linux_compat.c revision 329971
1/*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/compat/linuxkpi/common/src/linux_compat.c 329971 2018-02-25 10:34:47Z hselasky $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/malloc.h>
36#include <sys/kernel.h>
37#include <sys/sysctl.h>
38#include <sys/proc.h>
39#include <sys/sglist.h>
40#include <sys/sleepqueue.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/bus.h>
44#include <sys/fcntl.h>
45#include <sys/file.h>
46#include <sys/filio.h>
47#include <sys/rwlock.h>
48#include <sys/mman.h>
49
50#include <vm/vm.h>
51#include <vm/pmap.h>
52#include <vm/vm_object.h>
53#include <vm/vm_page.h>
54#include <vm/vm_pager.h>
55
56#include <machine/stdarg.h>
57
58#if defined(__i386__) || defined(__amd64__)
59#include <machine/md_var.h>
60#endif
61
62#include <linux/kobject.h>
63#include <linux/device.h>
64#include <linux/slab.h>
65#include <linux/module.h>
66#include <linux/moduleparam.h>
67#include <linux/cdev.h>
68#include <linux/file.h>
69#include <linux/sysfs.h>
70#include <linux/mm.h>
71#include <linux/io.h>
72#include <linux/vmalloc.h>
73#include <linux/netdevice.h>
74#include <linux/timer.h>
75#include <linux/interrupt.h>
76#include <linux/uaccess.h>
77#include <linux/list.h>
78#include <linux/kthread.h>
79#include <linux/kernel.h>
80#include <linux/compat.h>
81#include <linux/poll.h>
82#include <linux/smp.h>
83
84#if defined(__i386__) || defined(__amd64__)
85#include <asm/smp.h>
86#endif
87
88SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
89
90MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
91
92#include <linux/rbtree.h>
93/* Undo Linux compat changes. */
94#undef RB_ROOT
95#undef file
96#undef cdev
97#define	RB_ROOT(head)	(head)->rbh_root
98
99static struct vm_area_struct *linux_cdev_handle_find(void *handle);
100
101struct kobject linux_class_root;
102struct device linux_root_device;
103struct class linux_class_misc;
104struct list_head pci_drivers;
105struct list_head pci_devices;
106spinlock_t pci_lock;
107
108unsigned long linux_timer_hz_mask;
109
110int
111panic_cmp(struct rb_node *one, struct rb_node *two)
112{
113	panic("no cmp");
114}
115
116RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
117
118int
119kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
120{
121	va_list tmp_va;
122	int len;
123	char *old;
124	char *name;
125	char dummy;
126
127	old = kobj->name;
128
129	if (old && fmt == NULL)
130		return (0);
131
132	/* compute length of string */
133	va_copy(tmp_va, args);
134	len = vsnprintf(&dummy, 0, fmt, tmp_va);
135	va_end(tmp_va);
136
137	/* account for zero termination */
138	len++;
139
140	/* check for error */
141	if (len < 1)
142		return (-EINVAL);
143
144	/* allocate memory for string */
145	name = kzalloc(len, GFP_KERNEL);
146	if (name == NULL)
147		return (-ENOMEM);
148	vsnprintf(name, len, fmt, args);
149	kobj->name = name;
150
151	/* free old string */
152	kfree(old);
153
154	/* filter new string */
155	for (; *name != '\0'; name++)
156		if (*name == '/')
157			*name = '!';
158	return (0);
159}
160
161int
162kobject_set_name(struct kobject *kobj, const char *fmt, ...)
163{
164	va_list args;
165	int error;
166
167	va_start(args, fmt);
168	error = kobject_set_name_vargs(kobj, fmt, args);
169	va_end(args);
170
171	return (error);
172}
173
174static int
175kobject_add_complete(struct kobject *kobj, struct kobject *parent)
176{
177	const struct kobj_type *t;
178	int error;
179
180	kobj->parent = parent;
181	error = sysfs_create_dir(kobj);
182	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
183		struct attribute **attr;
184		t = kobj->ktype;
185
186		for (attr = t->default_attrs; *attr != NULL; attr++) {
187			error = sysfs_create_file(kobj, *attr);
188			if (error)
189				break;
190		}
191		if (error)
192			sysfs_remove_dir(kobj);
193
194	}
195	return (error);
196}
197
198int
199kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
200{
201	va_list args;
202	int error;
203
204	va_start(args, fmt);
205	error = kobject_set_name_vargs(kobj, fmt, args);
206	va_end(args);
207	if (error)
208		return (error);
209
210	return kobject_add_complete(kobj, parent);
211}
212
213void
214linux_kobject_release(struct kref *kref)
215{
216	struct kobject *kobj;
217	char *name;
218
219	kobj = container_of(kref, struct kobject, kref);
220	sysfs_remove_dir(kobj);
221	name = kobj->name;
222	if (kobj->ktype && kobj->ktype->release)
223		kobj->ktype->release(kobj);
224	kfree(name);
225}
226
227static void
228linux_kobject_kfree(struct kobject *kobj)
229{
230	kfree(kobj);
231}
232
233static void
234linux_kobject_kfree_name(struct kobject *kobj)
235{
236	if (kobj) {
237		kfree(kobj->name);
238	}
239}
240
241const struct kobj_type linux_kfree_type = {
242	.release = linux_kobject_kfree
243};
244
245static void
246linux_device_release(struct device *dev)
247{
248	pr_debug("linux_device_release: %s\n", dev_name(dev));
249	kfree(dev);
250}
251
252static ssize_t
253linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
254{
255	struct class_attribute *dattr;
256	ssize_t error;
257
258	dattr = container_of(attr, struct class_attribute, attr);
259	error = -EIO;
260	if (dattr->show)
261		error = dattr->show(container_of(kobj, struct class, kobj),
262		    dattr, buf);
263	return (error);
264}
265
266static ssize_t
267linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
268    size_t count)
269{
270	struct class_attribute *dattr;
271	ssize_t error;
272
273	dattr = container_of(attr, struct class_attribute, attr);
274	error = -EIO;
275	if (dattr->store)
276		error = dattr->store(container_of(kobj, struct class, kobj),
277		    dattr, buf, count);
278	return (error);
279}
280
281static void
282linux_class_release(struct kobject *kobj)
283{
284	struct class *class;
285
286	class = container_of(kobj, struct class, kobj);
287	if (class->class_release)
288		class->class_release(class);
289}
290
291static const struct sysfs_ops linux_class_sysfs = {
292	.show  = linux_class_show,
293	.store = linux_class_store,
294};
295
296const struct kobj_type linux_class_ktype = {
297	.release = linux_class_release,
298	.sysfs_ops = &linux_class_sysfs
299};
300
301static void
302linux_dev_release(struct kobject *kobj)
303{
304	struct device *dev;
305
306	dev = container_of(kobj, struct device, kobj);
307	/* This is the precedence defined by linux. */
308	if (dev->release)
309		dev->release(dev);
310	else if (dev->class && dev->class->dev_release)
311		dev->class->dev_release(dev);
312}
313
314static ssize_t
315linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
316{
317	struct device_attribute *dattr;
318	ssize_t error;
319
320	dattr = container_of(attr, struct device_attribute, attr);
321	error = -EIO;
322	if (dattr->show)
323		error = dattr->show(container_of(kobj, struct device, kobj),
324		    dattr, buf);
325	return (error);
326}
327
328static ssize_t
329linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
330    size_t count)
331{
332	struct device_attribute *dattr;
333	ssize_t error;
334
335	dattr = container_of(attr, struct device_attribute, attr);
336	error = -EIO;
337	if (dattr->store)
338		error = dattr->store(container_of(kobj, struct device, kobj),
339		    dattr, buf, count);
340	return (error);
341}
342
343static const struct sysfs_ops linux_dev_sysfs = {
344	.show  = linux_dev_show,
345	.store = linux_dev_store,
346};
347
348const struct kobj_type linux_dev_ktype = {
349	.release = linux_dev_release,
350	.sysfs_ops = &linux_dev_sysfs
351};
352
353struct device *
354device_create(struct class *class, struct device *parent, dev_t devt,
355    void *drvdata, const char *fmt, ...)
