vdev.c revision 339139
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 */
31
32#include <sys/zfs_context.h>
33#include <sys/fm/fs/zfs.h>
34#include <sys/spa.h>
35#include <sys/spa_impl.h>
36#include <sys/bpobj.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/dsl_dir.h>
40#include <sys/vdev_impl.h>
41#include <sys/uberblock_impl.h>
42#include <sys/metaslab.h>
43#include <sys/metaslab_impl.h>
44#include <sys/space_map.h>
45#include <sys/space_reftree.h>
46#include <sys/zio.h>
47#include <sys/zap.h>
48#include <sys/fs/zfs.h>
49#include <sys/arc.h>
50#include <sys/zil.h>
51#include <sys/dsl_scan.h>
52#include <sys/abd.h>
53#include <sys/trim_map.h>
54#include <sys/vdev_initialize.h>
55
56SYSCTL_DECL(_vfs_zfs);
57SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
58
59/*
60 * Virtual device management.
61 */
62
63/*
64 * The limit for ZFS to automatically increase a top-level vdev's ashift
65 * from logical ashift to physical ashift.
66 *
67 * Example: one or more 512B emulation child vdevs
68 *          child->vdev_ashift = 9 (512 bytes)
69 *          child->vdev_physical_ashift = 12 (4096 bytes)
70 *          zfs_max_auto_ashift = 11 (2048 bytes)
71 *          zfs_min_auto_ashift = 9 (512 bytes)
72 *
73 * On pool creation or the addition of a new top-level vdev, ZFS will
74 * increase the ashift of the top-level vdev to 2048 as limited by
75 * zfs_max_auto_ashift.
76 *
77 * Example: one or more 512B emulation child vdevs
78 *          child->vdev_ashift = 9 (512 bytes)
79 *          child->vdev_physical_ashift = 12 (4096 bytes)
80 *          zfs_max_auto_ashift = 13 (8192 bytes)
81 *          zfs_min_auto_ashift = 9 (512 bytes)
82 *
83 * On pool creation or the addition of a new top-level vdev, ZFS will
84 * increase the ashift of the top-level vdev to 4096 to match the
85 * max vdev_physical_ashift.
86 *
87 * Example: one or more 512B emulation child vdevs
88 *          child->vdev_ashift = 9 (512 bytes)
89 *          child->vdev_physical_ashift = 9 (512 bytes)
90 *          zfs_max_auto_ashift = 13 (8192 bytes)
91 *          zfs_min_auto_ashift = 12 (4096 bytes)
92 *
93 * On pool creation or the addition of a new top-level vdev, ZFS will
94 * increase the ashift of the top-level vdev to 4096 to match the
95 * zfs_min_auto_ashift.
96 */
97static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
98static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
99
100static int
101sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
102{
103	uint64_t val;
104	int err;
105
106	val = zfs_max_auto_ashift;
107	err = sysctl_handle_64(oidp, &val, 0, req);
108	if (err != 0 || req->newptr == NULL)
109		return (err);
110
111	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
112		return (EINVAL);
113
114	zfs_max_auto_ashift = val;
115
116	return (0);
117}
118SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
119    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
120    sysctl_vfs_zfs_max_auto_ashift, "QU",
121    "Max ashift used when optimising for logical -> physical sectors size on "
122    "new top-level vdevs.");
123
124static int
125sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
126{
127	uint64_t val;
128	int err;
129
130	val = zfs_min_auto_ashift;
131	err = sysctl_handle_64(oidp, &val, 0, req);
132	if (err != 0 || req->newptr == NULL)
133		return (err);
134
135	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
136		return (EINVAL);
137
138	zfs_min_auto_ashift = val;
139
140	return (0);
141}
142SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
143    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
144    sysctl_vfs_zfs_min_auto_ashift, "QU",
145    "Min ashift used when creating new top-level vdevs.");
146
147static vdev_ops_t *vdev_ops_table[] = {
148	&vdev_root_ops,
149	&vdev_raidz_ops,
150	&vdev_mirror_ops,
151	&vdev_replacing_ops,
152	&vdev_spare_ops,
153#ifdef _KERNEL
154	&vdev_geom_ops,
155#else
156	&vdev_disk_ops,
157#endif
158	&vdev_file_ops,
159	&vdev_missing_ops,
160	&vdev_hole_ops,
161	&vdev_indirect_ops,
162	NULL
163};
164
165
166/* target number of metaslabs per top-level vdev */
167int vdev_max_ms_count = 200;
168SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count, CTLFLAG_RDTUN,
169    &vdev_max_ms_count, 0,
170    "Maximum number of metaslabs per top-level vdev");
171
172/* minimum number of metaslabs per top-level vdev */
173int vdev_min_ms_count = 16;
174SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_ms_count, CTLFLAG_RDTUN,
175    &vdev_min_ms_count, 0,
176    "Minimum number of metaslabs per top-level vdev");
177
178/* practical upper limit of total metaslabs per top-level vdev */
179int vdev_ms_count_limit = 1ULL << 17;
180
181/* lower limit for metaslab size (512M) */
182int vdev_default_ms_shift = 29;
183SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, default_ms_shift, CTLFLAG_RDTUN,
184    &vdev_default_ms_shift, 0,
185    "Shift between vdev size and number of metaslabs");
186
187/* upper limit for metaslab size (256G) */
188int vdev_max_ms_shift = 38;
189
190boolean_t vdev_validate_skip = B_FALSE;
191
192/*
193 * Since the DTL space map of a vdev is not expected to have a lot of
194 * entries, we default its block size to 4K.
