zap_micro.c revision 275782
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25
26#include <sys/zio.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zfs_context.h>
30#include <sys/zap.h>
31#include <sys/refcount.h>
32#include <sys/zap_impl.h>
33#include <sys/zap_leaf.h>
34#include <sys/avl.h>
35#include <sys/arc.h>
36#include <sys/dmu_objset.h>
37
38#ifdef _KERNEL
39#include <sys/sunddi.h>
40#endif
41
42extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
43
44static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
45
46uint64_t
47zap_getflags(zap_t *zap)
48{
49	if (zap->zap_ismicro)
50		return (0);
51	return (zap_f_phys(zap)->zap_flags);
52}
53
54int
55zap_hashbits(zap_t *zap)
56{
57	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
58		return (48);
59	else
60		return (28);
61}
62
63uint32_t
64zap_maxcd(zap_t *zap)
65{
66	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
67		return ((1<<16)-1);
68	else
69		return (-1U);
70}
71
72static uint64_t
73zap_hash(zap_name_t *zn)
74{
75	zap_t *zap = zn->zn_zap;
76	uint64_t h = 0;
77
78	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
79		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
80		h = *(uint64_t *)zn->zn_key_orig;
81	} else {
82		h = zap->zap_salt;
83		ASSERT(h != 0);
84		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
85
86		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
87			int i;
88			const uint64_t *wp = zn->zn_key_norm;
89
90			ASSERT(zn->zn_key_intlen == 8);
91			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
92				int j;
93				uint64_t word = *wp;
94
95				for (j = 0; j < zn->zn_key_intlen; j++) {
96					h = (h >> 8) ^
97					    zfs_crc64_table[(h ^ word) & 0xFF];
98					word >>= NBBY;
99				}
100			}
101		} else {
102			int i, len;
103			const uint8_t *cp = zn->zn_key_norm;
104
105			/*
106			 * We previously stored the terminating null on
107			 * disk, but didn't hash it, so we need to
108			 * continue to not hash it.  (The
109			 * zn_key_*_numints includes the terminating
110			 * null for non-binary keys.)
111			 */
112			len = zn->zn_key_norm_numints - 1;
113
114			ASSERT(zn->zn_key_intlen == 1);
115			for (i = 0; i < len; cp++, i++) {
116				h = (h >> 8) ^
117				    zfs_crc64_table[(h ^ *cp) & 0xFF];
118			}
119		}
120	}
121	/*
122	 * Don't use all 64 bits, since we need some in the cookie for
123	 * the collision differentiator.  We MUST use the high bits,
124	 * since those are the ones that we first pay attention to when
125	 * chosing the bucket.
126	 */
127	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
128
129	return (h);
130}
131
132static int
133zap_normalize(zap_t *zap, const char *name, char *namenorm)
134{
135	size_t inlen, outlen;
136	int err;
137
138	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
139
140	inlen = strlen(name) + 1;
141	outlen = ZAP_MAXNAMELEN;
142
143	err = 0;
144	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
145	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
146	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
147
148	return (err);
149}
150
151boolean_t
152zap_match(zap_name_t *zn, const char *matchname)
153{
154	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
155
156	if (zn->zn_matchtype == MT_FIRST) {
157		char norm[ZAP_MAXNAMELEN];
158
159		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
160			return (B_FALSE);
161
162		return (strcmp(zn->zn_key_norm, norm) == 0);
163	} else {
164		/* MT_BEST or MT_EXACT */
165		return (strcmp(zn->zn_key_orig, matchname) == 0);
166	}
167}
168
169void
170zap_name_free(zap_name_t *zn)
171{
172	kmem_free(zn, sizeof (zap_name_t));
173}
174
175zap_name_t *
176zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
177{
178	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
179
180	zn->zn_zap = zap;
181	zn->zn_key_intlen = sizeof (*key);
182	zn->zn_key_orig = key;
183	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
184	zn->zn_matchtype = mt;
185	if (zap->zap_normflags) {
186		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
187			zap_name_free(zn);
188			return (NULL);
189		}
190		zn->zn_key_norm = zn->zn_normbuf;
191		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
192	} else {
193		if (mt != MT_EXACT) {
194			zap_name_free(zn);
195			return (NULL);
196		}
197		zn->zn_key_norm = zn->zn_key_orig;
198		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
199	}
200
201	zn->zn_hash = zap_hash(zn);
202	return (zn);
203}
204
205zap_name_t *
206zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
207{
208	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
209
210	ASSERT(zap->zap_normflags == 0);
211	zn->zn_zap = zap;
212	zn->zn_key_intlen = sizeof (*key);
