1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 */
27
28/*
29 * The 512-byte leaf is broken into 32 16-byte chunks.
30 * chunk number n means l_chunk[n], even though the header precedes it.
31 * the names are stored null-terminated.
32 */
33
34#include <sys/zio.h>
35#include <sys/spa.h>
36#include <sys/dmu.h>
37#include <sys/zfs_context.h>
38#include <sys/fs/zfs.h>
39#include <sys/zap.h>
40#include <sys/zap_impl.h>
41#include <sys/zap_leaf.h>
42#include <sys/arc.h>
43
44static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
45
46#define	CHAIN_END 0xffff /* end of the chunk chain */
47
48/* half the (current) minimum block size */
49#define	MAX_ARRAY_BYTES (8<<10)
50
51#define	LEAF_HASH(l, h) \
52	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
53	((h) >> \
54	(64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
55
56#define	LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
57
58extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
59
60static void
61zap_memset(void *a, int c, size_t n)
62{
63	char *cp = a;
64	char *cpend = cp + n;
65
66	while (cp < cpend)
67		*cp++ = c;
68}
69
70static void
71stv(int len, void *addr, uint64_t value)
72{
73	switch (len) {
74	case 1:
75		*(uint8_t *)addr = value;
76		return;
77	case 2:
78		*(uint16_t *)addr = value;
79		return;
80	case 4:
81		*(uint32_t *)addr = value;
82		return;
83	case 8:
84		*(uint64_t *)addr = value;
85		return;
86	}
87	ASSERT(!"bad int len");
88}
89
90static uint64_t
91ldv(int len, const void *addr)
92{
93	switch (len) {
94	case 1:
95		return (*(uint8_t *)addr);
96	case 2:
97		return (*(uint16_t *)addr);
98	case 4:
99		return (*(uint32_t *)addr);
100	case 8:
101		return (*(uint64_t *)addr);
102	}
103	ASSERT(!"bad int len");
104	return (0xFEEDFACEDEADBEEFULL);
105}
106
107void
108zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
109{
110	zap_leaf_t l;
111	dmu_buf_t l_dbuf;
112
113	l_dbuf.db_data = buf;
114	l.l_bs = highbit64(size) - 1;
115	l.l_dbuf = &l_dbuf;
116
117	buf->l_hdr.lh_block_type =	BSWAP_64(buf->l_hdr.lh_block_type);
118	buf->l_hdr.lh_prefix =		BSWAP_64(buf->l_hdr.lh_prefix);
119	buf->l_hdr.lh_magic =		BSWAP_32(buf->l_hdr.lh_magic);
120	buf->l_hdr.lh_nfree =		BSWAP_16(buf->l_hdr.lh_nfree);
121	buf->l_hdr.lh_nentries =	BSWAP_16(buf->l_hdr.lh_nentries);
122	buf->l_hdr.lh_prefix_len =	BSWAP_16(buf->l_hdr.lh_prefix_len);
123	buf->l_hdr.lh_freelist =	BSWAP_16(buf->l_hdr.lh_freelist);
124
125	for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
126		buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
127
128	for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
129		zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
130		struct zap_leaf_entry *le;
131
132		switch (lc->l_free.lf_type) {
133		case ZAP_CHUNK_ENTRY:
134			le = &lc->l_entry;
135
136			le->le_type =		BSWAP_8(le->le_type);
137			le->le_value_intlen =	BSWAP_8(le->le_value_intlen);
138			le->le_next =		BSWAP_16(le->le_next);
139			le->le_name_chunk =	BSWAP_16(le->le_name_chunk);
140			le->le_name_numints =	BSWAP_16(le->le_name_numints);
141			le->le_value_chunk =	BSWAP_16(le->le_value_chunk);
142			le->le_value_numints =	BSWAP_16(le->le_value_numints);
143			le->le_cd =		BSWAP_32(le->le_cd);
144			le->le_hash =		BSWAP_64(le->le_hash);
145			break;
146		case ZAP_CHUNK_FREE:
147			lc->l_free.lf_type =	BSWAP_8(lc->l_free.lf_type);
148			lc->l_free.lf_next =	BSWAP_16(lc->l_free.lf_next);
149			break;
150		case ZAP_CHUNK_ARRAY:
151			lc->l_array.la_type =	BSWAP_8(lc->l_array.la_type);
152			lc->l_array.la_next =	BSWAP_16(lc->l_array.la_next);
153			/* la_array doesn't need swapping */
154			break;
155		default:
156			ASSERT(!"bad leaf type");
157		}
158	}
159}
160
161void
162zap_leaf_init(zap_leaf_t *l, boolean_t sort)
163{
164	l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
165	zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
166	    sizeof (struct zap_leaf_header));
167	zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
168	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
169	for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
170		ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
171		ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
172	}
173	ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
174	zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
175	zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
176	zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
177	if (sort)
178		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
179}
180
181/*
182 * Routines which manipulate leaf chunks (l_chunk[]).