195 */
196int vdev_dtl_sm_blksz = (1 << 12);
197SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN,
198    &vdev_dtl_sm_blksz, 0,
199    "Block size for DTL space map.  Power of 2 and greater than 4096.");
200
201/*
202 * vdev-wide space maps that have lots of entries written to them at
203 * the end of each transaction can benefit from a higher I/O bandwidth
204 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
205 */
206int vdev_standard_sm_blksz = (1 << 17);
207SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN,
208    &vdev_standard_sm_blksz, 0,
209    "Block size for standard space map.  Power of 2 and greater than 4096.");
210
211/*PRINTFLIKE2*/
212void
213vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
214{
215	va_list adx;
216	char buf[256];
217
218	va_start(adx, fmt);
219	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
220	va_end(adx);
221
222	if (vd->vdev_path != NULL) {
223		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
224		    vd->vdev_path, buf);
225	} else {
226		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
227		    vd->vdev_ops->vdev_op_type,
228		    (u_longlong_t)vd->vdev_id,
229		    (u_longlong_t)vd->vdev_guid, buf);
230	}
231}
232
233void
234vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
235{
236	char state[20];
237
238	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
239		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
240		    vd->vdev_ops->vdev_op_type);
241		return;
242	}
243
244	switch (vd->vdev_state) {
245	case VDEV_STATE_UNKNOWN:
246		(void) snprintf(state, sizeof (state), "unknown");
247		break;
248	case VDEV_STATE_CLOSED:
249		(void) snprintf(state, sizeof (state), "closed");
250		break;
251	case VDEV_STATE_OFFLINE:
252		(void) snprintf(state, sizeof (state), "offline");
253		break;
254	case VDEV_STATE_REMOVED:
255		(void) snprintf(state, sizeof (state), "removed");
256		break;
257	case VDEV_STATE_CANT_OPEN:
258		(void) snprintf(state, sizeof (state), "can't open");
259		break;
260	case VDEV_STATE_FAULTED:
261		(void) snprintf(state, sizeof (state), "faulted");
262		break;
263	case VDEV_STATE_DEGRADED:
264		(void) snprintf(state, sizeof (state), "degraded");
265		break;
266	case VDEV_STATE_HEALTHY:
267		(void) snprintf(state, sizeof (state), "healthy");
268		break;
269	default:
270		(void) snprintf(state, sizeof (state), "<state %u>",
271		    (uint_t)vd->vdev_state);
272	}
273
274	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
275	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
276	    vd->vdev_islog ? " (log)" : "",
277	    (u_longlong_t)vd->vdev_guid,
278	    vd->vdev_path ? vd->vdev_path : "N/A", state);
279
280	for (uint64_t i = 0; i < vd->vdev_children; i++)
281		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
282}
283
284/*
285 * Given a vdev type, return the appropriate ops vector.
286 */
287static vdev_ops_t *
288vdev_getops(const char *type)
289{
290	vdev_ops_t *ops, **opspp;
291
292	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
293		if (strcmp(ops->vdev_op_type, type) == 0)
294			break;
295
296	return (ops);
297}
298
299/* ARGSUSED */
300void
301vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
302{
303	res->rs_start = in->rs_start;
304	res->rs_end = in->rs_end;
305}
306
307/*
308 * Default asize function: return the MAX of psize with the asize of
309 * all children.  This is what's used by anything other than RAID-Z.
