zio.c revision 339106
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/sysmacros.h>
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/txg.h>
33#include <sys/spa_impl.h>
34#include <sys/vdev_impl.h>
35#include <sys/zio_impl.h>
36#include <sys/zio_compress.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/ddt.h>
41#include <sys/trim_map.h>
42#include <sys/blkptr.h>
43#include <sys/zfeature.h>
44#include <sys/dsl_scan.h>
45#include <sys/metaslab_impl.h>
46#include <sys/abd.h>
47#include <sys/cityhash.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
51#if defined(__amd64__)
52static int zio_use_uma = 1;
53#else
54static int zio_use_uma = 0;
55#endif
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
57    "Use uma(9) for ZIO allocations");
58static int zio_exclude_metadata = 0;
59SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
60    "Exclude metadata buffers from dumps as well");
61
62zio_trim_stats_t zio_trim_stats = {
63	{ "bytes",		KSTAT_DATA_UINT64,
64	  "Number of bytes successfully TRIMmed" },
65	{ "success",		KSTAT_DATA_UINT64,
66	  "Number of successful TRIM requests" },
67	{ "unsupported",	KSTAT_DATA_UINT64,
68	  "Number of TRIM requests that failed because TRIM is not supported" },
69	{ "failed",		KSTAT_DATA_UINT64,
70	  "Number of TRIM requests that failed for reasons other than not supported" },
71};
72
73static kstat_t *zio_trim_ksp;
74
75/*
76 * ==========================================================================
77 * I/O type descriptions
78 * ==========================================================================
79 */
80const char *zio_type_name[ZIO_TYPES] = {
81	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
82	"zio_ioctl"
83};
84
85boolean_t zio_dva_throttle_enabled = B_TRUE;
86SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, dva_throttle_enabled, CTLFLAG_RDTUN,
87    &zio_dva_throttle_enabled, 0, "");
88
89/*
90 * ==========================================================================
91 * I/O kmem caches
92 * ==========================================================================
93 */
94kmem_cache_t *zio_cache;
95kmem_cache_t *zio_link_cache;
96kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
97kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
98
99#ifdef _KERNEL
100extern vmem_t *zio_alloc_arena;
101#endif
102
103#define	ZIO_PIPELINE_CONTINUE		0x100
104#define	ZIO_PIPELINE_STOP		0x101
105
106#define	BP_SPANB(indblkshift, level) \
107	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
108#define	COMPARE_META_LEVEL	0x80000000ul
109/*
110 * The following actions directly effect the spa's sync-to-convergence logic.
111 * The values below define the sync pass when we start performing the action.
112 * Care should be taken when changing these values as they directly impact
113 * spa_sync() performance. Tuning these values may introduce subtle performance
114 * pathologies and should only be done in the context of performance analysis.
115 * These tunables will eventually be removed and replaced with #defines once
116 * enough analysis has been done to determine optimal values.
117 *
118 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
119 * regular blocks are not deferred.
120 */
121int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
122SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
123    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
124int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
125SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
126    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
127int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
128SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
129    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
130
131/*
132 * An allocating zio is one that either currently has the DVA allocate
133 * stage set or will have it later in its lifetime.
134 */
135#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
136
137boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
138
139#ifdef illumos
140#ifdef ZFS_DEBUG
141int zio_buf_debug_limit = 16384;
142#else
143int zio_buf_debug_limit = 0;
144#endif
145#endif
146
147static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
148
149void
150zio_init(void)
151{
152	size_t c;
153	zio_cache = kmem_cache_create("zio_cache",
154	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155	zio_link_cache = kmem_cache_create("zio_link_cache",
156	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	if (!zio_use_uma)
158		goto out;
159
160	/*
161	 * For small buffers, we want a cache for each multiple of
162	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
163	 * for each quarter-power of 2.
164	 */
165	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
167		size_t p2 = size;
168		size_t align = 0;
169		int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0;
170
171		while (!ISP2(p2))
172			p2 &= p2 - 1;
173
174#ifdef illumos
175#ifndef _KERNEL
176		/*
177		 * If we are using watchpoints, put each buffer on its own page,
178		 * to eliminate the performance overhead of trapping to the
179		 * kernel when modifying a non-watched buffer that shares the
180		 * page with a watched buffer.
181		 */
182		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
183			continue;
184#endif
185#endif /* illumos */
186		if (size <= 4 * SPA_MINBLOCKSIZE) {
187			align = SPA_MINBLOCKSIZE;
188		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
189			align = MIN(p2 >> 2, PAGESIZE);
190		}
191
192		if (align != 0) {
193			char name[36];
194			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
195			zio_buf_cache[c] = kmem_cache_create(name, size,
196			    align, NULL, NULL, NULL, NULL, NULL, cflags);
197
198			/*
199			 * Since zio_data bufs do not appear in crash dumps, we
200			 * pass KMC_NOTOUCH so that no allocator metadata is
201			 * stored with the buffers.
202			 */
203			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
204			zio_data_buf_cache[c] = kmem_cache_create(name, size,
205			    align, NULL, NULL, NULL, NULL, NULL,
206			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
207		}
208	}
209
210	while (--c != 0) {
211		ASSERT(zio_buf_cache[c] != NULL);
212		if (zio_buf_cache[c - 1] == NULL)
213			zio_buf_cache[c - 1] = zio_buf_cache[c];
214
215		ASSERT(zio_data_buf_cache[c] != NULL);
216		if (zio_data_buf_cache[c - 1] == NULL)
217			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
218	}
219out:
220
221	zio_inject_init();
222
223	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
224	    KSTAT_TYPE_NAMED,
225	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
226	    KSTAT_FLAG_VIRTUAL);
227
228	if (zio_trim_ksp != NULL) {
229		zio_trim_ksp->ks_data = &zio_trim_stats;
230		kstat_install(zio_trim_ksp);
231	}
232}
233
234void
235zio_fini(void)
236{
237	size_t c;
238	kmem_cache_t *last_cache = NULL;
239	kmem_cache_t *last_data_cache = NULL;
240
241	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
242		if (zio_buf_cache[c] != last_cache) {
243			last_cache = zio_buf_cache[c];
244			kmem_cache_destroy(zio_buf_cache[c]);
245		}
246		zio_buf_cache[c] = NULL;
247
248		if (zio_data_buf_cache[c] != last_data_cache) {
249			last_data_cache = zio_data_buf_cache[c];
250			kmem_cache_destroy(zio_data_buf_cache[c]);
251		}
252		zio_data_buf_cache[c] = NULL;
253	}
254
255	kmem_cache_destroy(zio_link_cache);
256	kmem_cache_destroy(zio_cache);
257
258	zio_inject_fini();
259
260	if (zio_trim_ksp != NULL) {
261		kstat_delete(zio_trim_ksp);
262		zio_trim_ksp = NULL;
263	}
264}
265
266/*
267 * ==========================================================================
268 * Allocate and free I/O buffers
269 * ==========================================================================
270 */
271
272/*
273 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
274 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
275 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
276 * excess / transient data in-core during a crashdump.
277 */
278void *
279zio_buf_alloc(size_t size)
280{
281	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
282	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
283
284	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
285
286	if (zio_use_uma)
287		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
288	else
289		return (kmem_alloc(size, KM_SLEEP|flags));
290}
291
292/*
293 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
294 * crashdump if the kernel panics.  This exists so that we will limit the amount
295 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
296 * of kernel heap dumped to disk when the kernel panics)
297 */
298void *
299zio_data_buf_alloc(size_t size)
300{
301	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
302
303	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
304
305	if (zio_use_uma)
306		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
307	else
308		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
309}
310
311void
312zio_buf_free(void *buf, size_t size)
313{
314	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
315
316	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
317
318	if (zio_use_uma)
319		kmem_cache_free(zio_buf_cache[c], buf);
320	else
321		kmem_free(buf, size);
322}
323
324void
325zio_data_buf_free(void *buf, size_t size)
326{
327	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
328
329	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
330
331	if (zio_use_uma)
332		kmem_cache_free(zio_data_buf_cache[c], buf);
333	else
334		kmem_free(buf, size);
335}
336
337/*
338 * ==========================================================================
339 * Push and pop I/O transform buffers
340 * ==========================================================================
341 */
342void
343zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
344    zio_transform_func_t *transform)
345{
346	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
347
348	/*
349	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
350	 * going to get a nasty surprise when they try to access the data.
351	 */
352#ifdef illumos
353	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
354#else
355	IMPLY(zio->io_abd != NULL && abd_is_linear(zio->io_abd),
356	    abd_is_linear(data));
357#endif
358
359	zt->zt_orig_abd = zio->io_abd;
360	zt->zt_orig_size = zio->io_size;
361	zt->zt_bufsize = bufsize;
362	zt->zt_transform = transform;
363
364	zt->zt_next = zio->io_transform_stack;
365	zio->io_transform_stack = zt;
366
367	zio->io_abd = data;
368	zio->io_size = size;
369}
370
371void
372zio_pop_transforms(zio_t *zio)
373{
374	zio_transform_t *zt;
375
376	while ((zt = zio->io_transform_stack) != NULL) {
377		if (zt->zt_transform != NULL)
378			zt->zt_transform(zio,
379			    zt->zt_orig_abd, zt->zt_orig_size);
380
381		if (zt->zt_bufsize != 0)
382			abd_free(zio->io_abd);
383
384		zio->io_abd = zt->zt_orig_abd;
385		zio->io_size = zt->zt_orig_size;
386		zio->io_transform_stack = zt->zt_next;
387
388		kmem_free(zt, sizeof (zio_transform_t));
389	}
390}
391
392/*
393 * ==========================================================================
394 * I/O transform callbacks for subblocks and decompression
395 * ==========================================================================
396 */
397static void
398zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
399{
400	ASSERT(zio->io_size > size);
401
402	if (zio->io_type == ZIO_TYPE_READ)
403		abd_copy(data, zio->io_abd, size);
404}
405
406static void
407zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
408{
409	if (zio->io_error == 0) {
410		void *tmp = abd_borrow_buf(data, size);
411		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412		    zio->io_abd, tmp, zio->io_size, size);
413		abd_return_buf_copy(data, tmp, size);
414
415		if (ret != 0)
416			zio->io_error = SET_ERROR(EIO);
417	}
418}
419
420/*
421 * ==========================================================================
422 * I/O parent/child relationships and pipeline interlocks
423 * ==========================================================================
424 */
425zio_t *
426zio_walk_parents(zio_t *cio, zio_link_t **zl)
427{
428	list_t *pl = &cio->io_parent_list;
429
430	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
431	if (*zl == NULL)
432		return (NULL);
433
434	ASSERT((*zl)->zl_child == cio);
435	return ((*zl)->zl_parent);
436}
437
438zio_t *
439zio_walk_children(zio_t *pio, zio_link_t **zl)
440{
441	list_t *cl = &pio->io_child_list;
442
443	ASSERT(MUTEX_HELD(&pio->io_lock));
444
445	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
446	if (*zl == NULL)
447		return (NULL);
448
449	ASSERT((*zl)->zl_parent == pio);
450	return ((*zl)->zl_child);
451}
452
453zio_t *
454zio_unique_parent(zio_t *cio)
455{
456	zio_link_t *zl = NULL;
457	zio_t *pio = zio_walk_parents(cio, &zl);
458
459	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
460	return (pio);
461}
462
463void
464zio_add_child(zio_t *pio, zio_t *cio)
465{
466	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
467
468	/*
469	 * Logical I/Os can have logical, gang, or vdev children.
470	 * Gang I/Os can have gang or vdev children.
471	 * Vdev I/Os can only have vdev children.
472	 * The following ASSERT captures all of these constraints.
473	 */
474	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
475
476	zl->zl_parent = pio;
477	zl->zl_child = cio;
478
479	mutex_enter(&pio->io_lock);
480	mutex_enter(&cio->io_lock);
481
482	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
483
484	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
485		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
486
487	list_insert_head(&pio->io_child_list, zl);
488	list_insert_head(&cio->io_parent_list, zl);
489
490	pio->io_child_count++;
491	cio->io_parent_count++;
492
493	mutex_exit(&cio->io_lock);
494	mutex_exit(&pio->io_lock);
495}
496
497static void
498zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
499{
500	ASSERT(zl->zl_parent == pio);
501	ASSERT(zl->zl_child == cio);
502
503	mutex_enter(&pio->io_lock);
504	mutex_enter(&cio->io_lock);
505
506	list_remove(&pio->io_child_list, zl);
507	list_remove(&cio->io_parent_list, zl);
508
509	pio->io_child_count--;
510	cio->io_parent_count--;
511
512	mutex_exit(&cio->io_lock);
513	mutex_exit(&pio->io_lock);
514	kmem_cache_free(zio_link_cache, zl);
515}
516
517static boolean_t
518zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
519{
520	boolean_t waiting = B_FALSE;
521
522	mutex_enter(&zio->io_lock);
523	ASSERT(zio->io_stall == NULL);
524	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
525		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
526			continue;
527
528		uint64_t *countp = &zio->io_children[c][wait];
529		if (*countp != 0) {
530			zio->io_stage >>= 1;
531			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
532			zio->io_stall = countp;
533			waiting = B_TRUE;
534			break;
535		}
536	}
537	mutex_exit(&zio->io_lock);
538	return (waiting);
539}
540
541static void
542zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
543{
544	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
545	int *errorp = &pio->io_child_error[zio->io_child_type];
546
547	mutex_enter(&pio->io_lock);
548	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
549		*errorp = zio_worst_error(*errorp, zio->io_error);
550	pio->io_reexecute |= zio->io_reexecute;
551	ASSERT3U(*countp, >, 0);
552
553	(*countp)--;
554
555	if (*countp == 0 && pio->io_stall == countp) {
556		zio_taskq_type_t type =
557		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
558		    ZIO_TASKQ_INTERRUPT;
559		pio->io_stall = NULL;
560		mutex_exit(&pio->io_lock);
561		/*
562		 * Dispatch the parent zio in its own taskq so that
563		 * the child can continue to make progress. This also
564		 * prevents overflowing the stack when we have deeply nested
565		 * parent-child relationships.
