1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source.  A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18 */
19
20#include <sys/zfs_context.h>
21#include <sys/spa.h>
22#include <sys/spa_impl.h>
23#include <sys/vdev_impl.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
26#include <sys/zio_checksum.h>
27#include <sys/metaslab.h>
28#include <sys/refcount.h>
29#include <sys/dmu.h>
30#include <sys/vdev_indirect_mapping.h>
31#include <sys/dmu_tx.h>
32#include <sys/dsl_synctask.h>
33#include <sys/zap.h>
34#include <sys/abd.h>
35#include <sys/zthr.h>
36
37/*
38 * An indirect vdev corresponds to a vdev that has been removed.  Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA.  Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location.  As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA.  Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location.  This function is used in multiple ways:
49 *
50 *  - i/os to this vdev use the callback to determine where the
51 *    data is now located, and issue child i/os for each segment's new
52 *    location.
53 *
54 *  - frees and claims to this vdev use the callback to free or claim
55 *    each mapped segment.  (Note that we don't actually need to claim
56 *    log blocks on indirect vdevs, because we don't allocate to
57 *    removing vdevs.  However, zdb uses zio_claim() for its leak
58 *    detection.)
59 */
60
61/*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete").  We
66 * keep track of how much of each mapping entry is obsolete.  When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping.  The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 *  - the entry-specific obsolete count
71 *  - the vdev-specific obsolete spacemap
72 *  - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects.  Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 *  - Each vic_mapping_object (associated with an indirect vdev) can
82 *    have a vimp_counts_object.  This is an array of uint32_t's
83 *    with the same number of entries as the vic_mapping_object.  When
84 *    the mapping is condensed, entries from the vic_obsolete_sm_object
85 *    (see below) are folded into the counts.  Therefore, each
86 *    obsolete_counts entry tells us the number of bytes in the
87 *    corresponding mapping entry that were not referenced when the
88 *    mapping was last condensed.
89 *
90 *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 *    This is a space map containing an alloc entry for every DVA that
92 *    has been obsoleted since the last time this indirect vdev was
93 *    condensed.  We use this object in order to improve performance
94 *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
95 *    offset of the vimp_counts_object, we only need to append an entry
96 *    to the end of this object.  When a DVA becomes obsolete, it is
97 *    added to the obsolete space map.  This happens when the DVA is
98 *    freed, remapped and not referenced by a snapshot, or the last
99 *    snapshot referencing it is destroyed.
100 *
101 *  - Each dataset can have a ds_remap_deadlist object.  This is a
102 *    deadlist object containing all blocks that were remapped in this
103 *    dataset but referenced in a previous snapshot.  Blocks can *only*
104 *    appear on this list if they were remapped (dsl_dataset_block_remapped);
105 *    blocks that were killed in a head dataset are put on the normal
106 *    ds_deadlist and marked obsolete when they are freed.
107 *
108 *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
109 *    in the pool that need to be marked obsolete.  When a snapshot is
110 *    destroyed, we move some of the ds_remap_deadlist to the obsolete
111 *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
112 *    asynchronously process the obsolete bpobj, moving its entries to
113 *    the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 *   vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 *   references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 *   individual vdev's vic_obsolete_sm_object.
125 */
126
127/*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage.  In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 *    (see spa_condense_indirect_start_sync()).  This initializes the
148 *    spa_condensing_indirect_phys with the "previous obsolete space map",
149 *    which is now read only.  Newly obsolete DVAs will be added to a
150 *    new (initially empty) obsolete space map, and will not be
151 *    considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 *    mapping entry, by incorporating the obsolete space map into the
155 *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 *    entries that are not completely obsolete (i.e. which don't have
159 *    obsolete count == mapping length).  (See
160 *    spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 *    (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts.  Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
174boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176/*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete.  With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses.  Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183int zfs_indirect_condense_obsolete_pct = 25;
184
185/*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically).  This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
191uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193/*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory.  The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
199
200/*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly).  If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206int zfs_condense_indirect_commit_entry_delay_ticks = 0;
207
208/*
209 * If a split block contains more than this many segments, consider it too
210 * computationally expensive to check all (2^num_segments) possible
211 * combinations. Instead, try at most 2^_segments_max randomly-selected
212 * combinations.
213 *
214 * This is reasonable if only a few segment copies are damaged and the
215 * majority of segment copies are good. This allows all the segment copies to
216 * participate fairly in the reconstruction and prevents the repeated use of
217 * one bad copy.
218 */
219int zfs_reconstruct_indirect_segments_max = 10;
220
221/*
222 * The indirect_child_t represents the vdev that we will read from, when we
223 * need to read all copies of the data (e.g. for scrub or reconstruction).
224 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
225 * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
226 * ic_vdev is a child of the mirror.
227 */
228typedef struct indirect_child {
229	abd_t *ic_data;
230	vdev_t *ic_vdev;
231} indirect_child_t;
232
233/*
234 * The indirect_split_t represents one mapped segment of an i/o to the
235 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
236 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
237 * For split blocks, there will be several of these.
238 */
239typedef struct indirect_split {
240	list_node_t is_node; /* link on iv_splits */
241
242	/*
243	 * is_split_offset is the offset into the i/o.
244	 * This is the sum of the previous splits' is_size's.
245	 */
246	uint64_t is_split_offset;
247
248	vdev_t *is_vdev; /* top-level vdev */
249	uint64_t is_target_offset; /* offset on is_vdev */
250	uint64_t is_size;
251	int is_children; /* number of entries in is_child[] */
252
253	/*
254	 * is_good_child is the child that we are currently using to
255	 * attempt reconstruction.
256	 */
257	int is_good_child;
258
259	indirect_child_t is_child[1]; /* variable-length */
260} indirect_split_t;
261
262/*
263 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
264 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
265 */
266typedef struct indirect_vsd {
267	boolean_t iv_split_block;
268	boolean_t iv_reconstruct;
269
270	list_t iv_splits; /* list of indirect_split_t's */
271} indirect_vsd_t;
272
273static void
274vdev_indirect_map_free(zio_t *zio)
275{
276	indirect_vsd_t *iv = zio->io_vsd;
277
278	indirect_split_t *is;
279	while ((is = list_head(&iv->iv_splits)) != NULL) {
280		for (int c = 0; c < is->is_children; c++) {
281			indirect_child_t *ic = &is->is_child[c];
282			if (ic->ic_data != NULL)
283				abd_free(ic->ic_data);
284		}
285		list_remove(&iv->iv_splits, is);
286		kmem_free(is,
287		    offsetof(indirect_split_t, is_child[is->is_children]));
288	}
289	kmem_free(iv, sizeof (*iv));
290}
291
292static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
293	vdev_indirect_map_free,
294	zio_vsd_default_cksum_report
295};
296/*
297 * Mark the given offset and size as being obsolete.
