zap_micro.c revision 236884
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26#include <sys/zio.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zfs_context.h>
30#include <sys/zap.h>
31#include <sys/refcount.h>
32#include <sys/zap_impl.h>
33#include <sys/zap_leaf.h>
34#include <sys/avl.h>
35#include <sys/arc.h>
36
37#ifdef _KERNEL
38#include <sys/sunddi.h>
39#endif
40
41static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
42
43uint64_t
44zap_getflags(zap_t *zap)
45{
46	if (zap->zap_ismicro)
47		return (0);
48	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
49}
50
51int
52zap_hashbits(zap_t *zap)
53{
54	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
55		return (48);
56	else
57		return (28);
58}
59
60uint32_t
61zap_maxcd(zap_t *zap)
62{
63	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
64		return ((1<<16)-1);
65	else
66		return (-1U);
67}
68
69static uint64_t
70zap_hash(zap_name_t *zn)
71{
72	zap_t *zap = zn->zn_zap;
73	uint64_t h = 0;
74
75	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
76		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
77		h = *(uint64_t *)zn->zn_key_orig;
78	} else {
79		h = zap->zap_salt;
80		ASSERT(h != 0);
81		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
82
83		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
84			int i;
85			const uint64_t *wp = zn->zn_key_norm;
86
87			ASSERT(zn->zn_key_intlen == 8);
88			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
89				int j;
90				uint64_t word = *wp;
91
92				for (j = 0; j < zn->zn_key_intlen; j++) {
93					h = (h >> 8) ^
94					    zfs_crc64_table[(h ^ word) & 0xFF];
95					word >>= NBBY;
96				}
97			}
98		} else {
99			int i, len;
100			const uint8_t *cp = zn->zn_key_norm;
101
102			/*
103			 * We previously stored the terminating null on
104			 * disk, but didn't hash it, so we need to
105			 * continue to not hash it.  (The
106			 * zn_key_*_numints includes the terminating
107			 * null for non-binary keys.)
108			 */
109			len = zn->zn_key_norm_numints - 1;
110
111			ASSERT(zn->zn_key_intlen == 1);
112			for (i = 0; i < len; cp++, i++) {
113				h = (h >> 8) ^
114				    zfs_crc64_table[(h ^ *cp) & 0xFF];
115			}
116		}
117	}
118	/*
119	 * Don't use all 64 bits, since we need some in the cookie for
120	 * the collision differentiator.  We MUST use the high bits,
121	 * since those are the ones that we first pay attention to when
122	 * chosing the bucket.
123	 */
124	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
125
126	return (h);
127}
128
129static int
130zap_normalize(zap_t *zap, const char *name, char *namenorm)
131{
132	size_t inlen, outlen;
133	int err;
134
135	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
136
137	inlen = strlen(name) + 1;
138	outlen = ZAP_MAXNAMELEN;
139
140	err = 0;
141	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
142	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
143	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
144
145	return (err);
146}
147
148boolean_t
149zap_match(zap_name_t *zn, const char *matchname)
150{
151	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
152
153	if (zn->zn_matchtype == MT_FIRST) {
154		char norm[ZAP_MAXNAMELEN];
155
156		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
157			return (B_FALSE);
158
159		return (strcmp(zn->zn_key_norm, norm) == 0);
160	} else {
161		/* MT_BEST or MT_EXACT */
162		return (strcmp(zn->zn_key_orig, matchname) == 0);
163	}
164}
165
166void
167zap_name_free(zap_name_t *zn)
168{
169	kmem_free(zn, sizeof (zap_name_t));
170}
171
172zap_name_t *
173zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
174{
175	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
176
177	zn->zn_zap = zap;
178	zn->zn_key_intlen = sizeof (*key);
179	zn->zn_key_orig = key;
180	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
181	zn->zn_matchtype = mt;
182	if (zap->zap_normflags) {
183		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
184			zap_name_free(zn);
185			return (NULL);
186		}
187		zn->zn_key_norm = zn->zn_normbuf;
188		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
189	} else {
190		if (mt != MT_EXACT) {
191			zap_name_free(zn);
192			return (NULL);
193		}
194		zn->zn_key_norm = zn->zn_key_orig;
195		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
196	}
197
198	zn->zn_hash = zap_hash(zn);
199	return (zn);
200}
201
202zap_name_t *
203zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
204{
205	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
206
207	ASSERT(zap->zap_normflags == 0);
208	zn->zn_zap = zap;
209	zn->zn_key_intlen = sizeof (*key);
210	zn->zn_key_orig = zn->zn_key_norm = key;
