vdev_removal.c revision 339105
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/spa_impl.h>
29#include <sys/dmu.h>
30#include <sys/dmu_tx.h>
31#include <sys/zap.h>
32#include <sys/vdev_impl.h>
33#include <sys/metaslab.h>
34#include <sys/metaslab_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/txg.h>
37#include <sys/avl.h>
38#include <sys/bpobj.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_dir.h>
42#include <sys/arc.h>
43#include <sys/zfeature.h>
44#include <sys/vdev_indirect_births.h>
45#include <sys/vdev_indirect_mapping.h>
46#include <sys/abd.h>
47
48/*
49 * This file contains the necessary logic to remove vdevs from a
50 * storage pool.  Currently, the only devices that can be removed
51 * are log, cache, and spare devices; and top level vdevs from a pool
52 * w/o raidz.  (Note that members of a mirror can also be removed
53 * by the detach operation.)
54 *
55 * Log vdevs are removed by evacuating them and then turning the vdev
56 * into a hole vdev while holding spa config locks.
57 *
58 * Top level vdevs are removed and converted into an indirect vdev via
59 * a multi-step process:
60 *
61 *  - Disable allocations from this device (spa_vdev_remove_top).
62 *
63 *  - From a new thread (spa_vdev_remove_thread), copy data from
64 *    the removing vdev to a different vdev.  The copy happens in open
65 *    context (spa_vdev_copy_impl) and issues a sync task
66 *    (vdev_mapping_sync) so the sync thread can update the partial
67 *    indirect mappings in core and on disk.
68 *
69 *  - If a free happens during a removal, it is freed from the
70 *    removing vdev, and if it has already been copied, from the new
71 *    location as well (free_from_removing_vdev).
72 *
73 *  - After the removal is completed, the copy thread converts the vdev
74 *    into an indirect vdev (vdev_remove_complete) before instructing
75 *    the sync thread to destroy the space maps and finish the removal
76 *    (spa_finish_removal).
77 */
78
79typedef struct vdev_copy_arg {
80	metaslab_t	*vca_msp;
81	uint64_t	vca_outstanding_bytes;
82	kcondvar_t	vca_cv;
83	kmutex_t	vca_lock;
84} vdev_copy_arg_t;
85
86typedef struct vdev_copy_seg_arg {
87	vdev_copy_arg_t	*vcsa_copy_arg;
88	uint64_t	vcsa_txg;
89	dva_t		*vcsa_dest_dva;
90	blkptr_t	*vcsa_dest_bp;
91} vdev_copy_seg_arg_t;
92
93/*
94 * The maximum amount of allowed data we're allowed to copy from a device
95 * at a time when removing it.
96 */
97int zfs_remove_max_copy_bytes = 8 * 1024 * 1024;
98
99/*
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
104 *
105 * Note: we will issue I/Os of up to this size.  The mpt driver does not
106 * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
107 * mpt processes an I/O larger than 1MB, it needs to do an allocation of
108 * 2 physically contiguous pages; if this allocation fails, mpt will drop
109 * the I/O and hang the device.)
110 */
111int zfs_remove_max_segment = 1024 * 1024;
112
113/*
114 * This is used by the test suite so that it can ensure that certain
115 * actions happen while in the middle of a removal.
116 */
117uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
118
119#define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
120
121static void spa_vdev_remove_thread(void *arg);
122
123static void
124spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
125{
126	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
127	    DMU_POOL_DIRECTORY_OBJECT,
128	    DMU_POOL_REMOVING, sizeof (uint64_t),
129	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
130	    &spa->spa_removing_phys, tx));
131}
132
133static nvlist_t *
134spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
135{
136	for (int i = 0; i < count; i++) {
137		uint64_t guid =
138		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
139
140		if (guid == target_guid)
141			return (nvpp[i]);
142	}
143
144	return (NULL);
145}
146
147static void
148spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
149    nvlist_t *dev_to_remove)
150{
151	nvlist_t **newdev = NULL;
152
153	if (count > 1)
154		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
155
156	for (int i = 0, j = 0; i < count; i++) {
157		if (dev[i] == dev_to_remove)
158			continue;
159		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
160	}
161
162	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
163	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
164
165	for (int i = 0; i < count - 1; i++)
166		nvlist_free(newdev[i]);
167
168	if (count > 1)
169		kmem_free(newdev, (count - 1) * sizeof (void *));
170}
171
172static spa_vdev_removal_t *
173spa_vdev_removal_create(vdev_t *vd)
174{
175	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
176	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
177	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
178	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
179	svr->svr_vdev = vd;
180
181	for (int i = 0; i < TXG_SIZE; i++) {
182		svr->svr_frees[i] = range_tree_create(NULL, NULL);
183		list_create(&svr->svr_new_segments[i],
184		    sizeof (vdev_indirect_mapping_entry_t),
185		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
186	}
187
188	return (svr);
189}
190
191void
192spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
193{
194	for (int i = 0; i < TXG_SIZE; i++) {
195		ASSERT0(svr->svr_bytes_done[i]);
196		ASSERT0(svr->svr_max_offset_to_sync[i]);
197		range_tree_destroy(svr->svr_frees[i]);
198		list_destroy(&svr->svr_new_segments[i]);
199	}
200
201	range_tree_destroy(svr->svr_allocd_segs);
202	mutex_destroy(&svr->svr_lock);
203	cv_destroy(&svr->svr_cv);
204	kmem_free(svr, sizeof (*svr));
205}
206
207/*
208 * This is called as a synctask in the txg in which we will mark this vdev
209 * as removing (in the config stored in the MOS).
210 *
211 * It begins the evacuation of a toplevel vdev by:
212 * - initializing the spa_removing_phys which tracks this removal
213 * - computing the amount of space to remove for accounting purposes
214 * - dirtying all dbufs in the spa_config_object
215 * - creating the spa_vdev_removal
216 * - starting the spa_vdev_remove_thread
217 */
218static void
219vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
220{
221	vdev_t *vd = arg;
222	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
223	spa_t *spa = vd->vdev_spa;
224	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
225	spa_vdev_removal_t *svr = NULL;
226	uint64_t txg = dmu_tx_get_txg(tx);
227
228	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
229	svr = spa_vdev_removal_create(vd);
230
231	ASSERT(vd->vdev_removing);
232	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
233
234	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
235	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
236		/*
237		 * By activating the OBSOLETE_COUNTS feature, we prevent
238		 * the pool from being downgraded and ensure that the
239		 * refcounts are precise.
240		 */
241		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
242		uint64_t one = 1;
243		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
244		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
245		    &one, tx));
246		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
247	}
248
249	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
250	vd->vdev_indirect_mapping =
251	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
252	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
253	vd->vdev_indirect_births =
254	    vdev_indirect_births_open(mos, vic->vic_births_object);
255	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
256	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
257	spa->spa_removing_phys.sr_end_time = 0;
258	spa->spa_removing_phys.sr_state = DSS_SCANNING;
259	spa->spa_removing_phys.sr_to_copy = 0;
260	spa->spa_removing_phys.sr_copied = 0;
261
262	/*
263	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
264	 * there may be space in the defer tree, which is free, but still
265	 * counted in vs_alloc.
266	 */
267	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
268		metaslab_t *ms = vd->vdev_ms[i];
269		if (ms->ms_sm == NULL)
270			continue;
271
272		/*
273		 * Sync tasks happen before metaslab_sync(), therefore
274		 * smp_alloc and sm_alloc must be the same.
275		 */
276		ASSERT3U(space_map_allocated(ms->ms_sm), ==,
277		    ms->ms_sm->sm_phys->smp_alloc);
278
279		spa->spa_removing_phys.sr_to_copy +=
280		    space_map_allocated(ms->ms_sm);
281
282		/*
283		 * Space which we are freeing this txg does not need to
284		 * be copied.