566		 */
567		zio_taskq_dispatch(pio, type, B_FALSE);
568	} else {
569		mutex_exit(&pio->io_lock);
570	}
571}
572
573static void
574zio_inherit_child_errors(zio_t *zio, enum zio_child c)
575{
576	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
577		zio->io_error = zio->io_child_error[c];
578}
579
580int
581zio_bookmark_compare(const void *x1, const void *x2)
582{
583	const zio_t *z1 = x1;
584	const zio_t *z2 = x2;
585
586	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
587		return (-1);
588	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
589		return (1);
590
591	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
592		return (-1);
593	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
594		return (1);
595
596	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
597		return (-1);
598	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
599		return (1);
600
601	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
602		return (-1);
603	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
604		return (1);
605
606	if (z1 < z2)
607		return (-1);
608	if (z1 > z2)
609		return (1);
610
611	return (0);
612}
613
614/*
615 * ==========================================================================
616 * Create the various types of I/O (read, write, free, etc)
617 * ==========================================================================
618 */
619static zio_t *
620zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
621    abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
622    void *private, zio_type_t type, zio_priority_t priority,
623    enum zio_flag flags, vdev_t *vd, uint64_t offset,
624    const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
625{
626	zio_t *zio;
627
628	ASSERT3U(type == ZIO_TYPE_FREE || psize, <=, SPA_MAXBLOCKSIZE);
629	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
630	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
631
632	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
633	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
634	ASSERT(vd || stage == ZIO_STAGE_OPEN);
635
636	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
637
638	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
639	bzero(zio, sizeof (zio_t));
640
641	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
642	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
643
644	list_create(&zio->io_parent_list, sizeof (zio_link_t),
645	    offsetof(zio_link_t, zl_parent_node));
646	list_create(&zio->io_child_list, sizeof (zio_link_t),
647	    offsetof(zio_link_t, zl_child_node));
648	metaslab_trace_init(&zio->io_alloc_list);
649
650	if (vd != NULL)
651		zio->io_child_type = ZIO_CHILD_VDEV;
652	else if (flags & ZIO_FLAG_GANG_CHILD)
653		zio->io_child_type = ZIO_CHILD_GANG;
654	else if (flags & ZIO_FLAG_DDT_CHILD)
655		zio->io_child_type = ZIO_CHILD_DDT;
656	else
657		zio->io_child_type = ZIO_CHILD_LOGICAL;
658
659	if (bp != NULL) {
660		zio->io_bp = (blkptr_t *)bp;
661		zio->io_bp_copy = *bp;
662		zio->io_bp_orig = *bp;
663		if (type != ZIO_TYPE_WRITE ||
664		    zio->io_child_type == ZIO_CHILD_DDT)
665			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
666		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
667			zio->io_logical = zio;
668		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
669			pipeline |= ZIO_GANG_STAGES;
670	}
671
672	zio->io_spa = spa;
673	zio->io_txg = txg;
674	zio->io_done = done;
675	zio->io_private = private;
676	zio->io_type = type;
677	zio->io_priority = priority;
678	zio->io_vd = vd;
679	zio->io_offset = offset;
680	zio->io_orig_abd = zio->io_abd = data;
681	zio->io_orig_size = zio->io_size = psize;
682	zio->io_lsize = lsize;
683	zio->io_orig_flags = zio->io_flags = flags;
684	zio->io_orig_stage = zio->io_stage = stage;
685	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
686	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
687
688	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
689	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
690
691	if (zb != NULL)
692		zio->io_bookmark = *zb;
693
694	if (pio != NULL) {
695		if (zio->io_logical == NULL)
696			zio->io_logical = pio->io_logical;
697		if (zio->io_child_type == ZIO_CHILD_GANG)
698			zio->io_gang_leader = pio->io_gang_leader;
699		zio_add_child(pio, zio);
700	}
701
702	return (zio);
703}
704
705static void
706zio_destroy(zio_t *zio)
707{
708	metaslab_trace_fini(&zio->io_alloc_list);
709	list_destroy(&zio->io_parent_list);
710	list_destroy(&zio->io_child_list);
711	mutex_destroy(&zio->io_lock);
712	cv_destroy(&zio->io_cv);
713	kmem_cache_free(zio_cache, zio);
714}
715
716zio_t *
717zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
718    void *private, enum zio_flag flags)
719{
720	zio_t *zio;
721
722	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
723	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
724	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
725
726	return (zio);
727}
728
729zio_t *
730zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
731{
732	return (zio_null(NULL, spa, NULL, done, private, flags));
733}
734
735void
736zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
737{
738	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
739		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
740		    bp, (longlong_t)BP_GET_TYPE(bp));
741	}
742	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
743	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
744		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
745		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
746	}
747	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
748	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
749		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
750		    bp, (longlong_t)BP_GET_COMPRESS(bp));
751	}
752	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
753		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
754		    bp, (longlong_t)BP_GET_LSIZE(bp));
755	}
756	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
757		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
758		    bp, (longlong_t)BP_GET_PSIZE(bp));
759	}
760
761	if (BP_IS_EMBEDDED(bp)) {
762		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
763			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
764			    bp, (longlong_t)BPE_GET_ETYPE(bp));
765		}
766	}
767
768	/*
769	 * Do not verify individual DVAs if the config is not trusted. This
770	 * will be done once the zio is executed in vdev_mirror_map_alloc.
771	 */
772	if (!spa->spa_trust_config)
773		return;
774
775	/*
776	 * Pool-specific checks.
777	 *
778	 * Note: it would be nice to verify that the blk_birth and
779	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
780	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
781	 * that are in the log) to be arbitrarily large.
782	 */
783	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
784		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
785		if (vdevid >= spa->spa_root_vdev->vdev_children) {
786			zfs_panic_recover("blkptr at %p DVA %u has invalid "
787			    "VDEV %llu",
788			    bp, i, (longlong_t)vdevid);
789			continue;
790		}
791		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
792		if (vd == NULL) {
793			zfs_panic_recover("blkptr at %p DVA %u has invalid "
794			    "VDEV %llu",
795			    bp, i, (longlong_t)vdevid);
796			continue;
797		}
798		if (vd->vdev_ops == &vdev_hole_ops) {
799			zfs_panic_recover("blkptr at %p DVA %u has hole "
800			    "VDEV %llu",
801			    bp, i, (longlong_t)vdevid);
802			continue;
803		}
804		if (vd->vdev_ops == &vdev_missing_ops) {
805			/*
806			 * "missing" vdevs are valid during import, but we
807			 * don't have their detailed info (e.g. asize), so
808			 * we can't perform any more checks on them.
809			 */
810			continue;
811		}
812		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
813		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
814		if (BP_IS_GANG(bp))
815			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
816		if (offset + asize > vd->vdev_asize) {
817			zfs_panic_recover("blkptr at %p DVA %u has invalid "
818			    "OFFSET %llu",
819			    bp, i, (longlong_t)offset);
820		}
821	}
822}
823
824boolean_t
825zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
826{
827	uint64_t vdevid = DVA_GET_VDEV(dva);
828
829	if (vdevid >= spa->spa_root_vdev->vdev_children)
830		return (B_FALSE);
831
832	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
833	if (vd == NULL)
834		return (B_FALSE);
835
836	if (vd->vdev_ops == &vdev_hole_ops)
837		return (B_FALSE);
838
839	if (vd->vdev_ops == &vdev_missing_ops) {
840		return (B_FALSE);
841	}
842
843	uint64_t offset = DVA_GET_OFFSET(dva);
844	uint64_t asize = DVA_GET_ASIZE(dva);
845
846	if (BP_IS_GANG(bp))
847		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
848	if (offset + asize > vd->vdev_asize)
849		return (B_FALSE);
850
851	return (B_TRUE);
852}
853
854zio_t *
855zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
856    abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
857    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
858{
859	zio_t *zio;
860
861	zfs_blkptr_verify(spa, bp);
862
863	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
864	    data, size, size, done, private,
865	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
866	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
867	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
868
869	return (zio);
870}
871
872zio_t *
873zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
874    abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
875    zio_done_func_t *ready, zio_done_func_t *children_ready,
876    zio_done_func_t *physdone, zio_done_func_t *done,
877    void *private, zio_priority_t priority, enum zio_flag flags,
878    const zbookmark_phys_t *zb)
879{
880	zio_t *zio;
881
882	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
883	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
884	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
885	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
886	    DMU_OT_IS_VALID(zp->zp_type) &&
887	    zp->zp_level < 32 &&
888	    zp->zp_copies > 0 &&
889	    zp->zp_copies <= spa_max_replication(spa));
890
891	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
892	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
893	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
894	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
895
896	zio->io_ready = ready;
897	zio->io_children_ready = children_ready;
898	zio->io_physdone = physdone;
899	zio->io_prop = *zp;
900
901	/*
902	 * Data can be NULL if we are going to call zio_write_override() to
903	 * provide the already-allocated BP.  But we may need the data to
904	 * verify a dedup hit (if requested).  In this case, don't try to
905	 * dedup (just take the already-allocated BP verbatim).
906	 */
907	if (data == NULL && zio->io_prop.zp_dedup_verify) {
908		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
909	}
910
911	return (zio);
912}
913
914zio_t *
915zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
916    uint64_t size, zio_done_func_t *done, void *private,
917    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
918{
919	zio_t *zio;
920
921	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
922	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
923	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
924
925	return (zio);
926}
927
928void
929zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
930{
931	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
932	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
933	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
934	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
935
936	/*
937	 * We must reset the io_prop to match the values that existed
938	 * when the bp was first written by dmu_sync() keeping in mind
939	 * that nopwrite and dedup are mutually exclusive.
940	 */
941	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
942	zio->io_prop.zp_nopwrite = nopwrite;
943	zio->io_prop.zp_copies = copies;
944	zio->io_bp_override = bp;
945}
946
947void
948zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
949{
950
951	zfs_blkptr_verify(spa, bp);
952
953	/*
954	 * The check for EMBEDDED is a performance optimization.  We
955	 * process the free here (by ignoring it) rather than
956	 * putting it on the list and then processing it in zio_free_sync().
957	 */
958	if (BP_IS_EMBEDDED(bp))
959		return;
960	metaslab_check_free(spa, bp);
961
962	/*
963	 * Frees that are for the currently-syncing txg, are not going to be
964	 * deferred, and which will not need to do a read (i.e. not GANG or
965	 * DEDUP), can be processed immediately.  Otherwise, put them on the
966	 * in-memory list for later processing.
967	 */
968	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
969	    txg != spa->spa_syncing_txg ||
970	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
971		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
972	} else {
973		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
974		    BP_GET_PSIZE(bp), 0)));
975	}
976}
977
978zio_t *
979zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
980    uint64_t size, enum zio_flag flags)
981{
982	zio_t *zio;
983	enum zio_stage stage = ZIO_FREE_PIPELINE;
984
985	ASSERT(!BP_IS_HOLE(bp));
986	ASSERT(spa_syncing_txg(spa) == txg);
987	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
988
989	if (BP_IS_EMBEDDED(bp))
990		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
991
992	metaslab_check_free(spa, bp);
993	arc_freed(spa, bp);
994	dsl_scan_freed(spa, bp);
995
996	if (zfs_trim_enabled)
997		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
998		    ZIO_STAGE_VDEV_IO_ASSESS;
999	/*
1000	 * GANG and DEDUP blocks can induce a read (for the gang block header,
1001	 * or the DDT), so issue them asynchronously so that this thread is
1002	 * not tied up.
1003	 */
1004	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1005		stage |= ZIO_STAGE_ISSUE_ASYNC;
1006
1007	flags |= ZIO_FLAG_DONT_QUEUE;
1008
1009	zio = zio_create(pio, spa, txg, bp, NULL, size,
1010	    size, NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1011	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1012
1013	return (zio);
1014}
1015
1016zio_t *
1017zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1018    zio_done_func_t *done, void *private, enum zio_flag flags)
1019{
1020	zio_t *zio;
1021
1022	zfs_blkptr_verify(spa, bp);
1023
1024	if (BP_IS_EMBEDDED(bp))
1025		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1026
1027	/*
1028	 * A claim is an allocation of a specific block.  Claims are needed
1029	 * to support immediate writes in the intent log.  The issue is that
1030	 * immediate writes contain committed data, but in a txg that was
1031	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1032	 * the intent log claims all blocks that contain immediate write data
1033	 * so that the SPA knows they're in use.
1034	 *
1035	 * All claims *must* be resolved in the first txg -- before the SPA
1036	 * starts allocating blocks -- so that nothing is allocated twice.
1037	 * If txg == 0 we just verify that the block is claimable.
1038	 */
1039	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1040	    spa_min_claim_txg(spa));
1041	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1042	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1043
1044	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1045	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1046	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1047	ASSERT0(zio->io_queued_timestamp);
1048
1049	return (zio);
1050}
1051
1052zio_t *
1053zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
1054    uint64_t size, zio_done_func_t *done, void *private,
1055    zio_priority_t priority, enum zio_flag flags)
1056{
1057	zio_t *zio;
1058	int c;
1059
1060	if (vd->vdev_children == 0) {
1061		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1062		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1063		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1064
1065		zio->io_cmd = cmd;
1066	} else {
1067		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1068
1069		for (c = 0; c < vd->vdev_children; c++)
1070			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1071			    offset, size, done, private, priority, flags));
1072	}
1073
1074	return (zio);
1075}
1076
1077zio_t *
1078zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1079    abd_t *data, int checksum, zio_done_func_t *done, void *private,
1080    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1081{
1082	zio_t *zio;
1083
1084	ASSERT(vd->vdev_children == 0);
1085	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1086	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1087	ASSERT3U(offset + size, <=, vd->vdev_psize);
1088
1089	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1090	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1091	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1092
1093	zio->io_prop.zp_checksum = checksum;
1094
1095	return (zio);
1096}
1097
1098zio_t *
1099zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1100    abd_t *data, int checksum, zio_done_func_t *done, void *private,
1101    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1102{
1103	zio_t *zio;
1104
1105	ASSERT(vd->vdev_children == 0);
1106	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1107	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1108	ASSERT3U(offset + size, <=, vd->vdev_psize);
1109
1110	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1111	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1112	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1113
1114	zio->io_prop.zp_checksum = checksum;
1115
1116	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1117		/*
1118		 * zec checksums are necessarily destructive -- they modify
1119		 * the end of the write buffer to hold the verifier/checksum.
1120		 * Therefore, we must make a local copy in case the data is
1121		 * being written to multiple places in parallel.
1122		 */
1123		abd_t *wbuf = abd_alloc_sametype(data, size);
1124		abd_copy(wbuf, data, size);
1125
1126		zio_push_transform(zio, wbuf, size, size, NULL);
1127	}
1128
1129	return (zio);
1130}
1131
1132/*
1133 * Create a child I/O to do some work for us.
1134 */
1135zio_t *
1136zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1137    abd_t *data, uint64_t size, int type, zio_priority_t priority,
1138    enum zio_flag flags, zio_done_func_t *done, void *private)
1139{
1140	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1141	zio_t *zio;
1142
1143	/*
1144	 * vdev child I/Os do not propagate their error to the parent.
1145	 * Therefore, for correct operation the caller *must* check for
1146	 * and handle the error in the child i/o's done callback.
1147	 * The only exceptions are i/os that we don't care about
1148	 * (OPTIONAL or REPAIR).
1149	 */
1150	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1151	    done != NULL);
1152
1153	if (type == ZIO_TYPE_READ && bp != NULL) {
1154		/*
1155		 * If we have the bp, then the child should perform the
1156		 * checksum and the parent need not.  This pushes error
1157		 * detection as close to the leaves as possible and
1158		 * eliminates redundant checksums in the interior nodes.
1159		 */
1160		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1161		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1162	}
1163
1164	/* Not all IO types require vdev io done stage e.g. free */
1165	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1166		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1167
1168	if (vd->vdev_ops->vdev_op_leaf) {
1169		ASSERT0(vd->vdev_children);
1170		offset += VDEV_LABEL_START_SIZE;
1171	}
1172
1173	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1174
1175	/*
1176	 * If we've decided to do a repair, the write is not speculative --
1177	 * even if the original read was.
1178	 */
1179	if (flags & ZIO_FLAG_IO_REPAIR)
1180		flags &= ~ZIO_FLAG_SPECULATIVE;
1181
1182	/*
1183	 * If we're creating a child I/O that is not associated with a
1184	 * top-level vdev, then the child zio is not an allocating I/O.
1185	 * If this is a retried I/O then we ignore it since we will
1186	 * have already processed the original allocating I/O.