310 */
311uint64_t
312vdev_default_asize(vdev_t *vd, uint64_t psize)
313{
314	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
315	uint64_t csize;
316
317	for (int c = 0; c < vd->vdev_children; c++) {
318		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
319		asize = MAX(asize, csize);
320	}
321
322	return (asize);
323}
324
325/*
326 * Get the minimum allocatable size. We define the allocatable size as
327 * the vdev's asize rounded to the nearest metaslab. This allows us to
328 * replace or attach devices which don't have the same physical size but
329 * can still satisfy the same number of allocations.
330 */
331uint64_t
332vdev_get_min_asize(vdev_t *vd)
333{
334	vdev_t *pvd = vd->vdev_parent;
335
336	/*
337	 * If our parent is NULL (inactive spare or cache) or is the root,
338	 * just return our own asize.
339	 */
340	if (pvd == NULL)
341		return (vd->vdev_asize);
342
343	/*
344	 * The top-level vdev just returns the allocatable size rounded
345	 * to the nearest metaslab.
346	 */
347	if (vd == vd->vdev_top)
348		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
349
350	/*
351	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
352	 * so each child must provide at least 1/Nth of its asize.
353	 */
354	if (pvd->vdev_ops == &vdev_raidz_ops)
355		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
356		    pvd->vdev_children);
357
358	return (pvd->vdev_min_asize);
359}
360
361void
362vdev_set_min_asize(vdev_t *vd)
363{
364	vd->vdev_min_asize = vdev_get_min_asize(vd);
365
366	for (int c = 0; c < vd->vdev_children; c++)
367		vdev_set_min_asize(vd->vdev_child[c]);
368}
369
370vdev_t *
371vdev_lookup_top(spa_t *spa, uint64_t vdev)
372{
373	vdev_t *rvd = spa->spa_root_vdev;
374
375	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
376
377	if (vdev < rvd->vdev_children) {
378		ASSERT(rvd->vdev_child[vdev] != NULL);
379		return (rvd->vdev_child[vdev]);
380	}
381
382	return (NULL);
383}
384
385vdev_t *
386vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
387{
388	vdev_t *mvd;
389
390	if (vd->vdev_guid == guid)
391		return (vd);
392
393	for (int c = 0; c < vd->vdev_children; c++)
394		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
395		    NULL)
396			return (mvd);
397
398	return (NULL);
399}
400
401static int
402vdev_count_leaves_impl(vdev_t *vd)
403{
404	int n = 0;
405
406	if (vd->vdev_ops->vdev_op_leaf)
407		return (1);
408
409	for (int c = 0; c < vd->vdev_children; c++)
410		n += vdev_count_leaves_impl(vd->vdev_child[c]);
411
412	return (n);
413}
414
415int
416vdev_count_leaves(spa_t *spa)
417{
418	return (vdev_count_leaves_impl(spa->spa_root_vdev));
419}
420
421void
422vdev_add_child(vdev_t *pvd, vdev_t *cvd)
423{
424	size_t oldsize, newsize;
425	uint64_t id = cvd->vdev_id;
426	vdev_t **newchild;
427	spa_t *spa = cvd->vdev_spa;
428
429	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
430	ASSERT(cvd->vdev_parent == NULL);
431
432	cvd->vdev_parent = pvd;
433
434	if (pvd == NULL)
435		return;
436
437	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
438
439	oldsize = pvd->vdev_children * sizeof (vdev_t *);
440	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
441	newsize = pvd->vdev_children * sizeof (vdev_t *);
442
443	newchild = kmem_zalloc(newsize, KM_SLEEP);
444	if (pvd->vdev_child != NULL) {
445		bcopy(pvd->vdev_child, newchild, oldsize);
446		kmem_free(pvd->vdev_child, oldsize);
447	}
448
449	pvd->vdev_child = newchild;
450	pvd->vdev_child[id] = cvd;
451
452	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
453	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
454
455	/*
456	 * Walk up all ancestors to update guid sum.
457	 */
458	for (; pvd != NULL; pvd = pvd->vdev_parent)
459		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
460}
461
462void
463vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
464{
465	int c;
466	uint_t id = cvd->vdev_id;
467
468	ASSERT(cvd->vdev_parent == pvd);
469
470	if (pvd == NULL)
471		return;
472
473	ASSERT(id < pvd->vdev_children);
474	ASSERT(pvd->vdev_child[id] == cvd);
475
476	pvd->vdev_child[id] = NULL;
477	cvd->vdev_parent = NULL;
478
479	for (c = 0; c < pvd->vdev_children; c++)
480		if (pvd->vdev_child[c])
481			break;
482
483	if (c == pvd->vdev_children) {
484		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
485		pvd->vdev_child = NULL;
486		pvd->vdev_children = 0;
487	}
488
489	/*
490	 * Walk up all ancestors to update guid sum.