298 */
299void
300vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
301{
302	spa_t *spa = vd->vdev_spa;
303
304	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
305	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
306	ASSERT(size > 0);
307	VERIFY(vdev_indirect_mapping_entry_for_offset(
308	    vd->vdev_indirect_mapping, offset) != NULL);
309
310	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
311		mutex_enter(&vd->vdev_obsolete_lock);
312		range_tree_add(vd->vdev_obsolete_segments, offset, size);
313		mutex_exit(&vd->vdev_obsolete_lock);
314		vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
315	}
316}
317
318/*
319 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
320 * wrapper is provided because the DMU does not know about vdev_t's and
321 * cannot directly call vdev_indirect_mark_obsolete.
322 */
323void
324spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
325    uint64_t size, dmu_tx_t *tx)
326{
327	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
328	ASSERT(dmu_tx_is_syncing(tx));
329
330	/* The DMU can only remap indirect vdevs. */
331	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
332	vdev_indirect_mark_obsolete(vd, offset, size);
333}
334
335static spa_condensing_indirect_t *
336spa_condensing_indirect_create(spa_t *spa)
337{
338	spa_condensing_indirect_phys_t *scip =
339	    &spa->spa_condensing_indirect_phys;
340	spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
341	objset_t *mos = spa->spa_meta_objset;
342
343	for (int i = 0; i < TXG_SIZE; i++) {
344		list_create(&sci->sci_new_mapping_entries[i],
345		    sizeof (vdev_indirect_mapping_entry_t),
346		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
347	}
348
349	sci->sci_new_mapping =
350	    vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
351
352	return (sci);
353}
354
355static void
356spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
357{
358	for (int i = 0; i < TXG_SIZE; i++)
359		list_destroy(&sci->sci_new_mapping_entries[i]);
360
361	if (sci->sci_new_mapping != NULL)
362		vdev_indirect_mapping_close(sci->sci_new_mapping);
363
364	kmem_free(sci, sizeof (*sci));
365}
366
367boolean_t
368vdev_indirect_should_condense(vdev_t *vd)
369{
370	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
371	spa_t *spa = vd->vdev_spa;
372
373	ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
374
375	if (!zfs_condense_indirect_vdevs_enable)
376		return (B_FALSE);
377
378	/*
379	 * We can only condense one indirect vdev at a time.
380	 */
381	if (spa->spa_condensing_indirect != NULL)
382		return (B_FALSE);
383
384	if (spa_shutting_down(spa))
385		return (B_FALSE);
386
387	/*
388	 * The mapping object size must not change while we are
389	 * condensing, so we can only condense indirect vdevs
390	 * (not vdevs that are still in the middle of being removed).
391	 */
392	if (vd->vdev_ops != &vdev_indirect_ops)
393		return (B_FALSE);
394
395	/*
396	 * If nothing new has been marked obsolete, there is no
397	 * point in condensing.
398	 */
399	if (vd->vdev_obsolete_sm == NULL) {
400		ASSERT0(vdev_obsolete_sm_object(vd));
401		return (B_FALSE);
402	}
403
404	ASSERT(vd->vdev_obsolete_sm != NULL);
405
406	ASSERT3U(vdev_obsolete_sm_object(vd), ==,
407	    space_map_object(vd->vdev_obsolete_sm));
408
409	uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
410	uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
411	uint64_t mapping_size = vdev_indirect_mapping_size(vim);
412	uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
413
414	ASSERT3U(bytes_obsolete, <=, bytes_mapped);
415
416	/*
417	 * If a high percentage of the bytes that are mapped have become
418	 * obsolete, condense (unless the mapping is already small enough).
419	 * This has a good chance of reducing the amount of memory used
420	 * by the mapping.
421	 */
422	if (bytes_obsolete * 100 / bytes_mapped >=
423	    zfs_indirect_condense_obsolete_pct &&
424	    mapping_size > zfs_condense_min_mapping_bytes) {
425		zfs_dbgmsg("should condense vdev %llu because obsolete "
426		    "spacemap covers %d%% of %lluMB mapping",
427		    (u_longlong_t)vd->vdev_id,
428		    (int)(bytes_obsolete * 100 / bytes_mapped),
429		    (u_longlong_t)bytes_mapped / 1024 / 1024);
430		return (B_TRUE);
431	}
432
433	/*
434	 * If the obsolete space map takes up too much space on disk,
435	 * condense in order to free up this disk space.
436	 */
437	if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
438		zfs_dbgmsg("should condense vdev %llu because obsolete sm "
439		    "length %lluMB >= max size %lluMB",
440		    (u_longlong_t)vd->vdev_id,
441		    (u_longlong_t)obsolete_sm_size / 1024 / 1024,
442		    (u_longlong_t)zfs_condense_max_obsolete_bytes /
443		    1024 / 1024);
444		return (B_TRUE);
445	}
446
447	return (B_FALSE);
448}
449
450/*
451 * This sync task completes (finishes) a condense, deleting the old
452 * mapping and replacing it with the new one.
453 */
454static void
455spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
456{
457	spa_condensing_indirect_t *sci = arg;
458	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
459	spa_condensing_indirect_phys_t *scip =
460	    &spa->spa_condensing_indirect_phys;
461	vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
462	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
463	objset_t *mos = spa->spa_meta_objset;
464	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
465	uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
466	uint64_t new_count =
467	    vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
468
469	ASSERT(dmu_tx_is_syncing(tx));
470	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
471	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
472	for (int i = 0; i < TXG_SIZE; i++) {
473		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
474	}
475	ASSERT(vic->vic_mapping_object != 0);
476	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
477	ASSERT(scip->scip_next_mapping_object != 0);
478	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
479
480	/*
481	 * Reset vdev_indirect_mapping to refer to the new object.