356{
357	struct device *dev;
358	va_list args;
359
360	dev = kzalloc(sizeof(*dev), M_WAITOK);
361	dev->parent = parent;
362	dev->class = class;
363	dev->devt = devt;
364	dev->driver_data = drvdata;
365	dev->release = linux_device_release;
366	va_start(args, fmt);
367	kobject_set_name_vargs(&dev->kobj, fmt, args);
368	va_end(args);
369	device_register(dev);
370
371	return (dev);
372}
373
374int
375kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
376    struct kobject *parent, const char *fmt, ...)
377{
378	va_list args;
379	int error;
380
381	kobject_init(kobj, ktype);
382	kobj->ktype = ktype;
383	kobj->parent = parent;
384	kobj->name = NULL;
385
386	va_start(args, fmt);
387	error = kobject_set_name_vargs(kobj, fmt, args);
388	va_end(args);
389	if (error)
390		return (error);
391	return kobject_add_complete(kobj, parent);
392}
393
394static void
395linux_kq_lock(void *arg)
396{
397	spinlock_t *s = arg;
398
399	spin_lock(s);
400}
401static void
402linux_kq_unlock(void *arg)
403{
404	spinlock_t *s = arg;
405
406	spin_unlock(s);
407}
408
409static void
410linux_kq_lock_owned(void *arg)
411{
412#ifdef INVARIANTS
413	spinlock_t *s = arg;
414
415	mtx_assert(&s->m, MA_OWNED);
416#endif
417}
418
419static void
420linux_kq_lock_unowned(void *arg)
421{
422#ifdef INVARIANTS
423	spinlock_t *s = arg;
424
425	mtx_assert(&s->m, MA_NOTOWNED);
426#endif
427}
428
429static void
430linux_file_kqfilter_poll(struct linux_file *, int);
431
432struct linux_file *
433linux_file_alloc(void)
434{
435	struct linux_file *filp;
436
437	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
438
439	/* set initial refcount */
440	filp->f_count = 1;
441
442	/* setup fields needed by kqueue support */
443	spin_lock_init(&filp->f_kqlock);
444	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
445	    linux_kq_lock, linux_kq_unlock,
446	    linux_kq_lock_owned, linux_kq_lock_unowned);
447
448	return (filp);
449}
450
451void
452linux_file_free(struct linux_file *filp)
453{
454	if (filp->_file == NULL) {
455		if (filp->f_shmem != NULL)
456			vm_object_deallocate(filp->f_shmem);
457		kfree(filp);
458	} else {
459		/*
460		 * The close method of the character device or file
461		 * will free the linux_file structure:
462		 */
463		_fdrop(filp->_file, curthread);
464	}
465}
466
467static int
468linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
469    vm_page_t *mres)
470{
471	struct vm_area_struct *vmap;
472
473	vmap = linux_cdev_handle_find(vm_obj->handle);
474
475	MPASS(vmap != NULL);
476	MPASS(vmap->vm_private_data == vm_obj->handle);
477
478	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
479		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
480		vm_page_t page;
481
482		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
483			/*
484			 * If the passed in result page is a fake
485			 * page, update it with the new physical
486			 * address.
487			 */
488			page = *mres;
489			vm_page_updatefake(page, paddr, vm_obj->memattr);
490		} else {
491			/*
492			 * Replace the passed in "mres" page with our
493			 * own fake page and free up the all of the
494			 * original pages.
495			 */
496			VM_OBJECT_WUNLOCK(vm_obj);
497			page = vm_page_getfake(paddr, vm_obj->memattr);
498			VM_OBJECT_WLOCK(vm_obj);
499
500			vm_page_replace_checked(page, vm_obj,
501			    (*mres)->pindex, *mres);
502
503			vm_page_lock(*mres);
504			vm_page_free(*mres);
505			vm_page_unlock(*mres);
506			*mres = page;
507		}
508		page->valid = VM_PAGE_BITS_ALL;
509		return (VM_PAGER_OK);
510	}
511	return (VM_PAGER_FAIL);
512}
513
514static int
515linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
516    vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
517{
518	struct vm_area_struct *vmap;
519	int err;
520
521	linux_set_current(curthread);
522
523	/* get VM area structure */
524	vmap = linux_cdev_handle_find(vm_obj->handle);
525	MPASS(vmap != NULL);
526	MPASS(vmap->vm_private_data == vm_obj->handle);
527
528	VM_OBJECT_WUNLOCK(vm_obj);
529
530	down_write(&vmap->vm_mm->mmap_sem);
531	if (unlikely(vmap->vm_ops == NULL)) {
532		err = VM_FAULT_SIGBUS;
533	} else {
534		struct vm_fault vmf;
535
536		/* fill out VM fault structure */
537		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
538		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
539		vmf.pgoff = 0;
540		vmf.page = NULL;
541		vmf.vma = vmap;
542
543		vmap->vm_pfn_count = 0;
544		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
545		vmap->vm_obj = vm_obj;
546
547		err = vmap->vm_ops->fault(vmap, &vmf);
548
549		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
550			kern_yield(PRI_USER);
551			err = vmap->vm_ops->fault(vmap, &vmf);
552		}
553	}
554
555	/* translate return code */
556	switch (err) {
557	case VM_FAULT_OOM:
558		err = VM_PAGER_AGAIN;
559		break;
560	case VM_FAULT_SIGBUS:
561		err = VM_PAGER_BAD;
562		break;
563	case VM_FAULT_NOPAGE:
564		/*
565		 * By contract the fault handler will return having
566		 * busied all the pages itself. If pidx is already
567		 * found in the object, it will simply xbusy the first
568		 * page and return with vm_pfn_count set to 1.
569		 */
570		*first = vmap->vm_pfn_first;
571		*last = *first + vmap->vm_pfn_count - 1;
572		err = VM_PAGER_OK;
573		break;
574	default:
575		err = VM_PAGER_ERROR;
576		break;
577	}
578	up_write(&vmap->vm_mm->mmap_sem);
579	VM_OBJECT_WLOCK(vm_obj);
580	return (err);
581}
582
583static struct rwlock linux_vma_lock;
584static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
585    TAILQ_HEAD_INITIALIZER(linux_vma_head);
586
587static void
588linux_cdev_handle_free(struct vm_area_struct *vmap)
589{
590	/* Drop reference on vm_file */
591	if (vmap->vm_file != NULL)
592		fput(vmap->vm_file);
593
594	/* Drop reference on mm_struct */
595	mmput(vmap->vm_mm);
596
597	kfree(vmap);
598}
599
600static void
601linux_cdev_handle_remove(struct vm_area_struct *vmap)
602{
603	rw_wlock(&linux_vma_lock);
604	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
605	rw_wunlock(&linux_vma_lock);
606}
607
608static struct vm_area_struct *
609linux_cdev_handle_find(void *handle)
610{
611	struct vm_area_struct *vmap;
612
613	rw_rlock(&linux_vma_lock);
614	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
615		if (vmap->vm_private_data == handle)
616			break;
617	}
618	rw_runlock(&linux_vma_lock);
619	return (vmap);
620}
621
622static int
623linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
624		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
625{
626
627	MPASS(linux_cdev_handle_find(handle) != NULL);
628	*color = 0;
629	return (0);
630}
631
632static void
633linux_cdev_pager_dtor(void *handle)
634{
635	const struct vm_operations_struct *vm_ops;
636	struct vm_area_struct *vmap;
637
638	vmap = linux_cdev_handle_find(handle);
639	MPASS(vmap != NULL);
640
641	/*
642	 * Remove handle before calling close operation to prevent
643	 * other threads from reusing the handle pointer.