183 */
184
185static uint16_t
186zap_leaf_chunk_alloc(zap_leaf_t *l)
187{
188	ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
189
190	int chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
191	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
192	ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
193
194	zap_leaf_phys(l)->l_hdr.lh_freelist =
195	    ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
196
197	zap_leaf_phys(l)->l_hdr.lh_nfree--;
198
199	return (chunk);
200}
201
202static void
203zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
204{
205	struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
206	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
207	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
208	ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
209
210	zlf->lf_type = ZAP_CHUNK_FREE;
211	zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
212	bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
213	zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
214
215	zap_leaf_phys(l)->l_hdr.lh_nfree++;
216}
217
218/*
219 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
220 */
221
222static uint16_t
223zap_leaf_array_create(zap_leaf_t *l, const char *buf,
224    int integer_size, int num_integers)
225{
226	uint16_t chunk_head;
227	uint16_t *chunkp = &chunk_head;
228	int byten = 0;
229	uint64_t value = 0;
230	int shift = (integer_size - 1) * 8;
231	int len = num_integers;
232
233	ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
234
235	while (len > 0) {
236		uint16_t chunk = zap_leaf_chunk_alloc(l);
237		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
238
239		la->la_type = ZAP_CHUNK_ARRAY;
240		for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
241			if (byten == 0)
242				value = ldv(integer_size, buf);
243			la->la_array[i] = value >> shift;
244			value <<= 8;
245			if (++byten == integer_size) {
246				byten = 0;
247				buf += integer_size;
248				if (--len == 0)
249					break;
250			}
251		}
252
253		*chunkp = chunk;
254		chunkp = &la->la_next;
255	}
256	*chunkp = CHAIN_END;
257
258	return (chunk_head);
259}
260
261static void
262zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
263{
264	uint16_t chunk = *chunkp;
265
266	*chunkp = CHAIN_END;
267
268	while (chunk != CHAIN_END) {
269		int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
270		ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
271		    ZAP_CHUNK_ARRAY);
272		zap_leaf_chunk_free(l, chunk);
273		chunk = nextchunk;
274	}
275}
276
277/* array_len and buf_len are in integers, not bytes */
278static void
279zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
280    int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
281    void *buf)
282{
283	int len = MIN(array_len, buf_len);
284	int byten = 0;
285	uint64_t value = 0;
286	char *p = buf;
287
288	ASSERT3U(array_int_len, <=, buf_int_len);
289
290	/* Fast path for one 8-byte integer */
291	if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
292		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
293		uint8_t *ip = la->la_array;
294		uint64_t *buf64 = buf;
295
296		*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
297		    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
298		    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
299		    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
300		return;
301	}
302
303	/* Fast path for an array of 1-byte integers (eg. the entry name) */
304	if (array_int_len == 1 && buf_int_len == 1 &&
305	    buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
306		while (chunk != CHAIN_END) {
307			struct zap_leaf_array *la =
308			    &ZAP_LEAF_CHUNK(l, chunk).l_array;
309			bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
310			p += ZAP_LEAF_ARRAY_BYTES;
311			chunk = la->la_next;
312		}
313		return;
314	}
315
316	while (len > 0) {
317		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
318
319		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
320		for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
321			value = (value << 8) | la->la_array[i];
322			byten++;
323			if (byten == array_int_len) {
324				stv(buf_int_len, p, value);
325				byten = 0;
326				len--;
327				if (len == 0)