285		 */
286		spa->spa_removing_phys.sr_to_copy -=
287		    range_tree_space(ms->ms_freeing);
288
289		ASSERT0(range_tree_space(ms->ms_freed));
290		for (int t = 0; t < TXG_SIZE; t++)
291			ASSERT0(range_tree_space(ms->ms_allocating[t]));
292	}
293
294	/*
295	 * Sync tasks are called before metaslab_sync(), so there should
296	 * be no already-synced metaslabs in the TXG_CLEAN list.
297	 */
298	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
299
300	spa_sync_removing_state(spa, tx);
301
302	/*
303	 * All blocks that we need to read the most recent mapping must be
304	 * stored on concrete vdevs.  Therefore, we must dirty anything that
305	 * is read before spa_remove_init().  Specifically, the
306	 * spa_config_object.  (Note that although we already modified the
307	 * spa_config_object in spa_sync_removing_state, that may not have
308	 * modified all blocks of the object.)
309	 */
310	dmu_object_info_t doi;
311	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
312	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
313		dmu_buf_t *dbuf;
314		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
315		    offset, FTAG, &dbuf, 0));
316		dmu_buf_will_dirty(dbuf, tx);
317		offset += dbuf->db_size;
318		dmu_buf_rele(dbuf, FTAG);
319	}
320
321	/*
322	 * Now that we've allocated the im_object, dirty the vdev to ensure
323	 * that the object gets written to the config on disk.
324	 */
325	vdev_config_dirty(vd);
326
327	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
328	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
329	    vic->vic_mapping_object);
330
331	spa_history_log_internal(spa, "vdev remove started", tx,
332	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
333	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
334	/*
335	 * Setting spa_vdev_removal causes subsequent frees to call
336	 * free_from_removing_vdev().  Note that we don't need any locking
337	 * because we are the sync thread, and metaslab_free_impl() is only
338	 * called from syncing context (potentially from a zio taskq thread,
339	 * but in any case only when there are outstanding free i/os, which
340	 * there are not).
341	 */
342	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
343	spa->spa_vdev_removal = svr;
344	svr->svr_thread = thread_create(NULL, 0,
345	    spa_vdev_remove_thread, vd, 0, &p0, TS_RUN, minclsyspri);
346}
347
348/*
349 * When we are opening a pool, we must read the mapping for each
350 * indirect vdev in order from most recently removed to least
351 * recently removed.  We do this because the blocks for the mapping
352 * of older indirect vdevs may be stored on more recently removed vdevs.
353 * In order to read each indirect mapping object, we must have
354 * initialized all more recently removed vdevs.
355 */
356int
357spa_remove_init(spa_t *spa)
358{
359	int error;
360
361	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
362	    DMU_POOL_DIRECTORY_OBJECT,
363	    DMU_POOL_REMOVING, sizeof (uint64_t),
364	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
365	    &spa->spa_removing_phys);
366
367	if (error == ENOENT) {
368		spa->spa_removing_phys.sr_state = DSS_NONE;
369		spa->spa_removing_phys.sr_removing_vdev = -1;
370		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
371		spa->spa_indirect_vdevs_loaded = B_TRUE;
372		return (0);
373	} else if (error != 0) {
374		return (error);
375	}
376
377	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
378		/*
379		 * We are currently removing a vdev.  Create and
380		 * initialize a spa_vdev_removal_t from the bonus
381		 * buffer of the removing vdevs vdev_im_object, and
382		 * initialize its partial mapping.
383		 */
384		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
385		vdev_t *vd = vdev_lookup_top(spa,
386		    spa->spa_removing_phys.sr_removing_vdev);
387		spa_config_exit(spa, SCL_STATE, FTAG);
388
389		if (vd == NULL)
390			return (EINVAL);
391
392		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
393
394		ASSERT(vdev_is_concrete(vd));
395		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
396		ASSERT(svr->svr_vdev->vdev_removing);
397
398		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
399		    spa->spa_meta_objset, vic->vic_mapping_object);
400		vd->vdev_indirect_births = vdev_indirect_births_open(
401		    spa->spa_meta_objset, vic->vic_births_object);
402
403		spa->spa_vdev_removal = svr;
404	}
405
406	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
407	uint64_t indirect_vdev_id =
408	    spa->spa_removing_phys.sr_prev_indirect_vdev;
409	while (indirect_vdev_id != UINT64_MAX) {
410		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
411		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
412
413		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
414		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
415		    spa->spa_meta_objset, vic->vic_mapping_object);
416		vd->vdev_indirect_births = vdev_indirect_births_open(
417		    spa->spa_meta_objset, vic->vic_births_object);
418
419		indirect_vdev_id = vic->vic_prev_indirect_vdev;
420	}
421	spa_config_exit(spa, SCL_STATE, FTAG);
422
423	/*
424	 * Now that we've loaded all the indirect mappings, we can allow
425	 * reads from other blocks (e.g. via predictive prefetch).
426	 */
427	spa->spa_indirect_vdevs_loaded = B_TRUE;
428	return (0);
429}
430
431void
432spa_restart_removal(spa_t *spa)
433{
434	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
435
436	if (svr == NULL)
437		return;
438
439	/*
440	 * In general when this function is called there is no
441	 * removal thread running. The only scenario where this
442	 * is not true is during spa_import() where this function
443	 * is called twice [once from spa_import_impl() and
444	 * spa_async_resume()]. Thus, in the scenario where we
445	 * import a pool that has an ongoing removal we don't
446	 * want to spawn a second thread.
447	 */
448	if (svr->svr_thread != NULL)
449		return;
450
451	if (!spa_writeable(spa))
452		return;
453
454	vdev_t *vd = svr->svr_vdev;
455	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
456
457	ASSERT3P(vd, !=, NULL);
458	ASSERT(vd->vdev_removing);
459
460	zfs_dbgmsg("restarting removal of %llu at count=%llu",
461	    vd->vdev_id, vdev_indirect_mapping_num_entries(vim));
462	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, vd,
463	    0, &p0, TS_RUN, minclsyspri);
464}
465
466/*
467 * Process freeing from a device which is in the middle of being removed.
468 * We must handle this carefully so that we attempt to copy freed data,
469 * and we correctly free already-copied data.
470 */
471void
472free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
473{
474	spa_t *spa = vd->vdev_spa;
475	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
476	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
477	uint64_t txg = spa_syncing_txg(spa);
478	uint64_t max_offset_yet = 0;
479
480	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
481	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
482	    vdev_indirect_mapping_object(vim));
483	ASSERT3P(vd, ==, svr->svr_vdev);
484
485	mutex_enter(&svr->svr_lock);
486
487	/*
488	 * Remove the segment from the removing vdev's spacemap.  This
489	 * ensures that we will not attempt to copy this space (if the
490	 * removal thread has not yet visited it), and also ensures
491	 * that we know what is actually allocated on the new vdevs
492	 * (needed if we cancel the removal).
493	 *
494	 * Note: we must do the metaslab_free_concrete() with the svr_lock
495	 * held, so that the remove_thread can not load this metaslab and then
496	 * visit this offset between the time that we metaslab_free_concrete()
497	 * and when we check to see if it has been visited.
498	 *
499	 * Note: The checkpoint flag is set to false as having/taking
500	 * a checkpoint and removing a device can't happen at the same
501	 * time.
502	 */
503	ASSERT(!spa_has_checkpoint(spa));
504	metaslab_free_concrete(vd, offset, size, B_FALSE);
505
506	uint64_t synced_size = 0;
507	uint64_t synced_offset = 0;
508	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
509	if (offset < max_offset_synced) {
510		/*
511		 * The mapping for this offset is already on disk.
512		 * Free from the new location.
