zfs_vfsops.c revision 197515
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/systm.h>
29#include <sys/kernel.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/acl.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/mntent.h>
36#include <sys/mount.h>
37#include <sys/cmn_err.h>
38#include <sys/zfs_znode.h>
39#include <sys/zfs_dir.h>
40#include <sys/zil.h>
41#include <sys/fs/zfs.h>
42#include <sys/dmu.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_dataset.h>
45#include <sys/dsl_deleg.h>
46#include <sys/spa.h>
47#include <sys/zap.h>
48#include <sys/varargs.h>
49#include <sys/policy.h>
50#include <sys/atomic.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/zfs_ctldir.h>
53#include <sys/zfs_fuid.h>
54#include <sys/sunddi.h>
55#include <sys/dnlc.h>
56#include <sys/dmu_objset.h>
57#include <sys/spa_boot.h>
58#include <sys/vdev_impl.h>	/* VDEV_BOOT_VERSION */
59
60struct mtx zfs_debug_mtx;
61MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
62
63SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
64
65int zfs_super_owner = 0;
66SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
67    "File system owner can perform privileged operation on his file systems");
68
69int zfs_debug_level = 0;
70TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
71SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
72    "Debug level");
73
74SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
75static int zfs_version_acl = ZFS_ACL_VERSION;
76SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
77    "ZFS_ACL_VERSION");
78static int zfs_version_dmu_backup_header = DMU_BACKUP_HEADER_VERSION;
79SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_header, CTLFLAG_RD,
80    &zfs_version_dmu_backup_header, 0, "DMU_BACKUP_HEADER_VERSION");
81static int zfs_version_dmu_backup_stream = DMU_BACKUP_STREAM_VERSION;
82SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_stream, CTLFLAG_RD,
83    &zfs_version_dmu_backup_stream, 0, "DMU_BACKUP_STREAM_VERSION");
84static int zfs_version_spa = SPA_VERSION;
85SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
86    "SPA_VERSION");
87static int zfs_version_vdev_boot = VDEV_BOOT_VERSION;
88SYSCTL_INT(_vfs_zfs_version, OID_AUTO, vdev_boot, CTLFLAG_RD,
89    &zfs_version_vdev_boot, 0, "VDEV_BOOT_VERSION");
90static int zfs_version_zpl = ZPL_VERSION;
91SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
92    "ZPL_VERSION");
93
94static int zfs_mount(vfs_t *vfsp);
95static int zfs_umount(vfs_t *vfsp, int fflag);
96static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
97static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
98static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
99static int zfs_sync(vfs_t *vfsp, int waitfor);
100static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
101    struct ucred **credanonp, int *numsecflavors, int **secflavors);
102static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
103static void zfs_objset_close(zfsvfs_t *zfsvfs);
104static void zfs_freevfs(vfs_t *vfsp);
105
106static struct vfsops zfs_vfsops = {
107	.vfs_mount =		zfs_mount,
108	.vfs_unmount =		zfs_umount,
109	.vfs_root =		zfs_root,
110	.vfs_statfs =		zfs_statfs,
111	.vfs_vget =		zfs_vget,
112	.vfs_sync =		zfs_sync,
113	.vfs_checkexp =		zfs_checkexp,
114	.vfs_fhtovp =		zfs_fhtovp,
115};
116
117VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
118
119/*
120 * We need to keep a count of active fs's.
121 * This is necessary to prevent our module
122 * from being unloaded after a umount -f
123 */
124static uint32_t	zfs_active_fs_count = 0;
125
126/*ARGSUSED*/
127static int
128zfs_sync(vfs_t *vfsp, int waitfor)
129{
130
131	/*
132	 * Data integrity is job one.  We don't want a compromised kernel
133	 * writing to the storage pool, so we never sync during panic.
134	 */
135	if (panicstr)
136		return (0);
137
138	if (vfsp != NULL) {
139		/*
140		 * Sync a specific filesystem.
141		 */
142		zfsvfs_t *zfsvfs = vfsp->vfs_data;
143		int error;
144
145		error = vfs_stdsync(vfsp, waitfor);
146		if (error != 0)
147			return (error);
148
149		ZFS_ENTER(zfsvfs);
150		if (zfsvfs->z_log != NULL)
151			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
152		else
153			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
154		ZFS_EXIT(zfsvfs);
155	} else {
156		/*
157		 * Sync all ZFS filesystems.  This is what happens when you
158		 * run sync(1M).  Unlike other filesystems, ZFS honors the
159		 * request by waiting for all pools to commit all dirty data.
