zfs_ctldir.c revision 315842
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
25 */
26
27/*
28 * ZFS control directory (a.k.a. ".zfs")
29 *
30 * This directory provides a common location for all ZFS meta-objects.
31 * Currently, this is only the 'snapshot' directory, but this may expand in the
32 * future.  The elements are built using the GFS primitives, as the hierarchy
33 * does not actually exist on disk.
34 *
35 * For 'snapshot', we don't want to have all snapshots always mounted, because
36 * this would take up a huge amount of space in /etc/mnttab.  We have three
37 * types of objects:
38 *
39 * 	ctldir ------> snapshotdir -------> snapshot
40 *                                             |
41 *                                             |
42 *                                             V
43 *                                         mounted fs
44 *
45 * The 'snapshot' node contains just enough information to lookup '..' and act
46 * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
47 * perform an automount of the underlying filesystem and return the
48 * corresponding vnode.
49 *
50 * All mounts are handled automatically by the kernel, but unmounts are
51 * (currently) handled from user land.  The main reason is that there is no
52 * reliable way to auto-unmount the filesystem when it's "no longer in use".
53 * When the user unmounts a filesystem, we call zfsctl_unmount(), which
54 * unmounts any snapshots within the snapshot directory.
55 *
56 * The '.zfs', '.zfs/snapshot', and all directories created under
57 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
58 * share the same vfs_t as the head filesystem (what '.zfs' lives under).
59 *
60 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
61 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
62 * However, vnodes within these mounted on file systems have their v_vfsp
63 * fields set to the head filesystem to make NFS happy (see
64 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
65 * so that it cannot be freed until all snapshots have been unmounted.
66 */
67
68#include <sys/zfs_context.h>
69#include <sys/zfs_ctldir.h>
70#include <sys/zfs_ioctl.h>
71#include <sys/zfs_vfsops.h>
72#include <sys/namei.h>
73#include <sys/stat.h>
74#include <sys/dmu.h>
75#include <sys/dsl_dataset.h>
76#include <sys/dsl_destroy.h>
77#include <sys/dsl_deleg.h>
78#include <sys/mount.h>
79#include <sys/zap.h>
80
81#include "zfs_namecheck.h"
82
83/*
84 * "Synthetic" filesystem implementation.
85 */
86
87/*
88 * Assert that A implies B.
89 */
90#define KASSERT_IMPLY(A, B, msg)	KASSERT(!(A) || (B), (msg));
91
92static MALLOC_DEFINE(M_SFSNODES, "sfs_nodes", "synthetic-fs nodes");
93
94typedef struct sfs_node {
95	char		sn_name[ZFS_MAX_DATASET_NAME_LEN];
96	uint64_t	sn_parent_id;
97	uint64_t	sn_id;
98} sfs_node_t;
99
100/*
101 * Check the parent's ID as well as the node's to account for a chance
102 * that IDs originating from different domains (snapshot IDs, artifical
103 * IDs, znode IDs) may clash.
104 */
105static int
106sfs_compare_ids(struct vnode *vp, void *arg)
107{
108	sfs_node_t *n1 = vp->v_data;
109	sfs_node_t *n2 = arg;
110	bool equal;
111
112	equal = n1->sn_id == n2->sn_id &&
113	    n1->sn_parent_id == n2->sn_parent_id;
114
115	/* Zero means equality. */
116	return (!equal);
117}
118
119static int
120sfs_vnode_get(const struct mount *mp, int flags, uint64_t parent_id,
121   uint64_t id, struct vnode **vpp)
122{
123	sfs_node_t search;
124	int err;
125
126	search.sn_id = id;
127	search.sn_parent_id = parent_id;
128	err = vfs_hash_get(mp, (u_int)id, flags, curthread, vpp,
129	    sfs_compare_ids, &search);
130	return (err);
131}
132
133static int
134sfs_vnode_insert(struct vnode *vp, int flags, uint64_t parent_id,
135   uint64_t id, struct vnode **vpp)
136{
137	int err;
138
139	KASSERT(vp->v_data != NULL, ("sfs_vnode_insert with NULL v_data"));
140	err = vfs_hash_insert(vp, (u_int)id, flags, curthread, vpp,
141	    sfs_compare_ids, vp->v_data);
142	return (err);
143}
144
145static void
146sfs_vnode_remove(struct vnode *vp)
147{
148	vfs_hash_remove(vp);
149}
150
151typedef void sfs_vnode_setup_fn(vnode_t *vp, void *arg);
152
153static int
154sfs_vgetx(struct mount *mp, int flags, uint64_t parent_id, uint64_t id,
155    const char *tag, struct vop_vector *vops,
156    sfs_vnode_setup_fn setup, void *arg,
157    struct vnode **vpp)
158{
159	struct vnode *vp;
160	int error;
161
162	error = sfs_vnode_get(mp, flags, parent_id, id, vpp);
163	if (error != 0 || *vpp != NULL) {
164		KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
165		    "sfs vnode with no data");
166		return (error);
167	}
168
169	/* Allocate a new vnode/inode. */
170	error = getnewvnode(tag, mp, vops, &vp);
171	if (error != 0) {
172		*vpp = NULL;
173		return (error);
174	}
175
176	/*
177	 * Exclusively lock the vnode vnode while it's being constructed.