328					return;
329				p += buf_int_len;
330			}
331		}
332		chunk = la->la_next;
333	}
334}
335
336static boolean_t
337zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
338    int chunk, int array_numints)
339{
340	int bseen = 0;
341
342	if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
343		uint64_t *thiskey =
344		    kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP);
345		ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
346
347		zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
348		    sizeof (*thiskey), array_numints, thiskey);
349		boolean_t match = bcmp(thiskey, zn->zn_key_orig,
350		    array_numints * sizeof (*thiskey)) == 0;
351		kmem_free(thiskey, array_numints * sizeof (*thiskey));
352		return (match);
353	}
354
355	ASSERT(zn->zn_key_intlen == 1);
356	if (zn->zn_matchtype & MT_NORMALIZE) {
357		char *thisname = kmem_alloc(array_numints, KM_SLEEP);
358
359		zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
360		    sizeof (char), array_numints, thisname);
361		boolean_t match = zap_match(zn, thisname);
362		kmem_free(thisname, array_numints);
363		return (match);
364	}
365
366	/*
367	 * Fast path for exact matching.
368	 * First check that the lengths match, so that we don't read
369	 * past the end of the zn_key_orig array.
370	 */
371	if (array_numints != zn->zn_key_orig_numints)
372		return (B_FALSE);
373	while (bseen < array_numints) {
374		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
375		int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
376		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
377		if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
378			break;
379		chunk = la->la_next;
380		bseen += toread;
381	}
382	return (bseen == array_numints);
383}
384
385/*
386 * Routines which manipulate leaf entries.
387 */
388
389int
390zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
391{
392	struct zap_leaf_entry *le;
393
394	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
395
396	for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
397	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
398		uint16_t chunk = *chunkp;
399		le = ZAP_LEAF_ENTRY(l, chunk);
400
401		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
402		ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
403
404		if (le->le_hash != zn->zn_hash)
405			continue;
406
407		/*
408		 * NB: the entry chain is always sorted by cd on
409		 * normalized zap objects, so this will find the
410		 * lowest-cd match for MT_NORMALIZE.
411		 */
412		ASSERT((zn->zn_matchtype == 0) ||
413		    (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
414		if (zap_leaf_array_match(l, zn, le->le_name_chunk,
415		    le->le_name_numints)) {
416			zeh->zeh_num_integers = le->le_value_numints;
417			zeh->zeh_integer_size = le->le_value_intlen;
418			zeh->zeh_cd = le->le_cd;
419			zeh->zeh_hash = le->le_hash;
420			zeh->zeh_chunkp = chunkp;
421			zeh->zeh_leaf = l;
422			return (0);
423		}
424	}
425
426	return (SET_ERROR(ENOENT));
427}
428
429/* Return (h1,cd1 >= h2,cd2) */
430#define	HCD_GTEQ(h1, cd1, h2, cd2) \
431	((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
432
433int
434zap_leaf_lookup_closest(zap_leaf_t *l,
435    uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
436{
437	uint64_t besth = -1ULL;
438	uint32_t bestcd = -1U;
439	uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
440	struct zap_leaf_entry *le;
441
442	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
443
444	for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
445		for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh];
446		    chunk != CHAIN_END; chunk = le->le_next) {
447			le = ZAP_LEAF_ENTRY(l, chunk);
448
449			ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
450			ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
451
452			if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
453			    HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
454				ASSERT3U(bestlh, >=, lh);
455				bestlh = lh;
456				besth = le->le_hash;
457				bestcd = le->le_cd;
458
459				zeh->zeh_num_integers = le->le_value_numints;
460				zeh->zeh_integer_size = le->le_value_intlen;
461				zeh->zeh_cd = le->le_cd;
