zfs_vnops.c revision 272467
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sched.h>
75#include <sys/acl.h>
76#include <vm/vm_param.h>
77#include <vm/vm_pageout.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory.  The example below illustrates the following Big Rules:
89 *
90 *  (1)	A check must be made in each zfs thread for a mounted file system.
91 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94 *	can return EIO from the calling function.
95 *
96 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 *	First, if it's the last reference, the vnode/znode
99 *	can be freed, so the zp may point to freed memory.  Second, the last
100 *	reference will call zfs_zinactive(), which may induce a lot of work --
101 *	pushing cached pages (which acquires range locks) and syncing out
102 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103 *	which could deadlock the system if you were already holding one.
104 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105 *
106 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107 *	as they can span dmu_tx_assign() calls.
108 *
109 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 *      dmu_tx_assign().  This is critical because we don't want to block
111 *      while holding locks.
112 *
113 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
114 *	reduces lock contention and CPU usage when we must wait (note that if
115 *	throughput is constrained by the storage, nearly every transaction
116 *	must wait).
117 *
118 *      Note, in particular, that if a lock is sometimes acquired before
119 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120 *      to use a non-blocking assign can deadlock the system.  The scenario:
121 *
122 *	Thread A has grabbed a lock before calling dmu_tx_assign().
123 *	Thread B is in an already-assigned tx, and blocks for this lock.
124 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 *	forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
128 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
129 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 *	to indicate that this operation has already called dmu_tx_wait().
131 *	This will ensure that we don't retry forever, waiting a short bit
132 *	each time.
133 *
134 *  (5)	If the operation succeeded, generate the intent log entry for it
135 *	before dropping locks.  This ensures that the ordering of events
136 *	in the intent log matches the order in which they actually occurred.
137 *	During ZIL replay the zfs_log_* functions will update the sequence
138 *	number to indicate the zil transaction has replayed.
139 *
140 *  (6)	At the end of each vnode op, the DMU tx must always commit,
141 *	regardless of whether there were any errors.
142 *
143 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144 *	to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
149 * top:
150 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
151 *	rw_enter(...);			// grab any other locks you need
152 *	tx = dmu_tx_create(...);	// get DMU tx
153 *	dmu_tx_hold_*();		// hold each object you might modify
154 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 *	if (error) {
156 *		rw_exit(...);		// drop locks
157 *		zfs_dirent_unlock(dl);	// unlock directory entry
158 *		VN_RELE(...);		// release held vnodes
159 *		if (error == ERESTART) {
160 *			waited = B_TRUE;
161 *			dmu_tx_wait(tx);
162 *			dmu_tx_abort(tx);
163 *			goto top;
164 *		}
165 *		dmu_tx_abort(tx);	// abort DMU tx
166 *		ZFS_EXIT(zfsvfs);	// finished in zfs
167 *		return (error);		// really out of space
168 *	}
169 *	error = do_real_work();		// do whatever this VOP does
170 *	if (error == 0)
171 *		zfs_log_*(...);		// on success, make ZIL entry
172 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
173 *	rw_exit(...);			// drop locks
174 *	zfs_dirent_unlock(dl);		// unlock directory entry
175 *	VN_RELE(...);			// release held vnodes
176 *	zil_commit(zilog, foid);	// synchronous when necessary
177 *	ZFS_EXIT(zfsvfs);		// finished in zfs
178 *	return (error);			// done, report error
179 */
180
181/* ARGSUSED */
182static int
183zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
184{
185	znode_t	*zp = VTOZ(*vpp);
186	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
187
188	ZFS_ENTER(zfsvfs);
189	ZFS_VERIFY_ZP(zp);
190
191	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192	    ((flag & FAPPEND) == 0)) {
193		ZFS_EXIT(zfsvfs);
194		return (SET_ERROR(EPERM));
195	}
196
197	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
198	    ZTOV(zp)->v_type == VREG &&
199	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200		if (fs_vscan(*vpp, cr, 0) != 0) {
201			ZFS_EXIT(zfsvfs);
202			return (SET_ERROR(EACCES));
203		}
204	}
205
206	/* Keep a count of the synchronous opens in the znode */
207	if (flag & (FSYNC | FDSYNC))
208		atomic_inc_32(&zp->z_sync_cnt);
209
210	ZFS_EXIT(zfsvfs);
211	return (0);
212}
213
214/* ARGSUSED */
215static int
216zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
217    caller_context_t *ct)
218{
219	znode_t	*zp = VTOZ(vp);
220	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
221
222	/*
223	 * Clean up any locks held by this process on the vp.
224	 */
225	cleanlocks(vp, ddi_get_pid(), 0);
226	cleanshares(vp, ddi_get_pid());
227
228	ZFS_ENTER(zfsvfs);
229	ZFS_VERIFY_ZP(zp);
230
231	/* Decrement the synchronous opens in the znode */
232	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
233		atomic_dec_32(&zp->z_sync_cnt);
234
235	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
236	    ZTOV(zp)->v_type == VREG &&
237	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
238		VERIFY(fs_vscan(vp, cr, 1) == 0);
239
240	ZFS_EXIT(zfsvfs);
241	return (0);
242}
243
244/*
245 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
246 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
247 */
248static int
249zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
250{
251	znode_t	*zp = VTOZ(vp);
252	uint64_t noff = (uint64_t)*off; /* new offset */
253	uint64_t file_sz;
254	int error;
255	boolean_t hole;
256
257	file_sz = zp->z_size;
258	if (noff >= file_sz)  {
259		return (SET_ERROR(ENXIO));
260	}
261
262	if (cmd == _FIO_SEEK_HOLE)
263		hole = B_TRUE;
264	else
265		hole = B_FALSE;
266
267	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
268
269	if (error == ESRCH)
270		return (SET_ERROR(ENXIO));
271
272	/*
273	 * We could find a hole that begins after the logical end-of-file,
274	 * because dmu_offset_next() only works on whole blocks.  If the
275	 * EOF falls mid-block, then indicate that the "virtual hole"
276	 * at the end of the file begins at the logical EOF, rather than
277	 * at the end of the last block.
278	 */
279	if (noff > file_sz) {
280		ASSERT(hole);
281		noff = file_sz;
282	}
283
284	if (noff < *off)
285		return (error);
286	*off = noff;
287	return (error);
288}
289
290/* ARGSUSED */
291static int
292zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
293    int *rvalp, caller_context_t *ct)
294{
295	offset_t off;
296	int error;
297	zfsvfs_t *zfsvfs;
298	znode_t *zp;
299
300	switch (com) {
301	case _FIOFFS:
302		return (0);
303
304		/*
305		 * The following two ioctls are used by bfu.  Faking out,
306		 * necessary to avoid bfu errors.
307		 */
308	case _FIOGDIO:
309	case _FIOSDIO:
310		return (0);
311
312	case _FIO_SEEK_DATA:
313	case _FIO_SEEK_HOLE:
314#ifdef sun
315		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
316			return (SET_ERROR(EFAULT));
317#else
318		off = *(offset_t *)data;
319#endif
320		zp = VTOZ(vp);
321		zfsvfs = zp->z_zfsvfs;
322		ZFS_ENTER(zfsvfs);
323		ZFS_VERIFY_ZP(zp);
324
325		/* offset parameter is in/out */
326		error = zfs_holey(vp, com, &off);
327		ZFS_EXIT(zfsvfs);
328		if (error)
329			return (error);
330#ifdef sun
331		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
332			return (SET_ERROR(EFAULT));
333#else
334		*(offset_t *)data = off;
335#endif
336		return (0);
337	}
338	return (SET_ERROR(ENOTTY));
339}
340
341static vm_page_t
342page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
343{
344	vm_object_t obj;
345	vm_page_t pp;
346	int64_t end;
347
348	/*
349	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
350	 * aligned boundaries, if the range is not aligned.  As a result a
351	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
352	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
353	 * the whole page would be considred clean despite have some dirty data.
354	 * For this reason we should shrink the range to DEV_BSIZE aligned
355	 * boundaries before calling vm_page_clear_dirty.
356	 */
357	end = rounddown2(off + nbytes, DEV_BSIZE);
358	off = roundup2(off, DEV_BSIZE);
359	nbytes = end - off;
360
361	obj = vp->v_object;
362	zfs_vmobject_assert_wlocked(obj);
363
364	for (;;) {
365		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
366		    pp->valid) {
367			if (vm_page_xbusied(pp)) {
368				/*
369				 * Reference the page before unlocking and
370				 * sleeping so that the page daemon is less
371				 * likely to reclaim it.
372				 */
373				vm_page_reference(pp);
374				vm_page_lock(pp);
375				zfs_vmobject_wunlock(obj);
376				vm_page_busy_sleep(pp, "zfsmwb");
377				zfs_vmobject_wlock(obj);
378				continue;
379			}
380			vm_page_sbusy(pp);
381		} else if (pp == NULL) {
382			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
383			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
384			    VM_ALLOC_SBUSY);
385		} else {
386			ASSERT(pp != NULL && !pp->valid);
387			pp = NULL;
388		}
389
390		if (pp != NULL) {
391			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
392			vm_object_pip_add(obj, 1);
393			pmap_remove_write(pp);
394			if (nbytes != 0)
395				vm_page_clear_dirty(pp, off, nbytes);
396		}
397		break;
398	}
399	return (pp);
400}
401
402static void
403page_unbusy(vm_page_t pp)
404{
405
406	vm_page_sunbusy(pp);
407	vm_object_pip_subtract(pp->object, 1);
408}
409
410static vm_page_t
411page_hold(vnode_t *vp, int64_t start)
412{
413	vm_object_t obj;
414	vm_page_t pp;
415
416	obj = vp->v_object;
417	zfs_vmobject_assert_wlocked(obj);
418
419	for (;;) {
420		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
421		    pp->valid) {
422			if (vm_page_xbusied(pp)) {
423				/*
424				 * Reference the page before unlocking and
425				 * sleeping so that the page daemon is less
426				 * likely to reclaim it.
427				 */
428				vm_page_reference(pp);
429				vm_page_lock(pp);
430				zfs_vmobject_wunlock(obj);
431				vm_page_busy_sleep(pp, "zfsmwb");
432				zfs_vmobject_wlock(obj);
433				continue;
434			}
435
436			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
437			vm_page_lock(pp);
438			vm_page_hold(pp);
439			vm_page_unlock(pp);
440
441		} else
442			pp = NULL;
443		break;
444	}
445	return (pp);
446}
447
448static void
449page_unhold(vm_page_t pp)
450{
451
452	vm_page_lock(pp);
453	vm_page_unhold(pp);
454	vm_page_unlock(pp);
455}
456
457/*
458 * When a file is memory mapped, we must keep the IO data synchronized
459 * between the DMU cache and the memory mapped pages.  What this means:
460 *
461 * On Write:	If we find a memory mapped page, we write to *both*
462 *		the page and the dmu buffer.
463 */
464static void
465update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
466    int segflg, dmu_tx_t *tx)
467{
468	vm_object_t obj;
469	struct sf_buf *sf;
470	caddr_t va;
471	int off;
472
473	ASSERT(segflg != UIO_NOCOPY);
474	ASSERT(vp->v_mount != NULL);
475	obj = vp->v_object;
476	ASSERT(obj != NULL);
477
478	off = start & PAGEOFFSET;
479	zfs_vmobject_wlock(obj);
480	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
481		vm_page_t pp;
482		int nbytes = imin(PAGESIZE - off, len);
483
484		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
485			zfs_vmobject_wunlock(obj);
486
487			va = zfs_map_page(pp, &sf);
488			(void) dmu_read(os, oid, start+off, nbytes,
489			    va+off, DMU_READ_PREFETCH);;
490			zfs_unmap_page(sf);
491
492			zfs_vmobject_wlock(obj);
493			page_unbusy(pp);
494		}
495		len -= nbytes;
496		off = 0;
497	}
498	vm_object_pip_wakeupn(obj, 0);
499	zfs_vmobject_wunlock(obj);
500}
501
502/*
503 * Read with UIO_NOCOPY flag means that sendfile(2) requests
504 * ZFS to populate a range of page cache pages with data.
505 *
506 * NOTE: this function could be optimized to pre-allocate
507 * all pages in advance, drain exclusive busy on all of them,
508 * map them into contiguous KVA region and populate them
509 * in one single dmu_read() call.
510 */
511static int
512mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
513{
514	znode_t *zp = VTOZ(vp);
515	objset_t *os = zp->z_zfsvfs->z_os;
516	struct sf_buf *sf;
517	vm_object_t obj;
518	vm_page_t pp;
519	int64_t start;
520	caddr_t va;
521	int len = nbytes;
522	int off;
523	int error = 0;
524
525	ASSERT(uio->uio_segflg == UIO_NOCOPY);
526	ASSERT(vp->v_mount != NULL);
527	obj = vp->v_object;
528	ASSERT(obj != NULL);
529	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
530
531	zfs_vmobject_wlock(obj);
532	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
533		int bytes = MIN(PAGESIZE, len);
534
535		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
536		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
537		if (pp->valid == 0) {
538			zfs_vmobject_wunlock(obj);
539			va = zfs_map_page(pp, &sf);
540			error = dmu_read(os, zp->z_id, start, bytes, va,
541			    DMU_READ_PREFETCH);
542			if (bytes != PAGESIZE && error == 0)
543				bzero(va + bytes, PAGESIZE - bytes);
544			zfs_unmap_page(sf);
545			zfs_vmobject_wlock(obj);
546			vm_page_sunbusy(pp);
547			vm_page_lock(pp);
548			if (error) {
549				if (pp->wire_count == 0 && pp->valid == 0 &&
550				    !vm_page_busied(pp))
551					vm_page_free(pp);
552			} else {
553				pp->valid = VM_PAGE_BITS_ALL;
554				vm_page_activate(pp);
555			}
556			vm_page_unlock(pp);
557		} else {
558			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
559			vm_page_sunbusy(pp);
560		}
561		if (error)
562			break;
563		uio->uio_resid -= bytes;
564		uio->uio_offset += bytes;
565		len -= bytes;
566	}
567	zfs_vmobject_wunlock(obj);
568	return (error);
569}
570
571/*
572 * When a file is memory mapped, we must keep the IO data synchronized
573 * between the DMU cache and the memory mapped pages.  What this means:
574 *
575 * On Read:	We "read" preferentially from memory mapped pages,
576 *		else we default from the dmu buffer.
577 *
578 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
579 *	 the file is memory mapped.
580 */
581static int
582mappedread(vnode_t *vp, int nbytes, uio_t *uio)
583{
584	znode_t *zp = VTOZ(vp);
585	objset_t *os = zp->z_zfsvfs->z_os;
586	vm_object_t obj;
587	int64_t start;
588	caddr_t va;
589	int len = nbytes;
590	int off;
591	int error = 0;
592
593	ASSERT(vp->v_mount != NULL);
594	obj = vp->v_object;
595	ASSERT(obj != NULL);
596
597	start = uio->uio_loffset;
598	off = start & PAGEOFFSET;
599	zfs_vmobject_wlock(obj);
600	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
601		vm_page_t pp;
602		uint64_t bytes = MIN(PAGESIZE - off, len);
603
604		if (pp = page_hold(vp, start)) {
605			struct sf_buf *sf;
606			caddr_t va;
607
608			zfs_vmobject_wunlock(obj);
609			va = zfs_map_page(pp, &sf);
610			error = uiomove(va + off, bytes, UIO_READ, uio);
611			zfs_unmap_page(sf);
612			zfs_vmobject_wlock(obj);
613			page_unhold(pp);
614		} else {
615			zfs_vmobject_wunlock(obj);
616			error = dmu_read_uio(os, zp->z_id, uio, bytes);
617			zfs_vmobject_wlock(obj);
618		}
619		len -= bytes;
620		off = 0;
621		if (error)
622			break;
623	}
624	zfs_vmobject_wunlock(obj);
625	return (error);
626}
627
628offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
629
630/*
631 * Read bytes from specified file into supplied buffer.
632 *
633 *	IN:	vp	- vnode of file to be read from.
634 *		uio	- structure supplying read location, range info,
635 *			  and return buffer.
636 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
637 *		cr	- credentials of caller.
638 *		ct	- caller context
639 *
640 *	OUT:	uio	- updated offset and range, buffer filled.
641 *
642 *	RETURN:	0 on success, error code on failure.
643 *
644 * Side Effects:
645 *	vp - atime updated if byte count > 0
646 */
647/* ARGSUSED */
648static int
649zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
650{
651	znode_t		*zp = VTOZ(vp);
652	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
653	objset_t	*os;
654	ssize_t		n, nbytes;
655	int		error = 0;
656	rl_t		*rl;
657	xuio_t		*xuio = NULL;
658
659	ZFS_ENTER(zfsvfs);
660	ZFS_VERIFY_ZP(zp);
661	os = zfsvfs->z_os;
662
663	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
664		ZFS_EXIT(zfsvfs);
665		return (SET_ERROR(EACCES));
666	}
667
668	/*
669	 * Validate file offset
670	 */
671	if (uio->uio_loffset < (offset_t)0) {
672		ZFS_EXIT(zfsvfs);
673		return (SET_ERROR(EINVAL));
674	}
675
676	/*
677	 * Fasttrack empty reads
678	 */
679	if (uio->uio_resid == 0) {
680		ZFS_EXIT(zfsvfs);
681		return (0);
682	}
683
684	/*
685	 * Check for mandatory locks
686	 */
687	if (MANDMODE(zp->z_mode)) {
688		if (error = chklock(vp, FREAD,
689		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
690			ZFS_EXIT(zfsvfs);
691			return (error);
692		}
693	}
694
695	/*
696	 * If we're in FRSYNC mode, sync out this znode before reading it.
697	 */
698	if (zfsvfs->z_log &&
699	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
700		zil_commit(zfsvfs->z_log, zp->z_id);
701
702	/*
703	 * Lock the range against changes.
704	 */
705	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
706
707	/*
708	 * If we are reading past end-of-file we can skip
709	 * to the end; but we might still need to set atime.
710	 */
711	if (uio->uio_loffset >= zp->z_size) {
712		error = 0;
713		goto out;
714	}
715
716	ASSERT(uio->uio_loffset < zp->z_size);
717	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
718
719#ifdef sun
720	if ((uio->uio_extflg == UIO_XUIO) &&
721	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
722		int nblk;
723		int blksz = zp->z_blksz;
724		uint64_t offset = uio->uio_loffset;
725
726		xuio = (xuio_t *)uio;
727		if ((ISP2(blksz))) {
728			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
729			    blksz)) / blksz;
730		} else {
731			ASSERT(offset + n <= blksz);
732			nblk = 1;
733		}
734		(void) dmu_xuio_init(xuio, nblk);
735
736		if (vn_has_cached_data(vp)) {
737			/*
738			 * For simplicity, we always allocate a full buffer
739			 * even if we only expect to read a portion of a block.
740			 */
741			while (--nblk >= 0) {
742				(void) dmu_xuio_add(xuio,
743				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
744				    blksz), 0, blksz);
745			}
746		}
747	}
748#endif	/* sun */
749
750	while (n > 0) {
751		nbytes = MIN(n, zfs_read_chunk_size -
752		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
753
754#ifdef __FreeBSD__
755		if (uio->uio_segflg == UIO_NOCOPY)
756			error = mappedread_sf(vp, nbytes, uio);
757		else
758#endif /* __FreeBSD__ */
759		if (vn_has_cached_data(vp))
760			error = mappedread(vp, nbytes, uio);
761		else
762			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
763		if (error) {
764			/* convert checksum errors into IO errors */
765			if (error == ECKSUM)
766				error = SET_ERROR(EIO);
767			break;
768		}
769
770		n -= nbytes;
771	}
772out:
773	zfs_range_unlock(rl);
774
775	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
776	ZFS_EXIT(zfsvfs);
777	return (error);
778}
779
780/*
781 * Write the bytes to a file.
782 *
783 *	IN:	vp	- vnode of file to be written to.
784 *		uio	- structure supplying write location, range info,
785 *			  and data buffer.
786 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
787 *			  set if in append mode.
788 *		cr	- credentials of caller.
789 *		ct	- caller context (NFS/CIFS fem monitor only)
790 *
791 *	OUT:	uio	- updated offset and range.
792 *
793 *	RETURN:	0 on success, error code on failure.
794 *
795 * Timestamps:
796 *	vp - ctime|mtime updated if byte count > 0
797 */
798
799/* ARGSUSED */
800static int
801zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
802{
803	znode_t		*zp = VTOZ(vp);
804	rlim64_t	limit = MAXOFFSET_T;
805	ssize_t		start_resid = uio->uio_resid;
806	ssize_t		tx_bytes;
807	uint64_t	end_size;
808	dmu_tx_t	*tx;
809	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
810	zilog_t		*zilog;
811	offset_t	woff;
812	ssize_t		n, nbytes;
813	rl_t		*rl;
814	int		max_blksz = zfsvfs->z_max_blksz;
815	int		error = 0;
816	arc_buf_t	*abuf;
817	iovec_t		*aiov = NULL;
818	xuio_t		*xuio = NULL;
819	int		i_iov = 0;
820	int		iovcnt = uio->uio_iovcnt;
821	iovec_t		*iovp = uio->uio_iov;
822	int		write_eof;
823	int		count = 0;
824	sa_bulk_attr_t	bulk[4];
825	uint64_t	mtime[2], ctime[2];
826
827	/*
828	 * Fasttrack empty write
829	 */
830	n = start_resid;
831	if (n == 0)
832		return (0);
833
834	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
835		limit = MAXOFFSET_T;
836
837	ZFS_ENTER(zfsvfs);
838	ZFS_VERIFY_ZP(zp);
839
840	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
841	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
842	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
843	    &zp->z_size, 8);
844	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
845	    &zp->z_pflags, 8);
846
847	/*
848	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
849	 * callers might not be able to detect properly that we are read-only,
850	 * so check it explicitly here.
851	 */
852	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
853		ZFS_EXIT(zfsvfs);
854		return (SET_ERROR(EROFS));
855	}
856
857	/*
858	 * If immutable or not appending then return EPERM
859	 */
860	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
861	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
862	    (uio->uio_loffset < zp->z_size))) {
863		ZFS_EXIT(zfsvfs);
864		return (SET_ERROR(EPERM));
865	}
866
867	zilog = zfsvfs->z_log;
868
869	/*
870	 * Validate file offset
871	 */
872	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
873	if (woff < 0) {
874		ZFS_EXIT(zfsvfs);
875		return (SET_ERROR(EINVAL));
876	}
877
878	/*
879	 * Check for mandatory locks before calling zfs_range_lock()
880	 * in order to prevent a deadlock with locks set via fcntl().
881	 */
882	if (MANDMODE((mode_t)zp->z_mode) &&
883	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
884		ZFS_EXIT(zfsvfs);
885		return (error);
886	}
887
888#ifdef sun
889	/*
890	 * Pre-fault the pages to ensure slow (eg NFS) pages
891	 * don't hold up txg.
892	 * Skip this if uio contains loaned arc_buf.
893	 */
894	if ((uio->uio_extflg == UIO_XUIO) &&
895	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
896		xuio = (xuio_t *)uio;
897	else
898		uio_prefaultpages(MIN(n, max_blksz), uio);
899#endif	/* sun */
900
901	/*
902	 * If in append mode, set the io offset pointer to eof.
903	 */
904	if (ioflag & FAPPEND) {
905		/*
906		 * Obtain an appending range lock to guarantee file append
907		 * semantics.  We reset the write offset once we have the lock.
908		 */
909		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
910		woff = rl->r_off;
911		if (rl->r_len == UINT64_MAX) {
912			/*
913			 * We overlocked the file because this write will cause
914			 * the file block size to increase.
915			 * Note that zp_size cannot change with this lock held.
916			 */
917			woff = zp->z_size;
918		}
919		uio->uio_loffset = woff;
920	} else {
921		/*
922		 * Note that if the file block size will change as a result of
923		 * this write, then this range lock will lock the entire file
924		 * so that we can re-write the block safely.
925		 */
926		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
927	}
928
929	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
930		zfs_range_unlock(rl);
931		ZFS_EXIT(zfsvfs);
932		return (EFBIG);
933	}
934
935	if (woff >= limit) {
936		zfs_range_unlock(rl);
937		ZFS_EXIT(zfsvfs);
938		return (SET_ERROR(EFBIG));
939	}
940
941	if ((woff + n) > limit || woff > (limit - n))
942		n = limit - woff;
943
944	/* Will this write extend the file length? */
945	write_eof = (woff + n > zp->z_size);
946
947	end_size = MAX(zp->z_size, woff + n);
948
949	/*
950	 * Write the file in reasonable size chunks.  Each chunk is written
951	 * in a separate transaction; this keeps the intent log records small
952	 * and allows us to do more fine-grained space accounting.
953	 */
954	while (n > 0) {
955		abuf = NULL;
956		woff = uio->uio_loffset;
957		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
958		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
959			if (abuf != NULL)
960				dmu_return_arcbuf(abuf);
961			error = SET_ERROR(EDQUOT);
962			break;
963		}
964
965		if (xuio && abuf == NULL) {
966			ASSERT(i_iov < iovcnt);
967			aiov = &iovp[i_iov];
968			abuf = dmu_xuio_arcbuf(xuio, i_iov);
969			dmu_xuio_clear(xuio, i_iov);
970			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
971			    iovec_t *, aiov, arc_buf_t *, abuf);
972			ASSERT((aiov->iov_base == abuf->b_data) ||
973			    ((char *)aiov->iov_base - (char *)abuf->b_data +
974			    aiov->iov_len == arc_buf_size(abuf)));
975			i_iov++;
976		} else if (abuf == NULL && n >= max_blksz &&
977		    woff >= zp->z_size &&
978		    P2PHASE(woff, max_blksz) == 0 &&
979		    zp->z_blksz == max_blksz) {
980			/*
981			 * This write covers a full block.  "Borrow" a buffer
982			 * from the dmu so that we can fill it before we enter
983			 * a transaction.  This avoids the possibility of
984			 * holding up the transaction if the data copy hangs
985			 * up on a pagefault (e.g., from an NFS server mapping).
