zap_micro.c revision 302408
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/zio.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zfs_context.h>
32#include <sys/zap.h>
33#include <sys/refcount.h>
34#include <sys/zap_impl.h>
35#include <sys/zap_leaf.h>
36#include <sys/avl.h>
37#include <sys/arc.h>
38#include <sys/dmu_objset.h>
39
40#ifdef _KERNEL
41#include <sys/sunddi.h>
42#endif
43
44extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
45
46static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
47
48uint64_t
49zap_getflags(zap_t *zap)
50{
51	if (zap->zap_ismicro)
52		return (0);
53	return (zap_f_phys(zap)->zap_flags);
54}
55
56int
57zap_hashbits(zap_t *zap)
58{
59	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
60		return (48);
61	else
62		return (28);
63}
64
65uint32_t
66zap_maxcd(zap_t *zap)
67{
68	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
69		return ((1<<16)-1);
70	else
71		return (-1U);
72}
73
74static uint64_t
75zap_hash(zap_name_t *zn)
76{
77	zap_t *zap = zn->zn_zap;
78	uint64_t h = 0;
79
80	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
81		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
82		h = *(uint64_t *)zn->zn_key_orig;
83	} else {
84		h = zap->zap_salt;
85		ASSERT(h != 0);
86		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
87
88		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
89			int i;
90			const uint64_t *wp = zn->zn_key_norm;
91
92			ASSERT(zn->zn_key_intlen == 8);
93			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
94				int j;
95				uint64_t word = *wp;
96
97				for (j = 0; j < zn->zn_key_intlen; j++) {
98					h = (h >> 8) ^
99					    zfs_crc64_table[(h ^ word) & 0xFF];
100					word >>= NBBY;
101				}
102			}
103		} else {
104			int i, len;
105			const uint8_t *cp = zn->zn_key_norm;
106
107			/*
108			 * We previously stored the terminating null on
109			 * disk, but didn't hash it, so we need to
110			 * continue to not hash it.  (The
111			 * zn_key_*_numints includes the terminating
112			 * null for non-binary keys.)
113			 */
114			len = zn->zn_key_norm_numints - 1;
115
116			ASSERT(zn->zn_key_intlen == 1);
117			for (i = 0; i < len; cp++, i++) {
118				h = (h >> 8) ^
119				    zfs_crc64_table[(h ^ *cp) & 0xFF];
120			}
121		}
122	}
123	/*
124	 * Don't use all 64 bits, since we need some in the cookie for
125	 * the collision differentiator.  We MUST use the high bits,
126	 * since those are the ones that we first pay attention to when
127	 * chosing the bucket.
128	 */
129	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
130
131	return (h);
132}
133
134static int
135zap_normalize(zap_t *zap, const char *name, char *namenorm)
136{
137	size_t inlen, outlen;
138	int err;
139
140	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
141
142	inlen = strlen(name) + 1;
143	outlen = ZAP_MAXNAMELEN;
144
145	err = 0;
146	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
147	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
148	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
149
150	return (err);
151}
152
153boolean_t
154zap_match(zap_name_t *zn, const char *matchname)
155{
156	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
157
158	if (zn->zn_matchtype == MT_FIRST) {
159		char norm[ZAP_MAXNAMELEN];
160
161		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
162			return (B_FALSE);
163
164		return (strcmp(zn->zn_key_norm, norm) == 0);
165	} else {
166		/* MT_BEST or MT_EXACT */
167		return (strcmp(zn->zn_key_orig, matchname) == 0);
168	}
169}
170
171void
172zap_name_free(zap_name_t *zn)
173{
174	kmem_free(zn, sizeof (zap_name_t));
175}
176
177zap_name_t *
178zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
179{
180	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
181
182	zn->zn_zap = zap;
183	zn->zn_key_intlen = sizeof (*key);
184	zn->zn_key_orig = key;
185	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
186	zn->zn_matchtype = mt;
187	if (zap->zap_normflags) {
188		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
189			zap_name_free(zn);
190			return (NULL);
191		}
192		zn->zn_key_norm = zn->zn_normbuf;
193		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
194	} else {
195		if (mt != MT_EXACT) {
196			zap_name_free(zn);
197			return (NULL);
198		}
199		zn->zn_key_norm = zn->zn_key_orig;
200		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
201	}
202
203	zn->zn_hash = zap_hash(zn);
204	return (zn);
205}
206
207zap_name_t *
208zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
209{
210	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
211
212	ASSERT(zap->zap_normflags == 0);
213	zn->zn_zap = zap;
214	zn->zn_key_intlen = sizeof (*key);
215	zn->zn_key_orig = zn->zn_key_norm = key;
216	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
217	zn->zn_matchtype = MT_EXACT;
218