644	 */
645	linux_cdev_handle_remove(vmap);
646
647	down_write(&vmap->vm_mm->mmap_sem);
648	vm_ops = vmap->vm_ops;
649	if (likely(vm_ops != NULL))
650		vm_ops->close(vmap);
651	up_write(&vmap->vm_mm->mmap_sem);
652
653	linux_cdev_handle_free(vmap);
654}
655
656static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
657  {
658	/* OBJT_MGTDEVICE */
659	.cdev_pg_populate	= linux_cdev_pager_populate,
660	.cdev_pg_ctor	= linux_cdev_pager_ctor,
661	.cdev_pg_dtor	= linux_cdev_pager_dtor
662  },
663  {
664	/* OBJT_DEVICE */
665	.cdev_pg_fault	= linux_cdev_pager_fault,
666	.cdev_pg_ctor	= linux_cdev_pager_ctor,
667	.cdev_pg_dtor	= linux_cdev_pager_dtor
668  },
669};
670
671#define	OPW(fp,td,code) ({			\
672	struct file *__fpop;			\
673	__typeof(code) __retval;		\
674						\
675	__fpop = (td)->td_fpop;			\
676	(td)->td_fpop = (fp);			\
677	__retval = (code);			\
678	(td)->td_fpop = __fpop;			\
679	__retval;				\
680})
681
682static int
683linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td, struct file *file)
684{
685	struct linux_cdev *ldev;
686	struct linux_file *filp;
687	int error;
688
689	ldev = dev->si_drv1;
690
691	filp = linux_file_alloc();
692	filp->f_dentry = &filp->f_dentry_store;
693	filp->f_op = ldev->ops;
694	filp->f_mode = file->f_flag;
695	filp->f_flags = file->f_flag;
696	filp->f_vnode = file->f_vnode;
697	filp->_file = file;
698
699	linux_set_current(td);
700
701	if (filp->f_op->open) {
702		error = -filp->f_op->open(file->f_vnode, filp);
703		if (error) {
704			kfree(filp);
705			return (error);
706		}
707	}
708
709	/* hold on to the vnode - used for fstat() */
710	vhold(filp->f_vnode);
711
712	/* release the file from devfs */
713	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
714	return (ENXIO);
715}
716
717#define	LINUX_IOCTL_MIN_PTR 0x10000UL
718#define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
719
720static inline int
721linux_remap_address(void **uaddr, size_t len)
722{
723	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
724
725	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
726	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
727		struct task_struct *pts = current;
728		if (pts == NULL) {
729			*uaddr = NULL;
730			return (1);
731		}
732
733		/* compute data offset */
734		uaddr_val -= LINUX_IOCTL_MIN_PTR;
735
736		/* check that length is within bounds */
737		if ((len > IOCPARM_MAX) ||
738		    (uaddr_val + len) > pts->bsd_ioctl_len) {
739			*uaddr = NULL;
740			return (1);
741		}
742
743		/* re-add kernel buffer address */
744		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
745
746		/* update address location */
747		*uaddr = (void *)uaddr_val;
748		return (1);
749	}
750	return (0);
751}
752
753int
754linux_copyin(const void *uaddr, void *kaddr, size_t len)
755{
756	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
757		if (uaddr == NULL)
758			return (-EFAULT);
759		memcpy(kaddr, uaddr, len);
760		return (0);
761	}
762	return (-copyin(uaddr, kaddr, len));
763}
764
765int
766linux_copyout(const void *kaddr, void *uaddr, size_t len)
767{
768	if (linux_remap_address(&uaddr, len)) {
769		if (uaddr == NULL)
770			return (-EFAULT);
771		memcpy(uaddr, kaddr, len);
772		return (0);
773	}
774	return (-copyout(kaddr, uaddr, len));
775}
776
777size_t
778linux_clear_user(void *_uaddr, size_t _len)
779{
780	uint8_t *uaddr = _uaddr;
781	size_t len = _len;
782
783	/* make sure uaddr is aligned before going into the fast loop */
784	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
785		if (subyte(uaddr, 0))
786			return (_len);
787		uaddr++;
788		len--;
789	}
790
791	/* zero 8 bytes at a time */
792	while (len > 7) {
793#ifdef __LP64__
794		if (suword64(uaddr, 0))
795			return (_len);
796#else
797		if (suword32(uaddr, 0))
798			return (_len);
799		if (suword32(uaddr + 4, 0))
800			return (_len);
801#endif
802		uaddr += 8;
803		len -= 8;
804	}
805
806	/* zero fill end, if any */
807	while (len > 0) {
808		if (subyte(uaddr, 0))
809			return (_len);
810		uaddr++;
811		len--;
812	}
813	return (0);
814}
815
816int
817linux_access_ok(int rw, const void *uaddr, size_t len)
818{
819	uintptr_t saddr;
820	uintptr_t eaddr;
821
822	/* get start and end address */
823	saddr = (uintptr_t)uaddr;
824	eaddr = (uintptr_t)uaddr + len;
825
826	/* verify addresses are valid for userspace */
827	return ((saddr == eaddr) ||
828	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
829}
830
831static int
832linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
833    u_long cmd, caddr_t data, struct thread *td)
834{
835	unsigned size;
836	int error;
837
838	size = IOCPARM_LEN(cmd);
839	/* refer to logic in sys_ioctl() */
840	if (size > 0) {
841		/*
842		 * Setup hint for linux_copyin() and linux_copyout().
843		 *
844		 * Background: Linux code expects a user-space address
845		 * while FreeBSD supplies a kernel-space address.
846		 */
847		current->bsd_ioctl_data = data;
848		current->bsd_ioctl_len = size;
849		data = (void *)LINUX_IOCTL_MIN_PTR;
850	} else {
851		/* fetch user-space pointer */
852		data = *(void **)data;
853	}
854#if defined(__amd64__)
855	if (td->td_proc->p_elf_machine == EM_386) {
856		/* try the compat IOCTL handler first */
857		if (filp->f_op->compat_ioctl != NULL)
858			error = -OPW(fp, td, filp->f_op->compat_ioctl(filp, cmd, (u_long)data));
859		else
860			error = ENOTTY;
861
862		/* fallback to the regular IOCTL handler, if any */
863		if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL)
864			error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data));
865	} else
866#endif
867	if (filp->f_op->unlocked_ioctl != NULL)
868		error = -OPW(fp, td, filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data));
869	else
870		error = ENOTTY;
871	if (size > 0) {
872		current->bsd_ioctl_data = NULL;
873		current->bsd_ioctl_len = 0;
874	}
875
876	if (error == EWOULDBLOCK) {
877		/* update kqfilter status, if any */
878		linux_file_kqfilter_poll(filp,
879		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
880	} else if (error == ERESTARTSYS)
881		error = ERESTART;
882	return (error);
883}
884
885#define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
886
887/*
888 * This function atomically updates the poll wakeup state and returns
889 * the previous state at the time of update.