1187	 */
1188	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1189	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1190		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1191
1192		ASSERT(mc->mc_alloc_throttle_enabled);
1193		ASSERT(type == ZIO_TYPE_WRITE);
1194		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1195		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1196		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1197		    pio->io_child_type == ZIO_CHILD_GANG);
1198
1199		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1200	}
1201
1202	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1203	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1204	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1205	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1206
1207	zio->io_physdone = pio->io_physdone;
1208	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1209		zio->io_logical->io_phys_children++;
1210
1211	return (zio);
1212}
1213
1214zio_t *
1215zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1216    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1217    zio_done_func_t *done, void *private)
1218{
1219	zio_t *zio;
1220
1221	ASSERT(vd->vdev_ops->vdev_op_leaf);
1222
1223	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1224	    data, size, size, done, private, type, priority,
1225	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1226	    vd, offset, NULL,
1227	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1228
1229	return (zio);
1230}
1231
1232void
1233zio_flush(zio_t *zio, vdev_t *vd)
1234{
1235	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1236	    NULL, NULL, ZIO_PRIORITY_NOW,
1237	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1238}
1239
1240zio_t *
1241zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1242{
1243
1244	ASSERT(vd->vdev_ops->vdev_op_leaf);
1245
1246	return (zio_create(zio, spa, 0, NULL, NULL, size, size, NULL, NULL,
1247	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1248	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1249	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1250}
1251
1252void
1253zio_shrink(zio_t *zio, uint64_t size)
1254{
1255	ASSERT3P(zio->io_executor, ==, NULL);
1256	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1257	ASSERT3U(size, <=, zio->io_size);
1258
1259	/*
1260	 * We don't shrink for raidz because of problems with the
1261	 * reconstruction when reading back less than the block size.
1262	 * Note, BP_IS_RAIDZ() assumes no compression.
1263	 */
1264	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1265	if (!BP_IS_RAIDZ(zio->io_bp)) {
1266		/* we are not doing a raw write */
1267		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1268		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1269	}
1270}
1271
1272/*
1273 * ==========================================================================
1274 * Prepare to read and write logical blocks
1275 * ==========================================================================
1276 */
1277
1278static int
1279zio_read_bp_init(zio_t *zio)
1280{
1281	blkptr_t *bp = zio->io_bp;
1282
1283	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1284
1285	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1286	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1287	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1288		uint64_t psize =
1289		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1290		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1291		    psize, psize, zio_decompress);
1292	}
1293
1294	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1295		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1296
1297		int psize = BPE_GET_PSIZE(bp);
1298		void *data = abd_borrow_buf(zio->io_abd, psize);
1299		decode_embedded_bp_compressed(bp, data);
1300		abd_return_buf_copy(zio->io_abd, data, psize);
1301	} else {
1302		ASSERT(!BP_IS_EMBEDDED(bp));
1303		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1304	}
1305
1306	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1307		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1308
1309	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1310		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1311
1312	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1313		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1314
1315	return (ZIO_PIPELINE_CONTINUE);
1316}
1317
1318static int
1319zio_write_bp_init(zio_t *zio)
1320{
1321	if (!IO_IS_ALLOCATING(zio))
1322		return (ZIO_PIPELINE_CONTINUE);
1323
1324	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1325
1326	if (zio->io_bp_override) {
1327		blkptr_t *bp = zio->io_bp;
1328		zio_prop_t *zp = &zio->io_prop;
1329
1330		ASSERT(bp->blk_birth != zio->io_txg);
1331		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1332
1333		*bp = *zio->io_bp_override;
1334		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1335
1336		if (BP_IS_EMBEDDED(bp))
1337			return (ZIO_PIPELINE_CONTINUE);
1338
1339		/*
1340		 * If we've been overridden and nopwrite is set then
1341		 * set the flag accordingly to indicate that a nopwrite
1342		 * has already occurred.
1343		 */
1344		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1345			ASSERT(!zp->zp_dedup);
1346			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1347			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1348			return (ZIO_PIPELINE_CONTINUE);
1349		}
1350
1351		ASSERT(!zp->zp_nopwrite);
1352
1353		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1354			return (ZIO_PIPELINE_CONTINUE);
1355
1356		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1357		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1358
1359		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1360			BP_SET_DEDUP(bp, 1);
1361			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1362			return (ZIO_PIPELINE_CONTINUE);
1363		}
1364
1365		/*
1366		 * We were unable to handle this as an override bp, treat
1367		 * it as a regular write I/O.
1368		 */
1369		zio->io_bp_override = NULL;
1370		*bp = zio->io_bp_orig;
1371		zio->io_pipeline = zio->io_orig_pipeline;
1372	}
1373
1374	return (ZIO_PIPELINE_CONTINUE);
1375}
1376
1377static int
1378zio_write_compress(zio_t *zio)
1379{
1380	spa_t *spa = zio->io_spa;
1381	zio_prop_t *zp = &zio->io_prop;
1382	enum zio_compress compress = zp->zp_compress;
1383	blkptr_t *bp = zio->io_bp;
1384	uint64_t lsize = zio->io_lsize;
1385	uint64_t psize = zio->io_size;
1386	int pass = 1;
1387
1388	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1389
1390	/*
1391	 * If our children haven't all reached the ready stage,
1392	 * wait for them and then repeat this pipeline stage.
1393	 */
1394	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1395	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1396		return (ZIO_PIPELINE_STOP);
1397	}
1398
1399	if (!IO_IS_ALLOCATING(zio))
1400		return (ZIO_PIPELINE_CONTINUE);
1401
1402	if (zio->io_children_ready != NULL) {
1403		/*
1404		 * Now that all our children are ready, run the callback
1405		 * associated with this zio in case it wants to modify the
1406		 * data to be written.
1407		 */
1408		ASSERT3U(zp->zp_level, >, 0);
1409		zio->io_children_ready(zio);
1410	}
1411
1412	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1413	ASSERT(zio->io_bp_override == NULL);
1414
1415	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1416		/*
1417		 * We're rewriting an existing block, which means we're
1418		 * working on behalf of spa_sync().  For spa_sync() to
1419		 * converge, it must eventually be the case that we don't
1420		 * have to allocate new blocks.  But compression changes
1421		 * the blocksize, which forces a reallocate, and makes
1422		 * convergence take longer.  Therefore, after the first
1423		 * few passes, stop compressing to ensure convergence.
1424		 */
1425		pass = spa_sync_pass(spa);
1426
1427		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1428		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1429		ASSERT(!BP_GET_DEDUP(bp));
1430
1431		if (pass >= zfs_sync_pass_dont_compress)
1432			compress = ZIO_COMPRESS_OFF;
1433
1434		/* Make sure someone doesn't change their mind on overwrites */
1435		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1436		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1437	}
1438
1439	/* If it's a compressed write that is not raw, compress the buffer. */
1440	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1441		void *cbuf = zio_buf_alloc(lsize);
1442		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1443		if (psize == 0 || psize == lsize) {
1444			compress = ZIO_COMPRESS_OFF;
1445			zio_buf_free(cbuf, lsize);
1446		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1447		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1448		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1449			encode_embedded_bp_compressed(bp,
1450			    cbuf, compress, lsize, psize);
1451			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1452			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1453			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1454			zio_buf_free(cbuf, lsize);
1455			bp->blk_birth = zio->io_txg;
1456			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1457			ASSERT(spa_feature_is_active(spa,
1458			    SPA_FEATURE_EMBEDDED_DATA));
1459			return (ZIO_PIPELINE_CONTINUE);
1460		} else {
1461			/*
1462			 * Round up compressed size up to the ashift
1463			 * of the smallest-ashift device, and zero the tail.
1464			 * This ensures that the compressed size of the BP
1465			 * (and thus compressratio property) are correct,
1466			 * in that we charge for the padding used to fill out
1467			 * the last sector.
1468			 */
1469			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1470			size_t rounded = (size_t)P2ROUNDUP(psize,
1471			    1ULL << spa->spa_min_ashift);
1472			if (rounded >= lsize) {
1473				compress = ZIO_COMPRESS_OFF;
1474				zio_buf_free(cbuf, lsize);
1475				psize = lsize;
1476			} else {
1477				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1478				abd_take_ownership_of_buf(cdata, B_TRUE);
1479				abd_zero_off(cdata, psize, rounded - psize);
1480				psize = rounded;
1481				zio_push_transform(zio, cdata,
1482				    psize, lsize, NULL);
1483			}
1484		}
1485
1486		/*
1487		 * We were unable to handle this as an override bp, treat
1488		 * it as a regular write I/O.
1489		 */
1490		zio->io_bp_override = NULL;
1491		*bp = zio->io_bp_orig;
1492		zio->io_pipeline = zio->io_orig_pipeline;
1493	} else {
1494		ASSERT3U(psize, !=, 0);
1495	}
1496
1497	/*
1498	 * The final pass of spa_sync() must be all rewrites, but the first
1499	 * few passes offer a trade-off: allocating blocks defers convergence,
1500	 * but newly allocated blocks are sequential, so they can be written
1501	 * to disk faster.  Therefore, we allow the first few passes of
1502	 * spa_sync() to allocate new blocks, but force rewrites after that.
1503	 * There should only be a handful of blocks after pass 1 in any case.
1504	 */
1505	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1506	    BP_GET_PSIZE(bp) == psize &&
1507	    pass >= zfs_sync_pass_rewrite) {
1508		ASSERT(psize != 0);
1509		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1510		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1511		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1512	} else {
1513		BP_ZERO(bp);
1514		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1515	}
1516
1517	if (psize == 0) {
1518		if (zio->io_bp_orig.blk_birth != 0 &&
1519		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1520			BP_SET_LSIZE(bp, lsize);
1521			BP_SET_TYPE(bp, zp->zp_type);
1522			BP_SET_LEVEL(bp, zp->zp_level);
1523			BP_SET_BIRTH(bp, zio->io_txg, 0);
1524		}
1525		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1526	} else {
1527		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1528		BP_SET_LSIZE(bp, lsize);
1529		BP_SET_TYPE(bp, zp->zp_type);
1530		BP_SET_LEVEL(bp, zp->zp_level);
1531		BP_SET_PSIZE(bp, psize);
1532		BP_SET_COMPRESS(bp, compress);
1533		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1534		BP_SET_DEDUP(bp, zp->zp_dedup);
1535		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1536		if (zp->zp_dedup) {
1537			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1538			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1539			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1540		}
1541		if (zp->zp_nopwrite) {
1542			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1543			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1544			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1545		}
1546	}
1547	return (ZIO_PIPELINE_CONTINUE);
1548}
1549
1550static int
1551zio_free_bp_init(zio_t *zio)
1552{
1553	blkptr_t *bp = zio->io_bp;
1554
1555	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1556		if (BP_GET_DEDUP(bp))
1557			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1558	}
1559
1560	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1561
1562	return (ZIO_PIPELINE_CONTINUE);
1563}
1564
1565/*
1566 * ==========================================================================
1567 * Execute the I/O pipeline
1568 * ==========================================================================
1569 */
1570
1571static void
1572zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1573{
1574	spa_t *spa = zio->io_spa;
1575	zio_type_t t = zio->io_type;
1576	int flags = (cutinline ? TQ_FRONT : 0);
1577
1578	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1579
1580	/*
1581	 * If we're a config writer or a probe, the normal issue and
1582	 * interrupt threads may all be blocked waiting for the config lock.
1583	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1584	 */
1585	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1586		t = ZIO_TYPE_NULL;
1587
1588	/*
1589	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1590	 */
1591	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1592		t = ZIO_TYPE_NULL;
1593
1594	/*
1595	 * If this is a high priority I/O, then use the high priority taskq if
1596	 * available.
1597	 */
1598	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1599	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1600		q++;
1601
1602	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1603
1604	/*
1605	 * NB: We are assuming that the zio can only be dispatched
1606	 * to a single taskq at a time.  It would be a grievous error
1607	 * to dispatch the zio to another taskq at the same time.
1608	 */
1609#if defined(illumos) || !defined(_KERNEL)
1610	ASSERT(zio->io_tqent.tqent_next == NULL);
1611#else
1612	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1613#endif
1614	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1615	    flags, &zio->io_tqent);
1616}
1617
1618static boolean_t
1619zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1620{
1621	kthread_t *executor = zio->io_executor;
1622	spa_t *spa = zio->io_spa;
1623
1624	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1625		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1626		uint_t i;
1627		for (i = 0; i < tqs->stqs_count; i++) {
1628			if (taskq_member(tqs->stqs_taskq[i], executor))
1629				return (B_TRUE);
1630		}
1631	}
1632
1633	return (B_FALSE);
1634}
1635
1636static int
1637zio_issue_async(zio_t *zio)
1638{
1639	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1640
1641	return (ZIO_PIPELINE_STOP);
1642}
1643
1644void
1645zio_interrupt(zio_t *zio)
1646{
1647	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1648}
1649
1650void
1651zio_delay_interrupt(zio_t *zio)
1652{
1653	/*
1654	 * The timeout_generic() function isn't defined in userspace, so
1655	 * rather than trying to implement the function, the zio delay
1656	 * functionality has been disabled for userspace builds.
1657	 */
1658
1659#ifdef _KERNEL
1660	/*
1661	 * If io_target_timestamp is zero, then no delay has been registered
1662	 * for this IO, thus jump to the end of this function and "skip" the
1663	 * delay; issuing it directly to the zio layer.
1664	 */
1665	if (zio->io_target_timestamp != 0) {
1666		hrtime_t now = gethrtime();
1667
1668		if (now >= zio->io_target_timestamp) {
1669			/*
1670			 * This IO has already taken longer than the target
1671			 * delay to complete, so we don't want to delay it
1672			 * any longer; we "miss" the delay and issue it
1673			 * directly to the zio layer. This is likely due to
1674			 * the target latency being set to a value less than
1675			 * the underlying hardware can satisfy (e.g. delay
1676			 * set to 1ms, but the disks take 10ms to complete an
1677			 * IO request).
1678			 */
1679
1680			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1681			    hrtime_t, now);
1682
1683			zio_interrupt(zio);
1684		} else {
1685			hrtime_t diff = zio->io_target_timestamp - now;
1686
1687			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1688			    hrtime_t, now, hrtime_t, diff);
1689
1690			(void) timeout_generic(CALLOUT_NORMAL,
1691			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1692		}
1693
1694		return;
1695	}
1696#endif
1697
1698	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1699	zio_interrupt(zio);
1700}
1701
1702/*
1703 * Execute the I/O pipeline until one of the following occurs:
1704 *
1705 *	(1) the I/O completes
1706 *	(2) the pipeline stalls waiting for dependent child I/Os
1707 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1708 *	(4) the I/O is delegated by vdev-level caching or aggregation
1709 *	(5) the I/O is deferred due to vdev-level queueing
1710 *	(6) the I/O is handed off to another thread.
1711 *
1712 * In all cases, the pipeline stops whenever there's no CPU work; it never
1713 * burns a thread in cv_wait().
1714 *
1715 * There's no locking on io_stage because there's no legitimate way
1716 * for multiple threads to be attempting to process the same I/O.
