != NULL)
1383		revents = OPW(file, td, filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL)) & events;
1384	else
1385		revents = 0;
1386
1387	return (revents);
1388}
1389
1390static int
1391linux_file_close(struct file *file, struct thread *td)
1392{
1393	struct linux_file *filp;
1394	int error;
1395
1396	filp = (struct linux_file *)file->f_data;
1397
1398	KASSERT(file_count(filp) == 0, ("File refcount(%d) is not zero", file_count(filp)));
1399
1400	filp->f_flags = file->f_flag;
1401	linux_set_current(td);
1402	linux_poll_wait_dequeue(filp);
1403	error = -OPW(file, td, filp->f_op->release(filp->f_vnode, filp));
1404	funsetown(&filp->f_sigio);
1405	if (filp->f_vnode != NULL)
1406		vdrop(filp->f_vnode);
1407	if (filp->f_cdev != NULL) {
1408		/* put a reference on the Linux character device */
1409		atomic_long_dec(&filp->f_cdev->refs);
1410	}
1411	kfree(filp);
1412
1413	return (error);
1414}
1415
1416static int
1417linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1418    struct thread *td)
1419{
1420	struct linux_file *filp;
1421	int error;
1422
1423	filp = (struct linux_file *)fp->f_data;
1424	filp->f_flags = fp->f_flag;
1425	error = 0;
1426
1427	linux_set_current(td);
1428	switch (cmd) {
1429	case FIONBIO:
1430		break;
1431	case FIOASYNC:
1432		if (filp->f_op->fasync == NULL)
1433			break;
1434		error = -OPW(fp, td, filp->f_op->fasync(0, filp, fp->f_flag & FASYNC));
1435		break;
1436	case FIOSETOWN:
1437		error = fsetown(*(int *)data, &filp->f_sigio);
1438		if (error == 0) {
1439			if (filp->f_op->fasync == NULL)
1440				break;
1441			error = -OPW(fp, td, filp->f_op->fasync(0, filp,
1442			    fp->f_flag & FASYNC));
1443		}
1444		break;
1445	case FIOGETOWN:
1446		*(int *)data = fgetown(&filp->f_sigio);
1447		break;
1448	default:
1449		error = linux_file_ioctl_sub(fp, filp, cmd, data, td);
1450		break;
1451	}
1452	return (error);
1453}
1454
1455static int
1456linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1457    vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1458    vm_ooffset_t *foff, vm_object_t *objp)
1459{
1460	/*
1461	 * Character devices do not provide private mappings
1462	 * of any kind:
1463	 */
1464	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1465	    (prot & VM_PROT_WRITE) != 0)
1466		return (EACCES);
1467	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1468		return (EINVAL);
1469
1470	return (linux_file_mmap_single(fp, foff, objsize, objp, (int)prot, td));
1471}
1472
1473static int
1474linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1475    vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1476    struct thread *td)
1477{
1478	struct linux_file *filp;
1479	struct mount *mp;
1480	struct vnode *vp;
1481	vm_object_t object;
1482	vm_prot_t maxprot;
1483	int error;
1484
1485	filp = (struct linux_file *)fp->f_data;
1486
1487	vp = filp->f_vnode;
1488	if (vp == NULL)
1489		return (EOPNOTSUPP);
1490
1491	/*
1492	 * Ensure that file and memory protections are
1493	 * compatible.
1494	 */
1495	mp = vp->v_mount;
1496	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1497		maxprot = VM_PROT_NONE;
1498		if ((prot & VM_PROT_EXECUTE) != 0)
1499			return (EACCES);
1500	} else
1501		maxprot = VM_PROT_EXECUTE;
1502	if ((fp->f_flag & FREAD) != 0)
1503		maxprot |= VM_PROT_READ;
1504	else if ((prot & VM_PROT_READ) != 0)
1505		return (EACCES);
1506
1507	/*
1508	 * If we are sharing potential changes via MAP_SHARED and we
1509	 * are trying to get write permission although we opened it
1510	 * without asking for it, bail out.
1511	 *
1512	 * Note that most character devices always share mappings.
1513	 *
1514	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1515	 * requests rather than doing it here.