890 */
891static uint8_t
892linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
893{
894	int c, old;
895
896	c = v->counter;
897
898	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
899		c = old;
900
901	return (c);
902}
903
904
905static int
906linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
907{
908	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
909		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
910		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
911		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
912		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
913	};
914	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
915
916	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
917	case LINUX_FWQ_STATE_QUEUED:
918		linux_poll_wakeup(filp);
919		return (1);
920	default:
921		return (0);
922	}
923}
924
925void
926linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
927{
928	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
929		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
930		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
931		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
932		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
933	};
934
935	/* check if we are called inside the select system call */
936	if (p == LINUX_POLL_TABLE_NORMAL)
937		selrecord(curthread, &filp->f_selinfo);
938
939	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
940	case LINUX_FWQ_STATE_INIT:
941		/* NOTE: file handles can only belong to one wait-queue */
942		filp->f_wait_queue.wqh = wqh;
943		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
944		add_wait_queue(wqh, &filp->f_wait_queue.wq);
945		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
946		break;
947	default:
948		break;
949	}
950}
951
952static void
953linux_poll_wait_dequeue(struct linux_file *filp)
954{
955	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
956		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
957		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
958		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
959		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
960	};
961
962	seldrain(&filp->f_selinfo);
963
964	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
965	case LINUX_FWQ_STATE_NOT_READY:
966	case LINUX_FWQ_STATE_QUEUED:
967	case LINUX_FWQ_STATE_READY:
968		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
969		break;
970	default:
971		break;
972	}
973}
974
975void
976linux_poll_wakeup(struct linux_file *filp)
977{
978	/* this function should be NULL-safe */
979	if (filp == NULL)
980		return;
981
982	selwakeup(&filp->f_selinfo);
983
984	spin_lock(&filp->f_kqlock);
985	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
986	    LINUX_KQ_FLAG_NEED_WRITE;
987
988	/* make sure the "knote" gets woken up */
989	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
990	spin_unlock(&filp->f_kqlock);
991}
992
993static void
994linux_file_kqfilter_detach(struct knote *kn)
995{
996	struct linux_file *filp = kn->kn_hook;
997
998	spin_lock(&filp->f_kqlock);
999	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1000	spin_unlock(&filp->f_kqlock);
1001}
1002
1003static int
1004linux_file_kqfilter_read_event(struct knote *kn, long hint)
1005{
1006	struct linux_file *filp = kn->kn_hook;
1007
1008	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1009
1010	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1011}
1012
1013static int
1014linux_file_kqfilter_write_event(struct knote *kn, long hint)
1015{
1016	struct linux_file *filp = kn->kn_hook;
1017
1018	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1019
1020	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1021}
1022
1023static struct filterops linux_dev_kqfiltops_read = {
1024	.f_isfd = 1,
1025	.f_detach = linux_file_kqfilter_detach,
1026	.f_event = linux_file_kqfilter_read_event,
1027};
1028
1029static struct filterops linux_dev_kqfiltops_write = {
1030	.f_isfd = 1,
1031	.f_detach = linux_file_kqfilter_detach,
1032	.f_event = linux_file_kqfilter_write_event,
1033};
1034
1035static void
1036linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1037{
1038	int temp;
1039
1040	if (filp->f_kqflags & kqflags) {
1041		struct thread *td = curthread;
1042
1043		/* get the latest polling state */
1044		temp = OPW(filp->_file, td, filp->f_op->poll(filp, NULL));
1045
1046		spin_lock(&filp->f_kqlock);
1047		/* clear kqflags */
1048		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1049		    LINUX_KQ_FLAG_NEED_WRITE);
1050		/* update kqflags */
1051		if (temp & (POLLIN | POLLOUT)) {
1052			if (temp & POLLIN)
1053				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1054			if (temp & POLLOUT)
1055				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1056
1057			/* make sure the "knote" gets woken up */
1058			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1059		}
1060		spin_unlock(&filp->f_kqlock);
1061	}
1062}
1063
1064static int
1065linux_file_kqfilter(struct file *file, struct knote *kn)
1066{
1067	struct linux_file *filp;
1068	struct thread *td;
1069	int error;
1070
1071	td = curthread;
1072	filp = (struct linux_file *)file->f_data;
1073	filp->f_flags = file->f_flag;
1074	if (filp->f_op->poll == NULL)
1075		return (EINVAL);
1076
1077	spin_lock(&filp->f_kqlock);
1078	switch (kn->kn_filter) {
1079	case EVFILT_READ:
1080		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1081		kn->kn_fop = &linux_dev_kqfiltops_read;
1082		kn->kn_hook = filp;
1083		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1084		error = 0;
1085		break;
1086	case EVFILT_WRITE:
1087		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1088		kn->kn_fop = &linux_dev_kqfiltops_write;
1089		kn->kn_hook = filp;
1090		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1091		error = 0;
1092		break;
1093	default:
1094		error = EINVAL;
1095		break;
1096	}
1097	spin_unlock(&filp->f_kqlock);
1098
1099	if (error == 0) {
1100		linux_set_current(td);
1101
1102		/* update kqfilter status, if any */
1103		linux_file_kqfilter_poll(filp,
1104		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1105	}
1106	return (error);
1107}
1108
1109static int
1110linux_file_mmap_single(struct file *fp, vm_ooffset_t *offset,
1111    vm_size_t size, struct vm_object **object, int nprot,
1112    struct thread *td)
1113{
1114	struct vm_area_struct *vmap;
1115	struct mm_struct *mm;
1116	struct linux_file *filp;
1117	vm_memattr_t attr;
1118	int error;
1119
1120	filp = (struct linux_file *)fp->f_data;
1121	filp->f_flags = fp->f_flag;
1122
1123	if (filp->f_op->mmap == NULL)
1124		return (EOPNOTSUPP);
1125
1126	linux_set_current(td);
1127
1128	/*
1129	 * The same VM object might be shared by multiple processes
1130	 * and the mm_struct is usually freed when a process exits.
1131	 *
1132	 * The atomic reference below makes sure the mm_struct is
1133	 * available as long as the vmap is in the linux_vma_head.
