1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/*
26 * Copyright (c) 2012 by Delphix. All rights reserved.
27 */
28
29/*
30 * This file contains the code to implement file range locking in
31 * ZFS, although there isn't much specific to ZFS (all that comes to mind is
32 * support for growing the blocksize).
33 *
34 * Interface
35 * ---------
36 * Defined in zfs_rlock.h but essentially:
37 *	rl = zfs_range_lock(zp, off, len, lock_type);
38 *	zfs_range_unlock(rl);
39 *	zfs_range_reduce(rl, off, len);
40 *
41 * AVL tree
42 * --------
43 * An AVL tree is used to maintain the state of the existing ranges
44 * that are locked for exclusive (writer) or shared (reader) use.
45 * The starting range offset is used for searching and sorting the tree.
46 *
47 * Common case
48 * -----------
49 * The (hopefully) usual case is of no overlaps or contention for
50 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
51 * searched that finds no overlap, and *this* rl_t is placed in the tree.
52 *
53 * Overlaps/Reference counting/Proxy locks
54 * ---------------------------------------
55 * The avl code only allows one node at a particular offset. Also it's very
56 * inefficient to search through all previous entries looking for overlaps
57 * (because the very 1st in the ordered list might be at offset 0 but
58 * cover the whole file).
59 * So this implementation uses reference counts and proxy range locks.
60 * Firstly, only reader locks use reference counts and proxy locks,
61 * because writer locks are exclusive.
62 * When a reader lock overlaps with another then a proxy lock is created
63 * for that range and replaces the original lock. If the overlap
64 * is exact then the reference count of the proxy is simply incremented.
65 * Otherwise, the proxy lock is split into smaller lock ranges and
66 * new proxy locks created for non overlapping ranges.
67 * The reference counts are adjusted accordingly.
68 * Meanwhile, the orginal lock is kept around (this is the callers handle)
69 * and its offset and length are used when releasing the lock.
70 *
71 * Thread coordination
72 * -------------------
73 * In order to make wakeups efficient and to ensure multiple continuous
74 * readers on a range don't starve a writer for the same range lock,
75 * two condition variables are allocated in each rl_t.
76 * If a writer (or reader) can't get a range it initialises the writer
77 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
78 * and waits on that cv. When a thread unlocks that range it wakes up all
79 * writers then all readers before destroying the lock.
80 *
81 * Append mode writes
82 * ------------------
83 * Append mode writes need to lock a range at the end of a file.
84 * The offset of the end of the file is determined under the
85 * range locking mutex, and the lock type converted from RL_APPEND to
86 * RL_WRITER and the range locked.
87 *
88 * Grow block handling
89 * -------------------
90 * ZFS supports multiple block sizes currently upto 128K. The smallest
91 * block size is used for the file which is grown as needed. During this
92 * growth all other writers and readers must be excluded.
93 * So if the block size needs to be grown then the whole file is
94 * exclusively locked, then later the caller will reduce the lock
95 * range to just the range to be written using zfs_reduce_range.
96 */
97
98#include <sys/zfs_rlock.h>
99
100/*
101 * Check if a write lock can be grabbed, or wait and recheck until available.
102 */
103static void
104zfs_range_lock_writer(znode_t *zp, rl_t *new)
105{
106	avl_tree_t *tree = &zp->z_range_avl;
107	rl_t *rl;
108	avl_index_t where;
109	uint64_t end_size;
110	uint64_t off = new->r_off;
111	uint64_t len = new->r_len;
112
113	for (;;) {
114		/*
115		 * Range locking is also used by zvol and uses a
116		 * dummied up znode. However, for zvol, we don't need to
117		 * append or grow blocksize, and besides we don't have
118		 * a "sa" data or z_zfsvfs - so skip that processing.
119		 *
120		 * Yes, this is ugly, and would be solved by not handling
121		 * grow or append in range lock code. If that was done then
122		 * we could make the range locking code generically available
123		 * to other non-zfs consumers.
124		 */
125		if (zp->z_vnode) { /* caller is ZPL */
126			/*
127			 * If in append mode pick up the current end of file.
128			 * This is done under z_range_lock to avoid races.
129			 */
130			if (new->r_type == RL_APPEND)
131				new->r_off = zp->z_size;
132
133			/*
134			 * If we need to grow the block size then grab the whole
135			 * file range. This is also done under z_range_lock to
136			 * avoid races.
137			 */
138			end_size = MAX(zp->z_size, new->r_off + len);
139			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
140			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
141				new->r_off = 0;
142				new->r_len = UINT64_MAX;
143			}
144		}
145
146		/*
147		 * First check for the usual case of no locks
148		 */
149		if (avl_numnodes(tree) == 0) {
150			new->r_type = RL_WRITER; /* convert to writer */
151			avl_add(tree, new);
152			return;
153		}
154
155		/*
156		 * Look for any locks in the range.