1516	 */
1517	if ((flags & MAP_SHARED) != 0) {
1518		if ((fp->f_flag & FWRITE) != 0)
1519			maxprot |= VM_PROT_WRITE;
1520		else if ((prot & VM_PROT_WRITE) != 0)
1521			return (EACCES);
1522	}
1523	maxprot &= cap_maxprot;
1524
1525	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp, &foff,
1526	    &object);
1527	if (error != 0)
1528		return (error);
1529
1530	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1531	    foff, FALSE, td);
1532	if (error != 0)
1533		vm_object_deallocate(object);
1534	return (error);
1535}
1536
1537static int
1538linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1539    struct thread *td)
1540{
1541	struct linux_file *filp;
1542	struct vnode *vp;
1543	int error;
1544
1545	filp = (struct linux_file *)fp->f_data;
1546	if (filp->f_vnode == NULL)
1547		return (EOPNOTSUPP);
1548
1549	vp = filp->f_vnode;
1550
1551	vn_lock(vp, LK_SHARED | LK_RETRY);
1552	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1553	VOP_UNLOCK(vp, 0);
1554
1555	return (error);
1556}
1557
1558static int
1559linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1560    struct filedesc *fdp)
1561{
1562	struct linux_file *filp;
1563	struct vnode *vp;
1564	int error;
1565
1566	filp = fp->f_data;
1567	vp = filp->f_vnode;
1568	if (vp == NULL) {
1569		error = 0;
1570		kif->kf_type = KF_TYPE_DEV;
1571	} else {
1572		vref(vp);
1573		FILEDESC_SUNLOCK(fdp);
1574		error = vn_fill_kinfo_vnode(vp, kif);
1575		vrele(vp);
1576		kif->kf_type = KF_TYPE_VNODE;
1577		FILEDESC_SLOCK(fdp);
1578	}
1579	return (error);
1580}
1581
1582unsigned int
1583linux_iminor(struct inode *inode)
1584{
1585	struct linux_cdev *ldev;
1586
1587	if (inode == NULL || inode->v_rdev == NULL ||
1588	    inode->v_rdev->si_devsw != &linuxcdevsw)
1589		return (-1U);
1590	ldev = inode->v_rdev->si_drv1;
1591	if (ldev == NULL)
1592		return (-1U);
1593
1594	return (minor(ldev->dev));
1595}
1596
1597struct fileops linuxfileops = {
1598	.fo_read = linux_file_read,
1599	.fo_write = linux_file_write,
1600	.fo_truncate = invfo_truncate,
1601	.fo_kqfilter = linux_file_kqfilter,
1602	.fo_stat = linux_file_stat,
1603	.fo_fill_kinfo = linux_file_fill_kinfo,
1604	.fo_poll = linux_file_poll,
1605	.fo_close = linux_file_close,
1606	.fo_ioctl = linux_file_ioctl,
1607	.fo_mmap = linux_file_mmap,
1608	.fo_chmod = invfo_chmod,
1609	.fo_chown = invfo_chown,
1610	.fo_sendfile = invfo_sendfile,
1611	.fo_flags = DFLAG_PASSABLE,
1612};
1613
1614/*
1615 * Hash of vmmap addresses.  This is infrequently accessed and does not
1616 * need to be particularly large.  This is done because we must store the
1617 * caller's idea of the map size to properly unmap.