213	zn->zn_key_orig = zn->zn_key_norm = key;
214	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
215	zn->zn_matchtype = MT_EXACT;
216
217	zn->zn_hash = zap_hash(zn);
218	return (zn);
219}
220
221static void
222mzap_byteswap(mzap_phys_t *buf, size_t size)
223{
224	int i, max;
225	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
226	buf->mz_salt = BSWAP_64(buf->mz_salt);
227	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
228	max = (size / MZAP_ENT_LEN) - 1;
229	for (i = 0; i < max; i++) {
230		buf->mz_chunk[i].mze_value =
231		    BSWAP_64(buf->mz_chunk[i].mze_value);
232		buf->mz_chunk[i].mze_cd =
233		    BSWAP_32(buf->mz_chunk[i].mze_cd);
234	}
235}
236
237void
238zap_byteswap(void *buf, size_t size)
239{
240	uint64_t block_type;
241
242	block_type = *(uint64_t *)buf;
243
244	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
245		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
246		mzap_byteswap(buf, size);
247	} else {
248		fzap_byteswap(buf, size);
249	}
250}
251
252static int
253mze_compare(const void *arg1, const void *arg2)
254{
255	const mzap_ent_t *mze1 = arg1;
256	const mzap_ent_t *mze2 = arg2;
257
258	if (mze1->mze_hash > mze2->mze_hash)
259		return (+1);
260	if (mze1->mze_hash < mze2->mze_hash)
261		return (-1);
262	if (mze1->mze_cd > mze2->mze_cd)
263		return (+1);
264	if (mze1->mze_cd < mze2->mze_cd)
265		return (-1);
266	return (0);
267}
268
269static int
270mze_insert(zap_t *zap, int chunkid, uint64_t hash)
271{
272	mzap_ent_t *mze;
273	avl_index_t idx;
274
275	ASSERT(zap->zap_ismicro);
276	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
277
278	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
279	mze->mze_chunkid = chunkid;
280	mze->mze_hash = hash;
281	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
282	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
283	if (avl_find(&zap->zap_m.zap_avl, mze, &idx) != NULL) {
284		kmem_free(mze, sizeof (mzap_ent_t));
285		return (EEXIST);
286	}
287	avl_insert(&zap->zap_m.zap_avl, mze, idx);
288	return (0);
289}
290
291static mzap_ent_t *
292mze_find(zap_name_t *zn)
293{
294	mzap_ent_t mze_tofind;
295	mzap_ent_t *mze;
296	avl_index_t idx;
297	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
298
299	ASSERT(zn->zn_zap->zap_ismicro);
300	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
301
302	mze_tofind.mze_hash = zn->zn_hash;
303	mze_tofind.mze_cd = 0;
304
305again:
306	mze = avl_find(avl, &mze_tofind, &idx);
307	if (mze == NULL)
308		mze = avl_nearest(avl, idx, AVL_AFTER);
309	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
310		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
311		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
312			return (mze);
313	}
314	if (zn->zn_matchtype == MT_BEST) {
315		zn->zn_matchtype = MT_FIRST;
316		goto again;
317	}
318	return (NULL);
319}
320
321static uint32_t
322mze_find_unused_cd(zap_t *zap, uint64_t hash)
323{
324	mzap_ent_t mze_tofind;
325	mzap_ent_t *mze;
326	avl_index_t idx;
327	avl_tree_t *avl = &zap->zap_m.zap_avl;
328	uint32_t cd;
329
330	ASSERT(zap->zap_ismicro);
331	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
332
333	mze_tofind.mze_hash = hash;
334	mze_tofind.mze_cd = 0;
335
336	cd = 0;
337	for (mze = avl_find(avl, &mze_tofind, &idx);
338	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
339		if (mze->mze_cd != cd)
340			break;
341		cd++;
342	}
343
344	return (cd);
345}
346
347static void
348mze_remove(zap_t *zap, mzap_ent_t *mze)
349{
350	ASSERT(zap->zap_ismicro);
351	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
352
353	avl_remove(&zap->zap_m.zap_avl, mze);
354	kmem_free(mze, sizeof (mzap_ent_t));
355}
356
357static void
358mze_destroy(zap_t *zap)
359{
360	mzap_ent_t *mze;
361	void *avlcookie = NULL;
362
363	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
364		kmem_free(mze, sizeof (mzap_ent_t));
365	avl_destroy(&zap->zap_m.zap_avl);
366}
367
368static zap_t *
369mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
370{
371	zap_t *winner;
372	zap_t *zap;
373	int i;
374
375	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
376
377	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
378	rw_init(&zap->zap_rwlock, 0, 0, 0);
379	rw_enter(&zap->zap_rwlock, RW_WRITER);
380	zap->zap_objset = os;
381	zap->zap_object = obj;
382	zap->zap_dbuf = db;
383
384	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
385		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
386		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
387	} else {
388		zap->zap_ismicro = TRUE;
389	}
390
391	/*
392	 * Make sure that zap_ismicro is set before we let others see
393	 * it, because zap_lockdir() checks zap_ismicro without the lock
394	 * held.