157		 */
158		rl = avl_find(tree, new, &where);
159		if (rl)
160			goto wait; /* already locked at same offset */
161
162		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
163		if (rl && (rl->r_off < new->r_off + new->r_len))
164			goto wait;
165
166		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
167		if (rl && rl->r_off + rl->r_len > new->r_off)
168			goto wait;
169
170		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
171		avl_insert(tree, new, where);
172		return;
173wait:
174		if (!rl->r_write_wanted) {
175			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
176			rl->r_write_wanted = B_TRUE;
177		}
178		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
179
180		/* reset to original */
181		new->r_off = off;
182		new->r_len = len;
183	}
184}
185
186/*
187 * If this is an original (non-proxy) lock then replace it by
188 * a proxy and return the proxy.
189 */
190static rl_t *
191zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
192{
193	rl_t *proxy;
194
195	if (rl->r_proxy)
196		return (rl); /* already a proxy */
197
198	ASSERT3U(rl->r_cnt, ==, 1);
199	ASSERT(rl->r_write_wanted == B_FALSE);
200	ASSERT(rl->r_read_wanted == B_FALSE);
201	avl_remove(tree, rl);
202	rl->r_cnt = 0;
203
204	/* create a proxy range lock */
205	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
206	proxy->r_off = rl->r_off;
207	proxy->r_len = rl->r_len;
208	proxy->r_cnt = 1;
209	proxy->r_type = RL_READER;
210	proxy->r_proxy = B_TRUE;
211	proxy->r_write_wanted = B_FALSE;
212	proxy->r_read_wanted = B_FALSE;
213	avl_add(tree, proxy);
214
215	return (proxy);
216}
217
218/*
219 * Split the range lock at the supplied offset
220 * returning the *front* proxy.
221 */
222static rl_t *
223zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
224{
225	rl_t *front, *rear;
226
227	ASSERT3U(rl->r_len, >, 1);
228	ASSERT3U(off, >, rl->r_off);
229	ASSERT3U(off, <, rl->r_off + rl->r_len);
230	ASSERT(rl->r_write_wanted == B_FALSE);
231	ASSERT(rl->r_read_wanted == B_FALSE);
232
233	/* create the rear proxy range lock */
234	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
235	rear->r_off = off;
236	rear->r_len = rl->r_off + rl->r_len - off;
237	rear->r_cnt = rl->r_cnt;
238	rear->r_type = RL_READER;
239	rear->r_proxy = B_TRUE;
240	rear->r_write_wanted = B_FALSE;
241	rear->r_read_wanted = B_FALSE;
242
243	front = zfs_range_proxify(tree, rl);
244	front->r_len = off - rl->r_off;
245
246	avl_insert_here(tree, rear, front, AVL_AFTER);
247	return (front);
248}
249
250/*
251 * Create and add a new proxy range lock for the supplied range.
252 */
253static void
254zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
255{
256	rl_t *rl;
257
258	ASSERT(len);
259	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
260	rl->r_off = off;
261	rl->r_len = len;
262	rl->r_cnt = 1;
263	rl->r_type = RL_READER;
264	rl->r_proxy = B_TRUE;
265	rl->r_write_wanted = B_FALSE;
266	rl->r_read_wanted = B_FALSE;
267	avl_add(tree, rl);
268}
269
270static void
271zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
272{
273	rl_t *next;
274	uint64_t off = new->r_off;
275	uint64_t len = new->r_len;
276
277	/*
278	 * prev arrives either:
279	 * - pointing to an entry at the same offset
280	 * - pointing to the entry with the closest previous offset whose
281	 *   range may overlap with the new range
282	 * - null, if there were no ranges starting before the new one
283	 */
284	if (prev) {
285		if (prev->r_off + prev->r_len <= off) {
286			prev = NULL;
287		} else if (prev->r_off != off) {
288			/*
289			 * convert to proxy if needed then
290			 * split this entry and bump ref count
291			 */
292			prev = zfs_range_split(tree, prev, off);
293			prev = AVL_NEXT(tree, prev); /* move to rear range */
294		}
295	}
296	ASSERT((prev == NULL) || (prev->r_off == off));
297
298	if (prev)
299		next = prev;
300	else
301		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
302
303	if (next == NULL || off + len <= next->r_off) {
304		/* no overlaps, use the original new rl_t in the tree */
305		avl_insert(tree, new, where);
306		return;
307	}
308
309	if (off < next->r_off) {
310		/* Add a proxy for initial range before the overlap */
311		zfs_range_new_proxy(tree, off, next->r_off - off);
312	}
313
314	new->r_cnt = 0; /* will use proxies in tree */
315	/*
316	 * We now search forward through the ranges, until we go past the end
317	 * of the new range. For each entry we make it a proxy if it
318	 * isn't already, then bump its reference count. If there's any
319	 * gaps between the ranges then we create a new proxy range.