1134	 */
1135	mm = current->mm;
1136	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1137		return (EINVAL);
1138
1139	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1140	vmap->vm_start = 0;
1141	vmap->vm_end = size;
1142	vmap->vm_pgoff = *offset / PAGE_SIZE;
1143	vmap->vm_pfn = 0;
1144	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1145	vmap->vm_ops = NULL;
1146	vmap->vm_file = get_file(filp);
1147	vmap->vm_mm = mm;
1148
1149	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1150		error = EINTR;
1151	} else {
1152		error = -OPW(fp, td, filp->f_op->mmap(filp, vmap));
1153		if (error == ERESTARTSYS)
1154			error = ERESTART;
1155		up_write(&vmap->vm_mm->mmap_sem);
1156	}
1157
1158	if (error != 0) {
1159		linux_cdev_handle_free(vmap);
1160		return (error);
1161	}
1162
1163	attr = pgprot2cachemode(vmap->vm_page_prot);
1164
1165	if (vmap->vm_ops != NULL) {
1166		struct vm_area_struct *ptr;
1167		void *vm_private_data;
1168		bool vm_no_fault;
1169
1170		if (vmap->vm_ops->open == NULL ||
1171		    vmap->vm_ops->close == NULL ||
1172		    vmap->vm_private_data == NULL) {
1173			/* free allocated VM area struct */
1174			linux_cdev_handle_free(vmap);
1175			return (EINVAL);
1176		}
1177
1178		vm_private_data = vmap->vm_private_data;
1179
1180		rw_wlock(&linux_vma_lock);
1181		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1182			if (ptr->vm_private_data == vm_private_data)
1183				break;
1184		}
1185		/* check if there is an existing VM area struct */
1186		if (ptr != NULL) {
1187			/* check if the VM area structure is invalid */
1188			if (ptr->vm_ops == NULL ||
1189			    ptr->vm_ops->open == NULL ||
1190			    ptr->vm_ops->close == NULL) {
1191				error = ESTALE;
1192				vm_no_fault = 1;
1193			} else {
1194				error = EEXIST;
1195				vm_no_fault = (ptr->vm_ops->fault == NULL);
1196			}
1197		} else {
1198			/* insert VM area structure into list */
1199			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1200			error = 0;
1201			vm_no_fault = (vmap->vm_ops->fault == NULL);
1202		}
1203		rw_wunlock(&linux_vma_lock);
1204
1205		if (error != 0) {
1206			/* free allocated VM area struct */
1207			linux_cdev_handle_free(vmap);
1208			/* check for stale VM area struct */
1209			if (error != EEXIST)
1210				return (error);
1211		}
1212
1213		/* check if there is no fault handler */
1214		if (vm_no_fault) {
1215			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1216			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1217			    td->td_ucred);
1218		} else {
1219			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1220			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1221			    td->td_ucred);
1222		}
1223
1224		/* check if allocating the VM object failed */
1225		if (*object == NULL) {
1226			if (error == 0) {
1227				/* remove VM area struct from list */
1228				linux_cdev_handle_remove(vmap);
1229				/* free allocated VM area struct */
1230				linux_cdev_handle_free(vmap);
1231			}
1232			return (EINVAL);
1233		}
1234	} else {
1235		struct sglist *sg;
1236
1237		sg = sglist_alloc(1, M_WAITOK);
1238		sglist_append_phys(sg,
1239		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1240
1241		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1242		    nprot, 0, td->td_ucred);
1243
1244		linux_cdev_handle_free(vmap);
1245
1246		if (*object == NULL) {
1247			sglist_free(sg);
1248			return (EINVAL);
1249		}
1250	}
1251
1252	if (attr != VM_MEMATTR_DEFAULT) {
1253		VM_OBJECT_WLOCK(*object);
1254		vm_object_set_memattr(*object, attr);
1255		VM_OBJECT_WUNLOCK(*object);
1256	}
1257	*offset = 0;
1258	return (0);
1259}
1260
1261struct cdevsw linuxcdevsw = {
1262	.d_version = D_VERSION,
1263	.d_fdopen = linux_dev_fdopen,
1264	.d_name = "lkpidev",
1265};
1266
1267static int
1268linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1269    int flags, struct thread *td)
1270{
1271	struct linux_file *filp;
1272	ssize_t bytes;
1273	int error;
1274
1275	error = 0;
1276	filp = (struct linux_file *)file->f_data;
1277	filp->f_flags = file->f_flag;
1278	/* XXX no support for I/O vectors currently */
1279	if (uio->uio_iovcnt != 1)
1280		return (EOPNOTSUPP);
1281	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1282		return (EINVAL);
1283	linux_set_current(td);
1284	if (filp->f_op->read) {
1285		bytes = OPW(file, td, filp->f_op->read(filp, uio->uio_iov->iov_base,
1286		    uio->uio_iov->iov_len, &uio->uio_offset));
1287		if (bytes >= 0) {
1288			uio->uio_iov->iov_base =
1289			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1290			uio->uio_iov->iov_len -= bytes;
1291			uio->uio_resid -= bytes;
1292		} else {
1293			error = -bytes;
1294			if (error == ERESTARTSYS)
1295				error = ERESTART;
1296		}
1297	} else
1298		error = ENXIO;
1299
1300	/* update kqfilter status, if any */
1301	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1302
1303	return (error);
1304}
1305
1306static int
1307linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1308    int flags, struct thread *td)
1309{
1310	struct linux_file *filp;
1311	ssize_t bytes;
1312	int error;
1313
1314	error = 0;
1315	filp = (struct linux_file *)file->f_data;
1316	filp->f_flags = file->f_flag;
1317	/* XXX no support for I/O vectors currently */
1318	if (uio->uio_iovcnt != 1)
1319		return (EOPNOTSUPP);
1320	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1321		return (EINVAL);
1322	linux_set_current(td);
1323	if (filp->f_op->write) {
1324		bytes = OPW(file, td, filp->f_op->write(filp, uio->uio_iov->iov_base,
1325		    uio->uio_iov->iov_len, &uio->uio_offset));
1326		if (bytes >= 0) {
1327			uio->uio_iov->iov_base =
1328			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1329			uio->uio_iov->iov_len -= bytes;
1330			uio->uio_resid -= bytes;
1331		} else {
1332			error = -bytes;
1333			if (error == ERESTARTSYS)
1334				error = ERESTART;
1335		}
1336	} else
1337		error = ENXIO;
1338
1339	/* update kqfilter status, if any */
1340	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1341
1342	return (error);
1343}
1344
1345static int
1346linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1347    struct thread *td)
1348{
1349	struct linux_file *filp;
1350	int revents;
1351
1352	filp = (struct linux_file *)file->f_data;
1353	filp->f_flags = file->f_flag;
1354	linux_set_current(td);
1355	if (filp->f_op->poll != NULL)
1356		revents = OPW(file, td, filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL)) & events;
1357	else
1358		revents = 0;
1359
1360	return (revents);
1361}
1362
1363static int
1364linux_file_close(struct file *file, struct thread *td)
1365{
1366	struct linux_file *filp;
1367	int error;
1368
1369	filp = (struct linux_file *)file->f_data;
1370
1371	KASSERT(file_count(filp) == 0, ("File refcount(%d) is not zero", file_count(filp)));
1372
1373	filp->f_flags = file->f_flag;
1374	linux_set_current(td);
1375	linux_poll_wait_dequeue(filp);
1376	error = -OPW(file, td, filp->f_op->release(filp->f_vnode, filp));
1377	funsetown(&filp->f_sigio);
1378	if (filp->f_vnode != NULL)
1379		vdrop(filp->f_vnode);
1380	kfree(filp);
1381
1382	return (error);
1383}
1384
1385static int
1386linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1387    struct thread *td)
1388{
1389	struct linux_file *filp;
1390	int error;
1391
1392	filp = (struct linux_file *)fp->f_data;
1393	filp->f_flags = fp->f_flag;
1394	error = 0;
1395
1396	linux_set_current(td);
1397	switch (cmd) {
1398	case FIONBIO:
1399		break;
1400	case FIOASYNC:
1401		if (filp->f_op->fasync == NULL)
1402			break;
1403		error = -OPW(fp, td, filp->f_op->fasync(0, filp, fp->f_flag & FASYNC));
1404		break;
1405	case FIOSETOWN:
1406		error = fsetown(*(int *)data, &filp->f_sigio);
1407		if (error == 0) {
1408			if (filp->f_op->fasync == NULL)
1409				break;
1410			error = -OPW(fp, td, filp->f_op->fasync(0, filp,
1411			    fp->f_flag & FASYNC));
1412		}
1413		break;
1414	case FIOGETOWN:
1415		*(int *)data = fgetown(&filp->f_sigio);
1416		break;
1417	default:
1418		error = linux_file_ioctl_sub(fp, filp, cmd, data, td);
1419		break;
1420	}
1421	return (error);
1422}
1423
1424static int
1425linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1426    vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1427    vm_ooffset_t *foff, vm_object_t *objp)
1428{
1429	/*
1430	 * Character devices do not provide private mappings
1431	 * of any kind:
1432	 */
1433	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1434	    (prot & VM_PROT_WRITE) != 0)
1435		return (EACCES);
1436	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1437		return (EINVAL);
1438
1439	return (linux_file_mmap_single(fp, foff, objsize, objp, (int)prot, td));
1440}
1441
1442static int
1443linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1444    vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1445    struct thread *td)
1446{
1447	struct linux_file *filp;
1448	struct mount *mp;
1449	struct vnode *vp;
1450	vm_object_t object;
1451	vm_prot_t maxprot;
1452	int error;
1453
1454	filp = (struct linux_file *)fp->f_data;
1455
1456	vp = filp->f_vnode;
1457	if (vp == NULL)
1458		return (EOPNOTSUPP);
1459
1460	/*
1461	 * Ensure that file and memory protections are
1462	 * compatible.