482	 */
483	rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
484	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
485	vd->vdev_indirect_mapping = sci->sci_new_mapping;
486	rw_exit(&vd->vdev_indirect_rwlock);
487
488	sci->sci_new_mapping = NULL;
489	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
490	vic->vic_mapping_object = scip->scip_next_mapping_object;
491	scip->scip_next_mapping_object = 0;
492
493	space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
494	spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
495	scip->scip_prev_obsolete_sm_object = 0;
496
497	scip->scip_vdev = 0;
498
499	VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
500	    DMU_POOL_CONDENSING_INDIRECT, tx));
501	spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
502	spa->spa_condensing_indirect = NULL;
503
504	zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
505	    "new mapping object %llu has %llu entries "
506	    "(was %llu entries)",
507	    vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
508	    new_count, old_count);
509
510	vdev_config_dirty(spa->spa_root_vdev);
511}
512
513/*
514 * This sync task appends entries to the new mapping object.
515 */
516static void
517spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
518{
519	spa_condensing_indirect_t *sci = arg;
520	uint64_t txg = dmu_tx_get_txg(tx);
521	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
522
523	ASSERT(dmu_tx_is_syncing(tx));
524	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
525
526	vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
527	    &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
528	ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
529}
530
531/*
532 * Open-context function to add one entry to the new mapping.  The new
533 * entry will be remembered and written from syncing context.
534 */
535static void
536spa_condense_indirect_commit_entry(spa_t *spa,
537    vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
538{
539	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
540
541	ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
542
543	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
544	dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
545	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
546	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
547
548	/*
549	 * If we are the first entry committed this txg, kick off the sync
550	 * task to write to the MOS on our behalf.
551	 */
552	if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
553		dsl_sync_task_nowait(dmu_tx_pool(tx),
554		    spa_condense_indirect_commit_sync, sci,
555		    0, ZFS_SPACE_CHECK_NONE, tx);
556	}
557
558	vdev_indirect_mapping_entry_t *vime =
559	    kmem_alloc(sizeof (*vime), KM_SLEEP);
560	vime->vime_mapping = *vimep;
561	vime->vime_obsolete_count = count;
562	list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
563
564	dmu_tx_commit(tx);
565}
566
567static void
568spa_condense_indirect_generate_new_mapping(vdev_t *vd,
569    uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
570{
571	spa_t *spa = vd->vdev_spa;
572	uint64_t mapi = start_index;
573	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
574	uint64_t old_num_entries =
575	    vdev_indirect_mapping_num_entries(old_mapping);
576
577	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
578	ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
579
580	zfs_dbgmsg("starting condense of vdev %llu from index %llu",
581	    (u_longlong_t)vd->vdev_id,
582	    (u_longlong_t)mapi);
583
584	while (mapi < old_num_entries) {
585
586		if (zthr_iscancelled(zthr)) {
587			zfs_dbgmsg("pausing condense of vdev %llu "
588			    "at index %llu", (u_longlong_t)vd->vdev_id,
589			    (u_longlong_t)mapi);
590			break;
591		}
592
593		vdev_indirect_mapping_entry_phys_t *entry =
594		    &old_mapping->vim_entries[mapi];
595		uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
596		ASSERT3U(obsolete_counts[mapi], <=, entry_size);
597		if (obsolete_counts[mapi] < entry_size) {
598			spa_condense_indirect_commit_entry(spa, entry,
599			    obsolete_counts[mapi]);
600
601			/*
602			 * This delay may be requested for testing, debugging,
603			 * or performance reasons.
604			 */
605			delay(zfs_condense_indirect_commit_entry_delay_ticks);
606		}
607
608		mapi++;
609	}
610}
611
612/* ARGSUSED */
613static boolean_t
614spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
615{
616	spa_t *spa = arg;
617
618	return (spa->spa_condensing_indirect != NULL);
619}
620
621/* ARGSUSED */
622static int
623spa_condense_indirect_thread(void *arg, zthr_t *zthr)
624{
625	spa_t *spa = arg;
626	vdev_t *vd;
627
628	ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
629	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
630	vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
631	ASSERT3P(vd, !=, NULL);
632	spa_config_exit(spa, SCL_VDEV, FTAG);
633
634	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
635	spa_condensing_indirect_phys_t *scip =
636	    &spa->spa_condensing_indirect_phys;
637	uint32_t *counts;
638	uint64_t start_index;
639	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
640	space_map_t *prev_obsolete_sm = NULL;
641
642	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
643	ASSERT(scip->scip_next_mapping_object != 0);
644	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
645	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
646
647	for (int i = 0; i < TXG_SIZE; i++) {
648		/*
649		 * The list must start out empty in order for the
650		 * _commit_sync() sync task to be properly registered
651		 * on the first call to _commit_entry(); so it's wise
652		 * to double check and ensure we actually are starting
653		 * with empty lists.
654		 */
655		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
656	}
657
658	VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
659	    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
660	space_map_update(prev_obsolete_sm);
661	counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
662	if (prev_obsolete_sm != NULL) {
663		vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
664		    counts, prev_obsolete_sm);
665	}
666	space_map_close(prev_obsolete_sm);
667
668	/*
669	 * Generate new mapping.  Determine what index to continue from
670	 * based on the max offset that we've already written in the
671	 * new mapping.
672	 */
673	uint64_t max_offset =
674	    vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
675	if (max_offset == 0) {
676		/* We haven't written anything to the new mapping yet. */
677		start_index = 0;
678	} else {
679		/*
680		 * Pick up from where we left off. _entry_for_offset()
681		 * returns a pointer into the vim_entries array. If
682		 * max_offset is greater than any of the mappings
683		 * contained in the table  NULL will be returned and
684		 * that indicates we've exhausted our iteration of the
685		 * old_mapping.
686		 */
687
688		vdev_indirect_mapping_entry_phys_t *entry =
689		    vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
690		    max_offset);
691
692		if (entry == NULL) {
693			/*
694			 * We've already written the whole new mapping.
695			 * This special value will cause us to skip the
696			 * generate_new_mapping step and just do the sync
697			 * task to complete the condense.