395	 */
396	winner = dmu_buf_set_user(db, zap, zap_evict);
397
398	if (winner != NULL) {
399		rw_exit(&zap->zap_rwlock);
400		rw_destroy(&zap->zap_rwlock);
401		if (!zap->zap_ismicro)
402			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
403		kmem_free(zap, sizeof (zap_t));
404		return (winner);
405	}
406
407	if (zap->zap_ismicro) {
408		zap->zap_salt = zap_m_phys(zap)->mz_salt;
409		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
410		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
411		avl_create(&zap->zap_m.zap_avl, mze_compare,
412		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
413
414		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
415			mzap_ent_phys_t *mze =
416			    &zap_m_phys(zap)->mz_chunk[i];
417			if (mze->mze_name[0]) {
418				zap_name_t *zn;
419
420				zn = zap_name_alloc(zap, mze->mze_name,
421				    MT_EXACT);
422				if (mze_insert(zap, i, zn->zn_hash) == 0)
423					zap->zap_m.zap_num_entries++;
424				else {
425					printf("ZFS WARNING: Duplicated ZAP "
426					    "entry detected (%s).\n",
427					    mze->mze_name);
428				}
429				zap_name_free(zn);
430			}
431		}
432	} else {
433		zap->zap_salt = zap_f_phys(zap)->zap_salt;
434		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
435
436		ASSERT3U(sizeof (struct zap_leaf_header), ==,
437		    2*ZAP_LEAF_CHUNKSIZE);
438
439		/*
440		 * The embedded pointer table should not overlap the
441		 * other members.
442		 */
443		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
444		    &zap_f_phys(zap)->zap_salt);
445
446		/*
447		 * The embedded pointer table should end at the end of
448		 * the block
449		 */
450		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
451		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
452		    (uintptr_t)zap_f_phys(zap), ==,
453		    zap->zap_dbuf->db_size);
454	}
455	rw_exit(&zap->zap_rwlock);
456	return (zap);
457}
458
459int
460zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
461    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
462{
463	zap_t *zap;
464	dmu_buf_t *db;
465	krw_t lt;
466	int err;
467
468	*zapp = NULL;
469
470	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
471	if (err)
472		return (err);
473
474#ifdef ZFS_DEBUG
475	{
476		dmu_object_info_t doi;
477		dmu_object_info_from_db(db, &doi);
478		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
479	}
480#endif
481
482	zap = dmu_buf_get_user(db);
483	if (zap == NULL)
484		zap = mzap_open(os, obj, db);
485
486	/*
487	 * We're checking zap_ismicro without the lock held, in order to
488	 * tell what type of lock we want.  Once we have some sort of
489	 * lock, see if it really is the right type.  In practice this
490	 * can only be different if it was upgraded from micro to fat,
491	 * and micro wanted WRITER but fat only needs READER.
492	 */
493	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
494	rw_enter(&zap->zap_rwlock, lt);
495	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
496		/* it was upgraded, now we only need reader */
497		ASSERT(lt == RW_WRITER);
498		ASSERT(RW_READER ==
499		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
500		rw_downgrade(&zap->zap_rwlock);
501		lt = RW_READER;
502	}
503
504	zap->zap_objset = os;
505
506	if (lt == RW_WRITER)
507		dmu_buf_will_dirty(db, tx);
508
509	ASSERT3P(zap->zap_dbuf, ==, db);
510
511	ASSERT(!zap->zap_ismicro ||
512	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
513	if (zap->zap_ismicro && tx && adding &&
514	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
515		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
516		if (newsz > MZAP_MAX_BLKSZ) {
517			dprintf("upgrading obj %llu: num_entries=%u\n",
518			    obj, zap->zap_m.zap_num_entries);
519			*zapp = zap;
520			return (mzap_upgrade(zapp, tx, 0));
521		}
522		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
523		ASSERT0(err);
524		zap->zap_m.zap_num_chunks =
525		    db->db_size / MZAP_ENT_LEN - 1;
526	}
527
528	*zapp = zap;
529	return (0);
530}
531
532void
533zap_unlockdir(zap_t *zap)
534{
535	rw_exit(&zap->zap_rwlock);
536	dmu_buf_rele(zap->zap_dbuf, NULL);
537}
538
539static int
540mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
541{
542	mzap_phys_t *mzp;
543	int i, sz, nchunks;
544	int err = 0;
545	zap_t *zap = *zapp;
546
547	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
548
549	sz = zap->zap_dbuf->db_size;
550	mzp = kmem_alloc(sz, KM_SLEEP);
551	bcopy(zap->zap_dbuf->db_data, mzp, sz);
552	nchunks = zap->zap_m.zap_num_chunks;
553
554	if (!flags) {
555		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
556		    1ULL << fzap_default_block_shift, 0, tx);
557		if (err) {
558			kmem_free(mzp, sz);
559			return (err);
560		}
561	}
562
563	dprintf("upgrading obj=%llu with %u chunks\n",
564	    zap->zap_object, nchunks);
565	/* XXX destroy the avl later, so we can use the stored hash value */
566	mze_destroy(zap);
567
568	fzap_upgrade(zap, tx, flags);
569
570	for (i = 0; i < nchunks; i++) {
571		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
572		zap_name_t *zn;
573		if (mze->mze_name[0] == 0)