160		 */
161		spa_sync_allpools();
162	}
163
164	return (0);
165}
166
167static void
168atime_changed_cb(void *arg, uint64_t newval)
169{
170	zfsvfs_t *zfsvfs = arg;
171
172	if (newval == TRUE) {
173		zfsvfs->z_atime = TRUE;
174		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
175		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
176		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
177	} else {
178		zfsvfs->z_atime = FALSE;
179		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
180		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
181		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
182	}
183}
184
185static void
186xattr_changed_cb(void *arg, uint64_t newval)
187{
188	zfsvfs_t *zfsvfs = arg;
189
190	if (newval == TRUE) {
191		/* XXX locking on vfs_flag? */
192#ifdef TODO
193		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
194#endif
195		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
196		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
197	} else {
198		/* XXX locking on vfs_flag? */
199#ifdef TODO
200		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
201#endif
202		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
203		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
204	}
205}
206
207static void
208blksz_changed_cb(void *arg, uint64_t newval)
209{
210	zfsvfs_t *zfsvfs = arg;
211
212	if (newval < SPA_MINBLOCKSIZE ||
213	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
214		newval = SPA_MAXBLOCKSIZE;
215
216	zfsvfs->z_max_blksz = newval;
217	zfsvfs->z_vfs->vfs_bsize = newval;
218}
219
220static void
221readonly_changed_cb(void *arg, uint64_t newval)
222{
223	zfsvfs_t *zfsvfs = arg;
224
225	if (newval) {
226		/* XXX locking on vfs_flag? */
227		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
228		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
229		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
230	} else {
231		/* XXX locking on vfs_flag? */
232		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
233		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
234		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
235	}
236}
237
238static void
239setuid_changed_cb(void *arg, uint64_t newval)
240{
241	zfsvfs_t *zfsvfs = arg;
242
243	if (newval == FALSE) {
244		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
245		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
246		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
247	} else {
248		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
249		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
250		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
251	}
252}
253
254static void
255exec_changed_cb(void *arg, uint64_t newval)
256{
257	zfsvfs_t *zfsvfs = arg;
258
259	if (newval == FALSE) {
260		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
261		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
262		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
263	} else {
264		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
267	}
268}
269
270/*
271 * The nbmand mount option can be changed at mount time.
272 * We can't allow it to be toggled on live file systems or incorrect
273 * behavior may be seen from cifs clients
274 *
275 * This property isn't registered via dsl_prop_register(), but this callback
276 * will be called when a file system is first mounted
277 */
278static void
279nbmand_changed_cb(void *arg, uint64_t newval)
280{
281	zfsvfs_t *zfsvfs = arg;
282	if (newval == FALSE) {
283		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
284		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
285	} else {
286		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
287		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
288	}
289}
290
291static void
292snapdir_changed_cb(void *arg, uint64_t newval)
293{
294	zfsvfs_t *zfsvfs = arg;
295
296	zfsvfs->z_show_ctldir = newval;
297}
298
299static void
300vscan_changed_cb(void *arg, uint64_t newval)
301{
302	zfsvfs_t *zfsvfs = arg;
303
304	zfsvfs->z_vscan = newval;
305}
306
307static void
308acl_mode_changed_cb(void *arg, uint64_t newval)
309{
310	zfsvfs_t *zfsvfs = arg;
311
312	zfsvfs->z_acl_mode = newval;
313}
314
315static void
316acl_inherit_changed_cb(void *arg, uint64_t newval)
317{
318	zfsvfs_t *zfsvfs = arg;
319
320	zfsvfs->z_acl_inherit = newval;
321}
322
323static int
324zfs_register_callbacks(vfs_t *vfsp)
325{
326	struct dsl_dataset *ds = NULL;
327	objset_t *os = NULL;
328	zfsvfs_t *zfsvfs = NULL;
329	uint64_t nbmand;
330	int readonly, do_readonly = FALSE;
331	int setuid, do_setuid = FALSE;
332	int exec, do_exec = FALSE;
333	int xattr, do_xattr = FALSE;
334	int atime, do_atime = FALSE;
335	int error = 0;
336
337	ASSERT(vfsp);
338	zfsvfs = vfsp->vfs_data;
339	ASSERT(zfsvfs);
340	os = zfsvfs->z_os;
341
342	/*
343	 * This function can be called for a snapshot when we update snapshot's
344	 * mount point, which isn't really supported.
345	 */
346	if (dmu_objset_is_snapshot(os))
347		return (EOPNOTSUPP);
348
349	/*
350	 * The act of registering our callbacks will destroy any mount
351	 * options we may have.  In order to enable temporary overrides
352	 * of mount options, we stash away the current values and
353	 * restore them after we register the callbacks.
354	 */
355	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
356		readonly = B_TRUE;
357		do_readonly = B_TRUE;
358	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
359		readonly = B_FALSE;
360		do_readonly = B_TRUE;
361	}
362	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
363		setuid = B_FALSE;
364		do_setuid = B_TRUE;
365	} else {
366		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
367			setuid = B_FALSE;
368			do_setuid = B_TRUE;
369		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
370			setuid = B_TRUE;
371			do_setuid = B_TRUE;
372		}
373	}
374	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
375		exec = B_FALSE;
376		do_exec = B_TRUE;
377	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
378		exec = B_TRUE;
379		do_exec = B_TRUE;
380	}
381	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
382		xattr = B_FALSE;
383		do_xattr = B_TRUE;
384	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
385		xattr = B_TRUE;
386		do_xattr = B_TRUE;
387	}
388	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
389		atime = B_FALSE;
390		do_atime = B_TRUE;
391	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
392		atime = B_TRUE;
393		do_atime = B_TRUE;
394	}
395
396	/*
397	 * nbmand is a special property.  It can only be changed at
398	 * mount time.
399	 *
400	 * This is weird, but it is documented to only be changeable
401	 * at mount time.