462				zeh->zeh_hash = le->le_hash;
463				zeh->zeh_fakechunk = chunk;
464				zeh->zeh_chunkp = &zeh->zeh_fakechunk;
465				zeh->zeh_leaf = l;
466			}
467		}
468	}
469
470	return (bestcd == -1U ? ENOENT : 0);
471}
472
473int
474zap_entry_read(const zap_entry_handle_t *zeh,
475    uint8_t integer_size, uint64_t num_integers, void *buf)
476{
477	struct zap_leaf_entry *le =
478	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
479	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
480
481	if (le->le_value_intlen > integer_size)
482		return (SET_ERROR(EINVAL));
483
484	zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
485	    le->le_value_intlen, le->le_value_numints,
486	    integer_size, num_integers, buf);
487
488	if (zeh->zeh_num_integers > num_integers)
489		return (SET_ERROR(EOVERFLOW));
490	return (0);
491
492}
493
494int
495zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
496    char *buf)
497{
498	struct zap_leaf_entry *le =
499	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
500	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
501
502	if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
503		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
504		    le->le_name_numints, 8, buflen / 8, buf);
505	} else {
506		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
507		    le->le_name_numints, 1, buflen, buf);
508	}
509	if (le->le_name_numints > buflen)
510		return (SET_ERROR(EOVERFLOW));
511	return (0);
512}
513
514int
515zap_entry_update(zap_entry_handle_t *zeh,
516    uint8_t integer_size, uint64_t num_integers, const void *buf)
517{
518	zap_leaf_t *l = zeh->zeh_leaf;
519	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
520
521	int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
522	    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
523
524	if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
525		return (SET_ERROR(EAGAIN));
526
527	zap_leaf_array_free(l, &le->le_value_chunk);
528	le->le_value_chunk =
529	    zap_leaf_array_create(l, buf, integer_size, num_integers);
530	le->le_value_numints = num_integers;
531	le->le_value_intlen = integer_size;
532	return (0);
533}
534
535void
536zap_entry_remove(zap_entry_handle_t *zeh)
537{
538	zap_leaf_t *l = zeh->zeh_leaf;
539
540	ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
541
542	uint16_t entry_chunk = *zeh->zeh_chunkp;
543	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk);
544	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
545
546	zap_leaf_array_free(l, &le->le_name_chunk);
547	zap_leaf_array_free(l, &le->le_value_chunk);
548
549	*zeh->zeh_chunkp = le->le_next;
550	zap_leaf_chunk_free(l, entry_chunk);
551
552	zap_leaf_phys(l)->l_hdr.lh_nentries--;
553}
554
555int
556zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
557    uint8_t integer_size, uint64_t num_integers, const void *buf,
558    zap_entry_handle_t *zeh)
559{
560	uint16_t chunk;
561	struct zap_leaf_entry *le;
562	uint64_t h = zn->zn_hash;
563
564	uint64_t valuelen = integer_size * num_integers;
565
566	int numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
567	    zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
568	if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
569		return (E2BIG);
570
571	if (cd == ZAP_NEED_CD) {
572		/* find the lowest unused cd */
573		if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
574			cd = 0;
575
576			for (chunk = *LEAF_HASH_ENTPTR(l, h);
577			    chunk != CHAIN_END; chunk = le->le_next) {
578				le = ZAP_LEAF_ENTRY(l, chunk);
579				if (le->le_cd > cd)
580					break;
581				if (le->le_hash == h) {
582					ASSERT3U(cd, ==, le->le_cd);
583					cd++;
584				}
585			}
586		} else {
587			/* old unsorted format; do it the O(n^2) way */
588			for (cd = 0; ; cd++) {
589				for (chunk = *LEAF_HASH_ENTPTR(l, h);
590				    chunk != CHAIN_END; chunk = le->le_next) {
591					le = ZAP_LEAF_ENTRY(l, chunk);
592					if (le->le_hash == h &&
593					    le->le_cd == cd) {
594						break;
595					}
596				}
597				/* If this cd is not in use, we are good. */
598				if (chunk == CHAIN_END)
599					break;
600			}
601		}
602		/*
603		 * We would run out of space in a block before we could
604		 * store enough entries to run out of CD values.