1618 */
1619struct vmmap {
1620	LIST_ENTRY(vmmap)	vm_next;
1621	void 			*vm_addr;
1622	unsigned long		vm_size;
1623};
1624
1625struct vmmaphd {
1626	struct vmmap *lh_first;
1627};
1628#define	VMMAP_HASH_SIZE	64
1629#define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1630#define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1631static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1632static struct mtx vmmaplock;
1633
1634static void
1635vmmap_add(void *addr, unsigned long size)
1636{
1637	struct vmmap *vmmap;
1638
1639	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1640	mtx_lock(&vmmaplock);
1641	vmmap->vm_size = size;
1642	vmmap->vm_addr = addr;
1643	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1644	mtx_unlock(&vmmaplock);
1645}
1646
1647static struct vmmap *
1648vmmap_remove(void *addr)
1649{
1650	struct vmmap *vmmap;
1651
1652	mtx_lock(&vmmaplock);
1653	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1654		if (vmmap->vm_addr == addr)
1655			break;
1656	if (vmmap)
1657		LIST_REMOVE(vmmap, vm_next);
1658	mtx_unlock(&vmmaplock);
1659
1660	return (vmmap);
1661}
1662
1663#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1664void *
1665_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1666{
1667	void *addr;
1668
1669	addr = pmap_mapdev_attr(phys_addr, size, attr);
1670	if (addr == NULL)
1671		return (NULL);
1672	vmmap_add(addr, size);
1673
1674	return (addr);
1675}
1676#endif
1677
1678void
1679iounmap(void *addr)
1680{
1681	struct vmmap *vmmap;
1682
1683	vmmap = vmmap_remove(addr);
1684	if (vmmap == NULL)
1685		return;
1686#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1687	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1688#endif
1689	kfree(vmmap);
1690}
1691
1692
1693void *
1694vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1695{
1696	vm_offset_t off;
1697	size_t size;
1698
1699	size = count * PAGE_SIZE;
1700	off = kva_alloc(size);
1701	if (off == 0)
1702		return (NULL);
1703	vmmap_add((void *)off, size);
1704	pmap_qenter(off, pages, count);
1705
1706	return ((void *)off);
1707}
1708
1709void
1710vunmap(void *addr)
1711{
1712	struct vmmap *vmmap;
1713
1714	vmmap = vmmap_remove(addr);
1715	if (vmmap == NULL)
1716		return;
1717	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1718	kva_free((vm_offset_t)addr, vmmap->vm_size);
1719	kfree(vmmap);
1720}
1721
1722char *
1723kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1724{
1725	unsigned int len;
1726	char *p;
1727	va_list aq;
1728
1729	va_copy(aq, ap);
1730	len = vsnprintf(NULL, 0, fmt, aq);
1731	va_end(aq);
1732
1733	p = kmalloc(len + 1, gfp);
1734	if (p != NULL)
1735		vsnprintf(p, len + 1, fmt, ap);
1736
1737	return (p);
1738}
1739
1740char *
1741kasprintf(gfp_t gfp, const char *fmt, ...)
1742{
1743	va_list ap;
1744	char *p;
1745
1746	va_start(ap, fmt);
1747	p = kvasprintf(gfp, fmt, ap);
1748	va_end(ap);
1749
1750	return (p);
1751}
1752
1753static void
1754linux_timer_callback_wrapper(void *context)
1755{
1756	struct timer_list *timer;
1757
1758	linux_set_current(curthread);
1759
1760	timer = context;
1761	timer->function(timer->data);
1762}
1763
1764void
1765mod_timer(struct timer_list *timer, int expires)
1766{
1767
1768	timer->expires = expires;
1769	callout_reset(&timer->callout,
1770	    linux_timer_jiffies_until(expires),
1771	    &linux_timer_callback_wrapper, timer);
1772}
1773
1774void
1775add_timer(struct timer_list *timer)
1776{
1777
1778	callout_reset(&timer->callout,
1779	    linux_timer_jiffies_until(timer->expires),
1780	    &linux_timer_callback_wrapper, timer);
1781}
1782
1783void
1784add_timer_on(struct timer_list *timer, int cpu)
1785{
1786
1787	callout_reset_on(&timer->callout,
1788	    linux_timer_jiffies_until(timer->expires),
1789	    &linux_timer_callback_wrapper, timer, cpu);
1790}
1791
1792static void
1793linux_timer_init(void *arg)
1794{
1795
1796	/*
1797	 * Compute an internal HZ value which can divide 2**32 to
1798	 * avoid timer rounding problems when the tick value wraps
1799	 * around 2**32:
1800	 */
1801	linux_timer_hz_mask = 1;
1802	while (linux_timer_hz_mask < (unsigned long)hz)
1803		linux_timer_hz_mask *= 2;
1804	linux_timer_hz_mask--;
1805}
1806SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1807
1808void
1809linux_complete_common(struct completion *c, int all)
1810{
1811	int wakeup_swapper;
1812
1813	sleepq_lock(c);
1814	if (all) {
1815		c->done = UINT_MAX;
1816		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1817	} else {
1818		if (c->done != UINT_MAX)
1819			c->done++;
1820		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1821	}
1822	sleepq_release(c);
1823	if (wakeup_swapper)
1824		kick_proc0();
1825}
1826
1827/*
1828 * Indefinite wait for done != 0 with or without signals.