574			continue;
575		dprintf("adding %s=%llu\n",
576		    mze->mze_name, mze->mze_value);
577		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
578		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
579		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
580		zap_name_free(zn);
581		if (err)
582			break;
583	}
584	kmem_free(mzp, sz);
585	*zapp = zap;
586	return (err);
587}
588
589void
590mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
591    dmu_tx_t *tx)
592{
593	dmu_buf_t *db;
594	mzap_phys_t *zp;
595
596	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
597
598#ifdef ZFS_DEBUG
599	{
600		dmu_object_info_t doi;
601		dmu_object_info_from_db(db, &doi);
602		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
603	}
604#endif
605
606	dmu_buf_will_dirty(db, tx);
607	zp = db->db_data;
608	zp->mz_block_type = ZBT_MICRO;
609	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
610	zp->mz_normflags = normflags;
611	dmu_buf_rele(db, FTAG);
612
613	if (flags != 0) {
614		zap_t *zap;
615		/* Only fat zap supports flags; upgrade immediately. */
616		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
617		    B_FALSE, B_FALSE, &zap));
618		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
619		zap_unlockdir(zap);
620	}
621}
622
623int
624zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
625    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
626{
627	return (zap_create_claim_norm(os, obj,
628	    0, ot, bonustype, bonuslen, tx));
629}
630
631int
632zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
633    dmu_object_type_t ot,
634    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
635{
636	int err;
637
638	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
639	if (err != 0)
640		return (err);
641	mzap_create_impl(os, obj, normflags, 0, tx);
642	return (0);
643}
644
645uint64_t
646zap_create(objset_t *os, dmu_object_type_t ot,
647    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
648{
649	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
650}
651
652uint64_t
653zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
654    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
655{
656	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
657
658	mzap_create_impl(os, obj, normflags, 0, tx);
659	return (obj);
660}
661
662uint64_t
663zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
664    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
665    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
666{
667	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
668
669	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
670	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
671	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
672	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
673
674	VERIFY(dmu_object_set_blocksize(os, obj,
675	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
676
677	mzap_create_impl(os, obj, normflags, flags, tx);
678	return (obj);
679}
680
681int
682zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
683{
684	/*
685	 * dmu_object_free will free the object number and free the
686	 * data.  Freeing the data will cause our pageout function to be
687	 * called, which will destroy our data (zap_leaf_t's and zap_t).
688	 */
689
690	return (dmu_object_free(os, zapobj, tx));
691}
692
693_NOTE(ARGSUSED(0))
694void
695zap_evict(dmu_buf_t *db, void *vzap)
696{
697	zap_t *zap = vzap;
698
699	rw_destroy(&zap->zap_rwlock);
700
701	if (zap->zap_ismicro)
702		mze_destroy(zap);
703	else
704		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
705
706	kmem_free(zap, sizeof (zap_t));
707}
708
709int
710zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
711{
712	zap_t *zap;
713	int err;
714
715	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
716	if (err)
717		return (err);
718	if (!zap->zap_ismicro) {
719		err = fzap_count(zap, count);
720	} else {
721		*count = zap->zap_m.zap_num_entries;
722	}
723	zap_unlockdir(zap);
724	return (err);
725}
726
727/*
728 * zn may be NULL; if not specified, it will be computed if needed.
729 * See also the comment above zap_entry_normalization_conflict().
730 */
731static boolean_t
732mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
733{
734	mzap_ent_t *other;
735	int direction = AVL_BEFORE;
736	boolean_t allocdzn = B_FALSE;
737
738	if (zap->zap_normflags == 0)
739		return (B_FALSE);
740
741again:
742	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
743	    other && other->mze_hash == mze->mze_hash;
744	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
745
746		if (zn == NULL) {
747			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
748			    MT_FIRST);
749			allocdzn = B_TRUE;
750		}
751		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
752			if (allocdzn)
753				zap_name_free(zn);
754			return (B_TRUE);
755		}
756	}
757
758	if (direction == AVL_BEFORE) {
759		direction = AVL_AFTER;
760		goto again;
761	}
762
763	if (allocdzn)
764		zap_name_free(zn);
765	return (B_FALSE);
766}
767
768/*
769 * Routines for manipulating attributes.