698			 */
699			start_index = UINT64_MAX;
700		} else {
701			start_index = entry - old_mapping->vim_entries;
702			ASSERT3U(start_index, <,
703			    vdev_indirect_mapping_num_entries(old_mapping));
704		}
705	}
706
707	spa_condense_indirect_generate_new_mapping(vd, counts,
708	    start_index, zthr);
709
710	vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
711
712	/*
713	 * If the zthr has received a cancellation signal while running
714	 * in generate_new_mapping() or at any point after that, then bail
715	 * early. We don't want to complete the condense if the spa is
716	 * shutting down.
717	 */
718	if (zthr_iscancelled(zthr))
719		return (0);
720
721	VERIFY0(dsl_sync_task(spa_name(spa), NULL,
722	    spa_condense_indirect_complete_sync, sci, 0,
723	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
724
725	return (0);
726}
727
728/*
729 * Sync task to begin the condensing process.
730 */
731void
732spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
733{
734	spa_t *spa = vd->vdev_spa;
735	spa_condensing_indirect_phys_t *scip =
736	    &spa->spa_condensing_indirect_phys;
737
738	ASSERT0(scip->scip_next_mapping_object);
739	ASSERT0(scip->scip_prev_obsolete_sm_object);
740	ASSERT0(scip->scip_vdev);
741	ASSERT(dmu_tx_is_syncing(tx));
742	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
743	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
744	ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
745
746	uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
747	ASSERT(obsolete_sm_obj != 0);
748
749	scip->scip_vdev = vd->vdev_id;
750	scip->scip_next_mapping_object =
751	    vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
752
753	scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
754
755	/*
756	 * We don't need to allocate a new space map object, since
757	 * vdev_indirect_sync_obsolete will allocate one when needed.
758	 */
759	space_map_close(vd->vdev_obsolete_sm);
760	vd->vdev_obsolete_sm = NULL;
761	VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
762	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
763
764	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
765	    DMU_POOL_DIRECTORY_OBJECT,
766	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
767	    sizeof (*scip) / sizeof (uint64_t), scip, tx));
768
769	ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
770	spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
771
772	zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
773	    "posm=%llu nm=%llu",
774	    vd->vdev_id, dmu_tx_get_txg(tx),
775	    (u_longlong_t)scip->scip_prev_obsolete_sm_object,
776	    (u_longlong_t)scip->scip_next_mapping_object);
777
778	zthr_wakeup(spa->spa_condense_zthr);
779}
780
781/*
782 * Sync to the given vdev's obsolete space map any segments that are no longer
783 * referenced as of the given txg.
784 *
785 * If the obsolete space map doesn't exist yet, create and open it.
786 */
787void
788vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
789{
790	spa_t *spa = vd->vdev_spa;
791	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
792
793	ASSERT3U(vic->vic_mapping_object, !=, 0);
794	ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
795	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
796	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
797
798	if (vdev_obsolete_sm_object(vd) == 0) {
799		uint64_t obsolete_sm_object =
800		    space_map_alloc(spa->spa_meta_objset,
801		    vdev_standard_sm_blksz, tx);
802
803		ASSERT(vd->vdev_top_zap != 0);
804		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
805		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
806		    sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
807		ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
808
809		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
810		VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
811		    spa->spa_meta_objset, obsolete_sm_object,
812		    0, vd->vdev_asize, 0));
813		space_map_update(vd->vdev_obsolete_sm);
814	}
815
816	ASSERT(vd->vdev_obsolete_sm != NULL);
817	ASSERT3U(vdev_obsolete_sm_object(vd), ==,
818	    space_map_object(vd->vdev_obsolete_sm));
819
820	space_map_write(vd->vdev_obsolete_sm,
821	    vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
822	space_map_update(vd->vdev_obsolete_sm);
823	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
824}
825
826int
827spa_condense_init(spa_t *spa)
828{
829	int error = zap_lookup(spa->spa_meta_objset,
830	    DMU_POOL_DIRECTORY_OBJECT,
831	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
832	    sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
833	    &spa->spa_condensing_indirect_phys);
834	if (error == 0) {
835		if (spa_writeable(spa)) {
836			spa->spa_condensing_indirect =
837			    spa_condensing_indirect_create(spa);
838		}
839		return (0);
840	} else if (error == ENOENT) {
841		return (0);
842	} else {
843		return (error);
844	}
845}
846
847void
848spa_condense_fini(spa_t *spa)
849{
850	if (spa->spa_condensing_indirect != NULL) {
851		spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
852		spa->spa_condensing_indirect = NULL;
853	}
854}
855
856void
857spa_start_indirect_condensing_thread(spa_t *spa)
858{
859	ASSERT3P(spa->spa_condense_zthr, ==, NULL);
860	spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
861	    spa_condense_indirect_thread, spa);
862}
863
864/*
865 * Gets the obsolete spacemap object from the vdev's ZAP.
866 * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
867 * exist yet.
868 */
869int
870vdev_obsolete_sm_object(vdev_t *vd)
871{
872	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
873	if (vd->vdev_top_zap == 0) {
874		return (0);
875	}
876
877	uint64_t sm_obj = 0;
878	int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
879	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
880
881	ASSERT(err == 0 || err == ENOENT);
882
883	return (sm_obj);
884}
885
886boolean_t
887vdev_obsolete_counts_are_precise(vdev_t *vd)
888{
889	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
890	if (vd->vdev_top_zap == 0) {
891		return (B_FALSE);
892	}
893
894	uint64_t val = 0;
895	int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
896	    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
897
898	ASSERT(err == 0 || err == ENOENT);
899
900	return (val != 0);
901}
902
903/* ARGSUSED */
904static void
905vdev_indirect_close(vdev_t *vd)
906{
907}
908
909/* ARGSUSED */
910static int
911vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
912    uint64_t *logical_ashift, uint64_t *physical_ashift)
913{
914	*psize = *max_psize = vd->vdev_asize +
915	    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
916	*logical_ashift = vd->vdev_ashift;
917	*physical_ashift = vd->vdev_physical_ashift;
918	return (0);
919}
920
921typedef struct remap_segment {
922	vdev_t *rs_vd;
923	uint64_t rs_offset;
924	uint64_t rs_asize;
925	uint64_t rs_split_offset;
926	list_node_t rs_node;
927} remap_segment_t;
928
929remap_segment_t *
930rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
931{
932	remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
933	rs->rs_vd = vd;
934	rs->rs_offset = offset;
935	rs->rs_asize = asize;
936	rs->rs_split_offset = split_offset;
937	return (rs);
938}
939
940/*
941 * Given an indirect vdev and an extent on that vdev, it duplicates the
942 * physical entries of the indirect mapping that correspond to the extent
943 * to a new array and returns a pointer to it. In addition, copied_entries
944 * is populated with the number of mapping entries that were duplicated.
