zio.c revision 321529
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/sysmacros.h>
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/txg.h>
33#include <sys/spa_impl.h>
34#include <sys/vdev_impl.h>
35#include <sys/zio_impl.h>
36#include <sys/zio_compress.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/ddt.h>
41#include <sys/trim_map.h>
42#include <sys/blkptr.h>
43#include <sys/zfeature.h>
44#include <sys/metaslab_impl.h>
45
46SYSCTL_DECL(_vfs_zfs);
47SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
48#if defined(__amd64__)
49static int zio_use_uma = 1;
50#else
51static int zio_use_uma = 0;
52#endif
53SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
54    "Use uma(9) for ZIO allocations");
55static int zio_exclude_metadata = 0;
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82boolean_t zio_dva_throttle_enabled = B_TRUE;
83SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, dva_throttle_enabled, CTLFLAG_RDTUN,
84    &zio_dva_throttle_enabled, 0, "");
85
86/*
87 * ==========================================================================
88 * I/O kmem caches
89 * ==========================================================================
90 */
91kmem_cache_t *zio_cache;
92kmem_cache_t *zio_link_cache;
93kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
94kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
95
96#ifdef _KERNEL
97extern vmem_t *zio_alloc_arena;
98#endif
99
100#define	ZIO_PIPELINE_CONTINUE		0x100
101#define	ZIO_PIPELINE_STOP		0x101
102
103#define	BP_SPANB(indblkshift, level) \
104	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
105#define	COMPARE_META_LEVEL	0x80000000ul
106/*
107 * The following actions directly effect the spa's sync-to-convergence logic.
108 * The values below define the sync pass when we start performing the action.
109 * Care should be taken when changing these values as they directly impact
110 * spa_sync() performance. Tuning these values may introduce subtle performance
111 * pathologies and should only be done in the context of performance analysis.
112 * These tunables will eventually be removed and replaced with #defines once
113 * enough analysis has been done to determine optimal values.
114 *
115 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
116 * regular blocks are not deferred.
117 */
118int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
119SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
120    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
121int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
122SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
123    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
124int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
125SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
126    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
127
128/*
129 * An allocating zio is one that either currently has the DVA allocate
130 * stage set or will have it later in its lifetime.
131 */
132#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133
134boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
135
136#ifdef illumos
137#ifdef ZFS_DEBUG
138int zio_buf_debug_limit = 16384;
139#else
140int zio_buf_debug_limit = 0;
141#endif
142#endif
143
144static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
145
146void
147zio_init(void)
148{
149	size_t c;
150	zio_cache = kmem_cache_create("zio_cache",
151	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152	zio_link_cache = kmem_cache_create("zio_link_cache",
153	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
154	if (!zio_use_uma)
155		goto out;
156
157	/*
158	 * For small buffers, we want a cache for each multiple of
159	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
160	 * for each quarter-power of 2.
161	 */
162	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
163		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
164		size_t p2 = size;
165		size_t align = 0;
166		int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0;
167
168		while (!ISP2(p2))
169			p2 &= p2 - 1;
170
171#ifdef illumos
172#ifndef _KERNEL
173		/*
174		 * If we are using watchpoints, put each buffer on its own page,
175		 * to eliminate the performance overhead of trapping to the
176		 * kernel when modifying a non-watched buffer that shares the
177		 * page with a watched buffer.
178		 */
179		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
180			continue;
181#endif
182#endif /* illumos */
183		if (size <= 4 * SPA_MINBLOCKSIZE) {
184			align = SPA_MINBLOCKSIZE;
185		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
186			align = MIN(p2 >> 2, PAGESIZE);
187		}
188
189		if (align != 0) {
190			char name[36];
191			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
192			zio_buf_cache[c] = kmem_cache_create(name, size,
193			    align, NULL, NULL, NULL, NULL, NULL, cflags);
194
195			/*
196			 * Since zio_data bufs do not appear in crash dumps, we
197			 * pass KMC_NOTOUCH so that no allocator metadata is
198			 * stored with the buffers.
199			 */
200			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
201			zio_data_buf_cache[c] = kmem_cache_create(name, size,
202			    align, NULL, NULL, NULL, NULL, NULL,
203			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
204		}
205	}
206
207	while (--c != 0) {
208		ASSERT(zio_buf_cache[c] != NULL);
209		if (zio_buf_cache[c - 1] == NULL)
210			zio_buf_cache[c - 1] = zio_buf_cache[c];
211
212		ASSERT(zio_data_buf_cache[c] != NULL);
213		if (zio_data_buf_cache[c - 1] == NULL)
214			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
215	}
216out:
217
218	zio_inject_init();
219
220	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
221	    KSTAT_TYPE_NAMED,
222	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
223	    KSTAT_FLAG_VIRTUAL);
224
225	if (zio_trim_ksp != NULL) {
226		zio_trim_ksp->ks_data = &zio_trim_stats;
227		kstat_install(zio_trim_ksp);
228	}
229}
230
231void
232zio_fini(void)
233{
234	size_t c;
235	kmem_cache_t *last_cache = NULL;
236	kmem_cache_t *last_data_cache = NULL;
237
238	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
239		if (zio_buf_cache[c] != last_cache) {
240			last_cache = zio_buf_cache[c];
241			kmem_cache_destroy(zio_buf_cache[c]);
242		}
243		zio_buf_cache[c] = NULL;
244
245		if (zio_data_buf_cache[c] != last_data_cache) {
246			last_data_cache = zio_data_buf_cache[c];
247			kmem_cache_destroy(zio_data_buf_cache[c]);
248		}
249		zio_data_buf_cache[c] = NULL;
250	}
251
252	kmem_cache_destroy(zio_link_cache);
253	kmem_cache_destroy(zio_cache);
254
255	zio_inject_fini();
256
257	if (zio_trim_ksp != NULL) {
258		kstat_delete(zio_trim_ksp);
259		zio_trim_ksp = NULL;
260	}
261}
262
263/*
264 * ==========================================================================
265 * Allocate and free I/O buffers
266 * ==========================================================================
267 */
268
269/*
270 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
271 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
272 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
273 * excess / transient data in-core during a crashdump.
274 */
275static void *
276zio_buf_alloc_impl(size_t size, boolean_t canwait)
277{
278	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
279	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
280
281	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
282
283	if (zio_use_uma) {
284		return (kmem_cache_alloc(zio_buf_cache[c],
285		    canwait ? KM_PUSHPAGE : KM_NOSLEEP));
286	} else {
287		return (kmem_alloc(size,
288		    (canwait ? KM_SLEEP : KM_NOSLEEP) | flags));
289	}
290}
291
292void *
293zio_buf_alloc(size_t size)
294{
295	return (zio_buf_alloc_impl(size, B_TRUE));
296}
297
298void *
299zio_buf_alloc_nowait(size_t size)
300{
301	return (zio_buf_alloc_impl(size, B_FALSE));
302}
303
304/*
305 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
306 * crashdump if the kernel panics.  This exists so that we will limit the amount
307 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
308 * of kernel heap dumped to disk when the kernel panics)
309 */
310void *
311zio_data_buf_alloc(size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319	else
320		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
321}
322
323void
324zio_buf_free(void *buf, size_t size)
325{
326	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
327
328	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
329
330	if (zio_use_uma)
331		kmem_cache_free(zio_buf_cache[c], buf);
332	else
333		kmem_free(buf, size);
334}
335
336void
337zio_data_buf_free(void *buf, size_t size)
338{
339	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340
341	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342
343	if (zio_use_uma)
344		kmem_cache_free(zio_data_buf_cache[c], buf);
345	else
346		kmem_free(buf, size);
347}
348
349/*
350 * ==========================================================================
351 * Push and pop I/O transform buffers
352 * ==========================================================================
353 */
354void
355zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
356    zio_transform_func_t *transform)
357{
358	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
359
360	zt->zt_orig_data = zio->io_data;
361	zt->zt_orig_size = zio->io_size;
362	zt->zt_bufsize = bufsize;
363	zt->zt_transform = transform;
364
365	zt->zt_next = zio->io_transform_stack;
366	zio->io_transform_stack = zt;
367
368	zio->io_data = data;
369	zio->io_size = size;
370}
371
372void
373zio_pop_transforms(zio_t *zio)
374{
375	zio_transform_t *zt;
376
377	while ((zt = zio->io_transform_stack) != NULL) {
378		if (zt->zt_transform != NULL)
379			zt->zt_transform(zio,
380			    zt->zt_orig_data, zt->zt_orig_size);
381
382		if (zt->zt_bufsize != 0)
383			zio_buf_free(zio->io_data, zt->zt_bufsize);
384
385		zio->io_data = zt->zt_orig_data;
386		zio->io_size = zt->zt_orig_size;
387		zio->io_transform_stack = zt->zt_next;
388
389		kmem_free(zt, sizeof (zio_transform_t));
390	}
391}
392
393/*
394 * ==========================================================================
395 * I/O transform callbacks for subblocks and decompression
396 * ==========================================================================
397 */
398static void
399zio_subblock(zio_t *zio, void *data, uint64_t size)
400{
401	ASSERT(zio->io_size > size);
402
403	if (zio->io_type == ZIO_TYPE_READ)
404		bcopy(zio->io_data, data, size);
405}
406
407static void
408zio_decompress(zio_t *zio, void *data, uint64_t size)
409{
410	if (zio->io_error == 0 &&
411	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412	    zio->io_data, data, zio->io_size, size) != 0)
413		zio->io_error = SET_ERROR(EIO);
414}
415
416/*
417 * ==========================================================================
418 * I/O parent/child relationships and pipeline interlocks
419 * ==========================================================================
420 */
421zio_t *
422zio_walk_parents(zio_t *cio, zio_link_t **zl)
423{
424	list_t *pl = &cio->io_parent_list;
425
426	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
427	if (*zl == NULL)
428		return (NULL);
429
430	ASSERT((*zl)->zl_child == cio);
431	return ((*zl)->zl_parent);
432}
433
434zio_t *
435zio_walk_children(zio_t *pio, zio_link_t **zl)
436{
437	list_t *cl = &pio->io_child_list;
438
439	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
440	if (*zl == NULL)
441		return (NULL);
442
443	ASSERT((*zl)->zl_parent == pio);
444	return ((*zl)->zl_child);
445}
446
447zio_t *
448zio_unique_parent(zio_t *cio)
449{
450	zio_link_t *zl = NULL;
451	zio_t *pio = zio_walk_parents(cio, &zl);
452
453	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
454	return (pio);
455}
456
457void
458zio_add_child(zio_t *pio, zio_t *cio)
459{
460	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
461
462	/*
463	 * Logical I/Os can have logical, gang, or vdev children.
464	 * Gang I/Os can have gang or vdev children.
465	 * Vdev I/Os can only have vdev children.
466	 * The following ASSERT captures all of these constraints.
467	 */
468	ASSERT(cio->io_child_type <= pio->io_child_type);
469
470	zl->zl_parent = pio;
471	zl->zl_child = cio;
472
473	mutex_enter(&cio->io_lock);
474	mutex_enter(&pio->io_lock);
475
476	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
477
478	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
479		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
480
481	list_insert_head(&pio->io_child_list, zl);
482	list_insert_head(&cio->io_parent_list, zl);
483
484	pio->io_child_count++;
485	cio->io_parent_count++;
486
487	mutex_exit(&pio->io_lock);
488	mutex_exit(&cio->io_lock);
489}
490
491static void
492zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
493{
494	ASSERT(zl->zl_parent == pio);
495	ASSERT(zl->zl_child == cio);
496
497	mutex_enter(&cio->io_lock);
498	mutex_enter(&pio->io_lock);
499
500	list_remove(&pio->io_child_list, zl);
501	list_remove(&cio->io_parent_list, zl);
502
503	pio->io_child_count--;
504	cio->io_parent_count--;
505
506	mutex_exit(&pio->io_lock);
507	mutex_exit(&cio->io_lock);
508
509	kmem_cache_free(zio_link_cache, zl);
510}
511
512static boolean_t
513zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
514{
515	uint64_t *countp = &zio->io_children[child][wait];
516	boolean_t waiting = B_FALSE;
517
518	mutex_enter(&zio->io_lock);
519	ASSERT(zio->io_stall == NULL);
520	if (*countp != 0) {
521		zio->io_stage >>= 1;
522		ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
523		zio->io_stall = countp;
524		waiting = B_TRUE;
525	}
526	mutex_exit(&zio->io_lock);
527
528	return (waiting);
529}
530
531static void
532zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
533{
534	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
535	int *errorp = &pio->io_child_error[zio->io_child_type];
536
537	mutex_enter(&pio->io_lock);
538	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
539		*errorp = zio_worst_error(*errorp, zio->io_error);
540	pio->io_reexecute |= zio->io_reexecute;
541	ASSERT3U(*countp, >, 0);
542
543	(*countp)--;
544
545	if (*countp == 0 && pio->io_stall == countp) {
546		zio_taskq_type_t type =
547		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
548		    ZIO_TASKQ_INTERRUPT;
549		pio->io_stall = NULL;
550		mutex_exit(&pio->io_lock);
551		/*
552		 * Dispatch the parent zio in its own taskq so that
553		 * the child can continue to make progress. This also
554		 * prevents overflowing the stack when we have deeply nested
555		 * parent-child relationships.