178	 */
179	lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
180	error = insmntque(vp, mp);
181	if (error != 0) {
182		*vpp = NULL;
183		return (error);
184	}
185
186	setup(vp, arg);
187
188	error = sfs_vnode_insert(vp, flags, parent_id, id, vpp);
189	if (error != 0 || *vpp != NULL) {
190		KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
191		    "sfs vnode with no data");
192		return (error);
193	}
194
195	*vpp = vp;
196	return (0);
197}
198
199static void
200sfs_print_node(sfs_node_t *node)
201{
202	printf("\tname = %s\n", node->sn_name);
203	printf("\tparent_id = %ju\n", (uintmax_t)node->sn_parent_id);
204	printf("\tid = %ju\n", (uintmax_t)node->sn_id);
205}
206
207static sfs_node_t *
208sfs_alloc_node(size_t size, const char *name, uint64_t parent_id, uint64_t id)
209{
210	struct sfs_node *node;
211
212	KASSERT(strlen(name) < sizeof(node->sn_name),
213	    ("sfs node name is too long"));
214	KASSERT(size >= sizeof(*node), ("sfs node size is too small"));
215	node = malloc(size, M_SFSNODES, M_WAITOK | M_ZERO);
216	strlcpy(node->sn_name, name, sizeof(node->sn_name));
217	node->sn_parent_id = parent_id;
218	node->sn_id = id;
219
220	return (node);
221}
222
223static void
224sfs_destroy_node(sfs_node_t *node)
225{
226	free(node, M_SFSNODES);
227}
228
229static void *
230sfs_reclaim_vnode(vnode_t *vp)
231{
232	sfs_node_t *node;
233	void *data;
234
235	sfs_vnode_remove(vp);
236	data = vp->v_data;
237	vp->v_data = NULL;
238	return (data);
239}
240
241static int
242sfs_readdir_common(uint64_t parent_id, uint64_t id, struct vop_readdir_args *ap,
243    uio_t *uio, off_t *offp)
244{
245	struct dirent entry;
246	int error;
247
248	/* Reset ncookies for subsequent use of vfs_read_dirent. */
249	if (ap->a_ncookies != NULL)
250		*ap->a_ncookies = 0;
251
252	if (uio->uio_resid < sizeof(entry))
253		return (SET_ERROR(EINVAL));
254
255	if (uio->uio_offset < 0)
256		return (SET_ERROR(EINVAL));
257	if (uio->uio_offset == 0) {
258		entry.d_fileno = id;
259		entry.d_type = DT_DIR;
260		entry.d_name[0] = '.';
261		entry.d_name[1] = '\0';
262		entry.d_namlen = 1;
263		entry.d_reclen = sizeof(entry);
264		error = vfs_read_dirent(ap, &entry, uio->uio_offset);
265		if (error != 0)
266			return (SET_ERROR(error));
267	}
268
269	if (uio->uio_offset < sizeof(entry))
270		return (SET_ERROR(EINVAL));
271	if (uio->uio_offset == sizeof(entry)) {
272		entry.d_fileno = parent_id;
273		entry.d_type = DT_DIR;
274		entry.d_name[0] = '.';
275		entry.d_name[1] = '.';
276		entry.d_name[2] = '\0';
277		entry.d_namlen = 2;
278		entry.d_reclen = sizeof(entry);
279		error = vfs_read_dirent(ap, &entry, uio->uio_offset);
280		if (error != 0)
281			return (SET_ERROR(error));
282	}
283
284	if (offp != NULL)
285		*offp = 2 * sizeof(entry);
286	return (0);
287}
288
289
290/*
291 * .zfs inode namespace
292 *
293 * We need to generate unique inode numbers for all files and directories
294 * within the .zfs pseudo-filesystem.  We use the following scheme:
295 *
296 * 	ENTRY			ZFSCTL_INODE
297 * 	.zfs			1
298 * 	.zfs/snapshot		2
299 * 	.zfs/snapshot/<snap>	objectid(snap)
300 */
301#define	ZFSCTL_INO_SNAP(id)	(id)
302
303static struct vop_vector zfsctl_ops_root;
304static struct vop_vector zfsctl_ops_snapdir;
305static struct vop_vector zfsctl_ops_snapshot;
306static struct vop_vector zfsctl_ops_shares_dir;
307
308void
309zfsctl_init(void)
310{
311}
312
313void
314zfsctl_fini(void)
315{
316}
317
318boolean_t
319zfsctl_is_node(vnode_t *vp)
320{
321	return (vn_matchops(vp, zfsctl_ops_root) ||
322	    vn_matchops(vp, zfsctl_ops_snapdir) ||
323	    vn_matchops(vp, zfsctl_ops_snapshot) ||
324	    vn_matchops(vp, zfsctl_ops_shares_dir));
325
326}
327
328typedef struct zfsctl_root {
329	sfs_node_t	node;
330	sfs_node_t	*snapdir;
331	timestruc_t	cmtime;
332} zfsctl_root_t;
333
334
335/*
336 * Create the '.zfs' directory.
