zcp.c revision 325536
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source.  A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2016 by Delphix. All rights reserved.
18 */
19
20/*
21 * ZFS Channel Programs (ZCP)
22 *
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(1M) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync.  This ensures that no other changes can be written concurrently
29 * with a running Lua script.  Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
31 *
32 * 1. Atomicity.  For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
35 *
36 * 2. Performance.  If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation.  When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
41 *
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
44 *
45 *      http://www.lua.org/manual/5.2/
46 *
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
49 *
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table.  Similarly, values returned from
53 * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
55 *
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively.  Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
61 *
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
64 *
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever.  If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occured.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
72 *
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors.  In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occured.
81 *
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
84 *
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
88 *
89 * See zfs-program(1M) for more information on high level usage.
90 */
91
92#include "lua.h"
93#include "lualib.h"
94#include "lauxlib.h"
95
96#include <sys/dsl_prop.h>
97#include <sys/dsl_synctask.h>
98#include <sys/dsl_dataset.h>
99#include <sys/zcp.h>
100#include <sys/zcp_iter.h>
101#include <sys/zcp_prop.h>
102#include <sys/zcp_global.h>
103#ifdef illumos
104#include <util/sscanf.h>
105#endif
106
107#ifdef __FreeBSD__
108#define	ECHRNG	EDOM
109#define	ETIME	ETIMEDOUT
110#endif
111
112uint64_t zfs_lua_check_instrlimit_interval = 100;
113uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
114uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
115
116static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
117static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
118    int);
119
120typedef struct zcp_alloc_arg {
121	boolean_t	aa_must_succeed;
122	int64_t		aa_alloc_remaining;
123	int64_t		aa_alloc_limit;
124} zcp_alloc_arg_t;
125
126typedef struct zcp_eval_arg {
127	lua_State	*ea_state;
128	zcp_alloc_arg_t	*ea_allocargs;
129	cred_t		*ea_cred;
130	nvlist_t	*ea_outnvl;
131	int		ea_result;
132	uint64_t	ea_instrlimit;
133} zcp_eval_arg_t;
134
135/*ARGSUSED*/
136static int
137zcp_eval_check(void *arg, dmu_tx_t *tx)
138{
139	return (0);
140}
141
142/*
143 * The outer-most error callback handler for use with lua_pcall(). On
144 * error Lua will call this callback with a single argument that
145 * represents the error value. In most cases this will be a string
146 * containing an error message, but channel programs can use Lua's
147 * error() function to return arbitrary objects as errors. This callback
148 * returns (on the Lua stack) the original error object along with a traceback.
149 *
150 * Fatal Lua errors can occur while resources are held, so we also call any
151 * registered cleanup function here.
152 */
153static int
154zcp_error_handler(lua_State *state)
155{
156	const char *msg;
157
158	zcp_cleanup(state);
159
160	VERIFY3U(1, ==, lua_gettop(state));
161	msg = lua_tostring(state, 1);
162	luaL_traceback(state, state, msg, 1);
163	return (1);
164}
165
166int
167zcp_argerror(lua_State *state, int narg, const char *msg, ...)
168{
169	va_list alist;
170
171	va_start(alist, msg);
172	const char *buf = lua_pushvfstring(state, msg, alist);
173	va_end(alist);
174
175	return (luaL_argerror(state, narg, buf));
176}
177
178/*
179 * Install a new cleanup function, which will be invoked with the given
180 * opaque argument if a fatal error causes the Lua interpreter to longjump out
181 * of a function call.
182 *
183 * If an error occurs, the cleanup function will be invoked exactly once and
184 * then unreigstered.
185 */
186void
187zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
188{
189	zcp_run_info_t *ri = zcp_run_info(state);
190	/*
191	 * A cleanup function should always be explicitly removed before
192	 * installing a new one to avoid accidental clobbering.
193	 */
194	ASSERT3P(ri->zri_cleanup, ==, NULL);
195
196	ri->zri_cleanup = cleanfunc;
197	ri->zri_cleanup_arg = cleanarg;
198}
199
200void
201zcp_clear_cleanup(lua_State *state)
202{
203	zcp_run_info_t *ri = zcp_run_info(state);
204
205	ri->zri_cleanup = NULL;
206	ri->zri_cleanup_arg = NULL;
207}
208
209/*
210 * If it exists, execute the currently set cleanup function then unregister it.
211 */
212void
213zcp_cleanup(lua_State *state)
214{
215	zcp_run_info_t *ri = zcp_run_info(state);
216
217	if (ri->zri_cleanup != NULL) {
218		ri->zri_cleanup(ri->zri_cleanup_arg);
219		zcp_clear_cleanup(state);
220	}
221}
222
223#define	ZCP_NVLIST_MAX_DEPTH 20
224
225/*
226 * Convert the lua table at the given index on the Lua stack to an nvlist
227 * and return it.
228 *
229 * If the table can not be converted for any reason, NULL is returned and
230 * an error message is pushed onto the Lua stack.
231 */
232static nvlist_t *
233zcp_table_to_nvlist(lua_State *state, int index, int depth)
234{
235	nvlist_t *nvl;
236	/*
237	 * Converting a Lua table to an nvlist with key uniqueness checking is
238	 * O(n^2) in the number of keys in the nvlist, which can take a long
239	 * time when we return a large table from a channel program.