219	zn->zn_hash = zap_hash(zn);
220	return (zn);
221}
222
223static void
224mzap_byteswap(mzap_phys_t *buf, size_t size)
225{
226	int i, max;
227	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
228	buf->mz_salt = BSWAP_64(buf->mz_salt);
229	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
230	max = (size / MZAP_ENT_LEN) - 1;
231	for (i = 0; i < max; i++) {
232		buf->mz_chunk[i].mze_value =
233		    BSWAP_64(buf->mz_chunk[i].mze_value);
234		buf->mz_chunk[i].mze_cd =
235		    BSWAP_32(buf->mz_chunk[i].mze_cd);
236	}
237}
238
239void
240zap_byteswap(void *buf, size_t size)
241{
242	uint64_t block_type;
243
244	block_type = *(uint64_t *)buf;
245
246	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
247		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
248		mzap_byteswap(buf, size);
249	} else {
250		fzap_byteswap(buf, size);
251	}
252}
253
254static int
255mze_compare(const void *arg1, const void *arg2)
256{
257	const mzap_ent_t *mze1 = arg1;
258	const mzap_ent_t *mze2 = arg2;
259
260	if (mze1->mze_hash > mze2->mze_hash)
261		return (+1);
262	if (mze1->mze_hash < mze2->mze_hash)
263		return (-1);
264	if (mze1->mze_cd > mze2->mze_cd)
265		return (+1);
266	if (mze1->mze_cd < mze2->mze_cd)
267		return (-1);
268	return (0);
269}
270
271static int
272mze_insert(zap_t *zap, int chunkid, uint64_t hash)
273{
274	mzap_ent_t *mze;
275	avl_index_t idx;
276
277	ASSERT(zap->zap_ismicro);
278	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
279
280	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
281	mze->mze_chunkid = chunkid;
282	mze->mze_hash = hash;
283	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
284	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
285	if (avl_find(&zap->zap_m.zap_avl, mze, &idx) != NULL) {
286		kmem_free(mze, sizeof (mzap_ent_t));
287		return (EEXIST);
288	}
289	avl_insert(&zap->zap_m.zap_avl, mze, idx);
290	return (0);
291}
292
293static mzap_ent_t *
294mze_find(zap_name_t *zn)
295{
296	mzap_ent_t mze_tofind;
297	mzap_ent_t *mze;
298	avl_index_t idx;
299	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
300
301	ASSERT(zn->zn_zap->zap_ismicro);
302	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
303
304	mze_tofind.mze_hash = zn->zn_hash;
305	mze_tofind.mze_cd = 0;
306
307again:
308	mze = avl_find(avl, &mze_tofind, &idx);
309	if (mze == NULL)
310		mze = avl_nearest(avl, idx, AVL_AFTER);
311	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
312		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
313		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
314			return (mze);
315	}
316	if (zn->zn_matchtype == MT_BEST) {
317		zn->zn_matchtype = MT_FIRST;
318		goto again;
319	}
320	return (NULL);
321}
322
323static uint32_t
324mze_find_unused_cd(zap_t *zap, uint64_t hash)
325{
326	mzap_ent_t mze_tofind;
327	mzap_ent_t *mze;
328	avl_index_t idx;
329	avl_tree_t *avl = &zap->zap_m.zap_avl;
330	uint32_t cd;
331
332	ASSERT(zap->zap_ismicro);
333	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
334
335	mze_tofind.mze_hash = hash;
336	mze_tofind.mze_cd = 0;
337
338	cd = 0;
339	for (mze = avl_find(avl, &mze_tofind, &idx);
340	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
341		if (mze->mze_cd != cd)
342			break;
343		cd++;
344	}
345
346	return (cd);
347}
348
349static void
350mze_remove(zap_t *zap, mzap_ent_t *mze)
351{
352	ASSERT(zap->zap_ismicro);
353	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
354
355	avl_remove(&zap->zap_m.zap_avl, mze);
356	kmem_free(mze, sizeof (mzap_ent_t));
357}
358
359static void
360mze_destroy(zap_t *zap)
361{
362	mzap_ent_t *mze;
363	void *avlcookie = NULL;
364
365	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
366		kmem_free(mze, sizeof (mzap_ent_t));
367	avl_destroy(&zap->zap_m.zap_avl);
368}
369
370static zap_t *
371mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
372{
373	zap_t *winner;
374	zap_t *zap;
375	int i;
376	uint64_t *zap_hdr = (uint64_t *)db->db_data;
377	uint64_t zap_block_type = zap_hdr[0];
378	uint64_t zap_magic = zap_hdr[1];
379
380	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
381
382	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
383	rw_init(&zap->zap_rwlock, 0, 0, 0);
384	rw_enter(&zap->zap_rwlock, RW_WRITER);
385	zap->zap_objset = os;
386	zap->zap_object = obj;
387	zap->zap_dbuf = db;
388
389	if (zap_block_type != ZBT_MICRO) {
390		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
391		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
392		if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
393			winner = NULL;	/* No actual winner here... */
394			goto handle_winner;
395		}
396	} else {
397		zap->zap_ismicro = TRUE;
398	}
399
400	/*
401	 * Make sure that zap_ismicro is set before we let others see
402	 * it, because zap_lockdir() checks zap_ismicro without the lock
403	 * held.