556		 */
557		zio_taskq_dispatch(pio, type, B_FALSE);
558	} else {
559		mutex_exit(&pio->io_lock);
560	}
561}
562
563static void
564zio_inherit_child_errors(zio_t *zio, enum zio_child c)
565{
566	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
567		zio->io_error = zio->io_child_error[c];
568}
569
570int
571zio_timestamp_compare(const void *x1, const void *x2)
572{
573	const zio_t *z1 = x1;
574	const zio_t *z2 = x2;
575
576	if (z1->io_queued_timestamp < z2->io_queued_timestamp)
577		return (-1);
578	if (z1->io_queued_timestamp > z2->io_queued_timestamp)
579		return (1);
580
581	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
582		return (-1);
583	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
584		return (1);
585
586	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
587		return (-1);
588	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
589		return (1);
590
591	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
592		return (-1);
593	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
594		return (1);
595
596	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
597		return (-1);
598	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
599		return (1);
600
601	if (z1 < z2)
602		return (-1);
603	if (z1 > z2)
604		return (1);
605
606	return (0);
607}
608
609/*
610 * ==========================================================================
611 * Create the various types of I/O (read, write, free, etc)
612 * ==========================================================================
613 */
614static zio_t *
615zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
616    void *data, uint64_t size, zio_done_func_t *done, void *private,
617    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
618    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
619    enum zio_stage stage, enum zio_stage pipeline)
620{
621	zio_t *zio;
622
623	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
624	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
625	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
626
627	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
628	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
629	ASSERT(vd || stage == ZIO_STAGE_OPEN);
630
631	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
632	bzero(zio, sizeof (zio_t));
633
634	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
635	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
636
637	list_create(&zio->io_parent_list, sizeof (zio_link_t),
638	    offsetof(zio_link_t, zl_parent_node));
639	list_create(&zio->io_child_list, sizeof (zio_link_t),
640	    offsetof(zio_link_t, zl_child_node));
641	metaslab_trace_init(&zio->io_alloc_list);
642
643	if (vd != NULL)
644		zio->io_child_type = ZIO_CHILD_VDEV;
645	else if (flags & ZIO_FLAG_GANG_CHILD)
646		zio->io_child_type = ZIO_CHILD_GANG;
647	else if (flags & ZIO_FLAG_DDT_CHILD)
648		zio->io_child_type = ZIO_CHILD_DDT;
649	else
650		zio->io_child_type = ZIO_CHILD_LOGICAL;
651
652	if (bp != NULL) {
653		zio->io_bp = (blkptr_t *)bp;
654		zio->io_bp_copy = *bp;
655		zio->io_bp_orig = *bp;
656		if (type != ZIO_TYPE_WRITE ||
657		    zio->io_child_type == ZIO_CHILD_DDT)
658			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
659		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
660			zio->io_logical = zio;
661		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
662			pipeline |= ZIO_GANG_STAGES;
663	}
664
665	zio->io_spa = spa;
666	zio->io_txg = txg;
667	zio->io_done = done;
668	zio->io_private = private;
669	zio->io_type = type;
670	zio->io_priority = priority;
671	zio->io_vd = vd;
672	zio->io_offset = offset;
673	zio->io_orig_data = zio->io_data = data;
674	zio->io_orig_size = zio->io_size = size;
675	zio->io_orig_flags = zio->io_flags = flags;
676	zio->io_orig_stage = zio->io_stage = stage;
677	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
678	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
679
680	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
681	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
682
683	if (zb != NULL)
684		zio->io_bookmark = *zb;
685
686	if (pio != NULL) {
687		if (zio->io_logical == NULL)
688			zio->io_logical = pio->io_logical;
689		if (zio->io_child_type == ZIO_CHILD_GANG)
690			zio->io_gang_leader = pio->io_gang_leader;
691		zio_add_child(pio, zio);
692	}
693
694	return (zio);
695}
696
697static void
698zio_destroy(zio_t *zio)
699{
700	metaslab_trace_fini(&zio->io_alloc_list);
701	list_destroy(&zio->io_parent_list);
702	list_destroy(&zio->io_child_list);
703	mutex_destroy(&zio->io_lock);
704	cv_destroy(&zio->io_cv);
705	kmem_cache_free(zio_cache, zio);
706}
707
708zio_t *
709zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
710    void *private, enum zio_flag flags)
711{
712	zio_t *zio;
713
714	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
715	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
716	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
717
718	return (zio);
719}
720
721zio_t *
722zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
723{
724	return (zio_null(NULL, spa, NULL, done, private, flags));
725}
726
727void
728zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
729{
730	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
731		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
732		    bp, (longlong_t)BP_GET_TYPE(bp));
733	}
734	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
735	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
736		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
737		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
738	}
739	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
740	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
741		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
742		    bp, (longlong_t)BP_GET_COMPRESS(bp));
743	}
744	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
745		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
746		    bp, (longlong_t)BP_GET_LSIZE(bp));
747	}
748	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
749		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
750		    bp, (longlong_t)BP_GET_PSIZE(bp));
751	}
752
753	if (BP_IS_EMBEDDED(bp)) {
754		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
755			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
756			    bp, (longlong_t)BPE_GET_ETYPE(bp));
757		}
758	}
759
760	/*
761	 * Pool-specific checks.
762	 *
763	 * Note: it would be nice to verify that the blk_birth and
764	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
765	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
766	 * that are in the log) to be arbitrarily large.
767	 */
768	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
769		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
770		if (vdevid >= spa->spa_root_vdev->vdev_children) {
771			zfs_panic_recover("blkptr at %p DVA %u has invalid "
772			    "VDEV %llu",
773			    bp, i, (longlong_t)vdevid);
774			continue;
775		}
776		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
777		if (vd == NULL) {
778			zfs_panic_recover("blkptr at %p DVA %u has invalid "
779			    "VDEV %llu",
780			    bp, i, (longlong_t)vdevid);
781			continue;
782		}
783		if (vd->vdev_ops == &vdev_hole_ops) {
784			zfs_panic_recover("blkptr at %p DVA %u has hole "
785			    "VDEV %llu",
786			    bp, i, (longlong_t)vdevid);
787			continue;
788		}
789		if (vd->vdev_ops == &vdev_missing_ops) {
790			/*
791			 * "missing" vdevs are valid during import, but we
792			 * don't have their detailed info (e.g. asize), so
793			 * we can't perform any more checks on them.
794			 */
795			continue;
796		}
797		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
798		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
799		if (BP_IS_GANG(bp))
800			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
801		if (offset + asize > vd->vdev_asize) {
802			zfs_panic_recover("blkptr at %p DVA %u has invalid "
803			    "OFFSET %llu",
804			    bp, i, (longlong_t)offset);
805		}
806	}
807}
808
809zio_t *
810zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
811    void *data, uint64_t size, zio_done_func_t *done, void *private,
812    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
813{
814	zio_t *zio;
815
816	zfs_blkptr_verify(spa, bp);
817
818	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
819	    data, size, done, private,
820	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
821	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
822	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
823
824	return (zio);
825}
826
827zio_t *
828zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
829    void *data, uint64_t size, const zio_prop_t *zp,
830    zio_done_func_t *ready, zio_done_func_t *children_ready,
831    zio_done_func_t *physdone, zio_done_func_t *done,
832    void *private, zio_priority_t priority, enum zio_flag flags,
833    const zbookmark_phys_t *zb)
834{
835	zio_t *zio;
836
837	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
838	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
839	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
840	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
841	    DMU_OT_IS_VALID(zp->zp_type) &&
842	    zp->zp_level < 32 &&
843	    zp->zp_copies > 0 &&
844	    zp->zp_copies <= spa_max_replication(spa));
845
846	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
847	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
848	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
849	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
850
851	zio->io_ready = ready;
852	zio->io_children_ready = children_ready;
853	zio->io_physdone = physdone;
854	zio->io_prop = *zp;
855
856	/*
857	 * Data can be NULL if we are going to call zio_write_override() to
858	 * provide the already-allocated BP.  But we may need the data to
859	 * verify a dedup hit (if requested).  In this case, don't try to
860	 * dedup (just take the already-allocated BP verbatim).
861	 */
862	if (data == NULL && zio->io_prop.zp_dedup_verify) {
863		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
864	}
865
866	return (zio);
867}
868
869zio_t *
870zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
871    uint64_t size, zio_done_func_t *done, void *private,
872    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
873{
874	zio_t *zio;
875
876	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
877	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
878	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
879
880	return (zio);
881}
882
883void
884zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
885{
886	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
887	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
888	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
889	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
890
891	/*
892	 * We must reset the io_prop to match the values that existed
893	 * when the bp was first written by dmu_sync() keeping in mind
894	 * that nopwrite and dedup are mutually exclusive.
895	 */
896	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
897	zio->io_prop.zp_nopwrite = nopwrite;
898	zio->io_prop.zp_copies = copies;
899	zio->io_bp_override = bp;
900}
901
902void
903zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
904{
905
906	/*
907	 * The check for EMBEDDED is a performance optimization.  We
908	 * process the free here (by ignoring it) rather than
909	 * putting it on the list and then processing it in zio_free_sync().
910	 */
911	if (BP_IS_EMBEDDED(bp))
912		return;
913	metaslab_check_free(spa, bp);
914
915	/*
916	 * Frees that are for the currently-syncing txg, are not going to be
917	 * deferred, and which will not need to do a read (i.e. not GANG or
918	 * DEDUP), can be processed immediately.  Otherwise, put them on the
919	 * in-memory list for later processing.
920	 */
921	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
922	    txg != spa->spa_syncing_txg ||
923	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
924		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
925	} else {
926		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
927		    BP_GET_PSIZE(bp), 0)));
928	}
929}
930
931zio_t *
932zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
933    uint64_t size, enum zio_flag flags)
934{
935	zio_t *zio;
936	enum zio_stage stage = ZIO_FREE_PIPELINE;
937
938	ASSERT(!BP_IS_HOLE(bp));
939	ASSERT(spa_syncing_txg(spa) == txg);
940	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
941
942	if (BP_IS_EMBEDDED(bp))
943		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
944
945	metaslab_check_free(spa, bp);
946	arc_freed(spa, bp);
947
948	if (zfs_trim_enabled)
949		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
950		    ZIO_STAGE_VDEV_IO_ASSESS;
951	/*
952	 * GANG and DEDUP blocks can induce a read (for the gang block header,
953	 * or the DDT), so issue them asynchronously so that this thread is
954	 * not tied up.
955	 */
956	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
957		stage |= ZIO_STAGE_ISSUE_ASYNC;
958
959	flags |= ZIO_FLAG_DONT_QUEUE;
960
961	zio = zio_create(pio, spa, txg, bp, NULL, size,
962	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
963	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
964
965	return (zio);
966}
967
968zio_t *
969zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
970    zio_done_func_t *done, void *private, enum zio_flag flags)
971{
972	zio_t *zio;
973
974	dprintf_bp(bp, "claiming in txg %llu", txg);
975
976	if (BP_IS_EMBEDDED(bp))
977		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
978
979	/*
980	 * A claim is an allocation of a specific block.  Claims are needed
981	 * to support immediate writes in the intent log.  The issue is that
982	 * immediate writes contain committed data, but in a txg that was
983	 * *not* committed.  Upon opening the pool after an unclean shutdown,
984	 * the intent log claims all blocks that contain immediate write data
985	 * so that the SPA knows they're in use.
986	 *
987	 * All claims *must* be resolved in the first txg -- before the SPA
988	 * starts allocating blocks -- so that nothing is allocated twice.
989	 * If txg == 0 we just verify that the block is claimable.
990	 */
991	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
992	ASSERT(txg == spa_first_txg(spa) || txg == 0);
993	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
994
995	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
996	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
997	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
998	ASSERT0(zio->io_queued_timestamp);
999
1000	return (zio);
1001}
1002
1003zio_t *
1004zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
1005    uint64_t size, zio_done_func_t *done, void *private,
1006    zio_priority_t priority, enum zio_flag flags)
1007{
1008	zio_t *zio;
1009	int c;
1010
1011	if (vd->vdev_children == 0) {
1012		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
1013		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
1014		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1015
1016		zio->io_cmd = cmd;
1017	} else {
1018		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1019
1020		for (c = 0; c < vd->vdev_children; c++)
1021			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1022			    offset, size, done, private, priority, flags));
1023	}
1024
1025	return (zio);
1026}
1027
1028zio_t *
1029zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1030    void *data, int checksum, zio_done_func_t *done, void *private,
1031    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1032{
1033	zio_t *zio;
1034
1035	ASSERT(vd->vdev_children == 0);
1036	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1037	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1038	ASSERT3U(offset + size, <=, vd->vdev_psize);
1039
1040	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1041	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1042	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1043
1044	zio->io_prop.zp_checksum = checksum;
1045
1046	return (zio);
1047}
1048
1049zio_t *
1050zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1051    void *data, int checksum, zio_done_func_t *done, void *private,
1052    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1053{
1054	zio_t *zio;
1055
1056	ASSERT(vd->vdev_children == 0);
1057	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1058	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1059	ASSERT3U(offset + size, <=, vd->vdev_psize);
1060
1061	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1062	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1063	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1064
1065	zio->io_prop.zp_checksum = checksum;
1066
1067	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1068		/*
1069		 * zec checksums are necessarily destructive -- they modify
1070		 * the end of the write buffer to hold the verifier/checksum.
1071		 * Therefore, we must make a local copy in case the data is
1072		 * being written to multiple places in parallel.
1073		 */
1074		void *wbuf = zio_buf_alloc(size);
1075		bcopy(data, wbuf, size);
1076		zio_push_transform(zio, wbuf, size, size, NULL);
1077	}
1078
1079	return (zio);
1080}
1081
1082/*
1083 * Create a child I/O to do some work for us.
1084 */
1085zio_t *
1086zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1087    void *data, uint64_t size, int type, zio_priority_t priority,
1088    enum zio_flag flags, zio_done_func_t *done, void *private)
1089{
1090	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1091	zio_t *zio;
1092
1093	ASSERT(vd->vdev_parent ==
1094	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1095
1096	if (type == ZIO_TYPE_READ && bp != NULL) {
1097		/*
1098		 * If we have the bp, then the child should perform the
1099		 * checksum and the parent need not.  This pushes error
1100		 * detection as close to the leaves as possible and
1101		 * eliminates redundant checksums in the interior nodes.
1102		 */
1103		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1104		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1105	}
1106
1107	/* Not all IO types require vdev io done stage e.g. free */
1108	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1109		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1110
1111	if (vd->vdev_children == 0)
1112		offset += VDEV_LABEL_START_SIZE;
1113
1114	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1115
1116	/*
1117	 * If we've decided to do a repair, the write is not speculative --
1118	 * even if the original read was.
1119	 */
1120	if (flags & ZIO_FLAG_IO_REPAIR)
1121		flags &= ~ZIO_FLAG_SPECULATIVE;
1122
1123	/*
1124	 * If we're creating a child I/O that is not associated with a
1125	 * top-level vdev, then the child zio is not an allocating I/O.
1126	 * If this is a retried I/O then we ignore it since we will
1127	 * have already processed the original allocating I/O.
