zfs_fm.c revision 219089
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/spa.h>
27#include <sys/spa_impl.h>
28#include <sys/vdev.h>
29#include <sys/vdev_impl.h>
30#include <sys/zio.h>
31#include <sys/zio_checksum.h>
32
33#include <sys/fm/fs/zfs.h>
34#include <sys/fm/protocol.h>
35#include <sys/fm/util.h>
36#include <sys/sysevent.h>
37
38/*
39 * This general routine is responsible for generating all the different ZFS
40 * ereports.  The payload is dependent on the class, and which arguments are
41 * supplied to the function:
42 *
43 * 	EREPORT			POOL	VDEV	IO
44 * 	block			X	X	X
45 * 	data			X		X
46 * 	device			X	X
47 * 	pool			X
48 *
49 * If we are in a loading state, all errors are chained together by the same
50 * SPA-wide ENA (Error Numeric Association).
51 *
52 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
53 * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
54 * to chain together all ereports associated with a logical piece of data.  For
55 * read I/Os, there  are basically three 'types' of I/O, which form a roughly
56 * layered diagram:
57 *
58 *      +---------------+
59 * 	| Aggregate I/O |	No associated logical data or device
60 * 	+---------------+
61 *              |
62 *              V
63 * 	+---------------+	Reads associated with a piece of logical data.
64 * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
65 * 	+---------------+       mirrors, gang blocks, retries, etc.
66 *              |
67 *              V
68 * 	+---------------+	Reads associated with a particular device, but
69 * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
70 * 	+---------------+	and I/O aggregation.
71 *
72 * Note that 'physical I/O' here is not the same terminology as used in the rest
73 * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
74 * blockpointer.  But I/O with no associated block pointer can still be related
75 * to a logical piece of data (i.e. RAID-Z requests).
76 *
77 * Purely physical I/O always have unique ENAs.  They are not related to a
78 * particular piece of logical data, and therefore cannot be chained together.
79 * We still generate an ereport, but the DE doesn't correlate it with any
80 * logical piece of data.  When such an I/O fails, the delegated I/O requests
81 * will issue a retry, which will trigger the 'real' ereport with the correct
82 * ENA.
83 *
84 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
85 * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
86 * then inherit this pointer, so that when it is first set subsequent failures
87 * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
88 * this pointer is set to NULL, and no ereport will be generated (since it
89 * doesn't actually correspond to any particular device or piece of data,
90 * and the caller will always retry without caching or queueing anyway).
91 *
92 * For checksum errors, we want to include more information about the actual
93 * error which occurs.  Accordingly, we build an ereport when the error is
94 * noticed, but instead of sending it in immediately, we hang it off of the
95 * io_cksum_report field of the logical IO.  When the logical IO completes
96 * (successfully or not), zfs_ereport_finish_checksum() is called with the
97 * good and bad versions of the buffer (if available), and we annotate the
98 * ereport with information about the differences.
99 */
100#ifdef _KERNEL
101static void
102zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
103    const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
104    uint64_t stateoroffset, uint64_t size)
105{
106	nvlist_t *ereport, *detector;
107
108	uint64_t ena;
109	char class[64];
110
111	/*
112	 * If we are doing a spa_tryimport() or in recovery mode,
113	 * ignore errors.
114	 */
115	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
116	    spa_load_state(spa) == SPA_LOAD_RECOVER)
117		return;
118
119	/*
120	 * If we are in the middle of opening a pool, and the previous attempt
121	 * failed, don't bother logging any new ereports - we're just going to
122	 * get the same diagnosis anyway.
123	 */
124	if (spa_load_state(spa) != SPA_LOAD_NONE &&
125	    spa->spa_last_open_failed)
126		return;
127
128	if (zio != NULL) {
129		/*
130		 * If this is not a read or write zio, ignore the error.  This
131		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
132		 */
133		if (zio->io_type != ZIO_TYPE_READ &&
134		    zio->io_type != ZIO_TYPE_WRITE)
135			return;
136
137		/*
138		 * Ignore any errors from speculative I/Os, as failure is an
139		 * expected result.