404	 */
405	dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
406	winner = dmu_buf_set_user(db, &zap->zap_dbu);
407
408	if (winner != NULL)
409		goto handle_winner;
410
411	if (zap->zap_ismicro) {
412		zap->zap_salt = zap_m_phys(zap)->mz_salt;
413		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
414		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
415		avl_create(&zap->zap_m.zap_avl, mze_compare,
416		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
417
418		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
419			mzap_ent_phys_t *mze =
420			    &zap_m_phys(zap)->mz_chunk[i];
421			if (mze->mze_name[0]) {
422				zap_name_t *zn;
423
424				zn = zap_name_alloc(zap, mze->mze_name,
425				    MT_EXACT);
426				if (mze_insert(zap, i, zn->zn_hash) == 0)
427					zap->zap_m.zap_num_entries++;
428				else {
429					printf("ZFS WARNING: Duplicated ZAP "
430					    "entry detected (%s).\n",
431					    mze->mze_name);
432				}
433				zap_name_free(zn);
434			}
435		}
436	} else {
437		zap->zap_salt = zap_f_phys(zap)->zap_salt;
438		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
439
440		ASSERT3U(sizeof (struct zap_leaf_header), ==,
441		    2*ZAP_LEAF_CHUNKSIZE);
442
443		/*
444		 * The embedded pointer table should not overlap the
445		 * other members.
446		 */
447		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
448		    &zap_f_phys(zap)->zap_salt);
449
450		/*
451		 * The embedded pointer table should end at the end of
452		 * the block
453		 */
454		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
455		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
456		    (uintptr_t)zap_f_phys(zap), ==,
457		    zap->zap_dbuf->db_size);
458	}
459	rw_exit(&zap->zap_rwlock);
460	return (zap);
461
462handle_winner:
463	rw_exit(&zap->zap_rwlock);
464	rw_destroy(&zap->zap_rwlock);
465	if (!zap->zap_ismicro)
466		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
467	kmem_free(zap, sizeof (zap_t));
468	return (winner);
469}
470
471int
472zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
473    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
474{
475	zap_t *zap;
476	dmu_buf_t *db;
477	krw_t lt;
478	int err;
479
480	*zapp = NULL;
481
482	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
483	if (err)
484		return (err);
485
486#ifdef ZFS_DEBUG
487	{
488		dmu_object_info_t doi;
489		dmu_object_info_from_db(db, &doi);
490		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
491	}
492#endif
493
494	zap = dmu_buf_get_user(db);
495	if (zap == NULL) {
496		zap = mzap_open(os, obj, db);
497		if (zap == NULL) {
498			/*
499			 * mzap_open() didn't like what it saw on-disk.
500			 * Check for corruption!
501			 */
502			dmu_buf_rele(db, NULL);
503			return (SET_ERROR(EIO));
504		}
505	}
506
507	/*
508	 * We're checking zap_ismicro without the lock held, in order to
509	 * tell what type of lock we want.  Once we have some sort of
510	 * lock, see if it really is the right type.  In practice this
511	 * can only be different if it was upgraded from micro to fat,
512	 * and micro wanted WRITER but fat only needs READER.
513	 */
514	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
515	rw_enter(&zap->zap_rwlock, lt);
516	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
517		/* it was upgraded, now we only need reader */
518		ASSERT(lt == RW_WRITER);
519		ASSERT(RW_READER ==
520		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
521		rw_downgrade(&zap->zap_rwlock);
522		lt = RW_READER;
523	}
524
525	zap->zap_objset = os;
526
527	if (lt == RW_WRITER)
528		dmu_buf_will_dirty(db, tx);
529
530	ASSERT3P(zap->zap_dbuf, ==, db);
531
532	ASSERT(!zap->zap_ismicro ||
533	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
534	if (zap->zap_ismicro && tx && adding &&
535	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
536		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
537		if (newsz > MZAP_MAX_BLKSZ) {
538			dprintf("upgrading obj %llu: num_entries=%u\n",
539			    obj, zap->zap_m.zap_num_entries);
540			*zapp = zap;
541			return (mzap_upgrade(zapp, tx, 0));
542		}
543		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
544		ASSERT0(err);
545		zap->zap_m.zap_num_chunks =
546		    db->db_size / MZAP_ENT_LEN - 1;
547	}
548
549	*zapp = zap;
550	return (0);
551}
552
553void
554zap_unlockdir(zap_t *zap)
555{
556	rw_exit(&zap->zap_rwlock);
557	dmu_buf_rele(zap->zap_dbuf, NULL);
558}
559
560static int
561mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
562{
563	mzap_phys_t *mzp;
564	int i, sz, nchunks;
565	int err = 0;
566	zap_t *zap = *zapp;
567
568	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
569
570	sz = zap->zap_dbuf->db_size;
571	mzp = zio_buf_alloc(sz);
572	bcopy(zap->zap_dbuf->db_data, mzp, sz);
573	nchunks = zap->zap_m.zap_num_chunks;
574
575	if (!flags) {
576		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
577		    1ULL << fzap_default_block_shift, 0, tx);
578		if (err) {
579			zio_buf_free(mzp, sz);
580			return (err);
581		}
582	}
583
584	dprintf("upgrading obj=%llu with %u chunks\n",
585	    zap->zap_object, nchunks);
586	/* XXX destroy the avl later, so we can use the stored hash value */
587	mze_destroy(zap);
588
589	fzap_upgrade(zap, tx, flags);