1463	 */
1464	mp = vp->v_mount;
1465	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1466		maxprot = VM_PROT_NONE;
1467		if ((prot & VM_PROT_EXECUTE) != 0)
1468			return (EACCES);
1469	} else
1470		maxprot = VM_PROT_EXECUTE;
1471	if ((fp->f_flag & FREAD) != 0)
1472		maxprot |= VM_PROT_READ;
1473	else if ((prot & VM_PROT_READ) != 0)
1474		return (EACCES);
1475
1476	/*
1477	 * If we are sharing potential changes via MAP_SHARED and we
1478	 * are trying to get write permission although we opened it
1479	 * without asking for it, bail out.
1480	 *
1481	 * Note that most character devices always share mappings.
1482	 *
1483	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1484	 * requests rather than doing it here.
1485	 */
1486	if ((flags & MAP_SHARED) != 0) {
1487		if ((fp->f_flag & FWRITE) != 0)
1488			maxprot |= VM_PROT_WRITE;
1489		else if ((prot & VM_PROT_WRITE) != 0)
1490			return (EACCES);
1491	}
1492	maxprot &= cap_maxprot;
1493
1494	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp, &foff,
1495	    &object);
1496	if (error != 0)
1497		return (error);
1498
1499	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1500	    foff, FALSE, td);
1501	if (error != 0)
1502		vm_object_deallocate(object);
1503	return (error);
1504}
1505
1506static int
1507linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1508    struct thread *td)
1509{
1510	struct linux_file *filp;
1511	struct vnode *vp;
1512	int error;
1513
1514	filp = (struct linux_file *)fp->f_data;
1515	if (filp->f_vnode == NULL)
1516		return (EOPNOTSUPP);
1517
1518	vp = filp->f_vnode;
1519
1520	vn_lock(vp, LK_SHARED | LK_RETRY);
1521	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1522	VOP_UNLOCK(vp, 0);
1523
1524	return (error);
1525}
1526
1527static int
1528linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1529    struct filedesc *fdp)
1530{
1531
1532	return (0);
1533}
1534
1535unsigned int
1536linux_iminor(struct inode *inode)
1537{
1538	struct linux_cdev *ldev;
1539
1540	if (inode == NULL || inode->v_rdev == NULL ||
1541	    inode->v_rdev->si_devsw != &linuxcdevsw)
1542		return (-1U);
1543	ldev = inode->v_rdev->si_drv1;
1544	if (ldev == NULL)
1545		return (-1U);
1546
1547	return (minor(ldev->dev));
1548}
1549
1550struct fileops linuxfileops = {
1551	.fo_read = linux_file_read,
1552	.fo_write = linux_file_write,
1553	.fo_truncate = invfo_truncate,
1554	.fo_kqfilter = linux_file_kqfilter,
1555	.fo_stat = linux_file_stat,
1556	.fo_fill_kinfo = linux_file_fill_kinfo,
1557	.fo_poll = linux_file_poll,
1558	.fo_close = linux_file_close,
1559	.fo_ioctl = linux_file_ioctl,
1560	.fo_mmap = linux_file_mmap,
1561	.fo_chmod = invfo_chmod,
1562	.fo_chown = invfo_chown,
1563	.fo_sendfile = invfo_sendfile,
1564	.fo_flags = DFLAG_PASSABLE,
1565};
1566
1567/*
1568 * Hash of vmmap addresses.  This is infrequently accessed and does not
1569 * need to be particularly large.  This is done because we must store the
1570 * caller's idea of the map size to properly unmap.
1571 */
1572struct vmmap {
1573	LIST_ENTRY(vmmap)	vm_next;
1574	void 			*vm_addr;
1575	unsigned long		vm_size;
1576};
1577
1578struct vmmaphd {
1579	struct vmmap *lh_first;
1580};
1581#define	VMMAP_HASH_SIZE	64
1582#define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1583#define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1584static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1585static struct mtx vmmaplock;
1586
1587static void
1588vmmap_add(void *addr, unsigned long size)
1589{
1590	struct vmmap *vmmap;
1591
1592	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1593	mtx_lock(&vmmaplock);
1594	vmmap->vm_size = size;
1595	vmmap->vm_addr = addr;
1596	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1597	mtx_unlock(&vmmaplock);
1598}
1599
1600static struct vmmap *
1601vmmap_remove(void *addr)
1602{
1603	struct vmmap *vmmap;
1604
1605	mtx_lock(&vmmaplock);
1606	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1607		if (vmmap->vm_addr == addr)
1608			break;
1609	if (vmmap)
1610		LIST_REMOVE(vmmap, vm_next);
1611	mtx_unlock(&vmmaplock);
1612
1613	return (vmmap);
1614}
1615
1616#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1617void *
1618_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1619{
1620	void *addr;
1621
1622	addr = pmap_mapdev_attr(phys_addr, size, attr);
1623	if (addr == NULL)
1624		return (NULL);
1625	vmmap_add(addr, size);
1626
1627	return (addr);
1628}
1629#endif
1630
1631void
1632iounmap(void *addr)
1633{
1634	struct vmmap *vmmap;
1635
1636	vmmap = vmmap_remove(addr);
1637	if (vmmap == NULL)
1638		return;
1639#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1640	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1641#endif
1642	kfree(vmmap);
1643}
1644
1645
1646void *
1647vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1648{
1649	vm_offset_t off;
1650	size_t size;
1651
1652	size = count * PAGE_SIZE;
1653	off = kva_alloc(size);
1654	if (off == 0)
1655		return (NULL);
1656	vmmap_add((void *)off, size);
1657	pmap_qenter(off, pages, count);
1658
1659	return ((void *)off);
1660}
1661
1662void
1663vunmap(void *addr)
1664{
1665	struct vmmap *vmmap;
1666
1667	vmmap = vmmap_remove(addr);
1668	if (vmmap == NULL)
1669		return;
1670	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1671	kva_free((vm_offset_t)addr, vmmap->vm_size);
1672	kfree(vmmap);
1673}
1674
1675char *
1676kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1677{
1678	unsigned int len;
1679	char *p;
1680	va_list aq;
1681
1682	va_copy(aq, ap);
1683	len = vsnprintf(NULL, 0, fmt, aq);
1684	va_end(aq);
1685
1686	p = kmalloc(len + 1, gfp);
1687	if (p != NULL)
1688		vsnprintf(p, len + 1, fmt, ap);
1689
1690	return (p);
1691}
1692
1693char *
1694kasprintf(gfp_t gfp, const char *fmt, ...)