240	 * Furthermore, Lua's table interface *almost* guarantees unique keys
241	 * on its own (details below). Therefore, we don't use fnvlist_alloc()
242	 * here to avoid the built-in uniqueness checking.
243	 *
244	 * The *almost* is because it's possible to have key collisions between
245	 * e.g. the string "1" and the number 1, or the string "true" and the
246	 * boolean true, so we explicitly check that when we're looking at a
247	 * key which is an integer / boolean or a string that can be parsed as
248	 * one of those types. In the worst case this could still devolve into
249	 * O(n^2), so we only start doing these checks on boolean/integer keys
250	 * once we've seen a string key which fits this weird usage pattern.
251	 *
252	 * Ultimately, we still want callers to know that the keys in this
253	 * nvlist are unique, so before we return this we set the nvlist's
254	 * flags to reflect that.
255	 */
256	VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
257
258	/*
259	 * Push an empty stack slot where lua_next() will store each
260	 * table key.
261	 */
262	lua_pushnil(state);
263	boolean_t saw_str_could_collide = B_FALSE;
264	while (lua_next(state, index) != 0) {
265		/*
266		 * The next key-value pair from the table at index is
267		 * now on the stack, with the key at stack slot -2 and
268		 * the value at slot -1.
269		 */
270		int err = 0;
271		char buf[32];
272		const char *key = NULL;
273		boolean_t key_could_collide = B_FALSE;
274
275		switch (lua_type(state, -2)) {
276		case LUA_TSTRING:
277			key = lua_tostring(state, -2);
278
279			/* check if this could collide with a number or bool */
280			long long tmp;
281			int parselen;
282			if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
283			    parselen == strlen(key)) ||
284			    strcmp(key, "true") == 0 ||
285			    strcmp(key, "false") == 0) {
286				key_could_collide = B_TRUE;
287				saw_str_could_collide = B_TRUE;
288			}
289			break;
290		case LUA_TBOOLEAN:
291			key = (lua_toboolean(state, -2) == B_TRUE ?
292			    "true" : "false");
293			if (saw_str_could_collide) {
294				key_could_collide = B_TRUE;
295			}
296			break;
297		case LUA_TNUMBER:
298			VERIFY3U(sizeof (buf), >,
299			    snprintf(buf, sizeof (buf), "%lld",
300			    (longlong_t)lua_tonumber(state, -2)));
301			key = buf;
302			if (saw_str_could_collide) {
303				key_could_collide = B_TRUE;
304			}
305			break;
306		default:
307			fnvlist_free(nvl);
308			(void) lua_pushfstring(state, "Invalid key "
309			    "type '%s' in table",
310			    lua_typename(state, lua_type(state, -2)));
311			return (NULL);
312		}
313		/*
314		 * Check for type-mismatched key collisions, and throw an error.
315		 */
316		if (key_could_collide && nvlist_exists(nvl, key)) {
317			fnvlist_free(nvl);
318			(void) lua_pushfstring(state, "Collision of "
319			    "key '%s' in table", key);
320			return (NULL);
321		}
322		/*
323		 * Recursively convert the table value and insert into
324		 * the new nvlist with the parsed key.  To prevent
325		 * stack overflow on circular or heavily nested tables,
326		 * we track the current nvlist depth.
327		 */
328		if (depth >= ZCP_NVLIST_MAX_DEPTH) {
329			fnvlist_free(nvl);
330			(void) lua_pushfstring(state, "Maximum table "
331			    "depth (%d) exceeded for table",
332			    ZCP_NVLIST_MAX_DEPTH);
333			return (NULL);
334		}
335		err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
336		    depth + 1);
337		if (err != 0) {
338			fnvlist_free(nvl);
339			/*
340			 * Error message has been pushed to the lua
341			 * stack by the recursive call.
342			 */
343			return (NULL);
344		}
345		/*
346		 * Pop the value pushed by lua_next().
347		 */
348		lua_pop(state, 1);
349	}
350
351	/*
352	 * Mark the nvlist as having unique keys. This is a little ugly, but we
353	 * ensured above that there are no duplicate keys in the nvlist.
354	 */
355	nvl->nvl_nvflag |= NV_UNIQUE_NAME;
356
357	return (nvl);
358}
359
360/*
361 * Convert a value from the given index into the lua stack to an nvpair, adding
362 * it to an nvlist with the given key.
363 *
364 * Values are converted as follows:
365 *
366 *   string -> string
367 *   number -> int64
368 *   boolean -> boolean
369 *   nil -> boolean (no value)
370 *
371 * Lua tables are converted to nvlists and then inserted. The table's keys
372 * are converted to strings then used as keys in the nvlist to store each table
373 * element.  Keys are converted as follows:
374 *
375 *   string -> no change
376 *   number -> "%lld"
377 *   boolean -> "true" | "false"
378 *   nil -> error
379 *
380 * In the case of a key collision, an error is thrown.
381 *
382 * If an error is encountered, a nonzero error code is returned, and an error
383 * string will be pushed onto the Lua stack.
384 */
385static int
386zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
387    const char *key, int depth)
388{
389	/*
390	 * Verify that we have enough remaining space in the lua stack to parse
391	 * a key-value pair and push an error.