211	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
212	zn->zn_matchtype = MT_EXACT;
213
214	zn->zn_hash = zap_hash(zn);
215	return (zn);
216}
217
218static void
219mzap_byteswap(mzap_phys_t *buf, size_t size)
220{
221	int i, max;
222	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
223	buf->mz_salt = BSWAP_64(buf->mz_salt);
224	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
225	max = (size / MZAP_ENT_LEN) - 1;
226	for (i = 0; i < max; i++) {
227		buf->mz_chunk[i].mze_value =
228		    BSWAP_64(buf->mz_chunk[i].mze_value);
229		buf->mz_chunk[i].mze_cd =
230		    BSWAP_32(buf->mz_chunk[i].mze_cd);
231	}
232}
233
234void
235zap_byteswap(void *buf, size_t size)
236{
237	uint64_t block_type;
238
239	block_type = *(uint64_t *)buf;
240
241	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
242		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
243		mzap_byteswap(buf, size);
244	} else {
245		fzap_byteswap(buf, size);
246	}
247}
248
249static int
250mze_compare(const void *arg1, const void *arg2)
251{
252	const mzap_ent_t *mze1 = arg1;
253	const mzap_ent_t *mze2 = arg2;
254
255	if (mze1->mze_hash > mze2->mze_hash)
256		return (+1);
257	if (mze1->mze_hash < mze2->mze_hash)
258		return (-1);
259	if (mze1->mze_cd > mze2->mze_cd)
260		return (+1);
261	if (mze1->mze_cd < mze2->mze_cd)
262		return (-1);
263	return (0);
264}
265
266static int
267mze_insert(zap_t *zap, int chunkid, uint64_t hash)
268{
269	mzap_ent_t *mze;
270	avl_index_t idx;
271
272	ASSERT(zap->zap_ismicro);
273	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
274
275	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
276	mze->mze_chunkid = chunkid;
277	mze->mze_hash = hash;
278	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
279	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
280	if (avl_find(&zap->zap_m.zap_avl, mze, &idx) != NULL) {
281		kmem_free(mze, sizeof (mzap_ent_t));
282		return (EEXIST);
283	}
284	avl_insert(&zap->zap_m.zap_avl, mze, idx);
285	return (0);
286}
287
288static mzap_ent_t *
289mze_find(zap_name_t *zn)
290{
291	mzap_ent_t mze_tofind;
292	mzap_ent_t *mze;
293	avl_index_t idx;
294	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
295
296	ASSERT(zn->zn_zap->zap_ismicro);
297	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
298
299	mze_tofind.mze_hash = zn->zn_hash;
300	mze_tofind.mze_cd = 0;
301
302again:
303	mze = avl_find(avl, &mze_tofind, &idx);
304	if (mze == NULL)
305		mze = avl_nearest(avl, idx, AVL_AFTER);
306	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
307		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
308		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
309			return (mze);
310	}
311	if (zn->zn_matchtype == MT_BEST) {
312		zn->zn_matchtype = MT_FIRST;
313		goto again;
314	}
315	return (NULL);
316}
317
318static uint32_t
319mze_find_unused_cd(zap_t *zap, uint64_t hash)
320{
321	mzap_ent_t mze_tofind;
322	mzap_ent_t *mze;
323	avl_index_t idx;
324	avl_tree_t *avl = &zap->zap_m.zap_avl;
325	uint32_t cd;
326
327	ASSERT(zap->zap_ismicro);
328	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
329
330	mze_tofind.mze_hash = hash;
331	mze_tofind.mze_cd = 0;
332
333	cd = 0;
334	for (mze = avl_find(avl, &mze_tofind, &idx);
335	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
336		if (mze->mze_cd != cd)
337			break;
338		cd++;
339	}
340
341	return (cd);
342}
343
344static void
345mze_remove(zap_t *zap, mzap_ent_t *mze)
346{
347	ASSERT(zap->zap_ismicro);
348	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
349
350	avl_remove(&zap->zap_m.zap_avl, mze);
351	kmem_free(mze, sizeof (mzap_ent_t));
352}
353
354static void
355mze_destroy(zap_t *zap)
356{
357	mzap_ent_t *mze;
358	void *avlcookie = NULL;
359
360	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
361		kmem_free(mze, sizeof (mzap_ent_t));
362	avl_destroy(&zap->zap_m.zap_avl);
363}
364
365static zap_t *
366mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
367{
368	zap_t *winner;
369	zap_t *zap;
370	int i;
371
372	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
373
374	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
375	rw_init(&zap->zap_rwlock, 0, 0, 0);
376	rw_enter(&zap->zap_rwlock, RW_WRITER);
377	zap->zap_objset = os;
378	zap->zap_object = obj;
379	zap->zap_dbuf = db;
380
381	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
382		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
383		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
384	} else {
385		zap->zap_ismicro = TRUE;
386	}
387
388	/*
389	 * Make sure that zap_ismicro is set before we let others see
390	 * it, because zap_lockdir() checks zap_ismicro without the lock
391	 * held.