1695{
1696	va_list ap;
1697	char *p;
1698
1699	va_start(ap, fmt);
1700	p = kvasprintf(gfp, fmt, ap);
1701	va_end(ap);
1702
1703	return (p);
1704}
1705
1706static void
1707linux_timer_callback_wrapper(void *context)
1708{
1709	struct timer_list *timer;
1710
1711	linux_set_current(curthread);
1712
1713	timer = context;
1714	timer->function(timer->data);
1715}
1716
1717void
1718mod_timer(struct timer_list *timer, int expires)
1719{
1720
1721	timer->expires = expires;
1722	callout_reset(&timer->timer_callout,
1723	    linux_timer_jiffies_until(expires),
1724	    &linux_timer_callback_wrapper, timer);
1725}
1726
1727void
1728add_timer(struct timer_list *timer)
1729{
1730
1731	callout_reset(&timer->timer_callout,
1732	    linux_timer_jiffies_until(timer->expires),
1733	    &linux_timer_callback_wrapper, timer);
1734}
1735
1736void
1737add_timer_on(struct timer_list *timer, int cpu)
1738{
1739
1740	callout_reset_on(&timer->timer_callout,
1741	    linux_timer_jiffies_until(timer->expires),
1742	    &linux_timer_callback_wrapper, timer, cpu);
1743}
1744
1745static void
1746linux_timer_init(void *arg)
1747{
1748
1749	/*
1750	 * Compute an internal HZ value which can divide 2**32 to
1751	 * avoid timer rounding problems when the tick value wraps
1752	 * around 2**32:
1753	 */
1754	linux_timer_hz_mask = 1;
1755	while (linux_timer_hz_mask < (unsigned long)hz)
1756		linux_timer_hz_mask *= 2;
1757	linux_timer_hz_mask--;
1758}
1759SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1760
1761void
1762linux_complete_common(struct completion *c, int all)
1763{
1764	int wakeup_swapper;
1765
1766	sleepq_lock(c);
1767	c->done++;
1768	if (all)
1769		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1770	else
1771		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1772	sleepq_release(c);
1773	if (wakeup_swapper)
1774		kick_proc0();
1775}
1776
1777/*
1778 * Indefinite wait for done != 0 with or without signals.
1779 */
1780int
1781linux_wait_for_common(struct completion *c, int flags)
1782{
1783	int error;
1784
1785	if (SCHEDULER_STOPPED())
1786		return (0);
1787
1788	DROP_GIANT();
1789
1790	if (flags != 0)
1791		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1792	else
1793		flags = SLEEPQ_SLEEP;
1794	error = 0;
1795	for (;;) {
1796		sleepq_lock(c);
1797		if (c->done)
1798			break;
1799		sleepq_add(c, NULL, "completion", flags, 0);
1800		if (flags & SLEEPQ_INTERRUPTIBLE) {
1801			if (sleepq_wait_sig(c, 0) != 0) {
1802				error = -ERESTARTSYS;
1803				goto intr;
1804			}
1805		} else
1806			sleepq_wait(c, 0);
1807	}
1808	c->done--;
1809	sleepq_release(c);
1810
1811intr:
1812	PICKUP_GIANT();
1813
1814	return (error);
1815}
1816
1817/*
1818 * Time limited wait for done != 0 with or without signals.
1819 */
1820int
1821linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1822{
1823	int end = jiffies + timeout;
1824	int error;
1825	int ret;
1826
1827	if (SCHEDULER_STOPPED())
1828		return (0);
1829
1830	DROP_GIANT();
1831
1832	if (flags != 0)
1833		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1834	else
1835		flags = SLEEPQ_SLEEP;
1836
1837	error = 0;
1838	ret = 0;
1839	for (;;) {
1840		sleepq_lock(c);
1841		if (c->done)
1842			break;
1843		sleepq_add(c, NULL, "completion", flags, 0);
1844		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1845		if (flags & SLEEPQ_INTERRUPTIBLE)
1846			ret = sleepq_timedwait_sig(c, 0);
1847		else
1848			ret = sleepq_timedwait(c, 0);
1849		if (ret != 0) {
1850			/* check for timeout or signal */
1851			if (ret == EWOULDBLOCK)
1852				error = 0;
1853			else
1854				error = -ERESTARTSYS;
1855			goto intr;
1856		}
1857	}
1858	c->done--;
1859	sleepq_release(c);
1860
1861intr:
1862	PICKUP_GIANT();
1863
1864	/* return how many jiffies are left */
1865	return (ret != 0 ? error : linux_timer_jiffies_until(end));
1866}
1867
1868int
1869linux_try_wait_for_completion(struct completion *c)
1870{
1871	int isdone;
1872
1873	isdone = 1;
1874	sleepq_lock(c);
1875	if (c->done)
1876		c->done--;
1877	else
1878		isdone = 0;
1879	sleepq_release(c);
1880	return (isdone);
1881}
1882
1883int
1884linux_completion_done(struct completion *c)
1885{
1886	int isdone;
1887
1888	isdone = 1;
1889	sleepq_lock(c);
1890	if (c->done == 0)
1891		isdone = 0;
1892	sleepq_release(c);
1893	return (isdone);
1894}
1895
1896static void
1897linux_cdev_release(struct kobject *kobj)
1898{
1899	struct linux_cdev *cdev;
1900	struct kobject *parent;
1901
1902	cdev = container_of(kobj, struct linux_cdev, kobj);
1903	parent = kobj->parent;
1904	if (cdev->cdev)
1905		destroy_dev(cdev->cdev);
1906	kfree(cdev);
1907	kobject_put(parent);
1908}
1909
1910static void
1911linux_cdev_static_release(struct kobject *kobj)
1912{
1913	struct linux_cdev *cdev;
1914	struct kobject *parent;
1915
1916	cdev = container_of(kobj, struct linux_cdev, kobj);
1917	parent = kobj->parent;
1918	if (cdev->cdev)
1919		destroy_dev(cdev->cdev);
1920	kobject_put(parent);
1921}
1922
1923const struct kobj_type linux_cdev_ktype = {
1924	.release = linux_cdev_release,
1925};
1926
1927const struct kobj_type linux_cdev_static_ktype = {
1928	.release = linux_cdev_static_release,
1929};
1930
1931static void
1932linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1933{
1934	struct notifier_block *nb;
1935
1936	nb = arg;
1937	if (linkstate == LINK_STATE_UP)
1938		nb->notifier_call(nb, NETDEV_UP, ifp);
1939	else
1940		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1941}
1942
1943static void
1944linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1945{
1946	struct notifier_block *nb;
1947
1948	nb = arg;
1949	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1950}
1951
1952static void
1953linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1954{
1955	struct notifier_block *nb;
1956
1957	nb = arg;
1958	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1959}
1960
1961static void
1962linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1963{
1964	struct notifier_block *nb;
1965
1966	nb = arg;
1967	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1968}
1969
1970static void
1971linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1972{
1973	struct notifier_block *nb;
1974
1975	nb = arg;
1976	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1977}
1978
1979int
1980register_netdevice_notifier(struct notifier_block *nb)
1981{
1982
1983	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1984	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1985	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1986	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1987	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1988	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1989	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1990	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1991
1992	return (0);