402	 */
403	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
404		nbmand = B_FALSE;
405	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
406		nbmand = B_TRUE;
407	} else {
408		char osname[MAXNAMELEN];
409
410		dmu_objset_name(os, osname);
411		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
412		    NULL)) {
413			return (error);
414		}
415	}
416
417	/*
418	 * Register property callbacks.
419	 *
420	 * It would probably be fine to just check for i/o error from
421	 * the first prop_register(), but I guess I like to go
422	 * overboard...
423	 */
424	ds = dmu_objset_ds(os);
425	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
426	error = error ? error : dsl_prop_register(ds,
427	    "xattr", xattr_changed_cb, zfsvfs);
428	error = error ? error : dsl_prop_register(ds,
429	    "recordsize", blksz_changed_cb, zfsvfs);
430	error = error ? error : dsl_prop_register(ds,
431	    "readonly", readonly_changed_cb, zfsvfs);
432	error = error ? error : dsl_prop_register(ds,
433	    "setuid", setuid_changed_cb, zfsvfs);
434	error = error ? error : dsl_prop_register(ds,
435	    "exec", exec_changed_cb, zfsvfs);
436	error = error ? error : dsl_prop_register(ds,
437	    "snapdir", snapdir_changed_cb, zfsvfs);
438	error = error ? error : dsl_prop_register(ds,
439	    "aclmode", acl_mode_changed_cb, zfsvfs);
440	error = error ? error : dsl_prop_register(ds,
441	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
442	error = error ? error : dsl_prop_register(ds,
443	    "vscan", vscan_changed_cb, zfsvfs);
444	if (error)
445		goto unregister;
446
447	/*
448	 * Invoke our callbacks to restore temporary mount options.
449	 */
450	if (do_readonly)
451		readonly_changed_cb(zfsvfs, readonly);
452	if (do_setuid)
453		setuid_changed_cb(zfsvfs, setuid);
454	if (do_exec)
455		exec_changed_cb(zfsvfs, exec);
456	if (do_xattr)
457		xattr_changed_cb(zfsvfs, xattr);
458	if (do_atime)
459		atime_changed_cb(zfsvfs, atime);
460
461	nbmand_changed_cb(zfsvfs, nbmand);
462
463	return (0);
464
465unregister:
466	/*
467	 * We may attempt to unregister some callbacks that are not
468	 * registered, but this is OK; it will simply return ENOMSG,
469	 * which we will ignore.
470	 */
471	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
472	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
473	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
474	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
475	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
476	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
477	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
478	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
479	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
480	    zfsvfs);
481	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
482	return (error);
483
484}
485
486static int
487zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
488{
489	int error;
490
491	error = zfs_register_callbacks(zfsvfs->z_vfs);
492	if (error)
493		return (error);
494
495	/*
496	 * Set the objset user_ptr to track its zfsvfs.
497	 */
498	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
499	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
500	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
501
502	/*
503	 * If we are not mounting (ie: online recv), then we don't
504	 * have to worry about replaying the log as we blocked all
505	 * operations out since we closed the ZIL.
506	 */
507	if (mounting) {
508		boolean_t readonly;
509
510		/*
511		 * During replay we remove the read only flag to
512		 * allow replays to succeed.
513		 */
514		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
515		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
516
517		/*
518		 * Parse and replay the intent log.
519		 */
520		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
521		    zfs_replay_vector, zfs_unlinked_drain);
522
523		zfs_unlinked_drain(zfsvfs);
524		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
525	}
526
527	if (!zil_disable)
528		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
529
530	return (0);
531}
532
533static void
534zfs_freezfsvfs(zfsvfs_t *zfsvfs)
535{
536	mutex_destroy(&zfsvfs->z_znodes_lock);
537	mutex_destroy(&zfsvfs->z_online_recv_lock);
538	list_destroy(&zfsvfs->z_all_znodes);
539	rrw_destroy(&zfsvfs->z_teardown_lock);
540	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
541	rw_destroy(&zfsvfs->z_fuid_lock);
542	kmem_free(zfsvfs, sizeof (zfsvfs_t));
543}
544
545static int
546zfs_domount(vfs_t *vfsp, char *osname)
547{
548	uint64_t recordsize, readonly;
549	int error = 0;
550	int mode;
551	zfsvfs_t *zfsvfs;
552	znode_t *zp = NULL;
553
554	ASSERT(vfsp);
555	ASSERT(osname);
556
557	/*
558	 * Initialize the zfs-specific filesystem structure.
559	 * Should probably make this a kmem cache, shuffle fields,
560	 * and just bzero up to z_hold_mtx[].
561	 */
562	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
563	zfsvfs->z_vfs = vfsp;
564	zfsvfs->z_parent = zfsvfs;
565	zfsvfs->z_assign = TXG_NOWAIT;
566	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
567	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
568
569	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
570	mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
571	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
572	    offsetof(znode_t, z_link_node));
573	rrw_init(&zfsvfs->z_teardown_lock);
574	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
575	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
576
577	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
578	    NULL))
579		goto out;
580	zfsvfs->z_vfs->vfs_bsize = recordsize;
581
582	vfsp->vfs_data = zfsvfs;
583	vfsp->mnt_flag |= MNT_LOCAL;
584	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
585	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
586	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
587
588	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
589		goto out;
590
591	mode = DS_MODE_OWNER;
592	if (readonly)
593		mode |= DS_MODE_READONLY;
594
595	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
596	if (error == EROFS) {
597		mode = DS_MODE_OWNER | DS_MODE_READONLY;
598		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
599		    &zfsvfs->z_os);
600	}
601
602	if (error)
603		goto out;
604
605	if (error = zfs_init_fs(zfsvfs, &zp))
606		goto out;
607
608	/*
609	 * Set features for file system.