337 */
338void
339zfsctl_create(zfsvfs_t *zfsvfs)
340{
341	zfsctl_root_t *dot_zfs;
342	sfs_node_t *snapdir;
343	vnode_t *rvp;
344	uint64_t crtime[2];
345
346	ASSERT(zfsvfs->z_ctldir == NULL);
347
348	snapdir = sfs_alloc_node(sizeof(*snapdir), "snapshot", ZFSCTL_INO_ROOT,
349	    ZFSCTL_INO_SNAPDIR);
350	dot_zfs = (zfsctl_root_t *)sfs_alloc_node(sizeof(*dot_zfs), ".zfs", 0,
351	    ZFSCTL_INO_ROOT);
352	dot_zfs->snapdir = snapdir;
353
354	VERIFY(VFS_ROOT(zfsvfs->z_vfs, LK_EXCLUSIVE, &rvp) == 0);
355	VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
356	    &crtime, sizeof(crtime)));
357	ZFS_TIME_DECODE(&dot_zfs->cmtime, crtime);
358	vput(rvp);
359
360	zfsvfs->z_ctldir = dot_zfs;
361}
362
363/*
364 * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
365 * The nodes must not have any associated vnodes by now as they should be
366 * vflush-ed.
367 */
368void
369zfsctl_destroy(zfsvfs_t *zfsvfs)
370{
371	sfs_destroy_node(zfsvfs->z_ctldir->snapdir);
372	sfs_destroy_node((sfs_node_t *)zfsvfs->z_ctldir);
373	zfsvfs->z_ctldir = NULL;
374}
375
376static int
377zfsctl_fs_root_vnode(struct mount *mp, void *arg __unused, int flags,
378    struct vnode **vpp)
379{
380	return (VFS_ROOT(mp, flags, vpp));
381}
382
383static void
384zfsctl_common_vnode_setup(vnode_t *vp, void *arg)
385{
386	ASSERT_VOP_ELOCKED(vp, __func__);
387
388	/* We support shared locking. */
389	VN_LOCK_ASHARE(vp);
390	vp->v_type = VDIR;
391	vp->v_data = arg;
392}
393
394static int
395zfsctl_root_vnode(struct mount *mp, void *arg __unused, int flags,
396    struct vnode **vpp)
397{
398	void *node;
399	int err;
400
401	node = ((zfsvfs_t*)mp->mnt_data)->z_ctldir;
402	err = sfs_vgetx(mp, flags, 0, ZFSCTL_INO_ROOT, "zfs", &zfsctl_ops_root,
403	    zfsctl_common_vnode_setup, node, vpp);
404	return (err);
405}
406
407static int
408zfsctl_snapdir_vnode(struct mount *mp, void *arg __unused, int flags,
409    struct vnode **vpp)
410{
411	void *node;
412	int err;
413
414	node = ((zfsvfs_t*)mp->mnt_data)->z_ctldir->snapdir;
415	err = sfs_vgetx(mp, flags, ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, "zfs",
416	   &zfsctl_ops_snapdir, zfsctl_common_vnode_setup, node, vpp);
417	return (err);
418}
419
420/*
421 * Given a root znode, retrieve the associated .zfs directory.
422 * Add a hold to the vnode and return it.
423 */
424int
425zfsctl_root(zfsvfs_t *zfsvfs, int flags, vnode_t **vpp)
426{
427	vnode_t *vp;
428	int error;
429
430	error = zfsctl_root_vnode(zfsvfs->z_vfs, NULL, flags, vpp);
431	return (error);
432}
433
434/*
435 * Common open routine.  Disallow any write access.
436 */
437/* ARGSUSED */
438static int
439zfsctl_common_open(struct vop_open_args *ap)
440{
441	int flags = ap->a_mode;
442
443	if (flags & FWRITE)
444		return (SET_ERROR(EACCES));
445
446	return (0);
447}
448
449/*
450 * Common close routine.  Nothing to do here.
451 */
452/* ARGSUSED */
453static int
454zfsctl_common_close(struct vop_close_args *ap)
455{
456	return (0);
457}
458
459/*
460 * Common access routine.  Disallow writes.
461 */
462/* ARGSUSED */
463static int
464zfsctl_common_access(ap)
465	struct vop_access_args /* {
466		struct vnode *a_vp;
467		accmode_t a_accmode;
468		struct ucred *a_cred;
469		struct thread *a_td;
470	} */ *ap;
471{
472	accmode_t accmode = ap->a_accmode;
473
474	if (accmode & VWRITE)
475		return (SET_ERROR(EACCES));
476	return (0);
477}
478
479/*
480 * Common getattr function.  Fill in basic information.
481 */
482static void
483zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
484{
485	timestruc_t	now;
486	sfs_node_t *node;
487
488	node = vp->v_data;
489
490	vap->va_uid = 0;
491	vap->va_gid = 0;
492	vap->va_rdev = 0;
493	/*
494	 * We are a purely virtual object, so we have no
495	 * blocksize or allocated blocks.