513		 *
514		 * Note that we use svr_max_synced_offset because it is
515		 * updated atomically with respect to the in-core mapping.
516		 * By contrast, vim_max_offset is not.
517		 *
518		 * This block may be split between a synced entry and an
519		 * in-flight or unvisited entry.  Only process the synced
520		 * portion of it here.
521		 */
522		synced_size = MIN(size, max_offset_synced - offset);
523		synced_offset = offset;
524
525		ASSERT3U(max_offset_yet, <=, max_offset_synced);
526		max_offset_yet = max_offset_synced;
527
528		DTRACE_PROBE3(remove__free__synced,
529		    spa_t *, spa,
530		    uint64_t, offset,
531		    uint64_t, synced_size);
532
533		size -= synced_size;
534		offset += synced_size;
535	}
536
537	/*
538	 * Look at all in-flight txgs starting from the currently syncing one
539	 * and see if a section of this free is being copied. By starting from
540	 * this txg and iterating forward, we might find that this region
541	 * was copied in two different txgs and handle it appropriately.
542	 */
543	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
544		int txgoff = (txg + i) & TXG_MASK;
545		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
546			/*
547			 * The mapping for this offset is in flight, and
548			 * will be synced in txg+i.
549			 */
550			uint64_t inflight_size = MIN(size,
551			    svr->svr_max_offset_to_sync[txgoff] - offset);
552
553			DTRACE_PROBE4(remove__free__inflight,
554			    spa_t *, spa,
555			    uint64_t, offset,
556			    uint64_t, inflight_size,
557			    uint64_t, txg + i);
558
559			/*
560			 * We copy data in order of increasing offset.
561			 * Therefore the max_offset_to_sync[] must increase
562			 * (or be zero, indicating that nothing is being
563			 * copied in that txg).
564			 */
565			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
566				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
567				    >=, max_offset_yet);
568				max_offset_yet =
569				    svr->svr_max_offset_to_sync[txgoff];
570			}
571
572			/*
573			 * We've already committed to copying this segment:
574			 * we have allocated space elsewhere in the pool for
575			 * it and have an IO outstanding to copy the data. We
576			 * cannot free the space before the copy has
577			 * completed, or else the copy IO might overwrite any
578			 * new data. To free that space, we record the
579			 * segment in the appropriate svr_frees tree and free
580			 * the mapped space later, in the txg where we have
581			 * completed the copy and synced the mapping (see
582			 * vdev_mapping_sync).
583			 */
584			range_tree_add(svr->svr_frees[txgoff],
585			    offset, inflight_size);
586			size -= inflight_size;
587			offset += inflight_size;
588
589			/*
590			 * This space is already accounted for as being
591			 * done, because it is being copied in txg+i.
592			 * However, if i!=0, then it is being copied in
593			 * a future txg.  If we crash after this txg
594			 * syncs but before txg+i syncs, then the space
595			 * will be free.  Therefore we must account
596			 * for the space being done in *this* txg
597			 * (when it is freed) rather than the future txg
598			 * (when it will be copied).
599			 */
600			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
601			    inflight_size);
602			svr->svr_bytes_done[txgoff] -= inflight_size;
603			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
604		}
605	}
606	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
607
608	if (size > 0) {
609		/*
610		 * The copy thread has not yet visited this offset.  Ensure
611		 * that it doesn't.
612		 */
613
614		DTRACE_PROBE3(remove__free__unvisited,
615		    spa_t *, spa,
616		    uint64_t, offset,
617		    uint64_t, size);
618
619		if (svr->svr_allocd_segs != NULL)
620			range_tree_clear(svr->svr_allocd_segs, offset, size);
621
622		/*
623		 * Since we now do not need to copy this data, for
624		 * accounting purposes we have done our job and can count
625		 * it as completed.
626		 */
627		svr->svr_bytes_done[txg & TXG_MASK] += size;
628	}
629	mutex_exit(&svr->svr_lock);
630
631	/*
632	 * Now that we have dropped svr_lock, process the synced portion
633	 * of this free.
634	 */
635	if (synced_size > 0) {
636		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
637
638		/*
639		 * Note: this can only be called from syncing context,
640		 * and the vdev_indirect_mapping is only changed from the
641		 * sync thread, so we don't need svr_lock while doing
642		 * metaslab_free_impl_cb.
643		 */
644		boolean_t checkpoint = B_FALSE;
645		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
646		    metaslab_free_impl_cb, &checkpoint);
647	}
648}
649
650/*
651 * Stop an active removal and update the spa_removing phys.
652 */
653static void
654spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
655{
656	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
657	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
658
659	/* Ensure the removal thread has completed before we free the svr. */
660	spa_vdev_remove_suspend(spa);
661
662	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
663
664	if (state == DSS_FINISHED) {
665		spa_removing_phys_t *srp = &spa->spa_removing_phys;
666		vdev_t *vd = svr->svr_vdev;
667		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
668
669		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
670			vdev_t *pvd = vdev_lookup_top(spa,
671			    srp->sr_prev_indirect_vdev);
672			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
673		}
674
675		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
676		srp->sr_prev_indirect_vdev = vd->vdev_id;
677	}
678	spa->spa_removing_phys.sr_state = state;
679	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
680
681	spa->spa_vdev_removal = NULL;
682	spa_vdev_removal_destroy(svr);
683
684	spa_sync_removing_state(spa, tx);
685
686	vdev_config_dirty(spa->spa_root_vdev);
687}
688
689static void
690free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
691{
692	vdev_t *vd = arg;
693	vdev_indirect_mark_obsolete(vd, offset, size);
694	boolean_t checkpoint = B_FALSE;
695	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
696	    metaslab_free_impl_cb, &checkpoint);
697}
698
699/*
700 * On behalf of the removal thread, syncs an incremental bit more of
701 * the indirect mapping to disk and updates the in-memory mapping.
702 * Called as a sync task in every txg that the removal thread makes progress.
703 */
704static void
705vdev_mapping_sync(void *arg, dmu_tx_t *tx)
706{
707	spa_vdev_removal_t *svr = arg;
708	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
709	vdev_t *vd = svr->svr_vdev;
710	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
711	uint64_t txg = dmu_tx_get_txg(tx);
712	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
713
714	ASSERT(vic->vic_mapping_object != 0);
715	ASSERT3U(txg, ==, spa_syncing_txg(spa));
716
717	vdev_indirect_mapping_add_entries(vim,
718	    &svr->svr_new_segments[txg & TXG_MASK], tx);
719	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
720	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
721
722	/*
723	 * Free the copied data for anything that was freed while the
724	 * mapping entries were in flight.