986			 */
987			size_t cbytes;
988
989			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
990			    max_blksz);
991			ASSERT(abuf != NULL);
992			ASSERT(arc_buf_size(abuf) == max_blksz);
993			if (error = uiocopy(abuf->b_data, max_blksz,
994			    UIO_WRITE, uio, &cbytes)) {
995				dmu_return_arcbuf(abuf);
996				break;
997			}
998			ASSERT(cbytes == max_blksz);
999		}
1000
1001		/*
1002		 * Start a transaction.
1003		 */
1004		tx = dmu_tx_create(zfsvfs->z_os);
1005		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1006		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1007		zfs_sa_upgrade_txholds(tx, zp);
1008		error = dmu_tx_assign(tx, TXG_WAIT);
1009		if (error) {
1010			dmu_tx_abort(tx);
1011			if (abuf != NULL)
1012				dmu_return_arcbuf(abuf);
1013			break;
1014		}
1015
1016		/*
1017		 * If zfs_range_lock() over-locked we grow the blocksize
1018		 * and then reduce the lock range.  This will only happen
1019		 * on the first iteration since zfs_range_reduce() will
1020		 * shrink down r_len to the appropriate size.
1021		 */
1022		if (rl->r_len == UINT64_MAX) {
1023			uint64_t new_blksz;
1024
1025			if (zp->z_blksz > max_blksz) {
1026				ASSERT(!ISP2(zp->z_blksz));
1027				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
1028			} else {
1029				new_blksz = MIN(end_size, max_blksz);
1030			}
1031			zfs_grow_blocksize(zp, new_blksz, tx);
1032			zfs_range_reduce(rl, woff, n);
1033		}
1034
1035		/*
1036		 * XXX - should we really limit each write to z_max_blksz?
1037		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1038		 */
1039		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1040
1041		if (woff + nbytes > zp->z_size)
1042			vnode_pager_setsize(vp, woff + nbytes);
1043
1044		if (abuf == NULL) {
1045			tx_bytes = uio->uio_resid;
1046			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1047			    uio, nbytes, tx);
1048			tx_bytes -= uio->uio_resid;
1049		} else {
1050			tx_bytes = nbytes;
1051			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1052			/*
1053			 * If this is not a full block write, but we are
1054			 * extending the file past EOF and this data starts
1055			 * block-aligned, use assign_arcbuf().  Otherwise,
1056			 * write via dmu_write().
1057			 */
1058			if (tx_bytes < max_blksz && (!write_eof ||
1059			    aiov->iov_base != abuf->b_data)) {
1060				ASSERT(xuio);
1061				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1062				    aiov->iov_len, aiov->iov_base, tx);
1063				dmu_return_arcbuf(abuf);
1064				xuio_stat_wbuf_copied();
1065			} else {
1066				ASSERT(xuio || tx_bytes == max_blksz);
1067				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1068				    woff, abuf, tx);
1069			}
1070			ASSERT(tx_bytes <= uio->uio_resid);
1071			uioskip(uio, tx_bytes);
1072		}
1073		if (tx_bytes && vn_has_cached_data(vp)) {
1074			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1075			    zp->z_id, uio->uio_segflg, tx);
1076		}
1077
1078		/*
1079		 * If we made no progress, we're done.  If we made even
1080		 * partial progress, update the znode and ZIL accordingly.
1081		 */
1082		if (tx_bytes == 0) {
1083			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1084			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1085			dmu_tx_commit(tx);
1086			ASSERT(error != 0);
1087			break;
1088		}
1089
1090		/*
1091		 * Clear Set-UID/Set-GID bits on successful write if not
1092		 * privileged and at least one of the excute bits is set.
1093		 *
1094		 * It would be nice to to this after all writes have
1095		 * been done, but that would still expose the ISUID/ISGID
1096		 * to another app after the partial write is committed.
1097		 *
1098		 * Note: we don't call zfs_fuid_map_id() here because
1099		 * user 0 is not an ephemeral uid.
1100		 */
1101		mutex_enter(&zp->z_acl_lock);
1102		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1103		    (S_IXUSR >> 6))) != 0 &&
1104		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1105		    secpolicy_vnode_setid_retain(vp, cr,
1106		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1107			uint64_t newmode;
1108			zp->z_mode &= ~(S_ISUID | S_ISGID);
1109			newmode = zp->z_mode;
1110			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1111			    (void *)&newmode, sizeof (uint64_t), tx);
1112		}
1113		mutex_exit(&zp->z_acl_lock);
1114
1115		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1116		    B_TRUE);
1117
1118		/*
1119		 * Update the file size (zp_size) if it has changed;
1120		 * account for possible concurrent updates.
1121		 */
1122		while ((end_size = zp->z_size) < uio->uio_loffset) {
1123			(void) atomic_cas_64(&zp->z_size, end_size,
1124			    uio->uio_loffset);
1125			ASSERT(error == 0);
1126		}
1127		/*
1128		 * If we are replaying and eof is non zero then force
1129		 * the file size to the specified eof. Note, there's no
1130		 * concurrency during replay.
1131		 */
1132		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1133			zp->z_size = zfsvfs->z_replay_eof;
1134
1135		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1136
1137		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1138		dmu_tx_commit(tx);
1139
1140		if (error != 0)
1141			break;
1142		ASSERT(tx_bytes == nbytes);
1143		n -= nbytes;
1144
1145#ifdef sun
1146		if (!xuio && n > 0)
1147			uio_prefaultpages(MIN(n, max_blksz), uio);
1148#endif	/* sun */
1149	}
1150
1151	zfs_range_unlock(rl);
1152
1153	/*
1154	 * If we're in replay mode, or we made no progress, return error.
1155	 * Otherwise, it's at least a partial write, so it's successful.
1156	 */
1157	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1158		ZFS_EXIT(zfsvfs);
1159		return (error);
1160	}
1161
1162	if (ioflag & (FSYNC | FDSYNC) ||
1163	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1164		zil_commit(zilog, zp->z_id);
1165
1166	ZFS_EXIT(zfsvfs);
1167	return (0);
1168}
1169
1170void
1171zfs_get_done(zgd_t *zgd, int error)
1172{
1173	znode_t *zp = zgd->zgd_private;
1174	objset_t *os = zp->z_zfsvfs->z_os;
1175
1176	if (zgd->zgd_db)
1177		dmu_buf_rele(zgd->zgd_db, zgd);
1178
1179	zfs_range_unlock(zgd->zgd_rl);
1180
1181	/*
1182	 * Release the vnode asynchronously as we currently have the
1183	 * txg stopped from syncing.
1184	 */
1185	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1186
1187	if (error == 0 && zgd->zgd_bp)
1188		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1189
1190	kmem_free(zgd, sizeof (zgd_t));
1191}
1192
1193#ifdef DEBUG
1194static int zil_fault_io = 0;
1195#endif
1196
1197/*
1198 * Get data to generate a TX_WRITE intent log record.
1199 */
1200int
1201zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1202{
1203	zfsvfs_t *zfsvfs = arg;
1204	objset_t *os = zfsvfs->z_os;
1205	znode_t *zp;
1206	uint64_t object = lr->lr_foid;
1207	uint64_t offset = lr->lr_offset;
1208	uint64_t size = lr->lr_length;
1209	blkptr_t *bp = &lr->lr_blkptr;
1210	dmu_buf_t *db;
1211	zgd_t *zgd;
1212	int error = 0;
1213
1214	ASSERT(zio != NULL);
1215	ASSERT(size != 0);
1216
1217	/*
1218	 * Nothing to do if the file has been removed
1219	 */
1220	if (zfs_zget(zfsvfs, object, &zp) != 0)
1221		return (SET_ERROR(ENOENT));
1222	if (zp->z_unlinked) {
1223		/*
1224		 * Release the vnode asynchronously as we currently have the
1225		 * txg stopped from syncing.
1226		 */
1227		VN_RELE_ASYNC(ZTOV(zp),
1228		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1229		return (SET_ERROR(ENOENT));
1230	}
1231
1232	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1233	zgd->zgd_zilog = zfsvfs->z_log;
1234	zgd->zgd_private = zp;
1235
1236	/*
1237	 * Write records come in two flavors: immediate and indirect.
1238	 * For small writes it's cheaper to store the data with the
1239	 * log record (immediate); for large writes it's cheaper to
1240	 * sync the data and get a pointer to it (indirect) so that
1241	 * we don't have to write the data twice.
1242	 */
1243	if (buf != NULL) { /* immediate write */
1244		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1245		/* test for truncation needs to be done while range locked */
1246		if (offset >= zp->z_size) {
1247			error = SET_ERROR(ENOENT);
1248		} else {
1249			error = dmu_read(os, object, offset, size, buf,
1250			    DMU_READ_NO_PREFETCH);
1251		}
1252		ASSERT(error == 0 || error == ENOENT);
1253	} else { /* indirect write */
1254		/*
1255		 * Have to lock the whole block to ensure when it's
1256		 * written out and it's checksum is being calculated
1257		 * that no one can change the data. We need to re-check
1258		 * blocksize after we get the lock in case it's changed!
1259		 */
1260		for (;;) {
1261			uint64_t blkoff;
1262			size = zp->z_blksz;
1263			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1264			offset -= blkoff;
1265			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1266			    RL_READER);
1267			if (zp->z_blksz == size)
1268				break;
1269			offset += blkoff;
1270			zfs_range_unlock(zgd->zgd_rl);
1271		}
1272		/* test for truncation needs to be done while range locked */
1273		if (lr->lr_offset >= zp->z_size)
1274			error = SET_ERROR(ENOENT);
1275#ifdef DEBUG
1276		if (zil_fault_io) {
1277			error = SET_ERROR(EIO);
1278			zil_fault_io = 0;
1279		}
1280#endif
1281		if (error == 0)
1282			error = dmu_buf_hold(os, object, offset, zgd, &db,
1283			    DMU_READ_NO_PREFETCH);
1284
1285		if (error == 0) {
1286			blkptr_t *obp = dmu_buf_get_blkptr(db);
1287			if (obp) {
1288				ASSERT(BP_IS_HOLE(bp));
1289				*bp = *obp;
1290			}
1291
1292			zgd->zgd_db = db;
1293			zgd->zgd_bp = bp;
1294
1295			ASSERT(db->db_offset == offset);
1296			ASSERT(db->db_size == size);
1297
1298			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1299			    zfs_get_done, zgd);
1300			ASSERT(error || lr->lr_length <= zp->z_blksz);
1301
1302			/*
1303			 * On success, we need to wait for the write I/O
1304			 * initiated by dmu_sync() to complete before we can
1305			 * release this dbuf.  We will finish everything up
1306			 * in the zfs_get_done() callback.
1307			 */
1308			if (error == 0)
1309				return (0);
1310
1311			if (error == EALREADY) {
1312				lr->lr_common.lrc_txtype = TX_WRITE2;
1313				error = 0;
1314			}
1315		}
1316	}
1317
1318	zfs_get_done(zgd, error);
1319
1320	return (error);
1321}
1322
1323/*ARGSUSED*/
1324static int
1325zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1326    caller_context_t *ct)
1327{
1328	znode_t *zp = VTOZ(vp);
1329	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1330	int error;
1331
1332	ZFS_ENTER(zfsvfs);
1333	ZFS_VERIFY_ZP(zp);
1334
1335	if (flag & V_ACE_MASK)
1336		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1337	else
1338		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1339
1340	ZFS_EXIT(zfsvfs);
1341	return (error);
1342}
1343
1344/*
1345 * If vnode is for a device return a specfs vnode instead.
1346 */
1347static int
1348specvp_check(vnode_t **vpp, cred_t *cr)
1349{
1350	int error = 0;
1351
1352	if (IS_DEVVP(*vpp)) {
1353		struct vnode *svp;
1354
1355		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1356		VN_RELE(*vpp);
1357		if (svp == NULL)
1358			error = SET_ERROR(ENOSYS);
1359		*vpp = svp;
1360	}
1361	return (error);
1362}
1363
1364
1365/*
1366 * Lookup an entry in a directory, or an extended attribute directory.
1367 * If it exists, return a held vnode reference for it.
1368 *
1369 *	IN:	dvp	- vnode of directory to search.
1370 *		nm	- name of entry to lookup.
1371 *		pnp	- full pathname to lookup [UNUSED].
1372 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1373 *		rdir	- root directory vnode [UNUSED].
1374 *		cr	- credentials of caller.
1375 *		ct	- caller context
1376 *		direntflags - directory lookup flags
1377 *		realpnp - returned pathname.
1378 *
1379 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1380 *
1381 *	RETURN:	0 on success, error code on failure.
1382 *
1383 * Timestamps:
1384 *	NA
1385 */
1386/* ARGSUSED */
1387static int
1388zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1389    int nameiop, cred_t *cr, kthread_t *td, int flags)
1390{
1391	znode_t *zdp = VTOZ(dvp);
1392	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1393	int	error = 0;
1394	int *direntflags = NULL;
1395	void *realpnp = NULL;
1396
1397	/* fast path */
1398	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1399
1400		if (dvp->v_type != VDIR) {
1401			return (SET_ERROR(ENOTDIR));
1402		} else if (zdp->z_sa_hdl == NULL) {
1403			return (SET_ERROR(EIO));
1404		}
1405
1406		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1407			error = zfs_fastaccesschk_execute(zdp, cr);
1408			if (!error) {
1409				*vpp = dvp;
1410				VN_HOLD(*vpp);
1411				return (0);
1412			}
1413			return (error);
1414		} else {
1415			vnode_t *tvp = dnlc_lookup(dvp, nm);
1416
1417			if (tvp) {
1418				error = zfs_fastaccesschk_execute(zdp, cr);
1419				if (error) {
1420					VN_RELE(tvp);
1421					return (error);
1422				}
1423				if (tvp == DNLC_NO_VNODE) {
1424					VN_RELE(tvp);
1425					return (SET_ERROR(ENOENT));
1426				} else {
1427					*vpp = tvp;
1428					return (specvp_check(vpp, cr));
1429				}
1430			}
1431		}
1432	}
1433
1434	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1435
1436	ZFS_ENTER(zfsvfs);
1437	ZFS_VERIFY_ZP(zdp);
1438
1439	*vpp = NULL;
1440
1441	if (flags & LOOKUP_XATTR) {
1442#ifdef TODO
1443		/*
1444		 * If the xattr property is off, refuse the lookup request.
1445		 */
1446		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1447			ZFS_EXIT(zfsvfs);
1448			return (SET_ERROR(EINVAL));
1449		}
1450#endif
1451
1452		/*
1453		 * We don't allow recursive attributes..
1454		 * Maybe someday we will.
1455		 */
1456		if (zdp->z_pflags & ZFS_XATTR) {
1457			ZFS_EXIT(zfsvfs);
1458			return (SET_ERROR(EINVAL));
1459		}
1460
1461		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1462			ZFS_EXIT(zfsvfs);
1463			return (error);
1464		}
1465
1466		/*
1467		 * Do we have permission to get into attribute directory?
1468		 */
1469
1470		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1471		    B_FALSE, cr)) {
1472			VN_RELE(*vpp);
1473			*vpp = NULL;
1474		}
1475
1476		ZFS_EXIT(zfsvfs);
1477		return (error);
1478	}
1479
1480	if (dvp->v_type != VDIR) {
1481		ZFS_EXIT(zfsvfs);
1482		return (SET_ERROR(ENOTDIR));
1483	}
1484
1485	/*
1486	 * Check accessibility of directory.
1487	 */
1488
1489	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1490		ZFS_EXIT(zfsvfs);
1491		return (error);
1492	}
1493
1494	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1495	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1496		ZFS_EXIT(zfsvfs);
1497		return (SET_ERROR(EILSEQ));
1498	}
1499
1500	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1501	if (error == 0)
1502		error = specvp_check(vpp, cr);
1503
1504	/* Translate errors and add SAVENAME when needed. */
1505	if (cnp->cn_flags & ISLASTCN) {
1506		switch (nameiop) {
1507		case CREATE:
1508		case RENAME:
1509			if (error == ENOENT) {
1510				error = EJUSTRETURN;
1511				cnp->cn_flags |= SAVENAME;
1512				break;
1513			}
1514			/* FALLTHROUGH */
1515		case DELETE:
1516			if (error == 0)
1517				cnp->cn_flags |= SAVENAME;
1518			break;
1519		}
1520	}
1521	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1522		int ltype = 0;
1523
1524		if (cnp->cn_flags & ISDOTDOT) {
1525			ltype = VOP_ISLOCKED(dvp);
1526			VOP_UNLOCK(dvp, 0);
1527		}
1528		ZFS_EXIT(zfsvfs);
1529		error = vn_lock(*vpp, cnp->cn_lkflags);
1530		if (cnp->cn_flags & ISDOTDOT)
1531			vn_lock(dvp, ltype | LK_RETRY);
1532		if (error != 0) {
1533			VN_RELE(*vpp);
1534			*vpp = NULL;
1535			return (error);
1536		}
1537	} else {
1538		ZFS_EXIT(zfsvfs);
1539	}
1540
1541#ifdef FREEBSD_NAMECACHE
1542	/*
1543	 * Insert name into cache (as non-existent) if appropriate.
1544	 */
1545	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) && nameiop != CREATE)
1546		cache_enter(dvp, *vpp, cnp);
1547	/*
1548	 * Insert name into cache if appropriate.
1549	 */
1550	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1551		if (!(cnp->cn_flags & ISLASTCN) ||
1552		    (nameiop != DELETE && nameiop != RENAME)) {
1553			cache_enter(dvp, *vpp, cnp);
1554		}
1555	}
1556#endif
1557
1558	return (error);
1559}
1560
1561/*
1562 * Attempt to create a new entry in a directory.  If the entry
1563 * already exists, truncate the file if permissible, else return
1564 * an error.  Return the vp of the created or trunc'd file.
1565 *
1566 *	IN:	dvp	- vnode of directory to put new file entry in.
1567 *		name	- name of new file entry.
1568 *		vap	- attributes of new file.
1569 *		excl	- flag indicating exclusive or non-exclusive mode.
1570 *		mode	- mode to open file with.
1571 *		cr	- credentials of caller.
1572 *		flag	- large file flag [UNUSED].
1573 *		ct	- caller context
1574 *		vsecp	- ACL to be set
1575 *
1576 *	OUT:	vpp	- vnode of created or trunc'd entry.
1577 *
1578 *	RETURN:	0 on success, error code on failure.
1579 *
1580 * Timestamps:
1581 *	dvp - ctime|mtime updated if new entry created
1582 *	 vp - ctime|mtime always, atime if new
1583 */
1584
1585/* ARGSUSED */
1586static int
1587zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1588    vnode_t **vpp, cred_t *cr, kthread_t *td)
1589{
1590	znode_t		*zp, *dzp = VTOZ(dvp);
1591	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1592	zilog_t		*zilog;
1593	objset_t	*os;
1594	zfs_dirlock_t	*dl;
1595	dmu_tx_t	*tx;
1596	int		error;
1597	ksid_t		*ksid;
1598	uid_t		uid;
1599	gid_t		gid = crgetgid(cr);
1600	zfs_acl_ids_t   acl_ids;
1601	boolean_t	fuid_dirtied;
1602	boolean_t	have_acl = B_FALSE;
1603	boolean_t	waited = B_FALSE;
1604	void		*vsecp = NULL;
1605	int		flag = 0;
1606
1607	/*
1608	 * If we have an ephemeral id, ACL, or XVATTR then
1609	 * make sure file system is at proper version
1610	 */
1611
1612	ksid = crgetsid(cr, KSID_OWNER);
1613	if (ksid)
1614		uid = ksid_getid(ksid);
1615	else
1616		uid = crgetuid(cr);
1617
1618	if (zfsvfs->z_use_fuids == B_FALSE &&
1619	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1620	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1621		return (SET_ERROR(EINVAL));
1622
1623	ZFS_ENTER(zfsvfs);
1624	ZFS_VERIFY_ZP(dzp);
1625	os = zfsvfs->z_os;
1626	zilog = zfsvfs->z_log;
1627
1628	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1629	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1630		ZFS_EXIT(zfsvfs);
1631		return (SET_ERROR(EILSEQ));
1632	}
1633
1634	if (vap->va_mask & AT_XVATTR) {
1635		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1636		    crgetuid(cr), cr, vap->va_type)) != 0) {
1637			ZFS_EXIT(zfsvfs);
1638			return (error);
1639		}
1640	}
1641
1642	getnewvnode_reserve(1);
1643
1644top:
1645	*vpp = NULL;
1646
1647	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1648		vap->va_mode &= ~S_ISVTX;
1649
1650	if (*name == '\0') {
1651		/*
1652		 * Null component name refers to the directory itself.
1653		 */
1654		VN_HOLD(dvp);
1655		zp = dzp;
1656		dl = NULL;
1657		error = 0;
1658	} else {
1659		/* possible VN_HOLD(zp) */
1660		int zflg = 0;
1661
1662		if (flag & FIGNORECASE)
1663			zflg |= ZCILOOK;
1664
1665		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1666		    NULL, NULL);
1667		if (error) {
1668			if (have_acl)
1669				zfs_acl_ids_free(&acl_ids);
1670			if (strcmp(name, "..") == 0)
1671				error = SET_ERROR(EISDIR);
1672			getnewvnode_drop_reserve();
1673			ZFS_EXIT(zfsvfs);
1674			return (error);
1675		}
1676	}
1677
1678	if (zp == NULL) {
1679		uint64_t txtype;
1680
1681		/*
1682		 * Create a new file object and update the directory
1683		 * to reference it.
1684		 */
1685		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1686			if (have_acl)
1687				zfs_acl_ids_free(&acl_ids);
1688			goto out;
1689		}
1690
1691		/*
1692		 * We only support the creation of regular files in
1693		 * extended attribute directories.
1694		 */
1695
1696		if ((dzp->z_pflags & ZFS_XATTR) &&
1697		    (vap->va_type != VREG)) {
1698			if (have_acl)
1699				zfs_acl_ids_free(&acl_ids);
1700			error = SET_ERROR(EINVAL);
1701			goto out;
1702		}
1703
1704		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1705		    cr, vsecp, &acl_ids)) != 0)
1706			goto out;
1707		have_acl = B_TRUE;
1708
1709		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1710			zfs_acl_ids_free(&acl_ids);
1711			error = SET_ERROR(EDQUOT);
1712			goto out;
1713		}
1714
1715		tx = dmu_tx_create(os);
1716
1717		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1718		    ZFS_SA_BASE_ATTR_SIZE);
1719
1720		fuid_dirtied = zfsvfs->z_fuid_dirty;
1721		if (fuid_dirtied)
1722			zfs_fuid_txhold(zfsvfs, tx);
1723		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1724		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1725		if (!zfsvfs->z_use_sa &&
1726		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1727			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1728			    0, acl_ids.z_aclp->z_acl_bytes);
1729		}
1730		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1731		if (error) {
1732			zfs_dirent_unlock(dl);
1733			if (error == ERESTART) {
1734				waited = B_TRUE;
1735				dmu_tx_wait(tx);
1736				dmu_tx_abort(tx);
1737				goto top;
1738			}
1739			zfs_acl_ids_free(&acl_ids);
1740			dmu_tx_abort(tx);
1741			getnewvnode_drop_reserve();
1742			ZFS_EXIT(zfsvfs);
1743			return (error);
1744		}
1745		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1746
1747		if (fuid_dirtied)
1748			zfs_fuid_sync(zfsvfs, tx);
1749
1750		(void) zfs_link_create(dl, zp, tx, ZNEW);
1751		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1752		if (flag & FIGNORECASE)
1753			txtype |= TX_CI;
1754		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1755		    vsecp, acl_ids.z_fuidp, vap);
1756		zfs_acl_ids_free(&acl_ids);
1757		dmu_tx_commit(tx);
1758	} else {
1759		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1760
1761		if (have_acl)
1762			zfs_acl_ids_free(&acl_ids);
1763		have_acl = B_FALSE;
1764
1765		/*
1766		 * A directory entry already exists for this name.
1767		 */
1768		/*
1769		 * Can't truncate an existing file if in exclusive mode.
1770		 */
1771		if (excl == EXCL) {
1772			error = SET_ERROR(EEXIST);
1773			goto out;
1774		}
1775		/*
1776		 * Can't open a directory for writing.
1777		 */
1778		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1779			error = SET_ERROR(EISDIR);
1780			goto out;
1781		}
1782		/*
1783		 * Verify requested access to file.
1784		 */
1785		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1786			goto out;
1787		}
1788
1789		mutex_enter(&dzp->z_lock);
1790		dzp->z_seq++;
1791		mutex_exit(&dzp->z_lock);
1792
1793		/*
1794		 * Truncate regular files if requested.
1795		 */
1796		if ((ZTOV(zp)->v_type == VREG) &&
1797		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1798			/* we can't hold any locks when calling zfs_freesp() */
1799			zfs_dirent_unlock(dl);
1800			dl = NULL;
1801			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1802			if (error == 0) {
1803				vnevent_create(ZTOV(zp), ct);
1804			}
1805		}
1806	}
1807out:
1808	getnewvnode_drop_reserve();
1809	if (dl)
1810		zfs_dirent_unlock(dl);
1811
1812	if (error) {
1813		if (zp)
1814			VN_RELE(ZTOV(zp));
1815	} else {
1816		*vpp = ZTOV(zp);
1817		error = specvp_check(vpp, cr);
1818	}
1819
1820	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1821		zil_commit(zilog, 0);
1822
1823	ZFS_EXIT(zfsvfs);
1824	return (error);
1825}
1826
1827/*
1828 * Remove an entry from a directory.
1829 *
1830 *	IN:	dvp	- vnode of directory to remove entry from.
1831 *		name	- name of entry to remove.
1832 *		cr	- credentials of caller.
1833 *		ct	- caller context
1834 *		flags	- case flags
1835 *
1836 *	RETURN:	0 on success, error code on failure.