140		 */
141		if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
142			return;
143
144		/*
145		 * If this I/O is not a retry I/O, don't post an ereport.
146		 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
147		 * I/Os.
148		 */
149		if (zio->io_error == EIO &&
150		    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
151			return;
152
153		if (vd != NULL) {
154			/*
155			 * If the vdev has already been marked as failing due
156			 * to a failed probe, then ignore any subsequent I/O
157			 * errors, as the DE will automatically fault the vdev
158			 * on the first such failure.  This also catches cases
159			 * where vdev_remove_wanted is set and the device has
160			 * not yet been asynchronously placed into the REMOVED
161			 * state.
162			 */
163			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
164				return;
165
166			/*
167			 * Ignore checksum errors for reads from DTL regions of
168			 * leaf vdevs.
169			 */
170			if (zio->io_type == ZIO_TYPE_READ &&
171			    zio->io_error == ECKSUM &&
172			    vd->vdev_ops->vdev_op_leaf &&
173			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
174				return;
175		}
176	}
177
178	/*
179	 * For probe failure, we want to avoid posting ereports if we've
180	 * already removed the device in the meantime.
181	 */
182	if (vd != NULL &&
183	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
184	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
185		return;
186
187	if ((ereport = fm_nvlist_create(NULL)) == NULL)
188		return;
189
190	if ((detector = fm_nvlist_create(NULL)) == NULL) {
191		fm_nvlist_destroy(ereport, FM_NVA_FREE);
192		return;
193	}
194
195	/*
196	 * Serialize ereport generation
197	 */
198	mutex_enter(&spa->spa_errlist_lock);
199
200	/*
201	 * Determine the ENA to use for this event.  If we are in a loading
202	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
203	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
204	 */
205	if (spa_load_state(spa) != SPA_LOAD_NONE) {
206		if (spa->spa_ena == 0)
207			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
208		ena = spa->spa_ena;
209	} else if (zio != NULL && zio->io_logical != NULL) {
210		if (zio->io_logical->io_ena == 0)
211			zio->io_logical->io_ena =
212			    fm_ena_generate(0, FM_ENA_FMT1);
213		ena = zio->io_logical->io_ena;
214	} else {
215		ena = fm_ena_generate(0, FM_ENA_FMT1);
216	}
217
218	/*
219	 * Construct the full class, detector, and other standard FMA fields.
220	 */
221	(void) snprintf(class, sizeof (class), "%s.%s",
222	    ZFS_ERROR_CLASS, subclass);
223
224	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
225	    vd != NULL ? vd->vdev_guid : 0);
226
227	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
228
229	/*
230	 * Construct the per-ereport payload, depending on which parameters are
231	 * passed in.
232	 */
233
234	/*
235	 * Generic payload members common to all ereports.
236	 */
237	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
238	    DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
239	    DATA_TYPE_UINT64, spa_guid(spa),
240	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
241	    spa_load_state(spa), NULL);
242
243	if (spa != NULL) {
244		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
245		    DATA_TYPE_STRING,
246		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
247		    FM_EREPORT_FAILMODE_WAIT :
248		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
249		    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
250		    NULL);
251	}
252
253	if (vd != NULL) {
254		vdev_t *pvd = vd->vdev_parent;
255
256		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
257		    DATA_TYPE_UINT64, vd->vdev_guid,
258		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
259		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
260		if (vd->vdev_path != NULL)
261			fm_payload_set(ereport,
262			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
263			    DATA_TYPE_STRING, vd->vdev_path, NULL);
264		if (vd->vdev_devid != NULL)
265			fm_payload_set(ereport,
266			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
267			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
268		if (vd->vdev_fru != NULL)
269			fm_payload_set(ereport,
270			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
271			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
272
273		if (pvd != NULL) {
274			fm_payload_set(ereport,
275			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
276			    DATA_TYPE_UINT64, pvd->vdev_guid,
277			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
278			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
279			    NULL);
280			if (pvd->vdev_path)
281				fm_payload_set(ereport,
282				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
283				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
284			if (pvd->vdev_devid)
285				fm_payload_set(ereport,
286				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
287				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
288		}
289	}
290
291	if (zio != NULL) {
292		/*
293		 * Payload common to all I/Os.