392	 */
393	if (!lua_checkstack(state, 3)) {
394		(void) lua_pushstring(state, "Lua stack overflow");
395		return (1);
396	}
397
398	index = lua_absindex(state, index);
399
400	switch (lua_type(state, index)) {
401	case LUA_TNIL:
402		fnvlist_add_boolean(nvl, key);
403		break;
404	case LUA_TBOOLEAN:
405		fnvlist_add_boolean_value(nvl, key,
406		    lua_toboolean(state, index));
407		break;
408	case LUA_TNUMBER:
409		fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
410		break;
411	case LUA_TSTRING:
412		fnvlist_add_string(nvl, key, lua_tostring(state, index));
413		break;
414	case LUA_TTABLE: {
415		nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
416		if (value_nvl == NULL)
417			return (EINVAL);
418
419		fnvlist_add_nvlist(nvl, key, value_nvl);
420		fnvlist_free(value_nvl);
421		break;
422	}
423	default:
424		(void) lua_pushfstring(state,
425		    "Invalid value type '%s' for key '%s'",
426		    lua_typename(state, lua_type(state, index)), key);
427		return (EINVAL);
428	}
429
430	return (0);
431}
432
433/*
434 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
435 */
436void
437zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
438{
439	/*
440	 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
441	 * stack before returning with a nonzero error code. If an error is
442	 * returned, throw a fatal lua error with the given string.
443	 */
444	if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
445		(void) lua_error(state);
446}
447
448int
449zcp_lua_to_nvlist_helper(lua_State *state)
450{
451	nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
452	const char *key = (const char *)lua_touserdata(state, 1);
453	zcp_lua_to_nvlist(state, 3, nv, key);
454	return (0);
455}
456
457void
458zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
459    const char *key, zcp_eval_arg_t *evalargs)
460{
461	int err;
462	lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
463	lua_pushlightuserdata(state, (char *)key);
464	lua_pushlightuserdata(state, nvl);
465	lua_pushvalue(state, 1);
466	lua_remove(state, 1);
467	err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
468	if (err != 0) {
469		zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
470		evalargs->ea_result = SET_ERROR(ECHRNG);
471	}
472}
473
474/*
475 * Push a Lua table representing nvl onto the stack.  If it can't be
476 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
477 * be specified as NULL, in which case no error string will be output.
478 *
479 * Most nvlists are converted as simple key->value Lua tables, but we make
480 * an exception for the case where all nvlist entries are BOOLEANs (a string
481 * key without a value). In Lua, a table key pointing to a value of Nil
482 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
483 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
484 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
485 * convenience we check for this case, and convert it to a simple Lua array of
486 * strings.
487 */
488int
489zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
490    char *errbuf, int errbuf_len)
491{
492	nvpair_t *pair;
493	lua_newtable(state);
494	boolean_t has_values = B_FALSE;
495	/*
496	 * If the list doesn't have any values, just convert it to a string
497	 * array.
498	 */
499	for (pair = nvlist_next_nvpair(nvl, NULL);
500	    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
501		if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
502			has_values = B_TRUE;
503			break;
504		}
505	}
506	if (!has_values) {
507		int i = 1;
508		for (pair = nvlist_next_nvpair(nvl, NULL);
509		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
510			(void) lua_pushinteger(state, i);
511			(void) lua_pushstring(state, nvpair_name(pair));
512			(void) lua_settable(state, -3);
513			i++;
514		}
515	} else {
516		for (pair = nvlist_next_nvpair(nvl, NULL);
517		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
518			int err = zcp_nvpair_value_to_lua(state, pair,
519			    errbuf, errbuf_len);
520			if (err != 0) {
521				lua_pop(state, 1);
522				return (err);
523			}
524			(void) lua_setfield(state, -2, nvpair_name(pair));
525		}
526	}
527	return (0);
528}
529
530/*
531 * Push a Lua object representing the value of "pair" onto the stack.
532 *
533 * Only understands boolean_value, string, int64, nvlist,
534 * string_array, and int64_array type values.  For other
535 * types, returns EINVAL, fills in errbuf, and pushes nothing.