392	 */
393	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
394
395	if (winner != NULL) {
396		rw_exit(&zap->zap_rwlock);
397		rw_destroy(&zap->zap_rwlock);
398		if (!zap->zap_ismicro)
399			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
400		kmem_free(zap, sizeof (zap_t));
401		return (winner);
402	}
403
404	if (zap->zap_ismicro) {
405		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
406		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
407		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
408		avl_create(&zap->zap_m.zap_avl, mze_compare,
409		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
410
411		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
412			mzap_ent_phys_t *mze =
413			    &zap->zap_m.zap_phys->mz_chunk[i];
414			if (mze->mze_name[0]) {
415				zap_name_t *zn;
416
417				zn = zap_name_alloc(zap, mze->mze_name,
418				    MT_EXACT);
419				if (mze_insert(zap, i, zn->zn_hash) == 0)
420					zap->zap_m.zap_num_entries++;
421				else {
422					printf("ZFS WARNING: Duplicated ZAP "
423					    "entry detected (%s).\n",
424					    mze->mze_name);
425				}
426				zap_name_free(zn);
427			}
428		}
429	} else {
430		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
431		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
432
433		ASSERT3U(sizeof (struct zap_leaf_header), ==,
434		    2*ZAP_LEAF_CHUNKSIZE);
435
436		/*
437		 * The embedded pointer table should not overlap the
438		 * other members.
439		 */
440		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
441		    &zap->zap_f.zap_phys->zap_salt);
442
443		/*
444		 * The embedded pointer table should end at the end of
445		 * the block
446		 */
447		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
448		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
449		    (uintptr_t)zap->zap_f.zap_phys, ==,
450		    zap->zap_dbuf->db_size);
451	}
452	rw_exit(&zap->zap_rwlock);
453	return (zap);
454}
455
456int
457zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
458    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
459{
460	zap_t *zap;
461	dmu_buf_t *db;
462	krw_t lt;
463	int err;
464
465	*zapp = NULL;
466
467	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
468	if (err)
469		return (err);
470
471#ifdef ZFS_DEBUG
472	{
473		dmu_object_info_t doi;
474		dmu_object_info_from_db(db, &doi);
475		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
476	}
477#endif
478
479	zap = dmu_buf_get_user(db);
480	if (zap == NULL)
481		zap = mzap_open(os, obj, db);
482
483	/*
484	 * We're checking zap_ismicro without the lock held, in order to
485	 * tell what type of lock we want.  Once we have some sort of
486	 * lock, see if it really is the right type.  In practice this
487	 * can only be different if it was upgraded from micro to fat,
488	 * and micro wanted WRITER but fat only needs READER.
489	 */
490	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
491	rw_enter(&zap->zap_rwlock, lt);
492	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
493		/* it was upgraded, now we only need reader */
494		ASSERT(lt == RW_WRITER);
495		ASSERT(RW_READER ==
496		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
497		rw_downgrade(&zap->zap_rwlock);
498		lt = RW_READER;
499	}
500
501	zap->zap_objset = os;
502
503	if (lt == RW_WRITER)
504		dmu_buf_will_dirty(db, tx);
505
506	ASSERT3P(zap->zap_dbuf, ==, db);
507
508	ASSERT(!zap->zap_ismicro ||
509	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
510	if (zap->zap_ismicro && tx && adding &&
511	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
512		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
513		if (newsz > MZAP_MAX_BLKSZ) {
514			dprintf("upgrading obj %llu: num_entries=%u\n",
515			    obj, zap->zap_m.zap_num_entries);
516			*zapp = zap;
517			return (mzap_upgrade(zapp, tx, 0));
518		}
519		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
520		ASSERT3U(err, ==, 0);
521		zap->zap_m.zap_num_chunks =
522		    db->db_size / MZAP_ENT_LEN - 1;
523	}
524
525	*zapp = zap;
526	return (0);
527}
528
529void
530zap_unlockdir(zap_t *zap)
531{
532	rw_exit(&zap->zap_rwlock);
533	dmu_buf_rele(zap->zap_dbuf, NULL);
534}
535
536static int
537mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
538{
539	mzap_phys_t *mzp;
540	int i, sz, nchunks;
541	int err = 0;
542	zap_t *zap = *zapp;
543
544	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
545
546	sz = zap->zap_dbuf->db_size;
547	mzp = kmem_alloc(sz, KM_SLEEP);
548	bcopy(zap->zap_dbuf->db_data, mzp, sz);
549	nchunks = zap->zap_m.zap_num_chunks;
550
551	if (!flags) {
552		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
553		    1ULL << fzap_default_block_shift, 0, tx);
554		if (err) {
555			kmem_free(mzp, sz);
556			return (err);
557		}
558	}
559
560	dprintf("upgrading obj=%llu with %u chunks\n",
561	    zap->zap_object, nchunks);
562	/* XXX destroy the avl later, so we can use the stored hash value */
563	mze_destroy(zap);
564
565	fzap_upgrade(zap, tx, flags);
566
567	for (i = 0; i < nchunks; i++) {
568		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
569		zap_name_t *zn;
