vdev_initialize.c revision 339111
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2016 by Delphix. All rights reserved.
24 */
25
26#include <sys/spa.h>
27#include <sys/spa_impl.h>
28#include <sys/txg.h>
29#include <sys/vdev_impl.h>
30#include <sys/refcount.h>
31#include <sys/metaslab_impl.h>
32#include <sys/dsl_synctask.h>
33#include <sys/zap.h>
34#include <sys/dmu_tx.h>
35
36/*
37 * Maximum number of metaslabs per group that can be initialized
38 * simultaneously.
39 */
40int max_initialize_ms = 3;
41
42/*
43 * Value that is written to disk during initialization.
44 */
45uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
46
47/* maximum number of I/Os outstanding per leaf vdev */
48int zfs_initialize_limit = 1;
49
50/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
51uint64_t zfs_initialize_chunk_size = 1024 * 1024;
52
53static boolean_t
54vdev_initialize_should_stop(vdev_t *vd)
55{
56	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
57	    vd->vdev_detached || vd->vdev_top->vdev_removing);
58}
59
60static void
61vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
62{
63	/*
64	 * We pass in the guid instead of the vdev_t since the vdev may
65	 * have been freed prior to the sync task being processed. This
66	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
67	 * stop the intializing thread, schedule the sync task, and free
68	 * the vdev. Later when the scheduled sync task is invoked, it would
69	 * find that the vdev has been freed.
70	 */
71	uint64_t guid = *(uint64_t *)arg;
72	uint64_t txg = dmu_tx_get_txg(tx);
73	kmem_free(arg, sizeof (uint64_t));
74
75	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
76	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
77		return;
78
79	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
80	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
81
82	VERIFY(vd->vdev_leaf_zap != 0);
83
84	objset_t *mos = vd->vdev_spa->spa_meta_objset;
85
86	if (last_offset > 0) {
87		vd->vdev_initialize_last_offset = last_offset;
88		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
90		    sizeof (last_offset), 1, &last_offset, tx));
91	}
92	if (vd->vdev_initialize_action_time > 0) {
93		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
94		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
96		    1, &val, tx));
97	}
98
99	uint64_t initialize_state = vd->vdev_initialize_state;
100	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
101	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
102	    &initialize_state, tx));
103}
104
105static void
106vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
107{
108	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
109	spa_t *spa = vd->vdev_spa;
110
111	if (new_state == vd->vdev_initialize_state)
112		return;
113
114	/*
115	 * Copy the vd's guid, this will be freed by the sync task.
116	 */
117	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
118	*guid = vd->vdev_guid;
119
120	/*
121	 * If we're suspending, then preserving the original start time.
122	 */
123	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
124		vd->vdev_initialize_action_time = gethrestime_sec();
125	}
126	vd->vdev_initialize_state = new_state;
127
128	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131	    guid, 2, ZFS_SPACE_CHECK_RESERVED, tx);
132
133	switch (new_state) {
134	case VDEV_INITIALIZE_ACTIVE:
135		spa_history_log_internal(spa, "initialize", tx,
136		    "vdev=%s activated", vd->vdev_path);
137		break;
138	case VDEV_INITIALIZE_SUSPENDED:
139		spa_history_log_internal(spa, "initialize", tx,
140		    "vdev=%s suspended", vd->vdev_path);
141		break;
142	case VDEV_INITIALIZE_CANCELED:
143		spa_history_log_internal(spa, "initialize", tx,
144		    "vdev=%s canceled", vd->vdev_path);
145		break;
146	case VDEV_INITIALIZE_COMPLETE:
147		spa_history_log_internal(spa, "initialize", tx,
148		    "vdev=%s complete", vd->vdev_path);
149		break;
150	default:
151		panic("invalid state %llu", (unsigned long long)new_state);
152	}
153
154	dmu_tx_commit(tx);
155}
156
157static void
158vdev_initialize_cb(zio_t *zio)
159{
160	vdev_t *vd = zio->io_vd;
161	mutex_enter(&vd->vdev_initialize_io_lock);
162	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
163		/*
164		 * The I/O failed because the vdev was unavailable; roll the
165		 * last offset back. (This works because spa_sync waits on
166		 * spa_txg_zio before it runs sync tasks.)