1128	 */
1129	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1130	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1131		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1132
1133		ASSERT(mc->mc_alloc_throttle_enabled);
1134		ASSERT(type == ZIO_TYPE_WRITE);
1135		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1136		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1137		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1138		    pio->io_child_type == ZIO_CHILD_GANG);
1139
1140		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1141	}
1142
1143	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1144	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1145	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1146	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1147
1148	zio->io_physdone = pio->io_physdone;
1149	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1150		zio->io_logical->io_phys_children++;
1151
1152	return (zio);
1153}
1154
1155zio_t *
1156zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1157    int type, zio_priority_t priority, enum zio_flag flags,
1158    zio_done_func_t *done, void *private)
1159{
1160	zio_t *zio;
1161
1162	ASSERT(vd->vdev_ops->vdev_op_leaf);
1163
1164	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1165	    data, size, done, private, type, priority,
1166	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1167	    vd, offset, NULL,
1168	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1169
1170	return (zio);
1171}
1172
1173void
1174zio_flush(zio_t *zio, vdev_t *vd)
1175{
1176	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1177	    NULL, NULL, ZIO_PRIORITY_NOW,
1178	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1179}
1180
1181zio_t *
1182zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1183{
1184
1185	ASSERT(vd->vdev_ops->vdev_op_leaf);
1186
1187	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1188	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1189	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1190	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1191}
1192
1193void
1194zio_shrink(zio_t *zio, uint64_t size)
1195{
1196	ASSERT(zio->io_executor == NULL);
1197	ASSERT(zio->io_orig_size == zio->io_size);
1198	ASSERT(size <= zio->io_size);
1199
1200	/*
1201	 * We don't shrink for raidz because of problems with the
1202	 * reconstruction when reading back less than the block size.
1203	 * Note, BP_IS_RAIDZ() assumes no compression.
1204	 */
1205	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1206	if (!BP_IS_RAIDZ(zio->io_bp))
1207		zio->io_orig_size = zio->io_size = size;
1208}
1209
1210/*
1211 * ==========================================================================
1212 * Prepare to read and write logical blocks
1213 * ==========================================================================
1214 */
1215
1216static int
1217zio_read_bp_init(zio_t *zio)
1218{
1219	blkptr_t *bp = zio->io_bp;
1220
1221	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1222	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1223	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1224		uint64_t psize =
1225		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1226		void *cbuf = zio_buf_alloc(psize);
1227
1228		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1229	}
1230
1231	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1232		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1233		decode_embedded_bp_compressed(bp, zio->io_data);
1234	} else {
1235		ASSERT(!BP_IS_EMBEDDED(bp));
1236	}
1237
1238	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1239		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1240
1241	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1242		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1243
1244	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1245		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1246
1247	return (ZIO_PIPELINE_CONTINUE);
1248}
1249
1250static int
1251zio_write_bp_init(zio_t *zio)
1252{
1253	if (!IO_IS_ALLOCATING(zio))
1254		return (ZIO_PIPELINE_CONTINUE);
1255
1256	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1257
1258	if (zio->io_bp_override) {
1259		blkptr_t *bp = zio->io_bp;
1260		zio_prop_t *zp = &zio->io_prop;
1261
1262		ASSERT(bp->blk_birth != zio->io_txg);
1263		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1264
1265		*bp = *zio->io_bp_override;
1266		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1267
1268		if (BP_IS_EMBEDDED(bp))
1269			return (ZIO_PIPELINE_CONTINUE);
1270
1271		/*
1272		 * If we've been overridden and nopwrite is set then
1273		 * set the flag accordingly to indicate that a nopwrite
1274		 * has already occurred.
1275		 */
1276		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1277			ASSERT(!zp->zp_dedup);
1278			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1279			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1280			return (ZIO_PIPELINE_CONTINUE);
1281		}
1282
1283		ASSERT(!zp->zp_nopwrite);
1284
1285		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1286			return (ZIO_PIPELINE_CONTINUE);
1287
1288		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1289		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1290
1291		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1292			BP_SET_DEDUP(bp, 1);
1293			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1294			return (ZIO_PIPELINE_CONTINUE);
1295		}
1296
1297		/*
1298		 * We were unable to handle this as an override bp, treat
1299		 * it as a regular write I/O.
1300		 */
1301		zio->io_bp_override = NULL;
1302		*bp = zio->io_bp_orig;
1303		zio->io_pipeline = zio->io_orig_pipeline;
1304	}
1305
1306	return (ZIO_PIPELINE_CONTINUE);
1307}
1308
1309static int
1310zio_write_compress(zio_t *zio)
1311{
1312	spa_t *spa = zio->io_spa;
1313	zio_prop_t *zp = &zio->io_prop;
1314	enum zio_compress compress = zp->zp_compress;
1315	blkptr_t *bp = zio->io_bp;
1316	uint64_t lsize = zio->io_size;
1317	uint64_t psize = lsize;
1318	int pass = 1;
1319
1320	/*
1321	 * If our children haven't all reached the ready stage,
1322	 * wait for them and then repeat this pipeline stage.
1323	 */
1324	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1325	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1326		return (ZIO_PIPELINE_STOP);
1327
1328	if (!IO_IS_ALLOCATING(zio))
1329		return (ZIO_PIPELINE_CONTINUE);
1330
1331	if (zio->io_children_ready != NULL) {
1332		/*
1333		 * Now that all our children are ready, run the callback
1334		 * associated with this zio in case it wants to modify the
1335		 * data to be written.
1336		 */
1337		ASSERT3U(zp->zp_level, >, 0);
1338		zio->io_children_ready(zio);
1339	}
1340
1341	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1342	ASSERT(zio->io_bp_override == NULL);
1343
1344	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1345		/*
1346		 * We're rewriting an existing block, which means we're
1347		 * working on behalf of spa_sync().  For spa_sync() to
1348		 * converge, it must eventually be the case that we don't
1349		 * have to allocate new blocks.  But compression changes
1350		 * the blocksize, which forces a reallocate, and makes
1351		 * convergence take longer.  Therefore, after the first
1352		 * few passes, stop compressing to ensure convergence.
1353		 */
1354		pass = spa_sync_pass(spa);
1355
1356		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1357		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1358		ASSERT(!BP_GET_DEDUP(bp));
1359
1360		if (pass >= zfs_sync_pass_dont_compress)
1361			compress = ZIO_COMPRESS_OFF;
1362
1363		/* Make sure someone doesn't change their mind on overwrites */
1364		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1365		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1366	}
1367
1368	if (compress != ZIO_COMPRESS_OFF) {
1369		void *cbuf = zio_buf_alloc(lsize);
1370		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1371		if (psize == 0 || psize == lsize) {
1372			compress = ZIO_COMPRESS_OFF;
1373			zio_buf_free(cbuf, lsize);
1374		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1375		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1376		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1377			encode_embedded_bp_compressed(bp,
1378			    cbuf, compress, lsize, psize);
1379			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1380			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1381			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1382			zio_buf_free(cbuf, lsize);
1383			bp->blk_birth = zio->io_txg;
1384			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1385			ASSERT(spa_feature_is_active(spa,
1386			    SPA_FEATURE_EMBEDDED_DATA));
1387			return (ZIO_PIPELINE_CONTINUE);
1388		} else {
1389			/*
1390			 * Round up compressed size up to the ashift
1391			 * of the smallest-ashift device, and zero the tail.
1392			 * This ensures that the compressed size of the BP
1393			 * (and thus compressratio property) are correct,
1394			 * in that we charge for the padding used to fill out
1395			 * the last sector.
1396			 */
1397			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1398			size_t rounded = (size_t)P2ROUNDUP(psize,
1399			    1ULL << spa->spa_min_ashift);
1400			if (rounded >= lsize) {
1401				compress = ZIO_COMPRESS_OFF;
1402				zio_buf_free(cbuf, lsize);
1403				psize = lsize;
1404			} else {
1405				bzero((char *)cbuf + psize, rounded - psize);
1406				psize = rounded;
1407				zio_push_transform(zio, cbuf,
1408				    psize, lsize, NULL);
1409			}
1410		}
1411
1412		/*
1413		 * We were unable to handle this as an override bp, treat
1414		 * it as a regular write I/O.
1415		 */
1416		zio->io_bp_override = NULL;
1417		*bp = zio->io_bp_orig;
1418		zio->io_pipeline = zio->io_orig_pipeline;
1419	}
1420
1421	/*
1422	 * The final pass of spa_sync() must be all rewrites, but the first
1423	 * few passes offer a trade-off: allocating blocks defers convergence,
1424	 * but newly allocated blocks are sequential, so they can be written
1425	 * to disk faster.  Therefore, we allow the first few passes of
1426	 * spa_sync() to allocate new blocks, but force rewrites after that.
1427	 * There should only be a handful of blocks after pass 1 in any case.
1428	 */
1429	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1430	    BP_GET_PSIZE(bp) == psize &&
1431	    pass >= zfs_sync_pass_rewrite) {
1432		ASSERT(psize != 0);
1433		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1434		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1435		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1436	} else {
1437		BP_ZERO(bp);
1438		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1439	}
1440
1441	if (psize == 0) {
1442		if (zio->io_bp_orig.blk_birth != 0 &&
1443		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1444			BP_SET_LSIZE(bp, lsize);
1445			BP_SET_TYPE(bp, zp->zp_type);
1446			BP_SET_LEVEL(bp, zp->zp_level);
1447			BP_SET_BIRTH(bp, zio->io_txg, 0);
1448		}
1449		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1450	} else {
1451		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1452		BP_SET_LSIZE(bp, lsize);
1453		BP_SET_TYPE(bp, zp->zp_type);
1454		BP_SET_LEVEL(bp, zp->zp_level);
1455		BP_SET_PSIZE(bp, psize);
1456		BP_SET_COMPRESS(bp, compress);
1457		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1458		BP_SET_DEDUP(bp, zp->zp_dedup);
1459		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1460		if (zp->zp_dedup) {
1461			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1462			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1463			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1464		}
1465		if (zp->zp_nopwrite) {
1466			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1467			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1468			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1469		}
1470	}
1471	return (ZIO_PIPELINE_CONTINUE);
1472}
1473
1474static int
1475zio_free_bp_init(zio_t *zio)
1476{
1477	blkptr_t *bp = zio->io_bp;
1478
1479	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1480		if (BP_GET_DEDUP(bp))
1481			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1482	}
1483
1484	return (ZIO_PIPELINE_CONTINUE);
1485}
1486
1487/*
1488 * ==========================================================================
1489 * Execute the I/O pipeline
1490 * ==========================================================================
1491 */
1492
1493static void
1494zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1495{
1496	spa_t *spa = zio->io_spa;
1497	zio_type_t t = zio->io_type;
1498	int flags = (cutinline ? TQ_FRONT : 0);
1499
1500	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1501
1502	/*
1503	 * If we're a config writer or a probe, the normal issue and
1504	 * interrupt threads may all be blocked waiting for the config lock.
1505	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1506	 */
1507	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1508		t = ZIO_TYPE_NULL;
1509
1510	/*
1511	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1512	 */
1513	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1514		t = ZIO_TYPE_NULL;
1515
1516	/*
1517	 * If this is a high priority I/O, then use the high priority taskq if
1518	 * available.
1519	 */
1520	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1521	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1522		q++;
1523
1524	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1525
1526	/*
1527	 * NB: We are assuming that the zio can only be dispatched
1528	 * to a single taskq at a time.  It would be a grievous error
1529	 * to dispatch the zio to another taskq at the same time.
1530	 */
1531#if defined(illumos) || !defined(_KERNEL)
1532	ASSERT(zio->io_tqent.tqent_next == NULL);
1533#else
1534	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1535#endif
1536	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1537	    flags, &zio->io_tqent);
1538}
1539
1540static boolean_t
1541zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1542{
1543	kthread_t *executor = zio->io_executor;
1544	spa_t *spa = zio->io_spa;
1545
1546	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1547		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1548		uint_t i;
1549		for (i = 0; i < tqs->stqs_count; i++) {
1550			if (taskq_member(tqs->stqs_taskq[i], executor))
1551				return (B_TRUE);
1552		}
1553	}
1554
1555	return (B_FALSE);
1556}
1557
1558static int
1559zio_issue_async(zio_t *zio)
1560{
1561	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1562
1563	return (ZIO_PIPELINE_STOP);
1564}
1565
1566void
1567zio_interrupt(zio_t *zio)
1568{
1569	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1570}
1571
1572void
1573zio_delay_interrupt(zio_t *zio)
1574{
1575	/*
1576	 * The timeout_generic() function isn't defined in userspace, so
1577	 * rather than trying to implement the function, the zio delay
1578	 * functionality has been disabled for userspace builds.
1579	 */
1580
1581#ifdef _KERNEL
1582	/*
1583	 * If io_target_timestamp is zero, then no delay has been registered
1584	 * for this IO, thus jump to the end of this function and "skip" the
1585	 * delay; issuing it directly to the zio layer.
1586	 */
1587	if (zio->io_target_timestamp != 0) {
1588		hrtime_t now = gethrtime();
1589
1590		if (now >= zio->io_target_timestamp) {
1591			/*
1592			 * This IO has already taken longer than the target
1593			 * delay to complete, so we don't want to delay it
1594			 * any longer; we "miss" the delay and issue it
1595			 * directly to the zio layer. This is likely due to
1596			 * the target latency being set to a value less than
1597			 * the underlying hardware can satisfy (e.g. delay
1598			 * set to 1ms, but the disks take 10ms to complete an
1599			 * IO request).
1600			 */
1601
1602			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1603			    hrtime_t, now);
1604
1605			zio_interrupt(zio);
1606		} else {
1607			hrtime_t diff = zio->io_target_timestamp - now;
1608
1609			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1610			    hrtime_t, now, hrtime_t, diff);
1611
1612			(void) timeout_generic(CALLOUT_NORMAL,
1613			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1614		}
1615
1616		return;
1617	}
1618#endif
1619
1620	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1621	zio_interrupt(zio);
1622}
1623
1624/*
1625 * Execute the I/O pipeline until one of the following occurs:
1626 *
1627 *	(1) the I/O completes
1628 *	(2) the pipeline stalls waiting for dependent child I/Os
1629 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1630 *	(4) the I/O is delegated by vdev-level caching or aggregation
1631 *	(5) the I/O is deferred due to vdev-level queueing
1632 *	(6) the I/O is handed off to another thread.
1633 *
1634 * In all cases, the pipeline stops whenever there's no CPU work; it never
1635 * burns a thread in cv_wait().
1636 *
1637 * There's no locking on io_stage because there's no legitimate way
1638 * for multiple threads to be attempting to process the same I/O.