570		if (mze->mze_name[0] == 0)
571			continue;
572		dprintf("adding %s=%llu\n",
573		    mze->mze_name, mze->mze_value);
574		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
575		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
576		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
577		zap_name_free(zn);
578		if (err)
579			break;
580	}
581	kmem_free(mzp, sz);
582	*zapp = zap;
583	return (err);
584}
585
586static void
587mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
588    dmu_tx_t *tx)
589{
590	dmu_buf_t *db;
591	mzap_phys_t *zp;
592
593	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
594
595#ifdef ZFS_DEBUG
596	{
597		dmu_object_info_t doi;
598		dmu_object_info_from_db(db, &doi);
599		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
600	}
601#endif
602
603	dmu_buf_will_dirty(db, tx);
604	zp = db->db_data;
605	zp->mz_block_type = ZBT_MICRO;
606	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
607	zp->mz_normflags = normflags;
608	dmu_buf_rele(db, FTAG);
609
610	if (flags != 0) {
611		zap_t *zap;
612		/* Only fat zap supports flags; upgrade immediately. */
613		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
614		    B_FALSE, B_FALSE, &zap));
615		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
616		zap_unlockdir(zap);
617	}
618}
619
620int
621zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
622    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
623{
624	return (zap_create_claim_norm(os, obj,
625	    0, ot, bonustype, bonuslen, tx));
626}
627
628int
629zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
630    dmu_object_type_t ot,
631    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
632{
633	int err;
634
635	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
636	if (err != 0)
637		return (err);
638	mzap_create_impl(os, obj, normflags, 0, tx);
639	return (0);
640}
641
642uint64_t
643zap_create(objset_t *os, dmu_object_type_t ot,
644    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
645{
646	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
647}
648
649uint64_t
650zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
651    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
652{
653	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
654
655	mzap_create_impl(os, obj, normflags, 0, tx);
656	return (obj);
657}
658
659uint64_t
660zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
661    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
662    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
663{
664	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
665
666	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
667	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
668	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
669	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
670
671	VERIFY(dmu_object_set_blocksize(os, obj,
672	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
673
674	mzap_create_impl(os, obj, normflags, flags, tx);
675	return (obj);
676}
677
678int
679zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
680{
681	/*
682	 * dmu_object_free will free the object number and free the
683	 * data.  Freeing the data will cause our pageout function to be
684	 * called, which will destroy our data (zap_leaf_t's and zap_t).
685	 */
686
687	return (dmu_object_free(os, zapobj, tx));
688}
689
690_NOTE(ARGSUSED(0))
691void
692zap_evict(dmu_buf_t *db, void *vzap)
693{
694	zap_t *zap = vzap;
695
696	rw_destroy(&zap->zap_rwlock);
697
698	if (zap->zap_ismicro)
699		mze_destroy(zap);
700	else
701		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
702
703	kmem_free(zap, sizeof (zap_t));
704}
705
706int
707zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
708{
709	zap_t *zap;
710	int err;
711
712	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
713	if (err)
714		return (err);
715	if (!zap->zap_ismicro) {
716		err = fzap_count(zap, count);
717	} else {
718		*count = zap->zap_m.zap_num_entries;
719	}
720	zap_unlockdir(zap);
721	return (err);
722}
723
724/*
725 * zn may be NULL; if not specified, it will be computed if needed.
726 * See also the comment above zap_entry_normalization_conflict().
727 */
728static boolean_t
729mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
730{
731	mzap_ent_t *other;
732	int direction = AVL_BEFORE;
733	boolean_t allocdzn = B_FALSE;
734
735	if (zap->zap_normflags == 0)
736		return (B_FALSE);
737
738again:
739	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
740	    other && other->mze_hash == mze->mze_hash;
741	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
742
743		if (zn == NULL) {
744			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
745			    MT_FIRST);
746			allocdzn = B_TRUE;
747		}
748		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
749			if (allocdzn)
750				zap_name_free(zn);
751			return (B_TRUE);
752		}
753	}
754
755	if (direction == AVL_BEFORE) {
756		direction = AVL_AFTER;
757		goto again;
758	}
759
760	if (allocdzn)
761		zap_name_free(zn);
762	return (B_FALSE);
763}
764
765/*
766 * Routines for manipulating attributes.