770 */
771
772int
773zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
774    uint64_t integer_size, uint64_t num_integers, void *buf)
775{
776	return (zap_lookup_norm(os, zapobj, name, integer_size,
777	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
778}
779
780int
781zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
782    uint64_t integer_size, uint64_t num_integers, void *buf,
783    matchtype_t mt, char *realname, int rn_len,
784    boolean_t *ncp)
785{
786	zap_t *zap;
787	int err;
788	mzap_ent_t *mze;
789	zap_name_t *zn;
790
791	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
792	if (err)
793		return (err);
794	zn = zap_name_alloc(zap, name, mt);
795	if (zn == NULL) {
796		zap_unlockdir(zap);
797		return (SET_ERROR(ENOTSUP));
798	}
799
800	if (!zap->zap_ismicro) {
801		err = fzap_lookup(zn, integer_size, num_integers, buf,
802		    realname, rn_len, ncp);
803	} else {
804		mze = mze_find(zn);
805		if (mze == NULL) {
806			err = SET_ERROR(ENOENT);
807		} else {
808			if (num_integers < 1) {
809				err = SET_ERROR(EOVERFLOW);
810			} else if (integer_size != 8) {
811				err = SET_ERROR(EINVAL);
812			} else {
813				*(uint64_t *)buf =
814				    MZE_PHYS(zap, mze)->mze_value;
815				(void) strlcpy(realname,
816				    MZE_PHYS(zap, mze)->mze_name, rn_len);
817				if (ncp) {
818					*ncp = mzap_normalization_conflict(zap,
819					    zn, mze);
820				}
821			}
822		}
823	}
824	zap_name_free(zn);
825	zap_unlockdir(zap);
826	return (err);
827}
828
829int
830zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
831    int key_numints)
832{
833	zap_t *zap;
834	int err;
835	zap_name_t *zn;
836
837	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
838	if (err)
839		return (err);
840	zn = zap_name_alloc_uint64(zap, key, key_numints);
841	if (zn == NULL) {
842		zap_unlockdir(zap);
843		return (SET_ERROR(ENOTSUP));
844	}
845
846	fzap_prefetch(zn);
847	zap_name_free(zn);
848	zap_unlockdir(zap);
849	return (err);
850}
851
852int
853zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
854    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
855{
856	zap_t *zap;
857	int err;
858	zap_name_t *zn;
859
860	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
861	if (err)
862		return (err);
863	zn = zap_name_alloc_uint64(zap, key, key_numints);
864	if (zn == NULL) {
865		zap_unlockdir(zap);
866		return (SET_ERROR(ENOTSUP));
867	}
868
869	err = fzap_lookup(zn, integer_size, num_integers, buf,
870	    NULL, 0, NULL);
871	zap_name_free(zn);
872	zap_unlockdir(zap);
873	return (err);
874}
875
876int
877zap_contains(objset_t *os, uint64_t zapobj, const char *name)
878{
879	int err = zap_lookup_norm(os, zapobj, name, 0,
880	    0, NULL, MT_EXACT, NULL, 0, NULL);
881	if (err == EOVERFLOW || err == EINVAL)
882		err = 0; /* found, but skipped reading the value */
883	return (err);
884}
885
886int
887zap_length(objset_t *os, uint64_t zapobj, const char *name,
888    uint64_t *integer_size, uint64_t *num_integers)
889{
890	zap_t *zap;
891	int err;
892	mzap_ent_t *mze;
893	zap_name_t *zn;
894
895	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
896	if (err)
897		return (err);
898	zn = zap_name_alloc(zap, name, MT_EXACT);
899	if (zn == NULL) {
900		zap_unlockdir(zap);
901		return (SET_ERROR(ENOTSUP));
902	}
903	if (!zap->zap_ismicro) {
904		err = fzap_length(zn, integer_size, num_integers);
905	} else {
906		mze = mze_find(zn);
907		if (mze == NULL) {
908			err = SET_ERROR(ENOENT);
909		} else {
910			if (integer_size)
911				*integer_size = 8;
912			if (num_integers)
913				*num_integers = 1;
914		}
915	}
916	zap_name_free(zn);
917	zap_unlockdir(zap);
918	return (err);
919}
920
921int
922zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
923    int key_numints, uint64_t *integer_size, uint64_t *num_integers)
924{
925	zap_t *zap;
926	int err;
927	zap_name_t *zn;
928
929	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
930	if (err)
931		return (err);
932	zn = zap_name_alloc_uint64(zap, key, key_numints);
933	if (zn == NULL) {
934		zap_unlockdir(zap);
935		return (SET_ERROR(ENOTSUP));
936	}
937	err = fzap_length(zn, integer_size, num_integers);
938	zap_name_free(zn);
939	zap_unlockdir(zap);
940	return (err);
941}
942
943static void
944mzap_addent(zap_name_t *zn, uint64_t value)
945{
946	int i;
947	zap_t *zap = zn->zn_zap;
948	int start = zap->zap_m.zap_alloc_next;
949	uint32_t cd;
950
951	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
952
953#ifdef ZFS_DEBUG
954	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
955		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