1837 *
1838 * Timestamps:
1839 *	dvp - ctime|mtime
1840 *	 vp - ctime (if nlink > 0)
1841 */
1842
1843uint64_t null_xattr = 0;
1844
1845/*ARGSUSED*/
1846static int
1847zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1848    int flags)
1849{
1850	znode_t		*zp, *dzp = VTOZ(dvp);
1851	znode_t		*xzp;
1852	vnode_t		*vp;
1853	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1854	zilog_t		*zilog;
1855	uint64_t	acl_obj, xattr_obj;
1856	uint64_t	xattr_obj_unlinked = 0;
1857	uint64_t	obj = 0;
1858	zfs_dirlock_t	*dl;
1859	dmu_tx_t	*tx;
1860	boolean_t	may_delete_now, delete_now = FALSE;
1861	boolean_t	unlinked, toobig = FALSE;
1862	uint64_t	txtype;
1863	pathname_t	*realnmp = NULL;
1864	pathname_t	realnm;
1865	int		error;
1866	int		zflg = ZEXISTS;
1867	boolean_t	waited = B_FALSE;
1868
1869	ZFS_ENTER(zfsvfs);
1870	ZFS_VERIFY_ZP(dzp);
1871	zilog = zfsvfs->z_log;
1872
1873	if (flags & FIGNORECASE) {
1874		zflg |= ZCILOOK;
1875		pn_alloc(&realnm);
1876		realnmp = &realnm;
1877	}
1878
1879top:
1880	xattr_obj = 0;
1881	xzp = NULL;
1882	/*
1883	 * Attempt to lock directory; fail if entry doesn't exist.
1884	 */
1885	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1886	    NULL, realnmp)) {
1887		if (realnmp)
1888			pn_free(realnmp);
1889		ZFS_EXIT(zfsvfs);
1890		return (error);
1891	}
1892
1893	vp = ZTOV(zp);
1894
1895	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1896		goto out;
1897	}
1898
1899	/*
1900	 * Need to use rmdir for removing directories.
1901	 */
1902	if (vp->v_type == VDIR) {
1903		error = SET_ERROR(EPERM);
1904		goto out;
1905	}
1906
1907	vnevent_remove(vp, dvp, name, ct);
1908
1909	if (realnmp)
1910		dnlc_remove(dvp, realnmp->pn_buf);
1911	else
1912		dnlc_remove(dvp, name);
1913
1914	VI_LOCK(vp);
1915	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1916	VI_UNLOCK(vp);
1917
1918	/*
1919	 * We may delete the znode now, or we may put it in the unlinked set;
1920	 * it depends on whether we're the last link, and on whether there are
1921	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1922	 * allow for either case.
1923	 */
1924	obj = zp->z_id;
1925	tx = dmu_tx_create(zfsvfs->z_os);
1926	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1927	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1928	zfs_sa_upgrade_txholds(tx, zp);
1929	zfs_sa_upgrade_txholds(tx, dzp);
1930	if (may_delete_now) {
1931		toobig =
1932		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1933		/* if the file is too big, only hold_free a token amount */
1934		dmu_tx_hold_free(tx, zp->z_id, 0,
1935		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1936	}
1937
1938	/* are there any extended attributes? */
1939	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1940	    &xattr_obj, sizeof (xattr_obj));
1941	if (error == 0 && xattr_obj) {
1942		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1943		ASSERT0(error);
1944		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1945		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1946	}
1947
1948	mutex_enter(&zp->z_lock);
1949	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1950		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1951	mutex_exit(&zp->z_lock);
1952
1953	/* charge as an update -- would be nice not to charge at all */
1954	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1955
1956	/*
1957	 * Mark this transaction as typically resulting in a net free of
1958	 * space, unless object removal will be delayed indefinitely
1959	 * (due to active holds on the vnode due to the file being open).
1960	 */
1961	if (may_delete_now)
1962		dmu_tx_mark_netfree(tx);
1963
1964	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1965	if (error) {
1966		zfs_dirent_unlock(dl);
1967		VN_RELE(vp);
1968		if (xzp)
1969			VN_RELE(ZTOV(xzp));
1970		if (error == ERESTART) {
1971			waited = B_TRUE;
1972			dmu_tx_wait(tx);
1973			dmu_tx_abort(tx);
1974			goto top;
1975		}
1976		if (realnmp)
1977			pn_free(realnmp);
1978		dmu_tx_abort(tx);
1979		ZFS_EXIT(zfsvfs);
1980		return (error);
1981	}
1982
1983	/*
1984	 * Remove the directory entry.
1985	 */
1986	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1987
1988	if (error) {
1989		dmu_tx_commit(tx);
1990		goto out;
1991	}
1992
1993	if (unlinked) {
1994		/*
1995		 * Hold z_lock so that we can make sure that the ACL obj
1996		 * hasn't changed.  Could have been deleted due to
1997		 * zfs_sa_upgrade().
1998		 */
1999		mutex_enter(&zp->z_lock);
2000		VI_LOCK(vp);
2001		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2002		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
2003		delete_now = may_delete_now && !toobig &&
2004		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2005		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2006		    acl_obj;
2007		VI_UNLOCK(vp);
2008	}
2009
2010	if (delete_now) {
2011#ifdef __FreeBSD__
2012		panic("zfs_remove: delete_now branch taken");
2013#endif
2014		if (xattr_obj_unlinked) {
2015			ASSERT3U(xzp->z_links, ==, 2);
2016			mutex_enter(&xzp->z_lock);
2017			xzp->z_unlinked = 1;
2018			xzp->z_links = 0;
2019			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2020			    &xzp->z_links, sizeof (xzp->z_links), tx);
2021			ASSERT3U(error,  ==,  0);
2022			mutex_exit(&xzp->z_lock);
2023			zfs_unlinked_add(xzp, tx);
2024
2025			if (zp->z_is_sa)
2026				error = sa_remove(zp->z_sa_hdl,
2027				    SA_ZPL_XATTR(zfsvfs), tx);
2028			else
2029				error = sa_update(zp->z_sa_hdl,
2030				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2031				    sizeof (uint64_t), tx);
2032			ASSERT0(error);
2033		}
2034		VI_LOCK(vp);
2035		vp->v_count--;
2036		ASSERT0(vp->v_count);
2037		VI_UNLOCK(vp);
2038		mutex_exit(&zp->z_lock);
2039		zfs_znode_delete(zp, tx);
2040	} else if (unlinked) {
2041		mutex_exit(&zp->z_lock);
2042		zfs_unlinked_add(zp, tx);
2043#ifdef __FreeBSD__
2044		vp->v_vflag |= VV_NOSYNC;
2045#endif
2046	}
2047
2048	txtype = TX_REMOVE;
2049	if (flags & FIGNORECASE)
2050		txtype |= TX_CI;
2051	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2052
2053	dmu_tx_commit(tx);
2054out:
2055	if (realnmp)
2056		pn_free(realnmp);
2057
2058	zfs_dirent_unlock(dl);
2059
2060	if (!delete_now)
2061		VN_RELE(vp);
2062	if (xzp)
2063		VN_RELE(ZTOV(xzp));
2064
2065	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2066		zil_commit(zilog, 0);
2067
2068	ZFS_EXIT(zfsvfs);
2069	return (error);
2070}
2071
2072/*
2073 * Create a new directory and insert it into dvp using the name
2074 * provided.  Return a pointer to the inserted directory.
2075 *
2076 *	IN:	dvp	- vnode of directory to add subdir to.
2077 *		dirname	- name of new directory.
2078 *		vap	- attributes of new directory.
2079 *		cr	- credentials of caller.
2080 *		ct	- caller context
2081 *		flags	- case flags
2082 *		vsecp	- ACL to be set
2083 *
2084 *	OUT:	vpp	- vnode of created directory.
2085 *
2086 *	RETURN:	0 on success, error code on failure.
2087 *
2088 * Timestamps:
2089 *	dvp - ctime|mtime updated
2090 *	 vp - ctime|mtime|atime updated
2091 */
2092/*ARGSUSED*/
2093static int
2094zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2095    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2096{
2097	znode_t		*zp, *dzp = VTOZ(dvp);
2098	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2099	zilog_t		*zilog;
2100	zfs_dirlock_t	*dl;
2101	uint64_t	txtype;
2102	dmu_tx_t	*tx;
2103	int		error;
2104	int		zf = ZNEW;
2105	ksid_t		*ksid;
2106	uid_t		uid;
2107	gid_t		gid = crgetgid(cr);
2108	zfs_acl_ids_t   acl_ids;
2109	boolean_t	fuid_dirtied;
2110	boolean_t	waited = B_FALSE;
2111
2112	ASSERT(vap->va_type == VDIR);
2113
2114	/*
2115	 * If we have an ephemeral id, ACL, or XVATTR then
2116	 * make sure file system is at proper version
2117	 */
2118
2119	ksid = crgetsid(cr, KSID_OWNER);
2120	if (ksid)
2121		uid = ksid_getid(ksid);
2122	else
2123		uid = crgetuid(cr);
2124	if (zfsvfs->z_use_fuids == B_FALSE &&
2125	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2126	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2127		return (SET_ERROR(EINVAL));
2128
2129	ZFS_ENTER(zfsvfs);
2130	ZFS_VERIFY_ZP(dzp);
2131	zilog = zfsvfs->z_log;
2132
2133	if (dzp->z_pflags & ZFS_XATTR) {
2134		ZFS_EXIT(zfsvfs);
2135		return (SET_ERROR(EINVAL));
2136	}
2137
2138	if (zfsvfs->z_utf8 && u8_validate(dirname,
2139	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2140		ZFS_EXIT(zfsvfs);
2141		return (SET_ERROR(EILSEQ));
2142	}
2143	if (flags & FIGNORECASE)
2144		zf |= ZCILOOK;
2145
2146	if (vap->va_mask & AT_XVATTR) {
2147		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2148		    crgetuid(cr), cr, vap->va_type)) != 0) {
2149			ZFS_EXIT(zfsvfs);
2150			return (error);
2151		}
2152	}
2153
2154	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2155	    vsecp, &acl_ids)) != 0) {
2156		ZFS_EXIT(zfsvfs);
2157		return (error);
2158	}
2159
2160	getnewvnode_reserve(1);
2161
2162	/*
2163	 * First make sure the new directory doesn't exist.
2164	 *
2165	 * Existence is checked first to make sure we don't return
2166	 * EACCES instead of EEXIST which can cause some applications
2167	 * to fail.
2168	 */
2169top:
2170	*vpp = NULL;
2171
2172	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2173	    NULL, NULL)) {
2174		zfs_acl_ids_free(&acl_ids);
2175		getnewvnode_drop_reserve();
2176		ZFS_EXIT(zfsvfs);
2177		return (error);
2178	}
2179
2180	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2181		zfs_acl_ids_free(&acl_ids);
2182		zfs_dirent_unlock(dl);
2183		getnewvnode_drop_reserve();
2184		ZFS_EXIT(zfsvfs);
2185		return (error);
2186	}
2187
2188	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2189		zfs_acl_ids_free(&acl_ids);
2190		zfs_dirent_unlock(dl);
2191		getnewvnode_drop_reserve();
2192		ZFS_EXIT(zfsvfs);
2193		return (SET_ERROR(EDQUOT));
2194	}
2195
2196	/*
2197	 * Add a new entry to the directory.
2198	 */
2199	tx = dmu_tx_create(zfsvfs->z_os);
2200	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2201	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2202	fuid_dirtied = zfsvfs->z_fuid_dirty;
2203	if (fuid_dirtied)
2204		zfs_fuid_txhold(zfsvfs, tx);
2205	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2206		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2207		    acl_ids.z_aclp->z_acl_bytes);
2208	}
2209
2210	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2211	    ZFS_SA_BASE_ATTR_SIZE);
2212
2213	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2214	if (error) {
2215		zfs_dirent_unlock(dl);
2216		if (error == ERESTART) {
2217			waited = B_TRUE;
2218			dmu_tx_wait(tx);
2219			dmu_tx_abort(tx);
2220			goto top;
2221		}
2222		zfs_acl_ids_free(&acl_ids);
2223		dmu_tx_abort(tx);
2224		getnewvnode_drop_reserve();
2225		ZFS_EXIT(zfsvfs);
2226		return (error);
2227	}
2228
2229	/*
2230	 * Create new node.
2231	 */
2232	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2233
2234	if (fuid_dirtied)
2235		zfs_fuid_sync(zfsvfs, tx);
2236
2237	/*
2238	 * Now put new name in parent dir.
2239	 */
2240	(void) zfs_link_create(dl, zp, tx, ZNEW);
2241
2242	*vpp = ZTOV(zp);
2243
2244	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2245	if (flags & FIGNORECASE)
2246		txtype |= TX_CI;
2247	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2248	    acl_ids.z_fuidp, vap);
2249
2250	zfs_acl_ids_free(&acl_ids);
2251
2252	dmu_tx_commit(tx);
2253
2254	getnewvnode_drop_reserve();
2255
2256	zfs_dirent_unlock(dl);
2257
2258	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2259		zil_commit(zilog, 0);
2260
2261	ZFS_EXIT(zfsvfs);
2262	return (0);
2263}
2264
2265/*
2266 * Remove a directory subdir entry.  If the current working
2267 * directory is the same as the subdir to be removed, the
2268 * remove will fail.
2269 *
2270 *	IN:	dvp	- vnode of directory to remove from.
2271 *		name	- name of directory to be removed.
2272 *		cwd	- vnode of current working directory.
2273 *		cr	- credentials of caller.
2274 *		ct	- caller context
2275 *		flags	- case flags
2276 *
2277 *	RETURN:	0 on success, error code on failure.
2278 *
2279 * Timestamps:
2280 *	dvp - ctime|mtime updated
2281 */
2282/*ARGSUSED*/
2283static int
2284zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2285    caller_context_t *ct, int flags)
2286{
2287	znode_t		*dzp = VTOZ(dvp);
2288	znode_t		*zp;
2289	vnode_t		*vp;
2290	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2291	zilog_t		*zilog;
2292	zfs_dirlock_t	*dl;
2293	dmu_tx_t	*tx;
2294	int		error;
2295	int		zflg = ZEXISTS;
2296	boolean_t	waited = B_FALSE;
2297
2298	ZFS_ENTER(zfsvfs);
2299	ZFS_VERIFY_ZP(dzp);
2300	zilog = zfsvfs->z_log;
2301
2302	if (flags & FIGNORECASE)
2303		zflg |= ZCILOOK;
2304top:
2305	zp = NULL;
2306
2307	/*
2308	 * Attempt to lock directory; fail if entry doesn't exist.
2309	 */
2310	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2311	    NULL, NULL)) {
2312		ZFS_EXIT(zfsvfs);
2313		return (error);
2314	}
2315
2316	vp = ZTOV(zp);
2317
2318	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2319		goto out;
2320	}
2321
2322	if (vp->v_type != VDIR) {
2323		error = SET_ERROR(ENOTDIR);
2324		goto out;
2325	}
2326
2327	if (vp == cwd) {
2328		error = SET_ERROR(EINVAL);
2329		goto out;
2330	}
2331
2332	vnevent_rmdir(vp, dvp, name, ct);
2333
2334	/*
2335	 * Grab a lock on the directory to make sure that noone is
2336	 * trying to add (or lookup) entries while we are removing it.
2337	 */
2338	rw_enter(&zp->z_name_lock, RW_WRITER);
2339
2340	/*
2341	 * Grab a lock on the parent pointer to make sure we play well
2342	 * with the treewalk and directory rename code.
2343	 */
2344	rw_enter(&zp->z_parent_lock, RW_WRITER);
2345
2346	tx = dmu_tx_create(zfsvfs->z_os);
2347	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2348	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2349	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2350	zfs_sa_upgrade_txholds(tx, zp);
2351	zfs_sa_upgrade_txholds(tx, dzp);
2352	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2353	if (error) {
2354		rw_exit(&zp->z_parent_lock);
2355		rw_exit(&zp->z_name_lock);
2356		zfs_dirent_unlock(dl);
2357		VN_RELE(vp);
2358		if (error == ERESTART) {
2359			waited = B_TRUE;
2360			dmu_tx_wait(tx);
2361			dmu_tx_abort(tx);
2362			goto top;
2363		}
2364		dmu_tx_abort(tx);
2365		ZFS_EXIT(zfsvfs);
2366		return (error);
2367	}
2368
2369#ifdef FREEBSD_NAMECACHE
2370	cache_purge(dvp);
2371#endif
2372
2373	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2374
2375	if (error == 0) {
2376		uint64_t txtype = TX_RMDIR;
2377		if (flags & FIGNORECASE)
2378			txtype |= TX_CI;
2379		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2380	}
2381
2382	dmu_tx_commit(tx);
2383
2384	rw_exit(&zp->z_parent_lock);
2385	rw_exit(&zp->z_name_lock);
2386#ifdef FREEBSD_NAMECACHE
2387	cache_purge(vp);
2388#endif
2389out:
2390	zfs_dirent_unlock(dl);
2391
2392	VN_RELE(vp);
2393
2394	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2395		zil_commit(zilog, 0);
2396
2397	ZFS_EXIT(zfsvfs);
2398	return (error);
2399}
2400
2401/*
2402 * Read as many directory entries as will fit into the provided
2403 * buffer from the given directory cursor position (specified in
2404 * the uio structure).
2405 *
2406 *	IN:	vp	- vnode of directory to read.
2407 *		uio	- structure supplying read location, range info,
2408 *			  and return buffer.
2409 *		cr	- credentials of caller.
2410 *		ct	- caller context
2411 *		flags	- case flags
2412 *
2413 *	OUT:	uio	- updated offset and range, buffer filled.
2414 *		eofp	- set to true if end-of-file detected.
2415 *
2416 *	RETURN:	0 on success, error code on failure.
2417 *
2418 * Timestamps:
2419 *	vp - atime updated
2420 *
2421 * Note that the low 4 bits of the cookie returned by zap is always zero.
2422 * This allows us to use the low range for "special" directory entries:
2423 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2424 * we use the offset 2 for the '.zfs' directory.
2425 */
2426/* ARGSUSED */
2427static int
2428zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2429{
2430	znode_t		*zp = VTOZ(vp);
2431	iovec_t		*iovp;
2432	edirent_t	*eodp;
2433	dirent64_t	*odp;
2434	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2435	objset_t	*os;
2436	caddr_t		outbuf;
2437	size_t		bufsize;
2438	zap_cursor_t	zc;
2439	zap_attribute_t	zap;
2440	uint_t		bytes_wanted;
2441	uint64_t	offset; /* must be unsigned; checks for < 1 */
2442	uint64_t	parent;
2443	int		local_eof;
2444	int		outcount;
2445	int		error;
2446	uint8_t		prefetch;
2447	boolean_t	check_sysattrs;
2448	uint8_t		type;
2449	int		ncooks;
2450	u_long		*cooks = NULL;
2451	int		flags = 0;
2452
2453	ZFS_ENTER(zfsvfs);
2454	ZFS_VERIFY_ZP(zp);
2455
2456	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2457	    &parent, sizeof (parent))) != 0) {
2458		ZFS_EXIT(zfsvfs);
2459		return (error);
2460	}
2461
2462	/*
2463	 * If we are not given an eof variable,
2464	 * use a local one.
2465	 */
2466	if (eofp == NULL)
2467		eofp = &local_eof;
2468
2469	/*
2470	 * Check for valid iov_len.
2471	 */
2472	if (uio->uio_iov->iov_len <= 0) {
2473		ZFS_EXIT(zfsvfs);
2474		return (SET_ERROR(EINVAL));
2475	}
2476
2477	/*
2478	 * Quit if directory has been removed (posix)
2479	 */
2480	if ((*eofp = zp->z_unlinked) != 0) {
2481		ZFS_EXIT(zfsvfs);
2482		return (0);
2483	}
2484
2485	error = 0;
2486	os = zfsvfs->z_os;
2487	offset = uio->uio_loffset;
2488	prefetch = zp->z_zn_prefetch;
2489
2490	/*
2491	 * Initialize the iterator cursor.
2492	 */
2493	if (offset <= 3) {
2494		/*
2495		 * Start iteration from the beginning of the directory.
2496		 */
2497		zap_cursor_init(&zc, os, zp->z_id);
2498	} else {
2499		/*
2500		 * The offset is a serialized cursor.
2501		 */
2502		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2503	}
2504
2505	/*
2506	 * Get space to change directory entries into fs independent format.
2507	 */
2508	iovp = uio->uio_iov;
2509	bytes_wanted = iovp->iov_len;
2510	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2511		bufsize = bytes_wanted;
2512		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2513		odp = (struct dirent64 *)outbuf;
2514	} else {
2515		bufsize = bytes_wanted;
2516		outbuf = NULL;
2517		odp = (struct dirent64 *)iovp->iov_base;
2518	}
2519	eodp = (struct edirent *)odp;
2520
2521	if (ncookies != NULL) {
2522		/*
2523		 * Minimum entry size is dirent size and 1 byte for a file name.
2524		 */
2525		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2526		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2527		*cookies = cooks;
2528		*ncookies = ncooks;
2529	}
2530	/*
2531	 * If this VFS supports the system attribute view interface; and
2532	 * we're looking at an extended attribute directory; and we care
2533	 * about normalization conflicts on this vfs; then we must check
2534	 * for normalization conflicts with the sysattr name space.
2535	 */
2536#ifdef TODO
2537	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2538	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2539	    (flags & V_RDDIR_ENTFLAGS);
2540#else
2541	check_sysattrs = 0;
2542#endif
2543
2544	/*
2545	 * Transform to file-system independent format
2546	 */
2547	outcount = 0;
2548	while (outcount < bytes_wanted) {
2549		ino64_t objnum;
2550		ushort_t reclen;
2551		off64_t *next = NULL;
2552
2553		/*
2554		 * Special case `.', `..', and `.zfs'.
2555		 */
2556		if (offset == 0) {
2557			(void) strcpy(zap.za_name, ".");
2558			zap.za_normalization_conflict = 0;
2559			objnum = zp->z_id;
2560			type = DT_DIR;
2561		} else if (offset == 1) {
2562			(void) strcpy(zap.za_name, "..");
2563			zap.za_normalization_conflict = 0;
2564			objnum = parent;
2565			type = DT_DIR;
2566		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2567			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2568			zap.za_normalization_conflict = 0;
2569			objnum = ZFSCTL_INO_ROOT;
2570			type = DT_DIR;
2571		} else {
2572			/*
2573			 * Grab next entry.
2574			 */
2575			if (error = zap_cursor_retrieve(&zc, &zap)) {
2576				if ((*eofp = (error == ENOENT)) != 0)
2577					break;
2578				else
2579					goto update;
2580			}
2581
2582			if (zap.za_integer_length != 8 ||
2583			    zap.za_num_integers != 1) {
2584				cmn_err(CE_WARN, "zap_readdir: bad directory "
2585				    "entry, obj = %lld, offset = %lld\n",
2586				    (u_longlong_t)zp->z_id,
2587				    (u_longlong_t)offset);
2588				error = SET_ERROR(ENXIO);
2589				goto update;
2590			}
2591
2592			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2593			/*
2594			 * MacOS X can extract the object type here such as:
2595			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2596			 */
2597			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2598
2599			if (check_sysattrs && !zap.za_normalization_conflict) {
2600#ifdef TODO
2601				zap.za_normalization_conflict =
2602				    xattr_sysattr_casechk(zap.za_name);
2603#else
2604				panic("%s:%u: TODO", __func__, __LINE__);
2605#endif
2606			}
2607		}
2608
2609		if (flags & V_RDDIR_ACCFILTER) {
2610			/*
2611			 * If we have no access at all, don't include
2612			 * this entry in the returned information
2613			 */
2614			znode_t	*ezp;
2615			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2616				goto skip_entry;
2617			if (!zfs_has_access(ezp, cr)) {
2618				VN_RELE(ZTOV(ezp));
2619				goto skip_entry;
2620			}
2621			VN_RELE(ZTOV(ezp));
2622		}
2623
2624		if (flags & V_RDDIR_ENTFLAGS)
2625			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2626		else
2627			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2628
2629		/*
2630		 * Will this entry fit in the buffer?
2631		 */
2632		if (outcount + reclen > bufsize) {
2633			/*
2634			 * Did we manage to fit anything in the buffer?
2635			 */
2636			if (!outcount) {
2637				error = SET_ERROR(EINVAL);
2638				goto update;
2639			}
2640			break;
2641		}
2642		if (flags & V_RDDIR_ENTFLAGS) {
2643			/*
2644			 * Add extended flag entry:
2645			 */
2646			eodp->ed_ino = objnum;
2647			eodp->ed_reclen = reclen;
2648			/* NOTE: ed_off is the offset for the *next* entry */
2649			next = &(eodp->ed_off);
2650			eodp->ed_eflags = zap.za_normalization_conflict ?
2651			    ED_CASE_CONFLICT : 0;
2652			(void) strncpy(eodp->ed_name, zap.za_name,
2653			    EDIRENT_NAMELEN(reclen));
2654			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2655		} else {
2656			/*
2657			 * Add normal entry:
2658			 */
2659			odp->d_ino = objnum;
2660			odp->d_reclen = reclen;
2661			odp->d_namlen = strlen(zap.za_name);
2662			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2663			odp->d_type = type;
2664			odp = (dirent64_t *)((intptr_t)odp + reclen);
2665		}
2666		outcount += reclen;
2667
2668		ASSERT(outcount <= bufsize);
2669
2670		/* Prefetch znode */
2671		if (prefetch)
2672			dmu_prefetch(os, objnum, 0, 0);
2673
2674	skip_entry:
2675		/*
2676		 * Move to the next entry, fill in the previous offset.