1639 */
1640static zio_pipe_stage_t *zio_pipeline[];
1641
1642void
1643zio_execute(zio_t *zio)
1644{
1645	zio->io_executor = curthread;
1646
1647	ASSERT3U(zio->io_queued_timestamp, >, 0);
1648
1649	while (zio->io_stage < ZIO_STAGE_DONE) {
1650		enum zio_stage pipeline = zio->io_pipeline;
1651		enum zio_stage stage = zio->io_stage;
1652		int rv;
1653
1654		ASSERT(!MUTEX_HELD(&zio->io_lock));
1655		ASSERT(ISP2(stage));
1656		ASSERT(zio->io_stall == NULL);
1657
1658		do {
1659			stage <<= 1;
1660		} while ((stage & pipeline) == 0);
1661
1662		ASSERT(stage <= ZIO_STAGE_DONE);
1663
1664		/*
1665		 * If we are in interrupt context and this pipeline stage
1666		 * will grab a config lock that is held across I/O,
1667		 * or may wait for an I/O that needs an interrupt thread
1668		 * to complete, issue async to avoid deadlock.
1669		 *
1670		 * For VDEV_IO_START, we cut in line so that the io will
1671		 * be sent to disk promptly.
1672		 */
1673		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1674		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1675			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1676			    zio_requeue_io_start_cut_in_line : B_FALSE;
1677			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1678			return;
1679		}
1680
1681		zio->io_stage = stage;
1682		zio->io_pipeline_trace |= zio->io_stage;
1683		rv = zio_pipeline[highbit64(stage) - 1](zio);
1684
1685		if (rv == ZIO_PIPELINE_STOP)
1686			return;
1687
1688		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1689	}
1690}
1691
1692/*
1693 * ==========================================================================
1694 * Initiate I/O, either sync or async
1695 * ==========================================================================
1696 */
1697int
1698zio_wait(zio_t *zio)
1699{
1700	int error;
1701
1702	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1703	ASSERT(zio->io_executor == NULL);
1704
1705	zio->io_waiter = curthread;
1706	ASSERT0(zio->io_queued_timestamp);
1707	zio->io_queued_timestamp = gethrtime();
1708
1709	zio_execute(zio);
1710
1711	mutex_enter(&zio->io_lock);
1712	while (zio->io_executor != NULL)
1713		cv_wait(&zio->io_cv, &zio->io_lock);
1714	mutex_exit(&zio->io_lock);
1715
1716	error = zio->io_error;
1717	zio_destroy(zio);
1718
1719	return (error);
1720}
1721
1722void
1723zio_nowait(zio_t *zio)
1724{
1725	ASSERT(zio->io_executor == NULL);
1726
1727	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1728	    zio_unique_parent(zio) == NULL) {
1729		/*
1730		 * This is a logical async I/O with no parent to wait for it.
1731		 * We add it to the spa_async_root_zio "Godfather" I/O which
1732		 * will ensure they complete prior to unloading the pool.
1733		 */
1734		spa_t *spa = zio->io_spa;
1735
1736		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1737	}
1738
1739	ASSERT0(zio->io_queued_timestamp);
1740	zio->io_queued_timestamp = gethrtime();
1741	zio_execute(zio);
1742}
1743
1744/*
1745 * ==========================================================================
1746 * Reexecute or suspend/resume failed I/O
1747 * ==========================================================================
1748 */
1749
1750static void
1751zio_reexecute(zio_t *pio)
1752{
1753	zio_t *cio, *cio_next;
1754
1755	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1756	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1757	ASSERT(pio->io_gang_leader == NULL);
1758	ASSERT(pio->io_gang_tree == NULL);
1759
1760	pio->io_flags = pio->io_orig_flags;
1761	pio->io_stage = pio->io_orig_stage;
1762	pio->io_pipeline = pio->io_orig_pipeline;
1763	pio->io_reexecute = 0;
1764	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1765	pio->io_pipeline_trace = 0;
1766	pio->io_error = 0;
1767	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1768		pio->io_state[w] = 0;
1769	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1770		pio->io_child_error[c] = 0;
1771
1772	if (IO_IS_ALLOCATING(pio))
1773		BP_ZERO(pio->io_bp);
1774
1775	/*
1776	 * As we reexecute pio's children, new children could be created.
1777	 * New children go to the head of pio's io_child_list, however,
1778	 * so we will (correctly) not reexecute them.  The key is that
1779	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1780	 * cannot be affected by any side effects of reexecuting 'cio'.
1781	 */
1782	zio_link_t *zl = NULL;
1783	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1784		cio_next = zio_walk_children(pio, &zl);
1785		mutex_enter(&pio->io_lock);
1786		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1787			pio->io_children[cio->io_child_type][w]++;
1788		mutex_exit(&pio->io_lock);
1789		zio_reexecute(cio);
1790	}
1791
1792	/*
1793	 * Now that all children have been reexecuted, execute the parent.
1794	 * We don't reexecute "The Godfather" I/O here as it's the
1795	 * responsibility of the caller to wait on him.
1796	 */
1797	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1798		pio->io_queued_timestamp = gethrtime();
1799		zio_execute(pio);
1800	}
1801}
1802
1803void
1804zio_suspend(spa_t *spa, zio_t *zio)
1805{
1806	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1807		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1808		    "failure and the failure mode property for this pool "
1809		    "is set to panic.", spa_name(spa));
1810
1811	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1812
1813	mutex_enter(&spa->spa_suspend_lock);
1814
1815	if (spa->spa_suspend_zio_root == NULL)
1816		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1817		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1818		    ZIO_FLAG_GODFATHER);
1819
1820	spa->spa_suspended = B_TRUE;
1821
1822	if (zio != NULL) {
1823		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1824		ASSERT(zio != spa->spa_suspend_zio_root);
1825		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1826		ASSERT(zio_unique_parent(zio) == NULL);
1827		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1828		zio_add_child(spa->spa_suspend_zio_root, zio);
1829	}
1830
1831	mutex_exit(&spa->spa_suspend_lock);
1832}
1833
1834int
1835zio_resume(spa_t *spa)
1836{
1837	zio_t *pio;
1838
1839	/*
1840	 * Reexecute all previously suspended i/o.
1841	 */
1842	mutex_enter(&spa->spa_suspend_lock);
1843	spa->spa_suspended = B_FALSE;
1844	cv_broadcast(&spa->spa_suspend_cv);
1845	pio = spa->spa_suspend_zio_root;
1846	spa->spa_suspend_zio_root = NULL;
1847	mutex_exit(&spa->spa_suspend_lock);
1848
1849	if (pio == NULL)
1850		return (0);
1851
1852	zio_reexecute(pio);
1853	return (zio_wait(pio));
1854}
1855
1856void
1857zio_resume_wait(spa_t *spa)
1858{
1859	mutex_enter(&spa->spa_suspend_lock);
1860	while (spa_suspended(spa))
1861		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1862	mutex_exit(&spa->spa_suspend_lock);
1863}
1864
1865/*
1866 * ==========================================================================
1867 * Gang blocks.
1868 *
1869 * A gang block is a collection of small blocks that looks to the DMU
1870 * like one large block.  When zio_dva_allocate() cannot find a block
1871 * of the requested size, due to either severe fragmentation or the pool
1872 * being nearly full, it calls zio_write_gang_block() to construct the
1873 * block from smaller fragments.
1874 *
1875 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1876 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1877 * an indirect block: it's an array of block pointers.  It consumes
1878 * only one sector and hence is allocatable regardless of fragmentation.
1879 * The gang header's bps point to its gang members, which hold the data.
1880 *
1881 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1882 * as the verifier to ensure uniqueness of the SHA256 checksum.
1883 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1884 * not the gang header.  This ensures that data block signatures (needed for
1885 * deduplication) are independent of how the block is physically stored.
1886 *
1887 * Gang blocks can be nested: a gang member may itself be a gang block.
1888 * Thus every gang block is a tree in which root and all interior nodes are
1889 * gang headers, and the leaves are normal blocks that contain user data.
1890 * The root of the gang tree is called the gang leader.
1891 *
1892 * To perform any operation (read, rewrite, free, claim) on a gang block,
1893 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1894 * in the io_gang_tree field of the original logical i/o by recursively
1895 * reading the gang leader and all gang headers below it.  This yields
1896 * an in-core tree containing the contents of every gang header and the
1897 * bps for every constituent of the gang block.
1898 *
1899 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1900 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1901 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1902 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1903 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1904 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1905 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1906 * of the gang header plus zio_checksum_compute() of the data to update the
1907 * gang header's blk_cksum as described above.
1908 *
1909 * The two-phase assemble/issue model solves the problem of partial failure --
1910 * what if you'd freed part of a gang block but then couldn't read the
1911 * gang header for another part?  Assembling the entire gang tree first
1912 * ensures that all the necessary gang header I/O has succeeded before
1913 * starting the actual work of free, claim, or write.  Once the gang tree
1914 * is assembled, free and claim are in-memory operations that cannot fail.
1915 *
1916 * In the event that a gang write fails, zio_dva_unallocate() walks the
1917 * gang tree to immediately free (i.e. insert back into the space map)
1918 * everything we've allocated.  This ensures that we don't get ENOSPC
1919 * errors during repeated suspend/resume cycles due to a flaky device.
1920 *
1921 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1922 * the gang tree, we won't modify the block, so we can safely defer the free
1923 * (knowing that the block is still intact).  If we *can* assemble the gang
1924 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1925 * each constituent bp and we can allocate a new block on the next sync pass.
1926 *
1927 * In all cases, the gang tree allows complete recovery from partial failure.
1928 * ==========================================================================
1929 */
1930
1931static zio_t *
1932zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1933{
1934	if (gn != NULL)
1935		return (pio);
1936
1937	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1938	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1939	    &pio->io_bookmark));
1940}
1941
1942zio_t *
1943zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1944{
1945	zio_t *zio;
1946
1947	if (gn != NULL) {
1948		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1949		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1950		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1951		/*
1952		 * As we rewrite each gang header, the pipeline will compute
1953		 * a new gang block header checksum for it; but no one will
1954		 * compute a new data checksum, so we do that here.  The one
1955		 * exception is the gang leader: the pipeline already computed
1956		 * its data checksum because that stage precedes gang assembly.
1957		 * (Presently, nothing actually uses interior data checksums;
1958		 * this is just good hygiene.)
1959		 */
1960		if (gn != pio->io_gang_leader->io_gang_tree) {
1961			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1962			    data, BP_GET_PSIZE(bp));
1963		}
1964		/*
1965		 * If we are here to damage data for testing purposes,
1966		 * leave the GBH alone so that we can detect the damage.
1967		 */
1968		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1969			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1970	} else {
1971		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1972		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1973		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1974	}
1975
1976	return (zio);
1977}
1978
1979/* ARGSUSED */
1980zio_t *
1981zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1982{
1983	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1984	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1985	    ZIO_GANG_CHILD_FLAGS(pio)));
1986}
1987
1988/* ARGSUSED */
1989zio_t *
1990zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1991{
1992	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1993	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1994}
1995
1996static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1997	NULL,
1998	zio_read_gang,
1999	zio_rewrite_gang,
2000	zio_free_gang,
2001	zio_claim_gang,
2002	NULL
2003};
2004
2005static void zio_gang_tree_assemble_done(zio_t *zio);
2006
2007static zio_gang_node_t *
2008zio_gang_node_alloc(zio_gang_node_t **gnpp)
2009{
2010	zio_gang_node_t *gn;
2011
2012	ASSERT(*gnpp == NULL);
2013
2014	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2015	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2016	*gnpp = gn;
2017
2018	return (gn);
2019}
2020
2021static void
2022zio_gang_node_free(zio_gang_node_t **gnpp)
2023{
2024	zio_gang_node_t *gn = *gnpp;
2025
2026	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2027		ASSERT(gn->gn_child[g] == NULL);
2028
2029	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2030	kmem_free(gn, sizeof (*gn));
2031	*gnpp = NULL;
2032}
2033
2034static void
2035zio_gang_tree_free(zio_gang_node_t **gnpp)
2036{
2037	zio_gang_node_t *gn = *gnpp;
2038
2039	if (gn == NULL)
2040		return;
2041
2042	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2043		zio_gang_tree_free(&gn->gn_child[g]);
2044
2045	zio_gang_node_free(gnpp);
2046}
2047
2048static void
2049zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2050{
2051	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2052
2053	ASSERT(gio->io_gang_leader == gio);
2054	ASSERT(BP_IS_GANG(bp));
2055
2056	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
2057	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
2058	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2059}
2060
2061static void
2062zio_gang_tree_assemble_done(zio_t *zio)
2063{
2064	zio_t *gio = zio->io_gang_leader;
2065	zio_gang_node_t *gn = zio->io_private;
2066	blkptr_t *bp = zio->io_bp;
2067
2068	ASSERT(gio == zio_unique_parent(zio));
2069	ASSERT(zio->io_child_count == 0);
2070
2071	if (zio->io_error)
2072		return;
2073
2074	if (BP_SHOULD_BYTESWAP(bp))
2075		byteswap_uint64_array(zio->io_data, zio->io_size);
2076
2077	ASSERT(zio->io_data == gn->gn_gbh);
2078	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2079	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2080
2081	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2082		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2083		if (!BP_IS_GANG(gbp))
2084			continue;
2085		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2086	}
2087}
2088
2089static void
2090zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
2091{
2092	zio_t *gio = pio->io_gang_leader;
2093	zio_t *zio;
2094
2095	ASSERT(BP_IS_GANG(bp) == !!gn);
2096	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2097	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2098
2099	/*
2100	 * If you're a gang header, your data is in gn->gn_gbh.
2101	 * If you're a gang member, your data is in 'data' and gn == NULL.