725	 */
726	mutex_enter(&svr->svr_lock);
727	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
728	    free_mapped_segment_cb, vd);
729	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
730	    vdev_indirect_mapping_max_offset(vim));
731	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
732	mutex_exit(&svr->svr_lock);
733
734	spa_sync_removing_state(spa, tx);
735}
736
737static void
738spa_vdev_copy_segment_write_done(zio_t *zio)
739{
740	vdev_copy_seg_arg_t *vcsa = zio->io_private;
741	vdev_copy_arg_t *vca = vcsa->vcsa_copy_arg;
742	spa_config_exit(zio->io_spa, SCL_STATE, FTAG);
743	abd_free(zio->io_abd);
744
745	mutex_enter(&vca->vca_lock);
746	vca->vca_outstanding_bytes -= zio->io_size;
747	cv_signal(&vca->vca_cv);
748	mutex_exit(&vca->vca_lock);
749
750	ASSERT0(zio->io_error);
751	kmem_free(vcsa->vcsa_dest_bp, sizeof (blkptr_t));
752	kmem_free(vcsa, sizeof (vdev_copy_seg_arg_t));
753}
754
755static void
756spa_vdev_copy_segment_read_done(zio_t *zio)
757{
758	vdev_copy_seg_arg_t *vcsa = zio->io_private;
759	dva_t *dest_dva = vcsa->vcsa_dest_dva;
760	uint64_t txg = vcsa->vcsa_txg;
761	spa_t *spa = zio->io_spa;
762	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(dest_dva));
763	blkptr_t *bp = NULL;
764	dva_t *dva = NULL;
765	uint64_t size = zio->io_size;
766
767	ASSERT3P(dest_vd, !=, NULL);
768	ASSERT0(zio->io_error);
769
770	vcsa->vcsa_dest_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
771	bp = vcsa->vcsa_dest_bp;
772	dva = bp->blk_dva;
773
774	BP_ZERO(bp);
775
776	/* initialize with dest_dva */
777	bcopy(dest_dva, dva, sizeof (dva_t));
778	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
779
780	BP_SET_LSIZE(bp, size);
781	BP_SET_PSIZE(bp, size);
782	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
783	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
784	BP_SET_TYPE(bp, DMU_OT_NONE);
785	BP_SET_LEVEL(bp, 0);
786	BP_SET_DEDUP(bp, 0);
787	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
788
789	zio_nowait(zio_rewrite(spa->spa_txg_zio[txg & TXG_MASK], spa,
790	    txg, bp, zio->io_abd, size,
791	    spa_vdev_copy_segment_write_done, vcsa,
792	    ZIO_PRIORITY_REMOVAL, 0, NULL));
793}
794
795static int
796spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
797    vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
798{
799	metaslab_group_t *mg = vd->vdev_mg;
800	spa_t *spa = vd->vdev_spa;
801	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
802	vdev_indirect_mapping_entry_t *entry;
803	vdev_copy_seg_arg_t *private;
804	dva_t dst = { 0 };
805	blkptr_t blk, *bp = &blk;
806	dva_t *dva = bp->blk_dva;
807
808	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
809
810	/*
811	 * We use allocator 0 for this I/O because we don't expect device remap
812	 * to be the steady state of the system, so parallelizing is not as
813	 * critical as it is for other allocation types. We also want to ensure
814	 * that the IOs are allocated together as much as possible, to reduce
815	 * mapping sizes.
816	 */
817	int error = metaslab_alloc_dva(spa, mg->mg_class, size,
818	    &dst, 0, NULL, txg, 0, zal, 0);
819	if (error != 0)
820		return (error);
821
822	/*
823	 * We can't have any padding of the allocated size, otherwise we will
824	 * misunderstand what's allocated, and the size of the mapping.
825	 * The caller ensures this will be true by passing in a size that is
826	 * aligned to the worst (highest) ashift in the pool.
827	 */
828	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
829
830	mutex_enter(&vca->vca_lock);
831	vca->vca_outstanding_bytes += size;
832	mutex_exit(&vca->vca_lock);
833
834	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
835	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
836	entry->vime_mapping.vimep_dst = dst;
837
838	private = kmem_alloc(sizeof (vdev_copy_seg_arg_t), KM_SLEEP);
839	private->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
840	private->vcsa_txg = txg;
841	private->vcsa_copy_arg = vca;
842
843	/*
844	 * This lock is eventually released by the donefunc for the
845	 * zio_write_phys that finishes copying the data.
846	 */
847	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
848
849	/*
850	 * Do logical I/O, letting the redundancy vdevs (like mirror)
851	 * handle their own I/O instead of duplicating that code here.
852	 */
853	BP_ZERO(bp);
854
855	DVA_SET_VDEV(&dva[0], vd->vdev_id);
856	DVA_SET_OFFSET(&dva[0], start);
857	DVA_SET_GANG(&dva[0], 0);
858	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, size));
859
860	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
861
862	BP_SET_LSIZE(bp, size);
863	BP_SET_PSIZE(bp, size);
864	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
865	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
866	BP_SET_TYPE(bp, DMU_OT_NONE);
867	BP_SET_LEVEL(bp, 0);
868	BP_SET_DEDUP(bp, 0);
869	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
870
871	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa,
872	    bp, abd_alloc_for_io(size, B_FALSE), size,
873	    spa_vdev_copy_segment_read_done, private,
874	    ZIO_PRIORITY_REMOVAL, 0, NULL));
875
876	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
877	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
878	vdev_dirty(vd, 0, NULL, txg);
879
880	return (0);
881}
882
883/*
884 * Complete the removal of a toplevel vdev. This is called as a
885 * synctask in the same txg that we will sync out the new config (to the
886 * MOS object) which indicates that this vdev is indirect.
887 */
888static void
889vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
890{
891	spa_vdev_removal_t *svr = arg;
892	vdev_t *vd = svr->svr_vdev;
893	spa_t *spa = vd->vdev_spa;
894
895	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
896
897	for (int i = 0; i < TXG_SIZE; i++) {
898		ASSERT0(svr->svr_bytes_done[i]);
899	}
900
901	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
902	    spa->spa_removing_phys.sr_to_copy);
903
904	vdev_destroy_spacemaps(vd, tx);
905
906	/* destroy leaf zaps, if any */
907	ASSERT3P(svr->svr_zaplist, !=, NULL);
908	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
909	    pair != NULL;
910	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
911		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
912	}
913	fnvlist_free(svr->svr_zaplist);
914
915	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
916	/* vd->vdev_path is not available here */
917	spa_history_log_internal(spa, "vdev remove completed",  tx,
918	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
919}
920
921static void
922vdev_indirect_state_transfer(vdev_t *ivd, vdev_t *vd)
923{
924	ivd->vdev_indirect_config = vd->vdev_indirect_config;
925
926	ASSERT3P(ivd->vdev_indirect_mapping, ==, NULL);
927	ASSERT(vd->vdev_indirect_mapping != NULL);
928	ivd->vdev_indirect_mapping = vd->vdev_indirect_mapping;
929	vd->vdev_indirect_mapping = NULL;
930
931	ASSERT3P(ivd->vdev_indirect_births, ==, NULL);
932	ASSERT(vd->vdev_indirect_births != NULL);
933	ivd->vdev_indirect_births = vd->vdev_indirect_births;
934	vd->vdev_indirect_births = NULL;
935
936	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
937	ASSERT0(range_tree_space(ivd->vdev_obsolete_segments));
938
939	if (vd->vdev_obsolete_sm != NULL) {
940		ASSERT3U(ivd->vdev_asize, ==, vd->vdev_asize);
941
942		/*
943		 * We cannot use space_map_{open,close} because we hold all
944		 * the config locks as writer.
945		 */
946		ASSERT3P(ivd->vdev_obsolete_sm, ==, NULL);
947		ivd->vdev_obsolete_sm = vd->vdev_obsolete_sm;
948		vd->vdev_obsolete_sm = NULL;
949	}
950}
951
952static void
953vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
954{
955	ASSERT3P(zlist, !=, NULL);
956	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
957
958	if (vd->vdev_leaf_zap != 0) {
959		char zkey[32];
960		(void) snprintf(zkey, sizeof (zkey), "%s-%ju",
961		    VDEV_REMOVAL_ZAP_OBJS, (uintmax_t)vd->vdev_leaf_zap);
962		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
963	}
964
965	for (uint64_t id = 0; id < vd->vdev_children; id++) {
966		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
967	}
968}
969
970static void
971vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
972{
973	vdev_t *ivd;
974	dmu_tx_t *tx;
975	spa_t *spa = vd->vdev_spa;
976	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
977
978	/*
979	 * First, build a list of leaf zaps to be destroyed.
980	 * This is passed to the sync context thread,
981	 * which does the actual unlinking.