2677		 */
2678		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2679			zap_cursor_advance(&zc);
2680			offset = zap_cursor_serialize(&zc);
2681		} else {
2682			offset += 1;
2683		}
2684
2685		if (cooks != NULL) {
2686			*cooks++ = offset;
2687			ncooks--;
2688			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2689		}
2690	}
2691	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2692
2693	/* Subtract unused cookies */
2694	if (ncookies != NULL)
2695		*ncookies -= ncooks;
2696
2697	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2698		iovp->iov_base += outcount;
2699		iovp->iov_len -= outcount;
2700		uio->uio_resid -= outcount;
2701	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2702		/*
2703		 * Reset the pointer.
2704		 */
2705		offset = uio->uio_loffset;
2706	}
2707
2708update:
2709	zap_cursor_fini(&zc);
2710	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2711		kmem_free(outbuf, bufsize);
2712
2713	if (error == ENOENT)
2714		error = 0;
2715
2716	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2717
2718	uio->uio_loffset = offset;
2719	ZFS_EXIT(zfsvfs);
2720	if (error != 0 && cookies != NULL) {
2721		free(*cookies, M_TEMP);
2722		*cookies = NULL;
2723		*ncookies = 0;
2724	}
2725	return (error);
2726}
2727
2728ulong_t zfs_fsync_sync_cnt = 4;
2729
2730static int
2731zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2732{
2733	znode_t	*zp = VTOZ(vp);
2734	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2735
2736	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2737
2738	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2739		ZFS_ENTER(zfsvfs);
2740		ZFS_VERIFY_ZP(zp);
2741		zil_commit(zfsvfs->z_log, zp->z_id);
2742		ZFS_EXIT(zfsvfs);
2743	}
2744	return (0);
2745}
2746
2747
2748/*
2749 * Get the requested file attributes and place them in the provided
2750 * vattr structure.
2751 *
2752 *	IN:	vp	- vnode of file.
2753 *		vap	- va_mask identifies requested attributes.
2754 *			  If AT_XVATTR set, then optional attrs are requested
2755 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2756 *		cr	- credentials of caller.
2757 *		ct	- caller context
2758 *
2759 *	OUT:	vap	- attribute values.
2760 *
2761 *	RETURN:	0 (always succeeds).
2762 */
2763/* ARGSUSED */
2764static int
2765zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2766    caller_context_t *ct)
2767{
2768	znode_t *zp = VTOZ(vp);
2769	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2770	int	error = 0;
2771	uint32_t blksize;
2772	u_longlong_t nblocks;
2773	uint64_t links;
2774	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2775	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2776	xoptattr_t *xoap = NULL;
2777	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2778	sa_bulk_attr_t bulk[4];
2779	int count = 0;
2780
2781	ZFS_ENTER(zfsvfs);
2782	ZFS_VERIFY_ZP(zp);
2783
2784	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2785
2786	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2787	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2788	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2789	if (vp->v_type == VBLK || vp->v_type == VCHR)
2790		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2791		    &rdev, 8);
2792
2793	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2794		ZFS_EXIT(zfsvfs);
2795		return (error);
2796	}
2797
2798	/*
2799	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2800	 * Also, if we are the owner don't bother, since owner should
2801	 * always be allowed to read basic attributes of file.
2802	 */
2803	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2804	    (vap->va_uid != crgetuid(cr))) {
2805		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2806		    skipaclchk, cr)) {
2807			ZFS_EXIT(zfsvfs);
2808			return (error);
2809		}
2810	}
2811
2812	/*
2813	 * Return all attributes.  It's cheaper to provide the answer
2814	 * than to determine whether we were asked the question.
2815	 */
2816
2817	mutex_enter(&zp->z_lock);
2818	vap->va_type = IFTOVT(zp->z_mode);
2819	vap->va_mode = zp->z_mode & ~S_IFMT;
2820#ifdef sun
2821	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2822#else
2823	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2824#endif
2825	vap->va_nodeid = zp->z_id;
2826	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2827		links = zp->z_links + 1;
2828	else
2829		links = zp->z_links;
2830	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2831	vap->va_size = zp->z_size;
2832#ifdef sun
2833	vap->va_rdev = vp->v_rdev;
2834#else
2835	if (vp->v_type == VBLK || vp->v_type == VCHR)
2836		vap->va_rdev = zfs_cmpldev(rdev);
2837#endif
2838	vap->va_seq = zp->z_seq;
2839	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2840     	vap->va_filerev = zp->z_seq;
2841
2842	/*
2843	 * Add in any requested optional attributes and the create time.
2844	 * Also set the corresponding bits in the returned attribute bitmap.
2845	 */
2846	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2847		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2848			xoap->xoa_archive =
2849			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2850			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2851		}
2852
2853		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2854			xoap->xoa_readonly =
2855			    ((zp->z_pflags & ZFS_READONLY) != 0);
2856			XVA_SET_RTN(xvap, XAT_READONLY);
2857		}
2858
2859		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2860			xoap->xoa_system =
2861			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2862			XVA_SET_RTN(xvap, XAT_SYSTEM);
2863		}
2864
2865		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2866			xoap->xoa_hidden =
2867			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2868			XVA_SET_RTN(xvap, XAT_HIDDEN);
2869		}
2870
2871		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2872			xoap->xoa_nounlink =
2873			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2874			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2875		}
2876
2877		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2878			xoap->xoa_immutable =
2879			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2880			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2881		}
2882
2883		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2884			xoap->xoa_appendonly =
2885			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2886			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2887		}
2888
2889		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2890			xoap->xoa_nodump =
2891			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2892			XVA_SET_RTN(xvap, XAT_NODUMP);
2893		}
2894
2895		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2896			xoap->xoa_opaque =
2897			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2898			XVA_SET_RTN(xvap, XAT_OPAQUE);
2899		}
2900
2901		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2902			xoap->xoa_av_quarantined =
2903			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2904			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2905		}
2906
2907		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2908			xoap->xoa_av_modified =
2909			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2910			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2911		}
2912
2913		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2914		    vp->v_type == VREG) {
2915			zfs_sa_get_scanstamp(zp, xvap);
2916		}
2917
2918		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2919			uint64_t times[2];
2920
2921			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2922			    times, sizeof (times));
2923			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2924			XVA_SET_RTN(xvap, XAT_CREATETIME);
2925		}
2926
2927		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2928			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2929			XVA_SET_RTN(xvap, XAT_REPARSE);
2930		}
2931		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2932			xoap->xoa_generation = zp->z_gen;
2933			XVA_SET_RTN(xvap, XAT_GEN);
2934		}
2935
2936		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2937			xoap->xoa_offline =
2938			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2939			XVA_SET_RTN(xvap, XAT_OFFLINE);
2940		}
2941
2942		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2943			xoap->xoa_sparse =
2944			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2945			XVA_SET_RTN(xvap, XAT_SPARSE);
2946		}
2947	}
2948
2949	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2950	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2951	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2952	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2953
2954	mutex_exit(&zp->z_lock);
2955
2956	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2957	vap->va_blksize = blksize;
2958	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2959
2960	if (zp->z_blksz == 0) {
2961		/*
2962		 * Block size hasn't been set; suggest maximal I/O transfers.
2963		 */
2964		vap->va_blksize = zfsvfs->z_max_blksz;
2965	}
2966
2967	ZFS_EXIT(zfsvfs);
2968	return (0);
2969}
2970
2971/*
2972 * Set the file attributes to the values contained in the
2973 * vattr structure.
2974 *
2975 *	IN:	vp	- vnode of file to be modified.
2976 *		vap	- new attribute values.
2977 *			  If AT_XVATTR set, then optional attrs are being set
2978 *		flags	- ATTR_UTIME set if non-default time values provided.
2979 *			- ATTR_NOACLCHECK (CIFS context only).
2980 *		cr	- credentials of caller.
2981 *		ct	- caller context
2982 *
2983 *	RETURN:	0 on success, error code on failure.
2984 *
2985 * Timestamps:
2986 *	vp - ctime updated, mtime updated if size changed.
2987 */
2988/* ARGSUSED */
2989static int
2990zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2991    caller_context_t *ct)
2992{
2993	znode_t		*zp = VTOZ(vp);
2994	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2995	zilog_t		*zilog;
2996	dmu_tx_t	*tx;
2997	vattr_t		oldva;
2998	xvattr_t	tmpxvattr;
2999	uint_t		mask = vap->va_mask;
3000	uint_t		saved_mask = 0;
3001	uint64_t	saved_mode;
3002	int		trim_mask = 0;
3003	uint64_t	new_mode;
3004	uint64_t	new_uid, new_gid;
3005	uint64_t	xattr_obj;
3006	uint64_t	mtime[2], ctime[2];
3007	znode_t		*attrzp;
3008	int		need_policy = FALSE;
3009	int		err, err2;
3010	zfs_fuid_info_t *fuidp = NULL;
3011	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3012	xoptattr_t	*xoap;
3013	zfs_acl_t	*aclp;
3014	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3015	boolean_t	fuid_dirtied = B_FALSE;
3016	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3017	int		count = 0, xattr_count = 0;
3018
3019	if (mask == 0)
3020		return (0);
3021
3022	if (mask & AT_NOSET)
3023		return (SET_ERROR(EINVAL));
3024
3025	ZFS_ENTER(zfsvfs);
3026	ZFS_VERIFY_ZP(zp);
3027
3028	zilog = zfsvfs->z_log;
3029
3030	/*
3031	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3032	 * that file system is at proper version level
3033	 */
3034
3035	if (zfsvfs->z_use_fuids == B_FALSE &&
3036	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3037	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3038	    (mask & AT_XVATTR))) {
3039		ZFS_EXIT(zfsvfs);
3040		return (SET_ERROR(EINVAL));
3041	}
3042
3043	if (mask & AT_SIZE && vp->v_type == VDIR) {
3044		ZFS_EXIT(zfsvfs);
3045		return (SET_ERROR(EISDIR));
3046	}
3047
3048	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3049		ZFS_EXIT(zfsvfs);
3050		return (SET_ERROR(EINVAL));
3051	}
3052
3053	/*
3054	 * If this is an xvattr_t, then get a pointer to the structure of
3055	 * optional attributes.  If this is NULL, then we have a vattr_t.
3056	 */
3057	xoap = xva_getxoptattr(xvap);
3058
3059	xva_init(&tmpxvattr);
3060
3061	/*
3062	 * Immutable files can only alter immutable bit and atime
3063	 */
3064	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3065	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3066	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3067		ZFS_EXIT(zfsvfs);
3068		return (SET_ERROR(EPERM));
3069	}
3070
3071	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3072		ZFS_EXIT(zfsvfs);
3073		return (SET_ERROR(EPERM));
3074	}
3075
3076	/*
3077	 * Verify timestamps doesn't overflow 32 bits.
3078	 * ZFS can handle large timestamps, but 32bit syscalls can't
3079	 * handle times greater than 2039.  This check should be removed
3080	 * once large timestamps are fully supported.
3081	 */
3082	if (mask & (AT_ATIME | AT_MTIME)) {
3083		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3084		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3085			ZFS_EXIT(zfsvfs);
3086			return (SET_ERROR(EOVERFLOW));
3087		}
3088	}
3089
3090top:
3091	attrzp = NULL;
3092	aclp = NULL;
3093
3094	/* Can this be moved to before the top label? */
3095	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3096		ZFS_EXIT(zfsvfs);
3097		return (SET_ERROR(EROFS));
3098	}
3099
3100	/*
3101	 * First validate permissions
3102	 */
3103
3104	if (mask & AT_SIZE) {
3105		/*
3106		 * XXX - Note, we are not providing any open
3107		 * mode flags here (like FNDELAY), so we may
3108		 * block if there are locks present... this
3109		 * should be addressed in openat().
3110		 */
3111		/* XXX - would it be OK to generate a log record here? */
3112		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3113		if (err) {
3114			ZFS_EXIT(zfsvfs);
3115			return (err);
3116		}
3117	}
3118
3119	if (mask & (AT_ATIME|AT_MTIME) ||
3120	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3121	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3122	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3123	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3124	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3125	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3126	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3127		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3128		    skipaclchk, cr);
3129	}
3130
3131	if (mask & (AT_UID|AT_GID)) {
3132		int	idmask = (mask & (AT_UID|AT_GID));
3133		int	take_owner;
3134		int	take_group;
3135
3136		/*
3137		 * NOTE: even if a new mode is being set,
3138		 * we may clear S_ISUID/S_ISGID bits.
3139		 */
3140
3141		if (!(mask & AT_MODE))
3142			vap->va_mode = zp->z_mode;
3143
3144		/*
3145		 * Take ownership or chgrp to group we are a member of
3146		 */
3147
3148		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3149		take_group = (mask & AT_GID) &&
3150		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3151
3152		/*
3153		 * If both AT_UID and AT_GID are set then take_owner and
3154		 * take_group must both be set in order to allow taking
3155		 * ownership.
3156		 *
3157		 * Otherwise, send the check through secpolicy_vnode_setattr()
3158		 *
3159		 */
3160
3161		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3162		    ((idmask == AT_UID) && take_owner) ||
3163		    ((idmask == AT_GID) && take_group)) {
3164			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3165			    skipaclchk, cr) == 0) {
3166				/*
3167				 * Remove setuid/setgid for non-privileged users
3168				 */
3169				secpolicy_setid_clear(vap, vp, cr);
3170				trim_mask = (mask & (AT_UID|AT_GID));
3171			} else {
3172				need_policy =  TRUE;
3173			}
3174		} else {
3175			need_policy =  TRUE;
3176		}
3177	}
3178
3179	mutex_enter(&zp->z_lock);
3180	oldva.va_mode = zp->z_mode;
3181	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3182	if (mask & AT_XVATTR) {
3183		/*
3184		 * Update xvattr mask to include only those attributes
3185		 * that are actually changing.
3186		 *
3187		 * the bits will be restored prior to actually setting
3188		 * the attributes so the caller thinks they were set.
3189		 */
3190		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3191			if (xoap->xoa_appendonly !=
3192			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3193				need_policy = TRUE;
3194			} else {
3195				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3196				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3197			}
3198		}
3199
3200		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3201			if (xoap->xoa_nounlink !=
3202			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3203				need_policy = TRUE;
3204			} else {
3205				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3206				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3207			}
3208		}
3209
3210		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3211			if (xoap->xoa_immutable !=
3212			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3213				need_policy = TRUE;
3214			} else {
3215				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3216				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3217			}
3218		}
3219
3220		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3221			if (xoap->xoa_nodump !=
3222			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3223				need_policy = TRUE;
3224			} else {
3225				XVA_CLR_REQ(xvap, XAT_NODUMP);
3226				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3227			}
3228		}
3229
3230		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3231			if (xoap->xoa_av_modified !=
3232			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3233				need_policy = TRUE;
3234			} else {
3235				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3236				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3237			}
3238		}
3239
3240		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3241			if ((vp->v_type != VREG &&
3242			    xoap->xoa_av_quarantined) ||
3243			    xoap->xoa_av_quarantined !=
3244			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3245				need_policy = TRUE;
3246			} else {
3247				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3248				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3249			}
3250		}
3251
3252		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3253			mutex_exit(&zp->z_lock);
3254			ZFS_EXIT(zfsvfs);
3255			return (SET_ERROR(EPERM));
3256		}
3257
3258		if (need_policy == FALSE &&
3259		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3260		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3261			need_policy = TRUE;
3262		}
3263	}
3264
3265	mutex_exit(&zp->z_lock);
3266
3267	if (mask & AT_MODE) {
3268		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3269			err = secpolicy_setid_setsticky_clear(vp, vap,
3270			    &oldva, cr);
3271			if (err) {
3272				ZFS_EXIT(zfsvfs);
3273				return (err);
3274			}
3275			trim_mask |= AT_MODE;
3276		} else {
3277			need_policy = TRUE;
3278		}
3279	}
3280
3281	if (need_policy) {
3282		/*
3283		 * If trim_mask is set then take ownership
3284		 * has been granted or write_acl is present and user
3285		 * has the ability to modify mode.  In that case remove
3286		 * UID|GID and or MODE from mask so that
3287		 * secpolicy_vnode_setattr() doesn't revoke it.
3288		 */
3289
3290		if (trim_mask) {
3291			saved_mask = vap->va_mask;
3292			vap->va_mask &= ~trim_mask;
3293			if (trim_mask & AT_MODE) {
3294				/*
3295				 * Save the mode, as secpolicy_vnode_setattr()
3296				 * will overwrite it with ova.va_mode.
3297				 */
3298				saved_mode = vap->va_mode;
3299			}
3300		}
3301		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3302		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3303		if (err) {
3304			ZFS_EXIT(zfsvfs);
3305			return (err);
3306		}
3307
3308		if (trim_mask) {
3309			vap->va_mask |= saved_mask;
3310			if (trim_mask & AT_MODE) {
3311				/*
3312				 * Recover the mode after
3313				 * secpolicy_vnode_setattr().
3314				 */
3315				vap->va_mode = saved_mode;
3316			}
3317		}
3318	}
3319
3320	/*
3321	 * secpolicy_vnode_setattr, or take ownership may have
3322	 * changed va_mask
3323	 */
3324	mask = vap->va_mask;
3325
3326	if ((mask & (AT_UID | AT_GID))) {
3327		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3328		    &xattr_obj, sizeof (xattr_obj));
3329
3330		if (err == 0 && xattr_obj) {
3331			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3332			if (err)
3333				goto out2;
3334		}
3335		if (mask & AT_UID) {
3336			new_uid = zfs_fuid_create(zfsvfs,
3337			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3338			if (new_uid != zp->z_uid &&
3339			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3340				if (attrzp)
3341					VN_RELE(ZTOV(attrzp));
3342				err = SET_ERROR(EDQUOT);
3343				goto out2;
3344			}
3345		}
3346
3347		if (mask & AT_GID) {
3348			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3349			    cr, ZFS_GROUP, &fuidp);
3350			if (new_gid != zp->z_gid &&
3351			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3352				if (attrzp)
3353					VN_RELE(ZTOV(attrzp));
3354				err = SET_ERROR(EDQUOT);
3355				goto out2;
3356			}
3357		}
3358	}
3359	tx = dmu_tx_create(zfsvfs->z_os);
3360
3361	if (mask & AT_MODE) {
3362		uint64_t pmode = zp->z_mode;
3363		uint64_t acl_obj;
3364		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3365
3366		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3367		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3368			err = SET_ERROR(EPERM);
3369			goto out;
3370		}
3371
3372		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3373			goto out;
3374
3375		mutex_enter(&zp->z_lock);
3376		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3377			/*
3378			 * Are we upgrading ACL from old V0 format
3379			 * to V1 format?
3380			 */
3381			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3382			    zfs_znode_acl_version(zp) ==
3383			    ZFS_ACL_VERSION_INITIAL) {
3384				dmu_tx_hold_free(tx, acl_obj, 0,
3385				    DMU_OBJECT_END);
3386				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3387				    0, aclp->z_acl_bytes);
3388			} else {
3389				dmu_tx_hold_write(tx, acl_obj, 0,
3390				    aclp->z_acl_bytes);
3391			}
3392		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3393			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3394			    0, aclp->z_acl_bytes);
3395		}
3396		mutex_exit(&zp->z_lock);
3397		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3398	} else {
3399		if ((mask & AT_XVATTR) &&
3400		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3401			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3402		else
3403			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3404	}
3405
3406	if (attrzp) {
3407		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3408	}
3409
3410	fuid_dirtied = zfsvfs->z_fuid_dirty;
3411	if (fuid_dirtied)
3412		zfs_fuid_txhold(zfsvfs, tx);
3413
3414	zfs_sa_upgrade_txholds(tx, zp);
3415
3416	err = dmu_tx_assign(tx, TXG_WAIT);
3417	if (err)
3418		goto out;
3419
3420	count = 0;
3421	/*
3422	 * Set each attribute requested.
3423	 * We group settings according to the locks they need to acquire.
3424	 *
3425	 * Note: you cannot set ctime directly, although it will be
3426	 * updated as a side-effect of calling this function.
3427	 */
3428
3429
3430	if (mask & (AT_UID|AT_GID|AT_MODE))
3431		mutex_enter(&zp->z_acl_lock);
3432	mutex_enter(&zp->z_lock);
3433
3434	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3435	    &zp->z_pflags, sizeof (zp->z_pflags));
3436
3437	if (attrzp) {
3438		if (mask & (AT_UID|AT_GID|AT_MODE))
3439			mutex_enter(&attrzp->z_acl_lock);
3440		mutex_enter(&attrzp->z_lock);
3441		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3442		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3443		    sizeof (attrzp->z_pflags));
3444	}
3445
3446	if (mask & (AT_UID|AT_GID)) {
3447
3448		if (mask & AT_UID) {
3449			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3450			    &new_uid, sizeof (new_uid));
3451			zp->z_uid = new_uid;
3452			if (attrzp) {
3453				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3454				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3455				    sizeof (new_uid));
3456				attrzp->z_uid = new_uid;
3457			}
3458		}
3459
3460		if (mask & AT_GID) {
3461			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3462			    NULL, &new_gid, sizeof (new_gid));
3463			zp->z_gid = new_gid;
3464			if (attrzp) {
3465				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3466				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3467				    sizeof (new_gid));
3468				attrzp->z_gid = new_gid;
3469			}
3470		}
3471		if (!(mask & AT_MODE)) {
3472			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3473			    NULL, &new_mode, sizeof (new_mode));
3474			new_mode = zp->z_mode;
3475		}
3476		err = zfs_acl_chown_setattr(zp);
3477		ASSERT(err == 0);
3478		if (attrzp) {
3479			err = zfs_acl_chown_setattr(attrzp);
3480			ASSERT(err == 0);
3481		}
3482	}
3483
3484	if (mask & AT_MODE) {
3485		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3486		    &new_mode, sizeof (new_mode));
3487		zp->z_mode = new_mode;
3488		ASSERT3U((uintptr_t)aclp, !=, 0);
3489		err = zfs_aclset_common(zp, aclp, cr, tx);
3490		ASSERT0(err);
3491		if (zp->z_acl_cached)
3492			zfs_acl_free(zp->z_acl_cached);
3493		zp->z_acl_cached = aclp;
3494		aclp = NULL;
3495	}
3496
3497
3498	if (mask & AT_ATIME) {
3499		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3500		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3501		    &zp->z_atime, sizeof (zp->z_atime));
3502	}
3503
3504	if (mask & AT_MTIME) {
3505		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3506		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3507		    mtime, sizeof (mtime));
3508	}
3509
3510	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3511	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3512		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3513		    NULL, mtime, sizeof (mtime));
3514		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3515		    &ctime, sizeof (ctime));
3516		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3517		    B_TRUE);
3518	} else if (mask != 0) {
3519		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3520		    &ctime, sizeof (ctime));
3521		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3522		    B_TRUE);
3523		if (attrzp) {
3524			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3525			    SA_ZPL_CTIME(zfsvfs), NULL,
3526			    &ctime, sizeof (ctime));
3527			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3528			    mtime, ctime, B_TRUE);
3529		}
3530	}
3531	/*
3532	 * Do this after setting timestamps to prevent timestamp
3533	 * update from toggling bit
3534	 */
3535
3536	if (xoap && (mask & AT_XVATTR)) {
3537
3538		/*
3539		 * restore trimmed off masks
3540		 * so that return masks can be set for caller.
3541		 */
3542
3543		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3544			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3545		}
3546		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3547			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3548		}
3549		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3550			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3551		}
3552		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3553			XVA_SET_REQ(xvap, XAT_NODUMP);
3554		}
3555		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3556			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3557		}
3558		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3559			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3560		}
3561
3562		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3563			ASSERT(vp->v_type == VREG);
3564
3565		zfs_xvattr_set(zp, xvap, tx);
3566	}
3567
3568	if (fuid_dirtied)
3569		zfs_fuid_sync(zfsvfs, tx);
3570
3571	if (mask != 0)
3572		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3573
3574	mutex_exit(&zp->z_lock);
3575	if (mask & (AT_UID|AT_GID|AT_MODE))
3576		mutex_exit(&zp->z_acl_lock);
3577
3578	if (attrzp) {
3579		if (mask & (AT_UID|AT_GID|AT_MODE))
3580			mutex_exit(&attrzp->z_acl_lock);
3581		mutex_exit(&attrzp->z_lock);
3582	}
3583out:
3584	if (err == 0 && attrzp) {
3585		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3586		    xattr_count, tx);
3587		ASSERT(err2 == 0);
3588	}
3589
3590	if (attrzp)
3591		VN_RELE(ZTOV(attrzp));
3592
3593	if (aclp)
3594		zfs_acl_free(aclp);
3595
3596	if (fuidp) {
3597		zfs_fuid_info_free(fuidp);
3598		fuidp = NULL;
3599	}
3600
3601	if (err) {
3602		dmu_tx_abort(tx);
3603		if (err == ERESTART)
3604			goto top;
3605	} else {
3606		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3607		dmu_tx_commit(tx);
3608	}
3609
3610out2:
3611	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3612		zil_commit(zilog, 0);
3613
3614	ZFS_EXIT(zfsvfs);
3615	return (err);
3616}
3617
3618typedef struct zfs_zlock {
3619	krwlock_t	*zl_rwlock;	/* lock we acquired */
3620	znode_t		*zl_znode;	/* znode we held */
3621	struct zfs_zlock *zl_next;	/* next in list */
3622} zfs_zlock_t;
3623
3624/*
3625 * Drop locks and release vnodes that were held by zfs_rename_lock().
3626 */
3627static void
3628zfs_rename_unlock(zfs_zlock_t **zlpp)
3629{
3630	zfs_zlock_t *zl;
3631
3632	while ((zl = *zlpp) != NULL) {
3633		if (zl->zl_znode != NULL)
3634			VN_RELE(ZTOV(zl->zl_znode));
3635		rw_exit(zl->zl_rwlock);
3636		*zlpp = zl->zl_next;
3637		kmem_free(zl, sizeof (*zl));
3638	}
3639}
3640
3641/*
3642 * Search back through the directory tree, using the ".." entries.
3643 * Lock each directory in the chain to prevent concurrent renames.
3644 * Fail any attempt to move a directory into one of its own descendants.