2102	 */
2103	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
2104
2105	if (gn != NULL) {
2106		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2107
2108		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2109			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2110			if (BP_IS_HOLE(gbp))
2111				continue;
2112			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
2113			data = (char *)data + BP_GET_PSIZE(gbp);
2114		}
2115	}
2116
2117	if (gn == gio->io_gang_tree && gio->io_data != NULL)
2118		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
2119
2120	if (zio != pio)
2121		zio_nowait(zio);
2122}
2123
2124static int
2125zio_gang_assemble(zio_t *zio)
2126{
2127	blkptr_t *bp = zio->io_bp;
2128
2129	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2130	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2131
2132	zio->io_gang_leader = zio;
2133
2134	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2135
2136	return (ZIO_PIPELINE_CONTINUE);
2137}
2138
2139static int
2140zio_gang_issue(zio_t *zio)
2141{
2142	blkptr_t *bp = zio->io_bp;
2143
2144	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2145		return (ZIO_PIPELINE_STOP);
2146
2147	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2148	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2149
2150	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2151		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
2152	else
2153		zio_gang_tree_free(&zio->io_gang_tree);
2154
2155	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2156
2157	return (ZIO_PIPELINE_CONTINUE);
2158}
2159
2160static void
2161zio_write_gang_member_ready(zio_t *zio)
2162{
2163	zio_t *pio = zio_unique_parent(zio);
2164	zio_t *gio = zio->io_gang_leader;
2165	dva_t *cdva = zio->io_bp->blk_dva;
2166	dva_t *pdva = pio->io_bp->blk_dva;
2167	uint64_t asize;
2168
2169	if (BP_IS_HOLE(zio->io_bp))
2170		return;
2171
2172	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2173
2174	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2175	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2176	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2177	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2178	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2179
2180	mutex_enter(&pio->io_lock);
2181	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2182		ASSERT(DVA_GET_GANG(&pdva[d]));
2183		asize = DVA_GET_ASIZE(&pdva[d]);
2184		asize += DVA_GET_ASIZE(&cdva[d]);
2185		DVA_SET_ASIZE(&pdva[d], asize);
2186	}
2187	mutex_exit(&pio->io_lock);
2188}
2189
2190static int
2191zio_write_gang_block(zio_t *pio)
2192{
2193	spa_t *spa = pio->io_spa;
2194	metaslab_class_t *mc = spa_normal_class(spa);
2195	blkptr_t *bp = pio->io_bp;
2196	zio_t *gio = pio->io_gang_leader;
2197	zio_t *zio;
2198	zio_gang_node_t *gn, **gnpp;
2199	zio_gbh_phys_t *gbh;
2200	uint64_t txg = pio->io_txg;
2201	uint64_t resid = pio->io_size;
2202	uint64_t lsize;
2203	int copies = gio->io_prop.zp_copies;
2204	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2205	zio_prop_t zp;
2206	int error;
2207
2208	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2209	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2210		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2211		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2212
2213		flags |= METASLAB_ASYNC_ALLOC;
2214		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2215
2216		/*
2217		 * The logical zio has already placed a reservation for
2218		 * 'copies' allocation slots but gang blocks may require
2219		 * additional copies. These additional copies
2220		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2221		 * since metaslab_class_throttle_reserve() always allows
2222		 * additional reservations for gang blocks.
2223		 */
2224		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2225		    pio, flags));
2226	}
2227
2228	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2229	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2230	    &pio->io_alloc_list, pio);
2231	if (error) {
2232		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2233			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2234			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2235
2236			/*
2237			 * If we failed to allocate the gang block header then
2238			 * we remove any additional allocation reservations that
2239			 * we placed here. The original reservation will
2240			 * be removed when the logical I/O goes to the ready
2241			 * stage.
2242			 */
2243			metaslab_class_throttle_unreserve(mc,
2244			    gbh_copies - copies, pio);
2245		}
2246		pio->io_error = error;
2247		return (ZIO_PIPELINE_CONTINUE);
2248	}
2249
2250	if (pio == gio) {
2251		gnpp = &gio->io_gang_tree;
2252	} else {
2253		gnpp = pio->io_private;
2254		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2255	}
2256
2257	gn = zio_gang_node_alloc(gnpp);
2258	gbh = gn->gn_gbh;
2259	bzero(gbh, SPA_GANGBLOCKSIZE);
2260
2261	/*
2262	 * Create the gang header.
2263	 */
2264	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2265	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2266
2267	/*
2268	 * Create and nowait the gang children.
2269	 */
2270	for (int g = 0; resid != 0; resid -= lsize, g++) {
2271		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2272		    SPA_MINBLOCKSIZE);
2273		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2274
2275		zp.zp_checksum = gio->io_prop.zp_checksum;
2276		zp.zp_compress = ZIO_COMPRESS_OFF;
2277		zp.zp_type = DMU_OT_NONE;
2278		zp.zp_level = 0;
2279		zp.zp_copies = gio->io_prop.zp_copies;
2280		zp.zp_dedup = B_FALSE;
2281		zp.zp_dedup_verify = B_FALSE;
2282		zp.zp_nopwrite = B_FALSE;
2283
2284		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2285		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2286		    zio_write_gang_member_ready, NULL, NULL, NULL,
2287		    &gn->gn_child[g], pio->io_priority,
2288		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2289
2290		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2291			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2292			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2293
2294			/*
2295			 * Gang children won't throttle but we should
2296			 * account for their work, so reserve an allocation
2297			 * slot for them here.
2298			 */
2299			VERIFY(metaslab_class_throttle_reserve(mc,
2300			    zp.zp_copies, cio, flags));
2301		}
2302		zio_nowait(cio);
2303	}
2304
2305	/*
2306	 * Set pio's pipeline to just wait for zio to finish.
2307	 */
2308	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2309
2310	zio_nowait(zio);
2311
2312	return (ZIO_PIPELINE_CONTINUE);
2313}
2314
2315/*
2316 * The zio_nop_write stage in the pipeline determines if allocating a
2317 * new bp is necessary.  The nopwrite feature can handle writes in
2318 * either syncing or open context (i.e. zil writes) and as a result is
2319 * mutually exclusive with dedup.
2320 *
2321 * By leveraging a cryptographically secure checksum, such as SHA256, we
2322 * can compare the checksums of the new data and the old to determine if
2323 * allocating a new block is required.  Note that our requirements for
2324 * cryptographic strength are fairly weak: there can't be any accidental
2325 * hash collisions, but we don't need to be secure against intentional
2326 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2327 * to write the file to begin with, and triggering an incorrect (hash
2328 * collision) nopwrite is no worse than simply writing to the file.
2329 * That said, there are no known attacks against the checksum algorithms
2330 * used for nopwrite, assuming that the salt and the checksums
2331 * themselves remain secret.
2332 */
2333static int
2334zio_nop_write(zio_t *zio)
2335{
2336	blkptr_t *bp = zio->io_bp;
2337	blkptr_t *bp_orig = &zio->io_bp_orig;
2338	zio_prop_t *zp = &zio->io_prop;
2339
2340	ASSERT(BP_GET_LEVEL(bp) == 0);
2341	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2342	ASSERT(zp->zp_nopwrite);
2343	ASSERT(!zp->zp_dedup);
2344	ASSERT(zio->io_bp_override == NULL);
2345	ASSERT(IO_IS_ALLOCATING(zio));
2346
2347	/*
2348	 * Check to see if the original bp and the new bp have matching
2349	 * characteristics (i.e. same checksum, compression algorithms, etc).
2350	 * If they don't then just continue with the pipeline which will
2351	 * allocate a new bp.
2352	 */
2353	if (BP_IS_HOLE(bp_orig) ||
2354	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2355	    ZCHECKSUM_FLAG_NOPWRITE) ||
2356	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2357	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2358	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2359	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2360		return (ZIO_PIPELINE_CONTINUE);
2361
2362	/*
2363	 * If the checksums match then reset the pipeline so that we
2364	 * avoid allocating a new bp and issuing any I/O.
2365	 */
2366	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2367		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2368		    ZCHECKSUM_FLAG_NOPWRITE);
2369		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2370		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2371		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2372		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2373		    sizeof (uint64_t)) == 0);
2374
2375		*bp = *bp_orig;
2376		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2377		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2378	}
2379
2380	return (ZIO_PIPELINE_CONTINUE);
2381}
2382
2383/*
2384 * ==========================================================================
2385 * Dedup
2386 * ==========================================================================
2387 */
2388static void
2389zio_ddt_child_read_done(zio_t *zio)
2390{
2391	blkptr_t *bp = zio->io_bp;
2392	ddt_entry_t *dde = zio->io_private;
2393	ddt_phys_t *ddp;
2394	zio_t *pio = zio_unique_parent(zio);
2395
2396	mutex_enter(&pio->io_lock);
2397	ddp = ddt_phys_select(dde, bp);
2398	if (zio->io_error == 0)
2399		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2400	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2401		dde->dde_repair_data = zio->io_data;
2402	else
2403		zio_buf_free(zio->io_data, zio->io_size);
2404	mutex_exit(&pio->io_lock);
2405}
2406
2407static int
2408zio_ddt_read_start(zio_t *zio)
2409{
2410	blkptr_t *bp = zio->io_bp;
2411
2412	ASSERT(BP_GET_DEDUP(bp));
2413	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2414	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2415
2416	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2417		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2418		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2419		ddt_phys_t *ddp = dde->dde_phys;
2420		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2421		blkptr_t blk;
2422
2423		ASSERT(zio->io_vsd == NULL);
2424		zio->io_vsd = dde;
2425
2426		if (ddp_self == NULL)
2427			return (ZIO_PIPELINE_CONTINUE);
2428
2429		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2430			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2431				continue;
2432			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2433			    &blk);
2434			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2435			    zio_buf_alloc(zio->io_size), zio->io_size,
2436			    zio_ddt_child_read_done, dde, zio->io_priority,
2437			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2438			    &zio->io_bookmark));
2439		}
2440		return (ZIO_PIPELINE_CONTINUE);
2441	}
2442
2443	zio_nowait(zio_read(zio, zio->io_spa, bp,
2444	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2445	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2446
2447	return (ZIO_PIPELINE_CONTINUE);
2448}
2449
2450static int
2451zio_ddt_read_done(zio_t *zio)
2452{
2453	blkptr_t *bp = zio->io_bp;
2454
2455	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2456		return (ZIO_PIPELINE_STOP);
2457
2458	ASSERT(BP_GET_DEDUP(bp));
2459	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2460	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2461
2462	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2463		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2464		ddt_entry_t *dde = zio->io_vsd;
2465		if (ddt == NULL) {
2466			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2467			return (ZIO_PIPELINE_CONTINUE);
2468		}
2469		if (dde == NULL) {
2470			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2471			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2472			return (ZIO_PIPELINE_STOP);
2473		}
2474		if (dde->dde_repair_data != NULL) {
2475			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2476			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2477		}
2478		ddt_repair_done(ddt, dde);
2479		zio->io_vsd = NULL;
2480	}
2481
2482	ASSERT(zio->io_vsd == NULL);
2483
2484	return (ZIO_PIPELINE_CONTINUE);
2485}
2486
2487static boolean_t
2488zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2489{
2490	spa_t *spa = zio->io_spa;
2491
2492	/*
2493	 * Note: we compare the original data, not the transformed data,
2494	 * because when zio->io_bp is an override bp, we will not have
2495	 * pushed the I/O transforms.  That's an important optimization
2496	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2497	 */
2498	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2499		zio_t *lio = dde->dde_lead_zio[p];
2500
2501		if (lio != NULL) {
2502			return (lio->io_orig_size != zio->io_orig_size ||
2503			    bcmp(zio->io_orig_data, lio->io_orig_data,
2504			    zio->io_orig_size) != 0);
2505		}
2506	}
2507
2508	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2509		ddt_phys_t *ddp = &dde->dde_phys[p];
2510
2511		if (ddp->ddp_phys_birth != 0) {
2512			arc_buf_t *abuf = NULL;
2513			arc_flags_t aflags = ARC_FLAG_WAIT;
2514			blkptr_t blk = *zio->io_bp;
2515			int error;
2516
2517			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2518
2519			ddt_exit(ddt);
2520
2521			error = arc_read(NULL, spa, &blk,
2522			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2523			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2524			    &aflags, &zio->io_bookmark);
2525
2526			if (error == 0) {
2527				if (arc_buf_size(abuf) != zio->io_orig_size ||
2528				    bcmp(abuf->b_data, zio->io_orig_data,
2529				    zio->io_orig_size) != 0)
2530					error = SET_ERROR(EEXIST);
2531				arc_buf_destroy(abuf, &abuf);
2532			}
2533
2534			ddt_enter(ddt);
2535			return (error != 0);
2536		}
2537	}
2538
2539	return (B_FALSE);
2540}
2541
2542static void
2543zio_ddt_child_write_ready(zio_t *zio)
2544{
2545	int p = zio->io_prop.zp_copies;
2546	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2547	ddt_entry_t *dde = zio->io_private;
2548	ddt_phys_t *ddp = &dde->dde_phys[p];
2549	zio_t *pio;
2550
2551	if (zio->io_error)
2552		return;
2553
2554	ddt_enter(ddt);
2555
2556	ASSERT(dde->dde_lead_zio[p] == zio);
2557
2558	ddt_phys_fill(ddp, zio->io_bp);
2559
2560	zio_link_t *zl = NULL;
2561	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2562		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2563
2564	ddt_exit(ddt);
2565}
2566
2567static void
2568zio_ddt_child_write_done(zio_t *zio)
2569{
2570	int p = zio->io_prop.zp_copies;
2571	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2572	ddt_entry_t *dde = zio->io_private;
2573	ddt_phys_t *ddp = &dde->dde_phys[p];
2574
2575	ddt_enter(ddt);
2576
2577	ASSERT(ddp->ddp_refcnt == 0);
2578	ASSERT(dde->dde_lead_zio[p] == zio);
2579	dde->dde_lead_zio[p] = NULL;
2580
2581	if (zio->io_error == 0) {
2582		zio_link_t *zl = NULL;
2583		while (zio_walk_parents(zio, &zl) != NULL)
2584			ddt_phys_addref(ddp);
2585	} else {
2586		ddt_phys_clear(ddp);
2587	}
2588
2589	ddt_exit(ddt);
2590}
2591
2592static void
2593zio_ddt_ditto_write_done(zio_t *zio)
2594{
2595	int p = DDT_PHYS_DITTO;
2596	zio_prop_t *zp = &zio->io_prop;
2597	blkptr_t *bp = zio->io_bp;
2598	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2599	ddt_entry_t *dde = zio->io_private;
2600	ddt_phys_t *ddp = &dde->dde_phys[p];
2601	ddt_key_t *ddk = &dde->dde_key;
2602
2603	ddt_enter(ddt);
2604
2605	ASSERT(ddp->ddp_refcnt == 0);
2606	ASSERT(dde->dde_lead_zio[p] == zio);
2607	dde->dde_lead_zio[p] = NULL;
2608
2609	if (zio->io_error == 0) {
2610		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2611		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2612		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2613		if (ddp->ddp_phys_birth != 0)
2614			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2615		ddt_phys_fill(ddp, bp);
2616	}
2617
2618	ddt_exit(ddt);
2619}
2620
2621static int
2622zio_ddt_write(zio_t *zio)
2623{
2624	spa_t *spa = zio->io_spa;
2625	blkptr_t *bp = zio->io_bp;
2626	uint64_t txg = zio->io_txg;
2627	zio_prop_t *zp = &zio->io_prop;
2628	int p = zp->zp_copies;
2629	int ditto_copies;
2630	zio_t *cio = NULL;
2631	zio_t *dio = NULL;
2632	ddt_t *ddt = ddt_select(spa, bp);
2633	ddt_entry_t *dde;
2634	ddt_phys_t *ddp;
2635
2636	ASSERT(BP_GET_DEDUP(bp));
2637	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2638	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2639
2640	ddt_enter(ddt);
2641	dde = ddt_lookup(ddt, bp, B_TRUE);
2642	ddp = &dde->dde_phys[p];
2643
2644	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2645		/*
2646		 * If we're using a weak checksum, upgrade to a strong checksum
2647		 * and try again.  If we're already using a strong checksum,
2648		 * we can't resolve it, so just convert to an ordinary write.