767 */
768
769int
770zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
771    uint64_t integer_size, uint64_t num_integers, void *buf)
772{
773	return (zap_lookup_norm(os, zapobj, name, integer_size,
774	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
775}
776
777int
778zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
779    uint64_t integer_size, uint64_t num_integers, void *buf,
780    matchtype_t mt, char *realname, int rn_len,
781    boolean_t *ncp)
782{
783	zap_t *zap;
784	int err;
785	mzap_ent_t *mze;
786	zap_name_t *zn;
787
788	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
789	if (err)
790		return (err);
791	zn = zap_name_alloc(zap, name, mt);
792	if (zn == NULL) {
793		zap_unlockdir(zap);
794		return (ENOTSUP);
795	}
796
797	if (!zap->zap_ismicro) {
798		err = fzap_lookup(zn, integer_size, num_integers, buf,
799		    realname, rn_len, ncp);
800	} else {
801		mze = mze_find(zn);
802		if (mze == NULL) {
803			err = ENOENT;
804		} else {
805			if (num_integers < 1) {
806				err = EOVERFLOW;
807			} else if (integer_size != 8) {
808				err = EINVAL;
809			} else {
810				*(uint64_t *)buf =
811				    MZE_PHYS(zap, mze)->mze_value;
812				(void) strlcpy(realname,
813				    MZE_PHYS(zap, mze)->mze_name, rn_len);
814				if (ncp) {
815					*ncp = mzap_normalization_conflict(zap,
816					    zn, mze);
817				}
818			}
819		}
820	}
821	zap_name_free(zn);
822	zap_unlockdir(zap);
823	return (err);
824}
825
826int
827zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
828    int key_numints)
829{
830	zap_t *zap;
831	int err;
832	zap_name_t *zn;
833
834	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
835	if (err)
836		return (err);
837	zn = zap_name_alloc_uint64(zap, key, key_numints);
838	if (zn == NULL) {
839		zap_unlockdir(zap);
840		return (ENOTSUP);
841	}
842
843	fzap_prefetch(zn);
844	zap_name_free(zn);
845	zap_unlockdir(zap);
846	return (err);
847}
848
849int
850zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
851    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
852{
853	zap_t *zap;
854	int err;
855	zap_name_t *zn;
856
857	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
858	if (err)
859		return (err);
860	zn = zap_name_alloc_uint64(zap, key, key_numints);
861	if (zn == NULL) {
862		zap_unlockdir(zap);
863		return (ENOTSUP);
864	}
865
866	err = fzap_lookup(zn, integer_size, num_integers, buf,
867	    NULL, 0, NULL);
868	zap_name_free(zn);
869	zap_unlockdir(zap);
870	return (err);
871}
872
873int
874zap_contains(objset_t *os, uint64_t zapobj, const char *name)
875{
876	int err = (zap_lookup_norm(os, zapobj, name, 0,
877	    0, NULL, MT_EXACT, NULL, 0, NULL));
878	if (err == EOVERFLOW || err == EINVAL)
879		err = 0; /* found, but skipped reading the value */
880	return (err);
881}
882
883int
884zap_length(objset_t *os, uint64_t zapobj, const char *name,
885    uint64_t *integer_size, uint64_t *num_integers)
886{
887	zap_t *zap;
888	int err;
889	mzap_ent_t *mze;
890	zap_name_t *zn;
891
892	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
893	if (err)
894		return (err);
895	zn = zap_name_alloc(zap, name, MT_EXACT);
896	if (zn == NULL) {
897		zap_unlockdir(zap);
898		return (ENOTSUP);
899	}
900	if (!zap->zap_ismicro) {
901		err = fzap_length(zn, integer_size, num_integers);
902	} else {
903		mze = mze_find(zn);
904		if (mze == NULL) {
905			err = ENOENT;
906		} else {
907			if (integer_size)
908				*integer_size = 8;
909			if (num_integers)
910				*num_integers = 1;
911		}
912	}
913	zap_name_free(zn);
914	zap_unlockdir(zap);
915	return (err);
916}
917
918int
919zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
920    int key_numints, uint64_t *integer_size, uint64_t *num_integers)
921{
922	zap_t *zap;
923	int err;
924	zap_name_t *zn;
925
926	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
927	if (err)
928		return (err);
929	zn = zap_name_alloc_uint64(zap, key, key_numints);
930	if (zn == NULL) {
931		zap_unlockdir(zap);
932		return (ENOTSUP);
933	}
934	err = fzap_length(zn, integer_size, num_integers);
935	zap_name_free(zn);
936	zap_unlockdir(zap);
937	return (err);
938}
939
940static void
941mzap_addent(zap_name_t *zn, uint64_t value)
942{
943	int i;
944	zap_t *zap = zn->zn_zap;
945	int start = zap->zap_m.zap_alloc_next;
946	uint32_t cd;
947
948	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
949
950#ifdef ZFS_DEBUG
951	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
952		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