3645 * XXX - z_parent_lock can overlap with map or grow locks
3646 */
3647static int
3648zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3649{
3650	zfs_zlock_t	*zl;
3651	znode_t		*zp = tdzp;
3652	uint64_t	rootid = zp->z_zfsvfs->z_root;
3653	uint64_t	oidp = zp->z_id;
3654	krwlock_t	*rwlp = &szp->z_parent_lock;
3655	krw_t		rw = RW_WRITER;
3656
3657	/*
3658	 * First pass write-locks szp and compares to zp->z_id.
3659	 * Later passes read-lock zp and compare to zp->z_parent.
3660	 */
3661	do {
3662		if (!rw_tryenter(rwlp, rw)) {
3663			/*
3664			 * Another thread is renaming in this path.
3665			 * Note that if we are a WRITER, we don't have any
3666			 * parent_locks held yet.
3667			 */
3668			if (rw == RW_READER && zp->z_id > szp->z_id) {
3669				/*
3670				 * Drop our locks and restart
3671				 */
3672				zfs_rename_unlock(&zl);
3673				*zlpp = NULL;
3674				zp = tdzp;
3675				oidp = zp->z_id;
3676				rwlp = &szp->z_parent_lock;
3677				rw = RW_WRITER;
3678				continue;
3679			} else {
3680				/*
3681				 * Wait for other thread to drop its locks
3682				 */
3683				rw_enter(rwlp, rw);
3684			}
3685		}
3686
3687		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3688		zl->zl_rwlock = rwlp;
3689		zl->zl_znode = NULL;
3690		zl->zl_next = *zlpp;
3691		*zlpp = zl;
3692
3693		if (oidp == szp->z_id)		/* We're a descendant of szp */
3694			return (SET_ERROR(EINVAL));
3695
3696		if (oidp == rootid)		/* We've hit the top */
3697			return (0);
3698
3699		if (rw == RW_READER) {		/* i.e. not the first pass */
3700			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3701			if (error)
3702				return (error);
3703			zl->zl_znode = zp;
3704		}
3705		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3706		    &oidp, sizeof (oidp));
3707		rwlp = &zp->z_parent_lock;
3708		rw = RW_READER;
3709
3710	} while (zp->z_id != sdzp->z_id);
3711
3712	return (0);
3713}
3714
3715/*
3716 * Move an entry from the provided source directory to the target
3717 * directory.  Change the entry name as indicated.
3718 *
3719 *	IN:	sdvp	- Source directory containing the "old entry".
3720 *		snm	- Old entry name.
3721 *		tdvp	- Target directory to contain the "new entry".
3722 *		tnm	- New entry name.
3723 *		cr	- credentials of caller.
3724 *		ct	- caller context
3725 *		flags	- case flags
3726 *
3727 *	RETURN:	0 on success, error code on failure.
3728 *
3729 * Timestamps:
3730 *	sdvp,tdvp - ctime|mtime updated
3731 */
3732/*ARGSUSED*/
3733static int
3734zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3735    caller_context_t *ct, int flags)
3736{
3737	znode_t		*tdzp, *sdzp, *szp, *tzp;
3738	zfsvfs_t 	*zfsvfs;
3739	zilog_t		*zilog;
3740	vnode_t		*realvp;
3741	zfs_dirlock_t	*sdl, *tdl;
3742	dmu_tx_t	*tx;
3743	zfs_zlock_t	*zl;
3744	int		cmp, serr, terr;
3745	int		error = 0;
3746	int		zflg = 0;
3747	boolean_t	waited = B_FALSE;
3748
3749	tdzp = VTOZ(tdvp);
3750	ZFS_VERIFY_ZP(tdzp);
3751	zfsvfs = tdzp->z_zfsvfs;
3752	ZFS_ENTER(zfsvfs);
3753	zilog = zfsvfs->z_log;
3754	sdzp = VTOZ(sdvp);
3755
3756	/*
3757	 * In case sdzp is not valid, let's be sure to exit from the right
3758	 * zfsvfs_t.
3759	 */
3760	if (sdzp->z_sa_hdl == NULL) {
3761		ZFS_EXIT(zfsvfs);
3762		return (SET_ERROR(EIO));
3763	}
3764
3765	/*
3766	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3767	 * ctldir appear to have the same v_vfsp.
3768	 */
3769	if (sdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3770		ZFS_EXIT(zfsvfs);
3771		return (SET_ERROR(EXDEV));
3772	}
3773
3774	if (zfsvfs->z_utf8 && u8_validate(tnm,
3775	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3776		ZFS_EXIT(zfsvfs);
3777		return (SET_ERROR(EILSEQ));
3778	}
3779
3780	if (flags & FIGNORECASE)
3781		zflg |= ZCILOOK;
3782
3783top:
3784	szp = NULL;
3785	tzp = NULL;
3786	zl = NULL;
3787
3788	/*
3789	 * This is to prevent the creation of links into attribute space
3790	 * by renaming a linked file into/outof an attribute directory.
3791	 * See the comment in zfs_link() for why this is considered bad.
3792	 */
3793	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3794		ZFS_EXIT(zfsvfs);
3795		return (SET_ERROR(EINVAL));
3796	}
3797
3798	/*
3799	 * Lock source and target directory entries.  To prevent deadlock,
3800	 * a lock ordering must be defined.  We lock the directory with
3801	 * the smallest object id first, or if it's a tie, the one with
3802	 * the lexically first name.
3803	 */
3804	if (sdzp->z_id < tdzp->z_id) {
3805		cmp = -1;
3806	} else if (sdzp->z_id > tdzp->z_id) {
3807		cmp = 1;
3808	} else {
3809		/*
3810		 * First compare the two name arguments without
3811		 * considering any case folding.
3812		 */
3813		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3814
3815		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3816		ASSERT(error == 0 || !zfsvfs->z_utf8);
3817		if (cmp == 0) {
3818			/*
3819			 * POSIX: "If the old argument and the new argument
3820			 * both refer to links to the same existing file,
3821			 * the rename() function shall return successfully
3822			 * and perform no other action."
3823			 */
3824			ZFS_EXIT(zfsvfs);
3825			return (0);
3826		}
3827		/*
3828		 * If the file system is case-folding, then we may
3829		 * have some more checking to do.  A case-folding file
3830		 * system is either supporting mixed case sensitivity
3831		 * access or is completely case-insensitive.  Note
3832		 * that the file system is always case preserving.
3833		 *
3834		 * In mixed sensitivity mode case sensitive behavior
3835		 * is the default.  FIGNORECASE must be used to
3836		 * explicitly request case insensitive behavior.
3837		 *
3838		 * If the source and target names provided differ only
3839		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3840		 * we will treat this as a special case in the
3841		 * case-insensitive mode: as long as the source name
3842		 * is an exact match, we will allow this to proceed as
3843		 * a name-change request.
3844		 */
3845		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3846		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3847		    flags & FIGNORECASE)) &&
3848		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3849		    &error) == 0) {
3850			/*
3851			 * case preserving rename request, require exact
3852			 * name matches
3853			 */
3854			zflg |= ZCIEXACT;
3855			zflg &= ~ZCILOOK;
3856		}
3857	}
3858
3859	/*
3860	 * If the source and destination directories are the same, we should
3861	 * grab the z_name_lock of that directory only once.
3862	 */
3863	if (sdzp == tdzp) {
3864		zflg |= ZHAVELOCK;
3865		rw_enter(&sdzp->z_name_lock, RW_READER);
3866	}
3867
3868	if (cmp < 0) {
3869		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3870		    ZEXISTS | zflg, NULL, NULL);
3871		terr = zfs_dirent_lock(&tdl,
3872		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3873	} else {
3874		terr = zfs_dirent_lock(&tdl,
3875		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3876		serr = zfs_dirent_lock(&sdl,
3877		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3878		    NULL, NULL);
3879	}
3880
3881	if (serr) {
3882		/*
3883		 * Source entry invalid or not there.
3884		 */
3885		if (!terr) {
3886			zfs_dirent_unlock(tdl);
3887			if (tzp)
3888				VN_RELE(ZTOV(tzp));
3889		}
3890
3891		if (sdzp == tdzp)
3892			rw_exit(&sdzp->z_name_lock);
3893
3894		/*
3895		 * FreeBSD: In OpenSolaris they only check if rename source is
3896		 * ".." here, because "." is handled in their lookup. This is
3897		 * not the case for FreeBSD, so we check for "." explicitly.
3898		 */
3899		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3900			serr = SET_ERROR(EINVAL);
3901		ZFS_EXIT(zfsvfs);
3902		return (serr);
3903	}
3904	if (terr) {
3905		zfs_dirent_unlock(sdl);
3906		VN_RELE(ZTOV(szp));
3907
3908		if (sdzp == tdzp)
3909			rw_exit(&sdzp->z_name_lock);
3910
3911		if (strcmp(tnm, "..") == 0)
3912			terr = SET_ERROR(EINVAL);
3913		ZFS_EXIT(zfsvfs);
3914		return (terr);
3915	}
3916
3917	/*
3918	 * Must have write access at the source to remove the old entry
3919	 * and write access at the target to create the new entry.
3920	 * Note that if target and source are the same, this can be
3921	 * done in a single check.
3922	 */
3923
3924	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3925		goto out;
3926
3927	if (ZTOV(szp)->v_type == VDIR) {
3928		/*
3929		 * Check to make sure rename is valid.
3930		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3931		 */
3932		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3933			goto out;
3934	}
3935
3936	/*
3937	 * Does target exist?
3938	 */
3939	if (tzp) {
3940		/*
3941		 * Source and target must be the same type.
3942		 */
3943		if (ZTOV(szp)->v_type == VDIR) {
3944			if (ZTOV(tzp)->v_type != VDIR) {
3945				error = SET_ERROR(ENOTDIR);
3946				goto out;
3947			}
3948		} else {
3949			if (ZTOV(tzp)->v_type == VDIR) {
3950				error = SET_ERROR(EISDIR);
3951				goto out;
3952			}
3953		}
3954		/*
3955		 * POSIX dictates that when the source and target
3956		 * entries refer to the same file object, rename
3957		 * must do nothing and exit without error.
3958		 */
3959		if (szp->z_id == tzp->z_id) {
3960			error = 0;
3961			goto out;
3962		}
3963	}
3964
3965	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3966	if (tzp)
3967		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3968
3969	/*
3970	 * notify the target directory if it is not the same
3971	 * as source directory.
3972	 */
3973	if (tdvp != sdvp) {
3974		vnevent_rename_dest_dir(tdvp, ct);
3975	}
3976
3977	tx = dmu_tx_create(zfsvfs->z_os);
3978	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3979	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3980	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3981	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3982	if (sdzp != tdzp) {
3983		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3984		zfs_sa_upgrade_txholds(tx, tdzp);
3985	}
3986	if (tzp) {
3987		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3988		zfs_sa_upgrade_txholds(tx, tzp);
3989	}
3990
3991	zfs_sa_upgrade_txholds(tx, szp);
3992	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3993	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3994	if (error) {
3995		if (zl != NULL)
3996			zfs_rename_unlock(&zl);
3997		zfs_dirent_unlock(sdl);
3998		zfs_dirent_unlock(tdl);
3999
4000		if (sdzp == tdzp)
4001			rw_exit(&sdzp->z_name_lock);
4002
4003		VN_RELE(ZTOV(szp));
4004		if (tzp)
4005			VN_RELE(ZTOV(tzp));
4006		if (error == ERESTART) {
4007			waited = B_TRUE;
4008			dmu_tx_wait(tx);
4009			dmu_tx_abort(tx);
4010			goto top;
4011		}
4012		dmu_tx_abort(tx);
4013		ZFS_EXIT(zfsvfs);
4014		return (error);
4015	}
4016
4017	if (tzp)	/* Attempt to remove the existing target */
4018		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4019
4020	if (error == 0) {
4021		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4022		if (error == 0) {
4023			szp->z_pflags |= ZFS_AV_MODIFIED;
4024
4025			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4026			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4027			ASSERT0(error);
4028
4029			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4030			if (error == 0) {
4031				zfs_log_rename(zilog, tx, TX_RENAME |
4032				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4033				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4034
4035				/*
4036				 * Update path information for the target vnode
4037				 */
4038				vn_renamepath(tdvp, ZTOV(szp), tnm,
4039				    strlen(tnm));
4040			} else {
4041				/*
4042				 * At this point, we have successfully created
4043				 * the target name, but have failed to remove
4044				 * the source name.  Since the create was done
4045				 * with the ZRENAMING flag, there are
4046				 * complications; for one, the link count is
4047				 * wrong.  The easiest way to deal with this
4048				 * is to remove the newly created target, and
4049				 * return the original error.  This must
4050				 * succeed; fortunately, it is very unlikely to
4051				 * fail, since we just created it.
4052				 */
4053				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4054				    ZRENAMING, NULL), ==, 0);
4055			}
4056		}
4057#ifdef FREEBSD_NAMECACHE
4058		if (error == 0) {
4059			cache_purge(sdvp);
4060			cache_purge(tdvp);
4061			cache_purge(ZTOV(szp));
4062			if (tzp)
4063				cache_purge(ZTOV(tzp));
4064		}
4065#endif
4066	}
4067
4068	dmu_tx_commit(tx);
4069out:
4070	if (zl != NULL)
4071		zfs_rename_unlock(&zl);
4072
4073	zfs_dirent_unlock(sdl);
4074	zfs_dirent_unlock(tdl);
4075
4076	if (sdzp == tdzp)
4077		rw_exit(&sdzp->z_name_lock);
4078
4079
4080	VN_RELE(ZTOV(szp));
4081	if (tzp)
4082		VN_RELE(ZTOV(tzp));
4083
4084	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4085		zil_commit(zilog, 0);
4086
4087	ZFS_EXIT(zfsvfs);
4088
4089	return (error);
4090}
4091
4092/*
4093 * Insert the indicated symbolic reference entry into the directory.
4094 *
4095 *	IN:	dvp	- Directory to contain new symbolic link.
4096 *		link	- Name for new symlink entry.
4097 *		vap	- Attributes of new entry.
4098 *		cr	- credentials of caller.
4099 *		ct	- caller context
4100 *		flags	- case flags
4101 *
4102 *	RETURN:	0 on success, error code on failure.
4103 *
4104 * Timestamps:
4105 *	dvp - ctime|mtime updated
4106 */
4107/*ARGSUSED*/
4108static int
4109zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4110    cred_t *cr, kthread_t *td)
4111{
4112	znode_t		*zp, *dzp = VTOZ(dvp);
4113	zfs_dirlock_t	*dl;
4114	dmu_tx_t	*tx;
4115	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4116	zilog_t		*zilog;
4117	uint64_t	len = strlen(link);
4118	int		error;
4119	int		zflg = ZNEW;
4120	zfs_acl_ids_t	acl_ids;
4121	boolean_t	fuid_dirtied;
4122	uint64_t	txtype = TX_SYMLINK;
4123	boolean_t	waited = B_FALSE;
4124	int		flags = 0;
4125
4126	ASSERT(vap->va_type == VLNK);
4127
4128	ZFS_ENTER(zfsvfs);
4129	ZFS_VERIFY_ZP(dzp);
4130	zilog = zfsvfs->z_log;
4131
4132	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4133	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4134		ZFS_EXIT(zfsvfs);
4135		return (SET_ERROR(EILSEQ));
4136	}
4137	if (flags & FIGNORECASE)
4138		zflg |= ZCILOOK;
4139
4140	if (len > MAXPATHLEN) {
4141		ZFS_EXIT(zfsvfs);
4142		return (SET_ERROR(ENAMETOOLONG));
4143	}
4144
4145	if ((error = zfs_acl_ids_create(dzp, 0,
4146	    vap, cr, NULL, &acl_ids)) != 0) {
4147		ZFS_EXIT(zfsvfs);
4148		return (error);
4149	}
4150
4151	getnewvnode_reserve(1);
4152
4153top:
4154	/*
4155	 * Attempt to lock directory; fail if entry already exists.
4156	 */
4157	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4158	if (error) {
4159		zfs_acl_ids_free(&acl_ids);
4160		getnewvnode_drop_reserve();
4161		ZFS_EXIT(zfsvfs);
4162		return (error);
4163	}
4164
4165	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4166		zfs_acl_ids_free(&acl_ids);
4167		zfs_dirent_unlock(dl);
4168		getnewvnode_drop_reserve();
4169		ZFS_EXIT(zfsvfs);
4170		return (error);
4171	}
4172
4173	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4174		zfs_acl_ids_free(&acl_ids);
4175		zfs_dirent_unlock(dl);
4176		getnewvnode_drop_reserve();
4177		ZFS_EXIT(zfsvfs);
4178		return (SET_ERROR(EDQUOT));
4179	}
4180	tx = dmu_tx_create(zfsvfs->z_os);
4181	fuid_dirtied = zfsvfs->z_fuid_dirty;
4182	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4183	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4184	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4185	    ZFS_SA_BASE_ATTR_SIZE + len);
4186	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4187	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4188		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4189		    acl_ids.z_aclp->z_acl_bytes);
4190	}
4191	if (fuid_dirtied)
4192		zfs_fuid_txhold(zfsvfs, tx);
4193	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4194	if (error) {
4195		zfs_dirent_unlock(dl);
4196		if (error == ERESTART) {
4197			waited = B_TRUE;
4198			dmu_tx_wait(tx);
4199			dmu_tx_abort(tx);
4200			goto top;
4201		}
4202		zfs_acl_ids_free(&acl_ids);
4203		dmu_tx_abort(tx);
4204		getnewvnode_drop_reserve();
4205		ZFS_EXIT(zfsvfs);
4206		return (error);
4207	}
4208
4209	/*
4210	 * Create a new object for the symlink.
4211	 * for version 4 ZPL datsets the symlink will be an SA attribute
4212	 */
4213	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4214
4215	if (fuid_dirtied)
4216		zfs_fuid_sync(zfsvfs, tx);
4217
4218	mutex_enter(&zp->z_lock);
4219	if (zp->z_is_sa)
4220		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4221		    link, len, tx);
4222	else
4223		zfs_sa_symlink(zp, link, len, tx);
4224	mutex_exit(&zp->z_lock);
4225
4226	zp->z_size = len;
4227	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4228	    &zp->z_size, sizeof (zp->z_size), tx);
4229	/*
4230	 * Insert the new object into the directory.
4231	 */
4232	(void) zfs_link_create(dl, zp, tx, ZNEW);
4233
4234	if (flags & FIGNORECASE)
4235		txtype |= TX_CI;
4236	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4237	*vpp = ZTOV(zp);
4238
4239	zfs_acl_ids_free(&acl_ids);
4240
4241	dmu_tx_commit(tx);
4242
4243	getnewvnode_drop_reserve();
4244
4245	zfs_dirent_unlock(dl);
4246
4247	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4248		zil_commit(zilog, 0);
4249
4250	ZFS_EXIT(zfsvfs);
4251	return (error);
4252}
4253
4254/*
4255 * Return, in the buffer contained in the provided uio structure,
4256 * the symbolic path referred to by vp.
4257 *
4258 *	IN:	vp	- vnode of symbolic link.
4259 *		uio	- structure to contain the link path.
4260 *		cr	- credentials of caller.
4261 *		ct	- caller context
4262 *
4263 *	OUT:	uio	- structure containing the link path.
4264 *
4265 *	RETURN:	0 on success, error code on failure.
4266 *
4267 * Timestamps:
4268 *	vp - atime updated
4269 */
4270/* ARGSUSED */
4271static int
4272zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4273{
4274	znode_t		*zp = VTOZ(vp);
4275	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4276	int		error;
4277
4278	ZFS_ENTER(zfsvfs);
4279	ZFS_VERIFY_ZP(zp);
4280
4281	mutex_enter(&zp->z_lock);
4282	if (zp->z_is_sa)
4283		error = sa_lookup_uio(zp->z_sa_hdl,
4284		    SA_ZPL_SYMLINK(zfsvfs), uio);
4285	else
4286		error = zfs_sa_readlink(zp, uio);
4287	mutex_exit(&zp->z_lock);
4288
4289	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4290
4291	ZFS_EXIT(zfsvfs);
4292	return (error);
4293}
4294
4295/*
4296 * Insert a new entry into directory tdvp referencing svp.
4297 *
4298 *	IN:	tdvp	- Directory to contain new entry.
4299 *		svp	- vnode of new entry.
4300 *		name	- name of new entry.
4301 *		cr	- credentials of caller.
4302 *		ct	- caller context
4303 *
4304 *	RETURN:	0 on success, error code on failure.
4305 *
4306 * Timestamps:
4307 *	tdvp - ctime|mtime updated
4308 *	 svp - ctime updated
4309 */
4310/* ARGSUSED */
4311static int
4312zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4313    caller_context_t *ct, int flags)
4314{
4315	znode_t		*dzp = VTOZ(tdvp);
4316	znode_t		*tzp, *szp;
4317	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4318	zilog_t		*zilog;
4319	zfs_dirlock_t	*dl;
4320	dmu_tx_t	*tx;
4321	vnode_t		*realvp;
4322	int		error;
4323	int		zf = ZNEW;
4324	uint64_t	parent;
4325	uid_t		owner;
4326	boolean_t	waited = B_FALSE;
4327
4328	ASSERT(tdvp->v_type == VDIR);
4329
4330	ZFS_ENTER(zfsvfs);
4331	ZFS_VERIFY_ZP(dzp);
4332	zilog = zfsvfs->z_log;
4333
4334	if (VOP_REALVP(svp, &realvp, ct) == 0)
4335		svp = realvp;
4336
4337	/*
4338	 * POSIX dictates that we return EPERM here.
4339	 * Better choices include ENOTSUP or EISDIR.
4340	 */
4341	if (svp->v_type == VDIR) {
4342		ZFS_EXIT(zfsvfs);
4343		return (SET_ERROR(EPERM));
4344	}
4345
4346	szp = VTOZ(svp);
4347	ZFS_VERIFY_ZP(szp);
4348
4349	if (szp->z_pflags & (ZFS_APPENDONLY | ZFS_IMMUTABLE | ZFS_READONLY)) {
4350		ZFS_EXIT(zfsvfs);
4351		return (SET_ERROR(EPERM));
4352	}
4353
4354	/*
4355	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4356	 * ctldir appear to have the same v_vfsp.
4357	 */
4358	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4359		ZFS_EXIT(zfsvfs);
4360		return (SET_ERROR(EXDEV));
4361	}
4362
4363	/* Prevent links to .zfs/shares files */
4364
4365	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4366	    &parent, sizeof (uint64_t))) != 0) {
4367		ZFS_EXIT(zfsvfs);
4368		return (error);
4369	}
4370	if (parent == zfsvfs->z_shares_dir) {
4371		ZFS_EXIT(zfsvfs);
4372		return (SET_ERROR(EPERM));
4373	}
4374
4375	if (zfsvfs->z_utf8 && u8_validate(name,
4376	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4377		ZFS_EXIT(zfsvfs);
4378		return (SET_ERROR(EILSEQ));
4379	}
4380	if (flags & FIGNORECASE)
4381		zf |= ZCILOOK;
4382
4383	/*
4384	 * We do not support links between attributes and non-attributes
4385	 * because of the potential security risk of creating links
4386	 * into "normal" file space in order to circumvent restrictions
4387	 * imposed in attribute space.
4388	 */
4389	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4390		ZFS_EXIT(zfsvfs);
4391		return (SET_ERROR(EINVAL));
4392	}
4393
4394
4395	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4396	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4397		ZFS_EXIT(zfsvfs);
4398		return (SET_ERROR(EPERM));
4399	}
4400
4401	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4402		ZFS_EXIT(zfsvfs);
4403		return (error);
4404	}
4405
4406top:
4407	/*
4408	 * Attempt to lock directory; fail if entry already exists.
4409	 */
4410	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4411	if (error) {
4412		ZFS_EXIT(zfsvfs);
4413		return (error);
4414	}
4415
4416	tx = dmu_tx_create(zfsvfs->z_os);
4417	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4418	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4419	zfs_sa_upgrade_txholds(tx, szp);
4420	zfs_sa_upgrade_txholds(tx, dzp);
4421	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4422	if (error) {
4423		zfs_dirent_unlock(dl);
4424		if (error == ERESTART) {
4425			waited = B_TRUE;
4426			dmu_tx_wait(tx);
4427			dmu_tx_abort(tx);
4428			goto top;
4429		}
4430		dmu_tx_abort(tx);
4431		ZFS_EXIT(zfsvfs);
4432		return (error);
4433	}
4434
4435	error = zfs_link_create(dl, szp, tx, 0);
4436
4437	if (error == 0) {
4438		uint64_t txtype = TX_LINK;
4439		if (flags & FIGNORECASE)
4440			txtype |= TX_CI;
4441		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4442	}
4443
4444	dmu_tx_commit(tx);
4445
4446	zfs_dirent_unlock(dl);
4447
4448	if (error == 0) {
4449		vnevent_link(svp, ct);
4450	}
4451
4452	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4453		zil_commit(zilog, 0);
4454
4455	ZFS_EXIT(zfsvfs);
4456	return (error);
4457}
4458
4459#ifdef sun
4460/*
4461 * zfs_null_putapage() is used when the file system has been force
4462 * unmounted. It just drops the pages.
4463 */
4464/* ARGSUSED */
4465static int
4466zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4467		size_t *lenp, int flags, cred_t *cr)
4468{
4469	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4470	return (0);
4471}
4472
4473/*
4474 * Push a page out to disk, klustering if possible.
4475 *
4476 *	IN:	vp	- file to push page to.
4477 *		pp	- page to push.
4478 *		flags	- additional flags.
4479 *		cr	- credentials of caller.
4480 *
4481 *	OUT:	offp	- start of range pushed.
4482 *		lenp	- len of range pushed.
4483 *
4484 *	RETURN:	0 on success, error code on failure.
4485 *
4486 * NOTE: callers must have locked the page to be pushed.  On
4487 * exit, the page (and all other pages in the kluster) must be
4488 * unlocked.