2649		 * (And automatically e-mail a paper to Nature?)
2650		 */
2651		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2652		    ZCHECKSUM_FLAG_DEDUP)) {
2653			zp->zp_checksum = spa_dedup_checksum(spa);
2654			zio_pop_transforms(zio);
2655			zio->io_stage = ZIO_STAGE_OPEN;
2656			BP_ZERO(bp);
2657		} else {
2658			zp->zp_dedup = B_FALSE;
2659		}
2660		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2661		ddt_exit(ddt);
2662		return (ZIO_PIPELINE_CONTINUE);
2663	}
2664
2665	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2666	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2667
2668	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2669	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2670		zio_prop_t czp = *zp;
2671
2672		czp.zp_copies = ditto_copies;
2673
2674		/*
2675		 * If we arrived here with an override bp, we won't have run
2676		 * the transform stack, so we won't have the data we need to
2677		 * generate a child i/o.  So, toss the override bp and restart.
2678		 * This is safe, because using the override bp is just an
2679		 * optimization; and it's rare, so the cost doesn't matter.
2680		 */
2681		if (zio->io_bp_override) {
2682			zio_pop_transforms(zio);
2683			zio->io_stage = ZIO_STAGE_OPEN;
2684			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2685			zio->io_bp_override = NULL;
2686			BP_ZERO(bp);
2687			ddt_exit(ddt);
2688			return (ZIO_PIPELINE_CONTINUE);
2689		}
2690
2691		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2692		    zio->io_orig_size, &czp, NULL, NULL,
2693		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2694		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2695
2696		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2697		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2698	}
2699
2700	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2701		if (ddp->ddp_phys_birth != 0)
2702			ddt_bp_fill(ddp, bp, txg);
2703		if (dde->dde_lead_zio[p] != NULL)
2704			zio_add_child(zio, dde->dde_lead_zio[p]);
2705		else
2706			ddt_phys_addref(ddp);
2707	} else if (zio->io_bp_override) {
2708		ASSERT(bp->blk_birth == txg);
2709		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2710		ddt_phys_fill(ddp, bp);
2711		ddt_phys_addref(ddp);
2712	} else {
2713		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2714		    zio->io_orig_size, zp,
2715		    zio_ddt_child_write_ready, NULL, NULL,
2716		    zio_ddt_child_write_done, dde, zio->io_priority,
2717		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2718
2719		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2720		dde->dde_lead_zio[p] = cio;
2721	}
2722
2723	ddt_exit(ddt);
2724
2725	if (cio)
2726		zio_nowait(cio);
2727	if (dio)
2728		zio_nowait(dio);
2729
2730	return (ZIO_PIPELINE_CONTINUE);
2731}
2732
2733ddt_entry_t *freedde; /* for debugging */
2734
2735static int
2736zio_ddt_free(zio_t *zio)
2737{
2738	spa_t *spa = zio->io_spa;
2739	blkptr_t *bp = zio->io_bp;
2740	ddt_t *ddt = ddt_select(spa, bp);
2741	ddt_entry_t *dde;
2742	ddt_phys_t *ddp;
2743
2744	ASSERT(BP_GET_DEDUP(bp));
2745	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2746
2747	ddt_enter(ddt);
2748	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2749	ddp = ddt_phys_select(dde, bp);
2750	ddt_phys_decref(ddp);
2751	ddt_exit(ddt);
2752
2753	return (ZIO_PIPELINE_CONTINUE);
2754}
2755
2756/*
2757 * ==========================================================================
2758 * Allocate and free blocks
2759 * ==========================================================================
2760 */
2761
2762static zio_t *
2763zio_io_to_allocate(spa_t *spa)
2764{
2765	zio_t *zio;
2766
2767	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2768
2769	zio = avl_first(&spa->spa_alloc_tree);
2770	if (zio == NULL)
2771		return (NULL);
2772
2773	ASSERT(IO_IS_ALLOCATING(zio));
2774
2775	/*
2776	 * Try to place a reservation for this zio. If we're unable to
2777	 * reserve then we throttle.
2778	 */
2779	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2780	    zio->io_prop.zp_copies, zio, 0)) {
2781		return (NULL);
2782	}
2783
2784	avl_remove(&spa->spa_alloc_tree, zio);
2785	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2786
2787	return (zio);
2788}
2789
2790static int
2791zio_dva_throttle(zio_t *zio)
2792{
2793	spa_t *spa = zio->io_spa;
2794	zio_t *nio;
2795
2796	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2797	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2798	    zio->io_child_type == ZIO_CHILD_GANG ||
2799	    zio->io_flags & ZIO_FLAG_NODATA) {
2800		return (ZIO_PIPELINE_CONTINUE);
2801	}
2802
2803	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2804
2805	ASSERT3U(zio->io_queued_timestamp, >, 0);
2806	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2807
2808	mutex_enter(&spa->spa_alloc_lock);
2809
2810	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2811	avl_add(&spa->spa_alloc_tree, zio);
2812
2813	nio = zio_io_to_allocate(zio->io_spa);
2814	mutex_exit(&spa->spa_alloc_lock);
2815
2816	if (nio == zio)
2817		return (ZIO_PIPELINE_CONTINUE);
2818
2819	if (nio != NULL) {
2820		ASSERT3U(nio->io_queued_timestamp, <=,
2821		    zio->io_queued_timestamp);
2822		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2823		/*
2824		 * We are passing control to a new zio so make sure that
2825		 * it is processed by a different thread. We do this to
2826		 * avoid stack overflows that can occur when parents are
2827		 * throttled and children are making progress. We allow
2828		 * it to go to the head of the taskq since it's already
2829		 * been waiting.
2830		 */
2831		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2832	}
2833	return (ZIO_PIPELINE_STOP);
2834}
2835
2836void
2837zio_allocate_dispatch(spa_t *spa)
2838{
2839	zio_t *zio;
2840
2841	mutex_enter(&spa->spa_alloc_lock);
2842	zio = zio_io_to_allocate(spa);
2843	mutex_exit(&spa->spa_alloc_lock);
2844	if (zio == NULL)
2845		return;
2846
2847	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2848	ASSERT0(zio->io_error);
2849	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2850}
2851
2852static int
2853zio_dva_allocate(zio_t *zio)
2854{
2855	spa_t *spa = zio->io_spa;
2856	metaslab_class_t *mc = spa_normal_class(spa);
2857	blkptr_t *bp = zio->io_bp;
2858	int error;
2859	int flags = 0;
2860
2861	if (zio->io_gang_leader == NULL) {
2862		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2863		zio->io_gang_leader = zio;
2864	}
2865
2866	ASSERT(BP_IS_HOLE(bp));
2867	ASSERT0(BP_GET_NDVAS(bp));
2868	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2869	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2870	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2871
2872	if (zio->io_flags & ZIO_FLAG_NODATA) {
2873		flags |= METASLAB_DONT_THROTTLE;
2874	}
2875	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2876		flags |= METASLAB_GANG_CHILD;
2877	}
2878	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2879		flags |= METASLAB_ASYNC_ALLOC;
2880	}
2881
2882	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2883	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2884	    &zio->io_alloc_list, zio);
2885
2886	if (error != 0) {
2887		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2888		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2889		    error);
2890		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2891			return (zio_write_gang_block(zio));
2892		zio->io_error = error;
2893	}
2894
2895	return (ZIO_PIPELINE_CONTINUE);
2896}
2897
2898static int
2899zio_dva_free(zio_t *zio)
2900{
2901	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2902
2903	return (ZIO_PIPELINE_CONTINUE);
2904}
2905
2906static int
2907zio_dva_claim(zio_t *zio)
2908{
2909	int error;
2910
2911	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2912	if (error)
2913		zio->io_error = error;
2914
2915	return (ZIO_PIPELINE_CONTINUE);
2916}
2917
2918/*
2919 * Undo an allocation.  This is used by zio_done() when an I/O fails
2920 * and we want to give back the block we just allocated.
2921 * This handles both normal blocks and gang blocks.
2922 */
2923static void
2924zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2925{
2926	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2927	ASSERT(zio->io_bp_override == NULL);
2928
2929	if (!BP_IS_HOLE(bp))
2930		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2931
2932	if (gn != NULL) {
2933		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2934			zio_dva_unallocate(zio, gn->gn_child[g],
2935			    &gn->gn_gbh->zg_blkptr[g]);
2936		}
2937	}
2938}
2939
2940/*
2941 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2942 */
2943int
2944zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2945    uint64_t size, boolean_t *slog)
2946{
2947	int error = 1;
2948	zio_alloc_list_t io_alloc_list;
2949
2950	ASSERT(txg > spa_syncing_txg(spa));
2951
2952	metaslab_trace_init(&io_alloc_list);
2953	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2954	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2955	if (error == 0) {
2956		*slog = TRUE;
2957	} else {
2958		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2959		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2960		    &io_alloc_list, NULL);
2961		if (error == 0)
2962			*slog = FALSE;
2963	}
2964	metaslab_trace_fini(&io_alloc_list);
2965
2966	if (error == 0) {
2967		BP_SET_LSIZE(new_bp, size);
2968		BP_SET_PSIZE(new_bp, size);
2969		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2970		BP_SET_CHECKSUM(new_bp,
2971		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2972		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2973		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2974		BP_SET_LEVEL(new_bp, 0);
2975		BP_SET_DEDUP(new_bp, 0);
2976		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2977	}
2978
2979	return (error);
2980}
2981
2982/*
2983 * Free an intent log block.
2984 */
2985void
2986zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2987{
2988	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2989	ASSERT(!BP_IS_GANG(bp));
2990
2991	zio_free(spa, txg, bp);
2992}
2993
2994/*
2995 * ==========================================================================
2996 * Read, write and delete to physical devices
2997 * ==========================================================================
2998 */
2999
3000
3001/*
3002 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3003 * stops after this stage and will resume upon I/O completion.
3004 * However, there are instances where the vdev layer may need to
3005 * continue the pipeline when an I/O was not issued. Since the I/O
3006 * that was sent to the vdev layer might be different than the one
3007 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3008 * force the underlying vdev layers to call either zio_execute() or
3009 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3010 */
3011static int
3012zio_vdev_io_start(zio_t *zio)
3013{
3014	vdev_t *vd = zio->io_vd;
3015	uint64_t align;
3016	spa_t *spa = zio->io_spa;
3017	int ret;
3018
3019	ASSERT(zio->io_error == 0);
3020	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3021
3022	if (vd == NULL) {
3023		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3024			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3025
3026		/*
3027		 * The mirror_ops handle multiple DVAs in a single BP.
3028		 */
3029		vdev_mirror_ops.vdev_op_io_start(zio);
3030		return (ZIO_PIPELINE_STOP);
3031	}
3032
3033	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
3034	    zio->io_priority == ZIO_PRIORITY_NOW) {
3035		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
3036		return (ZIO_PIPELINE_CONTINUE);
3037	}
3038
3039	ASSERT3P(zio->io_logical, !=, zio);
3040
3041	/*
3042	 * We keep track of time-sensitive I/Os so that the scan thread
3043	 * can quickly react to certain workloads.  In particular, we care
3044	 * about non-scrubbing, top-level reads and writes with the following
3045	 * characteristics:
3046	 *	- synchronous writes of user data to non-slog devices
3047	 *	- any reads of user data
3048	 * When these conditions are met, adjust the timestamp of spa_last_io
3049	 * which allows the scan thread to adjust its workload accordingly.
3050	 */
3051	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3052	    vd == vd->vdev_top && !vd->vdev_islog &&
3053	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3054	    zio->io_txg != spa_syncing_txg(spa)) {
3055		uint64_t old = spa->spa_last_io;
3056		uint64_t new = ddi_get_lbolt64();
3057		if (old != new)
3058			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3059	}
3060
3061	align = 1ULL << vd->vdev_top->vdev_ashift;
3062
3063	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3064	    P2PHASE(zio->io_size, align) != 0) {
3065		/* Transform logical writes to be a full physical block size. */
3066		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3067		char *abuf = NULL;
3068		if (zio->io_type == ZIO_TYPE_READ ||
3069		    zio->io_type == ZIO_TYPE_WRITE)
3070			abuf = zio_buf_alloc(asize);
3071		ASSERT(vd == vd->vdev_top);
3072		if (zio->io_type == ZIO_TYPE_WRITE) {
3073			bcopy(zio->io_data, abuf, zio->io_size);
3074			bzero(abuf + zio->io_size, asize - zio->io_size);
3075		}
3076		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
3077		    zio_subblock);
3078	}
3079
3080	/*
3081	 * If this is not a physical io, make sure that it is properly aligned
3082	 * before proceeding.
3083	 */
3084	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3085		ASSERT0(P2PHASE(zio->io_offset, align));
3086		ASSERT0(P2PHASE(zio->io_size, align));
3087	} else {
3088		/*
3089		 * For the physical io we allow alignment
3090		 * to a logical block size.
3091		 */
3092		uint64_t log_align =
3093		    1ULL << vd->vdev_top->vdev_logical_ashift;
3094		ASSERT0(P2PHASE(zio->io_offset, log_align));
3095		ASSERT0(P2PHASE(zio->io_size, log_align));
3096	}
3097
3098	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
3099
3100	/*
3101	 * If this is a repair I/O, and there's no self-healing involved --
3102	 * that is, we're just resilvering what we expect to resilver --
3103	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3104	 * This prevents spurious resilvering with nested replication.
3105	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3106	 * A is out of date, we'll read from C+D, then use the data to
3107	 * resilver A+B -- but we don't actually want to resilver B, just A.
3108	 * The top-level mirror has no way to know this, so instead we just
3109	 * discard unnecessary repairs as we work our way down the vdev tree.