1829 */
1830int
1831linux_wait_for_common(struct completion *c, int flags)
1832{
1833	struct task_struct *task;
1834	int error;
1835
1836	if (SCHEDULER_STOPPED())
1837		return (0);
1838
1839	task = current;
1840
1841	if (flags != 0)
1842		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1843	else
1844		flags = SLEEPQ_SLEEP;
1845	error = 0;
1846	for (;;) {
1847		sleepq_lock(c);
1848		if (c->done)
1849			break;
1850		sleepq_add(c, NULL, "completion", flags, 0);
1851		if (flags & SLEEPQ_INTERRUPTIBLE) {
1852			DROP_GIANT();
1853			error = -sleepq_wait_sig(c, 0);
1854			PICKUP_GIANT();
1855			if (error != 0) {
1856				linux_schedule_save_interrupt_value(task, error);
1857				error = -ERESTARTSYS;
1858				goto intr;
1859			}
1860		} else {
1861			DROP_GIANT();
1862			sleepq_wait(c, 0);
1863			PICKUP_GIANT();
1864		}
1865	}
1866	if (c->done != UINT_MAX)
1867		c->done--;
1868	sleepq_release(c);
1869
1870intr:
1871	return (error);
1872}
1873
1874/*
1875 * Time limited wait for done != 0 with or without signals.
1876 */
1877int
1878linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1879{
1880	struct task_struct *task;
1881	int end = jiffies + timeout;
1882	int error;
1883
1884	if (SCHEDULER_STOPPED())
1885		return (0);
1886
1887	task = current;
1888
1889	if (flags != 0)
1890		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1891	else
1892		flags = SLEEPQ_SLEEP;
1893
1894	for (;;) {
1895		sleepq_lock(c);
1896		if (c->done)
1897			break;
1898		sleepq_add(c, NULL, "completion", flags, 0);
1899		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1900
1901		DROP_GIANT();
1902		if (flags & SLEEPQ_INTERRUPTIBLE)
1903			error = -sleepq_timedwait_sig(c, 0);
1904		else
1905			error = -sleepq_timedwait(c, 0);
1906		PICKUP_GIANT();
1907
1908		if (error != 0) {
1909			/* check for timeout */
1910			if (error == -EWOULDBLOCK) {
1911				error = 0;	/* timeout */
1912			} else {
1913				/* signal happened */
1914				linux_schedule_save_interrupt_value(task, error);
1915				error = -ERESTARTSYS;
1916			}
1917			goto done;
1918		}
1919	}
1920	if (c->done != UINT_MAX)
1921		c->done--;
1922	sleepq_release(c);
1923
1924	/* return how many jiffies are left */
1925	error = linux_timer_jiffies_until(end);
1926done:
1927	return (error);
1928}
1929
1930int
1931linux_try_wait_for_completion(struct completion *c)
1932{
1933	int isdone;
1934
1935	sleepq_lock(c);
1936	isdone = (c->done != 0);
1937	if (c->done != 0 && c->done != UINT_MAX)
1938		c->done--;
1939	sleepq_release(c);
1940	return (isdone);
1941}
1942
1943int
1944linux_completion_done(struct completion *c)
1945{
1946	int isdone;
1947
1948	sleepq_lock(c);
1949	isdone = (c->done != 0);
1950	sleepq_release(c);
1951	return (isdone);
1952}
1953
1954static void
1955linux_cdev_release(struct kobject *kobj)
1956{
1957	struct linux_cdev *cdev;
1958	struct kobject *parent;
1959
1960	cdev = container_of(kobj, struct linux_cdev, kobj);
1961	parent = kobj->parent;
1962	linux_destroy_dev(cdev);
1963	kfree(cdev);
1964	kobject_put(parent);
1965}
1966
1967static void
1968linux_cdev_static_release(struct kobject *kobj)
1969{
1970	struct linux_cdev *cdev;
1971	struct kobject *parent;
1972
1973	cdev = container_of(kobj, struct linux_cdev, kobj);
1974	parent = kobj->parent;
1975	linux_destroy_dev(cdev);
1976	kobject_put(parent);
1977}
1978
1979void
1980linux_destroy_dev(struct linux_cdev *cdev)
1981{
1982
1983	if (cdev->cdev == NULL)
1984		return;
1985
1986	atomic_long_dec(&cdev->refs);
1987
1988	/* wait for all open files to be closed */
1989	while (atomic_long_read(&cdev->refs) != -1L)
1990		pause("ldevdrn", hz);
1991
1992	destroy_dev(cdev->cdev);
1993	cdev->cdev = NULL;
1994}
1995
1996const struct kobj_type linux_cdev_ktype = {
1997	.release = linux_cdev_release,
1998};
1999
2000const struct kobj_type linux_cdev_static_ktype = {
2001	.release = linux_cdev_static_release,
2002};
2003
2004static void
2005linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2006{
2007	struct notifier_block *nb;
2008
2009	nb = arg;
2010	if (linkstate == LINK_STATE_UP)
2011		nb->notifier_call(nb, NETDEV_UP, ifp);
2012	else
2013		nb->notifier_call(nb, NETDEV_DOWN, ifp);