496	 */
497	vap->va_blksize = 0;
498	vap->va_nblocks = 0;
499	vap->va_seq = 0;
500	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
501	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
502	    S_IROTH | S_IXOTH;
503	vap->va_type = VDIR;
504	/*
505	 * We live in the now (for atime).
506	 */
507	gethrestime(&now);
508	vap->va_atime = now;
509	/* FreeBSD: Reset chflags(2) flags. */
510	vap->va_flags = 0;
511
512	vap->va_nodeid = node->sn_id;
513
514	/* At least '.' and '..'. */
515	vap->va_nlink = 2;
516}
517
518/*ARGSUSED*/
519static int
520zfsctl_common_fid(ap)
521	struct vop_fid_args /* {
522		struct vnode *a_vp;
523		struct fid *a_fid;
524	} */ *ap;
525{
526	vnode_t		*vp = ap->a_vp;
527	fid_t		*fidp = (void *)ap->a_fid;
528	sfs_node_t	*node = vp->v_data;
529	uint64_t	object = node->sn_id;
530	zfid_short_t	*zfid;
531	int		i;
532
533	zfid = (zfid_short_t *)fidp;
534	zfid->zf_len = SHORT_FID_LEN;
535
536	for (i = 0; i < sizeof(zfid->zf_object); i++)
537		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
538
539	/* .zfs nodes always have a generation number of 0 */
540	for (i = 0; i < sizeof(zfid->zf_gen); i++)
541		zfid->zf_gen[i] = 0;
542
543	return (0);
544}
545
546static int
547zfsctl_common_reclaim(ap)
548	struct vop_reclaim_args /* {
549		struct vnode *a_vp;
550		struct thread *a_td;
551	} */ *ap;
552{
553	vnode_t *vp = ap->a_vp;
554
555	(void) sfs_reclaim_vnode(vp);
556	return (0);
557}
558
559static int
560zfsctl_common_print(ap)
561	struct vop_print_args /* {
562		struct vnode *a_vp;
563	} */ *ap;
564{
565	sfs_print_node(ap->a_vp->v_data);
566	return (0);
567}
568
569/*
570 * Get root directory attributes.
571 */
572/* ARGSUSED */
573static int
574zfsctl_root_getattr(ap)
575	struct vop_getattr_args /* {
576		struct vnode *a_vp;
577		struct vattr *a_vap;
578		struct ucred *a_cred;
579	} */ *ap;
580{
581	struct vnode *vp = ap->a_vp;
582	struct vattr *vap = ap->a_vap;
583	zfsctl_root_t *node = vp->v_data;
584
585	zfsctl_common_getattr(vp, vap);
586	vap->va_ctime = node->cmtime;
587	vap->va_mtime = vap->va_ctime;
588	vap->va_birthtime = vap->va_ctime;
589	vap->va_nlink += 1; /* snapdir */
590	vap->va_size = vap->va_nlink;
591	return (0);
592}
593
594/*
595 * When we lookup "." we still can be asked to lock it
596 * differently, can't we?
597 */
598int
599zfsctl_relock_dot(vnode_t *dvp, int ltype)
600{
601	vref(dvp);
602	if (ltype != VOP_ISLOCKED(dvp)) {
603		if (ltype == LK_EXCLUSIVE)
604			vn_lock(dvp, LK_UPGRADE | LK_RETRY);
605		else /* if (ltype == LK_SHARED) */
606			vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
607
608		/* Relock for the "." case may left us with reclaimed vnode. */
609		if ((dvp->v_iflag & VI_DOOMED) != 0) {
610			vrele(dvp);
611			return (SET_ERROR(ENOENT));
612		}
613	}
614	return (0);
615}
616
617/*
618 * Special case the handling of "..".