167		 */
168		uint64_t *off =
169		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
170		*off = MIN(*off, zio->io_offset);
171	} else {
172		/*
173		 * Since initializing is best-effort, we ignore I/O errors and
174		 * rely on vdev_probe to determine if the errors are more
175		 * critical.
176		 */
177		if (zio->io_error != 0)
178			vd->vdev_stat.vs_initialize_errors++;
179
180		vd->vdev_initialize_bytes_done += zio->io_orig_size;
181	}
182	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
183	vd->vdev_initialize_inflight--;
184	cv_broadcast(&vd->vdev_initialize_io_cv);
185	mutex_exit(&vd->vdev_initialize_io_lock);
186
187	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
188}
189
190/* Takes care of physical writing and limiting # of concurrent ZIOs. */
191static int
192vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
193{
194	spa_t *spa = vd->vdev_spa;
195
196	/* Limit inflight initializing I/Os */
197	mutex_enter(&vd->vdev_initialize_io_lock);
198	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
199		cv_wait(&vd->vdev_initialize_io_cv,
200		    &vd->vdev_initialize_io_lock);
201	}
202	vd->vdev_initialize_inflight++;
203	mutex_exit(&vd->vdev_initialize_io_lock);
204
205	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
206	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
207	uint64_t txg = dmu_tx_get_txg(tx);
208
209	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
210	mutex_enter(&vd->vdev_initialize_lock);
211
212	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
213		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
214		*guid = vd->vdev_guid;
215
216		/* This is the first write of this txg. */
217		dsl_sync_task_nowait(spa_get_dsl(spa),
218		    vdev_initialize_zap_update_sync, guid, 2,
219		    ZFS_SPACE_CHECK_RESERVED, tx);
220	}
221
222	/*
223	 * We know the vdev struct will still be around since all
224	 * consumers of vdev_free must stop the initialization first.
225	 */
226	if (vdev_initialize_should_stop(vd)) {
227		mutex_enter(&vd->vdev_initialize_io_lock);
228		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229		vd->vdev_initialize_inflight--;
230		mutex_exit(&vd->vdev_initialize_io_lock);
231		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232		mutex_exit(&vd->vdev_initialize_lock);
233		dmu_tx_commit(tx);
234		return (SET_ERROR(EINTR));
235	}
236	mutex_exit(&vd->vdev_initialize_lock);
237
238	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242	/* vdev_initialize_cb releases SCL_STATE_ALL */
243
244	dmu_tx_commit(tx);
245
246	return (0);
247}
248
249/*
250 * Translate a logical range to the physical range for the specified vdev_t.
251 * This function is initially called with a leaf vdev and will walk each
252 * parent vdev until it reaches a top-level vdev. Once the top-level is
253 * reached the physical range is initialized and the recursive function
254 * begins to unwind. As it unwinds it calls the parent's vdev specific
255 * translation function to do the real conversion.
256 */
257void
258vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
259{
260	/*
261	 * Walk up the vdev tree
262	 */
263	if (vd != vd->vdev_top) {
264		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
265	} else {
266		/*
267		 * We've reached the top-level vdev, initialize the
268		 * physical range to the logical range and start to
269		 * unwind.
270		 */
271		physical_rs->rs_start = logical_rs->rs_start;
272		physical_rs->rs_end = logical_rs->rs_end;
273		return;
274	}
275
276	vdev_t *pvd = vd->vdev_parent;
277	ASSERT3P(pvd, !=, NULL);
278	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
279
280	/*
281	 * As this recursive function unwinds, translate the logical
282	 * range into its physical components by calling the
283	 * vdev specific translate function.
284	 */
285	range_seg_t intermediate = { 0 };
286	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
287
288	physical_rs->rs_start = intermediate.rs_start;
289	physical_rs->rs_end = intermediate.rs_end;
290}
291
292/*
293 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295 * allocation will guarantee these for us.