4489 */
4490/* ARGSUSED */
4491static int
4492zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4493		size_t *lenp, int flags, cred_t *cr)
4494{
4495	znode_t		*zp = VTOZ(vp);
4496	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4497	dmu_tx_t	*tx;
4498	u_offset_t	off, koff;
4499	size_t		len, klen;
4500	int		err;
4501
4502	off = pp->p_offset;
4503	len = PAGESIZE;
4504	/*
4505	 * If our blocksize is bigger than the page size, try to kluster
4506	 * multiple pages so that we write a full block (thus avoiding
4507	 * a read-modify-write).
4508	 */
4509	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4510		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4511		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4512		ASSERT(koff <= zp->z_size);
4513		if (koff + klen > zp->z_size)
4514			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4515		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4516	}
4517	ASSERT3U(btop(len), ==, btopr(len));
4518
4519	/*
4520	 * Can't push pages past end-of-file.
4521	 */
4522	if (off >= zp->z_size) {
4523		/* ignore all pages */
4524		err = 0;
4525		goto out;
4526	} else if (off + len > zp->z_size) {
4527		int npages = btopr(zp->z_size - off);
4528		page_t *trunc;
4529
4530		page_list_break(&pp, &trunc, npages);
4531		/* ignore pages past end of file */
4532		if (trunc)
4533			pvn_write_done(trunc, flags);
4534		len = zp->z_size - off;
4535	}
4536
4537	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4538	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4539		err = SET_ERROR(EDQUOT);
4540		goto out;
4541	}
4542	tx = dmu_tx_create(zfsvfs->z_os);
4543	dmu_tx_hold_write(tx, zp->z_id, off, len);
4544
4545	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4546	zfs_sa_upgrade_txholds(tx, zp);
4547	err = dmu_tx_assign(tx, TXG_WAIT);
4548	if (err != 0) {
4549		dmu_tx_abort(tx);
4550		goto out;
4551	}
4552
4553	if (zp->z_blksz <= PAGESIZE) {
4554		caddr_t va = zfs_map_page(pp, S_READ);
4555		ASSERT3U(len, <=, PAGESIZE);
4556		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4557		zfs_unmap_page(pp, va);
4558	} else {
4559		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4560	}
4561
4562	if (err == 0) {
4563		uint64_t mtime[2], ctime[2];
4564		sa_bulk_attr_t bulk[3];
4565		int count = 0;
4566
4567		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4568		    &mtime, 16);
4569		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4570		    &ctime, 16);
4571		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4572		    &zp->z_pflags, 8);
4573		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4574		    B_TRUE);
4575		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4576	}
4577	dmu_tx_commit(tx);
4578
4579out:
4580	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4581	if (offp)
4582		*offp = off;
4583	if (lenp)
4584		*lenp = len;
4585
4586	return (err);
4587}
4588
4589/*
4590 * Copy the portion of the file indicated from pages into the file.
4591 * The pages are stored in a page list attached to the files vnode.
4592 *
4593 *	IN:	vp	- vnode of file to push page data to.
4594 *		off	- position in file to put data.
4595 *		len	- amount of data to write.
4596 *		flags	- flags to control the operation.
4597 *		cr	- credentials of caller.
4598 *		ct	- caller context.
4599 *
4600 *	RETURN:	0 on success, error code on failure.
4601 *
4602 * Timestamps:
4603 *	vp - ctime|mtime updated
4604 */
4605/*ARGSUSED*/
4606static int
4607zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4608    caller_context_t *ct)
4609{
4610	znode_t		*zp = VTOZ(vp);
4611	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4612	page_t		*pp;
4613	size_t		io_len;
4614	u_offset_t	io_off;
4615	uint_t		blksz;
4616	rl_t		*rl;
4617	int		error = 0;
4618
4619	ZFS_ENTER(zfsvfs);
4620	ZFS_VERIFY_ZP(zp);
4621
4622	/*
4623	 * Align this request to the file block size in case we kluster.
4624	 * XXX - this can result in pretty aggresive locking, which can
4625	 * impact simultanious read/write access.  One option might be
4626	 * to break up long requests (len == 0) into block-by-block
4627	 * operations to get narrower locking.
4628	 */
4629	blksz = zp->z_blksz;
4630	if (ISP2(blksz))
4631		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4632	else
4633		io_off = 0;
4634	if (len > 0 && ISP2(blksz))
4635		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4636	else
4637		io_len = 0;
4638
4639	if (io_len == 0) {
4640		/*
4641		 * Search the entire vp list for pages >= io_off.
4642		 */
4643		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4644		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4645		goto out;
4646	}
4647	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4648
4649	if (off > zp->z_size) {
4650		/* past end of file */
4651		zfs_range_unlock(rl);
4652		ZFS_EXIT(zfsvfs);
4653		return (0);
4654	}
4655
4656	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4657
4658	for (off = io_off; io_off < off + len; io_off += io_len) {
4659		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4660			pp = page_lookup(vp, io_off,
4661			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4662		} else {
4663			pp = page_lookup_nowait(vp, io_off,
4664			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4665		}
4666
4667		if (pp != NULL && pvn_getdirty(pp, flags)) {
4668			int err;
4669
4670			/*
4671			 * Found a dirty page to push
4672			 */
4673			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4674			if (err)
4675				error = err;
4676		} else {
4677			io_len = PAGESIZE;
4678		}
4679	}
4680out:
4681	zfs_range_unlock(rl);
4682	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4683		zil_commit(zfsvfs->z_log, zp->z_id);
4684	ZFS_EXIT(zfsvfs);
4685	return (error);
4686}
4687#endif	/* sun */
4688
4689/*ARGSUSED*/
4690void
4691zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4692{
4693	znode_t	*zp = VTOZ(vp);
4694	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4695	int error;
4696
4697	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4698	if (zp->z_sa_hdl == NULL) {
4699		/*
4700		 * The fs has been unmounted, or we did a
4701		 * suspend/resume and this file no longer exists.
4702		 */
4703		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4704		vrecycle(vp);
4705		return;
4706	}
4707
4708	mutex_enter(&zp->z_lock);
4709	if (zp->z_unlinked) {
4710		/*
4711		 * Fast path to recycle a vnode of a removed file.
4712		 */
4713		mutex_exit(&zp->z_lock);
4714		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4715		vrecycle(vp);
4716		return;
4717	}
4718	mutex_exit(&zp->z_lock);
4719
4720	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4721		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4722
4723		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4724		zfs_sa_upgrade_txholds(tx, zp);
4725		error = dmu_tx_assign(tx, TXG_WAIT);
4726		if (error) {
4727			dmu_tx_abort(tx);
4728		} else {
4729			mutex_enter(&zp->z_lock);
4730			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4731			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4732			zp->z_atime_dirty = 0;
4733			mutex_exit(&zp->z_lock);
4734			dmu_tx_commit(tx);
4735		}
4736	}
4737	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4738}
4739
4740#ifdef sun
4741/*
4742 * Bounds-check the seek operation.
4743 *
4744 *	IN:	vp	- vnode seeking within
4745 *		ooff	- old file offset
4746 *		noffp	- pointer to new file offset
4747 *		ct	- caller context
4748 *
4749 *	RETURN:	0 on success, EINVAL if new offset invalid.
4750 */
4751/* ARGSUSED */
4752static int
4753zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4754    caller_context_t *ct)
4755{
4756	if (vp->v_type == VDIR)
4757		return (0);
4758	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4759}
4760
4761/*
4762 * Pre-filter the generic locking function to trap attempts to place
4763 * a mandatory lock on a memory mapped file.
4764 */
4765static int
4766zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4767    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4768{
4769	znode_t *zp = VTOZ(vp);
4770	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4771
4772	ZFS_ENTER(zfsvfs);
4773	ZFS_VERIFY_ZP(zp);
4774
4775	/*
4776	 * We are following the UFS semantics with respect to mapcnt
4777	 * here: If we see that the file is mapped already, then we will
4778	 * return an error, but we don't worry about races between this
4779	 * function and zfs_map().
4780	 */
4781	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4782		ZFS_EXIT(zfsvfs);
4783		return (SET_ERROR(EAGAIN));
4784	}
4785	ZFS_EXIT(zfsvfs);
4786	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4787}
4788
4789/*
4790 * If we can't find a page in the cache, we will create a new page
4791 * and fill it with file data.  For efficiency, we may try to fill
4792 * multiple pages at once (klustering) to fill up the supplied page
4793 * list.  Note that the pages to be filled are held with an exclusive
4794 * lock to prevent access by other threads while they are being filled.
4795 */
4796static int
4797zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4798    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4799{
4800	znode_t *zp = VTOZ(vp);
4801	page_t *pp, *cur_pp;
4802	objset_t *os = zp->z_zfsvfs->z_os;
4803	u_offset_t io_off, total;
4804	size_t io_len;
4805	int err;
4806
4807	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4808		/*
4809		 * We only have a single page, don't bother klustering
4810		 */
4811		io_off = off;
4812		io_len = PAGESIZE;
4813		pp = page_create_va(vp, io_off, io_len,
4814		    PG_EXCL | PG_WAIT, seg, addr);
4815	} else {
4816		/*
4817		 * Try to find enough pages to fill the page list
4818		 */
4819		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4820		    &io_len, off, plsz, 0);
4821	}
4822	if (pp == NULL) {
4823		/*
4824		 * The page already exists, nothing to do here.
4825		 */
4826		*pl = NULL;
4827		return (0);
4828	}
4829
4830	/*
4831	 * Fill the pages in the kluster.
4832	 */
4833	cur_pp = pp;
4834	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4835		caddr_t va;
4836
4837		ASSERT3U(io_off, ==, cur_pp->p_offset);
4838		va = zfs_map_page(cur_pp, S_WRITE);
4839		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4840		    DMU_READ_PREFETCH);
4841		zfs_unmap_page(cur_pp, va);
4842		if (err) {
4843			/* On error, toss the entire kluster */
4844			pvn_read_done(pp, B_ERROR);
4845			/* convert checksum errors into IO errors */
4846			if (err == ECKSUM)
4847				err = SET_ERROR(EIO);
4848			return (err);
4849		}
4850		cur_pp = cur_pp->p_next;
4851	}
4852
4853	/*
4854	 * Fill in the page list array from the kluster starting
4855	 * from the desired offset `off'.
4856	 * NOTE: the page list will always be null terminated.
4857	 */
4858	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4859	ASSERT(pl == NULL || (*pl)->p_offset == off);
4860
4861	return (0);
4862}
4863
4864/*
4865 * Return pointers to the pages for the file region [off, off + len]
4866 * in the pl array.  If plsz is greater than len, this function may
4867 * also return page pointers from after the specified region
4868 * (i.e. the region [off, off + plsz]).  These additional pages are
4869 * only returned if they are already in the cache, or were created as
4870 * part of a klustered read.
4871 *
4872 *	IN:	vp	- vnode of file to get data from.
4873 *		off	- position in file to get data from.
4874 *		len	- amount of data to retrieve.
4875 *		plsz	- length of provided page list.
4876 *		seg	- segment to obtain pages for.
4877 *		addr	- virtual address of fault.
4878 *		rw	- mode of created pages.
4879 *		cr	- credentials of caller.
4880 *		ct	- caller context.
4881 *
4882 *	OUT:	protp	- protection mode of created pages.
4883 *		pl	- list of pages created.
4884 *
4885 *	RETURN:	0 on success, error code on failure.
4886 *
4887 * Timestamps:
4888 *	vp - atime updated
4889 */
4890/* ARGSUSED */
4891static int
4892zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4893    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4894    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4895{
4896	znode_t		*zp = VTOZ(vp);
4897	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4898	page_t		**pl0 = pl;
4899	int		err = 0;
4900
4901	/* we do our own caching, faultahead is unnecessary */
4902	if (pl == NULL)
4903		return (0);
4904	else if (len > plsz)
4905		len = plsz;
4906	else
4907		len = P2ROUNDUP(len, PAGESIZE);
4908	ASSERT(plsz >= len);
4909
4910	ZFS_ENTER(zfsvfs);
4911	ZFS_VERIFY_ZP(zp);
4912
4913	if (protp)
4914		*protp = PROT_ALL;
4915
4916	/*
4917	 * Loop through the requested range [off, off + len) looking
4918	 * for pages.  If we don't find a page, we will need to create
4919	 * a new page and fill it with data from the file.
4920	 */
4921	while (len > 0) {
4922		if (*pl = page_lookup(vp, off, SE_SHARED))
4923			*(pl+1) = NULL;
4924		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4925			goto out;
4926		while (*pl) {
4927			ASSERT3U((*pl)->p_offset, ==, off);
4928			off += PAGESIZE;
4929			addr += PAGESIZE;
4930			if (len > 0) {
4931				ASSERT3U(len, >=, PAGESIZE);
4932				len -= PAGESIZE;
4933			}
4934			ASSERT3U(plsz, >=, PAGESIZE);
4935			plsz -= PAGESIZE;
4936			pl++;
4937		}
4938	}
4939
4940	/*
4941	 * Fill out the page array with any pages already in the cache.
4942	 */
4943	while (plsz > 0 &&
4944	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4945			off += PAGESIZE;
4946			plsz -= PAGESIZE;
4947	}
4948out:
4949	if (err) {
4950		/*
4951		 * Release any pages we have previously locked.
4952		 */
4953		while (pl > pl0)
4954			page_unlock(*--pl);
4955	} else {
4956		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4957	}
4958
4959	*pl = NULL;
4960
4961	ZFS_EXIT(zfsvfs);
4962	return (err);
4963}
4964
4965/*
4966 * Request a memory map for a section of a file.  This code interacts
4967 * with common code and the VM system as follows:
4968 *
4969 * - common code calls mmap(), which ends up in smmap_common()
4970 * - this calls VOP_MAP(), which takes you into (say) zfs
4971 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4972 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4973 * - zfs_addmap() updates z_mapcnt
4974 */
4975/*ARGSUSED*/
4976static int
4977zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4978    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4979    caller_context_t *ct)
4980{
4981	znode_t *zp = VTOZ(vp);
4982	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4983	segvn_crargs_t	vn_a;
4984	int		error;
4985
4986	ZFS_ENTER(zfsvfs);
4987	ZFS_VERIFY_ZP(zp);
4988
4989	if ((prot & PROT_WRITE) && (zp->z_pflags &
4990	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4991		ZFS_EXIT(zfsvfs);
4992		return (SET_ERROR(EPERM));
4993	}
4994
4995	if ((prot & (PROT_READ | PROT_EXEC)) &&
4996	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4997		ZFS_EXIT(zfsvfs);
4998		return (SET_ERROR(EACCES));
4999	}
5000
5001	if (vp->v_flag & VNOMAP) {
5002		ZFS_EXIT(zfsvfs);
5003		return (SET_ERROR(ENOSYS));
5004	}
5005
5006	if (off < 0 || len > MAXOFFSET_T - off) {
5007		ZFS_EXIT(zfsvfs);
5008		return (SET_ERROR(ENXIO));
5009	}
5010
5011	if (vp->v_type != VREG) {
5012		ZFS_EXIT(zfsvfs);
5013		return (SET_ERROR(ENODEV));
5014	}
5015
5016	/*
5017	 * If file is locked, disallow mapping.
5018	 */
5019	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5020		ZFS_EXIT(zfsvfs);
5021		return (SET_ERROR(EAGAIN));
5022	}
5023
5024	as_rangelock(as);
5025	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5026	if (error != 0) {
5027		as_rangeunlock(as);
5028		ZFS_EXIT(zfsvfs);
5029		return (error);
5030	}
5031
5032	vn_a.vp = vp;
5033	vn_a.offset = (u_offset_t)off;
5034	vn_a.type = flags & MAP_TYPE;
5035	vn_a.prot = prot;
5036	vn_a.maxprot = maxprot;
5037	vn_a.cred = cr;
5038	vn_a.amp = NULL;
5039	vn_a.flags = flags & ~MAP_TYPE;
5040	vn_a.szc = 0;
5041	vn_a.lgrp_mem_policy_flags = 0;
5042
5043	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5044
5045	as_rangeunlock(as);
5046	ZFS_EXIT(zfsvfs);
5047	return (error);
5048}
5049
5050/* ARGSUSED */
5051static int
5052zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5053    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5054    caller_context_t *ct)
5055{
5056	uint64_t pages = btopr(len);
5057
5058	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5059	return (0);
5060}
5061
5062/*
5063 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5064 * more accurate mtime for the associated file.  Since we don't have a way of
5065 * detecting when the data was actually modified, we have to resort to
5066 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5067 * last page is pushed.  The problem occurs when the msync() call is omitted,
5068 * which by far the most common case:
5069 *
5070 *	open()
5071 *	mmap()
5072 *	<modify memory>
5073 *	munmap()
5074 *	close()
5075 *	<time lapse>
5076 *	putpage() via fsflush
5077 *
5078 * If we wait until fsflush to come along, we can have a modification time that
5079 * is some arbitrary point in the future.  In order to prevent this in the
5080 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5081 * torn down.
5082 */
5083/* ARGSUSED */
5084static int
5085zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5086    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5087    caller_context_t *ct)
5088{
5089	uint64_t pages = btopr(len);
5090
5091	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5092	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5093
5094	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5095	    vn_has_cached_data(vp))
5096		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5097
5098	return (0);
5099}
5100
5101/*
5102 * Free or allocate space in a file.  Currently, this function only
5103 * supports the `F_FREESP' command.  However, this command is somewhat
5104 * misnamed, as its functionality includes the ability to allocate as
5105 * well as free space.
5106 *
5107 *	IN:	vp	- vnode of file to free data in.
5108 *		cmd	- action to take (only F_FREESP supported).
5109 *		bfp	- section of file to free/alloc.
5110 *		flag	- current file open mode flags.
5111 *		offset	- current file offset.
5112 *		cr	- credentials of caller [UNUSED].
5113 *		ct	- caller context.
5114 *
5115 *	RETURN:	0 on success, error code on failure.
5116 *
5117 * Timestamps:
5118 *	vp - ctime|mtime updated
5119 */
5120/* ARGSUSED */
5121static int
5122zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5123    offset_t offset, cred_t *cr, caller_context_t *ct)
5124{
5125	znode_t		*zp = VTOZ(vp);
5126	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5127	uint64_t	off, len;
5128	int		error;
5129
5130	ZFS_ENTER(zfsvfs);
5131	ZFS_VERIFY_ZP(zp);
5132
5133	if (cmd != F_FREESP) {
5134		ZFS_EXIT(zfsvfs);
5135		return (SET_ERROR(EINVAL));
5136	}
5137
5138	/*
5139	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
5140	 * callers might not be able to detect properly that we are read-only,
5141	 * so check it explicitly here.
5142	 */
5143	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
5144		ZFS_EXIT(zfsvfs);
5145		return (SET_ERROR(EROFS));
5146	}
5147
5148	if (error = convoff(vp, bfp, 0, offset)) {
5149		ZFS_EXIT(zfsvfs);
5150		return (error);
5151	}
5152
5153	if (bfp->l_len < 0) {
5154		ZFS_EXIT(zfsvfs);
5155		return (SET_ERROR(EINVAL));
5156	}
5157
5158	off = bfp->l_start;
5159	len = bfp->l_len; /* 0 means from off to end of file */
5160
5161	error = zfs_freesp(zp, off, len, flag, TRUE);
5162
5163	ZFS_EXIT(zfsvfs);
5164	return (error);
5165}
5166#endif	/* sun */
5167
5168CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5169CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5170
5171/*ARGSUSED*/
5172static int
5173zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5174{
5175	znode_t		*zp = VTOZ(vp);
5176	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5177	uint32_t	gen;
5178	uint64_t	gen64;
5179	uint64_t	object = zp->z_id;
5180	zfid_short_t	*zfid;
5181	int		size, i, error;
5182
5183	ZFS_ENTER(zfsvfs);
5184	ZFS_VERIFY_ZP(zp);
5185
5186	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5187	    &gen64, sizeof (uint64_t))) != 0) {
5188		ZFS_EXIT(zfsvfs);
5189		return (error);
5190	}
5191
5192	gen = (uint32_t)gen64;
5193
5194	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5195
5196#ifdef illumos
5197	if (fidp->fid_len < size) {
5198		fidp->fid_len = size;
5199		ZFS_EXIT(zfsvfs);
5200		return (SET_ERROR(ENOSPC));
5201	}
5202#else
5203	fidp->fid_len = size;
5204#endif
5205
5206	zfid = (zfid_short_t *)fidp;
5207
5208	zfid->zf_len = size;
5209
5210	for (i = 0; i < sizeof (zfid->zf_object); i++)
5211		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5212
5213	/* Must have a non-zero generation number to distinguish from .zfs */
5214	if (gen == 0)
5215		gen = 1;
5216	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5217		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5218
5219	if (size == LONG_FID_LEN) {
5220		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5221		zfid_long_t	*zlfid;
5222
5223		zlfid = (zfid_long_t *)fidp;
5224
5225		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5226			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5227
5228		/* XXX - this should be the generation number for the objset */
5229		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5230			zlfid->zf_setgen[i] = 0;
5231	}
5232
5233	ZFS_EXIT(zfsvfs);
5234	return (0);
5235}
5236
5237static int
5238zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5239    caller_context_t *ct)
5240{
5241	znode_t		*zp, *xzp;
5242	zfsvfs_t	*zfsvfs;
5243	zfs_dirlock_t	*dl;
5244	int		error;
5245
5246	switch (cmd) {
5247	case _PC_LINK_MAX:
5248		*valp = INT_MAX;
5249		return (0);
5250
5251	case _PC_FILESIZEBITS:
5252		*valp = 64;
5253		return (0);
5254#ifdef sun
5255	case _PC_XATTR_EXISTS:
5256		zp = VTOZ(vp);
5257		zfsvfs = zp->z_zfsvfs;
5258		ZFS_ENTER(zfsvfs);
5259		ZFS_VERIFY_ZP(zp);
5260		*valp = 0;
5261		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5262		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5263		if (error == 0) {
5264			zfs_dirent_unlock(dl);
5265			if (!zfs_dirempty(xzp))
5266				*valp = 1;
5267			VN_RELE(ZTOV(xzp));
5268		} else if (error == ENOENT) {
5269			/*
5270			 * If there aren't extended attributes, it's the
5271			 * same as having zero of them.
5272			 */
5273			error = 0;
5274		}
5275		ZFS_EXIT(zfsvfs);
5276		return (error);
5277
5278	case _PC_SATTR_ENABLED:
5279	case _PC_SATTR_EXISTS:
5280		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5281		    (vp->v_type == VREG || vp->v_type == VDIR);
5282		return (0);
5283
5284	case _PC_ACCESS_FILTERING:
5285		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5286		    vp->v_type == VDIR;
5287		return (0);
5288
5289	case _PC_ACL_ENABLED:
5290		*valp = _ACL_ACE_ENABLED;
5291		return (0);
5292#endif	/* sun */
5293	case _PC_MIN_HOLE_SIZE:
5294		*valp = (int)SPA_MINBLOCKSIZE;
5295		return (0);
5296#ifdef sun
5297	case _PC_TIMESTAMP_RESOLUTION:
5298		/* nanosecond timestamp resolution */
5299		*valp = 1L;
5300		return (0);
5301#endif	/* sun */
5302	case _PC_ACL_EXTENDED:
5303		*valp = 0;
5304		return (0);
5305
5306	case _PC_ACL_NFS4:
5307		*valp = 1;
5308		return (0);
5309
5310	case _PC_ACL_PATH_MAX:
5311		*valp = ACL_MAX_ENTRIES;
5312		return (0);
5313
5314	default:
5315		return (EOPNOTSUPP);
5316	}
5317}
5318
5319/*ARGSUSED*/
5320static int
5321zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5322    caller_context_t *ct)
5323{
5324	znode_t *zp = VTOZ(vp);
5325	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5326	int error;
5327	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5328
5329	ZFS_ENTER(zfsvfs);
5330	ZFS_VERIFY_ZP(zp);
5331	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5332	ZFS_EXIT(zfsvfs);
5333
5334	return (error);
5335}
5336
5337/*ARGSUSED*/
5338int
5339zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5340    caller_context_t *ct)
5341{
5342	znode_t *zp = VTOZ(vp);
5343	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5344	int error;
5345	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5346	zilog_t	*zilog = zfsvfs->z_log;
5347
5348	ZFS_ENTER(zfsvfs);
5349	ZFS_VERIFY_ZP(zp);
5350
5351	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5352
5353	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5354		zil_commit(zilog, 0);
5355
5356	ZFS_EXIT(zfsvfs);
5357	return (error);
5358}
5359
5360#ifdef sun
5361/*
5362 * The smallest read we may consider to loan out an arcbuf.
5363 * This must be a power of 2.
5364 */
5365int zcr_blksz_min = (1 << 10);	/* 1K */
5366/*
5367 * If set to less than the file block size, allow loaning out of an
5368 * arcbuf for a partial block read.  This must be a power of 2.
5369 */
5370int zcr_blksz_max = (1 << 17);	/* 128K */
5371
5372/*ARGSUSED*/
5373static int
5374zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5375    caller_context_t *ct)
5376{
5377	znode_t	*zp = VTOZ(vp);
5378	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5379	int max_blksz = zfsvfs->z_max_blksz;
5380	uio_t *uio = &xuio->xu_uio;
5381	ssize_t size = uio->uio_resid;
5382	offset_t offset = uio->uio_loffset;
5383	int blksz;
5384	int fullblk, i;
5385	arc_buf_t *abuf;
5386	ssize_t maxsize;
5387	int preamble, postamble;
5388
5389	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5390		return (SET_ERROR(EINVAL));
5391
5392	ZFS_ENTER(zfsvfs);
5393	ZFS_VERIFY_ZP(zp);
5394	switch (ioflag) {
5395	case UIO_WRITE:
5396		/*
5397		 * Loan out an arc_buf for write if write size is bigger than
5398		 * max_blksz, and the file's block size is also max_blksz.