605		 */
606		ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
607	}
608
609	if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
610		return (SET_ERROR(EAGAIN));
611
612	/* make the entry */
613	chunk = zap_leaf_chunk_alloc(l);
614	le = ZAP_LEAF_ENTRY(l, chunk);
615	le->le_type = ZAP_CHUNK_ENTRY;
616	le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
617	    zn->zn_key_intlen, zn->zn_key_orig_numints);
618	le->le_name_numints = zn->zn_key_orig_numints;
619	le->le_value_chunk =
620	    zap_leaf_array_create(l, buf, integer_size, num_integers);
621	le->le_value_numints = num_integers;
622	le->le_value_intlen = integer_size;
623	le->le_hash = h;
624	le->le_cd = cd;
625
626	/* link it into the hash chain */
627	/* XXX if we did the search above, we could just use that */
628	uint16_t *chunkp = zap_leaf_rehash_entry(l, chunk);
629
630	zap_leaf_phys(l)->l_hdr.lh_nentries++;
631
632	zeh->zeh_leaf = l;
633	zeh->zeh_num_integers = num_integers;
634	zeh->zeh_integer_size = le->le_value_intlen;
635	zeh->zeh_cd = le->le_cd;
636	zeh->zeh_hash = le->le_hash;
637	zeh->zeh_chunkp = chunkp;
638
639	return (0);
640}
641
642/*
643 * Determine if there is another entry with the same normalized form.
644 * For performance purposes, either zn or name must be provided (the
645 * other can be NULL).  Note, there usually won't be any hash
646 * conflicts, in which case we don't need the concatenated/normalized
647 * form of the name.  But all callers have one of these on hand anyway,
648 * so might as well take advantage.  A cleaner but slower interface
649 * would accept neither argument, and compute the normalized name as
650 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
651 */
652boolean_t
653zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
654    const char *name, zap_t *zap)
655{
656	struct zap_leaf_entry *le;
657	boolean_t allocdzn = B_FALSE;
658
659	if (zap->zap_normflags == 0)
660		return (B_FALSE);
661
662	for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
663	    chunk != CHAIN_END; chunk = le->le_next) {
664		le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
665		if (le->le_hash != zeh->zeh_hash)
666			continue;
667		if (le->le_cd == zeh->zeh_cd)
668			continue;
669
670		if (zn == NULL) {
671			zn = zap_name_alloc(zap, name, MT_NORMALIZE);
672			allocdzn = B_TRUE;
673		}
674		if (zap_leaf_array_match(zeh->zeh_leaf, zn,
675		    le->le_name_chunk, le->le_name_numints)) {
676			if (allocdzn)
677				zap_name_free(zn);
678			return (B_TRUE);
679		}
680	}
681	if (allocdzn)
682		zap_name_free(zn);
683	return (B_FALSE);
684}
685
686/*
687 * Routines for transferring entries between leafs.
688 */
689
690static uint16_t *
691zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
692{
693	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
694	struct zap_leaf_entry *le2;
695	uint16_t *chunkp;
696
697	/*
698	 * keep the entry chain sorted by cd
699	 * NB: this will not cause problems for unsorted leafs, though
700	 * it is unnecessary there.