1717 */
1718static zio_pipe_stage_t *zio_pipeline[];
1719
1720void
1721zio_execute(zio_t *zio)
1722{
1723	zio->io_executor = curthread;
1724
1725	ASSERT3U(zio->io_queued_timestamp, >, 0);
1726
1727	while (zio->io_stage < ZIO_STAGE_DONE) {
1728		enum zio_stage pipeline = zio->io_pipeline;
1729		enum zio_stage stage = zio->io_stage;
1730		int rv;
1731
1732		ASSERT(!MUTEX_HELD(&zio->io_lock));
1733		ASSERT(ISP2(stage));
1734		ASSERT(zio->io_stall == NULL);
1735
1736		do {
1737			stage <<= 1;
1738		} while ((stage & pipeline) == 0);
1739
1740		ASSERT(stage <= ZIO_STAGE_DONE);
1741
1742		/*
1743		 * If we are in interrupt context and this pipeline stage
1744		 * will grab a config lock that is held across I/O,
1745		 * or may wait for an I/O that needs an interrupt thread
1746		 * to complete, issue async to avoid deadlock.
1747		 *
1748		 * For VDEV_IO_START, we cut in line so that the io will
1749		 * be sent to disk promptly.
1750		 */
1751		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1752		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1753			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1754			    zio_requeue_io_start_cut_in_line : B_FALSE;
1755			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1756			return;
1757		}
1758
1759		zio->io_stage = stage;
1760		zio->io_pipeline_trace |= zio->io_stage;
1761		rv = zio_pipeline[highbit64(stage) - 1](zio);
1762
1763		if (rv == ZIO_PIPELINE_STOP)
1764			return;
1765
1766		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1767	}
1768}
1769
1770/*
1771 * ==========================================================================
1772 * Initiate I/O, either sync or async
1773 * ==========================================================================
1774 */
1775int
1776zio_wait(zio_t *zio)
1777{
1778	int error;
1779
1780	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1781	ASSERT3P(zio->io_executor, ==, NULL);
1782
1783	zio->io_waiter = curthread;
1784	ASSERT0(zio->io_queued_timestamp);
1785	zio->io_queued_timestamp = gethrtime();
1786
1787	zio_execute(zio);
1788
1789	mutex_enter(&zio->io_lock);
1790	while (zio->io_executor != NULL)
1791		cv_wait(&zio->io_cv, &zio->io_lock);
1792	mutex_exit(&zio->io_lock);
1793
1794	error = zio->io_error;
1795	zio_destroy(zio);
1796
1797	return (error);
1798}
1799
1800void
1801zio_nowait(zio_t *zio)
1802{
1803	ASSERT3P(zio->io_executor, ==, NULL);
1804
1805	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1806	    zio_unique_parent(zio) == NULL) {
1807		/*
1808		 * This is a logical async I/O with no parent to wait for it.
1809		 * We add it to the spa_async_root_zio "Godfather" I/O which
1810		 * will ensure they complete prior to unloading the pool.
1811		 */
1812		spa_t *spa = zio->io_spa;
1813
1814		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1815	}
1816
1817	ASSERT0(zio->io_queued_timestamp);
1818	zio->io_queued_timestamp = gethrtime();
1819	zio_execute(zio);
1820}
1821
1822/*
1823 * ==========================================================================
1824 * Reexecute, cancel, or suspend/resume failed I/O
1825 * ==========================================================================
1826 */
1827
1828static void
1829zio_reexecute(zio_t *pio)
1830{
1831	zio_t *cio, *cio_next;
1832
1833	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1834	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1835	ASSERT(pio->io_gang_leader == NULL);
1836	ASSERT(pio->io_gang_tree == NULL);
1837
1838	pio->io_flags = pio->io_orig_flags;
1839	pio->io_stage = pio->io_orig_stage;
1840	pio->io_pipeline = pio->io_orig_pipeline;
1841	pio->io_reexecute = 0;
1842	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1843	pio->io_pipeline_trace = 0;
1844	pio->io_error = 0;
1845	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1846		pio->io_state[w] = 0;
1847	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1848		pio->io_child_error[c] = 0;
1849
1850	if (IO_IS_ALLOCATING(pio))
1851		BP_ZERO(pio->io_bp);
1852
1853	/*
1854	 * As we reexecute pio's children, new children could be created.
1855	 * New children go to the head of pio's io_child_list, however,
1856	 * so we will (correctly) not reexecute them.  The key is that
1857	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1858	 * cannot be affected by any side effects of reexecuting 'cio'.
1859	 */
1860	zio_link_t *zl = NULL;
1861	mutex_enter(&pio->io_lock);
1862	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1863		cio_next = zio_walk_children(pio, &zl);
1864		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1865			pio->io_children[cio->io_child_type][w]++;
1866		mutex_exit(&pio->io_lock);
1867		zio_reexecute(cio);
1868		mutex_enter(&pio->io_lock);
1869	}
1870	mutex_exit(&pio->io_lock);
1871
1872	/*
1873	 * Now that all children have been reexecuted, execute the parent.
1874	 * We don't reexecute "The Godfather" I/O here as it's the
1875	 * responsibility of the caller to wait on it.
1876	 */
1877	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1878		pio->io_queued_timestamp = gethrtime();
1879		zio_execute(pio);
1880	}
1881}
1882
1883void
1884zio_suspend(spa_t *spa, zio_t *zio)
1885{
1886	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1887		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1888		    "failure and the failure mode property for this pool "
1889		    "is set to panic.", spa_name(spa));
1890
1891	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1892
1893	mutex_enter(&spa->spa_suspend_lock);
1894
1895	if (spa->spa_suspend_zio_root == NULL)
1896		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1897		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1898		    ZIO_FLAG_GODFATHER);
1899
1900	spa->spa_suspended = B_TRUE;
1901
1902	if (zio != NULL) {
1903		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1904		ASSERT(zio != spa->spa_suspend_zio_root);
1905		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1906		ASSERT(zio_unique_parent(zio) == NULL);
1907		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1908		zio_add_child(spa->spa_suspend_zio_root, zio);
1909	}
1910
1911	mutex_exit(&spa->spa_suspend_lock);
1912}
1913
1914int
1915zio_resume(spa_t *spa)
1916{
1917	zio_t *pio;
1918
1919	/*
1920	 * Reexecute all previously suspended i/o.
1921	 */
1922	mutex_enter(&spa->spa_suspend_lock);
1923	spa->spa_suspended = B_FALSE;
1924	cv_broadcast(&spa->spa_suspend_cv);
1925	pio = spa->spa_suspend_zio_root;
1926	spa->spa_suspend_zio_root = NULL;
1927	mutex_exit(&spa->spa_suspend_lock);
1928
1929	if (pio == NULL)
1930		return (0);
1931
1932	zio_reexecute(pio);
1933	return (zio_wait(pio));
1934}
1935
1936void
1937zio_resume_wait(spa_t *spa)
1938{
1939	mutex_enter(&spa->spa_suspend_lock);
1940	while (spa_suspended(spa))
1941		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1942	mutex_exit(&spa->spa_suspend_lock);
1943}
1944
1945/*
1946 * ==========================================================================
1947 * Gang blocks.
1948 *
1949 * A gang block is a collection of small blocks that looks to the DMU
1950 * like one large block.  When zio_dva_allocate() cannot find a block
1951 * of the requested size, due to either severe fragmentation or the pool
1952 * being nearly full, it calls zio_write_gang_block() to construct the
1953 * block from smaller fragments.
1954 *
1955 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1956 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1957 * an indirect block: it's an array of block pointers.  It consumes
1958 * only one sector and hence is allocatable regardless of fragmentation.
1959 * The gang header's bps point to its gang members, which hold the data.
1960 *
1961 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1962 * as the verifier to ensure uniqueness of the SHA256 checksum.
1963 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1964 * not the gang header.  This ensures that data block signatures (needed for
1965 * deduplication) are independent of how the block is physically stored.
1966 *
1967 * Gang blocks can be nested: a gang member may itself be a gang block.
1968 * Thus every gang block is a tree in which root and all interior nodes are
1969 * gang headers, and the leaves are normal blocks that contain user data.
1970 * The root of the gang tree is called the gang leader.
1971 *
1972 * To perform any operation (read, rewrite, free, claim) on a gang block,
1973 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1974 * in the io_gang_tree field of the original logical i/o by recursively
1975 * reading the gang leader and all gang headers below it.  This yields
1976 * an in-core tree containing the contents of every gang header and the
1977 * bps for every constituent of the gang block.
1978 *
1979 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1980 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1981 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1982 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1983 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1984 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1985 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1986 * of the gang header plus zio_checksum_compute() of the data to update the
1987 * gang header's blk_cksum as described above.
1988 *
1989 * The two-phase assemble/issue model solves the problem of partial failure --
1990 * what if you'd freed part of a gang block but then couldn't read the
1991 * gang header for another part?  Assembling the entire gang tree first
1992 * ensures that all the necessary gang header I/O has succeeded before
1993 * starting the actual work of free, claim, or write.  Once the gang tree
1994 * is assembled, free and claim are in-memory operations that cannot fail.
1995 *
1996 * In the event that a gang write fails, zio_dva_unallocate() walks the
1997 * gang tree to immediately free (i.e. insert back into the space map)
1998 * everything we've allocated.  This ensures that we don't get ENOSPC
1999 * errors during repeated suspend/resume cycles due to a flaky device.
2000 *
2001 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2002 * the gang tree, we won't modify the block, so we can safely defer the free
2003 * (knowing that the block is still intact).  If we *can* assemble the gang
2004 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2005 * each constituent bp and we can allocate a new block on the next sync pass.
2006 *
2007 * In all cases, the gang tree allows complete recovery from partial failure.
2008 * ==========================================================================
2009 */
2010
2011static void
2012zio_gang_issue_func_done(zio_t *zio)
2013{
2014	abd_put(zio->io_abd);
2015}
2016
2017static zio_t *
2018zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2019    uint64_t offset)
2020{
2021	if (gn != NULL)
2022		return (pio);
2023
2024	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2025	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2026	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2027	    &pio->io_bookmark));
2028}
2029
2030static zio_t *
2031zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2032    uint64_t offset)
2033{
2034	zio_t *zio;
2035
2036	if (gn != NULL) {
2037		abd_t *gbh_abd =
2038		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2039		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2040		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2041		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2042		    &pio->io_bookmark);
2043		/*
2044		 * As we rewrite each gang header, the pipeline will compute
2045		 * a new gang block header checksum for it; but no one will
2046		 * compute a new data checksum, so we do that here.  The one
2047		 * exception is the gang leader: the pipeline already computed
2048		 * its data checksum because that stage precedes gang assembly.
2049		 * (Presently, nothing actually uses interior data checksums;
2050		 * this is just good hygiene.)
2051		 */
2052		if (gn != pio->io_gang_leader->io_gang_tree) {
2053			abd_t *buf = abd_get_offset(data, offset);
2054
2055			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2056			    buf, BP_GET_PSIZE(bp));
2057
2058			abd_put(buf);
2059		}
2060		/*
2061		 * If we are here to damage data for testing purposes,
2062		 * leave the GBH alone so that we can detect the damage.
2063		 */
2064		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2065			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2066	} else {
2067		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2068		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2069		    zio_gang_issue_func_done, NULL, pio->io_priority,
2070		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2071	}
2072
2073	return (zio);
2074}
2075
2076/* ARGSUSED */
2077static zio_t *
2078zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2079    uint64_t offset)
2080{
2081	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2082	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
2083	    ZIO_GANG_CHILD_FLAGS(pio)));
2084}
2085
2086/* ARGSUSED */
2087static zio_t *
2088zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2089    uint64_t offset)
2090{
2091	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2092	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2093}
2094
2095static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2096	NULL,
2097	zio_read_gang,
2098	zio_rewrite_gang,
2099	zio_free_gang,
2100	zio_claim_gang,
2101	NULL
2102};
2103
2104static void zio_gang_tree_assemble_done(zio_t *zio);
2105
2106static zio_gang_node_t *
2107zio_gang_node_alloc(zio_gang_node_t **gnpp)
2108{
2109	zio_gang_node_t *gn;
2110
2111	ASSERT(*gnpp == NULL);
2112
2113	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2114	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2115	*gnpp = gn;
2116
2117	return (gn);
2118}
2119
2120static void
2121zio_gang_node_free(zio_gang_node_t **gnpp)
2122{
2123	zio_gang_node_t *gn = *gnpp;
2124
2125	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2126		ASSERT(gn->gn_child[g] == NULL);
2127
2128	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2129	kmem_free(gn, sizeof (*gn));
2130	*gnpp = NULL;
2131}
2132
2133static void
2134zio_gang_tree_free(zio_gang_node_t **gnpp)
2135{
2136	zio_gang_node_t *gn = *gnpp;
2137
2138	if (gn == NULL)
2139		return;
2140
2141	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2142		zio_gang_tree_free(&gn->gn_child[g]);
2143
2144	zio_gang_node_free(gnpp);
2145}
2146
2147static void
2148zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2149{
2150	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2151	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2152
2153	ASSERT(gio->io_gang_leader == gio);
2154	ASSERT(BP_IS_GANG(bp));
2155
2156	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2157	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2158	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2159}
2160
2161static void
2162zio_gang_tree_assemble_done(zio_t *zio)
2163{
2164	zio_t *gio = zio->io_gang_leader;
2165	zio_gang_node_t *gn = zio->io_private;
2166	blkptr_t *bp = zio->io_bp;
2167
2168	ASSERT(gio == zio_unique_parent(zio));
2169	ASSERT(zio->io_child_count == 0);
2170
2171	if (zio->io_error)
2172		return;
2173
2174	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2175	if (BP_SHOULD_BYTESWAP(bp))
2176		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2177
2178	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2179	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2180	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2181
2182	abd_put(zio->io_abd);
2183
2184	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2185		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2186		if (!BP_IS_GANG(gbp))
2187			continue;
2188		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2189	}
2190}
2191
2192static void
2193zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2194    uint64_t offset)
2195{
2196	zio_t *gio = pio->io_gang_leader;
2197	zio_t *zio;
2198
2199	ASSERT(BP_IS_GANG(bp) == !!gn);
2200	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2201	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2202
2203	/*
2204	 * If you're a gang header, your data is in gn->gn_gbh.
2205	 * If you're a gang member, your data is in 'data' and gn == NULL.