296 */
297/* ARGSUSED */
298static int
299vdev_initialize_block_fill(void *buf, size_t len, void *unused)
300{
301	ASSERT0(len % sizeof (uint64_t));
302	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
303		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
304	}
305	return (0);
306}
307
308static abd_t *
309vdev_initialize_block_alloc()
310{
311	/* Allocate ABD for filler data */
312	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
313
314	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
315	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
316	    vdev_initialize_block_fill, NULL);
317
318	return (data);
319}
320
321static void
322vdev_initialize_block_free(abd_t *data)
323{
324	abd_free(data);
325}
326
327static int
328vdev_initialize_ranges(vdev_t *vd, abd_t *data)
329{
330	avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
331
332	for (range_seg_t *rs = avl_first(rt); rs != NULL;
333	    rs = AVL_NEXT(rt, rs)) {
334		uint64_t size = rs->rs_end - rs->rs_start;
335
336		/* Split range into legally-sized physical chunks */
337		uint64_t writes_required =
338		    ((size - 1) / zfs_initialize_chunk_size) + 1;
339
340		for (uint64_t w = 0; w < writes_required; w++) {
341			int error;
342
343			error = vdev_initialize_write(vd,
344			    VDEV_LABEL_START_SIZE + rs->rs_start +
345			    (w * zfs_initialize_chunk_size),
346			    MIN(size - (w * zfs_initialize_chunk_size),
347			    zfs_initialize_chunk_size), data);
348			if (error != 0)
349				return (error);
350		}
351	}
352	return (0);
353}
354
355static void
356vdev_initialize_ms_load(metaslab_t *msp)
357{
358	ASSERT(MUTEX_HELD(&msp->ms_lock));
359
360	metaslab_load_wait(msp);
361	if (!msp->ms_loaded)
362		VERIFY0(metaslab_load(msp));
363}
364
365static void
366vdev_initialize_mg_wait(metaslab_group_t *mg)
367{
368	ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
369	while (mg->mg_initialize_updating) {
370		cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
371	}
372}
373
374static void
375vdev_initialize_mg_mark(metaslab_group_t *mg)
376{
377	ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
378	ASSERT(mg->mg_initialize_updating);
379
380	while (mg->mg_ms_initializing >= max_initialize_ms) {
381		cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
382	}
383	mg->mg_ms_initializing++;
384	ASSERT3U(mg->mg_ms_initializing, <=, max_initialize_ms);
385}
386
387/*
388 * Mark the metaslab as being initialized to prevent any allocations
389 * on this metaslab. We must also track how many metaslabs are currently
390 * being initialized within a metaslab group and limit them to prevent
391 * allocation failures from occurring because all metaslabs are being
392 * initialized.
393 */
394static void
395vdev_initialize_ms_mark(metaslab_t *msp)
396{
397	ASSERT(!MUTEX_HELD(&msp->ms_lock));
398	metaslab_group_t *mg = msp->ms_group;
399
400	mutex_enter(&mg->mg_ms_initialize_lock);
401
402	/*
403	 * To keep an accurate count of how many threads are initializing
404	 * a specific metaslab group, we only allow one thread to mark
405	 * the metaslab group at a time. This ensures that the value of
406	 * ms_initializing will be accurate when we decide to mark a metaslab
407	 * group as being initialized. To do this we force all other threads
408	 * to wait till the metaslab's mg_initialize_updating flag is no
409	 * longer set.