701	 */
702	for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
703	    *chunkp != CHAIN_END; chunkp = &le2->le_next) {
704		le2 = ZAP_LEAF_ENTRY(l, *chunkp);
705		if (le2->le_cd > le->le_cd)
706			break;
707	}
708
709	le->le_next = *chunkp;
710	*chunkp = entry;
711	return (chunkp);
712}
713
714static uint16_t
715zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
716{
717	uint16_t new_chunk;
718	uint16_t *nchunkp = &new_chunk;
719
720	while (chunk != CHAIN_END) {
721		uint16_t nchunk = zap_leaf_chunk_alloc(nl);
722		struct zap_leaf_array *nla =
723		    &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
724		struct zap_leaf_array *la =
725		    &ZAP_LEAF_CHUNK(l, chunk).l_array;
726		int nextchunk = la->la_next;
727
728		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
729		ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
730
731		*nla = *la; /* structure assignment */
732
733		zap_leaf_chunk_free(l, chunk);
734		chunk = nextchunk;
735		*nchunkp = nchunk;
736		nchunkp = &nla->la_next;
737	}
738	*nchunkp = CHAIN_END;
739	return (new_chunk);
740}
741
742static void
743zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
744{
745	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
746	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
747
748	uint16_t chunk = zap_leaf_chunk_alloc(nl);
749	struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk);
750	*nle = *le; /* structure assignment */
751
752	(void) zap_leaf_rehash_entry(nl, chunk);
753
754	nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
755	nle->le_value_chunk =
756	    zap_leaf_transfer_array(l, le->le_value_chunk, nl);
757
758	zap_leaf_chunk_free(l, entry);
759
760	zap_leaf_phys(l)->l_hdr.lh_nentries--;
761	zap_leaf_phys(nl)->l_hdr.lh_nentries++;
762}
763
764/*
765 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
766 */
767void
768zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
769{
770	int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
771
772	/* set new prefix and prefix_len */
773	zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
774	zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
775	zap_leaf_phys(nl)->l_hdr.lh_prefix =
776	    zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
777	zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
778	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
779
780	/* break existing hash chains */
781	zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
782	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
783
784	if (sort)
785		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
786
787	/*
788	 * Transfer entries whose hash bit 'bit' is set to nl; rehash
789	 * the remaining entries
790	 *
791	 * NB: We could find entries via the hashtable instead. That
792	 * would be O(hashents+numents) rather than O(numblks+numents),
793	 * but this accesses memory more sequentially, and when we're
794	 * called, the block is usually pretty full.
795	 */
796	for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
797		struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
798		if (le->le_type != ZAP_CHUNK_ENTRY)
799			continue;
800
801		if (le->le_hash & (1ULL << bit))
802			zap_leaf_transfer_entry(l, i, nl);
803		else
804			(void) zap_leaf_rehash_entry(l, i);
805	}
806}
807
808void
809zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
810{
811	int n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
812	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
813	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
814	zs->zs_leafs_with_2n_pointers[n]++;
815
816
817	n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
818	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
819	zs->zs_blocks_with_n5_entries[n]++;
820
821	n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
822	    zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
823	    (1<<FZAP_BLOCK_SHIFT(zap));
824	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
825	zs->zs_blocks_n_tenths_full[n]++;
826
827	for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
828		int nentries = 0;
829		int chunk = zap_leaf_phys(l)->l_hash[i];
830
831		while (chunk != CHAIN_END) {
832			struct zap_leaf_entry *le =
833			    ZAP_LEAF_ENTRY(l, chunk);
834
835			n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
836			    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
837			    le->le_value_intlen);
838			n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
839			zs->zs_entries_using_n_chunks[n]++;
840
841			chunk = le->le_next;
842			nentries++;
843		}
844
845		n = nentries;
846		n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
847		zs->zs_buckets_with_n_entries[n]++;
848	}
849}
850