619 */
620int
621zfsctl_root_lookup(ap)
622	struct vop_lookup_args /* {
623		struct vnode *a_dvp;
624		struct vnode **a_vpp;
625		struct componentname *a_cnp;
626	} */ *ap;
627{
628	struct componentname *cnp = ap->a_cnp;
629	vnode_t *dvp = ap->a_dvp;
630	vnode_t **vpp = ap->a_vpp;
631	cred_t *cr = ap->a_cnp->cn_cred;
632	int flags = ap->a_cnp->cn_flags;
633	int lkflags = ap->a_cnp->cn_lkflags;
634	int nameiop = ap->a_cnp->cn_nameiop;
635	int err;
636	int ltype;
637
638	ASSERT(dvp->v_type == VDIR);
639
640	if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
641		return (SET_ERROR(ENOTSUP));
642
643	if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
644		err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
645		if (err == 0)
646			*vpp = dvp;
647	} else if ((flags & ISDOTDOT) != 0) {
648		err = vn_vget_ino_gen(dvp, zfsctl_fs_root_vnode, NULL,
649		    lkflags, vpp);
650	} else if (strncmp(cnp->cn_nameptr, "snapshot", cnp->cn_namelen) == 0) {
651		err = zfsctl_snapdir_vnode(dvp->v_mount, NULL, lkflags, vpp);
652	} else {
653		err = SET_ERROR(ENOENT);
654	}
655	if (err != 0)
656		*vpp = NULL;
657	return (err);
658}
659
660static int
661zfsctl_root_readdir(ap)
662	struct vop_readdir_args /* {
663		struct vnode *a_vp;
664		struct uio *a_uio;
665		struct ucred *a_cred;
666		int *a_eofflag;
667		int *ncookies;
668		u_long **a_cookies;
669	} */ *ap;
670{
671	struct dirent entry;
672	vnode_t *vp = ap->a_vp;
673	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
674	zfsctl_root_t *node = vp->v_data;
675	uio_t *uio = ap->a_uio;
676	int *eofp = ap->a_eofflag;
677	off_t dots_offset;
678	int error;
679
680	ASSERT(vp->v_type == VDIR);
681
682	error = sfs_readdir_common(zfsvfs->z_root, ZFSCTL_INO_ROOT, ap, uio,
683	    &dots_offset);
684	if (error != 0) {
685		if (error == ENAMETOOLONG) /* ran out of destination space */
686			error = 0;
687		return (error);
688	}
689	if (uio->uio_offset != dots_offset)
690		return (SET_ERROR(EINVAL));
691
692	CTASSERT(sizeof(node->snapdir->sn_name) <= sizeof(entry.d_name));
693	entry.d_fileno = node->snapdir->sn_id;
694	entry.d_type = DT_DIR;
695	strcpy(entry.d_name, node->snapdir->sn_name);
696	entry.d_namlen = strlen(entry.d_name);
697	entry.d_reclen = sizeof(entry);
698	error = vfs_read_dirent(ap, &entry, uio->uio_offset);
699	if (error != 0) {
700		if (error == ENAMETOOLONG)
701			error = 0;
702		return (SET_ERROR(error));
703	}
704	if (eofp != NULL)
705		*eofp = 1;
706	return (0);
707}
708
709static struct vop_vector zfsctl_ops_root = {
710	.vop_default =	&default_vnodeops,
711	.vop_open =	zfsctl_common_open,
712	.vop_close =	zfsctl_common_close,
713	.vop_ioctl =	VOP_EINVAL,
714	.vop_getattr =	zfsctl_root_getattr,
715	.vop_access =	zfsctl_common_access,
716	.vop_readdir =	zfsctl_root_readdir,
717	.vop_lookup =	zfsctl_root_lookup,
718	.vop_inactive =	VOP_NULL,
719	.vop_reclaim =	zfsctl_common_reclaim,
720	.vop_fid =	zfsctl_common_fid,
721	.vop_print =	zfsctl_common_print,
722};
723
724static int
725zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
726{
727	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
728
729	dmu_objset_name(os, zname);
730	if (strlen(zname) + 1 + strlen(name) >= len)
731		return (SET_ERROR(ENAMETOOLONG));
732	(void) strcat(zname, "@");
733	(void) strcat(zname, name);
734	return (0);
735}
736
737static int
738zfsctl_snapshot_lookup(vnode_t *vp, const char *name, uint64_t *id)
739{
740	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
741	int err;
742
743	err = dsl_dataset_snap_lookup(dmu_objset_ds(os), name, id);
744	return (err);
745}
746
747/*
748 * Given a vnode get a root vnode of a filesystem mounted on top of
749 * the vnode, if any.  The root vnode is referenced and locked.
750 * If no filesystem is mounted then the orinal vnode remains referenced
751 * and locked.  If any error happens the orinal vnode is unlocked and
752 * released.
753 */
754static int
755zfsctl_mounted_here(vnode_t **vpp, int flags)
756{
757	struct mount *mp;
758	int err;
759
760	ASSERT_VOP_LOCKED(*vpp, __func__);
761	ASSERT3S((*vpp)->v_type, ==, VDIR);
762
763	if ((mp = (*vpp)->v_mountedhere) != NULL) {
764		err = vfs_busy(mp, 0);
765		KASSERT(err == 0, ("vfs_busy(mp, 0) failed with %d", err));
766		KASSERT(vrefcnt(*vpp) > 1, ("unreferenced mountpoint"));
767		vput(*vpp);
768		err = VFS_ROOT(mp, flags, vpp);
769		vfs_unbusy(mp);
770		return (err);
771	}
772	return (EJUSTRETURN);
773}
774
775typedef struct {
776	const char *snap_name;
777	uint64_t    snap_id;
778} snapshot_setup_arg_t;
779
780static void
781zfsctl_snapshot_vnode_setup(vnode_t *vp, void *arg)
782{
783	snapshot_setup_arg_t *ssa = arg;
784	sfs_node_t *node;
785
786	ASSERT_VOP_ELOCKED(vp, __func__);
787
788	node = sfs_alloc_node(sizeof(sfs_node_t),
789	    ssa->snap_name, ZFSCTL_INO_SNAPDIR, ssa->snap_id);
790	zfsctl_common_vnode_setup(vp, node);
791
792	/* We have to support recursive locking. */
793	VN_LOCK_AREC(vp);
794}
795
796/*
797 * Lookup entry point for the 'snapshot' directory.  Try to open the
798 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
799 * Perform a mount of the associated dataset on top of the vnode.