590
591	for (i = 0; i < nchunks; i++) {
592		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
593		zap_name_t *zn;
594		if (mze->mze_name[0] == 0)
595			continue;
596		dprintf("adding %s=%llu\n",
597		    mze->mze_name, mze->mze_value);
598		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
599		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
600		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
601		zap_name_free(zn);
602		if (err)
603			break;
604	}
605	zio_buf_free(mzp, sz);
606	*zapp = zap;
607	return (err);
608}
609
610void
611mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
612    dmu_tx_t *tx)
613{
614	dmu_buf_t *db;
615	mzap_phys_t *zp;
616
617	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
618
619#ifdef ZFS_DEBUG
620	{
621		dmu_object_info_t doi;
622		dmu_object_info_from_db(db, &doi);
623		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
624	}
625#endif
626
627	dmu_buf_will_dirty(db, tx);
628	zp = db->db_data;
629	zp->mz_block_type = ZBT_MICRO;
630	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
631	zp->mz_normflags = normflags;
632	dmu_buf_rele(db, FTAG);
633
634	if (flags != 0) {
635		zap_t *zap;
636		/* Only fat zap supports flags; upgrade immediately. */
637		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
638		    B_FALSE, B_FALSE, &zap));
639		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
640		zap_unlockdir(zap);
641	}
642}
643
644int
645zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
646    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
647{
648	return (zap_create_claim_norm(os, obj,
649	    0, ot, bonustype, bonuslen, tx));
650}
651
652int
653zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
654    dmu_object_type_t ot,
655    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
656{
657	int err;
658
659	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
660	if (err != 0)
661		return (err);
662	mzap_create_impl(os, obj, normflags, 0, tx);
663	return (0);
664}
665
666uint64_t
667zap_create(objset_t *os, dmu_object_type_t ot,
668    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
669{
670	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
671}
672
673uint64_t
674zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
675    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
676{
677	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
678
679	mzap_create_impl(os, obj, normflags, 0, tx);
680	return (obj);
681}
682
683uint64_t
684zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
685    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
686    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
687{
688	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
689
690	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
691	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
692	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
693	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
694
695	VERIFY(dmu_object_set_blocksize(os, obj,
696	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
697
698	mzap_create_impl(os, obj, normflags, flags, tx);
699	return (obj);
700}
701
702int
703zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
704{
705	/*
706	 * dmu_object_free will free the object number and free the
707	 * data.  Freeing the data will cause our pageout function to be
708	 * called, which will destroy our data (zap_leaf_t's and zap_t).
709	 */
710
711	return (dmu_object_free(os, zapobj, tx));
712}
713
714void
715zap_evict(void *dbu)
716{
717	zap_t *zap = dbu;
718
719	rw_destroy(&zap->zap_rwlock);
720
721	if (zap->zap_ismicro)
722		mze_destroy(zap);
723	else
724		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
725
726	kmem_free(zap, sizeof (zap_t));
727}
728
729int
730zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
731{
732	zap_t *zap;
733	int err;
734
735	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
736	if (err)
737		return (err);
738	if (!zap->zap_ismicro) {
739		err = fzap_count(zap, count);
740	} else {
741		*count = zap->zap_m.zap_num_entries;
742	}
743	zap_unlockdir(zap);
744	return (err);
745}
746
747/*
748 * zn may be NULL; if not specified, it will be computed if needed.
749 * See also the comment above zap_entry_normalization_conflict().
750 */
751static boolean_t
752mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
753{
754	mzap_ent_t *other;
755	int direction = AVL_BEFORE;
756	boolean_t allocdzn = B_FALSE;
757
758	if (zap->zap_normflags == 0)
759		return (B_FALSE);
760
761again:
762	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
763	    other && other->mze_hash == mze->mze_hash;
764	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
765
766		if (zn == NULL) {
767			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
768			    MT_FIRST);
769			allocdzn = B_TRUE;
770		}
771		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
772			if (allocdzn)
773				zap_name_free(zn);
774			return (B_TRUE);
775		}
776	}
777
778	if (direction == AVL_BEFORE) {
779		direction = AVL_AFTER;
780		goto again;
781	}
782
783	if (allocdzn)
784		zap_name_free(zn);
785	return (B_FALSE);
786}
787
788/*
789 * Routines for manipulating attributes.