536 */
537static int
538zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
539    char *errbuf, int errbuf_len)
540{
541	int err = 0;
542
543	if (pair == NULL) {
544		lua_pushnil(state);
545		return (0);
546	}
547
548	switch (nvpair_type(pair)) {
549	case DATA_TYPE_BOOLEAN_VALUE:
550		(void) lua_pushboolean(state,
551		    fnvpair_value_boolean_value(pair));
552		break;
553	case DATA_TYPE_STRING:
554		(void) lua_pushstring(state, fnvpair_value_string(pair));
555		break;
556	case DATA_TYPE_INT64:
557		(void) lua_pushinteger(state, fnvpair_value_int64(pair));
558		break;
559	case DATA_TYPE_NVLIST:
560		err = zcp_nvlist_to_lua(state,
561		    fnvpair_value_nvlist(pair), errbuf, errbuf_len);
562		break;
563	case DATA_TYPE_STRING_ARRAY: {
564		char **strarr;
565		uint_t nelem;
566		(void) nvpair_value_string_array(pair, &strarr, &nelem);
567		lua_newtable(state);
568		for (int i = 0; i < nelem; i++) {
569			(void) lua_pushinteger(state, i + 1);
570			(void) lua_pushstring(state, strarr[i]);
571			(void) lua_settable(state, -3);
572		}
573		break;
574	}
575	case DATA_TYPE_UINT64_ARRAY: {
576		uint64_t *intarr;
577		uint_t nelem;
578		(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
579		lua_newtable(state);
580		for (int i = 0; i < nelem; i++) {
581			(void) lua_pushinteger(state, i + 1);
582			(void) lua_pushinteger(state, intarr[i]);
583			(void) lua_settable(state, -3);
584		}
585		break;
586	}
587	case DATA_TYPE_INT64_ARRAY: {
588		int64_t *intarr;
589		uint_t nelem;
590		(void) nvpair_value_int64_array(pair, &intarr, &nelem);
591		lua_newtable(state);
592		for (int i = 0; i < nelem; i++) {
593			(void) lua_pushinteger(state, i + 1);
594			(void) lua_pushinteger(state, intarr[i]);
595			(void) lua_settable(state, -3);
596		}
597		break;
598	}
599	default: {
600		if (errbuf != NULL) {
601			(void) snprintf(errbuf, errbuf_len,
602			    "Unhandled nvpair type %d for key '%s'",
603			    nvpair_type(pair), nvpair_name(pair));
604		}
605		return (EINVAL);
606	}
607	}
608	return (err);
609}
610
611int
612zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
613    int error)
614{
615	if (error == ENOENT) {
616		(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
617		return (0); /* not reached; zcp_argerror will longjmp */
618	} else if (error == EXDEV) {
619		(void) zcp_argerror(state, 1,
620		    "dataset '%s' is not in the target pool '%s'",
621		    dsname, spa_name(dp->dp_spa));
622		return (0); /* not reached; zcp_argerror will longjmp */
623	} else if (error == EIO) {
624		(void) luaL_error(state,
625		    "I/O error while accessing dataset '%s'", dsname);
626		return (0); /* not reached; luaL_error will longjmp */
627	} else if (error != 0) {
628		(void) luaL_error(state,
629		    "unexpected error %d while accessing dataset '%s'",
630		    error, dsname);
631		return (0); /* not reached; luaL_error will longjmp */
632	}
633	return (0);
634}
635
636/*
637 * Note: will longjmp (via lua_error()) on error.
638 * Assumes that the dsname is argument #1 (for error reporting purposes).
639 */
640dsl_dataset_t *
641zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
642    void *tag)
643{
644	dsl_dataset_t *ds;
645	int error = dsl_dataset_hold(dp, dsname, tag, &ds);
646	(void) zcp_dataset_hold_error(state, dp, dsname, error);
647	return (ds);
648}
649
650static int zcp_debug(lua_State *);
651static zcp_lib_info_t zcp_debug_info = {
652	.name = "debug",
653	.func = zcp_debug,
654	.pargs = {
655	    { .za_name = "debug string", .za_lua_type = LUA_TSTRING},
656	    {NULL, 0}
657	},
658	.kwargs = {
659	    {NULL, 0}
660	}
661};
662
663static int
664zcp_debug(lua_State *state)
665{
666	const char *dbgstring;
667	zcp_run_info_t *ri = zcp_run_info(state);
668	zcp_lib_info_t *libinfo = &zcp_debug_info;
669
670	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
671
672	dbgstring = lua_tostring(state, 1);
673
674	zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
675
676	return (0);
677}
678
679static int zcp_exists(lua_State *);
680static zcp_lib_info_t zcp_exists_info = {
681	.name = "exists",
682	.func = zcp_exists,
683	.pargs = {
684	    { .za_name = "dataset", .za_lua_type = LUA_TSTRING},
685	    {NULL, 0}
686	},
687	.kwargs = {
688	    {NULL, 0}
689	}
690};
691
692static int
693zcp_exists(lua_State *state)
694{
695	zcp_run_info_t *ri = zcp_run_info(state);
696	dsl_pool_t *dp = ri->zri_pool;
697	zcp_lib_info_t *libinfo = &zcp_exists_info;
698
699	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
700
701	const char *dsname = lua_tostring(state, 1);
702
703	dsl_dataset_t *ds;
704	int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
705	if (error == 0) {
706		dsl_dataset_rele(ds, FTAG);
707		lua_pushboolean(state, B_TRUE);
708	} else if (error == ENOENT) {
709		lua_pushboolean(state, B_FALSE);
710	} else if (error == EXDEV) {
711		return (luaL_error(state, "dataset '%s' is not in the "
712		    "target pool", dsname));
713	} else if (error == EIO) {
714		return (luaL_error(state, "I/O error opening dataset '%s'",
715		    dsname));
716	} else if (error != 0) {
717		return (luaL_error(state, "unexpected error %d", error));
718	}
719
720	return (1);
721}
722
723/*
724 * Allocate/realloc/free a buffer for the lua interpreter.
725 *
726 * When nsize is 0, behaves as free() and returns NULL.
727 *
728 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
729 * at least nsize.
730 *
731 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
732 * Shrinking the buffer size never fails.
733 *
734 * The original allocated buffer size is stored as a uint64 at the beginning of
735 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
736 * requires that this operation never fail.
737 */
738static void *
739zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
740{
741	zcp_alloc_arg_t *allocargs = ud;
742	int flags = (allocargs->aa_must_succeed) ?