3110	 * The same logic applies to any form of nested replication:
3111	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3112	 */
3113	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3114	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3115	    zio->io_txg != 0 &&	/* not a delegated i/o */
3116	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3117		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3118		zio_vdev_io_bypass(zio);
3119		return (ZIO_PIPELINE_CONTINUE);
3120	}
3121
3122	if (vd->vdev_ops->vdev_op_leaf) {
3123		switch (zio->io_type) {
3124		case ZIO_TYPE_READ:
3125			if (vdev_cache_read(zio))
3126				return (ZIO_PIPELINE_CONTINUE);
3127			/* FALLTHROUGH */
3128		case ZIO_TYPE_WRITE:
3129		case ZIO_TYPE_FREE:
3130			if ((zio = vdev_queue_io(zio)) == NULL)
3131				return (ZIO_PIPELINE_STOP);
3132
3133			if (!vdev_accessible(vd, zio)) {
3134				zio->io_error = SET_ERROR(ENXIO);
3135				zio_interrupt(zio);
3136				return (ZIO_PIPELINE_STOP);
3137			}
3138			break;
3139		}
3140		/*
3141		 * Note that we ignore repair writes for TRIM because they can
3142		 * conflict with normal writes. This isn't an issue because, by
3143		 * definition, we only repair blocks that aren't freed.
3144		 */
3145		if (zio->io_type == ZIO_TYPE_WRITE &&
3146		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3147		    !trim_map_write_start(zio))
3148			return (ZIO_PIPELINE_STOP);
3149	}
3150
3151	vd->vdev_ops->vdev_op_io_start(zio);
3152	return (ZIO_PIPELINE_STOP);
3153}
3154
3155static int
3156zio_vdev_io_done(zio_t *zio)
3157{
3158	vdev_t *vd = zio->io_vd;
3159	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3160	boolean_t unexpected_error = B_FALSE;
3161
3162	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3163		return (ZIO_PIPELINE_STOP);
3164
3165	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3166	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
3167
3168	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3169	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
3170	    zio->io_type == ZIO_TYPE_FREE)) {
3171
3172		if (zio->io_type == ZIO_TYPE_WRITE &&
3173		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
3174			trim_map_write_done(zio);
3175
3176		vdev_queue_io_done(zio);
3177
3178		if (zio->io_type == ZIO_TYPE_WRITE)
3179			vdev_cache_write(zio);
3180
3181		if (zio_injection_enabled && zio->io_error == 0)
3182			zio->io_error = zio_handle_device_injection(vd,
3183			    zio, EIO);
3184
3185		if (zio_injection_enabled && zio->io_error == 0)
3186			zio->io_error = zio_handle_label_injection(zio, EIO);
3187
3188		if (zio->io_error) {
3189			if (zio->io_error == ENOTSUP &&
3190			    zio->io_type == ZIO_TYPE_FREE) {
3191				/* Not all devices support TRIM. */
3192			} else if (!vdev_accessible(vd, zio)) {
3193				zio->io_error = SET_ERROR(ENXIO);
3194			} else {
3195				unexpected_error = B_TRUE;
3196			}
3197		}
3198	}
3199
3200	ops->vdev_op_io_done(zio);
3201
3202	if (unexpected_error)
3203		VERIFY(vdev_probe(vd, zio) == NULL);
3204
3205	return (ZIO_PIPELINE_CONTINUE);
3206}
3207
3208/*
3209 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3210 * disk, and use that to finish the checksum ereport later.
3211 */
3212static void
3213zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3214    const void *good_buf)
3215{
3216	/* no processing needed */
3217	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3218}
3219
3220/*ARGSUSED*/
3221void
3222zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3223{
3224	void *buf = zio_buf_alloc(zio->io_size);
3225
3226	bcopy(zio->io_data, buf, zio->io_size);
3227
3228	zcr->zcr_cbinfo = zio->io_size;
3229	zcr->zcr_cbdata = buf;
3230	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3231	zcr->zcr_free = zio_buf_free;
3232}
3233
3234static int
3235zio_vdev_io_assess(zio_t *zio)
3236{
3237	vdev_t *vd = zio->io_vd;
3238
3239	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3240		return (ZIO_PIPELINE_STOP);
3241
3242	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3243		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3244
3245	if (zio->io_vsd != NULL) {
3246		zio->io_vsd_ops->vsd_free(zio);
3247		zio->io_vsd = NULL;
3248	}
3249
3250	if (zio_injection_enabled && zio->io_error == 0)
3251		zio->io_error = zio_handle_fault_injection(zio, EIO);
3252
3253	if (zio->io_type == ZIO_TYPE_FREE &&
3254	    zio->io_priority != ZIO_PRIORITY_NOW) {
3255		switch (zio->io_error) {
3256		case 0:
3257			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
3258			ZIO_TRIM_STAT_BUMP(success);
3259			break;
3260		case EOPNOTSUPP:
3261			ZIO_TRIM_STAT_BUMP(unsupported);
3262			break;
3263		default:
3264			ZIO_TRIM_STAT_BUMP(failed);
3265			break;
3266		}
3267	}
3268
3269	/*
3270	 * If the I/O failed, determine whether we should attempt to retry it.
3271	 *
3272	 * On retry, we cut in line in the issue queue, since we don't want
3273	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3274	 */
3275	if (zio->io_error && vd == NULL &&
3276	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3277		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3278		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3279		zio->io_error = 0;
3280		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3281		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3282		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3283		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3284		    zio_requeue_io_start_cut_in_line);
3285		return (ZIO_PIPELINE_STOP);
3286	}
3287
3288	/*
3289	 * If we got an error on a leaf device, convert it to ENXIO
3290	 * if the device is not accessible at all.
3291	 */
3292	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3293	    !vdev_accessible(vd, zio))
3294		zio->io_error = SET_ERROR(ENXIO);
3295
3296	/*
3297	 * If we can't write to an interior vdev (mirror or RAID-Z),
3298	 * set vdev_cant_write so that we stop trying to allocate from it.
3299	 */
3300	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3301	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3302		vd->vdev_cant_write = B_TRUE;
3303	}
3304
3305	if (zio->io_error)
3306		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3307
3308	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3309	    zio->io_physdone != NULL) {
3310		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3311		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3312		zio->io_physdone(zio->io_logical);
3313	}
3314
3315	return (ZIO_PIPELINE_CONTINUE);
3316}
3317
3318void
3319zio_vdev_io_reissue(zio_t *zio)
3320{
3321	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3322	ASSERT(zio->io_error == 0);
3323
3324	zio->io_stage >>= 1;
3325}
3326
3327void
3328zio_vdev_io_redone(zio_t *zio)
3329{
3330	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3331
3332	zio->io_stage >>= 1;
3333}
3334
3335void
3336zio_vdev_io_bypass(zio_t *zio)
3337{
3338	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3339	ASSERT(zio->io_error == 0);
3340
3341	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3342	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3343}
3344
3345/*
3346 * ==========================================================================
3347 * Generate and verify checksums
3348 * ==========================================================================
3349 */
3350static int
3351zio_checksum_generate(zio_t *zio)
3352{
3353	blkptr_t *bp = zio->io_bp;
3354	enum zio_checksum checksum;
3355
3356	if (bp == NULL) {
3357		/*
3358		 * This is zio_write_phys().
3359		 * We're either generating a label checksum, or none at all.
3360		 */
3361		checksum = zio->io_prop.zp_checksum;
3362
3363		if (checksum == ZIO_CHECKSUM_OFF)
3364			return (ZIO_PIPELINE_CONTINUE);
3365
3366		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3367	} else {
3368		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3369			ASSERT(!IO_IS_ALLOCATING(zio));
3370			checksum = ZIO_CHECKSUM_GANG_HEADER;
3371		} else {
3372			checksum = BP_GET_CHECKSUM(bp);
3373		}
3374	}
3375
3376	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3377
3378	return (ZIO_PIPELINE_CONTINUE);
3379}
3380
3381static int
3382zio_checksum_verify(zio_t *zio)
3383{
3384	zio_bad_cksum_t info;
3385	blkptr_t *bp = zio->io_bp;
3386	int error;
3387
3388	ASSERT(zio->io_vd != NULL);
3389
3390	if (bp == NULL) {
3391		/*
3392		 * This is zio_read_phys().
3393		 * We're either verifying a label checksum, or nothing at all.
3394		 */
3395		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3396			return (ZIO_PIPELINE_CONTINUE);
3397
3398		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3399	}
3400
3401	if ((error = zio_checksum_error(zio, &info)) != 0) {
3402		zio->io_error = error;
3403		if (error == ECKSUM &&
3404		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3405			zfs_ereport_start_checksum(zio->io_spa,
3406			    zio->io_vd, zio, zio->io_offset,
3407			    zio->io_size, NULL, &info);
3408		}
3409	}
3410
3411	return (ZIO_PIPELINE_CONTINUE);
3412}
3413
3414/*
3415 * Called by RAID-Z to ensure we don't compute the checksum twice.
3416 */
3417void
3418zio_checksum_verified(zio_t *zio)
3419{
3420	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3421}
3422
3423/*
3424 * ==========================================================================
3425 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3426 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3427 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3428 * indicate errors that are specific to one I/O, and most likely permanent.
3429 * Any other error is presumed to be worse because we weren't expecting it.
3430 * ==========================================================================
3431 */
3432int
3433zio_worst_error(int e1, int e2)
3434{
3435	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3436	int r1, r2;
3437
3438	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3439		if (e1 == zio_error_rank[r1])
3440			break;
3441
3442	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3443		if (e2 == zio_error_rank[r2])
3444			break;
3445
3446	return (r1 > r2 ? e1 : e2);
3447}
3448
3449/*
3450 * ==========================================================================
3451 * I/O completion
3452 * ==========================================================================
3453 */
3454static int
3455zio_ready(zio_t *zio)
3456{
3457	blkptr_t *bp = zio->io_bp;
3458	zio_t *pio, *pio_next;
3459	zio_link_t *zl = NULL;
3460
3461	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3462	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3463		return (ZIO_PIPELINE_STOP);
3464
3465	if (zio->io_ready) {
3466		ASSERT(IO_IS_ALLOCATING(zio));
3467		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3468		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3469		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3470
3471		zio->io_ready(zio);
3472	}
3473
3474	if (bp != NULL && bp != &zio->io_bp_copy)
3475		zio->io_bp_copy = *bp;
3476
3477	if (zio->io_error != 0) {
3478		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3479
3480		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3481			ASSERT(IO_IS_ALLOCATING(zio));
3482			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3483			/*
3484			 * We were unable to allocate anything, unreserve and
3485			 * issue the next I/O to allocate.
3486			 */
3487			metaslab_class_throttle_unreserve(
3488			    spa_normal_class(zio->io_spa),
3489			    zio->io_prop.zp_copies, zio);
3490			zio_allocate_dispatch(zio->io_spa);
3491		}
3492	}
3493
3494	mutex_enter(&zio->io_lock);
3495	zio->io_state[ZIO_WAIT_READY] = 1;
3496	pio = zio_walk_parents(zio, &zl);
3497	mutex_exit(&zio->io_lock);
3498
3499	/*
3500	 * As we notify zio's parents, new parents could be added.
3501	 * New parents go to the head of zio's io_parent_list, however,
3502	 * so we will (correctly) not notify them.  The remainder of zio's
3503	 * io_parent_list, from 'pio_next' onward, cannot change because
3504	 * all parents must wait for us to be done before they can be done.
3505	 */
3506	for (; pio != NULL; pio = pio_next) {
3507		pio_next = zio_walk_parents(zio, &zl);
3508		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3509	}
3510
3511	if (zio->io_flags & ZIO_FLAG_NODATA) {
3512		if (BP_IS_GANG(bp)) {
3513			zio->io_flags &= ~ZIO_FLAG_NODATA;
3514		} else {
3515			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3516			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3517		}
3518	}
3519
3520	if (zio_injection_enabled &&
3521	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3522		zio_handle_ignored_writes(zio);
3523
3524	return (ZIO_PIPELINE_CONTINUE);
3525}
3526
3527/*
3528 * Update the allocation throttle accounting.
3529 */
3530static void
3531zio_dva_throttle_done(zio_t *zio)
3532{
3533	zio_t *lio = zio->io_logical;
3534	zio_t *pio = zio_unique_parent(zio);
3535	vdev_t *vd = zio->io_vd;
3536	int flags = METASLAB_ASYNC_ALLOC;
3537
3538	ASSERT3P(zio->io_bp, !=, NULL);
3539	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3540	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3541	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3542	ASSERT(vd != NULL);
3543	ASSERT3P(vd, ==, vd->vdev_top);
3544	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3545	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3546	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3547	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3548
3549	/*
3550	 * Parents of gang children can have two flavors -- ones that
3551	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3552	 * and ones that allocated the constituent blocks. The allocation
3553	 * throttle needs to know the allocating parent zio so we must find
3554	 * it here.
3555	 */
3556	if (pio->io_child_type == ZIO_CHILD_GANG) {
3557		/*
3558		 * If our parent is a rewrite gang child then our grandparent
3559		 * would have been the one that performed the allocation.
3560		 */
3561		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3562			pio = zio_unique_parent(pio);
3563		flags |= METASLAB_GANG_CHILD;
3564	}
3565
3566	ASSERT(IO_IS_ALLOCATING(pio));
3567	ASSERT3P(zio, !=, zio->io_logical);
3568	ASSERT(zio->io_logical != NULL);
3569	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3570	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3571
3572	mutex_enter(&pio->io_lock);
3573	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3574	mutex_exit(&pio->io_lock);
3575
3576	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3577	    1, pio);
3578
3579	/*
3580	 * Call into the pipeline to see if there is more work that
3581	 * needs to be done. If there is work to be done it will be
3582	 * dispatched to another taskq thread.
3583	 */
3584	zio_allocate_dispatch(zio->io_spa);
3585}
3586
3587static int
3588zio_done(zio_t *zio)
3589{
3590	spa_t *spa = zio->io_spa;
3591	zio_t *lio = zio->io_logical;
3592	blkptr_t *bp = zio->io_bp;
3593	vdev_t *vd = zio->io_vd;
3594	uint64_t psize = zio->io_size;
3595	zio_t *pio, *pio_next;
3596	metaslab_class_t *mc = spa_normal_class(spa);
3597	zio_link_t *zl = NULL;
3598
3599	/*
3600	 * If our children haven't all completed,
3601	 * wait for them and then repeat this pipeline stage.