982	 */
983	svr->svr_zaplist = fnvlist_alloc();
984	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
985
986	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
987
988	vd->vdev_leaf_zap = 0;
989
990	vdev_remove_child(ivd, vd);
991	vdev_compact_children(ivd);
992
993	vdev_indirect_state_transfer(ivd, vd);
994
995	svr->svr_vdev = ivd;
996
997	ASSERT(!ivd->vdev_removing);
998	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
999
1000	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1001	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1002	    0, ZFS_SPACE_CHECK_NONE, tx);
1003	dmu_tx_commit(tx);
1004
1005	/*
1006	 * Indicate that this thread has exited.
1007	 * After this, we can not use svr.
1008	 */
1009	mutex_enter(&svr->svr_lock);
1010	svr->svr_thread = NULL;
1011	cv_broadcast(&svr->svr_cv);
1012	mutex_exit(&svr->svr_lock);
1013}
1014
1015/*
1016 * Complete the removal of a toplevel vdev. This is called in open
1017 * context by the removal thread after we have copied all vdev's data.
1018 */
1019static void
1020vdev_remove_complete(vdev_t *vd)
1021{
1022	spa_t *spa = vd->vdev_spa;
1023	uint64_t txg;
1024
1025	/*
1026	 * Wait for any deferred frees to be synced before we call
1027	 * vdev_metaslab_fini()
1028	 */
1029	txg_wait_synced(spa->spa_dsl_pool, 0);
1030
1031	txg = spa_vdev_enter(spa);
1032	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1033	    vd->vdev_id, txg);
1034
1035	/*
1036	 * Discard allocation state.
1037	 */
1038	if (vd->vdev_mg != NULL) {
1039		vdev_metaslab_fini(vd);
1040		metaslab_group_destroy(vd->vdev_mg);
1041		vd->vdev_mg = NULL;
1042	}
1043	ASSERT0(vd->vdev_stat.vs_space);
1044	ASSERT0(vd->vdev_stat.vs_dspace);
1045
1046	vdev_remove_replace_with_indirect(vd, txg);
1047
1048	/*
1049	 * We now release the locks, allowing spa_sync to run and finish the
1050	 * removal via vdev_remove_complete_sync in syncing context.
1051	 */
1052	(void) spa_vdev_exit(spa, NULL, txg, 0);
1053
1054	/*
1055	 * Top ZAP should have been transferred to the indirect vdev in
1056	 * vdev_remove_replace_with_indirect.
1057	 */
1058	ASSERT0(vd->vdev_top_zap);
1059
1060	/*
1061	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1062	 */
1063	ASSERT0(vd->vdev_leaf_zap);
1064
1065	txg = spa_vdev_enter(spa);
1066	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1067	/*
1068	 * Request to update the config and the config cachefile.
1069	 */
1070	vdev_config_dirty(spa->spa_root_vdev);
1071	(void) spa_vdev_exit(spa, vd, txg, 0);
1072}
1073
1074/*
1075 * Evacuates a segment of size at most max_alloc from the vdev
1076 * via repeated calls to spa_vdev_copy_segment. If an allocation
1077 * fails, the pool is probably too fragmented to handle such a
1078 * large size, so decrease max_alloc so that the caller will not try
1079 * this size again this txg.
1080 */
1081static void
1082spa_vdev_copy_impl(spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1083    uint64_t *max_alloc, dmu_tx_t *tx)
1084{
1085	uint64_t txg = dmu_tx_get_txg(tx);
1086	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1087
1088	mutex_enter(&svr->svr_lock);
1089
1090	range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1091	if (rs == NULL) {
1092		mutex_exit(&svr->svr_lock);
1093		return;
1094	}
1095	uint64_t offset = rs->rs_start;
1096	uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
1097
1098	range_tree_remove(svr->svr_allocd_segs, offset, length);
1099
1100	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1101		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1102		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1103	}
1104
1105	svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
1106
1107	/*
1108	 * Note: this is the amount of *allocated* space
1109	 * that we are taking care of each txg.
1110	 */
1111	svr->svr_bytes_done[txg & TXG_MASK] += length;
1112
1113	mutex_exit(&svr->svr_lock);
1114
1115	zio_alloc_list_t zal;
1116	metaslab_trace_init(&zal);
1117	uint64_t thismax = *max_alloc;
1118	while (length > 0) {
1119		uint64_t mylen = MIN(length, thismax);
1120
1121		int error = spa_vdev_copy_segment(svr->svr_vdev,
1122		    offset, mylen, txg, vca, &zal);
1123
1124		if (error == ENOSPC) {
1125			/*
1126			 * Cut our segment in half, and don't try this
1127			 * segment size again this txg.  Note that the
1128			 * allocation size must be aligned to the highest
1129			 * ashift in the pool, so that the allocation will
1130			 * not be padded out to a multiple of the ashift,
1131			 * which could cause us to think that this mapping
1132			 * is larger than we intended.
1133			 */
1134			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1135			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1136			thismax = P2ROUNDUP(mylen / 2,
1137			    1 << spa->spa_max_ashift);
1138			ASSERT3U(thismax, <, mylen);
1139			/*
1140			 * The minimum-size allocation can not fail.
1141			 */
1142			ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
1143			*max_alloc = mylen - (1 << spa->spa_max_ashift);
1144		} else {
1145			ASSERT0(error);
1146			length -= mylen;
1147			offset += mylen;
1148
1149			/*
1150			 * We've performed an allocation, so reset the
1151			 * alloc trace list.
1152			 */
1153			metaslab_trace_fini(&zal);
1154			metaslab_trace_init(&zal);
1155		}
1156	}
1157	metaslab_trace_fini(&zal);
1158}
1159
1160/*
1161 * The removal thread operates in open context.  It iterates over all
1162 * allocated space in the vdev, by loading each metaslab's spacemap.
1163 * For each contiguous segment of allocated space (capping the segment
1164 * size at SPA_MAXBLOCKSIZE), we:
1165 *    - Allocate space for it on another vdev.
1166 *    - Create a new mapping from the old location to the new location
1167 *      (as a record in svr_new_segments).
1168 *    - Initiate a logical read zio to get the data off the removing disk.
1169 *    - In the read zio's done callback, initiate a logical write zio to
1170 *      write it to the new vdev.
1171 * Note that all of this will take effect when a particular TXG syncs.
1172 * The sync thread ensures that all the phys reads and writes for the syncing
1173 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1174 * (see vdev_mapping_sync()).
1175 */
1176static void
1177spa_vdev_remove_thread(void *arg)
1178{
1179	vdev_t *vd = arg;
1180	spa_t *spa = vd->vdev_spa;
1181	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1182	vdev_copy_arg_t vca;
1183	uint64_t max_alloc = zfs_remove_max_segment;
1184	uint64_t last_txg = 0;
1185	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1186	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1187
1188	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1189	ASSERT(vdev_is_concrete(vd));
1190	ASSERT(vd->vdev_removing);
1191	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1192	ASSERT3P(svr->svr_vdev, ==, vd);
1193	ASSERT(vim != NULL);
1194
1195	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1196	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1197	vca.vca_outstanding_bytes = 0;
1198
1199	mutex_enter(&svr->svr_lock);
1200
1201	/*
1202	 * Start from vim_max_offset so we pick up where we left off
1203	 * if we are restarting the removal after opening the pool.
1204	 */
1205	uint64_t msi;
1206	for (msi = start_offset >> vd->vdev_ms_shift;
1207	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1208		metaslab_t *msp = vd->vdev_ms[msi];
1209		ASSERT3U(msi, <=, vd->vdev_ms_count);
1210
1211		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1212
1213		mutex_enter(&msp->ms_sync_lock);
1214		mutex_enter(&msp->ms_lock);
1215
1216		/*
1217		 * Assert nothing in flight -- ms_*tree is empty.