743	    KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
744
745	if (nsize == 0) {
746		if (ptr != NULL) {
747			int64_t *allocbuf = (int64_t *)ptr - 1;
748			int64_t allocsize = *allocbuf;
749			ASSERT3S(allocsize, >, 0);
750			ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
751			    allocargs->aa_alloc_limit);
752			allocargs->aa_alloc_remaining += allocsize;
753			kmem_free(allocbuf, allocsize);
754		}
755		return (NULL);
756	} else if (ptr == NULL) {
757		int64_t *allocbuf;
758		int64_t allocsize = nsize + sizeof (int64_t);
759
760		if (!allocargs->aa_must_succeed &&
761		    (allocsize <= 0 ||
762		    allocsize > allocargs->aa_alloc_remaining)) {
763			return (NULL);
764		}
765
766		allocbuf = kmem_alloc(allocsize, flags);
767		if (allocbuf == NULL) {
768			return (NULL);
769		}
770		allocargs->aa_alloc_remaining -= allocsize;
771
772		*allocbuf = allocsize;
773		return (allocbuf + 1);
774	} else if (nsize <= osize) {
775		/*
776		 * If shrinking the buffer, lua requires that the reallocation
777		 * never fail.
778		 */
779		return (ptr);
780	} else {
781		ASSERT3U(nsize, >, osize);
782
783		uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
784		if (luabuf == NULL) {
785			return (NULL);
786		}
787		(void) memcpy(luabuf, ptr, osize);
788		VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
789		return (luabuf);
790	}
791}
792
793/* ARGSUSED */
794static void
795zcp_lua_counthook(lua_State *state, lua_Debug *ar)
796{
797	/*
798	 * If we're called, check how many instructions the channel program has
799	 * executed so far, and compare against the limit.
800	 */
801	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
802	zcp_run_info_t *ri = lua_touserdata(state, -1);
803
804	ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
805	if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
806		ri->zri_timed_out = B_TRUE;
807		(void) lua_pushstring(state,
808		    "Channel program timed out.");
809		(void) lua_error(state);
810	}
811}
812
813static int
814zcp_panic_cb(lua_State *state)
815{
816	panic("unprotected error in call to Lua API (%s)\n",
817	    lua_tostring(state, -1));
818	return (0);
819}
820
821static void
822zcp_eval_sync(void *arg, dmu_tx_t *tx)
823{
824	int err;
825	zcp_run_info_t ri;
826	zcp_eval_arg_t *evalargs = arg;
827	lua_State *state = evalargs->ea_state;
828
829	/*
830	 * Open context should have setup the stack to contain:
831	 * 1: Error handler callback
832	 * 2: Script to run (converted to a Lua function)
833	 * 3: nvlist input to function (converted to Lua table or nil)
834	 */
835	VERIFY3U(3, ==, lua_gettop(state));
836
837	/*
838	 * Store the zcp_run_info_t struct for this run in the Lua registry.
839	 * Registry entries are not directly accessible by the Lua scripts but
840	 * can be accessed by our callbacks.
841	 */
842	ri.zri_space_used = 0;
843	ri.zri_pool = dmu_tx_pool(tx);
844	ri.zri_cred = evalargs->ea_cred;
845	ri.zri_tx = tx;
846	ri.zri_timed_out = B_FALSE;
847	ri.zri_cleanup = NULL;
848	ri.zri_cleanup_arg = NULL;
849	ri.zri_curinstrs = 0;
850	ri.zri_maxinstrs = evalargs->ea_instrlimit;
851
852	lua_pushlightuserdata(state, &ri);
853	lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
854	VERIFY3U(3, ==, lua_gettop(state));
855
856	/*
857	 * Tell the Lua interpreter to call our handler every count
858	 * instructions. Channel programs that execute too many instructions
859	 * should die with ETIMEDOUT.
860	 */
861	(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
862	    zfs_lua_check_instrlimit_interval);
863
864	/*
865	 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
866	 * off control to the channel program. Channel programs that use too
867	 * much memory should die with ENOSPC.
868	 */
869	evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
870
871	/*
872	 * Call the Lua function that open-context passed us. This pops the
873	 * function and its input from the stack and pushes any return
874	 * or error values.
875	 */
876	err = lua_pcall(state, 1, LUA_MULTRET, 1);
877
878	/*
879	 * Let Lua use KM_SLEEP while we interpret the return values.
880	 */
881	evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
882
883	/*
884	 * Remove the error handler callback from the stack. At this point,
885	 * if there is a cleanup function registered, then it was registered
886	 * but never run or removed, which should never occur.
887	 */
888	ASSERT3P(ri.zri_cleanup, ==, NULL);
889	lua_remove(state, 1);
890
891	switch (err) {
892	case LUA_OK: {
893		/*
894		 * Lua supports returning multiple values in a single return
895		 * statement.  Return values will have been pushed onto the
896		 * stack:
897		 * 1: Return value 1
898		 * 2: Return value 2
899		 * 3: etc...
900		 * To simplify the process of retrieving a return value from a
901		 * channel program, we disallow returning more than one value
902		 * to ZFS from the Lua script, yielding a singleton return
903		 * nvlist of the form { "return": Return value 1 }.