2206	 */
2207	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2208
2209	if (gn != NULL) {
2210		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2211
2212		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2213			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2214			if (BP_IS_HOLE(gbp))
2215				continue;
2216			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2217			    offset);
2218			offset += BP_GET_PSIZE(gbp);
2219		}
2220	}
2221
2222	if (gn == gio->io_gang_tree && gio->io_abd != NULL)
2223		ASSERT3U(gio->io_size, ==, offset);
2224
2225	if (zio != pio)
2226		zio_nowait(zio);
2227}
2228
2229static int
2230zio_gang_assemble(zio_t *zio)
2231{
2232	blkptr_t *bp = zio->io_bp;
2233
2234	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2235	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2236
2237	zio->io_gang_leader = zio;
2238
2239	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2240
2241	return (ZIO_PIPELINE_CONTINUE);
2242}
2243
2244static int
2245zio_gang_issue(zio_t *zio)
2246{
2247	blkptr_t *bp = zio->io_bp;
2248
2249	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2250		return (ZIO_PIPELINE_STOP);
2251	}
2252
2253	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2254	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2255
2256	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2257		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2258		    0);
2259	else
2260		zio_gang_tree_free(&zio->io_gang_tree);
2261
2262	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2263
2264	return (ZIO_PIPELINE_CONTINUE);
2265}
2266
2267static void
2268zio_write_gang_member_ready(zio_t *zio)
2269{
2270	zio_t *pio = zio_unique_parent(zio);
2271	zio_t *gio = zio->io_gang_leader;
2272	dva_t *cdva = zio->io_bp->blk_dva;
2273	dva_t *pdva = pio->io_bp->blk_dva;
2274	uint64_t asize;
2275
2276	if (BP_IS_HOLE(zio->io_bp))
2277		return;
2278
2279	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2280
2281	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2282	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2283	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2284	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2285	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2286
2287	mutex_enter(&pio->io_lock);
2288	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2289		ASSERT(DVA_GET_GANG(&pdva[d]));
2290		asize = DVA_GET_ASIZE(&pdva[d]);
2291		asize += DVA_GET_ASIZE(&cdva[d]);
2292		DVA_SET_ASIZE(&pdva[d], asize);
2293	}
2294	mutex_exit(&pio->io_lock);
2295}
2296
2297static void
2298zio_write_gang_done(zio_t *zio)
2299{
2300	abd_put(zio->io_abd);
2301}
2302
2303static int
2304zio_write_gang_block(zio_t *pio)
2305{
2306	spa_t *spa = pio->io_spa;
2307	metaslab_class_t *mc = spa_normal_class(spa);
2308	blkptr_t *bp = pio->io_bp;
2309	zio_t *gio = pio->io_gang_leader;
2310	zio_t *zio;
2311	zio_gang_node_t *gn, **gnpp;
2312	zio_gbh_phys_t *gbh;
2313	abd_t *gbh_abd;
2314	uint64_t txg = pio->io_txg;
2315	uint64_t resid = pio->io_size;
2316	uint64_t lsize;
2317	int copies = gio->io_prop.zp_copies;
2318	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2319	zio_prop_t zp;
2320	int error;
2321
2322	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2323	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2324		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2325		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2326
2327		flags |= METASLAB_ASYNC_ALLOC;
2328		VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2329		    pio));
2330
2331		/*
2332		 * The logical zio has already placed a reservation for
2333		 * 'copies' allocation slots but gang blocks may require
2334		 * additional copies. These additional copies
2335		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2336		 * since metaslab_class_throttle_reserve() always allows
2337		 * additional reservations for gang blocks.
2338		 */
2339		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2340		    pio->io_allocator, pio, flags));
2341	}
2342
2343	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2344	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2345	    &pio->io_alloc_list, pio, pio->io_allocator);
2346	if (error) {
2347		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2348			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2349			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2350
2351			/*
2352			 * If we failed to allocate the gang block header then
2353			 * we remove any additional allocation reservations that
2354			 * we placed here. The original reservation will
2355			 * be removed when the logical I/O goes to the ready
2356			 * stage.
2357			 */
2358			metaslab_class_throttle_unreserve(mc,
2359			    gbh_copies - copies, pio->io_allocator, pio);
2360		}
2361		pio->io_error = error;
2362		return (ZIO_PIPELINE_CONTINUE);
2363	}
2364
2365	if (pio == gio) {
2366		gnpp = &gio->io_gang_tree;
2367	} else {
2368		gnpp = pio->io_private;
2369		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2370	}
2371
2372	gn = zio_gang_node_alloc(gnpp);
2373	gbh = gn->gn_gbh;
2374	bzero(gbh, SPA_GANGBLOCKSIZE);
2375	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2376
2377	/*
2378	 * Create the gang header.
2379	 */
2380	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2381	    zio_write_gang_done, NULL, pio->io_priority,
2382	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2383
2384	/*
2385	 * Create and nowait the gang children.
2386	 */
2387	for (int g = 0; resid != 0; resid -= lsize, g++) {
2388		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2389		    SPA_MINBLOCKSIZE);
2390		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2391
2392		zp.zp_checksum = gio->io_prop.zp_checksum;
2393		zp.zp_compress = ZIO_COMPRESS_OFF;
2394		zp.zp_type = DMU_OT_NONE;
2395		zp.zp_level = 0;
2396		zp.zp_copies = gio->io_prop.zp_copies;
2397		zp.zp_dedup = B_FALSE;
2398		zp.zp_dedup_verify = B_FALSE;
2399		zp.zp_nopwrite = B_FALSE;
2400
2401		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2402		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2403		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2404		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2405		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2406
2407		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2408			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2409			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2410
2411			/*
2412			 * Gang children won't throttle but we should
2413			 * account for their work, so reserve an allocation
2414			 * slot for them here.
2415			 */
2416			VERIFY(metaslab_class_throttle_reserve(mc,
2417			    zp.zp_copies, cio->io_allocator, cio, flags));
2418		}
2419		zio_nowait(cio);
2420	}
2421
2422	/*
2423	 * Set pio's pipeline to just wait for zio to finish.
2424	 */
2425	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2426
2427	zio_nowait(zio);
2428
2429	return (ZIO_PIPELINE_CONTINUE);
2430}
2431
2432/*
2433 * The zio_nop_write stage in the pipeline determines if allocating a
2434 * new bp is necessary.  The nopwrite feature can handle writes in
2435 * either syncing or open context (i.e. zil writes) and as a result is
2436 * mutually exclusive with dedup.
2437 *
2438 * By leveraging a cryptographically secure checksum, such as SHA256, we
2439 * can compare the checksums of the new data and the old to determine if
2440 * allocating a new block is required.  Note that our requirements for
2441 * cryptographic strength are fairly weak: there can't be any accidental
2442 * hash collisions, but we don't need to be secure against intentional
2443 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2444 * to write the file to begin with, and triggering an incorrect (hash
2445 * collision) nopwrite is no worse than simply writing to the file.
2446 * That said, there are no known attacks against the checksum algorithms
2447 * used for nopwrite, assuming that the salt and the checksums
2448 * themselves remain secret.
2449 */
2450static int
2451zio_nop_write(zio_t *zio)
2452{
2453	blkptr_t *bp = zio->io_bp;
2454	blkptr_t *bp_orig = &zio->io_bp_orig;
2455	zio_prop_t *zp = &zio->io_prop;
2456
2457	ASSERT(BP_GET_LEVEL(bp) == 0);
2458	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2459	ASSERT(zp->zp_nopwrite);
2460	ASSERT(!zp->zp_dedup);
2461	ASSERT(zio->io_bp_override == NULL);
2462	ASSERT(IO_IS_ALLOCATING(zio));
2463
2464	/*
2465	 * Check to see if the original bp and the new bp have matching
2466	 * characteristics (i.e. same checksum, compression algorithms, etc).
2467	 * If they don't then just continue with the pipeline which will
2468	 * allocate a new bp.
2469	 */
2470	if (BP_IS_HOLE(bp_orig) ||
2471	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2472	    ZCHECKSUM_FLAG_NOPWRITE) ||
2473	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2474	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2475	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2476	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2477		return (ZIO_PIPELINE_CONTINUE);
2478
2479	/*
2480	 * If the checksums match then reset the pipeline so that we
2481	 * avoid allocating a new bp and issuing any I/O.
2482	 */
2483	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2484		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2485		    ZCHECKSUM_FLAG_NOPWRITE);
2486		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2487		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2488		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2489		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2490		    sizeof (uint64_t)) == 0);
2491
2492		*bp = *bp_orig;
2493		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2494		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2495	}
2496
2497	return (ZIO_PIPELINE_CONTINUE);
2498}
2499
2500/*
2501 * ==========================================================================
2502 * Dedup
2503 * ==========================================================================
2504 */
2505static void
2506zio_ddt_child_read_done(zio_t *zio)
2507{
2508	blkptr_t *bp = zio->io_bp;
2509	ddt_entry_t *dde = zio->io_private;
2510	ddt_phys_t *ddp;
2511	zio_t *pio = zio_unique_parent(zio);
2512
2513	mutex_enter(&pio->io_lock);
2514	ddp = ddt_phys_select(dde, bp);
2515	if (zio->io_error == 0)
2516		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2517
2518	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2519		dde->dde_repair_abd = zio->io_abd;
2520	else
2521		abd_free(zio->io_abd);
2522	mutex_exit(&pio->io_lock);
2523}
2524
2525static int
2526zio_ddt_read_start(zio_t *zio)
2527{
2528	blkptr_t *bp = zio->io_bp;
2529
2530	ASSERT(BP_GET_DEDUP(bp));
2531	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2532	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2533
2534	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2535		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2536		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2537		ddt_phys_t *ddp = dde->dde_phys;
2538		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2539		blkptr_t blk;
2540
2541		ASSERT(zio->io_vsd == NULL);
2542		zio->io_vsd = dde;
2543
2544		if (ddp_self == NULL)
2545			return (ZIO_PIPELINE_CONTINUE);
2546
2547		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2548			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2549				continue;
2550			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2551			    &blk);
2552			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2553			    abd_alloc_for_io(zio->io_size, B_TRUE),
2554			    zio->io_size, zio_ddt_child_read_done, dde,
2555			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2556			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2557		}
2558		return (ZIO_PIPELINE_CONTINUE);
2559	}
2560
2561	zio_nowait(zio_read(zio, zio->io_spa, bp,
2562	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2563	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2564
2565	return (ZIO_PIPELINE_CONTINUE);
2566}
2567
2568static int
2569zio_ddt_read_done(zio_t *zio)
2570{
2571	blkptr_t *bp = zio->io_bp;
2572
2573	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2574		return (ZIO_PIPELINE_STOP);
2575	}
2576
2577	ASSERT(BP_GET_DEDUP(bp));
2578	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2579	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2580
2581	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2582		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2583		ddt_entry_t *dde = zio->io_vsd;
2584		if (ddt == NULL) {
2585			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2586			return (ZIO_PIPELINE_CONTINUE);
2587		}
2588		if (dde == NULL) {
2589			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2590			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2591			return (ZIO_PIPELINE_STOP);
2592		}
2593		if (dde->dde_repair_abd != NULL) {
2594			abd_copy(zio->io_abd, dde->dde_repair_abd,
2595			    zio->io_size);
2596			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2597		}
2598		ddt_repair_done(ddt, dde);
2599		zio->io_vsd = NULL;
2600	}
2601
2602	ASSERT(zio->io_vsd == NULL);
2603
2604	return (ZIO_PIPELINE_CONTINUE);
2605}
2606
2607static boolean_t
2608zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2609{
2610	spa_t *spa = zio->io_spa;
2611	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2612
2613	/* We should never get a raw, override zio */
2614	ASSERT(!(zio->io_bp_override && do_raw));
2615
2616	/*
2617	 * Note: we compare the original data, not the transformed data,
2618	 * because when zio->io_bp is an override bp, we will not have
2619	 * pushed the I/O transforms.  That's an important optimization
2620	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2621	 */
2622	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2623		zio_t *lio = dde->dde_lead_zio[p];
2624
2625		if (lio != NULL) {
2626			return (lio->io_orig_size != zio->io_orig_size ||
2627			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2628			    zio->io_orig_size) != 0);
2629		}
2630	}
2631
2632	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2633		ddt_phys_t *ddp = &dde->dde_phys[p];
2634
2635		if (ddp->ddp_phys_birth != 0) {
2636			arc_buf_t *abuf = NULL;
2637			arc_flags_t aflags = ARC_FLAG_WAIT;
2638			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2639			blkptr_t blk = *zio->io_bp;
2640			int error;
2641
2642			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2643
2644			ddt_exit(ddt);
2645
2646			/*
2647			 * Intuitively, it would make more sense to compare
2648			 * io_abd than io_orig_abd in the raw case since you
2649			 * don't want to look at any transformations that have
2650			 * happened to the data. However, for raw I/Os the
2651			 * data will actually be the same in io_abd and
2652			 * io_orig_abd, so all we have to do is issue this as
2653			 * a raw ARC read.
2654			 */
2655			if (do_raw) {
2656				zio_flags |= ZIO_FLAG_RAW;
2657				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2658				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2659				    zio->io_size));
2660				ASSERT3P(zio->io_transform_stack, ==, NULL);
2661			}
2662
2663			error = arc_read(NULL, spa, &blk,
2664			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2665			    zio_flags, &aflags, &zio->io_bookmark);
2666
2667			if (error == 0) {
2668				if (arc_buf_size(abuf) != zio->io_orig_size ||
2669				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2670				    zio->io_orig_size) != 0)
2671					error = SET_ERROR(EEXIST);
2672				arc_buf_destroy(abuf, &abuf);
2673			}
2674
2675			ddt_enter(ddt);
2676			return (error != 0);
2677		}
2678	}
2679
2680	return (B_FALSE);
2681}
2682
2683static void
2684zio_ddt_child_write_ready(zio_t *zio)
2685{
2686	int p = zio->io_prop.zp_copies;
2687	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2688	ddt_entry_t *dde = zio->io_private;
2689	ddt_phys_t *ddp = &dde->dde_phys[p];
2690	zio_t *pio;
2691
2692	if (zio->io_error)
2693		return;
2694
2695	ddt_enter(ddt);
2696
2697	ASSERT(dde->dde_lead_zio[p] == zio);
2698
2699	ddt_phys_fill(ddp, zio->io_bp);
2700
2701	zio_link_t *zl = NULL;
2702	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2703		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2704
2705	ddt_exit(ddt);
2706}
2707
2708static void
2709zio_ddt_child_write_done(zio_t *zio)
2710{
2711	int p = zio->io_prop.zp_copies;
2712	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2713	ddt_entry_t *dde = zio->io_private;
2714	ddt_phys_t *ddp = &dde->dde_phys[p];
2715
2716	ddt_enter(ddt);
2717
2718	ASSERT(ddp->ddp_refcnt == 0);
2719	ASSERT(dde->dde_lead_zio[p] == zio);
2720	dde->dde_lead_zio[p] = NULL;
2721
2722	if (zio->io_error == 0) {
2723		zio_link_t *zl = NULL;
2724		while (zio_walk_parents(zio, &zl) != NULL)
2725			ddt_phys_addref(ddp);
2726	} else {
2727		ddt_phys_clear(ddp);
2728	}
2729
2730	ddt_exit(ddt);
2731}
2732
2733static void
2734zio_ddt_ditto_write_done(zio_t *zio)
2735{
2736	int p = DDT_PHYS_DITTO;
2737	zio_prop_t *zp = &zio->io_prop;
2738	blkptr_t *bp = zio->io_bp;
2739	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2740	ddt_entry_t *dde = zio->io_private;
2741	ddt_phys_t *ddp = &dde->dde_phys[p];
2742	ddt_key_t *ddk = &dde->dde_key;
2743
2744	ddt_enter(ddt);
2745
2746	ASSERT(ddp->ddp_refcnt == 0);
2747	ASSERT(dde->dde_lead_zio[p] == zio);
2748	dde->dde_lead_zio[p] = NULL;
2749
2750	if (zio->io_error == 0) {
2751		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2752		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2753		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2754		if (ddp->ddp_phys_birth != 0)
2755			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2756		ddt_phys_fill(ddp, bp);
2757	}
2758
2759	ddt_exit(ddt);
2760}
2761
2762static int
2763zio_ddt_write(zio_t *zio)
2764{
2765	spa_t *spa = zio->io_spa;
2766	blkptr_t *bp = zio->io_bp;
2767	uint64_t txg = zio->io_txg;
2768	zio_prop_t *zp = &zio->io_prop;
2769	int p = zp->zp_copies;
2770	int ditto_copies;
2771	zio_t *cio = NULL;
2772	zio_t *dio = NULL;
2773	ddt_t *ddt = ddt_select(spa, bp);
2774	ddt_entry_t *dde;
2775	ddt_phys_t *ddp;
2776
2777	ASSERT(BP_GET_DEDUP(bp));
2778	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2779	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2780	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2781
2782	ddt_enter(ddt);
2783	dde = ddt_lookup(ddt, bp, B_TRUE);
2784	ddp = &dde->dde_phys[p];
2785
2786	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2787		/*
2788		 * If we're using a weak checksum, upgrade to a strong checksum
2789		 * and try again.  If we're already using a strong checksum,
2790		 * we can't resolve it, so just convert to an ordinary write.