410	 */
411	vdev_initialize_mg_wait(mg);
412	mg->mg_initialize_updating = B_TRUE;
413	if (msp->ms_initializing == 0) {
414		vdev_initialize_mg_mark(mg);
415	}
416	mutex_enter(&msp->ms_lock);
417	msp->ms_initializing++;
418	mutex_exit(&msp->ms_lock);
419
420	mg->mg_initialize_updating = B_FALSE;
421	cv_broadcast(&mg->mg_ms_initialize_cv);
422	mutex_exit(&mg->mg_ms_initialize_lock);
423}
424
425static void
426vdev_initialize_ms_unmark(metaslab_t *msp)
427{
428	ASSERT(!MUTEX_HELD(&msp->ms_lock));
429	metaslab_group_t *mg = msp->ms_group;
430	mutex_enter(&mg->mg_ms_initialize_lock);
431	mutex_enter(&msp->ms_lock);
432	if (--msp->ms_initializing == 0) {
433		mg->mg_ms_initializing--;
434		cv_broadcast(&mg->mg_ms_initialize_cv);
435	}
436	mutex_exit(&msp->ms_lock);
437	mutex_exit(&mg->mg_ms_initialize_lock);
438}
439
440static void
441vdev_initialize_calculate_progress(vdev_t *vd)
442{
443	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
444	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
445	ASSERT(vd->vdev_leaf_zap != 0);
446
447	vd->vdev_initialize_bytes_est = 0;
448	vd->vdev_initialize_bytes_done = 0;
449
450	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
451		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
452		mutex_enter(&msp->ms_lock);
453
454		uint64_t ms_free = msp->ms_size -
455		    space_map_allocated(msp->ms_sm);
456
457		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
458			ms_free /= vd->vdev_top->vdev_children;
459
460		/*
461		 * Convert the metaslab range to a physical range
462		 * on our vdev. We use this to determine if we are
463		 * in the middle of this metaslab range.
464		 */
465		range_seg_t logical_rs, physical_rs;
466		logical_rs.rs_start = msp->ms_start;
467		logical_rs.rs_end = msp->ms_start + msp->ms_size;
468		vdev_xlate(vd, &logical_rs, &physical_rs);
469
470		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
471			vd->vdev_initialize_bytes_est += ms_free;
472			mutex_exit(&msp->ms_lock);
473			continue;
474		} else if (vd->vdev_initialize_last_offset >
475		    physical_rs.rs_end) {
476			vd->vdev_initialize_bytes_done += ms_free;
477			vd->vdev_initialize_bytes_est += ms_free;
478			mutex_exit(&msp->ms_lock);
479			continue;
480		}
481
482		/*
483		 * If we get here, we're in the middle of initializing this
484		 * metaslab. Load it and walk the free tree for more accurate
485		 * progress estimation.
486		 */
487		vdev_initialize_ms_load(msp);
488
489		for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root); rs;
490		    rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
491			logical_rs.rs_start = rs->rs_start;
492			logical_rs.rs_end = rs->rs_end;
493			vdev_xlate(vd, &logical_rs, &physical_rs);
494
495			uint64_t size = physical_rs.rs_end -
496			    physical_rs.rs_start;
497			vd->vdev_initialize_bytes_est += size;
498			if (vd->vdev_initialize_last_offset >
499			    physical_rs.rs_end) {
500				vd->vdev_initialize_bytes_done += size;
501			} else if (vd->vdev_initialize_last_offset >
502			    physical_rs.rs_start &&
503			    vd->vdev_initialize_last_offset <
504			    physical_rs.rs_end) {
505				vd->vdev_initialize_bytes_done +=
506				    vd->vdev_initialize_last_offset -
507				    physical_rs.rs_start;
508			}
509		}
510		mutex_exit(&msp->ms_lock);
511	}
512}
513
514static void
515vdev_initialize_load(vdev_t *vd)
516{
517	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
518	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
519	ASSERT(vd->vdev_leaf_zap != 0);
520
521	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
522	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
523		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
524		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
525		    sizeof (vd->vdev_initialize_last_offset), 1,
526		    &vd->vdev_initialize_last_offset);
527		ASSERT(err == 0 || err == ENOENT);
528	}
529
530	vdev_initialize_calculate_progress(vd);
531}
532
533
534/*
535 * Convert the logical range into a physcial range and add it to our
536 * avl tree.