904		 */
905		int return_count = lua_gettop(state);
906
907		if (return_count == 1) {
908			evalargs->ea_result = 0;
909			zcp_convert_return_values(state, evalargs->ea_outnvl,
910			    ZCP_RET_RETURN, evalargs);
911		} else if (return_count > 1) {
912			evalargs->ea_result = SET_ERROR(ECHRNG);
913			(void) lua_pushfstring(state, "Multiple return "
914			    "values not supported");
915			zcp_convert_return_values(state, evalargs->ea_outnvl,
916			    ZCP_RET_ERROR, evalargs);
917		}
918		break;
919	}
920	case LUA_ERRRUN:
921	case LUA_ERRGCMM: {
922		/*
923		 * The channel program encountered a fatal error within the
924		 * script, such as failing an assertion, or calling a function
925		 * with incompatible arguments. The error value and the
926		 * traceback generated by zcp_error_handler() should be on the
927		 * stack.
928		 */
929		VERIFY3U(1, ==, lua_gettop(state));
930		if (ri.zri_timed_out) {
931			evalargs->ea_result = SET_ERROR(ETIME);
932		} else {
933			evalargs->ea_result = SET_ERROR(ECHRNG);
934		}
935
936		zcp_convert_return_values(state, evalargs->ea_outnvl,
937		    ZCP_RET_ERROR, evalargs);
938		break;
939	}
940	case LUA_ERRERR: {
941		/*
942		 * The channel program encountered a fatal error within the
943		 * script, and we encountered another error while trying to
944		 * compute the traceback in zcp_error_handler(). We can only
945		 * return the error message.
946		 */
947		VERIFY3U(1, ==, lua_gettop(state));
948		if (ri.zri_timed_out) {
949			evalargs->ea_result = SET_ERROR(ETIME);
950		} else {
951			evalargs->ea_result = SET_ERROR(ECHRNG);
952		}
953
954		zcp_convert_return_values(state, evalargs->ea_outnvl,
955		    ZCP_RET_ERROR, evalargs);
956		break;
957	}
958	case LUA_ERRMEM:
959		/*
960		 * Lua ran out of memory while running the channel program.
961		 * There's not much we can do.
962		 */
963		evalargs->ea_result = SET_ERROR(ENOSPC);
964		break;
965	default:
966		VERIFY0(err);
967	}
968}
969
970int
971zcp_eval(const char *poolname, const char *program, uint64_t instrlimit,
972    uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
973{
974	int err;
975	lua_State *state;
976	zcp_eval_arg_t evalargs;
977
978	if (instrlimit > zfs_lua_max_instrlimit)
979		return (SET_ERROR(EINVAL));
980	if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
981		return (SET_ERROR(EINVAL));
982
983	zcp_alloc_arg_t allocargs = {
984		.aa_must_succeed = B_TRUE,
985		.aa_alloc_remaining = (int64_t)memlimit,
986		.aa_alloc_limit = (int64_t)memlimit,
987	};
988
989	/*
990	 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
991	 * This should never fail.
992	 */
993	state = lua_newstate(zcp_lua_alloc, &allocargs);
994	VERIFY(state != NULL);
995	(void) lua_atpanic(state, zcp_panic_cb);
996
997	/*
998	 * Load core Lua libraries we want access to.
999	 */
1000	VERIFY3U(1, ==, luaopen_base(state));
1001	lua_pop(state, 1);
1002	VERIFY3U(1, ==, luaopen_coroutine(state));
1003	lua_setglobal(state, LUA_COLIBNAME);
1004	VERIFY0(lua_gettop(state));
1005	VERIFY3U(1, ==, luaopen_string(state));
1006	lua_setglobal(state, LUA_STRLIBNAME);
1007	VERIFY0(lua_gettop(state));
1008	VERIFY3U(1, ==, luaopen_table(state));
1009	lua_setglobal(state, LUA_TABLIBNAME);
1010	VERIFY0(lua_gettop(state));
1011
1012	/*
1013	 * Load globally visible variables such as errno aliases.
1014	 */
1015	zcp_load_globals(state);
1016	VERIFY0(lua_gettop(state));
1017
1018	/*
1019	 * Load ZFS-specific modules.
1020	 */
1021	lua_newtable(state);
1022	VERIFY3U(1, ==, zcp_load_list_lib(state));
1023	lua_setfield(state, -2, "list");
1024	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1025	lua_setfield(state, -2, "check");
1026	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1027	lua_setfield(state, -2, "sync");
1028	VERIFY3U(1, ==, zcp_load_get_lib(state));
1029	lua_pushcclosure(state, zcp_debug_info.func, 0);
1030	lua_setfield(state, -2, zcp_debug_info.name);
1031	lua_pushcclosure(state, zcp_exists_info.func, 0);
1032	lua_setfield(state, -2, zcp_exists_info.name);
1033	lua_setglobal(state, "zfs");
1034	VERIFY0(lua_gettop(state));
1035
1036	/*
1037	 * Push the error-callback that calculates Lua stack traces on
1038	 * unexpected failures.
1039	 */
1040	lua_pushcfunction(state, zcp_error_handler);
1041	VERIFY3U(1, ==, lua_gettop(state));
1042
1043	/*
1044	 * Load the actual script as a function onto the stack as text ("t").
1045	 * The only valid error condition is a syntax error in the script.
1046	 * ERRMEM should not be possible because our allocator is using
1047	 * KM_SLEEP.  ERRGCMM should not be possible because we have not added
1048	 * any objects with __gc metamethods to the interpreter that could
1049	 * fail.