945 *
946 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
947 * This ensures that the mapping won't change due to condensing as we
948 * copy over its contents.
949 *
950 * Finally, since we are doing an allocation, it is up to the caller to
951 * free the array allocated in this function.
952 */
953vdev_indirect_mapping_entry_phys_t *
954vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
955    uint64_t asize, uint64_t *copied_entries)
956{
957	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
958	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
959	uint64_t entries = 0;
960
961	ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
962
963	vdev_indirect_mapping_entry_phys_t *first_mapping =
964	    vdev_indirect_mapping_entry_for_offset(vim, offset);
965	ASSERT3P(first_mapping, !=, NULL);
966
967	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
968	while (asize > 0) {
969		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
970
971		ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
972		ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
973
974		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
975		uint64_t inner_size = MIN(asize, size - inner_offset);
976
977		offset += inner_size;
978		asize -= inner_size;
979		entries++;
980		m++;
981	}
982
983	size_t copy_length = entries * sizeof (*first_mapping);
984	duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
985	bcopy(first_mapping, duplicate_mappings, copy_length);
986	*copied_entries = entries;
987
988	return (duplicate_mappings);
989}
990
991/*
992 * Goes through the relevant indirect mappings until it hits a concrete vdev
993 * and issues the callback. On the way to the concrete vdev, if any other
994 * indirect vdevs are encountered, then the callback will also be called on
995 * each of those indirect vdevs. For example, if the segment is mapped to
996 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
997 * mapped to segment B on concrete vdev 2, then the callback will be called on
998 * both vdev 1 and vdev 2.
999 *
1000 * While the callback passed to vdev_indirect_remap() is called on every vdev
1001 * the function encounters, certain callbacks only care about concrete vdevs.
1002 * These types of callbacks should return immediately and explicitly when they
1003 * are called on an indirect vdev.
1004 *
1005 * Because there is a possibility that a DVA section in the indirect device
1006 * has been split into multiple sections in our mapping, we keep track
1007 * of the relevant contiguous segments of the new location (remap_segment_t)
1008 * in a stack. This way we can call the callback for each of the new sections
1009 * created by a single section of the indirect device. Note though, that in
1010 * this scenario the callbacks in each split block won't occur in-order in
1011 * terms of offset, so callers should not make any assumptions about that.
1012 *
1013 * For callbacks that don't handle split blocks and immediately return when
1014 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1015 * assume that its callback will be applied from the first indirect vdev
1016 * encountered to the last one and then the concrete vdev, in that order.
1017 */
1018static void
1019vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1020    void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1021{
1022	list_t stack;
1023	spa_t *spa = vd->vdev_spa;
1024
1025	list_create(&stack, sizeof (remap_segment_t),
1026	    offsetof(remap_segment_t, rs_node));
1027
1028	for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1029	    rs != NULL; rs = list_remove_head(&stack)) {
1030		vdev_t *v = rs->rs_vd;
1031		uint64_t num_entries = 0;
1032
1033		ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1034		ASSERT(rs->rs_asize > 0);
1035
1036		/*
1037		 * Note: As this function can be called from open context
1038		 * (e.g. zio_read()), we need the following rwlock to
1039		 * prevent the mapping from being changed by condensing.
1040		 *
1041		 * So we grab the lock and we make a copy of the entries
1042		 * that are relevant to the extent that we are working on.
1043		 * Once that is done, we drop the lock and iterate over
1044		 * our copy of the mapping. Once we are done with the with
1045		 * the remap segment and we free it, we also free our copy
1046		 * of the indirect mapping entries that are relevant to it.
1047		 *
1048		 * This way we don't need to wait until the function is
1049		 * finished with a segment, to condense it. In addition, we
1050		 * don't need a recursive rwlock for the case that a call to
1051		 * vdev_indirect_remap() needs to call itself (through the
1052		 * codepath of its callback) for the same vdev in the middle
1053		 * of its execution.
1054		 */
1055		rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1056		vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
1057		ASSERT3P(vim, !=, NULL);
1058
1059		vdev_indirect_mapping_entry_phys_t *mapping =
1060		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
1061		    rs->rs_offset, rs->rs_asize, &num_entries);
1062		ASSERT3P(mapping, !=, NULL);
1063		ASSERT3U(num_entries, >, 0);
1064		rw_exit(&v->vdev_indirect_rwlock);
1065
1066		for (uint64_t i = 0; i < num_entries; i++) {
1067			/*
1068			 * Note: the vdev_indirect_mapping can not change
1069			 * while we are running.  It only changes while the
1070			 * removal is in progress, and then only from syncing
1071			 * context. While a removal is in progress, this
1072			 * function is only called for frees, which also only
1073			 * happen from syncing context.
1074			 */
1075			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1076
1077			ASSERT3P(m, !=, NULL);
1078			ASSERT3U(rs->rs_asize, >, 0);
1079
1080			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1081			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1082			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1083
1084			ASSERT3U(rs->rs_offset, >=,
1085			    DVA_MAPPING_GET_SRC_OFFSET(m));
1086			ASSERT3U(rs->rs_offset, <,
1087			    DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1088			ASSERT3U(dst_vdev, !=, v->vdev_id);
1089
1090			uint64_t inner_offset = rs->rs_offset -
1091			    DVA_MAPPING_GET_SRC_OFFSET(m);
1092			uint64_t inner_size =
1093			    MIN(rs->rs_asize, size - inner_offset);
1094
1095			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1096			ASSERT3P(dst_v, !=, NULL);
1097
1098			if (dst_v->vdev_ops == &vdev_indirect_ops) {
1099				list_insert_head(&stack,
1100				    rs_alloc(dst_v, dst_offset + inner_offset,
1101				    inner_size, rs->rs_split_offset));
1102
1103			}
1104
1105			if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1106			    IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1107				/*
1108				 * Note: This clause exists only solely for
1109				 * testing purposes. We use it to ensure that
1110				 * split blocks work and that the callbacks
1111				 * using them yield the same result if issued
1112				 * in reverse order.