953		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
954	}
955#endif
956
957	cd = mze_find_unused_cd(zap, zn->zn_hash);
958	/* given the limited size of the microzap, this can't happen */
959	ASSERT(cd < zap_maxcd(zap));
960
961again:
962	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
963		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
964		if (mze->mze_name[0] == 0) {
965			mze->mze_value = value;
966			mze->mze_cd = cd;
967			(void) strcpy(mze->mze_name, zn->zn_key_orig);
968			zap->zap_m.zap_num_entries++;
969			zap->zap_m.zap_alloc_next = i+1;
970			if (zap->zap_m.zap_alloc_next ==
971			    zap->zap_m.zap_num_chunks)
972				zap->zap_m.zap_alloc_next = 0;
973			VERIFY(0 == mze_insert(zap, i, zn->zn_hash));
974			return;
975		}
976	}
977	if (start != 0) {
978		start = 0;
979		goto again;
980	}
981	ASSERT(!"out of entries!");
982}
983
984int
985zap_add(objset_t *os, uint64_t zapobj, const char *key,
986    int integer_size, uint64_t num_integers,
987    const void *val, dmu_tx_t *tx)
988{
989	zap_t *zap;
990	int err;
991	mzap_ent_t *mze;
992	const uint64_t *intval = val;
993	zap_name_t *zn;
994
995	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
996	if (err)
997		return (err);
998	zn = zap_name_alloc(zap, key, MT_EXACT);
999	if (zn == NULL) {
1000		zap_unlockdir(zap);
1001		return (ENOTSUP);
1002	}
1003	if (!zap->zap_ismicro) {
1004		err = fzap_add(zn, integer_size, num_integers, val, tx);
1005		zap = zn->zn_zap;	/* fzap_add() may change zap */
1006	} else if (integer_size != 8 || num_integers != 1 ||
1007	    strlen(key) >= MZAP_NAME_LEN) {
1008		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1009		if (err == 0)
1010			err = fzap_add(zn, integer_size, num_integers, val, tx);
1011		zap = zn->zn_zap;	/* fzap_add() may change zap */
1012	} else {
1013		mze = mze_find(zn);
1014		if (mze != NULL) {
1015			err = EEXIST;
1016		} else {
1017			mzap_addent(zn, *intval);
1018		}
1019	}
1020	ASSERT(zap == zn->zn_zap);
1021	zap_name_free(zn);
1022	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1023		zap_unlockdir(zap);
1024	return (err);
1025}
1026
1027int
1028zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1029    int key_numints, int integer_size, uint64_t num_integers,
1030    const void *val, dmu_tx_t *tx)
1031{
1032	zap_t *zap;
1033	int err;
1034	zap_name_t *zn;
1035
1036	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1037	if (err)
1038		return (err);
1039	zn = zap_name_alloc_uint64(zap, key, key_numints);
1040	if (zn == NULL) {
1041		zap_unlockdir(zap);
1042		return (ENOTSUP);
1043	}
1044	err = fzap_add(zn, integer_size, num_integers, val, tx);
1045	zap = zn->zn_zap;	/* fzap_add() may change zap */
1046	zap_name_free(zn);
1047	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1048		zap_unlockdir(zap);
1049	return (err);
1050}
1051
1052int
1053zap_update(objset_t *os, uint64_t zapobj, const char *name,
1054    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1055{
1056	zap_t *zap;
1057	mzap_ent_t *mze;
1058	uint64_t oldval;
1059	const uint64_t *intval = val;
1060	zap_name_t *zn;
1061	int err;
1062
1063#ifdef ZFS_DEBUG
1064	/*
1065	 * If there is an old value, it shouldn't change across the
1066	 * lockdir (eg, due to bprewrite's xlation).
1067	 */
1068	if (integer_size == 8 && num_integers == 1)
1069		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1070#endif
1071
1072	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1073	if (err)
1074		return (err);
1075	zn = zap_name_alloc(zap, name, MT_EXACT);
1076	if (zn == NULL) {
1077		zap_unlockdir(zap);
1078		return (ENOTSUP);
1079	}
1080	if (!zap->zap_ismicro) {
1081		err = fzap_update(zn, integer_size, num_integers, val, tx);
1082		zap = zn->zn_zap;	/* fzap_update() may change zap */
1083	} else if (integer_size != 8 || num_integers != 1 ||
1084	    strlen(name) >= MZAP_NAME_LEN) {
1085		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1086		    zapobj, integer_size, num_integers, name);
1087		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1088		if (err == 0)
1089			err = fzap_update(zn, integer_size, num_integers,
1090			    val, tx);
1091		zap = zn->zn_zap;	/* fzap_update() may change zap */
1092	} else {
1093		mze = mze_find(zn);
1094		if (mze != NULL) {
1095			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1096			MZE_PHYS(zap, mze)->mze_value = *intval;
1097		} else {
1098			mzap_addent(zn, *intval);
1099		}
1100	}
1101	ASSERT(zap == zn->zn_zap);
1102	zap_name_free(zn);