610	 */
611	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
612	if (zfsvfs->z_use_fuids) {
613		vfs_set_feature(vfsp, VFSFT_XVATTR);
614		vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
615		vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS);
616		vfs_set_feature(vfsp, VFSFT_ACLONCREATE);
617	}
618	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
619		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
620		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
621		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
622	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
623		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
624		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
625	}
626
627	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
628		uint64_t pval;
629
630		ASSERT(mode & DS_MODE_READONLY);
631		atime_changed_cb(zfsvfs, B_FALSE);
632		readonly_changed_cb(zfsvfs, B_TRUE);
633		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
634			goto out;
635		xattr_changed_cb(zfsvfs, pval);
636		zfsvfs->z_issnap = B_TRUE;
637	} else {
638		error = zfsvfs_setup(zfsvfs, B_TRUE);
639	}
640
641	vfs_mountedfrom(vfsp, osname);
642
643	if (!zfsvfs->z_issnap)
644		zfsctl_create(zfsvfs);
645out:
646	if (error) {
647		if (zfsvfs->z_os)
648			dmu_objset_close(zfsvfs->z_os);
649		zfs_freezfsvfs(zfsvfs);
650	} else {
651		atomic_add_32(&zfs_active_fs_count, 1);
652	}
653
654	return (error);
655}
656
657void
658zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
659{
660	objset_t *os = zfsvfs->z_os;
661	struct dsl_dataset *ds;
662
663	/*
664	 * Unregister properties.
665	 */
666	if (!dmu_objset_is_snapshot(os)) {
667		ds = dmu_objset_ds(os);
668		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
669		    zfsvfs) == 0);
670
671		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
672		    zfsvfs) == 0);
673
674		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
675		    zfsvfs) == 0);
676
677		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
678		    zfsvfs) == 0);
679
680		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
681		    zfsvfs) == 0);
682
683		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
684		    zfsvfs) == 0);
685
686		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
687		    zfsvfs) == 0);
688
689		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
690		    zfsvfs) == 0);
691
692		VERIFY(dsl_prop_unregister(ds, "aclinherit",
693		    acl_inherit_changed_cb, zfsvfs) == 0);
694
695		VERIFY(dsl_prop_unregister(ds, "vscan",
696		    vscan_changed_cb, zfsvfs) == 0);
697	}
698}
699
700/*ARGSUSED*/
701static int
702zfs_mount(vfs_t *vfsp)
703{
704	kthread_t	*td = curthread;
705	vnode_t		*mvp = vfsp->mnt_vnodecovered;
706	cred_t		*cr = td->td_ucred;
707	char		*osname;
708	int		error = 0;
709	int		canwrite;
710
711	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
712		return (EINVAL);
713
714	/*
715	 * If full-owner-access is enabled and delegated administration is
716	 * turned on, we must set nosuid.
717	 */
718	if (zfs_super_owner &&
719	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
720		secpolicy_fs_mount_clearopts(cr, vfsp);
721	}
722
723	/*
724	 * Check for mount privilege?
725	 *
726	 * If we don't have privilege then see if
727	 * we have local permission to allow it
728	 */
729	error = secpolicy_fs_mount(cr, mvp, vfsp);
730	if (error) {
731		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
732		if (error != 0)
733			goto out;
734
735		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
736			vattr_t		vattr;
737
738			/*
739			 * Make sure user is the owner of the mount point
740			 * or has sufficient privileges.
741			 */
742
743			vattr.va_mask = AT_UID;
744
745			vn_lock(mvp, LK_SHARED | LK_RETRY);
746			if (error = VOP_GETATTR(mvp, &vattr, cr)) {
747				VOP_UNLOCK(mvp, 0);
748				goto out;
749			}
750
751#if 0 /* CHECK THIS! Is probably needed for zfs_suser. */
752			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
753			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
754				error = EPERM;
755				goto out;
756			}
757#else
758			if (error = secpolicy_vnode_owner(mvp, cr, vattr.va_uid)) {
759				VOP_UNLOCK(mvp, 0);
760				goto out;
761			}
762
763			if (error = VOP_ACCESS(mvp, VWRITE, cr, td)) {
764				VOP_UNLOCK(mvp, 0);
765				goto out;
766			}
767			VOP_UNLOCK(mvp, 0);
768#endif
769		}
770
771		secpolicy_fs_mount_clearopts(cr, vfsp);
772	}
773
774	/*
775	 * Refuse to mount a filesystem if we are in a local zone and the
776	 * dataset is not visible.
777	 */
778	if (!INGLOBALZONE(curthread) &&
779	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
780		error = EPERM;
781		goto out;
782	}
783
784	/*
785	 * When doing a remount, we simply refresh our temporary properties
786	 * according to those options set in the current VFS options.