790 */
791
792int
793zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
794    uint64_t integer_size, uint64_t num_integers, void *buf)
795{
796	return (zap_lookup_norm(os, zapobj, name, integer_size,
797	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
798}
799
800int
801zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
802    uint64_t integer_size, uint64_t num_integers, void *buf,
803    matchtype_t mt, char *realname, int rn_len,
804    boolean_t *ncp)
805{
806	zap_t *zap;
807	int err;
808	mzap_ent_t *mze;
809	zap_name_t *zn;
810
811	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
812	if (err)
813		return (err);
814	zn = zap_name_alloc(zap, name, mt);
815	if (zn == NULL) {
816		zap_unlockdir(zap);
817		return (SET_ERROR(ENOTSUP));
818	}
819
820	if (!zap->zap_ismicro) {
821		err = fzap_lookup(zn, integer_size, num_integers, buf,
822		    realname, rn_len, ncp);
823	} else {
824		mze = mze_find(zn);
825		if (mze == NULL) {
826			err = SET_ERROR(ENOENT);
827		} else {
828			if (num_integers < 1) {
829				err = SET_ERROR(EOVERFLOW);
830			} else if (integer_size != 8) {
831				err = SET_ERROR(EINVAL);
832			} else {
833				*(uint64_t *)buf =
834				    MZE_PHYS(zap, mze)->mze_value;
835				(void) strlcpy(realname,
836				    MZE_PHYS(zap, mze)->mze_name, rn_len);
837				if (ncp) {
838					*ncp = mzap_normalization_conflict(zap,
839					    zn, mze);
840				}
841			}
842		}
843	}
844	zap_name_free(zn);
845	zap_unlockdir(zap);
846	return (err);
847}
848
849int
850zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
851    int key_numints)
852{
853	zap_t *zap;
854	int err;
855	zap_name_t *zn;
856
857	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
858	if (err)
859		return (err);
860	zn = zap_name_alloc_uint64(zap, key, key_numints);
861	if (zn == NULL) {
862		zap_unlockdir(zap);
863		return (SET_ERROR(ENOTSUP));
864	}
865
866	fzap_prefetch(zn);
867	zap_name_free(zn);
868	zap_unlockdir(zap);
869	return (err);
870}
871
872int
873zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
874    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
875{
876	zap_t *zap;
877	int err;
878	zap_name_t *zn;
879
880	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
881	if (err)
882		return (err);
883	zn = zap_name_alloc_uint64(zap, key, key_numints);
884	if (zn == NULL) {
885		zap_unlockdir(zap);
886		return (SET_ERROR(ENOTSUP));
887	}
888
889	err = fzap_lookup(zn, integer_size, num_integers, buf,
890	    NULL, 0, NULL);
891	zap_name_free(zn);
892	zap_unlockdir(zap);
893	return (err);
894}
895
896int
897zap_contains(objset_t *os, uint64_t zapobj, const char *name)
898{
899	int err = zap_lookup_norm(os, zapobj, name, 0,
900	    0, NULL, MT_EXACT, NULL, 0, NULL);
901	if (err == EOVERFLOW || err == EINVAL)
902		err = 0; /* found, but skipped reading the value */
903	return (err);
904}
905
906int
907zap_length(objset_t *os, uint64_t zapobj, const char *name,
908    uint64_t *integer_size, uint64_t *num_integers)
909{
910	zap_t *zap;
911	int err;
912	mzap_ent_t *mze;
913	zap_name_t *zn;
914
915	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
916	if (err)
917		return (err);
918	zn = zap_name_alloc(zap, name, MT_EXACT);
919	if (zn == NULL) {
920		zap_unlockdir(zap);
921		return (SET_ERROR(ENOTSUP));
922	}
923	if (!zap->zap_ismicro) {
924		err = fzap_length(zn, integer_size, num_integers);
925	} else {
926		mze = mze_find(zn);
927		if (mze == NULL) {
928			err = SET_ERROR(ENOENT);
929		} else {
930			if (integer_size)
931				*integer_size = 8;
932			if (num_integers)
933				*num_integers = 1;
934		}
935	}
936	zap_name_free(zn);
937	zap_unlockdir(zap);
938	return (err);
939}
940
941int
942zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
943    int key_numints, uint64_t *integer_size, uint64_t *num_integers)
944{
945	zap_t *zap;
946	int err;
947	zap_name_t *zn;
948
949	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
950	if (err)
951		return (err);
952	zn = zap_name_alloc_uint64(zap, key, key_numints);
953	if (zn == NULL) {
954		zap_unlockdir(zap);
955		return (SET_ERROR(ENOTSUP));
956	}
957	err = fzap_length(zn, integer_size, num_integers);
958	zap_name_free(zn);
959	zap_unlockdir(zap);
960	return (err);
961}
962
963static void
964mzap_addent(zap_name_t *zn, uint64_t value)
965{
966	int i;
967	zap_t *zap = zn->zn_zap;
968	int start = zap->zap_m.zap_alloc_next;
969	uint32_t cd;
970
971	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
972
973#ifdef ZFS_DEBUG
974	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
975		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