3602	 */
3603	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3604	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3605	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3606	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3607		return (ZIO_PIPELINE_STOP);
3608
3609	/*
3610	 * If the allocation throttle is enabled, then update the accounting.
3611	 * We only track child I/Os that are part of an allocating async
3612	 * write. We must do this since the allocation is performed
3613	 * by the logical I/O but the actual write is done by child I/Os.
3614	 */
3615	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3616	    zio->io_child_type == ZIO_CHILD_VDEV) {
3617		ASSERT(mc->mc_alloc_throttle_enabled);
3618		zio_dva_throttle_done(zio);
3619	}
3620
3621	/*
3622	 * If the allocation throttle is enabled, verify that
3623	 * we have decremented the refcounts for every I/O that was throttled.
3624	 */
3625	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3626		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3627		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3628		ASSERT(bp != NULL);
3629		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3630		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3631	}
3632
3633	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3634		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3635			ASSERT(zio->io_children[c][w] == 0);
3636
3637	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3638		ASSERT(bp->blk_pad[0] == 0);
3639		ASSERT(bp->blk_pad[1] == 0);
3640		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3641		    (bp == zio_unique_parent(zio)->io_bp));
3642		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3643		    zio->io_bp_override == NULL &&
3644		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3645			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3646			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3647			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3648			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3649		}
3650		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3651			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3652	}
3653
3654	/*
3655	 * If there were child vdev/gang/ddt errors, they apply to us now.
3656	 */
3657	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3658	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3659	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3660
3661	/*
3662	 * If the I/O on the transformed data was successful, generate any
3663	 * checksum reports now while we still have the transformed data.
3664	 */
3665	if (zio->io_error == 0) {
3666		while (zio->io_cksum_report != NULL) {
3667			zio_cksum_report_t *zcr = zio->io_cksum_report;
3668			uint64_t align = zcr->zcr_align;
3669			uint64_t asize = P2ROUNDUP(psize, align);
3670			char *abuf = zio->io_data;
3671
3672			if (asize != psize) {
3673				abuf = zio_buf_alloc(asize);
3674				bcopy(zio->io_data, abuf, psize);
3675				bzero(abuf + psize, asize - psize);
3676			}
3677
3678			zio->io_cksum_report = zcr->zcr_next;
3679			zcr->zcr_next = NULL;
3680			zcr->zcr_finish(zcr, abuf);
3681			zfs_ereport_free_checksum(zcr);
3682
3683			if (asize != psize)
3684				zio_buf_free(abuf, asize);
3685		}
3686	}
3687
3688	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3689
3690	vdev_stat_update(zio, psize);
3691
3692	if (zio->io_error) {
3693		/*
3694		 * If this I/O is attached to a particular vdev,
3695		 * generate an error message describing the I/O failure
3696		 * at the block level.  We ignore these errors if the
3697		 * device is currently unavailable.
3698		 */
3699		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3700			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3701
3702		if ((zio->io_error == EIO || !(zio->io_flags &
3703		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3704		    zio == lio) {
3705			/*
3706			 * For logical I/O requests, tell the SPA to log the
3707			 * error and generate a logical data ereport.
3708			 */
3709			spa_log_error(spa, zio);
3710			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3711			    0, 0);
3712		}
3713	}
3714
3715	if (zio->io_error && zio == lio) {
3716		/*
3717		 * Determine whether zio should be reexecuted.  This will
3718		 * propagate all the way to the root via zio_notify_parent().
3719		 */
3720		ASSERT(vd == NULL && bp != NULL);
3721		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3722
3723		if (IO_IS_ALLOCATING(zio) &&
3724		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3725			if (zio->io_error != ENOSPC)
3726				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3727			else
3728				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3729		}
3730
3731		if ((zio->io_type == ZIO_TYPE_READ ||
3732		    zio->io_type == ZIO_TYPE_FREE) &&
3733		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3734		    zio->io_error == ENXIO &&
3735		    spa_load_state(spa) == SPA_LOAD_NONE &&
3736		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3737			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3738
3739		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3740			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3741
3742		/*
3743		 * Here is a possibly good place to attempt to do
3744		 * either combinatorial reconstruction or error correction
3745		 * based on checksums.  It also might be a good place
3746		 * to send out preliminary ereports before we suspend
3747		 * processing.
3748		 */
3749	}
3750
3751	/*
3752	 * If there were logical child errors, they apply to us now.
3753	 * We defer this until now to avoid conflating logical child
3754	 * errors with errors that happened to the zio itself when
3755	 * updating vdev stats and reporting FMA events above.
3756	 */
3757	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3758
3759	if ((zio->io_error || zio->io_reexecute) &&
3760	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3761	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3762		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3763
3764	zio_gang_tree_free(&zio->io_gang_tree);
3765
3766	/*
3767	 * Godfather I/Os should never suspend.
3768	 */
3769	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3770	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3771		zio->io_reexecute = 0;
3772
3773	if (zio->io_reexecute) {
3774		/*
3775		 * This is a logical I/O that wants to reexecute.
3776		 *
3777		 * Reexecute is top-down.  When an i/o fails, if it's not
3778		 * the root, it simply notifies its parent and sticks around.
3779		 * The parent, seeing that it still has children in zio_done(),
3780		 * does the same.  This percolates all the way up to the root.
3781		 * The root i/o will reexecute or suspend the entire tree.
3782		 *
3783		 * This approach ensures that zio_reexecute() honors
3784		 * all the original i/o dependency relationships, e.g.
3785		 * parents not executing until children are ready.
3786		 */
3787		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3788
3789		zio->io_gang_leader = NULL;
3790
3791		mutex_enter(&zio->io_lock);
3792		zio->io_state[ZIO_WAIT_DONE] = 1;
3793		mutex_exit(&zio->io_lock);
3794
3795		/*
3796		 * "The Godfather" I/O monitors its children but is
3797		 * not a true parent to them. It will track them through
3798		 * the pipeline but severs its ties whenever they get into
3799		 * trouble (e.g. suspended). This allows "The Godfather"
3800		 * I/O to return status without blocking.
3801		 */
3802		zl = NULL;
3803		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3804		    pio = pio_next) {
3805			zio_link_t *remove_zl = zl;
3806			pio_next = zio_walk_parents(zio, &zl);
3807
3808			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3809			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3810				zio_remove_child(pio, zio, remove_zl);
3811				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3812			}
3813		}
3814
3815		if ((pio = zio_unique_parent(zio)) != NULL) {
3816			/*
3817			 * We're not a root i/o, so there's nothing to do
3818			 * but notify our parent.  Don't propagate errors
3819			 * upward since we haven't permanently failed yet.
3820			 */
3821			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3822			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3823			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3824		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3825			/*
3826			 * We'd fail again if we reexecuted now, so suspend
3827			 * until conditions improve (e.g. device comes online).
3828			 */
3829			zio_suspend(spa, zio);
3830		} else {
3831			/*
3832			 * Reexecution is potentially a huge amount of work.
3833			 * Hand it off to the otherwise-unused claim taskq.
3834			 */
3835#if defined(illumos) || !defined(_KERNEL)
3836			ASSERT(zio->io_tqent.tqent_next == NULL);
3837#else
3838			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3839#endif
3840			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3841			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3842			    0, &zio->io_tqent);
3843		}
3844		return (ZIO_PIPELINE_STOP);
3845	}
3846
3847	ASSERT(zio->io_child_count == 0);
3848	ASSERT(zio->io_reexecute == 0);
3849	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3850
3851	/*
3852	 * Report any checksum errors, since the I/O is complete.
3853	 */
3854	while (zio->io_cksum_report != NULL) {
3855		zio_cksum_report_t *zcr = zio->io_cksum_report;
3856		zio->io_cksum_report = zcr->zcr_next;
3857		zcr->zcr_next = NULL;
3858		zcr->zcr_finish(zcr, NULL);
3859		zfs_ereport_free_checksum(zcr);
3860	}
3861
3862	/*
3863	 * It is the responsibility of the done callback to ensure that this
3864	 * particular zio is no longer discoverable for adoption, and as
3865	 * such, cannot acquire any new parents.
3866	 */
3867	if (zio->io_done)
3868		zio->io_done(zio);
3869
3870	mutex_enter(&zio->io_lock);
3871	zio->io_state[ZIO_WAIT_DONE] = 1;
3872	mutex_exit(&zio->io_lock);
3873
3874	zl = NULL;
3875	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3876		zio_link_t *remove_zl = zl;
3877		pio_next = zio_walk_parents(zio, &zl);
3878		zio_remove_child(pio, zio, remove_zl);
3879		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3880	}
3881
3882	if (zio->io_waiter != NULL) {
3883		mutex_enter(&zio->io_lock);
3884		zio->io_executor = NULL;
3885		cv_broadcast(&zio->io_cv);
3886		mutex_exit(&zio->io_lock);
3887	} else {
3888		zio_destroy(zio);
3889	}
3890
3891	return (ZIO_PIPELINE_STOP);
3892}
3893
3894/*
3895 * ==========================================================================
3896 * I/O pipeline definition
3897 * ==========================================================================
3898 */
3899static zio_pipe_stage_t *zio_pipeline[] = {
3900	NULL,
3901	zio_read_bp_init,
3902	zio_write_bp_init,
3903	zio_free_bp_init,
3904	zio_issue_async,
3905	zio_write_compress,
3906	zio_checksum_generate,
3907	zio_nop_write,
3908	zio_ddt_read_start,
3909	zio_ddt_read_done,
3910	zio_ddt_write,
3911	zio_ddt_free,
3912	zio_gang_assemble,
3913	zio_gang_issue,
3914	zio_dva_throttle,
3915	zio_dva_allocate,
3916	zio_dva_free,
3917	zio_dva_claim,
3918	zio_ready,
3919	zio_vdev_io_start,
3920	zio_vdev_io_done,
3921	zio_vdev_io_assess,
3922	zio_checksum_verify,
3923	zio_done
3924};
3925
3926
3927
3928
3929/*
3930 * Compare two zbookmark_phys_t's to see which we would reach first in a
3931 * pre-order traversal of the object tree.
3932 *
3933 * This is simple in every case aside from the meta-dnode object. For all other
3934 * objects, we traverse them in order (object 1 before object 2, and so on).
3935 * However, all of these objects are traversed while traversing object 0, since
3936 * the data it points to is the list of objects.  Thus, we need to convert to a
3937 * canonical representation so we can compare meta-dnode bookmarks to
3938 * non-meta-dnode bookmarks.
3939 *
3940 * We do this by calculating "equivalents" for each field of the zbookmark.
3941 * zbookmarks outside of the meta-dnode use their own object and level, and
3942 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3943 * blocks this bookmark refers to) by multiplying their blkid by their span
3944 * (the number of L0 blocks contained within one block at their level).
3945 * zbookmarks inside the meta-dnode calculate their object equivalent
3946 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3947 * level + 1<<31 (any value larger than a level could ever be) for their level.
3948 * This causes them to always compare before a bookmark in their object
3949 * equivalent, compare appropriately to bookmarks in other objects, and to
3950 * compare appropriately to other bookmarks in the meta-dnode.
3951 */
3952int
3953zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3954    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3955{
3956	/*
3957	 * These variables represent the "equivalent" values for the zbookmark,
3958	 * after converting zbookmarks inside the meta dnode to their
3959	 * normal-object equivalents.
3960	 */
3961	uint64_t zb1obj, zb2obj;
3962	uint64_t zb1L0, zb2L0;
3963	uint64_t zb1level, zb2level;
3964
3965	if (zb1->zb_object == zb2->zb_object &&
3966	    zb1->zb_level == zb2->zb_level &&
3967	    zb1->zb_blkid == zb2->zb_blkid)
3968		return (0);
3969
3970	/*
3971	 * BP_SPANB calculates the span in blocks.
3972	 */
3973	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3974	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3975
3976	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3977		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3978		zb1L0 = 0;
3979		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3980	} else {
3981		zb1obj = zb1->zb_object;
3982		zb1level = zb1->zb_level;
3983	}
3984
3985	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3986		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3987		zb2L0 = 0;
3988		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3989	} else {
3990		zb2obj = zb2->zb_object;
3991		zb2level = zb2->zb_level;
3992	}
3993
3994	/* Now that we have a canonical representation, do the comparison. */
3995	if (zb1obj != zb2obj)
3996		return (zb1obj < zb2obj ? -1 : 1);
3997	else if (zb1L0 != zb2L0)
3998		return (zb1L0 < zb2L0 ? -1 : 1);
3999	else if (zb1level != zb2level)
4000		return (zb1level > zb2level ? -1 : 1);
4001	/*
4002	 * This can (theoretically) happen if the bookmarks have the same object
4003	 * and level, but different blkids, if the block sizes are not the same.
4004	 * There is presently no way to change the indirect block sizes
4005	 */
4006	return (0);
4007}
4008
4009/*
4010 *  This function checks the following: given that last_block is the place that
4011 *  our traversal stopped last time, does that guarantee that we've visited
4012 *  every node under subtree_root?  Therefore, we can't just use the raw output
4013 *  of zbookmark_compare.  We have to pass in a modified version of
4014 *  subtree_root; by incrementing the block id, and then checking whether
4015 *  last_block is before or equal to that, we can tell whether or not having
4016 *  visited last_block implies that all of subtree_root's children have been
4017 *  visited.
4018 */
4019boolean_t
4020zbookmark_subtree_completed(const dnode_phys_t *dnp,
4021    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4022{
4023	zbookmark_phys_t mod_zb = *subtree_root;
4024	mod_zb.zb_blkid++;
4025	ASSERT(last_block->zb_level == 0);
4026
4027	/* The objset_phys_t isn't before anything. */
4028	if (dnp == NULL)
4029		return (B_FALSE);
4030
4031	/*
4032	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4033	 * data block size in sectors, because that variable is only used if
4034	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4035	 * know without examining it what object it refers to, and there's no
4036	 * harm in passing in this value in other cases, we always pass it in.
4037	 *
4038	 * We pass in 0 for the indirect block size shift because zb2 must be
4039	 * level 0.  The indirect block size is only used to calculate the span
4040	 * of the bookmark, but since the bookmark must be level 0, the span is
4041	 * always 1, so the math works out.
4042	 *
4043	 * If you make changes to how the zbookmark_compare code works, be sure
4044	 * to make sure that this code still works afterwards.
4045	 */
4046	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4047	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4048	    last_block) <= 0);
4049}
4050