956		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
957	}
958#endif
959
960	cd = mze_find_unused_cd(zap, zn->zn_hash);
961	/* given the limited size of the microzap, this can't happen */
962	ASSERT(cd < zap_maxcd(zap));
963
964again:
965	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
966		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
967		if (mze->mze_name[0] == 0) {
968			mze->mze_value = value;
969			mze->mze_cd = cd;
970			(void) strcpy(mze->mze_name, zn->zn_key_orig);
971			zap->zap_m.zap_num_entries++;
972			zap->zap_m.zap_alloc_next = i+1;
973			if (zap->zap_m.zap_alloc_next ==
974			    zap->zap_m.zap_num_chunks)
975				zap->zap_m.zap_alloc_next = 0;
976			VERIFY(0 == mze_insert(zap, i, zn->zn_hash));
977			return;
978		}
979	}
980	if (start != 0) {
981		start = 0;
982		goto again;
983	}
984	ASSERT(!"out of entries!");
985}
986
987int
988zap_add(objset_t *os, uint64_t zapobj, const char *key,
989    int integer_size, uint64_t num_integers,
990    const void *val, dmu_tx_t *tx)
991{
992	zap_t *zap;
993	int err;
994	mzap_ent_t *mze;
995	const uint64_t *intval = val;
996	zap_name_t *zn;
997
998	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
999	if (err)
1000		return (err);
1001	zn = zap_name_alloc(zap, key, MT_EXACT);
1002	if (zn == NULL) {
1003		zap_unlockdir(zap);
1004		return (SET_ERROR(ENOTSUP));
1005	}
1006	if (!zap->zap_ismicro) {
1007		err = fzap_add(zn, integer_size, num_integers, val, tx);
1008		zap = zn->zn_zap;	/* fzap_add() may change zap */
1009	} else if (integer_size != 8 || num_integers != 1 ||
1010	    strlen(key) >= MZAP_NAME_LEN) {
1011		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1012		if (err == 0)
1013			err = fzap_add(zn, integer_size, num_integers, val, tx);
1014		zap = zn->zn_zap;	/* fzap_add() may change zap */
1015	} else {
1016		mze = mze_find(zn);
1017		if (mze != NULL) {
1018			err = SET_ERROR(EEXIST);
1019		} else {
1020			mzap_addent(zn, *intval);
1021		}
1022	}
1023	ASSERT(zap == zn->zn_zap);
1024	zap_name_free(zn);
1025	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1026		zap_unlockdir(zap);
1027	return (err);
1028}
1029
1030int
1031zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1032    int key_numints, int integer_size, uint64_t num_integers,
1033    const void *val, dmu_tx_t *tx)
1034{
1035	zap_t *zap;
1036	int err;
1037	zap_name_t *zn;
1038
1039	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1040	if (err)
1041		return (err);
1042	zn = zap_name_alloc_uint64(zap, key, key_numints);
1043	if (zn == NULL) {
1044		zap_unlockdir(zap);
1045		return (SET_ERROR(ENOTSUP));
1046	}
1047	err = fzap_add(zn, integer_size, num_integers, val, tx);
1048	zap = zn->zn_zap;	/* fzap_add() may change zap */
1049	zap_name_free(zn);
1050	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1051		zap_unlockdir(zap);
1052	return (err);
1053}
1054
1055int
1056zap_update(objset_t *os, uint64_t zapobj, const char *name,
1057    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1058{
1059	zap_t *zap;
1060	mzap_ent_t *mze;
1061	uint64_t oldval;
1062	const uint64_t *intval = val;
1063	zap_name_t *zn;
1064	int err;
1065
1066#ifdef ZFS_DEBUG
1067	/*
1068	 * If there is an old value, it shouldn't change across the
1069	 * lockdir (eg, due to bprewrite's xlation).
1070	 */
1071	if (integer_size == 8 && num_integers == 1)
1072		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1073#endif
1074
1075	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1076	if (err)
1077		return (err);
1078	zn = zap_name_alloc(zap, name, MT_EXACT);
1079	if (zn == NULL) {
1080		zap_unlockdir(zap);
1081		return (SET_ERROR(ENOTSUP));
1082	}
1083	if (!zap->zap_ismicro) {
1084		err = fzap_update(zn, integer_size, num_integers, val, tx);
1085		zap = zn->zn_zap;	/* fzap_update() may change zap */
1086	} else if (integer_size != 8 || num_integers != 1 ||
1087	    strlen(name) >= MZAP_NAME_LEN) {
1088		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1089		    zapobj, integer_size, num_integers, name);
1090		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1091		if (err == 0)
1092			err = fzap_update(zn, integer_size, num_integers,
1093			    val, tx);
1094		zap = zn->zn_zap;	/* fzap_update() may change zap */
1095	} else {
1096		mze = mze_find(zn);
1097		if (mze != NULL) {
1098			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1099			MZE_PHYS(zap, mze)->mze_value = *intval;
1100		} else {
1101			mzap_addent(zn, *intval);
1102		}
1103	}
1104	ASSERT(zap == zn->zn_zap);
1105	zap_name_free(zn);