800 */
801/* ARGSUSED */
802int
803zfsctl_snapdir_lookup(ap)
804	struct vop_lookup_args /* {
805		struct vnode *a_dvp;
806		struct vnode **a_vpp;
807		struct componentname *a_cnp;
808	} */ *ap;
809{
810	vnode_t *dvp = ap->a_dvp;
811	vnode_t **vpp = ap->a_vpp;
812	struct componentname *cnp = ap->a_cnp;
813	char name[NAME_MAX + 1];
814	char fullname[ZFS_MAX_DATASET_NAME_LEN];
815	char *mountpoint;
816	size_t mountpoint_len;
817	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
818	uint64_t snap_id;
819	int nameiop = cnp->cn_nameiop;
820	int lkflags = cnp->cn_lkflags;
821	int flags = cnp->cn_flags;
822	int err;
823
824	ASSERT(dvp->v_type == VDIR);
825
826	if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
827		return (SET_ERROR(ENOTSUP));
828
829	if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
830		err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
831		if (err == 0)
832			*vpp = dvp;
833		return (err);
834	}
835	if (flags & ISDOTDOT) {
836		err = vn_vget_ino_gen(dvp, zfsctl_root_vnode, NULL, lkflags,
837		    vpp);
838		return (err);
839	}
840
841	if (cnp->cn_namelen >= sizeof(name))
842		return (SET_ERROR(ENAMETOOLONG));
843
844	strlcpy(name, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
845	err = zfsctl_snapshot_lookup(dvp, name, &snap_id);
846	if (err != 0)
847		return (SET_ERROR(ENOENT));
848
849	for (;;) {
850		snapshot_setup_arg_t ssa;
851
852		ssa.snap_name = name;
853		ssa.snap_id = snap_id;
854		err = sfs_vgetx(dvp->v_mount, LK_SHARED, ZFSCTL_INO_SNAPDIR,
855		   snap_id, "zfs", &zfsctl_ops_snapshot,
856		   zfsctl_snapshot_vnode_setup, &ssa, vpp);
857		if (err != 0)
858			return (err);
859
860		/* Check if a new vnode has just been created. */
861		if (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE)
862			break;
863
864		/*
865		 * The vnode must be referenced at least by this thread and
866		 * the mounted snapshot or the thread doing the mounting.
867		 * There can be more references from concurrent lookups.
868		 */
869		KASSERT(vrefcnt(*vpp) > 1, ("found unreferenced mountpoint"));
870
871		/*
872		 * Check if a snapshot is already mounted on top of the vnode.
873		 */
874		err = zfsctl_mounted_here(vpp, lkflags);
875		if (err != EJUSTRETURN)
876			return (err);
877
878#ifdef INVARIANTS
879		/*
880		 * If the vnode not covered yet, then the mount operation
881		 * must be in progress.
882		 */
883		VI_LOCK(*vpp);
884		KASSERT(((*vpp)->v_iflag & VI_MOUNT) != 0,
885		    ("snapshot vnode not covered"));
886		VI_UNLOCK(*vpp);
887#endif
888		vput(*vpp);
889
890		/*
891		 * In this situation we can loop on uncontested locks and starve
892		 * the thread doing the lengthy, non-trivial mount operation.
893		 */
894		kern_yield(PRI_USER);
895	}
896
897	VERIFY0(zfsctl_snapshot_zname(dvp, name, sizeof(fullname), fullname));
898
899	mountpoint_len = strlen(dvp->v_vfsp->mnt_stat.f_mntonname) +
900	    strlen("/" ZFS_CTLDIR_NAME "/snapshot/") + strlen(name) + 1;
901	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
902	(void) snprintf(mountpoint, mountpoint_len,
903	    "%s/" ZFS_CTLDIR_NAME "/snapshot/%s",
904	    dvp->v_vfsp->mnt_stat.f_mntonname, name);
905
906	err = mount_snapshot(curthread, vpp, "zfs", mountpoint, fullname, 0);
907	kmem_free(mountpoint, mountpoint_len);
908	if (err == 0) {
909		/*
910		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
911		 *
912		 * This is where we lie about our v_vfsp in order to
913		 * make .zfs/snapshot/<snapname> accessible over NFS
914		 * without requiring manual mounts of <snapname>.