976		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
977	}
978#endif
979
980	cd = mze_find_unused_cd(zap, zn->zn_hash);
981	/* given the limited size of the microzap, this can't happen */
982	ASSERT(cd < zap_maxcd(zap));
983
984again:
985	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
986		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
987		if (mze->mze_name[0] == 0) {
988			mze->mze_value = value;
989			mze->mze_cd = cd;
990			(void) strcpy(mze->mze_name, zn->zn_key_orig);
991			zap->zap_m.zap_num_entries++;
992			zap->zap_m.zap_alloc_next = i+1;
993			if (zap->zap_m.zap_alloc_next ==
994			    zap->zap_m.zap_num_chunks)
995				zap->zap_m.zap_alloc_next = 0;
996			VERIFY(0 == mze_insert(zap, i, zn->zn_hash));
997			return;
998		}
999	}
1000	if (start != 0) {
1001		start = 0;
1002		goto again;
1003	}
1004	ASSERT(!"out of entries!");
1005}
1006
1007int
1008zap_add(objset_t *os, uint64_t zapobj, const char *key,
1009    int integer_size, uint64_t num_integers,
1010    const void *val, dmu_tx_t *tx)
1011{
1012	zap_t *zap;
1013	int err;
1014	mzap_ent_t *mze;
1015	const uint64_t *intval = val;
1016	zap_name_t *zn;
1017
1018	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1019	if (err)
1020		return (err);
1021	zn = zap_name_alloc(zap, key, MT_EXACT);
1022	if (zn == NULL) {
1023		zap_unlockdir(zap);
1024		return (SET_ERROR(ENOTSUP));
1025	}
1026	if (!zap->zap_ismicro) {
1027		err = fzap_add(zn, integer_size, num_integers, val, tx);
1028		zap = zn->zn_zap;	/* fzap_add() may change zap */
1029	} else if (integer_size != 8 || num_integers != 1 ||
1030	    strlen(key) >= MZAP_NAME_LEN) {
1031		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1032		if (err == 0)
1033			err = fzap_add(zn, integer_size, num_integers, val, tx);
1034		zap = zn->zn_zap;	/* fzap_add() may change zap */
1035	} else {
1036		mze = mze_find(zn);
1037		if (mze != NULL) {
1038			err = SET_ERROR(EEXIST);
1039		} else {
1040			mzap_addent(zn, *intval);
1041		}
1042	}
1043	ASSERT(zap == zn->zn_zap);
1044	zap_name_free(zn);
1045	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1046		zap_unlockdir(zap);
1047	return (err);
1048}
1049
1050int
1051zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1052    int key_numints, int integer_size, uint64_t num_integers,
1053    const void *val, dmu_tx_t *tx)
1054{
1055	zap_t *zap;
1056	int err;
1057	zap_name_t *zn;
1058
1059	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1060	if (err)
1061		return (err);
1062	zn = zap_name_alloc_uint64(zap, key, key_numints);
1063	if (zn == NULL) {
1064		zap_unlockdir(zap);
1065		return (SET_ERROR(ENOTSUP));
1066	}
1067	err = fzap_add(zn, integer_size, num_integers, val, tx);
1068	zap = zn->zn_zap;	/* fzap_add() may change zap */
1069	zap_name_free(zn);
1070	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1071		zap_unlockdir(zap);
1072	return (err);
1073}
1074
1075int
1076zap_update(objset_t *os, uint64_t zapobj, const char *name,
1077    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1078{
1079	zap_t *zap;
1080	mzap_ent_t *mze;
1081	uint64_t oldval;
1082	const uint64_t *intval = val;
1083	zap_name_t *zn;
1084	int err;
1085
1086#ifdef ZFS_DEBUG
1087	/*
1088	 * If there is an old value, it shouldn't change across the
1089	 * lockdir (eg, due to bprewrite's xlation).
1090	 */
1091	if (integer_size == 8 && num_integers == 1)
1092		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1093#endif
1094
1095	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1096	if (err)
1097		return (err);
1098	zn = zap_name_alloc(zap, name, MT_EXACT);
1099	if (zn == NULL) {
1100		zap_unlockdir(zap);
1101		return (SET_ERROR(ENOTSUP));
1102	}
1103	if (!zap->zap_ismicro) {
1104		err = fzap_update(zn, integer_size, num_integers, val, tx);
1105		zap = zn->zn_zap;	/* fzap_update() may change zap */
1106	} else if (integer_size != 8 || num_integers != 1 ||
1107	    strlen(name) >= MZAP_NAME_LEN) {
1108		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1109		    zapobj, integer_size, num_integers, name);
1110		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1111		if (err == 0)
1112			err = fzap_update(zn, integer_size, num_integers,
1113			    val, tx);
1114		zap = zn->zn_zap;	/* fzap_update() may change zap */
1115	} else {
1116		mze = mze_find(zn);
1117		if (mze != NULL) {
1118			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1119			MZE_PHYS(zap, mze)->mze_value = *intval;
1120		} else {
1121			mzap_addent(zn, *intval);
1122		}
1123	}
1124	ASSERT(zap == zn->zn_zap);
1125	zap_name_free(zn);