294		 */
295		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
296		    DATA_TYPE_INT32, zio->io_error, NULL);
297
298		/*
299		 * If the 'size' parameter is non-zero, it indicates this is a
300		 * RAID-Z or other I/O where the physical offset and length are
301		 * provided for us, instead of within the zio_t.
302		 */
303		if (vd != NULL) {
304			if (size)
305				fm_payload_set(ereport,
306				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
307				    DATA_TYPE_UINT64, stateoroffset,
308				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
309				    DATA_TYPE_UINT64, size, NULL);
310			else
311				fm_payload_set(ereport,
312				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
313				    DATA_TYPE_UINT64, zio->io_offset,
314				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
315				    DATA_TYPE_UINT64, zio->io_size, NULL);
316		}
317
318		/*
319		 * Payload for I/Os with corresponding logical information.
320		 */
321		if (zio->io_logical != NULL)
322			fm_payload_set(ereport,
323			    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
324			    DATA_TYPE_UINT64,
325			    zio->io_logical->io_bookmark.zb_objset,
326			    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
327			    DATA_TYPE_UINT64,
328			    zio->io_logical->io_bookmark.zb_object,
329			    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
330			    DATA_TYPE_INT64,
331			    zio->io_logical->io_bookmark.zb_level,
332			    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
333			    DATA_TYPE_UINT64,
334			    zio->io_logical->io_bookmark.zb_blkid, NULL);
335	} else if (vd != NULL) {
336		/*
337		 * If we have a vdev but no zio, this is a device fault, and the
338		 * 'stateoroffset' parameter indicates the previous state of the
339		 * vdev.
340		 */
341		fm_payload_set(ereport,
342		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
343		    DATA_TYPE_UINT64, stateoroffset, NULL);
344	}
345
346	mutex_exit(&spa->spa_errlist_lock);
347
348	*ereport_out = ereport;
349	*detector_out = detector;
350}
351
352/* if it's <= 128 bytes, save the corruption directly */
353#define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
354
355#define	MAX_RANGES		16
356
357typedef struct zfs_ecksum_info {
358	/* histograms of set and cleared bits by bit number in a 64-bit word */
359	uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
360	uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
361
362	/* inline arrays of bits set and cleared. */
363	uint64_t zei_bits_set[ZFM_MAX_INLINE];
364	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
365
366	/*
367	 * for each range, the number of bits set and cleared.  The Hamming
368	 * distance between the good and bad buffers is the sum of them all.
369	 */
370	uint32_t zei_range_sets[MAX_RANGES];
371	uint32_t zei_range_clears[MAX_RANGES];
372
373	struct zei_ranges {
374		uint32_t	zr_start;
375		uint32_t	zr_end;
376	} zei_ranges[MAX_RANGES];
377
378	size_t	zei_range_count;
379	uint32_t zei_mingap;
380	uint32_t zei_allowed_mingap;
381
382} zfs_ecksum_info_t;
383
384static void
385update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
386{
387	size_t i;
388	size_t bits = 0;
389	uint64_t value = BE_64(value_arg);
390
391	/* We store the bits in big-endian (largest-first) order */
392	for (i = 0; i < 64; i++) {
393		if (value & (1ull << i)) {
394			hist[63 - i]++;
395			++bits;
396		}
397	}
398	/* update the count of bits changed */
399	*count += bits;
400}
401
402/*
403 * We've now filled up the range array, and need to increase "mingap" and
404 * shrink the range list accordingly.  zei_mingap is always the smallest
405 * distance between array entries, so we set the new_allowed_gap to be
406 * one greater than that.  We then go through the list, joining together
407 * any ranges which are closer than the new_allowed_gap.
408 *
409 * By construction, there will be at least one.  We also update zei_mingap
410 * to the new smallest gap, to prepare for our next invocation.