2791		 * (And automatically e-mail a paper to Nature?)
2792		 */
2793		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2794		    ZCHECKSUM_FLAG_DEDUP)) {
2795			zp->zp_checksum = spa_dedup_checksum(spa);
2796			zio_pop_transforms(zio);
2797			zio->io_stage = ZIO_STAGE_OPEN;
2798			BP_ZERO(bp);
2799		} else {
2800			zp->zp_dedup = B_FALSE;
2801			BP_SET_DEDUP(bp, B_FALSE);
2802		}
2803		ASSERT(!BP_GET_DEDUP(bp));
2804		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2805		ddt_exit(ddt);
2806		return (ZIO_PIPELINE_CONTINUE);
2807	}
2808
2809	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2810	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2811
2812	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2813	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2814		zio_prop_t czp = *zp;
2815
2816		czp.zp_copies = ditto_copies;
2817
2818		/*
2819		 * If we arrived here with an override bp, we won't have run
2820		 * the transform stack, so we won't have the data we need to
2821		 * generate a child i/o.  So, toss the override bp and restart.
2822		 * This is safe, because using the override bp is just an
2823		 * optimization; and it's rare, so the cost doesn't matter.
2824		 */
2825		if (zio->io_bp_override) {
2826			zio_pop_transforms(zio);
2827			zio->io_stage = ZIO_STAGE_OPEN;
2828			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2829			zio->io_bp_override = NULL;
2830			BP_ZERO(bp);
2831			ddt_exit(ddt);
2832			return (ZIO_PIPELINE_CONTINUE);
2833		}
2834
2835		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2836		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2837		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2838		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2839
2840		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2841		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2842	}
2843
2844	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2845		if (ddp->ddp_phys_birth != 0)
2846			ddt_bp_fill(ddp, bp, txg);
2847		if (dde->dde_lead_zio[p] != NULL)
2848			zio_add_child(zio, dde->dde_lead_zio[p]);
2849		else
2850			ddt_phys_addref(ddp);
2851	} else if (zio->io_bp_override) {
2852		ASSERT(bp->blk_birth == txg);
2853		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2854		ddt_phys_fill(ddp, bp);
2855		ddt_phys_addref(ddp);
2856	} else {
2857		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2858		    zio->io_orig_size, zio->io_orig_size, zp,
2859		    zio_ddt_child_write_ready, NULL, NULL,
2860		    zio_ddt_child_write_done, dde, zio->io_priority,
2861		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2862
2863		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2864		dde->dde_lead_zio[p] = cio;
2865	}
2866
2867	ddt_exit(ddt);
2868
2869	if (cio)
2870		zio_nowait(cio);
2871	if (dio)
2872		zio_nowait(dio);
2873
2874	return (ZIO_PIPELINE_CONTINUE);
2875}
2876
2877ddt_entry_t *freedde; /* for debugging */
2878
2879static int
2880zio_ddt_free(zio_t *zio)
2881{
2882	spa_t *spa = zio->io_spa;
2883	blkptr_t *bp = zio->io_bp;
2884	ddt_t *ddt = ddt_select(spa, bp);
2885	ddt_entry_t *dde;
2886	ddt_phys_t *ddp;
2887
2888	ASSERT(BP_GET_DEDUP(bp));
2889	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2890
2891	ddt_enter(ddt);
2892	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2893	ddp = ddt_phys_select(dde, bp);
2894	ddt_phys_decref(ddp);
2895	ddt_exit(ddt);
2896
2897	return (ZIO_PIPELINE_CONTINUE);
2898}
2899
2900/*
2901 * ==========================================================================
2902 * Allocate and free blocks
2903 * ==========================================================================
2904 */
2905
2906static zio_t *
2907zio_io_to_allocate(spa_t *spa, int allocator)
2908{
2909	zio_t *zio;
2910
2911	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2912
2913	zio = avl_first(&spa->spa_alloc_trees[allocator]);
2914	if (zio == NULL)
2915		return (NULL);
2916
2917	ASSERT(IO_IS_ALLOCATING(zio));
2918
2919	/*
2920	 * Try to place a reservation for this zio. If we're unable to
2921	 * reserve then we throttle.
2922	 */
2923	ASSERT3U(zio->io_allocator, ==, allocator);
2924	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2925	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2926		return (NULL);
2927	}
2928
2929	avl_remove(&spa->spa_alloc_trees[allocator], zio);
2930	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2931
2932	return (zio);
2933}
2934
2935static int
2936zio_dva_throttle(zio_t *zio)
2937{
2938	spa_t *spa = zio->io_spa;
2939	zio_t *nio;
2940
2941	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2942	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2943	    zio->io_child_type == ZIO_CHILD_GANG ||
2944	    zio->io_flags & ZIO_FLAG_NODATA) {
2945		return (ZIO_PIPELINE_CONTINUE);
2946	}
2947
2948	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2949
2950	ASSERT3U(zio->io_queued_timestamp, >, 0);
2951	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2952
2953	zbookmark_phys_t *bm = &zio->io_bookmark;
2954	/*
2955	 * We want to try to use as many allocators as possible to help improve
2956	 * performance, but we also want logically adjacent IOs to be physically
2957	 * adjacent to improve sequential read performance. We chunk each object
2958	 * into 2^20 block regions, and then hash based on the objset, object,
2959	 * level, and region to accomplish both of these goals.
2960	 */
2961	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2962	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2963	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2964
2965	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2966	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2967
2968	nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator);
2969	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2970
2971	if (nio == zio)
2972		return (ZIO_PIPELINE_CONTINUE);
2973
2974	if (nio != NULL) {
2975		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2976		/*
2977		 * We are passing control to a new zio so make sure that
2978		 * it is processed by a different thread. We do this to
2979		 * avoid stack overflows that can occur when parents are
2980		 * throttled and children are making progress. We allow
2981		 * it to go to the head of the taskq since it's already
2982		 * been waiting.
2983		 */
2984		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2985	}
2986	return (ZIO_PIPELINE_STOP);
2987}
2988
2989void
2990zio_allocate_dispatch(spa_t *spa, int allocator)
2991{
2992	zio_t *zio;
2993
2994	mutex_enter(&spa->spa_alloc_locks[allocator]);
2995	zio = zio_io_to_allocate(spa, allocator);
2996	mutex_exit(&spa->spa_alloc_locks[allocator]);
2997	if (zio == NULL)
2998		return;
2999
3000	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3001	ASSERT0(zio->io_error);
3002	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3003}
3004
3005static int
3006zio_dva_allocate(zio_t *zio)
3007{
3008	spa_t *spa = zio->io_spa;
3009	metaslab_class_t *mc = spa_normal_class(spa);
3010	blkptr_t *bp = zio->io_bp;
3011	int error;
3012	int flags = 0;
3013
3014	if (zio->io_gang_leader == NULL) {
3015		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3016		zio->io_gang_leader = zio;
3017	}
3018
3019	ASSERT(BP_IS_HOLE(bp));
3020	ASSERT0(BP_GET_NDVAS(bp));
3021	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3022	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3023	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3024
3025	if (zio->io_flags & ZIO_FLAG_NODATA) {
3026		flags |= METASLAB_DONT_THROTTLE;
3027	}
3028	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
3029		flags |= METASLAB_GANG_CHILD;
3030	}
3031	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
3032		flags |= METASLAB_ASYNC_ALLOC;
3033	}
3034
3035	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3036	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3037	    &zio->io_alloc_list, zio, zio->io_allocator);
3038
3039	if (error != 0) {
3040		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
3041		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3042		    error);
3043		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3044			return (zio_write_gang_block(zio));
3045		zio->io_error = error;
3046	}
3047
3048	return (ZIO_PIPELINE_CONTINUE);
3049}
3050
3051static int
3052zio_dva_free(zio_t *zio)
3053{
3054	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3055
3056	return (ZIO_PIPELINE_CONTINUE);
3057}
3058
3059static int
3060zio_dva_claim(zio_t *zio)
3061{
3062	int error;
3063
3064	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3065	if (error)
3066		zio->io_error = error;
3067
3068	return (ZIO_PIPELINE_CONTINUE);
3069}
3070
3071/*
3072 * Undo an allocation.  This is used by zio_done() when an I/O fails
3073 * and we want to give back the block we just allocated.
3074 * This handles both normal blocks and gang blocks.
3075 */
3076static void
3077zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3078{
3079	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3080	ASSERT(zio->io_bp_override == NULL);
3081
3082	if (!BP_IS_HOLE(bp))
3083		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3084
3085	if (gn != NULL) {
3086		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3087			zio_dva_unallocate(zio, gn->gn_child[g],
3088			    &gn->gn_gbh->zg_blkptr[g]);
3089		}
3090	}
3091}
3092
3093/*
3094 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3095 */
3096int
3097zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
3098    blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3099{
3100	int error = 1;
3101	zio_alloc_list_t io_alloc_list;
3102
3103	ASSERT(txg > spa_syncing_txg(spa));
3104
3105	metaslab_trace_init(&io_alloc_list);
3106	/*
3107	 * When allocating a zil block, we don't have information about
3108	 * the final destination of the block except the objset it's part
3109	 * of, so we just hash the objset ID to pick the allocator to get
3110	 * some parallelism.
3111	 */
3112	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3113	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3114	    cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3115	if (error == 0) {
3116		*slog = TRUE;
3117	} else {
3118		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3119		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3120		    &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3121		    spa->spa_alloc_count);
3122		if (error == 0)
3123			*slog = FALSE;
3124	}
3125	metaslab_trace_fini(&io_alloc_list);
3126
3127	if (error == 0) {
3128		BP_SET_LSIZE(new_bp, size);
3129		BP_SET_PSIZE(new_bp, size);
3130		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3131		BP_SET_CHECKSUM(new_bp,
3132		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3133		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3134		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3135		BP_SET_LEVEL(new_bp, 0);
3136		BP_SET_DEDUP(new_bp, 0);
3137		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3138	} else {
3139		zfs_dbgmsg("%s: zil block allocation failure: "
3140		    "size %llu, error %d", spa_name(spa), size, error);
3141	}
3142
3143	return (error);
3144}
3145
3146/*
3147 * ==========================================================================
3148 * Read, write and delete to physical devices
3149 * ==========================================================================
3150 */
3151
3152
3153/*
3154 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3155 * stops after this stage and will resume upon I/O completion.
3156 * However, there are instances where the vdev layer may need to
3157 * continue the pipeline when an I/O was not issued. Since the I/O
3158 * that was sent to the vdev layer might be different than the one
3159 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3160 * force the underlying vdev layers to call either zio_execute() or
3161 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3162 */
3163static int
3164zio_vdev_io_start(zio_t *zio)
3165{
3166	vdev_t *vd = zio->io_vd;
3167	uint64_t align;
3168	spa_t *spa = zio->io_spa;
3169	int ret;
3170
3171	ASSERT(zio->io_error == 0);
3172	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3173
3174	if (vd == NULL) {
3175		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3176			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3177
3178		/*
3179		 * The mirror_ops handle multiple DVAs in a single BP.
3180		 */
3181		vdev_mirror_ops.vdev_op_io_start(zio);
3182		return (ZIO_PIPELINE_STOP);
3183	}
3184
3185	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
3186	    zio->io_priority == ZIO_PRIORITY_NOW) {
3187		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
3188		return (ZIO_PIPELINE_CONTINUE);
3189	}
3190
3191	ASSERT3P(zio->io_logical, !=, zio);
3192	if (zio->io_type == ZIO_TYPE_WRITE) {
3193		ASSERT(spa->spa_trust_config);
3194
3195		if (zio->io_vd->vdev_removing) {
3196			/*
3197			 * Note: the code can handle other kinds of writes,
3198			 * but we don't expect them.
3199			 */
3200			ASSERT(zio->io_flags &
3201			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3202			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3203		}
3204	}
3205
3206        /*
3207         * We keep track of time-sensitive I/Os so that the scan thread
3208         * can quickly react to certain workloads.  In particular, we care
3209         * about non-scrubbing, top-level reads and writes with the following
3210         * characteristics:
3211         *      - synchronous writes of user data to non-slog devices
3212         *      - any reads of user data
3213         * When these conditions are met, adjust the timestamp of spa_last_io
3214         * which allows the scan thread to adjust its workload accordingly.
3215         */
3216        if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3217            vd == vd->vdev_top && !vd->vdev_islog &&
3218            zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3219            zio->io_txg != spa_syncing_txg(spa)) {
3220                uint64_t old = spa->spa_last_io;
3221                uint64_t new = ddi_get_lbolt64();
3222                if (old != new)
3223                        (void) atomic_cas_64(&spa->spa_last_io, old, new);
3224        }
3225	align = 1ULL << vd->vdev_top->vdev_ashift;
3226
3227	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3228	    P2PHASE(zio->io_size, align) != 0) {
3229		/* Transform logical writes to be a full physical block size. */
3230		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3231		abd_t *abuf = NULL;
3232		if (zio->io_type == ZIO_TYPE_READ ||
3233		    zio->io_type == ZIO_TYPE_WRITE)
3234			abuf = abd_alloc_sametype(zio->io_abd, asize);
3235		ASSERT(vd == vd->vdev_top);
3236		if (zio->io_type == ZIO_TYPE_WRITE) {
3237			abd_copy(abuf, zio->io_abd, zio->io_size);
3238			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3239		}
3240		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
3241		    zio_subblock);
3242	}
3243
3244	/*
3245	 * If this is not a physical io, make sure that it is properly aligned
3246	 * before proceeding.
3247	 */
3248	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3249		ASSERT0(P2PHASE(zio->io_offset, align));
3250		ASSERT0(P2PHASE(zio->io_size, align));
3251	} else {
3252		/*
3253		 * For the physical io we allow alignment
3254		 * to a logical block size.
3255		 */
3256		uint64_t log_align =
3257		    1ULL << vd->vdev_top->vdev_logical_ashift;
3258		ASSERT0(P2PHASE(zio->io_offset, log_align));
3259		ASSERT0(P2PHASE(zio->io_size, log_align));
3260	}
3261
3262	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
3263
3264	/*
3265	 * If this is a repair I/O, and there's no self-healing involved --
3266	 * that is, we're just resilvering what we expect to resilver --
3267	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3268	 * This prevents spurious resilvering.
3269	 *
3270	 * There are a few ways that we can end up creating these spurious
3271	 * resilver i/os:
3272	 *
3273	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3274	 * dirty DTL.  The mirror code will issue resilver writes to
3275	 * each DVA, including the one(s) that are not on vdevs with dirty
3276	 * DTLs.
3277	 *
3278	 * 2. With nested replication, which happens when we have a
3279	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3280	 * For example, given mirror(replacing(A+B), C), it's likely that
3281	 * only A is out of date (it's the new device). In this case, we'll
3282	 * read from C, then use the data to resilver A+B -- but we don't
3283	 * actually want to resilver B, just A. The top-level mirror has no
3284	 * way to know this, so instead we just discard unnecessary repairs
3285	 * as we work our way down the vdev tree.