537 */
538void
539vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
540{
541	vdev_t *vd = arg;
542	range_seg_t logical_rs, physical_rs;
543	logical_rs.rs_start = start;
544	logical_rs.rs_end = start + size;
545
546	ASSERT(vd->vdev_ops->vdev_op_leaf);
547	vdev_xlate(vd, &logical_rs, &physical_rs);
548
549	IMPLY(vd->vdev_top == vd,
550	    logical_rs.rs_start == physical_rs.rs_start);
551	IMPLY(vd->vdev_top == vd,
552	    logical_rs.rs_end == physical_rs.rs_end);
553
554	/* Only add segments that we have not visited yet */
555	if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
556		return;
557
558	/* Pick up where we left off mid-range. */
559	if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
560		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
561		    "(%llu, %llu)", vd->vdev_path,
562		    (u_longlong_t)physical_rs.rs_start,
563		    (u_longlong_t)physical_rs.rs_end,
564		    (u_longlong_t)vd->vdev_initialize_last_offset,
565		    (u_longlong_t)physical_rs.rs_end);
566		ASSERT3U(physical_rs.rs_end, >,
567		    vd->vdev_initialize_last_offset);
568		physical_rs.rs_start = vd->vdev_initialize_last_offset;
569	}
570	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
571
572	/*
573	 * With raidz, it's possible that the logical range does not live on
574	 * this leaf vdev. We only add the physical range to this vdev's if it
575	 * has a length greater than 0.
576	 */
577	if (physical_rs.rs_end > physical_rs.rs_start) {
578		range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
579		    physical_rs.rs_end - physical_rs.rs_start);
580	} else {
581		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
582	}
583}
584
585static void
586vdev_initialize_thread(void *arg)
587{
588	vdev_t *vd = arg;
589	spa_t *spa = vd->vdev_spa;
590	int error = 0;
591	uint64_t ms_count = 0;
592
593	ASSERT(vdev_is_concrete(vd));
594	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
595
596	vd->vdev_initialize_last_offset = 0;
597	vdev_initialize_load(vd);
598
599	abd_t *deadbeef = vdev_initialize_block_alloc();
600
601	vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
602
603	for (uint64_t i = 0; !vd->vdev_detached &&
604	    i < vd->vdev_top->vdev_ms_count; i++) {
605		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
606
607		/*
608		 * If we've expanded the top-level vdev or it's our
609		 * first pass, calculate our progress.
610		 */
611		if (vd->vdev_top->vdev_ms_count != ms_count) {
612			vdev_initialize_calculate_progress(vd);
613			ms_count = vd->vdev_top->vdev_ms_count;
614		}
615
616		vdev_initialize_ms_mark(msp);
617		mutex_enter(&msp->ms_lock);
618		vdev_initialize_ms_load(msp);
619
620		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
621		    vd);
622		mutex_exit(&msp->ms_lock);
623
624		spa_config_exit(spa, SCL_CONFIG, FTAG);
625		error = vdev_initialize_ranges(vd, deadbeef);
626		vdev_initialize_ms_unmark(msp);
627		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
628
629		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
630		if (error != 0)
631			break;
632	}
633
634	spa_config_exit(spa, SCL_CONFIG, FTAG);
635	mutex_enter(&vd->vdev_initialize_io_lock);
636	while (vd->vdev_initialize_inflight > 0) {
637		cv_wait(&vd->vdev_initialize_io_cv,
638		    &vd->vdev_initialize_io_lock);
639	}
640	mutex_exit(&vd->vdev_initialize_io_lock);
641
642	range_tree_destroy(vd->vdev_initialize_tree);
643	vdev_initialize_block_free(deadbeef);
644	vd->vdev_initialize_tree = NULL;
645
646	mutex_enter(&vd->vdev_initialize_lock);
647	if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
648		vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
649	}
650	ASSERT(vd->vdev_initialize_thread != NULL ||
651	    vd->vdev_initialize_inflight == 0);
652
653	/*
654	 * Drop the vdev_initialize_lock while we sync out the
655	 * txg since it's possible that a device might be trying to
656	 * come online and must check to see if it needs to restart an
657	 * initialization. That thread will be holding the spa_config_lock
658	 * which would prevent the txg_wait_synced from completing.