1103	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1104		zap_unlockdir(zap);
1105	return (err);
1106}
1107
1108int
1109zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1110    int key_numints,
1111    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1112{
1113	zap_t *zap;
1114	zap_name_t *zn;
1115	int err;
1116
1117	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1118	if (err)
1119		return (err);
1120	zn = zap_name_alloc_uint64(zap, key, key_numints);
1121	if (zn == NULL) {
1122		zap_unlockdir(zap);
1123		return (ENOTSUP);
1124	}
1125	err = fzap_update(zn, integer_size, num_integers, val, tx);
1126	zap = zn->zn_zap;	/* fzap_update() may change zap */
1127	zap_name_free(zn);
1128	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1129		zap_unlockdir(zap);
1130	return (err);
1131}
1132
1133int
1134zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1135{
1136	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1137}
1138
1139int
1140zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1141    matchtype_t mt, dmu_tx_t *tx)
1142{
1143	zap_t *zap;
1144	int err;
1145	mzap_ent_t *mze;
1146	zap_name_t *zn;
1147
1148	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1149	if (err)
1150		return (err);
1151	zn = zap_name_alloc(zap, name, mt);
1152	if (zn == NULL) {
1153		zap_unlockdir(zap);
1154		return (ENOTSUP);
1155	}
1156	if (!zap->zap_ismicro) {
1157		err = fzap_remove(zn, tx);
1158	} else {
1159		mze = mze_find(zn);
1160		if (mze == NULL) {
1161			err = ENOENT;
1162		} else {
1163			zap->zap_m.zap_num_entries--;
1164			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1165			    sizeof (mzap_ent_phys_t));
1166			mze_remove(zap, mze);
1167		}
1168	}
1169	zap_name_free(zn);
1170	zap_unlockdir(zap);
1171	return (err);
1172}
1173
1174int
1175zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1176    int key_numints, dmu_tx_t *tx)
1177{
1178	zap_t *zap;
1179	int err;
1180	zap_name_t *zn;
1181
1182	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1183	if (err)
1184		return (err);
1185	zn = zap_name_alloc_uint64(zap, key, key_numints);
1186	if (zn == NULL) {
1187		zap_unlockdir(zap);
1188		return (ENOTSUP);
1189	}
1190	err = fzap_remove(zn, tx);
1191	zap_name_free(zn);
1192	zap_unlockdir(zap);
1193	return (err);
1194}
1195
1196/*
1197 * Routines for iterating over the attributes.
1198 */
1199
1200void
1201zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1202    uint64_t serialized)
1203{
1204	zc->zc_objset = os;
1205	zc->zc_zap = NULL;
1206	zc->zc_leaf = NULL;
1207	zc->zc_zapobj = zapobj;
1208	zc->zc_serialized = serialized;
1209	zc->zc_hash = 0;
1210	zc->zc_cd = 0;
1211}
1212
1213void
1214zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1215{
1216	zap_cursor_init_serialized(zc, os, zapobj, 0);
1217}
1218
1219void
1220zap_cursor_fini(zap_cursor_t *zc)
1221{
1222	if (zc->zc_zap) {
1223		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1224		zap_unlockdir(zc->zc_zap);
1225		zc->zc_zap = NULL;
1226	}
1227	if (zc->zc_leaf) {
1228		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1229		zap_put_leaf(zc->zc_leaf);
1230		zc->zc_leaf = NULL;
1231	}
1232	zc->zc_objset = NULL;
1233}
1234
1235uint64_t
1236zap_cursor_serialize(zap_cursor_t *zc)
1237{
1238	if (zc->zc_hash == -1ULL)
1239		return (-1ULL);
1240	if (zc->zc_zap == NULL)
1241		return (zc->zc_serialized);
1242	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1243	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1244
1245	/*
1246	 * We want to keep the high 32 bits of the cursor zero if we can, so
1247	 * that 32-bit programs can access this.  So usually use a small
1248	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1249	 * of the cursor.
1250	 *
1251	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1252	 */
1253	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1254	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1255}
1256
1257int
1258zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1259{
1260	int err;
1261	avl_index_t idx;
1262	mzap_ent_t mze_tofind;
1263	mzap_ent_t *mze;
1264
1265	if (zc->zc_hash == -1ULL)
1266		return (ENOENT);
1267
1268	if (zc->zc_zap == NULL) {
1269		int hb;
1270		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1271		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1272		if (err)
1273			return (err);
1274
1275		/*
1276		 * To support zap_cursor_init_serialized, advance, retrieve,
1277		 * we must add to the existing zc_cd, which may already
1278		 * be 1 due to the zap_cursor_advance.