915		 */
916		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
917		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
918
919		/* Clear the root flag (set via VFS_ROOT) as well. */
920		(*vpp)->v_vflag &= ~VV_ROOT;
921	}
922
923	if (err != 0)
924		*vpp = NULL;
925	return (err);
926}
927
928static int
929zfsctl_snapdir_readdir(ap)
930	struct vop_readdir_args /* {
931		struct vnode *a_vp;
932		struct uio *a_uio;
933		struct ucred *a_cred;
934		int *a_eofflag;
935		int *ncookies;
936		u_long **a_cookies;
937	} */ *ap;
938{
939	char snapname[ZFS_MAX_DATASET_NAME_LEN];
940	struct dirent entry;
941	vnode_t *vp = ap->a_vp;
942	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
943	uio_t *uio = ap->a_uio;
944	int *eofp = ap->a_eofflag;
945	off_t dots_offset;
946	int error;
947
948	ASSERT(vp->v_type == VDIR);
949
950	error = sfs_readdir_common(ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, ap, uio,
951	    &dots_offset);
952	if (error != 0) {
953		if (error == ENAMETOOLONG) /* ran out of destination space */
954			error = 0;
955		return (error);
956	}
957
958	for (;;) {
959		uint64_t cookie;
960		uint64_t id;
961
962		cookie = uio->uio_offset - dots_offset;
963
964		dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
965		error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof(snapname),
966		    snapname, &id, &cookie, NULL);
967		dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
968		if (error != 0) {
969			if (error == ENOENT) {
970				if (eofp != NULL)
971					*eofp = 1;
972				error = 0;
973			}
974			return (error);
975		}
976
977		entry.d_fileno = id;
978		entry.d_type = DT_DIR;
979		strcpy(entry.d_name, snapname);
980		entry.d_namlen = strlen(entry.d_name);
981		entry.d_reclen = sizeof(entry);
982		error = vfs_read_dirent(ap, &entry, uio->uio_offset);
983		if (error != 0) {
984			if (error == ENAMETOOLONG)
985				error = 0;
986			return (SET_ERROR(error));
987		}
988		uio->uio_offset = cookie + dots_offset;
989	}
990	/* NOTREACHED */
991}
992
993/* ARGSUSED */
994static int
995zfsctl_snapdir_getattr(ap)
996	struct vop_getattr_args /* {
997		struct vnode *a_vp;
998		struct vattr *a_vap;
999		struct ucred *a_cred;
1000	} */ *ap;
1001{
1002	vnode_t *vp = ap->a_vp;
1003	vattr_t *vap = ap->a_vap;
1004	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1005	dsl_dataset_t *ds = dmu_objset_ds(zfsvfs->z_os);
1006	sfs_node_t *node = vp->v_data;
1007	uint64_t snap_count;
1008	int err;
1009
1010	zfsctl_common_getattr(vp, vap);
1011	vap->va_ctime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1012	vap->va_mtime = vap->va_ctime;
1013	vap->va_birthtime = vap->va_ctime;
1014	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
1015		err = zap_count(dmu_objset_pool(ds->ds_objset)->dp_meta_objset,
1016		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
1017		if (err != 0)
1018			return (err);
1019		vap->va_nlink += snap_count;
1020	}
1021	vap->va_size = vap->va_nlink;
1022
1023	return (0);
1024}
1025
1026static struct vop_vector zfsctl_ops_snapdir = {
1027	.vop_default =	&default_vnodeops,
1028	.vop_open =	zfsctl_common_open,
1029	.vop_close =	zfsctl_common_close,
1030	.vop_getattr =	zfsctl_snapdir_getattr,
1031	.vop_access =	zfsctl_common_access,
1032	.vop_readdir =	zfsctl_snapdir_readdir,
1033	.vop_lookup =	zfsctl_snapdir_lookup,
1034	.vop_reclaim =	zfsctl_common_reclaim,
1035	.vop_fid =	zfsctl_common_fid,
1036	.vop_print =	zfsctl_common_print,
1037};
1038
1039static int
1040zfsctl_snapshot_inactive(ap)
1041	struct vop_inactive_args /* {
1042		struct vnode *a_vp;
1043		struct thread *a_td;
1044	} */ *ap;
1045{
1046	vnode_t *vp = ap->a_vp;
1047
1048	VERIFY(vrecycle(vp) == 1);
1049	return (0);
1050}
1051
1052static int
1053zfsctl_snapshot_reclaim(ap)
1054	struct vop_reclaim_args /* {
1055		struct vnode *a_vp;
1056		struct thread *a_td;
1057	} */ *ap;
1058{
1059	vnode_t *vp = ap->a_vp;
1060	void *data = vp->v_data;
1061
1062	sfs_reclaim_vnode(vp);
1063	sfs_destroy_node(data);
1064	return (0);
1065}
1066
1067static int
1068zfsctl_snapshot_vptocnp(struct vop_vptocnp_args *ap)
1069{
1070	struct mount *mp;
1071	vnode_t *dvp;
1072	vnode_t *vp;
1073	sfs_node_t *node;
1074	size_t len;
1075	int locked;
1076	int error;
1077
1078	vp = ap->a_vp;
1079	node = vp->v_data;
1080	len = strlen(node->sn_name);
1081	if (*ap->a_buflen < len)
1082		return (SET_ERROR(ENOMEM));
1083
1084	/*
1085	 * Prevent unmounting of the snapshot while the vnode lock
1086	 * is not held.  That is not strictly required, but allows
1087	 * us to assert that an uncovered snapshot vnode is never
1088	 * "leaked".