787	 */
788	if (vfsp->vfs_flag & MS_REMOUNT) {
789		/* refresh mount options */
790		zfs_unregister_callbacks(vfsp->vfs_data);
791		error = zfs_register_callbacks(vfsp);
792		goto out;
793	}
794
795	DROP_GIANT();
796	error = zfs_domount(vfsp, osname);
797	PICKUP_GIANT();
798out:
799	return (error);
800}
801
802static int
803zfs_statfs(vfs_t *vfsp, struct statfs *statp)
804{
805	zfsvfs_t *zfsvfs = vfsp->vfs_data;
806	uint64_t refdbytes, availbytes, usedobjs, availobjs;
807
808	statp->f_version = STATFS_VERSION;
809
810	ZFS_ENTER(zfsvfs);
811
812	dmu_objset_space(zfsvfs->z_os,
813	    &refdbytes, &availbytes, &usedobjs, &availobjs);
814
815	/*
816	 * The underlying storage pool actually uses multiple block sizes.
817	 * We report the fragsize as the smallest block size we support,
818	 * and we report our blocksize as the filesystem's maximum blocksize.
819	 */
820	statp->f_bsize = zfsvfs->z_vfs->vfs_bsize;
821	statp->f_iosize = zfsvfs->z_vfs->vfs_bsize;
822
823	/*
824	 * The following report "total" blocks of various kinds in the
825	 * file system, but reported in terms of f_frsize - the
826	 * "fragment" size.
827	 */
828
829	statp->f_blocks = (refdbytes + availbytes) / statp->f_bsize;
830	statp->f_bfree = availbytes / statp->f_bsize;
831	statp->f_bavail = statp->f_bfree; /* no root reservation */
832
833	/*
834	 * statvfs() should really be called statufs(), because it assumes
835	 * static metadata.  ZFS doesn't preallocate files, so the best
836	 * we can do is report the max that could possibly fit in f_files,
837	 * and that minus the number actually used in f_ffree.
838	 * For f_ffree, report the smaller of the number of object available
839	 * and the number of blocks (each object will take at least a block).
840	 */
841	statp->f_ffree = MIN(availobjs, statp->f_bfree);
842	statp->f_files = statp->f_ffree + usedobjs;
843
844	/*
845	 * We're a zfs filesystem.
846	 */
847	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
848
849	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
850	    sizeof(statp->f_mntfromname));
851	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
852	    sizeof(statp->f_mntonname));
853
854	statp->f_namemax = ZFS_MAXNAMELEN;
855
856	ZFS_EXIT(zfsvfs);
857	return (0);
858}
859
860static int
861zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
862{
863	zfsvfs_t *zfsvfs = vfsp->vfs_data;
864	znode_t *rootzp;
865	int error;
866
867	ZFS_ENTER_NOERROR(zfsvfs);
868
869	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
870	if (error == 0) {
871		*vpp = ZTOV(rootzp);
872		error = vn_lock(*vpp, flags);
873		(*vpp)->v_vflag |= VV_ROOT;
874	}
875
876	ZFS_EXIT(zfsvfs);
877	return (error);
878}
879
880/*
881 * Teardown the zfsvfs::z_os.
882 *
883 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
884 * and 'z_teardown_inactive_lock' held.
885 */
886static int
887zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
888{
889	znode_t	*zp;
890
891	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
892
893	if (!unmounting) {
894		/*
895		 * We purge the parent filesystem's vfsp as the parent
896		 * filesystem and all of its snapshots have their vnode's
897		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
898		 * 'z_parent' is self referential for non-snapshots.
899		 */
900		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
901#ifdef FREEBSD_NAMECACHE
902		cache_purgevfs(zfsvfs->z_parent->z_vfs);
903#endif
904	}
905
906	/*
907	 * Close the zil. NB: Can't close the zil while zfs_inactive
908	 * threads are blocked as zil_close can call zfs_inactive.
909	 */
910	if (zfsvfs->z_log) {
911		zil_close(zfsvfs->z_log);
912		zfsvfs->z_log = NULL;
913	}
914
915	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
916
917	/*
918	 * If we are not unmounting (ie: online recv) and someone already
919	 * unmounted this file system while we were doing the switcheroo,
920	 * or a reopen of z_os failed then just bail out now.
921	 */
922	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
923		rw_exit(&zfsvfs->z_teardown_inactive_lock);
924		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
925		return (EIO);
926	}
927
928	/*
929	 * At this point there are no vops active, and any new vops will
930	 * fail with EIO since we have z_teardown_lock for writer (only
931	 * relavent for forced unmount).
932	 *
933	 * Release all holds on dbufs.
934	 */
935	mutex_enter(&zfsvfs->z_znodes_lock);
936	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
937	    zp = list_next(&zfsvfs->z_all_znodes, zp))
938		if (zp->z_dbuf) {
939			ASSERT(ZTOV(zp)->v_count >= 0);
940			zfs_znode_dmu_fini(zp);
941		}
942	mutex_exit(&zfsvfs->z_znodes_lock);
943
944	/*
945	 * If we are unmounting, set the unmounted flag and let new vops
946	 * unblock.  zfs_inactive will have the unmounted behavior, and all
947	 * other vops will fail with EIO.
948	 */
949	if (unmounting) {
950		zfsvfs->z_unmounted = B_TRUE;
951		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
952		rw_exit(&zfsvfs->z_teardown_inactive_lock);
953
954#ifdef __FreeBSD__
955		/*
956		 * Some znodes might not be fully reclaimed, wait for them.