1218		 */
1219		for (int i = 0; i < TXG_SIZE; i++) {
1220			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1221		}
1222
1223		/*
1224		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1225		 * read the allocated segments from the space map object
1226		 * into svr_allocd_segs. Since we do this while holding
1227		 * svr_lock and ms_sync_lock, concurrent frees (which
1228		 * would have modified the space map) will wait for us
1229		 * to finish loading the spacemap, and then take the
1230		 * appropriate action (see free_from_removing_vdev()).
1231		 */
1232		if (msp->ms_sm != NULL) {
1233			space_map_t *sm = NULL;
1234
1235			/*
1236			 * We have to open a new space map here, because
1237			 * ms_sm's sm_length and sm_alloc may not reflect
1238			 * what's in the object contents, if we are in between
1239			 * metaslab_sync() and metaslab_sync_done().
1240			 */
1241			VERIFY0(space_map_open(&sm,
1242			    spa->spa_dsl_pool->dp_meta_objset,
1243			    msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1244			    msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1245			space_map_update(sm);
1246			VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1247			    SM_ALLOC));
1248			space_map_close(sm);
1249
1250			range_tree_walk(msp->ms_freeing,
1251			    range_tree_remove, svr->svr_allocd_segs);
1252
1253			/*
1254			 * When we are resuming from a paused removal (i.e.
1255			 * when importing a pool with a removal in progress),
1256			 * discard any state that we have already processed.
1257			 */
1258			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1259		}
1260		mutex_exit(&msp->ms_lock);
1261		mutex_exit(&msp->ms_sync_lock);
1262
1263		vca.vca_msp = msp;
1264		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1265		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1266		    msp->ms_id);
1267
1268		while (!svr->svr_thread_exit &&
1269		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1270
1271			mutex_exit(&svr->svr_lock);
1272
1273			/*
1274			 * This delay will pause the removal around the point
1275			 * specified by zfs_remove_max_bytes_pause. We do this
1276			 * solely from the test suite or during debugging.
1277			 */
1278			uint64_t bytes_copied =
1279			    spa->spa_removing_phys.sr_copied;
1280			for (int i = 0; i < TXG_SIZE; i++)
1281				bytes_copied += svr->svr_bytes_done[i];
1282			while (zfs_remove_max_bytes_pause <= bytes_copied &&
1283			    !svr->svr_thread_exit)
1284				delay(hz);
1285
1286			mutex_enter(&vca.vca_lock);
1287			while (vca.vca_outstanding_bytes >
1288			    zfs_remove_max_copy_bytes) {
1289				cv_wait(&vca.vca_cv, &vca.vca_lock);
1290			}
1291			mutex_exit(&vca.vca_lock);
1292
1293			dmu_tx_t *tx =
1294			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1295
1296			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1297			uint64_t txg = dmu_tx_get_txg(tx);
1298
1299			if (txg != last_txg)
1300				max_alloc = zfs_remove_max_segment;
1301			last_txg = txg;
1302
1303			spa_vdev_copy_impl(svr, &vca, &max_alloc, tx);
1304
1305			dmu_tx_commit(tx);
1306			mutex_enter(&svr->svr_lock);
1307		}
1308	}
1309
1310	mutex_exit(&svr->svr_lock);
1311	/*
1312	 * Wait for all copies to finish before cleaning up the vca.
1313	 */
1314	txg_wait_synced(spa->spa_dsl_pool, 0);
1315	ASSERT0(vca.vca_outstanding_bytes);
1316
1317	mutex_destroy(&vca.vca_lock);
1318	cv_destroy(&vca.vca_cv);
1319
1320	if (svr->svr_thread_exit) {
1321		mutex_enter(&svr->svr_lock);
1322		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1323		svr->svr_thread = NULL;
1324		cv_broadcast(&svr->svr_cv);
1325		mutex_exit(&svr->svr_lock);
1326	} else {
1327		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1328		vdev_remove_complete(vd);
1329	}
1330	thread_exit();
1331}
1332
1333void
1334spa_vdev_remove_suspend(spa_t *spa)
1335{
1336	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1337
1338	if (svr == NULL)
1339		return;
1340
1341	mutex_enter(&svr->svr_lock);
1342	svr->svr_thread_exit = B_TRUE;
1343	while (svr->svr_thread != NULL)
1344		cv_wait(&svr->svr_cv, &svr->svr_lock);
1345	svr->svr_thread_exit = B_FALSE;
1346	mutex_exit(&svr->svr_lock);
1347}
1348
1349/* ARGSUSED */
1350static int
1351spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1352{
1353	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1354
1355	if (spa->spa_vdev_removal == NULL)
1356		return (ESRCH);
1357	return (0);
1358}
1359
1360/*
1361 * Cancel a removal by freeing all entries from the partial mapping
1362 * and marking the vdev as no longer being removing.
1363 */
1364/* ARGSUSED */
1365static void
1366spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1367{
1368	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1369	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1370	vdev_t *vd = svr->svr_vdev;
1371	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1372	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1373	objset_t *mos = spa->spa_meta_objset;
1374
1375	ASSERT3P(svr->svr_thread, ==, NULL);
1376
1377	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1378	if (vdev_obsolete_counts_are_precise(vd)) {
1379		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1380		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1381		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1382	}
1383
1384	if (vdev_obsolete_sm_object(vd) != 0) {
1385		ASSERT(vd->vdev_obsolete_sm != NULL);
1386		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1387		    space_map_object(vd->vdev_obsolete_sm));
1388
1389		space_map_free(vd->vdev_obsolete_sm, tx);
1390		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1391		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1392		space_map_close(vd->vdev_obsolete_sm);
1393		vd->vdev_obsolete_sm = NULL;
1394		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1395	}
1396	for (int i = 0; i < TXG_SIZE; i++) {
1397		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1398		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1399		    vdev_indirect_mapping_max_offset(vim));
1400	}
1401
1402	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1403		metaslab_t *msp = vd->vdev_ms[msi];
1404
1405		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1406			break;
1407
1408		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1409
1410		mutex_enter(&msp->ms_lock);
1411
1412		/*
1413		 * Assert nothing in flight -- ms_*tree is empty.
1414		 */
1415		for (int i = 0; i < TXG_SIZE; i++)
1416			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1417		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1418			ASSERT0(range_tree_space(msp->ms_defer[i]));
1419		ASSERT0(range_tree_space(msp->ms_freed));
1420
1421		if (msp->ms_sm != NULL) {
1422			/*
1423			 * Assert that the in-core spacemap has the same
1424			 * length as the on-disk one, so we can use the
1425			 * existing in-core spacemap to load it from disk.
1426			 */
1427			ASSERT3U(msp->ms_sm->sm_alloc, ==,
1428			    msp->ms_sm->sm_phys->smp_alloc);
1429			ASSERT3U(msp->ms_sm->sm_length, ==,
1430			    msp->ms_sm->sm_phys->smp_objsize);
1431
1432			mutex_enter(&svr->svr_lock);
1433			VERIFY0(space_map_load(msp->ms_sm,
1434			    svr->svr_allocd_segs, SM_ALLOC));
1435			range_tree_walk(msp->ms_freeing,
1436			    range_tree_remove, svr->svr_allocd_segs);
1437
1438			/*
1439			 * Clear everything past what has been synced,
1440			 * because we have not allocated mappings for it yet.
1441			 */
1442			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1443			range_tree_clear(svr->svr_allocd_segs, syncd,
1444			    msp->ms_sm->sm_start + msp->ms_sm->sm_size - syncd);
1445
1446			mutex_exit(&svr->svr_lock);
1447		}
1448		mutex_exit(&msp->ms_lock);
1449
1450		mutex_enter(&svr->svr_lock);
1451		range_tree_vacate(svr->svr_allocd_segs,
1452		    free_mapped_segment_cb, vd);
1453		mutex_exit(&svr->svr_lock);
1454	}
1455
1456	/*
1457	 * Note: this must happen after we invoke free_mapped_segment_cb,
1458	 * because it adds to the obsolete_segments.