411 */
412static void
413shrink_ranges(zfs_ecksum_info_t *eip)
414{
415	uint32_t mingap = UINT32_MAX;
416	uint32_t new_allowed_gap = eip->zei_mingap + 1;
417
418	size_t idx, output;
419	size_t max = eip->zei_range_count;
420
421	struct zei_ranges *r = eip->zei_ranges;
422
423	ASSERT3U(eip->zei_range_count, >, 0);
424	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
425
426	output = idx = 0;
427	while (idx < max - 1) {
428		uint32_t start = r[idx].zr_start;
429		uint32_t end = r[idx].zr_end;
430
431		while (idx < max - 1) {
432			idx++;
433
434			uint32_t nstart = r[idx].zr_start;
435			uint32_t nend = r[idx].zr_end;
436
437			uint32_t gap = nstart - end;
438			if (gap < new_allowed_gap) {
439				end = nend;
440				continue;
441			}
442			if (gap < mingap)
443				mingap = gap;
444			break;
445		}
446		r[output].zr_start = start;
447		r[output].zr_end = end;
448		output++;
449	}
450	ASSERT3U(output, <, eip->zei_range_count);
451	eip->zei_range_count = output;
452	eip->zei_mingap = mingap;
453	eip->zei_allowed_mingap = new_allowed_gap;
454}
455
456static void
457add_range(zfs_ecksum_info_t *eip, int start, int end)
458{
459	struct zei_ranges *r = eip->zei_ranges;
460	size_t count = eip->zei_range_count;
461
462	if (count >= MAX_RANGES) {
463		shrink_ranges(eip);
464		count = eip->zei_range_count;
465	}
466	if (count == 0) {
467		eip->zei_mingap = UINT32_MAX;
468		eip->zei_allowed_mingap = 1;
469	} else {
470		int gap = start - r[count - 1].zr_end;
471
472		if (gap < eip->zei_allowed_mingap) {
473			r[count - 1].zr_end = end;
474			return;
475		}
476		if (gap < eip->zei_mingap)
477			eip->zei_mingap = gap;
478	}
479	r[count].zr_start = start;
480	r[count].zr_end = end;
481	eip->zei_range_count++;
482}
483
484static size_t
485range_total_size(zfs_ecksum_info_t *eip)
486{
487	struct zei_ranges *r = eip->zei_ranges;
488	size_t count = eip->zei_range_count;
489	size_t result = 0;
490	size_t idx;
491
492	for (idx = 0; idx < count; idx++)
493		result += (r[idx].zr_end - r[idx].zr_start);
494
495	return (result);
496}
497
498static zfs_ecksum_info_t *
499annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
500    const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
501    boolean_t drop_if_identical)
502{
503	const uint64_t *good = (const uint64_t *)goodbuf;
504	const uint64_t *bad = (const uint64_t *)badbuf;
505
506	uint64_t allset = 0;
507	uint64_t allcleared = 0;
508
509	size_t nui64s = size / sizeof (uint64_t);
510
511	size_t inline_size;
512	int no_inline = 0;
513	size_t idx;
514	size_t range;
515
516	size_t offset = 0;
517	ssize_t start = -1;
518
519	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
520
521	/* don't do any annotation for injected checksum errors */
522	if (info != NULL && info->zbc_injected)
523		return (eip);
524
525	if (info != NULL && info->zbc_has_cksum) {
526		fm_payload_set(ereport,
527		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
528		    DATA_TYPE_UINT64_ARRAY,
529		    sizeof (info->zbc_expected) / sizeof (uint64_t),
530		    (uint64_t *)&info->zbc_expected,
531		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
532		    DATA_TYPE_UINT64_ARRAY,
533		    sizeof (info->zbc_actual) / sizeof (uint64_t),
534		    (uint64_t *)&info->zbc_actual,
535		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
536		    DATA_TYPE_STRING,
537		    info->zbc_checksum_name,
538		    NULL);
539
540		if (info->zbc_byteswapped) {
541			fm_payload_set(ereport,
542			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
543			    DATA_TYPE_BOOLEAN, 1,
544			    NULL);
545		}
546	}
547
548	if (badbuf == NULL || goodbuf == NULL)
549		return (eip);
550
551	ASSERT3U(nui64s, <=, UINT16_MAX);
552	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
553	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
554	ASSERT3U(size, <=, UINT32_MAX);
555
556	/* build up the range list by comparing the two buffers. */
557	for (idx = 0; idx < nui64s; idx++) {
558		if (good[idx] == bad[idx]) {
559			if (start == -1)
560				continue;
561
562			add_range(eip, start, idx);
563			start = -1;
564		} else {
565			if (start != -1)
566				continue;
567
568			start = idx;
569		}
570	}
571	if (start != -1)
572		add_range(eip, start, idx);
573
574	/* See if it will fit in our inline buffers */
575	inline_size = range_total_size(eip);
576	if (inline_size > ZFM_MAX_INLINE)
577		no_inline = 1;
578
579	/*
580	 * If there is no change and we want to drop if the buffers are
581	 * identical, do so.