2014}
2015
2016static void
2017linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2018{
2019	struct notifier_block *nb;
2020
2021	nb = arg;
2022	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
2023}
2024
2025static void
2026linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2027{
2028	struct notifier_block *nb;
2029
2030	nb = arg;
2031	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
2032}
2033
2034static void
2035linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2036{
2037	struct notifier_block *nb;
2038
2039	nb = arg;
2040	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
2041}
2042
2043static void
2044linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2045{
2046	struct notifier_block *nb;
2047
2048	nb = arg;
2049	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2050}
2051
2052int
2053register_netdevice_notifier(struct notifier_block *nb)
2054{
2055
2056	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2057	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2058	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2059	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2060	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2061	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2062	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2063	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2064
2065	return (0);
2066}
2067
2068int
2069register_inetaddr_notifier(struct notifier_block *nb)
2070{
2071
2072	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2073	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2074	return (0);
2075}
2076
2077int
2078unregister_netdevice_notifier(struct notifier_block *nb)
2079{
2080
2081	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2082	    nb->tags[NETDEV_UP]);
2083	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2084	    nb->tags[NETDEV_REGISTER]);
2085	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2086	    nb->tags[NETDEV_UNREGISTER]);
2087	EVENTHANDLER_DEREGISTER(iflladdr_event,
2088	    nb->tags[NETDEV_CHANGEADDR]);
2089
2090	return (0);
2091}
2092
2093int
2094unregister_inetaddr_notifier(struct notifier_block *nb)
2095{
2096
2097	EVENTHANDLER_DEREGISTER(ifaddr_event,
2098	    nb->tags[NETDEV_CHANGEIFADDR]);
2099
2100	return (0);
2101}
2102
2103struct list_sort_thunk {
2104	int (*cmp)(void *, struct list_head *, struct list_head *);
2105	void *priv;
2106};
2107
2108static inline int
2109linux_le_cmp(void *priv, const void *d1, const void *d2)
2110{
2111	struct list_head *le1, *le2;
2112	struct list_sort_thunk *thunk;
2113
2114	thunk = priv;
2115	le1 = *(__DECONST(struct list_head **, d1));
2116	le2 = *(__DECONST(struct list_head **, d2));
2117	return ((thunk->cmp)(thunk->priv, le1, le2));
2118}
2119
2120void
2121list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2122    struct list_head *a, struct list_head *b))
2123{
2124	struct list_sort_thunk thunk;
2125	struct list_head **ar, *le;
2126	size_t count, i;
2127
2128	count = 0;
2129	list_for_each(le, head)
2130		count++;
2131	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2132	i = 0;
2133	list_for_each(le, head)
2134		ar[i++] = le;
2135	thunk.cmp = cmp;
2136	thunk.priv = priv;
2137	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2138	INIT_LIST_HEAD(head);
2139	for (i = 0; i < count; i++)
2140		list_add_tail(ar[i], head);
2141	free(ar, M_KMALLOC);
2142}
2143
2144void
2145linux_irq_handler(void *ent)
2146{
2147	struct irq_ent *irqe;
2148
2149	linux_set_current(curthread);
2150
2151	irqe = ent;
2152	irqe->handler(irqe->irq, irqe->arg);
2153}
2154
2155#if defined(__i386__) || defined(__amd64__)
2156int
2157linux_wbinvd_on_all_cpus(void)
2158{
2159
2160	pmap_invalidate_cache();
2161	return (0);
2162}
2163#endif
2164
2165int
2166linux_on_each_cpu(void callback(void *), void *data)
2167{
2168
2169	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2170	    smp_no_rendezvous_barrier, data);
2171	return (0);
2172}
2173
2174int
2175linux_in_atomic(void)
2176{
2177
2178	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2179}
2180
2181struct linux_cdev *
2182linux_find_cdev(const char *name, unsigned major, unsigned minor)