1113				 */
1114				uint64_t inner_half = inner_size / 2;
1115
1116				func(rs->rs_split_offset + inner_half, dst_v,
1117				    dst_offset + inner_offset + inner_half,
1118				    inner_half, arg);
1119
1120				func(rs->rs_split_offset, dst_v,
1121				    dst_offset + inner_offset,
1122				    inner_half, arg);
1123			} else {
1124				func(rs->rs_split_offset, dst_v,
1125				    dst_offset + inner_offset,
1126				    inner_size, arg);
1127			}
1128
1129			rs->rs_offset += inner_size;
1130			rs->rs_asize -= inner_size;
1131			rs->rs_split_offset += inner_size;
1132		}
1133		VERIFY0(rs->rs_asize);
1134
1135		kmem_free(mapping, num_entries * sizeof (*mapping));
1136		kmem_free(rs, sizeof (remap_segment_t));
1137	}
1138	list_destroy(&stack);
1139}
1140
1141static void
1142vdev_indirect_child_io_done(zio_t *zio)
1143{
1144	zio_t *pio = zio->io_private;
1145
1146	mutex_enter(&pio->io_lock);
1147	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1148	mutex_exit(&pio->io_lock);
1149
1150#ifdef __FreeBSD__
1151	if (zio->io_abd != NULL)
1152#endif
1153	abd_put(zio->io_abd);
1154}
1155
1156/*
1157 * This is a callback for vdev_indirect_remap() which allocates an
1158 * indirect_split_t for each split segment and adds it to iv_splits.
1159 */
1160static void
1161vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1162    uint64_t size, void *arg)
1163{
1164	zio_t *zio = arg;
1165	indirect_vsd_t *iv = zio->io_vsd;
1166
1167	ASSERT3P(vd, !=, NULL);
1168
1169	if (vd->vdev_ops == &vdev_indirect_ops)
1170		return;
1171
1172	int n = 1;
1173	if (vd->vdev_ops == &vdev_mirror_ops)
1174		n = vd->vdev_children;
1175
1176	indirect_split_t *is =
1177	    kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1178
1179	is->is_children = n;
1180	is->is_size = size;
1181	is->is_split_offset = split_offset;
1182	is->is_target_offset = offset;
1183	is->is_vdev = vd;
1184
1185	/*
1186	 * Note that we only consider multiple copies of the data for
1187	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1188	 * though they use the same ops as mirror, because there's only one
1189	 * "good" copy under the replacing/spare.
1190	 */
1191	if (vd->vdev_ops == &vdev_mirror_ops) {
1192		for (int i = 0; i < n; i++) {
1193			is->is_child[i].ic_vdev = vd->vdev_child[i];
1194		}
1195	} else {
1196		is->is_child[0].ic_vdev = vd;
1197	}
1198
1199	list_insert_tail(&iv->iv_splits, is);
1200}
1201
1202static void
1203vdev_indirect_read_split_done(zio_t *zio)
1204{
1205	indirect_child_t *ic = zio->io_private;
1206
1207	if (zio->io_error != 0) {
1208		/*
1209		 * Clear ic_data to indicate that we do not have data for this
1210		 * child.
1211		 */
1212		abd_free(ic->ic_data);
1213		ic->ic_data = NULL;
1214	}
1215}
1216
1217/*
1218 * Issue reads for all copies (mirror children) of all splits.
1219 */
1220static void
1221vdev_indirect_read_all(zio_t *zio)
1222{
1223	indirect_vsd_t *iv = zio->io_vsd;
1224
1225	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1226
1227	for (indirect_split_t *is = list_head(&iv->iv_splits);
1228	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1229		for (int i = 0; i < is->is_children; i++) {
1230			indirect_child_t *ic = &is->is_child[i];
1231
1232			if (!vdev_readable(ic->ic_vdev))
1233				continue;
1234
1235			/*
1236			 * Note, we may read from a child whose DTL
1237			 * indicates that the data may not be present here.
1238			 * While this might result in a few i/os that will
1239			 * likely return incorrect data, it simplifies the
1240			 * code since we can treat scrub and resilver
1241			 * identically.  (The incorrect data will be
1242			 * detected and ignored when we verify the
1243			 * checksum.)
1244			 */
1245
1246			ic->ic_data = abd_alloc_sametype(zio->io_abd,
1247			    is->is_size);
1248
1249			zio_nowait(zio_vdev_child_io(zio, NULL,
1250			    ic->ic_vdev, is->is_target_offset, ic->ic_data,
1251			    is->is_size, zio->io_type, zio->io_priority, 0,
1252			    vdev_indirect_read_split_done, ic));
1253		}
1254	}
1255	iv->iv_reconstruct = B_TRUE;
1256}
1257
1258static void
1259vdev_indirect_io_start(zio_t *zio)
1260{
1261	spa_t *spa = zio->io_spa;
1262	indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1263	list_create(&iv->iv_splits,
1264	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1265
1266	zio->io_vsd = iv;
1267	zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1268
1269	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1270#ifdef __FreeBSD__
1271	if (zio->io_type == ZIO_TYPE_WRITE) {
1272#else
1273	if (zio->io_type != ZIO_TYPE_READ) {
1274		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1275#endif
1276		/*
1277		 * Note: this code can handle other kinds of writes,
1278		 * but we don't expect them.
1279		 */
1280		ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1281		    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1282	}
1283
1284	vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1285	    vdev_indirect_gather_splits, zio);
1286
1287	indirect_split_t *first = list_head(&iv->iv_splits);
1288	if (first->is_size == zio->io_size) {
1289		/*
1290		 * This is not a split block; we are pointing to the entire
1291		 * data, which will checksum the same as the original data.
1292		 * Pass the BP down so that the child i/o can verify the
1293		 * checksum, and try a different location if available
1294		 * (e.g. on a mirror).
1295		 *
1296		 * While this special case could be handled the same as the
1297		 * general (split block) case, doing it this way ensures
1298		 * that the vast majority of blocks on indirect vdevs
1299		 * (which are not split) are handled identically to blocks
1300		 * on non-indirect vdevs.  This allows us to be less strict
1301		 * about performance in the general (but rare) case.