582	 */
583	if (inline_size == 0 && drop_if_identical) {
584		kmem_free(eip, sizeof (*eip));
585		return (NULL);
586	}
587
588	/*
589	 * Now walk through the ranges, filling in the details of the
590	 * differences.  Also convert our uint64_t-array offsets to byte
591	 * offsets.
592	 */
593	for (range = 0; range < eip->zei_range_count; range++) {
594		size_t start = eip->zei_ranges[range].zr_start;
595		size_t end = eip->zei_ranges[range].zr_end;
596
597		for (idx = start; idx < end; idx++) {
598			uint64_t set, cleared;
599
600			// bits set in bad, but not in good
601			set = ((~good[idx]) & bad[idx]);
602			// bits set in good, but not in bad
603			cleared = (good[idx] & (~bad[idx]));
604
605			allset |= set;
606			allcleared |= cleared;
607
608			if (!no_inline) {
609				ASSERT3U(offset, <, inline_size);
610				eip->zei_bits_set[offset] = set;
611				eip->zei_bits_cleared[offset] = cleared;
612				offset++;
613			}
614
615			update_histogram(set, eip->zei_histogram_set,
616			    &eip->zei_range_sets[range]);
617			update_histogram(cleared, eip->zei_histogram_cleared,
618			    &eip->zei_range_clears[range]);
619		}
620
621		/* convert to byte offsets */
622		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
623		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
624	}
625	eip->zei_allowed_mingap	*= sizeof (uint64_t);
626	inline_size		*= sizeof (uint64_t);
627
628	/* fill in ereport */
629	fm_payload_set(ereport,
630	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
631	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
632	    (uint32_t *)eip->zei_ranges,
633	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
634	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
635	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
636	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
637	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
638	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
639	    NULL);
640
641	if (!no_inline) {
642		fm_payload_set(ereport,
643		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
644		    DATA_TYPE_UINT8_ARRAY,
645		    inline_size, (uint8_t *)eip->zei_bits_set,
646		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
647		    DATA_TYPE_UINT8_ARRAY,
648		    inline_size, (uint8_t *)eip->zei_bits_cleared,
649		    NULL);
650	} else {
651		fm_payload_set(ereport,
652		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
653		    DATA_TYPE_UINT16_ARRAY,
654		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
655		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
656		    DATA_TYPE_UINT16_ARRAY,
657		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
658		    NULL);
659	}
660	return (eip);
661}
662#endif
663
664void
665zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
666    uint64_t stateoroffset, uint64_t size)
667{
668#ifdef _KERNEL
669	nvlist_t *ereport = NULL;
670	nvlist_t *detector = NULL;
671
672	zfs_ereport_start(&ereport, &detector,
673	    subclass, spa, vd, zio, stateoroffset, size);
674
675	if (ereport == NULL)
676		return;
677
678	fm_ereport_post(ereport, EVCH_SLEEP);
679
680	fm_nvlist_destroy(ereport, FM_NVA_FREE);
681	fm_nvlist_destroy(detector, FM_NVA_FREE);
682#endif
683}
684
685void
686zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
687    struct zio *zio, uint64_t offset, uint64_t length, void *arg,
688    zio_bad_cksum_t *info)
689{
690	zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
691
692	if (zio->io_vsd != NULL)
693		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
694	else
695		zio_vsd_default_cksum_report(zio, report, arg);
696
697	/* copy the checksum failure information if it was provided */
698	if (info != NULL) {
699		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
700		bcopy(info, report->zcr_ckinfo, sizeof (*info));
701	}
702
703	report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
704	report->zcr_length = length;
705
706#ifdef _KERNEL
707	zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
708	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
709
710	if (report->zcr_ereport == NULL) {
711		report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
712		kmem_free(report, sizeof (*report));
713		return;
714	}
715#endif
716