1126	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1127		zap_unlockdir(zap);
1128	return (err);
1129}
1130
1131int
1132zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1133    int key_numints,
1134    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1135{
1136	zap_t *zap;
1137	zap_name_t *zn;
1138	int err;
1139
1140	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1141	if (err)
1142		return (err);
1143	zn = zap_name_alloc_uint64(zap, key, key_numints);
1144	if (zn == NULL) {
1145		zap_unlockdir(zap);
1146		return (SET_ERROR(ENOTSUP));
1147	}
1148	err = fzap_update(zn, integer_size, num_integers, val, tx);
1149	zap = zn->zn_zap;	/* fzap_update() may change zap */
1150	zap_name_free(zn);
1151	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1152		zap_unlockdir(zap);
1153	return (err);
1154}
1155
1156int
1157zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1158{
1159	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1160}
1161
1162int
1163zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1164    matchtype_t mt, dmu_tx_t *tx)
1165{
1166	zap_t *zap;
1167	int err;
1168	mzap_ent_t *mze;
1169	zap_name_t *zn;
1170
1171	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1172	if (err)
1173		return (err);
1174	zn = zap_name_alloc(zap, name, mt);
1175	if (zn == NULL) {
1176		zap_unlockdir(zap);
1177		return (SET_ERROR(ENOTSUP));
1178	}
1179	if (!zap->zap_ismicro) {
1180		err = fzap_remove(zn, tx);
1181	} else {
1182		mze = mze_find(zn);
1183		if (mze == NULL) {
1184			err = SET_ERROR(ENOENT);
1185		} else {
1186			zap->zap_m.zap_num_entries--;
1187			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1188			    sizeof (mzap_ent_phys_t));
1189			mze_remove(zap, mze);
1190		}
1191	}
1192	zap_name_free(zn);
1193	zap_unlockdir(zap);
1194	return (err);
1195}
1196
1197int
1198zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1199    int key_numints, dmu_tx_t *tx)
1200{
1201	zap_t *zap;
1202	int err;
1203	zap_name_t *zn;
1204
1205	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1206	if (err)
1207		return (err);
1208	zn = zap_name_alloc_uint64(zap, key, key_numints);
1209	if (zn == NULL) {
1210		zap_unlockdir(zap);
1211		return (SET_ERROR(ENOTSUP));
1212	}
1213	err = fzap_remove(zn, tx);
1214	zap_name_free(zn);
1215	zap_unlockdir(zap);
1216	return (err);
1217}
1218
1219/*
1220 * Routines for iterating over the attributes.
1221 */
1222
1223void
1224zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1225    uint64_t serialized)
1226{
1227	zc->zc_objset = os;
1228	zc->zc_zap = NULL;
1229	zc->zc_leaf = NULL;
1230	zc->zc_zapobj = zapobj;
1231	zc->zc_serialized = serialized;
1232	zc->zc_hash = 0;
1233	zc->zc_cd = 0;
1234}
1235
1236void
1237zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1238{
1239	zap_cursor_init_serialized(zc, os, zapobj, 0);
1240}
1241
1242void
1243zap_cursor_fini(zap_cursor_t *zc)
1244{
1245	if (zc->zc_zap) {
1246		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1247		zap_unlockdir(zc->zc_zap);
1248		zc->zc_zap = NULL;
1249	}
1250	if (zc->zc_leaf) {
1251		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1252		zap_put_leaf(zc->zc_leaf);
1253		zc->zc_leaf = NULL;
1254	}
1255	zc->zc_objset = NULL;
1256}
1257
1258uint64_t
1259zap_cursor_serialize(zap_cursor_t *zc)
1260{
1261	if (zc->zc_hash == -1ULL)
1262		return (-1ULL);
1263	if (zc->zc_zap == NULL)
1264		return (zc->zc_serialized);
1265	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1266	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1267
1268	/*
1269	 * We want to keep the high 32 bits of the cursor zero if we can, so
1270	 * that 32-bit programs can access this.  So usually use a small
1271	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1272	 * of the cursor.
1273	 *
1274	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1275	 */
1276	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1277	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1278}
1279
1280int
1281zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1282{
1283	int err;
1284	avl_index_t idx;
1285	mzap_ent_t mze_tofind;
1286	mzap_ent_t *mze;
1287
1288	if (zc->zc_hash == -1ULL)
1289		return (SET_ERROR(ENOENT));
1290
1291	if (zc->zc_zap == NULL) {
1292		int hb;
1293		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1294		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1295		if (err)
1296			return (err);
1297
1298		/*
1299		 * To support zap_cursor_init_serialized, advance, retrieve,
1300		 * we must add to the existing zc_cd, which may already
1301		 * be 1 due to the zap_cursor_advance.