957		 */
958		mutex_enter(&zfsvfs->z_znodes_lock);
959		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
960			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
961			    "zteardown", 0);
962		}
963		mutex_exit(&zfsvfs->z_znodes_lock);
964#endif
965	}
966
967	/*
968	 * z_os will be NULL if there was an error in attempting to reopen
969	 * zfsvfs, so just return as the properties had already been
970	 * unregistered and cached data had been evicted before.
971	 */
972	if (zfsvfs->z_os == NULL)
973		return (0);
974
975	/*
976	 * Unregister properties.
977	 */
978	zfs_unregister_callbacks(zfsvfs);
979
980	/*
981	 * Evict cached data
982	 */
983	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
984		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
985		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
986	}
987
988	return (0);
989}
990
991/*ARGSUSED*/
992static int
993zfs_umount(vfs_t *vfsp, int fflag)
994{
995	zfsvfs_t *zfsvfs = vfsp->vfs_data;
996	objset_t *os;
997	cred_t *cr = curthread->td_ucred;
998	int ret;
999
1000	ret = secpolicy_fs_unmount(cr, vfsp);
1001	if (ret) {
1002		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1003		    ZFS_DELEG_PERM_MOUNT, cr);
1004		if (ret)
1005			return (ret);
1006	}
1007	/*
1008	 * We purge the parent filesystem's vfsp as the parent filesystem
1009	 * and all of its snapshots have their vnode's v_vfsp set to the
1010	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1011	 * referential for non-snapshots.
1012	 */
1013	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1014
1015	/*
1016	 * Unmount any snapshots mounted under .zfs before unmounting the
1017	 * dataset itself.
1018	 */
1019	if (zfsvfs->z_ctldir != NULL) {
1020		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1021			return (ret);
1022		ret = vflush(vfsp, 0, 0, curthread);
1023		ASSERT(ret == EBUSY);
1024		if (!(fflag & MS_FORCE)) {
1025			if (zfsvfs->z_ctldir->v_count > 1)
1026				return (EBUSY);
1027			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1028		}
1029		zfsctl_destroy(zfsvfs);
1030		ASSERT(zfsvfs->z_ctldir == NULL);
1031	}
1032
1033	if (fflag & MS_FORCE) {
1034		/*
1035		 * Mark file system as unmounted before calling
1036		 * vflush(FORCECLOSE). This way we ensure no future vnops
1037		 * will be called and risk operating on DOOMED vnodes.
1038		 */
1039		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1040		zfsvfs->z_unmounted = B_TRUE;
1041		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1042	}
1043
1044	/*
1045	 * Flush all the files.
1046	 */
1047	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, curthread);
1048	if (ret != 0) {
1049		if (!zfsvfs->z_issnap) {
1050			zfsctl_create(zfsvfs);
1051			ASSERT(zfsvfs->z_ctldir != NULL);
1052		}
1053		return (ret);
1054	}
1055
1056	if (!(fflag & MS_FORCE)) {
1057		/*
1058		 * Check the number of active vnodes in the file system.
1059		 * Our count is maintained in the vfs structure, but the
1060		 * number is off by 1 to indicate a hold on the vfs
1061		 * structure itself.
1062		 *
1063		 * The '.zfs' directory maintains a reference of its
1064		 * own, and any active references underneath are
1065		 * reflected in the vnode count.
1066		 */
1067		if (zfsvfs->z_ctldir == NULL) {
1068			if (vfsp->vfs_count > 1)
1069				return (EBUSY);
1070		} else {
1071			if (vfsp->vfs_count > 2 ||
1072			    zfsvfs->z_ctldir->v_count > 1)
1073				return (EBUSY);
1074		}
1075	} else {
1076		MNT_ILOCK(vfsp);
1077		vfsp->mnt_kern_flag |= MNTK_UNMOUNTF;
1078		MNT_IUNLOCK(vfsp);
1079	}
1080
1081	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1082	os = zfsvfs->z_os;
1083
1084	/*
1085	 * z_os will be NULL if there was an error in
1086	 * attempting to reopen zfsvfs.
1087	 */
1088	if (os != NULL) {
1089		/*
1090		 * Unset the objset user_ptr.
1091		 */
1092		mutex_enter(&os->os->os_user_ptr_lock);
1093		dmu_objset_set_user(os, NULL);
1094		mutex_exit(&os->os->os_user_ptr_lock);
1095
1096		/*
1097		 * Finally release the objset
1098		 */
1099		dmu_objset_close(os);
1100	}
1101
1102	/*
1103	 * We can now safely destroy the '.zfs' directory node.
1104	 */
1105	if (zfsvfs->z_ctldir != NULL)
1106		zfsctl_destroy(zfsvfs);
1107	if (zfsvfs->z_issnap) {
1108		vnode_t *svp = vfsp->mnt_vnodecovered;
1109
1110		if (svp->v_count >= 2)
1111			VN_RELE(svp);
1112	}
1113	zfs_freevfs(vfsp);
1114
1115	return (0);
1116}
1117
1118static int
1119zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1120{
1121	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1122	znode_t		*zp;
1123	int 		err;
1124
1125	/*
1126	 * XXXPJD: zfs_zget() can't operate on virtual entires like .zfs/ or
1127	 * .zfs/snapshot/ directories, so for now just return EOPNOTSUPP.