659	 */
660	mutex_exit(&vd->vdev_initialize_lock);
661	txg_wait_synced(spa_get_dsl(spa), 0);
662	mutex_enter(&vd->vdev_initialize_lock);
663
664	vd->vdev_initialize_thread = NULL;
665	cv_broadcast(&vd->vdev_initialize_cv);
666	mutex_exit(&vd->vdev_initialize_lock);
667	thread_exit();
668}
669
670/*
671 * Initiates a device. Caller must hold vdev_initialize_lock.
672 * Device must be a leaf and not already be initializing.
673 */
674void
675vdev_initialize(vdev_t *vd)
676{
677	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
678	ASSERT(vd->vdev_ops->vdev_op_leaf);
679	ASSERT(vdev_is_concrete(vd));
680	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
681	ASSERT(!vd->vdev_detached);
682	ASSERT(!vd->vdev_initialize_exit_wanted);
683	ASSERT(!vd->vdev_top->vdev_removing);
684
685	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
686	vd->vdev_initialize_thread = thread_create(NULL, 0,
687	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
688}
689
690/*
691 * Stop initializng a device, with the resultant initialing state being
692 * tgt_state. Blocks until the initializing thread has exited.
693 * Caller must hold vdev_initialize_lock and must not be writing to the spa
694 * config, as the initializing thread may try to enter the config as a reader
695 * before exiting.
696 */
697void
698vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state)
699{
700	spa_t *spa = vd->vdev_spa;
701	ASSERT(!spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_WRITER));
702
703	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
704	ASSERT(vd->vdev_ops->vdev_op_leaf);
705	ASSERT(vdev_is_concrete(vd));
706
707	/*
708	 * Allow cancel requests to proceed even if the initialize thread
709	 * has stopped.
710	 */
711	if (vd->vdev_initialize_thread == NULL &&
712	    tgt_state != VDEV_INITIALIZE_CANCELED) {
713		return;
714	}
715
716	vdev_initialize_change_state(vd, tgt_state);
717	vd->vdev_initialize_exit_wanted = B_TRUE;
718	while (vd->vdev_initialize_thread != NULL)
719		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
720
721	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
722	vd->vdev_initialize_exit_wanted = B_FALSE;
723}
724
725static void
726vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state)
727{
728	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
729		mutex_enter(&vd->vdev_initialize_lock);
730		vdev_initialize_stop(vd, tgt_state);
731		mutex_exit(&vd->vdev_initialize_lock);
732		return;
733	}
734
735	for (uint64_t i = 0; i < vd->vdev_children; i++) {
736		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state);
737	}
738}
739
740/*
741 * Convenience function to stop initializing of a vdev tree and set all
742 * initialize thread pointers to NULL.
743 */
744void
745vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
746{
747	vdev_initialize_stop_all_impl(vd, tgt_state);
748
749	if (vd->vdev_spa->spa_sync_on) {
750		/* Make sure that our state has been synced to disk */
751		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
752	}
753}
754
755void
756vdev_initialize_restart(vdev_t *vd)
757{
758	ASSERT(MUTEX_HELD(&spa_namespace_lock));
759	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
760
761	if (vd->vdev_leaf_zap != 0) {
762		mutex_enter(&vd->vdev_initialize_lock);
763		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
764		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
765		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
766		    sizeof (initialize_state), 1, &initialize_state);
767		ASSERT(err == 0 || err == ENOENT);
768		vd->vdev_initialize_state = initialize_state;
769
770		uint64_t timestamp = 0;
771		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
772		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
773		    sizeof (timestamp), 1, &timestamp);
774		ASSERT(err == 0 || err == ENOENT);
775		vd->vdev_initialize_action_time = (time_t)timestamp;
776
777		if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
778		    vd->vdev_offline) {
779			/* load progress for reporting, but don't resume */
780			vdev_initialize_load(vd);
781		} else if (vd->vdev_initialize_state ==
782		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd)) {
783			vdev_initialize(vd);
784		}
785
786		mutex_exit(&vd->vdev_initialize_lock);
787	}
788
789	for (uint64_t i = 0; i < vd->vdev_children; i++) {
790		vdev_initialize_restart(vd->vdev_child[i]);
791	}
792}
793