5399		 */
5400		blksz = max_blksz;
5401		if (size < blksz || zp->z_blksz != blksz) {
5402			ZFS_EXIT(zfsvfs);
5403			return (SET_ERROR(EINVAL));
5404		}
5405		/*
5406		 * Caller requests buffers for write before knowing where the
5407		 * write offset might be (e.g. NFS TCP write).
5408		 */
5409		if (offset == -1) {
5410			preamble = 0;
5411		} else {
5412			preamble = P2PHASE(offset, blksz);
5413			if (preamble) {
5414				preamble = blksz - preamble;
5415				size -= preamble;
5416			}
5417		}
5418
5419		postamble = P2PHASE(size, blksz);
5420		size -= postamble;
5421
5422		fullblk = size / blksz;
5423		(void) dmu_xuio_init(xuio,
5424		    (preamble != 0) + fullblk + (postamble != 0));
5425		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5426		    int, postamble, int,
5427		    (preamble != 0) + fullblk + (postamble != 0));
5428
5429		/*
5430		 * Have to fix iov base/len for partial buffers.  They
5431		 * currently represent full arc_buf's.
5432		 */
5433		if (preamble) {
5434			/* data begins in the middle of the arc_buf */
5435			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5436			    blksz);
5437			ASSERT(abuf);
5438			(void) dmu_xuio_add(xuio, abuf,
5439			    blksz - preamble, preamble);
5440		}
5441
5442		for (i = 0; i < fullblk; i++) {
5443			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5444			    blksz);
5445			ASSERT(abuf);
5446			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5447		}
5448
5449		if (postamble) {
5450			/* data ends in the middle of the arc_buf */
5451			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5452			    blksz);
5453			ASSERT(abuf);
5454			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5455		}
5456		break;
5457	case UIO_READ:
5458		/*
5459		 * Loan out an arc_buf for read if the read size is larger than
5460		 * the current file block size.  Block alignment is not
5461		 * considered.  Partial arc_buf will be loaned out for read.
5462		 */
5463		blksz = zp->z_blksz;
5464		if (blksz < zcr_blksz_min)
5465			blksz = zcr_blksz_min;
5466		if (blksz > zcr_blksz_max)
5467			blksz = zcr_blksz_max;
5468		/* avoid potential complexity of dealing with it */
5469		if (blksz > max_blksz) {
5470			ZFS_EXIT(zfsvfs);
5471			return (SET_ERROR(EINVAL));
5472		}
5473
5474		maxsize = zp->z_size - uio->uio_loffset;
5475		if (size > maxsize)
5476			size = maxsize;
5477
5478		if (size < blksz || vn_has_cached_data(vp)) {
5479			ZFS_EXIT(zfsvfs);
5480			return (SET_ERROR(EINVAL));
5481		}
5482		break;
5483	default:
5484		ZFS_EXIT(zfsvfs);
5485		return (SET_ERROR(EINVAL));
5486	}
5487
5488	uio->uio_extflg = UIO_XUIO;
5489	XUIO_XUZC_RW(xuio) = ioflag;
5490	ZFS_EXIT(zfsvfs);
5491	return (0);
5492}
5493
5494/*ARGSUSED*/
5495static int
5496zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5497{
5498	int i;
5499	arc_buf_t *abuf;
5500	int ioflag = XUIO_XUZC_RW(xuio);
5501
5502	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5503
5504	i = dmu_xuio_cnt(xuio);
5505	while (i-- > 0) {
5506		abuf = dmu_xuio_arcbuf(xuio, i);
5507		/*
5508		 * if abuf == NULL, it must be a write buffer
5509		 * that has been returned in zfs_write().
5510		 */
5511		if (abuf)
5512			dmu_return_arcbuf(abuf);
5513		ASSERT(abuf || ioflag == UIO_WRITE);
5514	}
5515
5516	dmu_xuio_fini(xuio);
5517	return (0);
5518}
5519
5520/*
5521 * Predeclare these here so that the compiler assumes that
5522 * this is an "old style" function declaration that does
5523 * not include arguments => we won't get type mismatch errors
5524 * in the initializations that follow.
5525 */
5526static int zfs_inval();
5527static int zfs_isdir();
5528
5529static int
5530zfs_inval()
5531{
5532	return (SET_ERROR(EINVAL));
5533}
5534
5535static int
5536zfs_isdir()
5537{
5538	return (SET_ERROR(EISDIR));
5539}
5540/*
5541 * Directory vnode operations template
5542 */
5543vnodeops_t *zfs_dvnodeops;
5544const fs_operation_def_t zfs_dvnodeops_template[] = {
5545	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5546	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5547	VOPNAME_READ,		{ .error = zfs_isdir },
5548	VOPNAME_WRITE,		{ .error = zfs_isdir },
5549	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5550	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5551	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5552	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5553	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5554	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5555	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5556	VOPNAME_LINK,		{ .vop_link = zfs_link },
5557	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5558	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5559	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5560	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5561	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5562	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5563	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5564	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5565	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5566	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5567	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5568	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5569	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5570	NULL,			NULL
5571};
5572
5573/*
5574 * Regular file vnode operations template
5575 */
5576vnodeops_t *zfs_fvnodeops;
5577const fs_operation_def_t zfs_fvnodeops_template[] = {
5578	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5579	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5580	VOPNAME_READ,		{ .vop_read = zfs_read },
5581	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5582	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5583	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5584	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5585	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5586	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5587	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5588	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5589	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5590	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5591	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5592	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5593	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5594	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5595	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5596	VOPNAME_MAP,		{ .vop_map = zfs_map },
5597	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5598	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5599	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5600	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5601	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5602	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5603	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5604	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5605	NULL,			NULL
5606};
5607
5608/*
5609 * Symbolic link vnode operations template
5610 */
5611vnodeops_t *zfs_symvnodeops;
5612const fs_operation_def_t zfs_symvnodeops_template[] = {
5613	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5614	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5615	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5616	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5617	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5618	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5619	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5620	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5621	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5622	NULL,			NULL
5623};
5624
5625/*
5626 * special share hidden files vnode operations template
5627 */
5628vnodeops_t *zfs_sharevnodeops;
5629const fs_operation_def_t zfs_sharevnodeops_template[] = {
5630	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5631	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5632	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5633	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5634	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5635	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5636	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5637	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5638	NULL,			NULL
5639};
5640
5641/*
5642 * Extended attribute directory vnode operations template
5643 *
5644 * This template is identical to the directory vnodes
5645 * operation template except for restricted operations:
5646 *	VOP_MKDIR()
5647 *	VOP_SYMLINK()
5648 *
5649 * Note that there are other restrictions embedded in:
5650 *	zfs_create()	- restrict type to VREG
5651 *	zfs_link()	- no links into/out of attribute space
5652 *	zfs_rename()	- no moves into/out of attribute space
5653 */
5654vnodeops_t *zfs_xdvnodeops;
5655const fs_operation_def_t zfs_xdvnodeops_template[] = {
5656	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5657	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5658	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5659	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5660	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5661	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5662	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5663	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5664	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5665	VOPNAME_LINK,		{ .vop_link = zfs_link },
5666	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5667	VOPNAME_MKDIR,		{ .error = zfs_inval },
5668	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5669	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5670	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5671	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5672	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5673	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5674	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5675	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5676	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5677	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5678	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5679	NULL,			NULL
5680};
5681
5682/*
5683 * Error vnode operations template
5684 */
5685vnodeops_t *zfs_evnodeops;
5686const fs_operation_def_t zfs_evnodeops_template[] = {
5687	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5688	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5689	NULL,			NULL
5690};
5691#endif	/* sun */
5692
5693static int
5694ioflags(int ioflags)
5695{
5696	int flags = 0;
5697
5698	if (ioflags & IO_APPEND)
5699		flags |= FAPPEND;
5700	if (ioflags & IO_NDELAY)
5701        	flags |= FNONBLOCK;
5702	if (ioflags & IO_SYNC)
5703		flags |= (FSYNC | FDSYNC | FRSYNC);
5704
5705	return (flags);
5706}
5707
5708static int
5709zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5710{
5711	znode_t *zp = VTOZ(vp);
5712	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5713	objset_t *os = zp->z_zfsvfs->z_os;
5714	vm_page_t mfirst, mlast, mreq;
5715	vm_object_t object;
5716	caddr_t va;
5717	struct sf_buf *sf;
5718	off_t startoff, endoff;
5719	int i, error;
5720	vm_pindex_t reqstart, reqend;
5721	int pcount, lsize, reqsize, size;
5722
5723	ZFS_ENTER(zfsvfs);
5724	ZFS_VERIFY_ZP(zp);
5725
5726	pcount = OFF_TO_IDX(round_page(count));
5727	mreq = m[reqpage];
5728	object = mreq->object;
5729	error = 0;
5730
5731	KASSERT(vp->v_object == object, ("mismatching object"));
5732
5733	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5734		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5735		reqstart = OFF_TO_IDX(round_page(startoff));
5736		if (reqstart < m[0]->pindex)
5737			reqstart = 0;
5738		else
5739			reqstart = reqstart - m[0]->pindex;
5740		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5741		    zp->z_blksz);
5742		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5743		if (reqend > m[pcount - 1]->pindex)
5744			reqend = m[pcount - 1]->pindex;
5745		reqsize = reqend - m[reqstart]->pindex + 1;
5746		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5747		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5748	} else {
5749		reqstart = reqpage;
5750		reqsize = 1;
5751	}
5752	mfirst = m[reqstart];
5753	mlast = m[reqstart + reqsize - 1];
5754
5755	zfs_vmobject_wlock(object);
5756
5757	for (i = 0; i < reqstart; i++) {
5758		vm_page_lock(m[i]);
5759		vm_page_free(m[i]);
5760		vm_page_unlock(m[i]);
5761	}
5762	for (i = reqstart + reqsize; i < pcount; i++) {
5763		vm_page_lock(m[i]);
5764		vm_page_free(m[i]);
5765		vm_page_unlock(m[i]);
5766	}
5767
5768	if (mreq->valid && reqsize == 1) {
5769		if (mreq->valid != VM_PAGE_BITS_ALL)
5770			vm_page_zero_invalid(mreq, TRUE);
5771		zfs_vmobject_wunlock(object);
5772		ZFS_EXIT(zfsvfs);
5773		return (zfs_vm_pagerret_ok);
5774	}
5775
5776	PCPU_INC(cnt.v_vnodein);
5777	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5778
5779	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5780		for (i = reqstart; i < reqstart + reqsize; i++) {
5781			if (i != reqpage) {
5782				vm_page_lock(m[i]);
5783				vm_page_free(m[i]);
5784				vm_page_unlock(m[i]);
5785			}
5786		}
5787		zfs_vmobject_wunlock(object);
5788		ZFS_EXIT(zfsvfs);
5789		return (zfs_vm_pagerret_bad);
5790	}
5791
5792	lsize = PAGE_SIZE;
5793	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5794		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5795
5796	zfs_vmobject_wunlock(object);
5797
5798	for (i = reqstart; i < reqstart + reqsize; i++) {
5799		size = PAGE_SIZE;
5800		if (i == (reqstart + reqsize - 1))
5801			size = lsize;
5802		va = zfs_map_page(m[i], &sf);
5803		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5804		    size, va, DMU_READ_PREFETCH);
5805		if (size != PAGE_SIZE)
5806			bzero(va + size, PAGE_SIZE - size);
5807		zfs_unmap_page(sf);
5808		if (error != 0)
5809			break;
5810	}
5811
5812	zfs_vmobject_wlock(object);
5813
5814	for (i = reqstart; i < reqstart + reqsize; i++) {
5815		if (!error)
5816			m[i]->valid = VM_PAGE_BITS_ALL;
5817		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5818		if (i != reqpage)
5819			vm_page_readahead_finish(m[i]);
5820	}
5821
5822	zfs_vmobject_wunlock(object);
5823
5824	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5825	ZFS_EXIT(zfsvfs);
5826	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5827}
5828
5829static int
5830zfs_freebsd_getpages(ap)
5831	struct vop_getpages_args /* {
5832		struct vnode *a_vp;
5833		vm_page_t *a_m;
5834		int a_count;
5835		int a_reqpage;
5836	} */ *ap;
5837{
5838
5839	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5840}
5841
5842static int
5843zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
5844    int *rtvals)
5845{
5846	znode_t		*zp = VTOZ(vp);
5847	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5848	rl_t		*rl;
5849	dmu_tx_t	*tx;
5850	struct sf_buf	*sf;
5851	vm_object_t	object;
5852	vm_page_t	m;
5853	caddr_t		va;
5854	size_t		tocopy;
5855	size_t		lo_len;
5856	vm_ooffset_t	lo_off;
5857	vm_ooffset_t	off;
5858	uint_t		blksz;
5859	int		ncount;
5860	int		pcount;
5861	int		err;
5862	int		i;
5863
5864	ZFS_ENTER(zfsvfs);
5865	ZFS_VERIFY_ZP(zp);
5866
5867	object = vp->v_object;
5868	pcount = btoc(len);
5869	ncount = pcount;
5870
5871	KASSERT(ma[0]->object == object, ("mismatching object"));
5872	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
5873
5874	for (i = 0; i < pcount; i++)
5875		rtvals[i] = zfs_vm_pagerret_error;
5876
5877	off = IDX_TO_OFF(ma[0]->pindex);
5878	blksz = zp->z_blksz;
5879	lo_off = rounddown(off, blksz);
5880	lo_len = roundup(len + (off - lo_off), blksz);
5881	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
5882
5883	zfs_vmobject_wlock(object);
5884	if (len + off > object->un_pager.vnp.vnp_size) {
5885		if (object->un_pager.vnp.vnp_size > off) {
5886			int pgoff;
5887
5888			len = object->un_pager.vnp.vnp_size - off;
5889			ncount = btoc(len);
5890			if ((pgoff = (int)len & PAGE_MASK) != 0) {
5891				/*
5892				 * If the object is locked and the following
5893				 * conditions hold, then the page's dirty
5894				 * field cannot be concurrently changed by a
5895				 * pmap operation.
5896				 */
5897				m = ma[ncount - 1];
5898				vm_page_assert_sbusied(m);
5899				KASSERT(!pmap_page_is_write_mapped(m),
5900				    ("zfs_putpages: page %p is not read-only", m));
5901				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
5902				    pgoff);
5903			}
5904		} else {
5905			len = 0;
5906			ncount = 0;
5907		}
5908		if (ncount < pcount) {
5909			for (i = ncount; i < pcount; i++) {
5910				rtvals[i] = zfs_vm_pagerret_bad;
5911			}
5912		}
5913	}
5914	zfs_vmobject_wunlock(object);
5915
5916	if (ncount == 0)
5917		goto out;
5918
5919	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
5920	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
5921		goto out;
5922	}
5923
5924top:
5925	tx = dmu_tx_create(zfsvfs->z_os);
5926	dmu_tx_hold_write(tx, zp->z_id, off, len);
5927
5928	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
5929	zfs_sa_upgrade_txholds(tx, zp);
5930	err = dmu_tx_assign(tx, TXG_NOWAIT);
5931	if (err != 0) {
5932		if (err == ERESTART) {
5933			dmu_tx_wait(tx);
5934			dmu_tx_abort(tx);
5935			goto top;
5936		}
5937		dmu_tx_abort(tx);
5938		goto out;
5939	}
5940
5941	if (zp->z_blksz < PAGE_SIZE) {
5942		i = 0;
5943		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
5944			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
5945			va = zfs_map_page(ma[i], &sf);
5946			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
5947			zfs_unmap_page(sf);
5948		}
5949	} else {
5950		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
5951	}
5952
5953	if (err == 0) {
5954		uint64_t mtime[2], ctime[2];
5955		sa_bulk_attr_t bulk[3];
5956		int count = 0;
5957
5958		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
5959		    &mtime, 16);
5960		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
5961		    &ctime, 16);
5962		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
5963		    &zp->z_pflags, 8);
5964		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
5965		    B_TRUE);
5966		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
5967
5968		zfs_vmobject_wlock(object);
5969		for (i = 0; i < ncount; i++) {
5970			rtvals[i] = zfs_vm_pagerret_ok;
5971			vm_page_undirty(ma[i]);
5972		}
5973		zfs_vmobject_wunlock(object);
5974		PCPU_INC(cnt.v_vnodeout);
5975		PCPU_ADD(cnt.v_vnodepgsout, ncount);
5976	}
5977	dmu_tx_commit(tx);
5978
5979out:
5980	zfs_range_unlock(rl);
5981	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
5982	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5983		zil_commit(zfsvfs->z_log, zp->z_id);
5984	ZFS_EXIT(zfsvfs);
5985	return (rtvals[0]);
5986}
5987
5988int
5989zfs_freebsd_putpages(ap)
5990	struct vop_putpages_args /* {
5991		struct vnode *a_vp;
5992		vm_page_t *a_m;
5993		int a_count;
5994		int a_sync;
5995		int *a_rtvals;
5996	} */ *ap;
5997{
5998
5999	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
6000	    ap->a_rtvals));
6001}
6002
6003static int
6004zfs_freebsd_bmap(ap)
6005	struct vop_bmap_args /* {
6006		struct vnode *a_vp;
6007		daddr_t  a_bn;
6008		struct bufobj **a_bop;
6009		daddr_t *a_bnp;
6010		int *a_runp;
6011		int *a_runb;
6012	} */ *ap;
6013{
6014
6015	if (ap->a_bop != NULL)
6016		*ap->a_bop = &ap->a_vp->v_bufobj;
6017	if (ap->a_bnp != NULL)
6018		*ap->a_bnp = ap->a_bn;
6019	if (ap->a_runp != NULL)
6020		*ap->a_runp = 0;
6021	if (ap->a_runb != NULL)
6022		*ap->a_runb = 0;
6023
6024	return (0);
6025}
6026
6027static int
6028zfs_freebsd_open(ap)
6029	struct vop_open_args /* {
6030		struct vnode *a_vp;
6031		int a_mode;
6032		struct ucred *a_cred;
6033		struct thread *a_td;
6034	} */ *ap;
6035{
6036	vnode_t	*vp = ap->a_vp;
6037	znode_t *zp = VTOZ(vp);
6038	int error;
6039
6040	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
6041	if (error == 0)
6042		vnode_create_vobject(vp, zp->z_size, ap->a_td);
6043	return (error);
6044}
6045
6046static int
6047zfs_freebsd_close(ap)
6048	struct vop_close_args /* {
6049		struct vnode *a_vp;
6050		int  a_fflag;
6051		struct ucred *a_cred;
6052		struct thread *a_td;
6053	} */ *ap;
6054{
6055
6056	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
6057}
6058
6059static int
6060zfs_freebsd_ioctl(ap)
6061	struct vop_ioctl_args /* {
6062		struct vnode *a_vp;
6063		u_long a_command;
6064		caddr_t a_data;
6065		int a_fflag;
6066		struct ucred *cred;
6067		struct thread *td;
6068	} */ *ap;
6069{
6070
6071	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
6072	    ap->a_fflag, ap->a_cred, NULL, NULL));
6073}
6074
6075static int
6076zfs_freebsd_read(ap)
6077	struct vop_read_args /* {
6078		struct vnode *a_vp;
6079		struct uio *a_uio;
6080		int a_ioflag;
6081		struct ucred *a_cred;
6082	} */ *ap;
6083{
6084
6085	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6086	    ap->a_cred, NULL));
6087}
6088
6089static int
6090zfs_freebsd_write(ap)
6091	struct vop_write_args /* {
6092		struct vnode *a_vp;
6093		struct uio *a_uio;
6094		int a_ioflag;
6095		struct ucred *a_cred;
6096	} */ *ap;
6097{
6098
6099	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6100	    ap->a_cred, NULL));
6101}
6102
6103static int
6104zfs_freebsd_access(ap)
6105	struct vop_access_args /* {
6106		struct vnode *a_vp;
6107		accmode_t a_accmode;
6108		struct ucred *a_cred;
6109		struct thread *a_td;
6110	} */ *ap;
6111{
6112	vnode_t *vp = ap->a_vp;
6113	znode_t *zp = VTOZ(vp);
6114	accmode_t accmode;
6115	int error = 0;
6116
6117	/*
6118	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
6119	 */
6120	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
6121	if (accmode != 0)
6122		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
6123
6124	/*
6125	 * VADMIN has to be handled by vaccess().
6126	 */
6127	if (error == 0) {
6128		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
6129		if (accmode != 0) {
6130			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
6131			    zp->z_gid, accmode, ap->a_cred, NULL);
6132		}
6133	}
6134
6135	/*
6136	 * For VEXEC, ensure that at least one execute bit is set for
6137	 * non-directories.
6138	 */
6139	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
6140	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
6141		error = EACCES;
6142	}
6143
6144	return (error);
6145}
6146
6147static int
6148zfs_freebsd_lookup(ap)
6149	struct vop_lookup_args /* {
6150		struct vnode *a_dvp;
6151		struct vnode **a_vpp;
6152		struct componentname *a_cnp;
6153	} */ *ap;
6154{
6155	struct componentname *cnp = ap->a_cnp;
6156	char nm[NAME_MAX + 1];
6157
6158	ASSERT(cnp->cn_namelen < sizeof(nm));
6159	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
6160
6161	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
6162	    cnp->cn_cred, cnp->cn_thread, 0));
6163}
6164
6165static int
6166zfs_freebsd_create(ap)
6167	struct vop_create_args /* {
6168		struct vnode *a_dvp;
6169		struct vnode **a_vpp;
6170		struct componentname *a_cnp;
6171		struct vattr *a_vap;
6172	} */ *ap;
6173{
6174	struct componentname *cnp = ap->a_cnp;
6175	vattr_t *vap = ap->a_vap;
6176	int mode;
6177
6178	ASSERT(cnp->cn_flags & SAVENAME);
6179
6180	vattr_init_mask(vap);
6181	mode = vap->va_mode & ALLPERMS;
6182
6183	return (zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
6184	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread));
6185}
6186
6187static int
6188zfs_freebsd_remove(ap)
6189	struct vop_remove_args /* {
6190		struct vnode *a_dvp;
6191		struct vnode *a_vp;
6192		struct componentname *a_cnp;
6193	} */ *ap;
6194{
6195
6196	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6197
6198	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6199	    ap->a_cnp->cn_cred, NULL, 0));
6200}
6201
6202static int
6203zfs_freebsd_mkdir(ap)
6204	struct vop_mkdir_args /* {
6205		struct vnode *a_dvp;
6206		struct vnode **a_vpp;
6207		struct componentname *a_cnp;
6208		struct vattr *a_vap;
6209	} */ *ap;
6210{
6211	vattr_t *vap = ap->a_vap;
6212
6213	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6214
6215	vattr_init_mask(vap);
6216
6217	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6218	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6219}
6220
6221static int
6222zfs_freebsd_rmdir(ap)
6223	struct vop_rmdir_args /* {
6224		struct vnode *a_dvp;
6225		struct vnode *a_vp;
6226		struct componentname *a_cnp;
6227	} */ *ap;
6228{
6229	struct componentname *cnp = ap->a_cnp;
6230
6231	ASSERT(cnp->cn_flags & SAVENAME);
6232
6233	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6234}
6235
6236static int
6237zfs_freebsd_readdir(ap)
6238	struct vop_readdir_args /* {
6239		struct vnode *a_vp;
6240		struct uio *a_uio;
6241		struct ucred *a_cred;
6242		int *a_eofflag;
6243		int *a_ncookies;
6244		u_long **a_cookies;
6245	} */ *ap;
6246{
6247
6248	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6249	    ap->a_ncookies, ap->a_cookies));
6250}
6251
6252static int
6253zfs_freebsd_fsync(ap)
6254	struct vop_fsync_args /* {
6255		struct vnode *a_vp;
6256		int a_waitfor;
6257		struct thread *a_td;
6258	} */ *ap;
6259{
6260
6261	vop_stdfsync(ap);
6262	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6263}
6264
6265static int
6266zfs_freebsd_getattr(ap)
6267	struct vop_getattr_args /* {
6268		struct vnode *a_vp;
6269		struct vattr *a_vap;
6270		struct ucred *a_cred;
6271	} */ *ap;
6272{
6273	vattr_t *vap = ap->a_vap;
6274	xvattr_t xvap;
6275	u_long fflags = 0;
6276	int error;
6277
6278	xva_init(&xvap);
6279	xvap.xva_vattr = *vap;
6280	xvap.xva_vattr.va_mask |= AT_XVATTR;
6281
6282	/* Convert chflags into ZFS-type flags. */
6283	/* XXX: what about SF_SETTABLE?. */
6284	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6285	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6286	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6287	XVA_SET_REQ(&xvap, XAT_NODUMP);
6288	XVA_SET_REQ(&xvap, XAT_READONLY);
6289	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6290	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6291	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6292	XVA_SET_REQ(&xvap, XAT_REPARSE);
6293	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6294	XVA_SET_REQ(&xvap, XAT_SPARSE);
6295
6296	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6297	if (error != 0)
6298		return (error);
6299
6300	/* Convert ZFS xattr into chflags. */
6301#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6302	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6303		fflags |= (fflag);					\
6304} while (0)
6305	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6306	    xvap.xva_xoptattrs.xoa_immutable);
6307	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6308	    xvap.xva_xoptattrs.xoa_appendonly);
6309	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6310	    xvap.xva_xoptattrs.xoa_nounlink);
6311	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6312	    xvap.xva_xoptattrs.xoa_archive);
6313	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6314	    xvap.xva_xoptattrs.xoa_nodump);
6315	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6316	    xvap.xva_xoptattrs.xoa_readonly);
6317	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6318	    xvap.xva_xoptattrs.xoa_system);
6319	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6320	    xvap.xva_xoptattrs.xoa_hidden);
6321	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6322	    xvap.xva_xoptattrs.xoa_reparse);
6323	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6324	    xvap.xva_xoptattrs.xoa_offline);
6325	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6326	    xvap.xva_xoptattrs.xoa_sparse);
6327
6328#undef	FLAG_CHECK
6329	*vap = xvap.xva_vattr;
6330	vap->va_flags = fflags;
6331	return (0);
6332}
6333
6334static int
6335zfs_freebsd_setattr(ap)
6336	struct vop_setattr_args /* {
6337		struct vnode *a_vp;
6338		struct vattr *a_vap;
6339		struct ucred *a_cred;
6340	} */ *ap;
6341{
6342	vnode_t *vp = ap->a_vp;
6343	vattr_t *vap = ap->a_vap;
6344	cred_t *cred = ap->a_cred;
6345	xvattr_t xvap;
6346	u_long fflags;
6347	uint64_t zflags;
6348
6349	vattr_init_mask(vap);
6350	vap->va_mask &= ~AT_NOSET;
6351
6352	xva_init(&xvap);
6353	xvap.xva_vattr = *vap;
6354
6355	zflags = VTOZ(vp)->z_pflags;
6356
6357	if (vap->va_flags != VNOVAL) {
6358		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6359		int error;
6360
6361		if (zfsvfs->z_use_fuids == B_FALSE)
6362			return (EOPNOTSUPP);
6363
6364		fflags = vap->va_flags;
6365		/*
6366		 * XXX KDM
6367		 * We need to figure out whether it makes sense to allow
6368		 * UF_REPARSE through, since we don't really have other
6369		 * facilities to handle reparse points and zfs_setattr()
6370		 * doesn't currently allow setting that attribute anyway.