320	 */
321	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
322		if (off + len <= next->r_off)
323			break;
324		if (prev && prev->r_off + prev->r_len < next->r_off) {
325			/* there's a gap */
326			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
327			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
328			    next->r_off - (prev->r_off + prev->r_len));
329		}
330		if (off + len == next->r_off + next->r_len) {
331			/* exact overlap with end */
332			next = zfs_range_proxify(tree, next);
333			next->r_cnt++;
334			return;
335		}
336		if (off + len < next->r_off + next->r_len) {
337			/* new range ends in the middle of this block */
338			next = zfs_range_split(tree, next, off + len);
339			next->r_cnt++;
340			return;
341		}
342		ASSERT3U(off + len, >, next->r_off + next->r_len);
343		next = zfs_range_proxify(tree, next);
344		next->r_cnt++;
345	}
346
347	/* Add the remaining end range. */
348	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
349	    (off + len) - (prev->r_off + prev->r_len));
350}
351
352/*
353 * Check if a reader lock can be grabbed, or wait and recheck until available.
354 */
355static void
356zfs_range_lock_reader(znode_t *zp, rl_t *new)
357{
358	avl_tree_t *tree = &zp->z_range_avl;
359	rl_t *prev, *next;
360	avl_index_t where;
361	uint64_t off = new->r_off;
362	uint64_t len = new->r_len;
363
364	/*
365	 * Look for any writer locks in the range.
366	 */
367retry:
368	prev = avl_find(tree, new, &where);
369	if (prev == NULL)
370		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
371
372	/*
373	 * Check the previous range for a writer lock overlap.
374	 */
375	if (prev && (off < prev->r_off + prev->r_len)) {
376		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
377			if (!prev->r_read_wanted) {
378				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
379				prev->r_read_wanted = B_TRUE;
380			}
381			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
382			goto retry;
383		}
384		if (off + len < prev->r_off + prev->r_len)
385			goto got_lock;
386	}
387
388	/*
389	 * Search through the following ranges to see if there's
390	 * write lock any overlap.
391	 */
392	if (prev)
393		next = AVL_NEXT(tree, prev);
394	else
395		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
396	for (; next; next = AVL_NEXT(tree, next)) {
397		if (off + len <= next->r_off)
398			goto got_lock;
399		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
400			if (!next->r_read_wanted) {
401				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
402				next->r_read_wanted = B_TRUE;
403			}
404			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
405			goto retry;
406		}
407		if (off + len <= next->r_off + next->r_len)
408			goto got_lock;
409	}
410
411got_lock:
412	/*
413	 * Add the read lock, which may involve splitting existing
414	 * locks and bumping ref counts (r_cnt).
415	 */
416	zfs_range_add_reader(tree, new, prev, where);
417}
418
419/*
420 * Lock a range (offset, length) as either shared (RL_READER)
421 * or exclusive (RL_WRITER). Returns the range lock structure
422 * for later unlocking or reduce range (if entire file
423 * previously locked as RL_WRITER).
424 */
425rl_t *
426zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
427{
428	rl_t *new;
429
430	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
431
432	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
433	new->r_zp = zp;
434	new->r_off = off;
435	if (len + off < off)	/* overflow */
436		len = UINT64_MAX - off;
437	new->r_len = len;
438	new->r_cnt = 1; /* assume it's going to be in the tree */
439	new->r_type = type;
440	new->r_proxy = B_FALSE;
441	new->r_write_wanted = B_FALSE;
442	new->r_read_wanted = B_FALSE;
443
444	mutex_enter(&zp->z_range_lock);
445	if (type == RL_READER) {
446		/*
447		 * First check for the usual case of no locks
448		 */
449		if (avl_numnodes(&zp->z_range_avl) == 0)
450			avl_add(&zp->z_range_avl, new);
451		else
452			zfs_range_lock_reader(zp, new);
453	} else
454		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
455	mutex_exit(&zp->z_range_lock);
456	return (new);
457}
458
459/*
460 * Unlock a reader lock
461 */
462static void
463zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
464{
465	avl_tree_t *tree = &zp->z_range_avl;
466	rl_t *rl, *next = NULL;
467	uint64_t len;
468
469	/*
470	 * The common case is when the remove entry is in the tree
471	 * (cnt == 1) meaning there's been no other reader locks overlapping
472	 * with this one. Otherwise the remove entry will have been
473	 * removed from the tree and replaced by proxies (one or
474	 * more ranges mapping to the entire range).