1128	 * This will make NFS to fall back to using READDIR instead of
1129	 * READDIRPLUS.
1130	 * Also snapshots are stored in AVL tree, but based on their names,
1131	 * not inode numbers, so it will be very inefficient to iterate
1132	 * over all snapshots to find the right one.
1133	 * Note that OpenSolaris READDIRPLUS implementation does LOOKUP on
1134	 * d_name, and not VGET on d_fileno as we do.
1135	 */
1136	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
1137		return (EOPNOTSUPP);
1138
1139	ZFS_ENTER(zfsvfs);
1140	err = zfs_zget(zfsvfs, ino, &zp);
1141	if (err == 0 && zp->z_unlinked) {
1142		VN_RELE(ZTOV(zp));
1143		err = EINVAL;
1144	}
1145	if (err != 0)
1146		*vpp = NULL;
1147	else {
1148		*vpp = ZTOV(zp);
1149		vn_lock(*vpp, flags);
1150	}
1151	ZFS_EXIT(zfsvfs);
1152	return (err);
1153}
1154
1155static int
1156zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1157    struct ucred **credanonp, int *numsecflavors, int **secflavors)
1158{
1159	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1160
1161	/*
1162	 * If this is regular file system vfsp is the same as
1163	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1164	 * zfsvfs->z_parent->z_vfs represents parent file system
1165	 * which we have to use here, because only this file system
1166	 * has mnt_export configured.
1167	 */
1168	vfsp = zfsvfs->z_parent->z_vfs;
1169
1170	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1171	    credanonp, numsecflavors, secflavors));
1172}
1173
1174CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
1175CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
1176
1177static int
1178zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
1179{
1180	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1181	znode_t		*zp;
1182	uint64_t	object = 0;
1183	uint64_t	fid_gen = 0;
1184	uint64_t	gen_mask;
1185	uint64_t	zp_gen;
1186	int		i, err;
1187
1188	*vpp = NULL;
1189
1190	ZFS_ENTER(zfsvfs);
1191
1192	/*
1193	 * On FreeBSD we can get snapshot's mount point or its parent file
1194	 * system mount point depending if snapshot is already mounted or not.
1195	 */
1196	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1197		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1198		uint64_t	objsetid = 0;
1199		uint64_t	setgen = 0;
1200
1201		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1202			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1203
1204		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1205			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1206
1207		ZFS_EXIT(zfsvfs);
1208
1209		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1210		if (err)
1211			return (EINVAL);
1212		ZFS_ENTER(zfsvfs);
1213	}
1214
1215	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1216		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1217
1218		for (i = 0; i < sizeof (zfid->zf_object); i++)
1219			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1220
1221		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1222			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1223	} else {
1224		ZFS_EXIT(zfsvfs);
1225		return (EINVAL);
1226	}
1227
1228	/* A zero fid_gen means we are in the .zfs control directories */
1229	if (fid_gen == 0 &&
1230	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1231		*vpp = zfsvfs->z_ctldir;
1232		ASSERT(*vpp != NULL);
1233		if (object == ZFSCTL_INO_SNAPDIR) {
1234			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1235			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1236		} else {
1237			VN_HOLD(*vpp);
1238		}
1239		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1240		ZFS_EXIT(zfsvfs);
1241		return (0);
1242	}
1243
1244	gen_mask = -1ULL >> (64 - 8 * i);
1245
1246	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1247	if (err = zfs_zget(zfsvfs, object, &zp)) {
1248		ZFS_EXIT(zfsvfs);
1249		return (err);
1250	}
1251	zp_gen = zp->z_phys->zp_gen & gen_mask;
1252	if (zp_gen == 0)
1253		zp_gen = 1;
1254	if (zp->z_unlinked || zp_gen != fid_gen) {
1255		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1256		VN_RELE(ZTOV(zp));
1257		ZFS_EXIT(zfsvfs);
1258		return (EINVAL);
1259	}
1260
1261	*vpp = ZTOV(zp);
1262	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1263	vnode_create_vobject(*vpp, zp->z_phys->zp_size, curthread);
1264	ZFS_EXIT(zfsvfs);
1265	return (0);
1266}
1267
1268/*
1269 * Block out VOPs and close zfsvfs_t::z_os
1270 *
1271 * Note, if successful, then we return with the 'z_teardown_lock' and
1272 * 'z_teardown_inactive_lock' write held.
1273 */
1274int
1275zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode)
1276{
1277	int error;
1278
1279	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1280		return (error);
1281
1282	*mode = zfsvfs->z_os->os_mode;
1283	dmu_objset_name(zfsvfs->z_os, name);
1284	dmu_objset_close(zfsvfs->z_os);
1285
1286	return (0);
1287}
1288
1289/*
1290 * Reopen zfsvfs_t::z_os and release VOPs.
1291 */
1292int
1293zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1294{
1295	int err;
1296
1297	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1298	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1299
1300	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1301	if (err) {
1302		zfsvfs->z_os = NULL;
1303	} else {
1304		znode_t *zp;
1305
1306		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1307
1308		/*
1309		 * Attempt to re-establish all the active znodes with
1310		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1311		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1312		 * when they try to use their znode.