1106	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1107		zap_unlockdir(zap);
1108	return (err);
1109}
1110
1111int
1112zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1113    int key_numints,
1114    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1115{
1116	zap_t *zap;
1117	zap_name_t *zn;
1118	int err;
1119
1120	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1121	if (err)
1122		return (err);
1123	zn = zap_name_alloc_uint64(zap, key, key_numints);
1124	if (zn == NULL) {
1125		zap_unlockdir(zap);
1126		return (SET_ERROR(ENOTSUP));
1127	}
1128	err = fzap_update(zn, integer_size, num_integers, val, tx);
1129	zap = zn->zn_zap;	/* fzap_update() may change zap */
1130	zap_name_free(zn);
1131	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1132		zap_unlockdir(zap);
1133	return (err);
1134}
1135
1136int
1137zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1138{
1139	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1140}
1141
1142int
1143zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1144    matchtype_t mt, dmu_tx_t *tx)
1145{
1146	zap_t *zap;
1147	int err;
1148	mzap_ent_t *mze;
1149	zap_name_t *zn;
1150
1151	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1152	if (err)
1153		return (err);
1154	zn = zap_name_alloc(zap, name, mt);
1155	if (zn == NULL) {
1156		zap_unlockdir(zap);
1157		return (SET_ERROR(ENOTSUP));
1158	}
1159	if (!zap->zap_ismicro) {
1160		err = fzap_remove(zn, tx);
1161	} else {
1162		mze = mze_find(zn);
1163		if (mze == NULL) {
1164			err = SET_ERROR(ENOENT);
1165		} else {
1166			zap->zap_m.zap_num_entries--;
1167			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1168			    sizeof (mzap_ent_phys_t));
1169			mze_remove(zap, mze);
1170		}
1171	}
1172	zap_name_free(zn);
1173	zap_unlockdir(zap);
1174	return (err);
1175}
1176
1177int
1178zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1179    int key_numints, dmu_tx_t *tx)
1180{
1181	zap_t *zap;
1182	int err;
1183	zap_name_t *zn;
1184
1185	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1186	if (err)
1187		return (err);
1188	zn = zap_name_alloc_uint64(zap, key, key_numints);
1189	if (zn == NULL) {
1190		zap_unlockdir(zap);
1191		return (SET_ERROR(ENOTSUP));
1192	}
1193	err = fzap_remove(zn, tx);
1194	zap_name_free(zn);
1195	zap_unlockdir(zap);
1196	return (err);
1197}
1198
1199/*
1200 * Routines for iterating over the attributes.
1201 */
1202
1203void
1204zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1205    uint64_t serialized)
1206{
1207	zc->zc_objset = os;
1208	zc->zc_zap = NULL;
1209	zc->zc_leaf = NULL;
1210	zc->zc_zapobj = zapobj;
1211	zc->zc_serialized = serialized;
1212	zc->zc_hash = 0;
1213	zc->zc_cd = 0;
1214}
1215
1216void
1217zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1218{
1219	zap_cursor_init_serialized(zc, os, zapobj, 0);
1220}
1221
1222void
1223zap_cursor_fini(zap_cursor_t *zc)
1224{
1225	if (zc->zc_zap) {
1226		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1227		zap_unlockdir(zc->zc_zap);
1228		zc->zc_zap = NULL;
1229	}
1230	if (zc->zc_leaf) {
1231		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1232		zap_put_leaf(zc->zc_leaf);
1233		zc->zc_leaf = NULL;
1234	}
1235	zc->zc_objset = NULL;
1236}
1237
1238uint64_t
1239zap_cursor_serialize(zap_cursor_t *zc)
1240{
1241	if (zc->zc_hash == -1ULL)
1242		return (-1ULL);
1243	if (zc->zc_zap == NULL)
1244		return (zc->zc_serialized);
1245	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1246	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1247
1248	/*
1249	 * We want to keep the high 32 bits of the cursor zero if we can, so
1250	 * that 32-bit programs can access this.  So usually use a small
1251	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1252	 * of the cursor.
1253	 *
1254	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1255	 */
1256	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1257	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1258}
1259
1260int
1261zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1262{
1263	int err;
1264	avl_index_t idx;
1265	mzap_ent_t mze_tofind;
1266	mzap_ent_t *mze;
1267
1268	if (zc->zc_hash == -1ULL)
1269		return (SET_ERROR(ENOENT));
1270
1271	if (zc->zc_zap == NULL) {
1272		int hb;
1273		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1274		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1275		if (err)
1276			return (err);
1277
1278		/*
1279		 * To support zap_cursor_init_serialized, advance, retrieve,
1280		 * we must add to the existing zc_cd, which may already
1281		 * be 1 due to the zap_cursor_advance.