1279		 */
1280		ASSERT(zc->zc_hash == 0);
1281		hb = zap_hashbits(zc->zc_zap);
1282		zc->zc_hash = zc->zc_serialized << (64 - hb);
1283		zc->zc_cd += zc->zc_serialized >> hb;
1284		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1285			zc->zc_cd = 0;
1286	} else {
1287		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1288	}
1289	if (!zc->zc_zap->zap_ismicro) {
1290		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1291	} else {
1292		err = ENOENT;
1293
1294		mze_tofind.mze_hash = zc->zc_hash;
1295		mze_tofind.mze_cd = zc->zc_cd;
1296
1297		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1298		if (mze == NULL) {
1299			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1300			    idx, AVL_AFTER);
1301		}
1302		if (mze) {
1303			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1304			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1305			za->za_normalization_conflict =
1306			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1307			za->za_integer_length = 8;
1308			za->za_num_integers = 1;
1309			za->za_first_integer = mzep->mze_value;
1310			(void) strcpy(za->za_name, mzep->mze_name);
1311			zc->zc_hash = mze->mze_hash;
1312			zc->zc_cd = mze->mze_cd;
1313			err = 0;
1314		} else {
1315			zc->zc_hash = -1ULL;
1316		}
1317	}
1318	rw_exit(&zc->zc_zap->zap_rwlock);
1319	return (err);
1320}
1321
1322void
1323zap_cursor_advance(zap_cursor_t *zc)
1324{
1325	if (zc->zc_hash == -1ULL)
1326		return;
1327	zc->zc_cd++;
1328}
1329
1330int
1331zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1332{
1333	int err = 0;
1334	mzap_ent_t *mze;
1335	zap_name_t *zn;
1336
1337	if (zc->zc_zap == NULL) {
1338		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1339		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1340		if (err)
1341			return (err);
1342	} else {
1343		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1344	}
1345
1346	zn = zap_name_alloc(zc->zc_zap, name, mt);
1347	if (zn == NULL) {
1348		rw_exit(&zc->zc_zap->zap_rwlock);
1349		return (ENOTSUP);
1350	}
1351
1352	if (!zc->zc_zap->zap_ismicro) {
1353		err = fzap_cursor_move_to_key(zc, zn);
1354	} else {
1355		mze = mze_find(zn);
1356		if (mze == NULL) {
1357			err = ENOENT;
1358			goto out;
1359		}
1360		zc->zc_hash = mze->mze_hash;
1361		zc->zc_cd = mze->mze_cd;
1362	}
1363
1364out:
1365	zap_name_free(zn);
1366	rw_exit(&zc->zc_zap->zap_rwlock);
1367	return (err);
1368}
1369
1370int
1371zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1372{
1373	int err;
1374	zap_t *zap;
1375
1376	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1377	if (err)
1378		return (err);
1379
1380	bzero(zs, sizeof (zap_stats_t));
1381
1382	if (zap->zap_ismicro) {
1383		zs->zs_blocksize = zap->zap_dbuf->db_size;
1384		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1385		zs->zs_num_blocks = 1;
1386	} else {
1387		fzap_get_stats(zap, zs);
1388	}
1389	zap_unlockdir(zap);
1390	return (0);
1391}
1392
1393int
1394zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1395    uint64_t *towrite, uint64_t *tooverwrite)
1396{
1397	zap_t *zap;
1398	int err = 0;
1399
1400
1401	/*
1402	 * Since, we don't have a name, we cannot figure out which blocks will
1403	 * be affected in this operation. So, account for the worst case :
1404	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1405	 * - 4 new blocks written if adding:
1406	 * 	- 2 blocks for possibly split leaves,
1407	 * 	- 2 grown ptrtbl blocks
1408	 *
1409	 * This also accomodates the case where an add operation to a fairly
1410	 * large microzap results in a promotion to fatzap.
1411	 */
1412	if (name == NULL) {
1413		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1414		return (err);
1415	}
1416
1417	/*
1418	 * We lock the zap with adding == FALSE. Because, if we pass
1419	 * the actual value of add, it could trigger a mzap_upgrade().
1420	 * At present we are just evaluating the possibility of this operation
1421	 * and hence we donot want to trigger an upgrade.
1422	 */
1423	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1424	if (err)
1425		return (err);
1426
1427	if (!zap->zap_ismicro) {
1428		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1429		if (zn) {
1430			err = fzap_count_write(zn, add, towrite,
1431			    tooverwrite);
1432			zap_name_free(zn);
1433		} else {
1434			/*
1435			 * We treat this case as similar to (name == NULL)
1436			 */
1437			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1438		}
1439	} else {
1440		/*
1441		 * We are here if (name != NULL) and this is a micro-zap.
1442		 * We account for the header block depending on whether it
1443		 * is freeable.
1444		 *
1445		 * Incase of an add-operation it is hard to find out
1446		 * if this add will promote this microzap to fatzap.
1447		 * Hence, we consider the worst case and account for the
1448		 * blocks assuming this microzap would be promoted to a
1449		 * fatzap.
1450		 *
1451		 * 1 block overwritten  : header block
1452		 * 4 new blocks written : 2 new split leaf, 2 grown
1453		 *			ptrtbl blocks
1454		 */
1455		if (dmu_buf_freeable(zap->zap_dbuf))
1456			*tooverwrite += SPA_MAXBLOCKSIZE;
1457		else
1458			*towrite += SPA_MAXBLOCKSIZE;
1459
1460		if (add) {
1461			*towrite += 4 * SPA_MAXBLOCKSIZE;
1462		}
1463	}
1464
1465	zap_unlockdir(zap);
1466	return (err);
1467}
1468