1302		 */
1303		ASSERT0(first->is_split_offset);
1304		ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1305		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1306		    first->is_vdev, first->is_target_offset,
1307#ifdef __FreeBSD__
1308		    zio->io_abd == NULL ? NULL :
1309#endif
1310		    abd_get_offset(zio->io_abd, 0),
1311		    zio->io_size, zio->io_type, zio->io_priority, 0,
1312		    vdev_indirect_child_io_done, zio));
1313	} else {
1314		iv->iv_split_block = B_TRUE;
1315		if (zio->io_type == ZIO_TYPE_READ &&
1316		    zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1317			/*
1318			 * Read all copies.  Note that for simplicity,
1319			 * we don't bother consulting the DTL in the
1320			 * resilver case.
1321			 */
1322			vdev_indirect_read_all(zio);
1323		} else {
1324			/*
1325			 * If this is a read zio, we read one copy of each
1326			 * split segment, from the top-level vdev.  Since
1327			 * we don't know the checksum of each split
1328			 * individually, the child zio can't ensure that
1329			 * we get the right data. E.g. if it's a mirror,
1330			 * it will just read from a random (healthy) leaf
1331			 * vdev. We have to verify the checksum in
1332			 * vdev_indirect_io_done().
1333			 *
1334			 * For write zios, the vdev code will ensure we write
1335			 * to all children.
1336			 */
1337			for (indirect_split_t *is = list_head(&iv->iv_splits);
1338			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1339				zio_nowait(zio_vdev_child_io(zio, NULL,
1340				    is->is_vdev, is->is_target_offset,
1341#ifdef __FreeBSD__
1342				    zio->io_abd == NULL ? NULL :
1343#endif
1344				    abd_get_offset(zio->io_abd,
1345				    is->is_split_offset),
1346				    is->is_size, zio->io_type,
1347				    zio->io_priority, 0,
1348				    vdev_indirect_child_io_done, zio));
1349			}
1350		}
1351	}
1352
1353	zio_execute(zio);
1354}
1355
1356/*
1357 * Report a checksum error for a child.
1358 */
1359static void
1360vdev_indirect_checksum_error(zio_t *zio,
1361    indirect_split_t *is, indirect_child_t *ic)
1362{
1363	vdev_t *vd = ic->ic_vdev;
1364
1365	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1366		return;
1367
1368	mutex_enter(&vd->vdev_stat_lock);
1369	vd->vdev_stat.vs_checksum_errors++;
1370	mutex_exit(&vd->vdev_stat_lock);
1371
1372	zio_bad_cksum_t zbc = { 0 };
1373	void *bad_buf = abd_borrow_buf_copy(ic->ic_data, is->is_size);
1374	abd_t *good_abd = is->is_child[is->is_good_child].ic_data;
1375	void *good_buf = abd_borrow_buf_copy(good_abd, is->is_size);
1376	zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1377	    is->is_target_offset, is->is_size, good_buf, bad_buf, &zbc);
1378	abd_return_buf(ic->ic_data, bad_buf, is->is_size);
1379	abd_return_buf(good_abd, good_buf, is->is_size);
1380}
1381
1382/*
1383 * Issue repair i/os for any incorrect copies.  We do this by comparing
1384 * each split segment's correct data (is_good_child's ic_data) with each
1385 * other copy of the data.  If they differ, then we overwrite the bad data
1386 * with the good copy.  Note that we do this without regard for the DTL's,
1387 * which simplifies this code and also issues the optimal number of writes
1388 * (based on which copies actually read bad data, as opposed to which we
1389 * think might be wrong).  For the same reason, we always use
1390 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1391 */
1392static void
1393vdev_indirect_repair(zio_t *zio)
1394{
1395	indirect_vsd_t *iv = zio->io_vsd;
1396
1397	enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1398
1399	if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1400		flags |= ZIO_FLAG_SELF_HEAL;
1401
1402	if (!spa_writeable(zio->io_spa))
1403		return;
1404
1405	for (indirect_split_t *is = list_head(&iv->iv_splits);
1406	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1407		indirect_child_t *good_child = &is->is_child[is->is_good_child];
1408
1409		for (int c = 0; c < is->is_children; c++) {
1410			indirect_child_t *ic = &is->is_child[c];
1411			if (ic == good_child)
1412				continue;
1413			if (ic->ic_data == NULL)
1414				continue;
1415			if (abd_cmp(good_child->ic_data, ic->ic_data,
1416			    is->is_size) == 0)
1417				continue;
1418
1419			zio_nowait(zio_vdev_child_io(zio, NULL,
1420			    ic->ic_vdev, is->is_target_offset,
1421			    good_child->ic_data, is->is_size,
1422			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1423			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1424			    NULL, NULL));
1425
1426			vdev_indirect_checksum_error(zio, is, ic);
1427		}
1428	}
1429}
1430
1431/*
1432 * Report checksum errors on all children that we read from.
1433 */
1434static void
1435vdev_indirect_all_checksum_errors(zio_t *zio)
1436{
1437	indirect_vsd_t *iv = zio->io_vsd;
1438
1439	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1440		return;
1441
1442	for (indirect_split_t *is = list_head(&iv->iv_splits);
1443	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1444		for (int c = 0; c < is->is_children; c++) {
1445			indirect_child_t *ic = &is->is_child[c];
1446
1447			if (ic->ic_data == NULL)
1448				continue;
1449
1450			vdev_t *vd = ic->ic_vdev;
1451
1452			mutex_enter(&vd->vdev_stat_lock);
1453			vd->vdev_stat.vs_checksum_errors++;
1454			mutex_exit(&vd->vdev_stat_lock);
1455
1456			zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1457			    is->is_target_offset, is->is_size,
1458			    NULL, NULL, NULL);
1459		}
1460	}
1461}
1462
1463/*
1464 * This function is called when we have read all copies of the data and need
1465 * to try to find a combination of copies that gives us the right checksum.
1466 *
1467 * If we pointed to any mirror vdevs, this effectively does the job of the
1468 * mirror.  The mirror vdev code can't do its own job because we don't know
1469 * the checksum of each split segment individually.  We have to try every
1470 * combination of copies of split segments, until we find one that checksums
1471 * correctly.  (Or until we have tried all combinations, or have tried
1472 * 2^zfs_reconstruct_indirect_segments_max combinations.  In these cases we
1473 * set io_error to ECKSUM to propagate the error up to the user.)