6371		 */
6372		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6373		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6374		     UF_OFFLINE|UF_SPARSE)) != 0)
6375			return (EOPNOTSUPP);
6376		/*
6377		 * Unprivileged processes are not permitted to unset system
6378		 * flags, or modify flags if any system flags are set.
6379		 * Privileged non-jail processes may not modify system flags
6380		 * if securelevel > 0 and any existing system flags are set.
6381		 * Privileged jail processes behave like privileged non-jail
6382		 * processes if the security.jail.chflags_allowed sysctl is
6383		 * is non-zero; otherwise, they behave like unprivileged
6384		 * processes.
6385		 */
6386		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6387		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6388			if (zflags &
6389			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6390				error = securelevel_gt(cred, 0);
6391				if (error != 0)
6392					return (error);
6393			}
6394		} else {
6395			/*
6396			 * Callers may only modify the file flags on objects they
6397			 * have VADMIN rights for.
6398			 */
6399			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6400				return (error);
6401			if (zflags &
6402			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6403				return (EPERM);
6404			}
6405			if (fflags &
6406			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6407				return (EPERM);
6408			}
6409		}
6410
6411#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6412	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6413	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6414		XVA_SET_REQ(&xvap, (xflag));				\
6415		(xfield) = ((fflags & (fflag)) != 0);			\
6416	}								\
6417} while (0)
6418		/* Convert chflags into ZFS-type flags. */
6419		/* XXX: what about SF_SETTABLE?. */
6420		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6421		    xvap.xva_xoptattrs.xoa_immutable);
6422		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6423		    xvap.xva_xoptattrs.xoa_appendonly);
6424		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6425		    xvap.xva_xoptattrs.xoa_nounlink);
6426		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6427		    xvap.xva_xoptattrs.xoa_archive);
6428		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6429		    xvap.xva_xoptattrs.xoa_nodump);
6430		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6431		    xvap.xva_xoptattrs.xoa_readonly);
6432		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6433		    xvap.xva_xoptattrs.xoa_system);
6434		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6435		    xvap.xva_xoptattrs.xoa_hidden);
6436		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6437		    xvap.xva_xoptattrs.xoa_hidden);
6438		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6439		    xvap.xva_xoptattrs.xoa_offline);
6440		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6441		    xvap.xva_xoptattrs.xoa_sparse);
6442#undef	FLAG_CHANGE
6443	}
6444	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6445}
6446
6447static int
6448zfs_freebsd_rename(ap)
6449	struct vop_rename_args  /* {
6450		struct vnode *a_fdvp;
6451		struct vnode *a_fvp;
6452		struct componentname *a_fcnp;
6453		struct vnode *a_tdvp;
6454		struct vnode *a_tvp;
6455		struct componentname *a_tcnp;
6456	} */ *ap;
6457{
6458	vnode_t *fdvp = ap->a_fdvp;
6459	vnode_t *fvp = ap->a_fvp;
6460	vnode_t *tdvp = ap->a_tdvp;
6461	vnode_t *tvp = ap->a_tvp;
6462	int error;
6463
6464	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6465	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6466
6467	/*
6468	 * Check for cross-device rename.
6469	 */
6470	if ((fdvp->v_mount != tdvp->v_mount) ||
6471	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6472		error = EXDEV;
6473	else
6474		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6475		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6476	if (tdvp == tvp)
6477		VN_RELE(tdvp);
6478	else
6479		VN_URELE(tdvp);
6480	if (tvp)
6481		VN_URELE(tvp);
6482	VN_RELE(fdvp);
6483	VN_RELE(fvp);
6484
6485	return (error);
6486}
6487
6488static int
6489zfs_freebsd_symlink(ap)
6490	struct vop_symlink_args /* {
6491		struct vnode *a_dvp;
6492		struct vnode **a_vpp;
6493		struct componentname *a_cnp;
6494		struct vattr *a_vap;
6495		char *a_target;
6496	} */ *ap;
6497{
6498	struct componentname *cnp = ap->a_cnp;
6499	vattr_t *vap = ap->a_vap;
6500
6501	ASSERT(cnp->cn_flags & SAVENAME);
6502
6503	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6504	vattr_init_mask(vap);
6505
6506	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6507	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6508}
6509
6510static int
6511zfs_freebsd_readlink(ap)
6512	struct vop_readlink_args /* {
6513		struct vnode *a_vp;
6514		struct uio *a_uio;
6515		struct ucred *a_cred;
6516	} */ *ap;
6517{
6518
6519	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6520}
6521
6522static int
6523zfs_freebsd_link(ap)
6524	struct vop_link_args /* {
6525		struct vnode *a_tdvp;
6526		struct vnode *a_vp;
6527		struct componentname *a_cnp;
6528	} */ *ap;
6529{
6530	struct componentname *cnp = ap->a_cnp;
6531	vnode_t *vp = ap->a_vp;
6532	vnode_t *tdvp = ap->a_tdvp;
6533
6534	if (tdvp->v_mount != vp->v_mount)
6535		return (EXDEV);
6536
6537	ASSERT(cnp->cn_flags & SAVENAME);
6538
6539	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6540}
6541
6542static int
6543zfs_freebsd_inactive(ap)
6544	struct vop_inactive_args /* {
6545		struct vnode *a_vp;
6546		struct thread *a_td;
6547	} */ *ap;
6548{
6549	vnode_t *vp = ap->a_vp;
6550
6551	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6552	return (0);
6553}
6554
6555static int
6556zfs_freebsd_reclaim(ap)
6557	struct vop_reclaim_args /* {
6558		struct vnode *a_vp;
6559		struct thread *a_td;
6560	} */ *ap;
6561{
6562	vnode_t	*vp = ap->a_vp;
6563	znode_t	*zp = VTOZ(vp);
6564	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6565
6566	ASSERT(zp != NULL);
6567
6568	/* Destroy the vm object and flush associated pages. */
6569	vnode_destroy_vobject(vp);
6570
6571	/*
6572	 * z_teardown_inactive_lock protects from a race with
6573	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6574	 * force unmount.
6575	 */
6576	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6577	if (zp->z_sa_hdl == NULL)
6578		zfs_znode_free(zp);
6579	else
6580		zfs_zinactive(zp);
6581	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6582
6583	vp->v_data = NULL;
6584	return (0);
6585}
6586
6587static int
6588zfs_freebsd_fid(ap)
6589	struct vop_fid_args /* {
6590		struct vnode *a_vp;
6591		struct fid *a_fid;
6592	} */ *ap;
6593{
6594
6595	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6596}
6597
6598static int
6599zfs_freebsd_pathconf(ap)
6600	struct vop_pathconf_args /* {
6601		struct vnode *a_vp;
6602		int a_name;
6603		register_t *a_retval;
6604	} */ *ap;
6605{
6606	ulong_t val;
6607	int error;
6608
6609	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6610	if (error == 0)
6611		*ap->a_retval = val;
6612	else if (error == EOPNOTSUPP)
6613		error = vop_stdpathconf(ap);
6614	return (error);
6615}
6616
6617static int
6618zfs_freebsd_fifo_pathconf(ap)
6619	struct vop_pathconf_args /* {
6620		struct vnode *a_vp;
6621		int a_name;
6622		register_t *a_retval;
6623	} */ *ap;
6624{
6625
6626	switch (ap->a_name) {
6627	case _PC_ACL_EXTENDED:
6628	case _PC_ACL_NFS4:
6629	case _PC_ACL_PATH_MAX:
6630	case _PC_MAC_PRESENT:
6631		return (zfs_freebsd_pathconf(ap));
6632	default:
6633		return (fifo_specops.vop_pathconf(ap));
6634	}
6635}
6636
6637/*
6638 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6639 * extended attribute name:
6640 *
6641 *	NAMESPACE	PREFIX
6642 *	system		freebsd:system:
6643 *	user		(none, can be used to access ZFS fsattr(5) attributes
6644 *			created on Solaris)
6645 */
6646static int
6647zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6648    size_t size)
6649{
6650	const char *namespace, *prefix, *suffix;
6651
6652	/* We don't allow '/' character in attribute name. */
6653	if (strchr(name, '/') != NULL)
6654		return (EINVAL);
6655	/* We don't allow attribute names that start with "freebsd:" string. */
6656	if (strncmp(name, "freebsd:", 8) == 0)
6657		return (EINVAL);
6658
6659	bzero(attrname, size);
6660
6661	switch (attrnamespace) {
6662	case EXTATTR_NAMESPACE_USER:
6663#if 0
6664		prefix = "freebsd:";
6665		namespace = EXTATTR_NAMESPACE_USER_STRING;
6666		suffix = ":";
6667#else
6668		/*
6669		 * This is the default namespace by which we can access all
6670		 * attributes created on Solaris.
6671		 */
6672		prefix = namespace = suffix = "";
6673#endif
6674		break;
6675	case EXTATTR_NAMESPACE_SYSTEM:
6676		prefix = "freebsd:";
6677		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6678		suffix = ":";
6679		break;
6680	case EXTATTR_NAMESPACE_EMPTY:
6681	default:
6682		return (EINVAL);
6683	}
6684	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6685	    name) >= size) {
6686		return (ENAMETOOLONG);
6687	}
6688	return (0);
6689}
6690
6691/*
6692 * Vnode operating to retrieve a named extended attribute.
6693 */
6694static int
6695zfs_getextattr(struct vop_getextattr_args *ap)
6696/*
6697vop_getextattr {
6698	IN struct vnode *a_vp;
6699	IN int a_attrnamespace;
6700	IN const char *a_name;
6701	INOUT struct uio *a_uio;
6702	OUT size_t *a_size;
6703	IN struct ucred *a_cred;
6704	IN struct thread *a_td;
6705};
6706*/
6707{
6708	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6709	struct thread *td = ap->a_td;
6710	struct nameidata nd;
6711	char attrname[255];
6712	struct vattr va;
6713	vnode_t *xvp = NULL, *vp;
6714	int error, flags;
6715
6716	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6717	    ap->a_cred, ap->a_td, VREAD);
6718	if (error != 0)
6719		return (error);
6720
6721	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6722	    sizeof(attrname));
6723	if (error != 0)
6724		return (error);
6725
6726	ZFS_ENTER(zfsvfs);
6727
6728	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6729	    LOOKUP_XATTR);
6730	if (error != 0) {
6731		ZFS_EXIT(zfsvfs);
6732		return (error);
6733	}
6734
6735	flags = FREAD;
6736	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6737	    xvp, td);
6738	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6739	vp = nd.ni_vp;
6740	NDFREE(&nd, NDF_ONLY_PNBUF);
6741	if (error != 0) {
6742		ZFS_EXIT(zfsvfs);
6743		if (error == ENOENT)
6744			error = ENOATTR;
6745		return (error);
6746	}
6747
6748	if (ap->a_size != NULL) {
6749		error = VOP_GETATTR(vp, &va, ap->a_cred);
6750		if (error == 0)
6751			*ap->a_size = (size_t)va.va_size;
6752	} else if (ap->a_uio != NULL)
6753		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6754
6755	VOP_UNLOCK(vp, 0);
6756	vn_close(vp, flags, ap->a_cred, td);
6757	ZFS_EXIT(zfsvfs);
6758
6759	return (error);
6760}
6761
6762/*
6763 * Vnode operation to remove a named attribute.
6764 */
6765int
6766zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6767/*
6768vop_deleteextattr {
6769	IN struct vnode *a_vp;
6770	IN int a_attrnamespace;
6771	IN const char *a_name;
6772	IN struct ucred *a_cred;
6773	IN struct thread *a_td;
6774};
6775*/
6776{
6777	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6778	struct thread *td = ap->a_td;
6779	struct nameidata nd;
6780	char attrname[255];
6781	struct vattr va;
6782	vnode_t *xvp = NULL, *vp;
6783	int error, flags;
6784
6785	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6786	    ap->a_cred, ap->a_td, VWRITE);
6787	if (error != 0)
6788		return (error);
6789
6790	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6791	    sizeof(attrname));
6792	if (error != 0)
6793		return (error);
6794
6795	ZFS_ENTER(zfsvfs);
6796
6797	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6798	    LOOKUP_XATTR);
6799	if (error != 0) {
6800		ZFS_EXIT(zfsvfs);
6801		return (error);
6802	}
6803
6804	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6805	    UIO_SYSSPACE, attrname, xvp, td);
6806	error = namei(&nd);
6807	vp = nd.ni_vp;
6808	if (error != 0) {
6809		ZFS_EXIT(zfsvfs);
6810		NDFREE(&nd, NDF_ONLY_PNBUF);
6811		if (error == ENOENT)
6812			error = ENOATTR;
6813		return (error);
6814	}
6815
6816	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6817	NDFREE(&nd, NDF_ONLY_PNBUF);
6818
6819	vput(nd.ni_dvp);
6820	if (vp == nd.ni_dvp)
6821		vrele(vp);
6822	else
6823		vput(vp);
6824	ZFS_EXIT(zfsvfs);
6825
6826	return (error);
6827}
6828
6829/*
6830 * Vnode operation to set a named attribute.
6831 */
6832static int
6833zfs_setextattr(struct vop_setextattr_args *ap)
6834/*
6835vop_setextattr {
6836	IN struct vnode *a_vp;
6837	IN int a_attrnamespace;
6838	IN const char *a_name;
6839	INOUT struct uio *a_uio;
6840	IN struct ucred *a_cred;
6841	IN struct thread *a_td;
6842};
6843*/
6844{
6845	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6846	struct thread *td = ap->a_td;
6847	struct nameidata nd;
6848	char attrname[255];
6849	struct vattr va;
6850	vnode_t *xvp = NULL, *vp;
6851	int error, flags;
6852
6853	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6854	    ap->a_cred, ap->a_td, VWRITE);
6855	if (error != 0)
6856		return (error);
6857
6858	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6859	    sizeof(attrname));
6860	if (error != 0)
6861		return (error);
6862
6863	ZFS_ENTER(zfsvfs);
6864
6865	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6866	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6867	if (error != 0) {
6868		ZFS_EXIT(zfsvfs);
6869		return (error);
6870	}
6871
6872	flags = FFLAGS(O_WRONLY | O_CREAT);
6873	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6874	    xvp, td);
6875	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6876	vp = nd.ni_vp;
6877	NDFREE(&nd, NDF_ONLY_PNBUF);
6878	if (error != 0) {
6879		ZFS_EXIT(zfsvfs);
6880		return (error);
6881	}
6882
6883	VATTR_NULL(&va);
6884	va.va_size = 0;
6885	error = VOP_SETATTR(vp, &va, ap->a_cred);
6886	if (error == 0)
6887		VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6888
6889	VOP_UNLOCK(vp, 0);
6890	vn_close(vp, flags, ap->a_cred, td);
6891	ZFS_EXIT(zfsvfs);
6892
6893	return (error);
6894}
6895
6896/*
6897 * Vnode operation to retrieve extended attributes on a vnode.
6898 */
6899static int
6900zfs_listextattr(struct vop_listextattr_args *ap)
6901/*
6902vop_listextattr {
6903	IN struct vnode *a_vp;
6904	IN int a_attrnamespace;
6905	INOUT struct uio *a_uio;
6906	OUT size_t *a_size;
6907	IN struct ucred *a_cred;
6908	IN struct thread *a_td;
6909};
6910*/
6911{
6912	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6913	struct thread *td = ap->a_td;
6914	struct nameidata nd;
6915	char attrprefix[16];
6916	u_char dirbuf[sizeof(struct dirent)];
6917	struct dirent *dp;
6918	struct iovec aiov;
6919	struct uio auio, *uio = ap->a_uio;
6920	size_t *sizep = ap->a_size;
6921	size_t plen;
6922	vnode_t *xvp = NULL, *vp;
6923	int done, error, eof, pos;
6924
6925	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6926	    ap->a_cred, ap->a_td, VREAD);
6927	if (error != 0)
6928		return (error);
6929
6930	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6931	    sizeof(attrprefix));
6932	if (error != 0)
6933		return (error);
6934	plen = strlen(attrprefix);
6935
6936	ZFS_ENTER(zfsvfs);
6937
6938	if (sizep != NULL)
6939		*sizep = 0;
6940
6941	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6942	    LOOKUP_XATTR);
6943	if (error != 0) {
6944		ZFS_EXIT(zfsvfs);
6945		/*
6946		 * ENOATTR means that the EA directory does not yet exist,
6947		 * i.e. there are no extended attributes there.
6948		 */
6949		if (error == ENOATTR)
6950			error = 0;
6951		return (error);
6952	}
6953
6954	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6955	    UIO_SYSSPACE, ".", xvp, td);
6956	error = namei(&nd);
6957	vp = nd.ni_vp;
6958	NDFREE(&nd, NDF_ONLY_PNBUF);
6959	if (error != 0) {
6960		ZFS_EXIT(zfsvfs);
6961		return (error);
6962	}
6963
6964	auio.uio_iov = &aiov;
6965	auio.uio_iovcnt = 1;
6966	auio.uio_segflg = UIO_SYSSPACE;
6967	auio.uio_td = td;
6968	auio.uio_rw = UIO_READ;
6969	auio.uio_offset = 0;
6970
6971	do {
6972		u_char nlen;
6973
6974		aiov.iov_base = (void *)dirbuf;
6975		aiov.iov_len = sizeof(dirbuf);
6976		auio.uio_resid = sizeof(dirbuf);
6977		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6978		done = sizeof(dirbuf) - auio.uio_resid;
6979		if (error != 0)
6980			break;
6981		for (pos = 0; pos < done;) {
6982			dp = (struct dirent *)(dirbuf + pos);
6983			pos += dp->d_reclen;
6984			/*
6985			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6986			 * is what we get when attribute was created on Solaris.
6987			 */
6988			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6989				continue;
6990			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
6991				continue;
6992			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6993				continue;
6994			nlen = dp->d_namlen - plen;
6995			if (sizep != NULL)
6996				*sizep += 1 + nlen;
6997			else if (uio != NULL) {
6998				/*
6999				 * Format of extattr name entry is one byte for
7000				 * length and the rest for name.
7001				 */
7002				error = uiomove(&nlen, 1, uio->uio_rw, uio);
7003				if (error == 0) {
7004					error = uiomove(dp->d_name + plen, nlen,
7005					    uio->uio_rw, uio);
7006				}
7007				if (error != 0)
7008					break;
7009			}
7010		}
7011	} while (!eof && error == 0);
7012
7013	vput(vp);
7014	ZFS_EXIT(zfsvfs);
7015
7016	return (error);
7017}
7018
7019int
7020zfs_freebsd_getacl(ap)
7021	struct vop_getacl_args /* {
7022		struct vnode *vp;
7023		acl_type_t type;
7024		struct acl *aclp;
7025		struct ucred *cred;
7026		struct thread *td;
7027	} */ *ap;
7028{
7029	int		error;
7030	vsecattr_t      vsecattr;
7031
7032	if (ap->a_type != ACL_TYPE_NFS4)
7033		return (EINVAL);
7034
7035	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
7036	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
7037		return (error);
7038
7039	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
7040	if (vsecattr.vsa_aclentp != NULL)
7041		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
7042
7043	return (error);
7044}
7045
7046int
7047zfs_freebsd_setacl(ap)
7048	struct vop_setacl_args /* {
7049		struct vnode *vp;
7050		acl_type_t type;
7051		struct acl *aclp;
7052		struct ucred *cred;
7053		struct thread *td;
7054	} */ *ap;
7055{
7056	int		error;
7057	vsecattr_t      vsecattr;
7058	int		aclbsize;	/* size of acl list in bytes */
7059	aclent_t	*aaclp;
7060
7061	if (ap->a_type != ACL_TYPE_NFS4)
7062		return (EINVAL);
7063
7064	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
7065		return (EINVAL);
7066
7067	/*
7068	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
7069	 * splitting every entry into two and appending "canonical six"
7070	 * entries at the end.  Don't allow for setting an ACL that would
7071	 * cause chmod(2) to run out of ACL entries.
7072	 */
7073	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
7074		return (ENOSPC);
7075
7076	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
7077	if (error != 0)
7078		return (error);
7079
7080	vsecattr.vsa_mask = VSA_ACE;
7081	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
7082	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
7083	aaclp = vsecattr.vsa_aclentp;
7084	vsecattr.vsa_aclentsz = aclbsize;
7085
7086	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
7087	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
7088	kmem_free(aaclp, aclbsize);
7089
7090	return (error);
7091}
7092
7093int
7094zfs_freebsd_aclcheck(ap)
7095	struct vop_aclcheck_args /* {
7096		struct vnode *vp;
7097		acl_type_t type;
7098		struct acl *aclp;
7099		struct ucred *cred;
7100		struct thread *td;
7101	} */ *ap;
7102{
7103
7104	return (EOPNOTSUPP);
7105}
7106
7107struct vop_vector zfs_vnodeops;
7108struct vop_vector zfs_fifoops;
7109struct vop_vector zfs_shareops;
7110
7111struct vop_vector zfs_vnodeops = {
7112	.vop_default =		&default_vnodeops,
7113	.vop_inactive =		zfs_freebsd_inactive,
7114	.vop_reclaim =		zfs_freebsd_reclaim,
7115	.vop_access =		zfs_freebsd_access,
7116#ifdef FREEBSD_NAMECACHE
7117	.vop_lookup =		vfs_cache_lookup,
7118	.vop_cachedlookup =	zfs_freebsd_lookup,
7119#else
7120	.vop_lookup =		zfs_freebsd_lookup,
7121#endif
7122	.vop_getattr =		zfs_freebsd_getattr,
7123	.vop_setattr =		zfs_freebsd_setattr,
7124	.vop_create =		zfs_freebsd_create,
7125	.vop_mknod =		zfs_freebsd_create,
7126	.vop_mkdir =		zfs_freebsd_mkdir,
7127	.vop_readdir =		zfs_freebsd_readdir,
7128	.vop_fsync =		zfs_freebsd_fsync,
7129	.vop_open =		zfs_freebsd_open,
7130	.vop_close =		zfs_freebsd_close,
7131	.vop_rmdir =		zfs_freebsd_rmdir,
7132	.vop_ioctl =		zfs_freebsd_ioctl,
7133	.vop_link =		zfs_freebsd_link,
7134	.vop_symlink =		zfs_freebsd_symlink,
7135	.vop_readlink =		zfs_freebsd_readlink,
7136	.vop_read =		zfs_freebsd_read,
7137	.vop_write =		zfs_freebsd_write,
7138	.vop_remove =		zfs_freebsd_remove,
7139	.vop_rename =		zfs_freebsd_rename,
7140	.vop_pathconf =		zfs_freebsd_pathconf,
7141	.vop_bmap =		zfs_freebsd_bmap,
7142	.vop_fid =		zfs_freebsd_fid,
7143	.vop_getextattr =	zfs_getextattr,
7144	.vop_deleteextattr =	zfs_deleteextattr,
7145	.vop_setextattr =	zfs_setextattr,
7146	.vop_listextattr =	zfs_listextattr,
7147	.vop_getacl =		zfs_freebsd_getacl,
7148	.vop_setacl =		zfs_freebsd_setacl,
7149	.vop_aclcheck =		zfs_freebsd_aclcheck,
7150	.vop_getpages =		zfs_freebsd_getpages,
7151	.vop_putpages =		zfs_freebsd_putpages,
7152};
7153
7154struct vop_vector zfs_fifoops = {
7155	.vop_default =		&fifo_specops,
7156	.vop_fsync =		zfs_freebsd_fsync,
7157	.vop_access =		zfs_freebsd_access,
7158	.vop_getattr =		zfs_freebsd_getattr,
7159	.vop_inactive =		zfs_freebsd_inactive,
7160	.vop_read =		VOP_PANIC,
7161	.vop_reclaim =		zfs_freebsd_reclaim,
7162	.vop_setattr =		zfs_freebsd_setattr,
7163	.vop_write =		VOP_PANIC,
7164	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
7165	.vop_fid =		zfs_freebsd_fid,
7166	.vop_getacl =		zfs_freebsd_getacl,
7167	.vop_setacl =		zfs_freebsd_setacl,
7168	.vop_aclcheck =		zfs_freebsd_aclcheck,
7169};
7170
7171/*
7172 * special share hidden files vnode operations template
7173 */
7174struct vop_vector zfs_shareops = {
7175	.vop_default =		&default_vnodeops,
7176	.vop_access =		zfs_freebsd_access,
7177	.vop_inactive =		zfs_freebsd_inactive,
7178	.vop_reclaim =		zfs_freebsd_reclaim,
7179	.vop_fid =		zfs_freebsd_fid,
7180	.vop_pathconf =		zfs_freebsd_pathconf,
7181};
7182