3286	 *
3287	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3288	 * The same logic applies to any form of nested replication: ditto
3289	 * + mirror, RAID-Z + replacing, etc.
3290	 *
3291	 * However, indirect vdevs point off to other vdevs which may have
3292	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3293	 * will be properly bypassed instead.
3294	 */
3295	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3296	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3297	    zio->io_txg != 0 &&	/* not a delegated i/o */
3298	    vd->vdev_ops != &vdev_indirect_ops &&
3299	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3300		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3301		zio_vdev_io_bypass(zio);
3302		return (ZIO_PIPELINE_CONTINUE);
3303	}
3304
3305	if (vd->vdev_ops->vdev_op_leaf) {
3306		switch (zio->io_type) {
3307		case ZIO_TYPE_READ:
3308			if (vdev_cache_read(zio))
3309				return (ZIO_PIPELINE_CONTINUE);
3310			/* FALLTHROUGH */
3311		case ZIO_TYPE_WRITE:
3312		case ZIO_TYPE_FREE:
3313			if ((zio = vdev_queue_io(zio)) == NULL)
3314				return (ZIO_PIPELINE_STOP);
3315
3316			if (!vdev_accessible(vd, zio)) {
3317				zio->io_error = SET_ERROR(ENXIO);
3318				zio_interrupt(zio);
3319				return (ZIO_PIPELINE_STOP);
3320			}
3321			break;
3322		}
3323		/*
3324		 * Note that we ignore repair writes for TRIM because they can
3325		 * conflict with normal writes. This isn't an issue because, by
3326		 * definition, we only repair blocks that aren't freed.
3327		 */
3328		if (zio->io_type == ZIO_TYPE_WRITE &&
3329		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3330		    !trim_map_write_start(zio))
3331			return (ZIO_PIPELINE_STOP);
3332	}
3333
3334	vd->vdev_ops->vdev_op_io_start(zio);
3335	return (ZIO_PIPELINE_STOP);
3336}
3337
3338static int
3339zio_vdev_io_done(zio_t *zio)
3340{
3341	vdev_t *vd = zio->io_vd;
3342	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3343	boolean_t unexpected_error = B_FALSE;
3344
3345	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3346		return (ZIO_PIPELINE_STOP);
3347	}
3348
3349	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3350	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
3351
3352	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3353	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
3354	    zio->io_type == ZIO_TYPE_FREE)) {
3355
3356		if (zio->io_type == ZIO_TYPE_WRITE &&
3357		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
3358			trim_map_write_done(zio);
3359
3360		vdev_queue_io_done(zio);
3361
3362		if (zio->io_type == ZIO_TYPE_WRITE)
3363			vdev_cache_write(zio);
3364
3365		if (zio_injection_enabled && zio->io_error == 0)
3366			zio->io_error = zio_handle_device_injection(vd,
3367			    zio, EIO);
3368
3369		if (zio_injection_enabled && zio->io_error == 0)
3370			zio->io_error = zio_handle_label_injection(zio, EIO);
3371
3372		if (zio->io_error) {
3373			if (zio->io_error == ENOTSUP &&
3374			    zio->io_type == ZIO_TYPE_FREE) {
3375				/* Not all devices support TRIM. */
3376			} else if (!vdev_accessible(vd, zio)) {
3377				zio->io_error = SET_ERROR(ENXIO);
3378			} else {
3379				unexpected_error = B_TRUE;
3380			}
3381		}
3382	}
3383
3384	ops->vdev_op_io_done(zio);
3385
3386	if (unexpected_error)
3387		VERIFY(vdev_probe(vd, zio) == NULL);
3388
3389	return (ZIO_PIPELINE_CONTINUE);
3390}
3391
3392/*
3393 * This function is used to change the priority of an existing zio that is
3394 * currently in-flight. This is used by the arc to upgrade priority in the
3395 * event that a demand read is made for a block that is currently queued
3396 * as a scrub or async read IO. Otherwise, the high priority read request
3397 * would end up having to wait for the lower priority IO.
3398 */
3399void
3400zio_change_priority(zio_t *pio, zio_priority_t priority)
3401{
3402	zio_t *cio, *cio_next;
3403	zio_link_t *zl = NULL;
3404
3405	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3406
3407	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3408		vdev_queue_change_io_priority(pio, priority);
3409	} else {
3410		pio->io_priority = priority;
3411	}
3412
3413	mutex_enter(&pio->io_lock);
3414	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3415		cio_next = zio_walk_children(pio, &zl);
3416		zio_change_priority(cio, priority);
3417	}
3418	mutex_exit(&pio->io_lock);
3419}
3420
3421/*
3422 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3423 * disk, and use that to finish the checksum ereport later.
3424 */
3425static void
3426zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3427    const void *good_buf)
3428{
3429	/* no processing needed */
3430	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3431}
3432
3433/*ARGSUSED*/
3434void
3435zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3436{
3437	void *buf = zio_buf_alloc(zio->io_size);
3438
3439	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3440
3441	zcr->zcr_cbinfo = zio->io_size;
3442	zcr->zcr_cbdata = buf;
3443	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3444	zcr->zcr_free = zio_buf_free;
3445}
3446
3447static int
3448zio_vdev_io_assess(zio_t *zio)
3449{
3450	vdev_t *vd = zio->io_vd;
3451
3452	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3453		return (ZIO_PIPELINE_STOP);
3454	}
3455
3456	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3457		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3458
3459	if (zio->io_vsd != NULL) {
3460		zio->io_vsd_ops->vsd_free(zio);
3461		zio->io_vsd = NULL;
3462	}
3463
3464	if (zio_injection_enabled && zio->io_error == 0)
3465		zio->io_error = zio_handle_fault_injection(zio, EIO);
3466
3467	if (zio->io_type == ZIO_TYPE_FREE &&
3468	    zio->io_priority != ZIO_PRIORITY_NOW) {
3469		switch (zio->io_error) {
3470		case 0:
3471			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
3472			ZIO_TRIM_STAT_BUMP(success);
3473			break;
3474		case EOPNOTSUPP:
3475			ZIO_TRIM_STAT_BUMP(unsupported);
3476			break;
3477		default:
3478			ZIO_TRIM_STAT_BUMP(failed);
3479			break;
3480		}
3481	}
3482
3483	/*
3484	 * If the I/O failed, determine whether we should attempt to retry it.
3485	 *
3486	 * On retry, we cut in line in the issue queue, since we don't want
3487	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3488	 */
3489	if (zio->io_error && vd == NULL &&
3490	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3491		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3492		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3493		zio->io_error = 0;
3494		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3495		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3496		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3497		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3498		    zio_requeue_io_start_cut_in_line);
3499		return (ZIO_PIPELINE_STOP);
3500	}
3501
3502	/*
3503	 * If we got an error on a leaf device, convert it to ENXIO
3504	 * if the device is not accessible at all.
3505	 */
3506	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3507	    !vdev_accessible(vd, zio))
3508		zio->io_error = SET_ERROR(ENXIO);
3509
3510	/*
3511	 * If we can't write to an interior vdev (mirror or RAID-Z),
3512	 * set vdev_cant_write so that we stop trying to allocate from it.
3513	 */
3514	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3515	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3516		vd->vdev_cant_write = B_TRUE;
3517	}
3518
3519	/*
3520	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3521	 * attempts will ever succeed. In this case we set a persistent bit so
3522	 * that we don't bother with it in the future.
3523	 */
3524	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3525	    zio->io_type == ZIO_TYPE_IOCTL &&
3526	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3527		vd->vdev_nowritecache = B_TRUE;
3528
3529	if (zio->io_error)
3530		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3531
3532	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3533	    zio->io_physdone != NULL) {
3534		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3535		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3536		zio->io_physdone(zio->io_logical);
3537	}
3538
3539	return (ZIO_PIPELINE_CONTINUE);
3540}
3541
3542void
3543zio_vdev_io_reissue(zio_t *zio)
3544{
3545	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3546	ASSERT(zio->io_error == 0);
3547
3548	zio->io_stage >>= 1;
3549}
3550
3551void
3552zio_vdev_io_redone(zio_t *zio)
3553{
3554	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3555
3556	zio->io_stage >>= 1;
3557}
3558
3559void
3560zio_vdev_io_bypass(zio_t *zio)
3561{
3562	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3563	ASSERT(zio->io_error == 0);
3564
3565	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3566	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3567}
3568
3569/*
3570 * ==========================================================================
3571 * Generate and verify checksums
3572 * ==========================================================================
3573 */
3574static int
3575zio_checksum_generate(zio_t *zio)
3576{
3577	blkptr_t *bp = zio->io_bp;
3578	enum zio_checksum checksum;
3579
3580	if (bp == NULL) {
3581		/*
3582		 * This is zio_write_phys().
3583		 * We're either generating a label checksum, or none at all.
3584		 */
3585		checksum = zio->io_prop.zp_checksum;
3586
3587		if (checksum == ZIO_CHECKSUM_OFF)
3588			return (ZIO_PIPELINE_CONTINUE);
3589
3590		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3591	} else {
3592		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3593			ASSERT(!IO_IS_ALLOCATING(zio));
3594			checksum = ZIO_CHECKSUM_GANG_HEADER;
3595		} else {
3596			checksum = BP_GET_CHECKSUM(bp);
3597		}
3598	}
3599
3600	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3601
3602	return (ZIO_PIPELINE_CONTINUE);
3603}
3604
3605static int
3606zio_checksum_verify(zio_t *zio)
3607{
3608	zio_bad_cksum_t info;
3609	blkptr_t *bp = zio->io_bp;
3610	int error;
3611
3612	ASSERT(zio->io_vd != NULL);
3613
3614	if (bp == NULL) {
3615		/*
3616		 * This is zio_read_phys().
3617		 * We're either verifying a label checksum, or nothing at all.
3618		 */
3619		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3620			return (ZIO_PIPELINE_CONTINUE);
3621
3622		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3623	}
3624
3625	if ((error = zio_checksum_error(zio, &info)) != 0) {
3626		zio->io_error = error;
3627		if (error == ECKSUM &&
3628		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3629			zfs_ereport_start_checksum(zio->io_spa,
3630			    zio->io_vd, zio, zio->io_offset,
3631			    zio->io_size, NULL, &info);
3632		}
3633	}
3634
3635	return (ZIO_PIPELINE_CONTINUE);
3636}
3637
3638/*
3639 * Called by RAID-Z to ensure we don't compute the checksum twice.
3640 */
3641void
3642zio_checksum_verified(zio_t *zio)
3643{
3644	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3645}
3646
3647/*
3648 * ==========================================================================
3649 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3650 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3651 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3652 * indicate errors that are specific to one I/O, and most likely permanent.
3653 * Any other error is presumed to be worse because we weren't expecting it.
3654 * ==========================================================================
3655 */
3656int
3657zio_worst_error(int e1, int e2)
3658{
3659	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3660	int r1, r2;
3661
3662	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3663		if (e1 == zio_error_rank[r1])
3664			break;
3665
3666	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3667		if (e2 == zio_error_rank[r2])
3668			break;
3669
3670	return (r1 > r2 ? e1 : e2);
3671}
3672
3673/*
3674 * ==========================================================================
3675 * I/O completion
3676 * ==========================================================================
3677 */
3678static int
3679zio_ready(zio_t *zio)
3680{
3681	blkptr_t *bp = zio->io_bp;
3682	zio_t *pio, *pio_next;
3683	zio_link_t *zl = NULL;
3684
3685	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3686	    ZIO_WAIT_READY)) {
3687		return (ZIO_PIPELINE_STOP);
3688	}
3689
3690	if (zio->io_ready) {
3691		ASSERT(IO_IS_ALLOCATING(zio));
3692		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3693		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3694		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3695
3696		zio->io_ready(zio);
3697	}
3698
3699	if (bp != NULL && bp != &zio->io_bp_copy)
3700		zio->io_bp_copy = *bp;
3701
3702	if (zio->io_error != 0) {
3703		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3704
3705		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3706			ASSERT(IO_IS_ALLOCATING(zio));
3707			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3708			/*
3709			 * We were unable to allocate anything, unreserve and
3710			 * issue the next I/O to allocate.
3711			 */
3712			metaslab_class_throttle_unreserve(
3713			    spa_normal_class(zio->io_spa),
3714			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3715			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3716		}
3717	}
3718
3719	mutex_enter(&zio->io_lock);
3720	zio->io_state[ZIO_WAIT_READY] = 1;
3721	pio = zio_walk_parents(zio, &zl);
3722	mutex_exit(&zio->io_lock);
3723
3724	/*
3725	 * As we notify zio's parents, new parents could be added.
3726	 * New parents go to the head of zio's io_parent_list, however,
3727	 * so we will (correctly) not notify them.  The remainder of zio's
3728	 * io_parent_list, from 'pio_next' onward, cannot change because
3729	 * all parents must wait for us to be done before they can be done.
3730	 */
3731	for (; pio != NULL; pio = pio_next) {
3732		pio_next = zio_walk_parents(zio, &zl);
3733		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3734	}
3735
3736	if (zio->io_flags & ZIO_FLAG_NODATA) {
3737		if (BP_IS_GANG(bp)) {
3738			zio->io_flags &= ~ZIO_FLAG_NODATA;
3739		} else {
3740			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3741			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3742		}
3743	}
3744
3745	if (zio_injection_enabled &&
3746	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3747		zio_handle_ignored_writes(zio);
3748
3749	return (ZIO_PIPELINE_CONTINUE);
3750}
3751
3752/*
3753 * Update the allocation throttle accounting.
3754 */
3755static void
3756zio_dva_throttle_done(zio_t *zio)
3757{
3758	zio_t *lio = zio->io_logical;
3759	zio_t *pio = zio_unique_parent(zio);
3760	vdev_t *vd = zio->io_vd;
3761	int flags = METASLAB_ASYNC_ALLOC;
3762
3763	ASSERT3P(zio->io_bp, !=, NULL);
3764	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3765	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3766	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3767	ASSERT(vd != NULL);
3768	ASSERT3P(vd, ==, vd->vdev_top);
3769	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3770	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3771	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3772	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3773
3774	/*
3775	 * Parents of gang children can have two flavors -- ones that
3776	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3777	 * and ones that allocated the constituent blocks. The allocation
3778	 * throttle needs to know the allocating parent zio so we must find
3779	 * it here.
3780	 */
3781	if (pio->io_child_type == ZIO_CHILD_GANG) {
3782		/*
3783		 * If our parent is a rewrite gang child then our grandparent
3784		 * would have been the one that performed the allocation.
3785		 */
3786		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3787			pio = zio_unique_parent(pio);
3788		flags |= METASLAB_GANG_CHILD;
3789	}
3790
3791	ASSERT(IO_IS_ALLOCATING(pio));
3792	ASSERT3P(zio, !=, zio->io_logical);
3793	ASSERT(zio->io_logical != NULL);
3794	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3795	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3796
3797	mutex_enter(&pio->io_lock);
3798	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3799	    pio->io_allocator, B_TRUE);
3800	mutex_exit(&pio->io_lock);
3801
3802	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3803	    1, pio->io_allocator, pio);
3804
3805	/*
3806	 * Call into the pipeline to see if there is more work that
3807	 * needs to be done. If there is work to be done it will be
3808	 * dispatched to another taskq thread.