1474 *
1475 * For example, if we have 3 segments in the split,
1476 * and each points to a 2-way mirror, we will have the following pieces of
1477 * data:
1478 *
1479 *       |     mirror child
1480 * split |     [0]        [1]
1481 * ======|=====================
1482 *   A   |  data_A_0   data_A_1
1483 *   B   |  data_B_0   data_B_1
1484 *   C   |  data_C_0   data_C_1
1485 *
1486 * We will try the following (mirror children)^(number of splits) (2^3=8)
1487 * combinations, which is similar to bitwise-little-endian counting in
1488 * binary.  In general each "digit" corresponds to a split segment, and the
1489 * base of each digit is is_children, which can be different for each
1490 * digit.
1491 *
1492 * "low bit"        "high bit"
1493 *        v                 v
1494 * data_A_0 data_B_0 data_C_0
1495 * data_A_1 data_B_0 data_C_0
1496 * data_A_0 data_B_1 data_C_0
1497 * data_A_1 data_B_1 data_C_0
1498 * data_A_0 data_B_0 data_C_1
1499 * data_A_1 data_B_0 data_C_1
1500 * data_A_0 data_B_1 data_C_1
1501 * data_A_1 data_B_1 data_C_1
1502 *
1503 * Note that the split segments may be on the same or different top-level
1504 * vdevs. In either case, we try lots of combinations (see
1505 * zfs_reconstruct_indirect_segments_max).  This ensures that if a mirror has
1506 * small silent errors on all of its children, we can still reconstruct the
1507 * correct data, as long as those errors are at sufficiently-separated
1508 * offsets (specifically, separated by the largest block size - default of
1509 * 128KB, but up to 16MB).
1510 */
1511static void
1512vdev_indirect_reconstruct_io_done(zio_t *zio)
1513{
1514	indirect_vsd_t *iv = zio->io_vsd;
1515	uint64_t attempts = 0;
1516	uint64_t attempts_max = 1ULL << zfs_reconstruct_indirect_segments_max;
1517	int segments = 0;
1518
1519	for (indirect_split_t *is = list_head(&iv->iv_splits);
1520	    is != NULL; is = list_next(&iv->iv_splits, is))
1521		segments++;
1522
1523	for (;;) {
1524		/* copy data from splits to main zio */
1525		int ret;
1526		for (indirect_split_t *is = list_head(&iv->iv_splits);
1527		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1528
1529			/*
1530			 * If this child failed, its ic_data will be NULL.
1531			 * Skip this combination.
1532			 */
1533			if (is->is_child[is->is_good_child].ic_data == NULL) {
1534				ret = EIO;
1535				goto next;
1536			}
1537
1538			abd_copy_off(zio->io_abd,
1539			    is->is_child[is->is_good_child].ic_data,
1540			    is->is_split_offset, 0, is->is_size);
1541		}
1542
1543		/* See if this checksum matches. */
1544		zio_bad_cksum_t zbc;
1545		ret = zio_checksum_error(zio, &zbc);
1546		if (ret == 0) {
1547			/* Found a matching checksum.  Issue repair i/os. */
1548			vdev_indirect_repair(zio);
1549			zio_checksum_verified(zio);
1550			return;
1551		}
1552
1553		/*
1554		 * Checksum failed; try a different combination of split
1555		 * children.
1556		 */
1557		boolean_t more;
1558next:
1559		more = B_FALSE;
1560		if (segments <= zfs_reconstruct_indirect_segments_max) {
1561			/*
1562			 * There are relatively few segments, so
1563			 * deterministically check all combinations.  We do
1564			 * this by by adding one to the first split's
1565			 * good_child.  If it overflows, then "carry over" to
1566			 * the next split (like counting in base is_children,
1567			 * but each digit can have a different base).
1568			 */
1569			for (indirect_split_t *is = list_head(&iv->iv_splits);
1570			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1571				is->is_good_child++;
1572				if (is->is_good_child < is->is_children) {
1573					more = B_TRUE;
1574					break;
1575				}
1576				is->is_good_child = 0;
1577			}
1578		} else if (++attempts < attempts_max) {
1579			/*
1580			 * There are too many combinations to try all of them
1581			 * in a reasonable amount of time, so try a fixed
1582			 * number of random combinations, after which we'll
1583			 * consider the block unrecoverable.
1584			 */
1585			for (indirect_split_t *is = list_head(&iv->iv_splits);
1586			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1587				is->is_good_child =
1588				    spa_get_random(is->is_children);
1589			}
1590			more = B_TRUE;
1591		}
1592		if (!more) {
1593			/* All combinations failed. */
1594			zio->io_error = ret;
1595			vdev_indirect_all_checksum_errors(zio);
1596			zio_checksum_verified(zio);
1597			return;
1598		}
1599	}
1600}
1601
1602static void
1603vdev_indirect_io_done(zio_t *zio)
1604{
1605	indirect_vsd_t *iv = zio->io_vsd;
1606
1607	if (iv->iv_reconstruct) {
1608		/*
1609		 * We have read all copies of the data (e.g. from mirrors),
1610		 * either because this was a scrub/resilver, or because the
1611		 * one-copy read didn't checksum correctly.
1612		 */
1613		vdev_indirect_reconstruct_io_done(zio);
1614		return;
1615	}
1616
1617	if (!iv->iv_split_block) {
1618		/*
1619		 * This was not a split block, so we passed the BP down,
1620		 * and the checksum was handled by the (one) child zio.
1621		 */
1622		return;
1623	}
1624
1625	zio_bad_cksum_t zbc;
1626	int ret = zio_checksum_error(zio, &zbc);
1627	if (ret == 0) {
1628		zio_checksum_verified(zio);
1629		return;
1630	}
1631
1632	/*
1633	 * The checksum didn't match.  Read all copies of all splits, and
1634	 * then we will try to reconstruct.  The next time
1635	 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1636	 */
1637	vdev_indirect_read_all(zio);
1638
1639	zio_vdev_io_redone(zio);
1640}
1641
1642vdev_ops_t vdev_indirect_ops = {
1643	vdev_indirect_open,
1644	vdev_indirect_close,
1645	vdev_default_asize,
1646	vdev_indirect_io_start,
1647	vdev_indirect_io_done,
1648	NULL,
1649	NULL,
1650	NULL,
1651	NULL,
1652	vdev_indirect_remap,
1653	NULL,
1654	VDEV_TYPE_INDIRECT,	/* name of this vdev type */
1655	B_FALSE			/* leaf vdev */
1656};
1657