1050	 */
1051	err = luaL_loadbufferx(state, program, strlen(program),
1052	    "channel program", "t");
1053	if (err == LUA_ERRSYNTAX) {
1054		fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1055		    lua_tostring(state, -1));
1056		lua_close(state);
1057		return (SET_ERROR(EINVAL));
1058	}
1059	VERIFY0(err);
1060	VERIFY3U(2, ==, lua_gettop(state));
1061
1062	/*
1063	 * Convert the input nvlist to a Lua object and put it on top of the
1064	 * stack.
1065	 */
1066	char errmsg[128];
1067	err = zcp_nvpair_value_to_lua(state, nvarg,
1068	    errmsg, sizeof (errmsg));
1069	if (err != 0) {
1070		fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1071		lua_close(state);
1072		return (SET_ERROR(EINVAL));
1073	}
1074	VERIFY3U(3, ==, lua_gettop(state));
1075
1076	evalargs.ea_state = state;
1077	evalargs.ea_allocargs = &allocargs;
1078	evalargs.ea_instrlimit = instrlimit;
1079	evalargs.ea_cred = CRED();
1080	evalargs.ea_outnvl = outnvl;
1081	evalargs.ea_result = 0;
1082
1083	VERIFY0(dsl_sync_task(poolname, zcp_eval_check,
1084	    zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_NONE));
1085
1086	lua_close(state);
1087
1088	return (evalargs.ea_result);
1089}
1090
1091/*
1092 * Retrieve metadata about the currently running channel program.
1093 */
1094zcp_run_info_t *
1095zcp_run_info(lua_State *state)
1096{
1097	zcp_run_info_t *ri;
1098
1099	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1100	ri = lua_touserdata(state, -1);
1101	lua_pop(state, 1);
1102	return (ri);
1103}
1104
1105/*
1106 * Argument Parsing
1107 * ================
1108 *
1109 * The Lua language allows methods to be called with any number
1110 * of arguments of any type. When calling back into ZFS we need to sanitize
1111 * arguments from channel programs to make sure unexpected arguments or
1112 * arguments of the wrong type result in clear error messages. To do this
1113 * in a uniform way all callbacks from channel programs should use the
1114 * zcp_parse_args() function to interpret inputs.
1115 *
1116 * Positional vs Keyword Arguments
1117 * ===============================
1118 *
1119 * Every callback function takes a fixed set of required positional arguments
1120 * and optional keyword arguments. For example, the destroy function takes
1121 * a single positional string argument (the name of the dataset to destroy)
1122 * and an optional "defer" keyword boolean argument. When calling lua functions
1123 * with parentheses, only positional arguments can be used:
1124 *
1125 *     zfs.sync.snapshot("rpool@snap")
1126 *
1127 * To use keyword arguments functions should be called with a single argument
1128 * that is a lua table containing mappings of integer -> positional arguments
1129 * and string -> keyword arguments:
1130 *
1131 *     zfs.sync.snapshot({1="rpool@snap", defer=true})
1132 *
1133 * The lua language allows curly braces to be used in place of parenthesis as
1134 * syntactic sugar for this calling convention:
1135 *
1136 *     zfs.sync.snapshot{"rpool@snap", defer=true}
1137 */
1138
1139/*
1140 * Throw an error and print the given arguments.  If there are too many
1141 * arguments to fit in the output buffer, only the error format string is
1142 * output.
1143 */
1144static void
1145zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1146    const zcp_arg_t *kwargs, const char *fmt, ...)
1147{
1148	int i;
1149	char errmsg[512];
1150	size_t len = sizeof (errmsg);
1151	size_t msglen = 0;
1152	va_list argp;
1153
1154	va_start(argp, fmt);
1155	VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1156	va_end(argp);
1157
1158	/*
1159	 * Calculate the total length of the final string, including extra
1160	 * formatting characters. If the argument dump would be too large,
1161	 * only print the error string.
1162	 */
1163	msglen = strlen(errmsg);
1164	msglen += strlen(fname) + 4; /* : + {} + null terminator */
1165	for (i = 0; pargs[i].za_name != NULL; i++) {
1166		msglen += strlen(pargs[i].za_name);
1167		msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1168		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1169			msglen += 5; /* < + ( + )> + , */
1170		else
1171			msglen += 4; /* < + ( + )> */
1172	}
1173	for (i = 0; kwargs[i].za_name != NULL; i++) {
1174		msglen += strlen(kwargs[i].za_name);
1175		msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1176		if (kwargs[i + 1].za_name != NULL)
1177			msglen += 4; /* =( + ) + , */
1178		else
1179			msglen += 3; /* =( + ) */
1180	}
1181
1182	if (msglen >= len)
1183		(void) luaL_error(state, errmsg);
1184
1185	VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1186	VERIFY3U(len, >, strlcat(errmsg, fname, len));
1187	VERIFY3U(len, >, strlcat(errmsg, "{", len));
1188	for (i = 0; pargs[i].za_name != NULL; i++) {
1189		VERIFY3U(len, >, strlcat(errmsg, "<", len));
1190		VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1191		VERIFY3U(len, >, strlcat(errmsg, "(", len));
1192		VERIFY3U(len, >, strlcat(errmsg,
1193		    lua_typename(state, pargs[i].za_lua_type), len));
1194		VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1195		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1196			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1197		}
1198	}
1199	for (i = 0; kwargs[i].za_name != NULL; i++) {
1200		VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1201		VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1202		VERIFY3U(len, >, strlcat(errmsg,
1203		    lua_typename(state, kwargs[i].za_lua_type), len));
1204		VERIFY3U(len, >, strlcat(errmsg, ")", len));
1205		if (kwargs[i + 1].za_name != NULL) {
1206			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1207		}
1208	}
1209	VERIFY3U(len, >, strlcat(errmsg, "}", len));
1210
1211	(void) luaL_error(state, errmsg);
1212	panic("unreachable code");
1213}
1214
1215static void
1216zcp_parse_table_args(lua_State *state, const char *fname,
1217    const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1218{
1219	int i;
1220	int type;
1221
1222	for (i = 0; pargs[i].za_name != NULL; i++) {
1223		/*
1224		 * Check the table for this positional argument, leaving it
1225		 * on the top of the stack once we finish validating it.