1302		 */
1303		ASSERT(zc->zc_hash == 0);
1304		hb = zap_hashbits(zc->zc_zap);
1305		zc->zc_hash = zc->zc_serialized << (64 - hb);
1306		zc->zc_cd += zc->zc_serialized >> hb;
1307		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1308			zc->zc_cd = 0;
1309	} else {
1310		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1311	}
1312	if (!zc->zc_zap->zap_ismicro) {
1313		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1314	} else {
1315		mze_tofind.mze_hash = zc->zc_hash;
1316		mze_tofind.mze_cd = zc->zc_cd;
1317
1318		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1319		if (mze == NULL) {
1320			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1321			    idx, AVL_AFTER);
1322		}
1323		if (mze) {
1324			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1325			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1326			za->za_normalization_conflict =
1327			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1328			za->za_integer_length = 8;
1329			za->za_num_integers = 1;
1330			za->za_first_integer = mzep->mze_value;
1331			(void) strcpy(za->za_name, mzep->mze_name);
1332			zc->zc_hash = mze->mze_hash;
1333			zc->zc_cd = mze->mze_cd;
1334			err = 0;
1335		} else {
1336			zc->zc_hash = -1ULL;
1337			err = SET_ERROR(ENOENT);
1338		}
1339	}
1340	rw_exit(&zc->zc_zap->zap_rwlock);
1341	return (err);
1342}
1343
1344void
1345zap_cursor_advance(zap_cursor_t *zc)
1346{
1347	if (zc->zc_hash == -1ULL)
1348		return;
1349	zc->zc_cd++;
1350}
1351
1352int
1353zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1354{
1355	int err = 0;
1356	mzap_ent_t *mze;
1357	zap_name_t *zn;
1358
1359	if (zc->zc_zap == NULL) {
1360		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1361		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1362		if (err)
1363			return (err);
1364	} else {
1365		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1366	}
1367
1368	zn = zap_name_alloc(zc->zc_zap, name, mt);
1369	if (zn == NULL) {
1370		rw_exit(&zc->zc_zap->zap_rwlock);
1371		return (SET_ERROR(ENOTSUP));
1372	}
1373
1374	if (!zc->zc_zap->zap_ismicro) {
1375		err = fzap_cursor_move_to_key(zc, zn);
1376	} else {
1377		mze = mze_find(zn);
1378		if (mze == NULL) {
1379			err = SET_ERROR(ENOENT);
1380			goto out;
1381		}
1382		zc->zc_hash = mze->mze_hash;
1383		zc->zc_cd = mze->mze_cd;
1384	}
1385
1386out:
1387	zap_name_free(zn);
1388	rw_exit(&zc->zc_zap->zap_rwlock);
1389	return (err);
1390}
1391
1392int
1393zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1394{
1395	int err;
1396	zap_t *zap;
1397
1398	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1399	if (err)
1400		return (err);
1401
1402	bzero(zs, sizeof (zap_stats_t));
1403
1404	if (zap->zap_ismicro) {
1405		zs->zs_blocksize = zap->zap_dbuf->db_size;
1406		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1407		zs->zs_num_blocks = 1;
1408	} else {
1409		fzap_get_stats(zap, zs);
1410	}
1411	zap_unlockdir(zap);
1412	return (0);
1413}
1414
1415int
1416zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1417    uint64_t *towrite, uint64_t *tooverwrite)
1418{
1419	zap_t *zap;
1420	int err = 0;
1421
1422	/*
1423	 * Since, we don't have a name, we cannot figure out which blocks will
1424	 * be affected in this operation. So, account for the worst case :
1425	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1426	 * - 4 new blocks written if adding:
1427	 * 	- 2 blocks for possibly split leaves,
1428	 * 	- 2 grown ptrtbl blocks
1429	 *
1430	 * This also accomodates the case where an add operation to a fairly
1431	 * large microzap results in a promotion to fatzap.
1432	 */
1433	if (name == NULL) {
1434		*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1435		return (err);
1436	}
1437
1438	/*
1439	 * We lock the zap with adding == FALSE. Because, if we pass
1440	 * the actual value of add, it could trigger a mzap_upgrade().
1441	 * At present we are just evaluating the possibility of this operation
1442	 * and hence we donot want to trigger an upgrade.
1443	 */
1444	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1445	if (err)
1446		return (err);
1447
1448	if (!zap->zap_ismicro) {
1449		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1450		if (zn) {
1451			err = fzap_count_write(zn, add, towrite,
1452			    tooverwrite);
1453			zap_name_free(zn);
1454		} else {
1455			/*
1456			 * We treat this case as similar to (name == NULL)
1457			 */
1458			*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1459		}
1460	} else {
1461		/*
1462		 * We are here if (name != NULL) and this is a micro-zap.
1463		 * We account for the header block depending on whether it
1464		 * is freeable.
1465		 *
1466		 * Incase of an add-operation it is hard to find out
1467		 * if this add will promote this microzap to fatzap.
1468		 * Hence, we consider the worst case and account for the
1469		 * blocks assuming this microzap would be promoted to a
1470		 * fatzap.
1471		 *
1472		 * 1 block overwritten  : header block
1473		 * 4 new blocks written : 2 new split leaf, 2 grown
1474		 *			ptrtbl blocks
1475		 */
1476		if (dmu_buf_freeable(zap->zap_dbuf))
1477			*tooverwrite += MZAP_MAX_BLKSZ;
1478		else
1479			*towrite += MZAP_MAX_BLKSZ;
1480
1481		if (add) {
1482			*towrite += 4 * MZAP_MAX_BLKSZ;
1483		}
1484	}
1485
1486	zap_unlockdir(zap);
1487	return (err);
1488}
1489