3809	 */
3810	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3811}
3812
3813static int
3814zio_done(zio_t *zio)
3815{
3816	spa_t *spa = zio->io_spa;
3817	zio_t *lio = zio->io_logical;
3818	blkptr_t *bp = zio->io_bp;
3819	vdev_t *vd = zio->io_vd;
3820	uint64_t psize = zio->io_size;
3821	zio_t *pio, *pio_next;
3822	metaslab_class_t *mc = spa_normal_class(spa);
3823	zio_link_t *zl = NULL;
3824
3825	/*
3826	 * If our children haven't all completed,
3827	 * wait for them and then repeat this pipeline stage.
3828	 */
3829	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3830		return (ZIO_PIPELINE_STOP);
3831	}
3832
3833	/*
3834	 * If the allocation throttle is enabled, then update the accounting.
3835	 * We only track child I/Os that are part of an allocating async
3836	 * write. We must do this since the allocation is performed
3837	 * by the logical I/O but the actual write is done by child I/Os.
3838	 */
3839	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3840	    zio->io_child_type == ZIO_CHILD_VDEV) {
3841		ASSERT(mc->mc_alloc_throttle_enabled);
3842		zio_dva_throttle_done(zio);
3843	}
3844
3845	/*
3846	 * If the allocation throttle is enabled, verify that
3847	 * we have decremented the refcounts for every I/O that was throttled.
3848	 */
3849	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3850		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3851		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3852		ASSERT(bp != NULL);
3853		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3854		    zio->io_allocator);
3855		VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator],
3856		    zio));
3857	}
3858
3859	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3860		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3861			ASSERT(zio->io_children[c][w] == 0);
3862
3863	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3864		ASSERT(bp->blk_pad[0] == 0);
3865		ASSERT(bp->blk_pad[1] == 0);
3866		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3867		    (bp == zio_unique_parent(zio)->io_bp));
3868		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3869		    zio->io_bp_override == NULL &&
3870		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3871			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3872			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3873			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3874			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3875		}
3876		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3877			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3878	}
3879
3880	/*
3881	 * If there were child vdev/gang/ddt errors, they apply to us now.
3882	 */
3883	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3884	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3885	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3886
3887	/*
3888	 * If the I/O on the transformed data was successful, generate any
3889	 * checksum reports now while we still have the transformed data.
3890	 */
3891	if (zio->io_error == 0) {
3892		while (zio->io_cksum_report != NULL) {
3893			zio_cksum_report_t *zcr = zio->io_cksum_report;
3894			uint64_t align = zcr->zcr_align;
3895			uint64_t asize = P2ROUNDUP(psize, align);
3896			char *abuf = NULL;
3897			abd_t *adata = zio->io_abd;
3898
3899			if (asize != psize) {
3900				adata = abd_alloc_linear(asize, B_TRUE);
3901				abd_copy(adata, zio->io_abd, psize);
3902				abd_zero_off(adata, psize, asize - psize);
3903			}
3904
3905			if (adata != NULL)
3906				abuf = abd_borrow_buf_copy(adata, asize);
3907
3908			zio->io_cksum_report = zcr->zcr_next;
3909			zcr->zcr_next = NULL;
3910			zcr->zcr_finish(zcr, abuf);
3911			zfs_ereport_free_checksum(zcr);
3912
3913			if (adata != NULL)
3914				abd_return_buf(adata, abuf, asize);
3915
3916			if (asize != psize)
3917				abd_free(adata);
3918		}
3919	}
3920
3921	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3922
3923	vdev_stat_update(zio, psize);
3924
3925	if (zio->io_error) {
3926		/*
3927		 * If this I/O is attached to a particular vdev,
3928		 * generate an error message describing the I/O failure
3929		 * at the block level.  We ignore these errors if the
3930		 * device is currently unavailable.
3931		 */
3932		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3933			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3934
3935		if ((zio->io_error == EIO || !(zio->io_flags &
3936		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3937		    zio == lio) {
3938			/*
3939			 * For logical I/O requests, tell the SPA to log the
3940			 * error and generate a logical data ereport.
3941			 */
3942			spa_log_error(spa, zio);
3943			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3944			    0, 0);
3945		}
3946	}
3947
3948	if (zio->io_error && zio == lio) {
3949		/*
3950		 * Determine whether zio should be reexecuted.  This will
3951		 * propagate all the way to the root via zio_notify_parent().
3952		 */
3953		ASSERT(vd == NULL && bp != NULL);
3954		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3955
3956		if (IO_IS_ALLOCATING(zio) &&
3957		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3958			if (zio->io_error != ENOSPC)
3959				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3960			else
3961				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3962		}
3963
3964		if ((zio->io_type == ZIO_TYPE_READ ||
3965		    zio->io_type == ZIO_TYPE_FREE) &&
3966		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3967		    zio->io_error == ENXIO &&
3968		    spa_load_state(spa) == SPA_LOAD_NONE &&
3969		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3970			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3971
3972		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3973			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3974
3975		/*
3976		 * Here is a possibly good place to attempt to do
3977		 * either combinatorial reconstruction or error correction
3978		 * based on checksums.  It also might be a good place
3979		 * to send out preliminary ereports before we suspend
3980		 * processing.
3981		 */
3982	}
3983
3984	/*
3985	 * If there were logical child errors, they apply to us now.
3986	 * We defer this until now to avoid conflating logical child
3987	 * errors with errors that happened to the zio itself when
3988	 * updating vdev stats and reporting FMA events above.
3989	 */
3990	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3991
3992	if ((zio->io_error || zio->io_reexecute) &&
3993	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3994	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3995		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3996
3997	zio_gang_tree_free(&zio->io_gang_tree);
3998
3999	/*
4000	 * Godfather I/Os should never suspend.
4001	 */
4002	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4003	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4004		zio->io_reexecute = 0;
4005
4006	if (zio->io_reexecute) {
4007		/*
4008		 * This is a logical I/O that wants to reexecute.
4009		 *
4010		 * Reexecute is top-down.  When an i/o fails, if it's not
4011		 * the root, it simply notifies its parent and sticks around.
4012		 * The parent, seeing that it still has children in zio_done(),
4013		 * does the same.  This percolates all the way up to the root.
4014		 * The root i/o will reexecute or suspend the entire tree.
4015		 *
4016		 * This approach ensures that zio_reexecute() honors
4017		 * all the original i/o dependency relationships, e.g.
4018		 * parents not executing until children are ready.
4019		 */
4020		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4021
4022		zio->io_gang_leader = NULL;
4023
4024		mutex_enter(&zio->io_lock);
4025		zio->io_state[ZIO_WAIT_DONE] = 1;
4026		mutex_exit(&zio->io_lock);
4027
4028		/*
4029		 * "The Godfather" I/O monitors its children but is
4030		 * not a true parent to them. It will track them through
4031		 * the pipeline but severs its ties whenever they get into
4032		 * trouble (e.g. suspended). This allows "The Godfather"
4033		 * I/O to return status without blocking.
4034		 */
4035		zl = NULL;
4036		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4037		    pio = pio_next) {
4038			zio_link_t *remove_zl = zl;
4039			pio_next = zio_walk_parents(zio, &zl);
4040
4041			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4042			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4043				zio_remove_child(pio, zio, remove_zl);
4044				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4045			}
4046		}
4047
4048		if ((pio = zio_unique_parent(zio)) != NULL) {
4049			/*
4050			 * We're not a root i/o, so there's nothing to do
4051			 * but notify our parent.  Don't propagate errors
4052			 * upward since we haven't permanently failed yet.
4053			 */
4054			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4055			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4056			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4057		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4058			/*
4059			 * We'd fail again if we reexecuted now, so suspend
4060			 * until conditions improve (e.g. device comes online).
4061			 */
4062			zio_suspend(spa, zio);
4063		} else {
4064			/*
4065			 * Reexecution is potentially a huge amount of work.
4066			 * Hand it off to the otherwise-unused claim taskq.
4067			 */
4068#if defined(illumos) || !defined(_KERNEL)
4069			ASSERT(zio->io_tqent.tqent_next == NULL);
4070#else
4071			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
4072#endif
4073			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
4074			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
4075			    0, &zio->io_tqent);
4076		}
4077		return (ZIO_PIPELINE_STOP);
4078	}
4079
4080	ASSERT(zio->io_child_count == 0);
4081	ASSERT(zio->io_reexecute == 0);
4082	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4083
4084	/*
4085	 * Report any checksum errors, since the I/O is complete.
4086	 */
4087	while (zio->io_cksum_report != NULL) {
4088		zio_cksum_report_t *zcr = zio->io_cksum_report;
4089		zio->io_cksum_report = zcr->zcr_next;
4090		zcr->zcr_next = NULL;
4091		zcr->zcr_finish(zcr, NULL);
4092		zfs_ereport_free_checksum(zcr);
4093	}
4094
4095	/*
4096	 * It is the responsibility of the done callback to ensure that this
4097	 * particular zio is no longer discoverable for adoption, and as
4098	 * such, cannot acquire any new parents.
4099	 */
4100	if (zio->io_done)
4101		zio->io_done(zio);
4102
4103	mutex_enter(&zio->io_lock);
4104	zio->io_state[ZIO_WAIT_DONE] = 1;
4105	mutex_exit(&zio->io_lock);
4106
4107	zl = NULL;
4108	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4109		zio_link_t *remove_zl = zl;
4110		pio_next = zio_walk_parents(zio, &zl);
4111		zio_remove_child(pio, zio, remove_zl);
4112		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4113	}
4114
4115	if (zio->io_waiter != NULL) {
4116		mutex_enter(&zio->io_lock);
4117		zio->io_executor = NULL;
4118		cv_broadcast(&zio->io_cv);
4119		mutex_exit(&zio->io_lock);
4120	} else {
4121		zio_destroy(zio);
4122	}
4123
4124	return (ZIO_PIPELINE_STOP);
4125}
4126
4127/*
4128 * ==========================================================================
4129 * I/O pipeline definition
4130 * ==========================================================================
4131 */
4132static zio_pipe_stage_t *zio_pipeline[] = {
4133	NULL,
4134	zio_read_bp_init,
4135	zio_write_bp_init,
4136	zio_free_bp_init,
4137	zio_issue_async,
4138	zio_write_compress,
4139	zio_checksum_generate,
4140	zio_nop_write,
4141	zio_ddt_read_start,
4142	zio_ddt_read_done,
4143	zio_ddt_write,
4144	zio_ddt_free,
4145	zio_gang_assemble,
4146	zio_gang_issue,
4147	zio_dva_throttle,
4148	zio_dva_allocate,
4149	zio_dva_free,
4150	zio_dva_claim,
4151	zio_ready,
4152	zio_vdev_io_start,
4153	zio_vdev_io_done,
4154	zio_vdev_io_assess,
4155	zio_checksum_verify,
4156	zio_done
4157};
4158
4159
4160
4161
4162/*
4163 * Compare two zbookmark_phys_t's to see which we would reach first in a
4164 * pre-order traversal of the object tree.
4165 *
4166 * This is simple in every case aside from the meta-dnode object. For all other
4167 * objects, we traverse them in order (object 1 before object 2, and so on).
4168 * However, all of these objects are traversed while traversing object 0, since
4169 * the data it points to is the list of objects.  Thus, we need to convert to a
4170 * canonical representation so we can compare meta-dnode bookmarks to
4171 * non-meta-dnode bookmarks.
4172 *
4173 * We do this by calculating "equivalents" for each field of the zbookmark.
4174 * zbookmarks outside of the meta-dnode use their own object and level, and
4175 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4176 * blocks this bookmark refers to) by multiplying their blkid by their span
4177 * (the number of L0 blocks contained within one block at their level).
4178 * zbookmarks inside the meta-dnode calculate their object equivalent
4179 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4180 * level + 1<<31 (any value larger than a level could ever be) for their level.
4181 * This causes them to always compare before a bookmark in their object
4182 * equivalent, compare appropriately to bookmarks in other objects, and to
4183 * compare appropriately to other bookmarks in the meta-dnode.
4184 */
4185int
4186zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4187    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4188{
4189	/*
4190	 * These variables represent the "equivalent" values for the zbookmark,
4191	 * after converting zbookmarks inside the meta dnode to their
4192	 * normal-object equivalents.
4193	 */
4194	uint64_t zb1obj, zb2obj;
4195	uint64_t zb1L0, zb2L0;
4196	uint64_t zb1level, zb2level;
4197
4198	if (zb1->zb_object == zb2->zb_object &&
4199	    zb1->zb_level == zb2->zb_level &&
4200	    zb1->zb_blkid == zb2->zb_blkid)
4201		return (0);
4202
4203	/*
4204	 * BP_SPANB calculates the span in blocks.
4205	 */
4206	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4207	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4208
4209	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4210		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4211		zb1L0 = 0;
4212		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4213	} else {
4214		zb1obj = zb1->zb_object;
4215		zb1level = zb1->zb_level;
4216	}
4217
4218	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4219		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4220		zb2L0 = 0;
4221		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4222	} else {
4223		zb2obj = zb2->zb_object;
4224		zb2level = zb2->zb_level;
4225	}
4226
4227	/* Now that we have a canonical representation, do the comparison. */
4228	if (zb1obj != zb2obj)
4229		return (zb1obj < zb2obj ? -1 : 1);
4230	else if (zb1L0 != zb2L0)
4231		return (zb1L0 < zb2L0 ? -1 : 1);
4232	else if (zb1level != zb2level)
4233		return (zb1level > zb2level ? -1 : 1);
4234	/*
4235	 * This can (theoretically) happen if the bookmarks have the same object
4236	 * and level, but different blkids, if the block sizes are not the same.
4237	 * There is presently no way to change the indirect block sizes
4238	 */
4239	return (0);
4240}
4241
4242/*
4243 *  This function checks the following: given that last_block is the place that
4244 *  our traversal stopped last time, does that guarantee that we've visited
4245 *  every node under subtree_root?  Therefore, we can't just use the raw output
4246 *  of zbookmark_compare.  We have to pass in a modified version of
4247 *  subtree_root; by incrementing the block id, and then checking whether
4248 *  last_block is before or equal to that, we can tell whether or not having
4249 *  visited last_block implies that all of subtree_root's children have been
4250 *  visited.
4251 */
4252boolean_t
4253zbookmark_subtree_completed(const dnode_phys_t *dnp,
4254    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4255{
4256	zbookmark_phys_t mod_zb = *subtree_root;
4257	mod_zb.zb_blkid++;
4258	ASSERT(last_block->zb_level == 0);
4259
4260	/* The objset_phys_t isn't before anything. */
4261	if (dnp == NULL)
4262		return (B_FALSE);
4263
4264	/*
4265	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4266	 * data block size in sectors, because that variable is only used if
4267	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4268	 * know without examining it what object it refers to, and there's no
4269	 * harm in passing in this value in other cases, we always pass it in.
4270	 *
4271	 * We pass in 0 for the indirect block size shift because zb2 must be
4272	 * level 0.  The indirect block size is only used to calculate the span
4273	 * of the bookmark, but since the bookmark must be level 0, the span is
4274	 * always 1, so the math works out.
4275	 *
4276	 * If you make changes to how the zbookmark_compare code works, be sure
4277	 * to make sure that this code still works afterwards.
4278	 */
4279	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4280	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4281	    last_block) <= 0);
4282}
4283