1089	 */
1090	mp = vp->v_mountedhere;
1091	if (mp == NULL)
1092		return (SET_ERROR(ENOENT));
1093	error = vfs_busy(mp, 0);
1094	KASSERT(error == 0, ("vfs_busy(mp, 0) failed with %d", error));
1095
1096	/*
1097	 * We can vput the vnode as we can now depend on the reference owned
1098	 * by the busied mp.  But we also need to hold the vnode, because
1099	 * the reference may go after vfs_unbusy() which has to be called
1100	 * before we can lock the vnode again.
1101	 */
1102	locked = VOP_ISLOCKED(vp);
1103	vhold(vp);
1104	vput(vp);
1105
1106	/* Look up .zfs/snapshot, our parent. */
1107	error = zfsctl_snapdir_vnode(vp->v_mount, NULL, LK_SHARED, &dvp);
1108	if (error == 0) {
1109		VOP_UNLOCK(dvp, 0);
1110		*ap->a_vpp = dvp;
1111		*ap->a_buflen -= len;
1112		bcopy(node->sn_name, ap->a_buf + *ap->a_buflen, len);
1113	}
1114	vfs_unbusy(mp);
1115	vget(vp, locked | LK_VNHELD | LK_RETRY, curthread);
1116	return (error);
1117}
1118
1119/*
1120 * These VP's should never see the light of day.  They should always
1121 * be covered.
1122 */
1123static struct vop_vector zfsctl_ops_snapshot = {
1124	.vop_default =		NULL, /* ensure very restricted access */
1125	.vop_inactive =		zfsctl_snapshot_inactive,
1126	.vop_reclaim =		zfsctl_snapshot_reclaim,
1127	.vop_vptocnp =		zfsctl_snapshot_vptocnp,
1128	.vop_lock1 =		vop_stdlock,
1129	.vop_unlock =		vop_stdunlock,
1130	.vop_islocked =		vop_stdislocked,
1131	.vop_advlockpurge =	vop_stdadvlockpurge, /* called by vgone */
1132	.vop_print =		zfsctl_common_print,
1133};
1134
1135int
1136zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1137{
1138	struct mount *mp;
1139	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1140	vnode_t *vp;
1141	int error;
1142
1143	ASSERT(zfsvfs->z_ctldir != NULL);
1144	*zfsvfsp = NULL;
1145	error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1146	    ZFSCTL_INO_SNAPDIR, objsetid, &vp);
1147	if (error == 0 && vp != NULL) {
1148		/*
1149		 * XXX Probably need to at least reference, if not busy, the mp.
1150		 */
1151		if (vp->v_mountedhere != NULL)
1152			*zfsvfsp = vp->v_mountedhere->mnt_data;
1153		vput(vp);
1154	}
1155	if (*zfsvfsp == NULL)
1156		return (SET_ERROR(EINVAL));
1157	return (0);
1158}
1159
1160/*
1161 * Unmount any snapshots for the given filesystem.  This is called from
1162 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1163 * snapshots.
1164 */
1165int
1166zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1167{
1168	char snapname[ZFS_MAX_DATASET_NAME_LEN];
1169	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1170	struct mount *mp;
1171	vnode_t *dvp;
1172	vnode_t *vp;
1173	sfs_node_t *node;
1174	sfs_node_t *snap;
1175	uint64_t cookie;
1176	int error;
1177
1178	ASSERT(zfsvfs->z_ctldir != NULL);
1179
1180	cookie = 0;
1181	for (;;) {
1182		uint64_t id;
1183
1184		dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1185		error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof(snapname),
1186		    snapname, &id, &cookie, NULL);
1187		dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1188		if (error != 0) {
1189			if (error == ENOENT)
1190				error = 0;
1191			break;
1192		}
1193
1194		for (;;) {
1195			error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1196			    ZFSCTL_INO_SNAPDIR, id, &vp);
1197			if (error != 0 || vp == NULL)
1198				break;
1199
1200			mp = vp->v_mountedhere;
1201
1202			/*
1203			 * v_mountedhere being NULL means that the
1204			 * (uncovered) vnode is in a transient state
1205			 * (mounting or unmounting), so loop until it
1206			 * settles down.
1207			 */
1208			if (mp != NULL)
1209				break;
1210			vput(vp);
1211		}
1212		if (error != 0)
1213			break;
1214		if (vp == NULL)
1215			continue;	/* no mountpoint, nothing to do */
1216
1217		/*
1218		 * The mount-point vnode is kept locked to avoid spurious EBUSY
1219		 * from a concurrent umount.
1220		 * The vnode lock must have recursive locking enabled.
1221		 */
1222		vfs_ref(mp);
1223		error = dounmount(mp, fflags, curthread);
1224		KASSERT_IMPLY(error == 0, vrefcnt(vp) == 1,
1225		    ("extra references after unmount"));
1226		vput(vp);
1227		if (error != 0)
1228			break;
1229	}
1230	KASSERT_IMPLY((fflags & MS_FORCE) != 0, error == 0,
1231	    ("force unmounting failed"));
1232	return (error);
1233}
1234
1235