1282		 */
1283		ASSERT(zc->zc_hash == 0);
1284		hb = zap_hashbits(zc->zc_zap);
1285		zc->zc_hash = zc->zc_serialized << (64 - hb);
1286		zc->zc_cd += zc->zc_serialized >> hb;
1287		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1288			zc->zc_cd = 0;
1289	} else {
1290		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1291	}
1292	if (!zc->zc_zap->zap_ismicro) {
1293		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1294	} else {
1295		mze_tofind.mze_hash = zc->zc_hash;
1296		mze_tofind.mze_cd = zc->zc_cd;
1297
1298		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1299		if (mze == NULL) {
1300			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1301			    idx, AVL_AFTER);
1302		}
1303		if (mze) {
1304			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1305			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1306			za->za_normalization_conflict =
1307			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1308			za->za_integer_length = 8;
1309			za->za_num_integers = 1;
1310			za->za_first_integer = mzep->mze_value;
1311			(void) strcpy(za->za_name, mzep->mze_name);
1312			zc->zc_hash = mze->mze_hash;
1313			zc->zc_cd = mze->mze_cd;
1314			err = 0;
1315		} else {
1316			zc->zc_hash = -1ULL;
1317			err = SET_ERROR(ENOENT);
1318		}
1319	}
1320	rw_exit(&zc->zc_zap->zap_rwlock);
1321	return (err);
1322}
1323
1324void
1325zap_cursor_advance(zap_cursor_t *zc)
1326{
1327	if (zc->zc_hash == -1ULL)
1328		return;
1329	zc->zc_cd++;
1330}
1331
1332int
1333zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1334{
1335	int err = 0;
1336	mzap_ent_t *mze;
1337	zap_name_t *zn;
1338
1339	if (zc->zc_zap == NULL) {
1340		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1341		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1342		if (err)
1343			return (err);
1344	} else {
1345		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1346	}
1347
1348	zn = zap_name_alloc(zc->zc_zap, name, mt);
1349	if (zn == NULL) {
1350		rw_exit(&zc->zc_zap->zap_rwlock);
1351		return (SET_ERROR(ENOTSUP));
1352	}
1353
1354	if (!zc->zc_zap->zap_ismicro) {
1355		err = fzap_cursor_move_to_key(zc, zn);
1356	} else {
1357		mze = mze_find(zn);
1358		if (mze == NULL) {
1359			err = SET_ERROR(ENOENT);
1360			goto out;
1361		}
1362		zc->zc_hash = mze->mze_hash;
1363		zc->zc_cd = mze->mze_cd;
1364	}
1365
1366out:
1367	zap_name_free(zn);
1368	rw_exit(&zc->zc_zap->zap_rwlock);
1369	return (err);
1370}
1371
1372int
1373zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1374{
1375	int err;
1376	zap_t *zap;
1377
1378	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1379	if (err)
1380		return (err);
1381
1382	bzero(zs, sizeof (zap_stats_t));
1383
1384	if (zap->zap_ismicro) {
1385		zs->zs_blocksize = zap->zap_dbuf->db_size;
1386		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1387		zs->zs_num_blocks = 1;
1388	} else {
1389		fzap_get_stats(zap, zs);
1390	}
1391	zap_unlockdir(zap);
1392	return (0);
1393}
1394
1395int
1396zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1397    uint64_t *towrite, uint64_t *tooverwrite)
1398{
1399	zap_t *zap;
1400	int err = 0;
1401
1402	/*
1403	 * Since, we don't have a name, we cannot figure out which blocks will
1404	 * be affected in this operation. So, account for the worst case :
1405	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1406	 * - 4 new blocks written if adding:
1407	 * 	- 2 blocks for possibly split leaves,
1408	 * 	- 2 grown ptrtbl blocks
1409	 *
1410	 * This also accomodates the case where an add operation to a fairly
1411	 * large microzap results in a promotion to fatzap.
1412	 */
1413	if (name == NULL) {
1414		*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1415		return (err);
1416	}
1417
1418	/*
1419	 * We lock the zap with adding == FALSE. Because, if we pass
1420	 * the actual value of add, it could trigger a mzap_upgrade().
1421	 * At present we are just evaluating the possibility of this operation
1422	 * and hence we donot want to trigger an upgrade.
1423	 */
1424	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1425	if (err)
1426		return (err);
1427
1428	if (!zap->zap_ismicro) {
1429		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1430		if (zn) {
1431			err = fzap_count_write(zn, add, towrite,
1432			    tooverwrite);
1433			zap_name_free(zn);
1434		} else {
1435			/*
1436			 * We treat this case as similar to (name == NULL)
1437			 */
1438			*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1439		}
1440	} else {
1441		/*
1442		 * We are here if (name != NULL) and this is a micro-zap.
1443		 * We account for the header block depending on whether it
1444		 * is freeable.
1445		 *
1446		 * Incase of an add-operation it is hard to find out
1447		 * if this add will promote this microzap to fatzap.
1448		 * Hence, we consider the worst case and account for the
1449		 * blocks assuming this microzap would be promoted to a
1450		 * fatzap.
1451		 *
1452		 * 1 block overwritten  : header block
1453		 * 4 new blocks written : 2 new split leaf, 2 grown
1454		 *			ptrtbl blocks
1455		 */
1456		if (dmu_buf_freeable(zap->zap_dbuf))
1457			*tooverwrite += MZAP_MAX_BLKSZ;
1458		else
1459			*towrite += MZAP_MAX_BLKSZ;
1460
1461		if (add) {
1462			*towrite += 4 * MZAP_MAX_BLKSZ;
1463		}
1464	}
1465
1466	zap_unlockdir(zap);
1467	return (err);
1468}
1469