1459	 */
1460	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1461
1462	ASSERT3U(vic->vic_mapping_object, ==,
1463	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1464	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1465	vd->vdev_indirect_mapping = NULL;
1466	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1467	vic->vic_mapping_object = 0;
1468
1469	ASSERT3U(vic->vic_births_object, ==,
1470	    vdev_indirect_births_object(vd->vdev_indirect_births));
1471	vdev_indirect_births_close(vd->vdev_indirect_births);
1472	vd->vdev_indirect_births = NULL;
1473	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1474	vic->vic_births_object = 0;
1475
1476	/*
1477	 * We may have processed some frees from the removing vdev in this
1478	 * txg, thus increasing svr_bytes_done; discard that here to
1479	 * satisfy the assertions in spa_vdev_removal_destroy().
1480	 * Note that future txg's can not have any bytes_done, because
1481	 * future TXG's are only modified from open context, and we have
1482	 * already shut down the copying thread.
1483	 */
1484	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1485	spa_finish_removal(spa, DSS_CANCELED, tx);
1486
1487	vd->vdev_removing = B_FALSE;
1488	vdev_config_dirty(vd);
1489
1490	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1491	    vd->vdev_id, dmu_tx_get_txg(tx));
1492	spa_history_log_internal(spa, "vdev remove canceled", tx,
1493	    "%s vdev %llu %s", spa_name(spa),
1494	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1495}
1496
1497int
1498spa_vdev_remove_cancel(spa_t *spa)
1499{
1500	spa_vdev_remove_suspend(spa);
1501
1502	if (spa->spa_vdev_removal == NULL)
1503		return (ESRCH);
1504
1505	uint64_t vdid = spa->spa_vdev_removal->svr_vdev->vdev_id;
1506
1507	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1508	    spa_vdev_remove_cancel_sync, NULL, 0,
1509	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1510
1511	if (error == 0) {
1512		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1513		vdev_t *vd = vdev_lookup_top(spa, vdid);
1514		metaslab_group_activate(vd->vdev_mg);
1515		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1516	}
1517
1518	return (error);
1519}
1520
1521/*
1522 * Called every sync pass of every txg if there's a svr.
1523 */
1524void
1525svr_sync(spa_t *spa, dmu_tx_t *tx)
1526{
1527	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1528	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1529
1530	/*
1531	 * This check is necessary so that we do not dirty the
1532	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1533	 * is nothing to do.  Dirtying it every time would prevent us
1534	 * from syncing-to-convergence.
1535	 */
1536	if (svr->svr_bytes_done[txgoff] == 0)
1537		return;
1538
1539	/*
1540	 * Update progress accounting.
1541	 */
1542	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1543	svr->svr_bytes_done[txgoff] = 0;
1544
1545	spa_sync_removing_state(spa, tx);
1546}
1547
1548static void
1549vdev_remove_make_hole_and_free(vdev_t *vd)
1550{
1551	uint64_t id = vd->vdev_id;
1552	spa_t *spa = vd->vdev_spa;
1553	vdev_t *rvd = spa->spa_root_vdev;
1554	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1555
1556	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1557	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1558
1559	vdev_free(vd);
1560
1561	if (last_vdev) {
1562		vdev_compact_children(rvd);
1563	} else {
1564		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1565		vdev_add_child(rvd, vd);
1566	}
1567	vdev_config_dirty(rvd);
1568
1569	/*
1570	 * Reassess the health of our root vdev.
1571	 */
1572	vdev_reopen(rvd);
1573}
1574
1575/*
1576 * Remove a log device.  The config lock is held for the specified TXG.
1577 */
1578static int
1579spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1580{
1581	metaslab_group_t *mg = vd->vdev_mg;
1582	spa_t *spa = vd->vdev_spa;
1583	int error = 0;
1584
1585	ASSERT(vd->vdev_islog);
1586	ASSERT(vd == vd->vdev_top);
1587
1588	/*
1589	 * Stop allocating from this vdev.
1590	 */
1591	metaslab_group_passivate(mg);
1592
1593	/*
1594	 * Wait for the youngest allocations and frees to sync,
1595	 * and then wait for the deferral of those frees to finish.
1596	 */
1597	spa_vdev_config_exit(spa, NULL,
1598	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1599
1600	/*
1601	 * Evacuate the device.  We don't hold the config lock as writer
1602	 * since we need to do I/O but we do keep the
1603	 * spa_namespace_lock held.  Once this completes the device
1604	 * should no longer have any blocks allocated on it.
1605	 */
1606	if (vd->vdev_islog) {
1607		if (vd->vdev_stat.vs_alloc != 0)
1608			error = spa_reset_logs(spa);
1609	}
1610
1611	*txg = spa_vdev_config_enter(spa);
1612
1613	if (error != 0) {
1614		metaslab_group_activate(mg);
1615		return (error);
1616	}
1617	ASSERT0(vd->vdev_stat.vs_alloc);
1618
1619	/*
1620	 * The evacuation succeeded.  Remove any remaining MOS metadata
1621	 * associated with this vdev, and wait for these changes to sync.
1622	 */
1623	vd->vdev_removing = B_TRUE;
1624
1625	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1626	vdev_config_dirty(vd);
1627
1628	spa_history_log_internal(spa, "vdev remove", NULL,
1629	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1630	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1631
1632	/* Make sure these changes are sync'ed */
1633	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1634
1635	*txg = spa_vdev_config_enter(spa);
1636
1637	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1638	    ESC_ZFS_VDEV_REMOVE_DEV);
1639	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1640	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1641
1642	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1643	ASSERT0(vd->vdev_top_zap);
1644	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1645	ASSERT0(vd->vdev_leaf_zap);
1646
1647	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1648
1649	if (list_link_active(&vd->vdev_state_dirty_node))
1650		vdev_state_clean(vd);
1651	if (list_link_active(&vd->vdev_config_dirty_node))
1652		vdev_config_clean(vd);
1653
1654	/*
1655	 * Clean up the vdev namespace.
1656	 */
1657	vdev_remove_make_hole_and_free(vd);
1658
1659	if (ev != NULL)
1660		spa_event_post(ev);
1661
1662	return (0);
1663}
1664
1665static int
1666spa_vdev_remove_top_check(vdev_t *vd)
1667{
1668	spa_t *spa = vd->vdev_spa;
1669
1670	if (vd != vd->vdev_top)
1671		return (SET_ERROR(ENOTSUP));
1672
1673	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1674		return (SET_ERROR(ENOTSUP));
1675
1676	/*
1677	 * There has to be enough free space to remove the
1678	 * device and leave double the "slop" space (i.e. we
1679	 * must leave at least 3% of the pool free, in addition to
1680	 * the normal slop space).
1681	 */
1682	if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1683	    NULL, 0, B_TRUE) <
1684	    vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1685		return (SET_ERROR(ENOSPC));
1686	}
1687
1688	/*
1689	 * There can not be a removal in progress.
1690	 */
1691	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1692		return (SET_ERROR(EBUSY));
1693
1694	/*
1695	 * The device must have all its data.
1696	 */
1697	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1698	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1699		return (SET_ERROR(EBUSY));
1700
1701	/*
1702	 * The device must be healthy.
1703	 */
1704	if (!vdev_readable(vd))
1705		return (SET_ERROR(EIO));
1706
1707	/*
1708	 * All vdevs in normal class must have the same ashift.
1709	 */
1710	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1711		return (SET_ERROR(EINVAL));
1712	}
1713
1714	/*
1715	 * All vdevs in normal class must have the same ashift
1716	 * and not be raidz.