1226		 */
1227		lua_pushinteger(state, i + 1);
1228		lua_gettable(state, 1);
1229
1230		type = lua_type(state, -1);
1231		if (type == LUA_TNIL) {
1232			zcp_args_error(state, fname, pargs, kwargs,
1233			    "too few arguments");
1234			panic("unreachable code");
1235		} else if (type != pargs[i].za_lua_type) {
1236			zcp_args_error(state, fname, pargs, kwargs,
1237			    "arg %d wrong type (is '%s', expected '%s')",
1238			    i + 1, lua_typename(state, type),
1239			    lua_typename(state, pargs[i].za_lua_type));
1240			panic("unreachable code");
1241		}
1242
1243		/*
1244		 * Remove the positional argument from the table.
1245		 */
1246		lua_pushinteger(state, i + 1);
1247		lua_pushnil(state);
1248		lua_settable(state, 1);
1249	}
1250
1251	for (i = 0; kwargs[i].za_name != NULL; i++) {
1252		/*
1253		 * Check the table for this keyword argument, which may be
1254		 * nil if it was omitted. Leave the value on the top of
1255		 * the stack after validating it.
1256		 */
1257		lua_getfield(state, 1, kwargs[i].za_name);
1258
1259		type = lua_type(state, -1);
1260		if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1261			zcp_args_error(state, fname, pargs, kwargs,
1262			    "kwarg '%s' wrong type (is '%s', expected '%s')",
1263			    kwargs[i].za_name, lua_typename(state, type),
1264			    lua_typename(state, kwargs[i].za_lua_type));
1265			panic("unreachable code");
1266		}
1267
1268		/*
1269		 * Remove the keyword argument from the table.
1270		 */
1271		lua_pushnil(state);
1272		lua_setfield(state, 1, kwargs[i].za_name);
1273	}
1274
1275	/*
1276	 * Any entries remaining in the table are invalid inputs, print
1277	 * an error message based on what the entry is.
1278	 */
1279	lua_pushnil(state);
1280	if (lua_next(state, 1)) {
1281		if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1282			zcp_args_error(state, fname, pargs, kwargs,
1283			    "too many positional arguments");
1284		} else if (lua_isstring(state, -2)) {
1285			zcp_args_error(state, fname, pargs, kwargs,
1286			    "invalid kwarg '%s'", lua_tostring(state, -2));
1287		} else {
1288			zcp_args_error(state, fname, pargs, kwargs,
1289			    "kwarg keys must be strings");
1290		}
1291		panic("unreachable code");
1292	}
1293
1294	lua_remove(state, 1);
1295}
1296
1297static void
1298zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1299    const zcp_arg_t *kwargs)
1300{
1301	int i;
1302	int type;
1303
1304	for (i = 0; pargs[i].za_name != NULL; i++) {
1305		type = lua_type(state, i + 1);
1306		if (type == LUA_TNONE) {
1307			zcp_args_error(state, fname, pargs, kwargs,
1308			    "too few arguments");
1309			panic("unreachable code");
1310		} else if (type != pargs[i].za_lua_type) {
1311			zcp_args_error(state, fname, pargs, kwargs,
1312			    "arg %d wrong type (is '%s', expected '%s')",
1313			    i + 1, lua_typename(state, type),
1314			    lua_typename(state, pargs[i].za_lua_type));
1315			panic("unreachable code");
1316		}
1317	}
1318	if (lua_gettop(state) != i) {
1319		zcp_args_error(state, fname, pargs, kwargs,
1320		    "too many positional arguments");
1321		panic("unreachable code");
1322	}
1323
1324	for (i = 0; kwargs[i].za_name != NULL; i++) {
1325		lua_pushnil(state);
1326	}
1327}
1328
1329/*
1330 * Checks the current Lua stack against an expected set of positional and
1331 * keyword arguments. If the stack does not match the expected arguments
1332 * aborts the current channel program with a useful error message, otherwise
1333 * it re-arranges the stack so that it contains the positional arguments
1334 * followed by the keyword argument values in declaration order. Any missing
1335 * keyword argument will be represented by a nil value on the stack.
1336 *
1337 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1338 * braces calling convention is assumed, otherwise the stack is parsed for
1339 * positional arguments only.
1340 *
1341 * This function should be used by every function callback. It should be called
1342 * before the callback manipulates the Lua stack as it assumes the stack
1343 * represents the function arguments.
1344 */
1345void
1346zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1347    const zcp_arg_t *kwargs)
1348{
1349	if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1350		zcp_parse_table_args(state, fname, pargs, kwargs);
1351	} else {
1352		zcp_parse_pos_args(state, fname, pargs, kwargs);
1353	}
1354}
1355