1993}
1994
1995int
1996register_inetaddr_notifier(struct notifier_block *nb)
1997{
1998
1999        nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2000            ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2001        return (0);
2002}
2003
2004int
2005unregister_netdevice_notifier(struct notifier_block *nb)
2006{
2007
2008        EVENTHANDLER_DEREGISTER(ifnet_link_event,
2009	    nb->tags[NETDEV_UP]);
2010        EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2011	    nb->tags[NETDEV_REGISTER]);
2012        EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2013	    nb->tags[NETDEV_UNREGISTER]);
2014        EVENTHANDLER_DEREGISTER(iflladdr_event,
2015	    nb->tags[NETDEV_CHANGEADDR]);
2016
2017	return (0);
2018}
2019
2020int
2021unregister_inetaddr_notifier(struct notifier_block *nb)
2022{
2023
2024        EVENTHANDLER_DEREGISTER(ifaddr_event,
2025            nb->tags[NETDEV_CHANGEIFADDR]);
2026
2027        return (0);
2028}
2029
2030struct list_sort_thunk {
2031	int (*cmp)(void *, struct list_head *, struct list_head *);
2032	void *priv;
2033};
2034
2035static inline int
2036linux_le_cmp(void *priv, const void *d1, const void *d2)
2037{
2038	struct list_head *le1, *le2;
2039	struct list_sort_thunk *thunk;
2040
2041	thunk = priv;
2042	le1 = *(__DECONST(struct list_head **, d1));
2043	le2 = *(__DECONST(struct list_head **, d2));
2044	return ((thunk->cmp)(thunk->priv, le1, le2));
2045}
2046
2047void
2048list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2049    struct list_head *a, struct list_head *b))
2050{
2051	struct list_sort_thunk thunk;
2052	struct list_head **ar, *le;
2053	size_t count, i;
2054
2055	count = 0;
2056	list_for_each(le, head)
2057		count++;
2058	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2059	i = 0;
2060	list_for_each(le, head)
2061		ar[i++] = le;
2062	thunk.cmp = cmp;
2063	thunk.priv = priv;
2064	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2065	INIT_LIST_HEAD(head);
2066	for (i = 0; i < count; i++)
2067		list_add_tail(ar[i], head);
2068	free(ar, M_KMALLOC);
2069}
2070
2071void
2072linux_irq_handler(void *ent)
2073{
2074	struct irq_ent *irqe;
2075
2076	linux_set_current(curthread);
2077
2078	irqe = ent;
2079	irqe->handler(irqe->irq, irqe->arg);
2080}
2081
2082#if defined(__i386__) || defined(__amd64__)
2083int
2084linux_wbinvd_on_all_cpus(void)
2085{
2086
2087	pmap_invalidate_cache();
2088	return (0);
2089}
2090#endif
2091
2092int
2093linux_on_each_cpu(void callback(void *), void *data)
2094{
2095
2096	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2097	    smp_no_rendezvous_barrier, data);
2098	return (0);
2099}
2100
2101int
2102linux_in_atomic(void)
2103{
2104
2105	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2106}
2107
2108struct linux_cdev *
2109linux_find_cdev(const char *name, unsigned major, unsigned minor)
2110{
2111	dev_t dev = MKDEV(major, minor);
2112	struct cdev *cdev;
2113
2114	dev_lock();
2115	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2116		struct linux_cdev *ldev = cdev->si_drv1;
2117		if (ldev->dev == dev &&
2118		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2119			break;
2120		}
2121	}
2122	dev_unlock();
2123
2124	return (cdev != NULL ? cdev->si_drv1 : NULL);
2125}
2126
2127int
2128__register_chrdev(unsigned int major, unsigned int baseminor,
2129    unsigned int count, const char *name,
2130    const struct file_operations *fops)
2131{
2132	struct linux_cdev *cdev;
2133	int ret = 0;
2134	int i;
2135
2136	for (i = baseminor; i < baseminor + count; i++) {
2137		cdev = cdev_alloc();
2138		cdev_init(cdev, fops);
2139		kobject_set_name(&cdev->kobj, name);
2140
2141		ret = cdev_add(cdev, makedev(major, i), 1);
2142		if (ret != 0)
2143			break;
2144	}
2145	return (ret);
2146}
2147
2148int
2149__register_chrdev_p(unsigned int major, unsigned int baseminor,
2150    unsigned int count, const char *name,
2151    const struct file_operations *fops, uid_t uid,
2152    gid_t gid, int mode)
2153{
2154	struct linux_cdev *cdev;
2155	int ret = 0;
2156	int i;
2157
2158	for (i = baseminor; i < baseminor + count; i++) {
2159		cdev = cdev_alloc();
2160		cdev_init(cdev, fops);
2161		kobject_set_name(&cdev->kobj, name);
2162
2163		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2164		if (ret != 0)
2165			break;
2166	}
2167	return (ret);
2168}
2169
2170void
2171__unregister_chrdev(unsigned int major, unsigned int baseminor,
2172    unsigned int count, const char *name)
2173{
2174	struct linux_cdev *cdevp;
2175	int i;
2176
2177	for (i = baseminor; i < baseminor + count; i++) {
2178		cdevp = linux_find_cdev(name, major, i);
2179		if (cdevp != NULL)
2180			cdev_del(cdevp);
2181	}
2182}
2183
2184#if defined(__i386__) || defined(__amd64__)
2185bool linux_cpu_has_clflush;
2186#endif
2187
2188static void
2189linux_compat_init(void *arg)
2190{
2191	struct sysctl_oid *rootoid;
2192	int i;
2193
2194#if defined(__i386__) || defined(__amd64__)
2195	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2196#endif
2197	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2198
2199	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2200	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2201	kobject_init(&linux_class_root, &linux_class_ktype);
2202	kobject_set_name(&linux_class_root, "class");
2203	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2204	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2205	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2206	kobject_set_name(&linux_root_device.kobj, "device");
2207	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2208	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2209	    "device");
2210	linux_root_device.bsddev = root_bus;
2211	linux_class_misc.name = "misc";
2212	class_register(&linux_class_misc);
2213	INIT_LIST_HEAD(&pci_drivers);
2214	INIT_LIST_HEAD(&pci_devices);
2215	spin_lock_init(&pci_lock);
2216	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2217	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2218		LIST_INIT(&vmmaphead[i]);
2219}
2220SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2221
2222static void
2223linux_compat_uninit(void *arg)
2224{
2225	linux_kobject_kfree_name(&linux_class_root);
2226	linux_kobject_kfree_name(&linux_root_device.kobj);
2227	linux_kobject_kfree_name(&linux_class_misc.kobj);
2228
2229	mtx_destroy(&vmmaplock);
2230	spin_lock_destroy(&pci_lock);
2231	rw_destroy(&linux_vma_lock);
2232}
2233SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2234
2235/*
2236 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2237 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2238 * used. Assert these types have the same size, else some parts of the
2239 * LinuxKPI may not work like expected:
2240 */
2241CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2242