475	 */
476	if (remove->r_cnt == 1) {
477		avl_remove(tree, remove);
478		if (remove->r_write_wanted) {
479			cv_broadcast(&remove->r_wr_cv);
480			cv_destroy(&remove->r_wr_cv);
481		}
482		if (remove->r_read_wanted) {
483			cv_broadcast(&remove->r_rd_cv);
484			cv_destroy(&remove->r_rd_cv);
485		}
486	} else {
487		ASSERT0(remove->r_cnt);
488		ASSERT0(remove->r_write_wanted);
489		ASSERT0(remove->r_read_wanted);
490		/*
491		 * Find start proxy representing this reader lock,
492		 * then decrement ref count on all proxies
493		 * that make up this range, freeing them as needed.
494		 */
495		rl = avl_find(tree, remove, NULL);
496		ASSERT(rl);
497		ASSERT(rl->r_cnt);
498		ASSERT(rl->r_type == RL_READER);
499		for (len = remove->r_len; len != 0; rl = next) {
500			len -= rl->r_len;
501			if (len) {
502				next = AVL_NEXT(tree, rl);
503				ASSERT(next);
504				ASSERT(rl->r_off + rl->r_len == next->r_off);
505				ASSERT(next->r_cnt);
506				ASSERT(next->r_type == RL_READER);
507			}
508			rl->r_cnt--;
509			if (rl->r_cnt == 0) {
510				avl_remove(tree, rl);
511				if (rl->r_write_wanted) {
512					cv_broadcast(&rl->r_wr_cv);
513					cv_destroy(&rl->r_wr_cv);
514				}
515				if (rl->r_read_wanted) {
516					cv_broadcast(&rl->r_rd_cv);
517					cv_destroy(&rl->r_rd_cv);
518				}
519				kmem_free(rl, sizeof (rl_t));
520			}
521		}
522	}
523	kmem_free(remove, sizeof (rl_t));
524}
525
526/*
527 * Unlock range and destroy range lock structure.
528 */
529void
530zfs_range_unlock(rl_t *rl)
531{
532	znode_t *zp = rl->r_zp;
533
534	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
535	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
536	ASSERT(!rl->r_proxy);
537
538	mutex_enter(&zp->z_range_lock);
539	if (rl->r_type == RL_WRITER) {
540		/* writer locks can't be shared or split */
541		avl_remove(&zp->z_range_avl, rl);
542		mutex_exit(&zp->z_range_lock);
543		if (rl->r_write_wanted) {
544			cv_broadcast(&rl->r_wr_cv);
545			cv_destroy(&rl->r_wr_cv);
546		}
547		if (rl->r_read_wanted) {
548			cv_broadcast(&rl->r_rd_cv);
549			cv_destroy(&rl->r_rd_cv);
550		}
551		kmem_free(rl, sizeof (rl_t));
552	} else {
553		/*
554		 * lock may be shared, let zfs_range_unlock_reader()
555		 * release the lock and free the rl_t
556		 */
557		zfs_range_unlock_reader(zp, rl);
558		mutex_exit(&zp->z_range_lock);
559	}
560}
561
562/*
563 * Reduce range locked as RL_WRITER from whole file to specified range.
564 * Asserts the whole file is exclusivly locked and so there's only one
565 * entry in the tree.
566 */
567void
568zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
569{
570	znode_t *zp = rl->r_zp;
571
572	/* Ensure there are no other locks */
573	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
574	ASSERT(rl->r_off == 0);
575	ASSERT(rl->r_type == RL_WRITER);
576	ASSERT(!rl->r_proxy);
577	ASSERT3U(rl->r_len, ==, UINT64_MAX);
578	ASSERT3U(rl->r_cnt, ==, 1);
579
580	mutex_enter(&zp->z_range_lock);
581	rl->r_off = off;
582	rl->r_len = len;
583	mutex_exit(&zp->z_range_lock);
584	if (rl->r_write_wanted)
585		cv_broadcast(&rl->r_wr_cv);
586	if (rl->r_read_wanted)
587		cv_broadcast(&rl->r_rd_cv);
588}
589
590/*
591 * AVL comparison function used to order range locks
592 * Locks are ordered on the start offset of the range.
593 */
594int
595zfs_range_compare(const void *arg1, const void *arg2)
596{
597	const rl_t *rl1 = (const rl_t *)arg1;
598	const rl_t *rl2 = (const rl_t *)arg2;
599
600	return (AVL_CMP(rl1->r_off, rl2->r_off));
601}
602