1717	 */
1718	vdev_t *rvd = spa->spa_root_vdev;
1719	int num_indirect = 0;
1720	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1721		vdev_t *cvd = rvd->vdev_child[id];
1722		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1723			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1724		if (cvd->vdev_ops == &vdev_indirect_ops)
1725			num_indirect++;
1726		if (!vdev_is_concrete(cvd))
1727			continue;
1728		if (cvd->vdev_ops == &vdev_raidz_ops)
1729			return (SET_ERROR(EINVAL));
1730		/*
1731		 * Need the mirror to be mirror of leaf vdevs only
1732		 */
1733		if (cvd->vdev_ops == &vdev_mirror_ops) {
1734			for (uint64_t cid = 0;
1735			    cid < cvd->vdev_children; cid++) {
1736				vdev_t *tmp = cvd->vdev_child[cid];
1737				if (!tmp->vdev_ops->vdev_op_leaf)
1738					return (SET_ERROR(EINVAL));
1739			}
1740		}
1741	}
1742
1743	return (0);
1744}
1745
1746/*
1747 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1748 * The config lock is held for the specified TXG.  Once initiated,
1749 * evacuation of all allocated space (copying it to other vdevs) happens
1750 * in the background (see spa_vdev_remove_thread()), and can be canceled
1751 * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1752 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1753 */
1754static int
1755spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1756{
1757	spa_t *spa = vd->vdev_spa;
1758	int error;
1759
1760	/*
1761	 * Check for errors up-front, so that we don't waste time
1762	 * passivating the metaslab group and clearing the ZIL if there
1763	 * are errors.
1764	 */
1765	error = spa_vdev_remove_top_check(vd);
1766	if (error != 0)
1767		return (error);
1768
1769	/*
1770	 * Stop allocating from this vdev.  Note that we must check
1771	 * that this is not the only device in the pool before
1772	 * passivating, otherwise we will not be able to make
1773	 * progress because we can't allocate from any vdevs.
1774	 * The above check for sufficient free space serves this
1775	 * purpose.
1776	 */
1777	metaslab_group_t *mg = vd->vdev_mg;
1778	metaslab_group_passivate(mg);
1779
1780	/*
1781	 * Wait for the youngest allocations and frees to sync,
1782	 * and then wait for the deferral of those frees to finish.
1783	 */
1784	spa_vdev_config_exit(spa, NULL,
1785	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1786
1787	/*
1788	 * We must ensure that no "stubby" log blocks are allocated
1789	 * on the device to be removed.  These blocks could be
1790	 * written at any time, including while we are in the middle
1791	 * of copying them.
1792	 */
1793	error = spa_reset_logs(spa);
1794
1795	*txg = spa_vdev_config_enter(spa);
1796
1797	/*
1798	 * Things might have changed while the config lock was dropped
1799	 * (e.g. space usage).  Check for errors again.
1800	 */
1801	if (error == 0)
1802		error = spa_vdev_remove_top_check(vd);
1803
1804	if (error != 0) {
1805		metaslab_group_activate(mg);
1806		return (error);
1807	}
1808
1809	vd->vdev_removing = B_TRUE;
1810
1811	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1812	vdev_config_dirty(vd);
1813	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1814	dsl_sync_task_nowait(spa->spa_dsl_pool,
1815	    vdev_remove_initiate_sync,
1816	    vd, 0, ZFS_SPACE_CHECK_NONE, tx);
1817	dmu_tx_commit(tx);
1818
1819	return (0);
1820}
1821
1822/*
1823 * Remove a device from the pool.
1824 *
1825 * Removing a device from the vdev namespace requires several steps
1826 * and can take a significant amount of time.  As a result we use
1827 * the spa_vdev_config_[enter/exit] functions which allow us to
1828 * grab and release the spa_config_lock while still holding the namespace
1829 * lock.  During each step the configuration is synced out.
1830 */
1831int
1832spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1833{
1834	vdev_t *vd;
1835	nvlist_t **spares, **l2cache, *nv;
1836	uint64_t txg = 0;
1837	uint_t nspares, nl2cache;
1838	int error = 0;
1839	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
1840	sysevent_t *ev = NULL;
1841
1842	ASSERT(spa_writeable(spa));
1843
1844	if (!locked)
1845		txg = spa_vdev_enter(spa);
1846
1847	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1848	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1849		error = (spa_has_checkpoint(spa)) ?
1850		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1851
1852		if (!locked)
1853			return (spa_vdev_exit(spa, NULL, txg, error));
1854
1855		return (error);
1856	}
1857
1858	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1859
1860	if (spa->spa_spares.sav_vdevs != NULL &&
1861	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1862	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
1863	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
1864		/*
1865		 * Only remove the hot spare if it's not currently in use
1866		 * in this pool.
1867		 */
1868		if (vd == NULL || unspare) {
1869			char *nvstr = fnvlist_lookup_string(nv,
1870			    ZPOOL_CONFIG_PATH);
1871			spa_history_log_internal(spa, "vdev remove", NULL,
1872			    "%s vdev (%s) %s", spa_name(spa),
1873			    VDEV_TYPE_SPARE, nvstr);
1874			if (vd == NULL)
1875				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1876			ev = spa_event_create(spa, vd, NULL,
1877			    ESC_ZFS_VDEV_REMOVE_AUX);
1878			spa_vdev_remove_aux(spa->spa_spares.sav_config,
1879			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
1880			spa_load_spares(spa);
1881			spa->spa_spares.sav_sync = B_TRUE;
1882		} else {
1883			error = SET_ERROR(EBUSY);
1884		}
1885	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
1886	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1887	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
1888	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
1889		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
1890		spa_history_log_internal(spa, "vdev remove", NULL,
1891		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
1892		/*
1893		 * Cache devices can always be removed.
1894		 */
1895		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1896		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
1897		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
1898		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
1899		spa_load_l2cache(spa);
1900		spa->spa_l2cache.sav_sync = B_TRUE;
1901	} else if (vd != NULL && vd->vdev_islog) {
1902		ASSERT(!locked);
1903		error = spa_vdev_remove_log(vd, &txg);
1904	} else if (vd != NULL) {
1905		ASSERT(!locked);
1906		error = spa_vdev_remove_top(vd, &txg);
1907	} else {
1908		/*
1909		 * There is no vdev of any kind with the specified guid.
1910		 */
1911		error = SET_ERROR(ENOENT);
1912	}
1913
1914	if (!locked)
1915		error = spa_vdev_exit(spa, NULL, txg, error);
1916
1917	if (ev != NULL) {
1918		if (error != 0) {
1919			spa_event_discard(ev);
1920		} else {
1921			spa_event_post(ev);
1922		}
1923	}
1924
1925	return (error);
1926}
1927
1928int
1929spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
1930{
1931	prs->prs_state = spa->spa_removing_phys.sr_state;
1932
1933	if (prs->prs_state == DSS_NONE)
1934		return (SET_ERROR(ENOENT));
1935
1936	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
1937	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
1938	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
1939	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
1940	prs->prs_copied = spa->spa_removing_phys.sr_copied;
1941
1942	if (spa->spa_vdev_removal != NULL) {
1943		for (int i = 0; i < TXG_SIZE; i++) {
1944			prs->prs_copied +=
1945			    spa->spa_vdev_removal->svr_bytes_done[i];
1946		}
1947	}
1948
1949	prs->prs_mapping_memory = 0;
1950	uint64_t indirect_vdev_id =
1951	    spa->spa_removing_phys.sr_prev_indirect_vdev;
1952	while (indirect_vdev_id != -1) {
1953		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
1954		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1955		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1956
1957		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1958		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
1959		indirect_vdev_id = vic->vic_prev_indirect_vdev;
1960	}
1961
1962	return (0);
1963}
1964