2183{
2184	dev_t dev = MKDEV(major, minor);
2185	struct cdev *cdev;
2186
2187	dev_lock();
2188	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2189		struct linux_cdev *ldev = cdev->si_drv1;
2190		if (ldev->dev == dev &&
2191		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2192			break;
2193		}
2194	}
2195	dev_unlock();
2196
2197	return (cdev != NULL ? cdev->si_drv1 : NULL);
2198}
2199
2200int
2201__register_chrdev(unsigned int major, unsigned int baseminor,
2202    unsigned int count, const char *name,
2203    const struct file_operations *fops)
2204{
2205	struct linux_cdev *cdev;
2206	int ret = 0;
2207	int i;
2208
2209	for (i = baseminor; i < baseminor + count; i++) {
2210		cdev = cdev_alloc();
2211		cdev_init(cdev, fops);
2212		kobject_set_name(&cdev->kobj, name);
2213
2214		ret = cdev_add(cdev, makedev(major, i), 1);
2215		if (ret != 0)
2216			break;
2217	}
2218	return (ret);
2219}
2220
2221int
2222__register_chrdev_p(unsigned int major, unsigned int baseminor,
2223    unsigned int count, const char *name,
2224    const struct file_operations *fops, uid_t uid,
2225    gid_t gid, int mode)
2226{
2227	struct linux_cdev *cdev;
2228	int ret = 0;
2229	int i;
2230
2231	for (i = baseminor; i < baseminor + count; i++) {
2232		cdev = cdev_alloc();
2233		cdev_init(cdev, fops);
2234		kobject_set_name(&cdev->kobj, name);
2235
2236		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2237		if (ret != 0)
2238			break;
2239	}
2240	return (ret);
2241}
2242
2243void
2244__unregister_chrdev(unsigned int major, unsigned int baseminor,
2245    unsigned int count, const char *name)
2246{
2247	struct linux_cdev *cdevp;
2248	int i;
2249
2250	for (i = baseminor; i < baseminor + count; i++) {
2251		cdevp = linux_find_cdev(name, major, i);
2252		if (cdevp != NULL)
2253			cdev_del(cdevp);
2254	}
2255}
2256
2257void
2258linux_dump_stack(void)
2259{
2260#ifdef STACK
2261	struct stack st;
2262
2263	stack_zero(&st);
2264	stack_save(&st);
2265	stack_print(&st);
2266#endif
2267}
2268
2269#if defined(__i386__) || defined(__amd64__)
2270bool linux_cpu_has_clflush;
2271#endif
2272
2273static void
2274linux_compat_init(void *arg)
2275{
2276	struct sysctl_oid *rootoid;
2277	int i;
2278
2279#if defined(__i386__) || defined(__amd64__)
2280	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2281#endif
2282	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2283
2284	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2285	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2286	kobject_init(&linux_class_root, &linux_class_ktype);
2287	kobject_set_name(&linux_class_root, "class");
2288	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2289	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2290	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2291	kobject_set_name(&linux_root_device.kobj, "device");
2292	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2293	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2294	    "device");
2295	linux_root_device.bsddev = root_bus;
2296	linux_class_misc.name = "misc";
2297	class_register(&linux_class_misc);
2298	INIT_LIST_HEAD(&pci_drivers);
2299	INIT_LIST_HEAD(&pci_devices);
2300	spin_lock_init(&pci_lock);
2301	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2302	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2303		LIST_INIT(&vmmaphead[i]);
2304}
2305SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2306
2307static void
2308linux_compat_uninit(void *arg)
2309{
2310	linux_kobject_kfree_name(&linux_class_root);
2311	linux_kobject_kfree_name(&linux_root_device.kobj);
2312	linux_kobject_kfree_name(&linux_class_misc.kobj);
2313
2314	mtx_destroy(&vmmaplock);
2315	spin_lock_destroy(&pci_lock);
2316	rw_destroy(&linux_vma_lock);
2317}
2318SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2319
2320/*
2321 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2322 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2323 * used. Assert these types have the same size, else some parts of the
2324 * LinuxKPI may not work like expected:
2325 */
2326CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2327