717	mutex_enter(&spa->spa_errlist_lock);
718	report->zcr_next = zio->io_logical->io_cksum_report;
719	zio->io_logical->io_cksum_report = report;
720	mutex_exit(&spa->spa_errlist_lock);
721}
722
723void
724zfs_ereport_finish_checksum(zio_cksum_report_t *report,
725    const void *good_data, const void *bad_data, boolean_t drop_if_identical)
726{
727#ifdef _KERNEL
728	zfs_ecksum_info_t *info = NULL;
729	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
730	    good_data, bad_data, report->zcr_length, drop_if_identical);
731
732	if (info != NULL)
733		fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
734
735	fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
736	fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
737	report->zcr_ereport = report->zcr_detector = NULL;
738
739	if (info != NULL)
740		kmem_free(info, sizeof (*info));
741#endif
742}
743
744void
745zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
746{
747#ifdef _KERNEL
748	if (rpt->zcr_ereport != NULL) {
749		fm_nvlist_destroy(rpt->zcr_ereport,
750		    FM_NVA_FREE);
751		fm_nvlist_destroy(rpt->zcr_detector,
752		    FM_NVA_FREE);
753	}
754#endif
755	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
756
757	if (rpt->zcr_ckinfo != NULL)
758		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
759
760	kmem_free(rpt, sizeof (*rpt));
761}
762
763void
764zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
765{
766#ifdef _KERNEL
767	fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
768#endif
769}
770
771void
772zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
773    struct zio *zio, uint64_t offset, uint64_t length,
774    const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
775{
776#ifdef _KERNEL
777	nvlist_t *ereport = NULL;
778	nvlist_t *detector = NULL;
779	zfs_ecksum_info_t *info;
780
781	zfs_ereport_start(&ereport, &detector,
782	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
783
784	if (ereport == NULL)
785		return;
786
787	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
788	    B_FALSE);
789
790	if (info != NULL)
791		fm_ereport_post(ereport, EVCH_SLEEP);
792
793	fm_nvlist_destroy(ereport, FM_NVA_FREE);
794	fm_nvlist_destroy(detector, FM_NVA_FREE);
795
796	if (info != NULL)
797		kmem_free(info, sizeof (*info));
798#endif
799}
800
801static void
802zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
803{
804#ifdef _KERNEL
805	nvlist_t *resource;
806	char class[64];
807
808	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
809		return;
810
811	if ((resource = fm_nvlist_create(NULL)) == NULL)
812		return;
813
814	(void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
815	    ZFS_ERROR_CLASS, name);
816	VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
817	VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
818	VERIFY(nvlist_add_uint64(resource,
819	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
820	if (vd)
821		VERIFY(nvlist_add_uint64(resource,
822		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
823
824	fm_ereport_post(resource, EVCH_SLEEP);
825
826	fm_nvlist_destroy(resource, FM_NVA_FREE);
827#endif
828}
829
830/*
831 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
832 * has been removed from the system.  This will cause the DE to ignore any
833 * recent I/O errors, inferring that they are due to the asynchronous device
834 * removal.
835 */
836void
837zfs_post_remove(spa_t *spa, vdev_t *vd)
838{
839	zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
840}
841
842/*
843 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
844 * has the 'autoreplace' property set, and therefore any broken vdevs will be
845 * handled by higher level logic, and no vdev fault should be generated.
846 */
847void
848zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
849{
850	zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
851}
852
853/*
854 * The 'resource.fs.zfs.statechange' event is an internal signal that the
855 * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
856 * cause the retire agent to repair any outstanding fault management cases
857 * open because the device was not found (fault.fs.zfs.device).
858 */
859void
860zfs_post_state_change(spa_t *spa, vdev_t *vd)
861{
862	zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
863}
864