1313		 */
1314		mutex_enter(&zfsvfs->z_znodes_lock);
1315		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1316		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1317			(void) zfs_rezget(zp);
1318		}
1319		mutex_exit(&zfsvfs->z_znodes_lock);
1320
1321	}
1322
1323	/* release the VOPs */
1324	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1325	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1326
1327	if (err) {
1328		/*
1329		 * Since we couldn't reopen zfsvfs::z_os, force
1330		 * unmount this file system.
1331		 */
1332		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1333			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
1334	}
1335	return (err);
1336}
1337
1338static void
1339zfs_freevfs(vfs_t *vfsp)
1340{
1341	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1342	int i;
1343
1344	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1345		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1346
1347	zfs_fuid_destroy(zfsvfs);
1348	zfs_freezfsvfs(zfsvfs);
1349
1350	atomic_add_32(&zfs_active_fs_count, -1);
1351}
1352
1353#ifdef __i386__
1354static int desiredvnodes_backup;
1355#endif
1356
1357static void
1358zfs_vnodes_adjust(void)
1359{
1360#ifdef __i386__
1361	int newdesiredvnodes;
1362
1363	desiredvnodes_backup = desiredvnodes;
1364
1365	/*
1366	 * We calculate newdesiredvnodes the same way it is done in
1367	 * vntblinit(). If it is equal to desiredvnodes, it means that
1368	 * it wasn't tuned by the administrator and we can tune it down.
1369	 */
1370	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
1371	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
1372	    sizeof(struct vnode))));
1373	if (newdesiredvnodes == desiredvnodes)
1374		desiredvnodes = (3 * newdesiredvnodes) / 4;
1375#endif
1376}
1377
1378static void
1379zfs_vnodes_adjust_back(void)
1380{
1381
1382#ifdef __i386__
1383	desiredvnodes = desiredvnodes_backup;
1384#endif
1385}
1386
1387void
1388zfs_init(void)
1389{
1390
1391	printf("ZFS filesystem version " SPA_VERSION_STRING "\n");
1392
1393	/*
1394	 * Initialize znode cache, vnode ops, etc...
1395	 */
1396	zfs_znode_init();
1397
1398	/*
1399	 * Initialize .zfs directory structures
1400	 */
1401	zfsctl_init();
1402
1403	/*
1404	 * Reduce number of vnode. Originally number of vnodes is calculated
1405	 * with UFS inode in mind. We reduce it here, because it's too big for
1406	 * ZFS/i386.
1407	 */
1408	zfs_vnodes_adjust();
1409}
1410
1411void
1412zfs_fini(void)
1413{
1414	zfsctl_fini();
1415	zfs_znode_fini();
1416	zfs_vnodes_adjust_back();
1417}
1418
1419int
1420zfs_busy(void)
1421{
1422	return (zfs_active_fs_count != 0);
1423}
1424
1425int
1426zfs_set_version(const char *name, uint64_t newvers)
1427{
1428	int error;
1429	objset_t *os;
1430	dmu_tx_t *tx;
1431	uint64_t curvers;
1432
1433	/*
1434	 * XXX for now, require that the filesystem be unmounted.  Would
1435	 * be nice to find the zfsvfs_t and just update that if
1436	 * possible.
1437	 */
1438
1439	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1440		return (EINVAL);
1441
1442	error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os);
1443	if (error)
1444		return (error);
1445
1446	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1447	    8, 1, &curvers);
1448	if (error)
1449		goto out;
1450	if (newvers < curvers) {
1451		error = EINVAL;
1452		goto out;
1453	}
1454
1455	tx = dmu_tx_create(os);
1456	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR);
1457	error = dmu_tx_assign(tx, TXG_WAIT);
1458	if (error) {
1459		dmu_tx_abort(tx);
1460		goto out;
1461	}
1462	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1,
1463	    &newvers, tx);
1464
1465	spa_history_internal_log(LOG_DS_UPGRADE,
1466	    dmu_objset_spa(os), tx, CRED(),
1467	    "oldver=%llu newver=%llu dataset = %llu", curvers, newvers,
1468	    dmu_objset_id(os));
1469	dmu_tx_commit(tx);
1470
1471out:
1472	dmu_objset_close(os);
1473	return (error);
1474}
1475/*
1476 * Read a property stored within the master node.
1477 */
1478int
1479zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1480{
1481	const char *pname;
1482	int error = ENOENT;
1483
1484	/*
1485	 * Look up the file system's value for the property.  For the
1486	 * version property, we look up a slightly different string.
1487	 */
1488	if (prop == ZFS_PROP_VERSION)
1489		pname = ZPL_VERSION_STR;
1490	else
1491		pname = zfs_prop_to_name(prop);
1492
1493	if (os != NULL)
1494		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1495
1496	if (error == ENOENT) {
1497		/* No value set, use the default value */
1498		switch (prop) {
1499		case ZFS_PROP_VERSION:
1500			*value = ZPL_VERSION;
1501			break;
1502		case ZFS_PROP_NORMALIZE:
1503		case ZFS_PROP_UTF8ONLY:
1504			*value = 0;
1505			break;
1506		case ZFS_PROP_CASE:
1507			*value = ZFS_CASE_SENSITIVE;
1508			break;
1509		default:
1510			return (error);
1511		}
1512		error = 0;
1513	}
1514	return (error);
1515}
1516