491	 */
492	for (; pvd != NULL; pvd = pvd->vdev_parent)
493		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
494}
495
496/*
497 * Remove any holes in the child array.
498 */
499void
500vdev_compact_children(vdev_t *pvd)
501{
502	vdev_t **newchild, *cvd;
503	int oldc = pvd->vdev_children;
504	int newc;
505
506	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
507
508	for (int c = newc = 0; c < oldc; c++)
509		if (pvd->vdev_child[c])
510			newc++;
511
512	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
513
514	for (int c = newc = 0; c < oldc; c++) {
515		if ((cvd = pvd->vdev_child[c]) != NULL) {
516			newchild[newc] = cvd;
517			cvd->vdev_id = newc++;
518		}
519	}
520
521	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
522	pvd->vdev_child = newchild;
523	pvd->vdev_children = newc;
524}
525
526/*
527 * Allocate and minimally initialize a vdev_t.
528 */
529vdev_t *
530vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
531{
532	vdev_t *vd;
533	vdev_indirect_config_t *vic;
534
535	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
536	vic = &vd->vdev_indirect_config;
537
538	if (spa->spa_root_vdev == NULL) {
539		ASSERT(ops == &vdev_root_ops);
540		spa->spa_root_vdev = vd;
541		spa->spa_load_guid = spa_generate_guid(NULL);
542	}
543
544	if (guid == 0 && ops != &vdev_hole_ops) {
545		if (spa->spa_root_vdev == vd) {
546			/*
547			 * The root vdev's guid will also be the pool guid,
548			 * which must be unique among all pools.
549			 */
550			guid = spa_generate_guid(NULL);
551		} else {
552			/*
553			 * Any other vdev's guid must be unique within the pool.
554			 */
555			guid = spa_generate_guid(spa);
556		}
557		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
558	}
559
560	vd->vdev_spa = spa;
561	vd->vdev_id = id;
562	vd->vdev_guid = guid;
563	vd->vdev_guid_sum = guid;
564	vd->vdev_ops = ops;
565	vd->vdev_state = VDEV_STATE_CLOSED;
566	vd->vdev_ishole = (ops == &vdev_hole_ops);
567	vic->vic_prev_indirect_vdev = UINT64_MAX;
568
569	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
570	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
571	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
572
573	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
574	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
575	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
576	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
577	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
578	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
579	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
580	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
581	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
582
583	for (int t = 0; t < DTL_TYPES; t++) {
584		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
585	}
586	txg_list_create(&vd->vdev_ms_list, spa,
587	    offsetof(struct metaslab, ms_txg_node));
588	txg_list_create(&vd->vdev_dtl_list, spa,
589	    offsetof(struct vdev, vdev_dtl_node));
590	vd->vdev_stat.vs_timestamp = gethrtime();
591	vdev_queue_init(vd);
592	vdev_cache_init(vd);
593
594	return (vd);
595}
596
597/*
598 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
599 * creating a new vdev or loading an existing one - the behavior is slightly
600 * different for each case.
601 */
602int
603vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
604    int alloctype)
605{
606	vdev_ops_t *ops;
607	char *type;
608	uint64_t guid = 0, islog, nparity;
609	vdev_t *vd;
610	vdev_indirect_config_t *vic;
611
612	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
613
614	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
615		return (SET_ERROR(EINVAL));
616
617	if ((ops = vdev_getops(type)) == NULL)
618		return (SET_ERROR(EINVAL));
619
620	/*
621	 * If this is a load, get the vdev guid from the nvlist.
622	 * Otherwise, vdev_alloc_common() will generate one for us.
623	 */
624	if (alloctype == VDEV_ALLOC_LOAD) {
625		uint64_t label_id;
626
627		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
628		    label_id != id)
629			return (SET_ERROR(EINVAL));
630
631		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
632			return (SET_ERROR(EINVAL));
633	} else if (alloctype == VDEV_ALLOC_SPARE) {
634		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
635			return (SET_ERROR(EINVAL));
636	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
637		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
638			return (SET_ERROR(EINVAL));
639	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
640		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
641			return (SET_ERROR(EINVAL));
642	}
643
644	/*
645	 * The first allocated vdev must be of type 'root'.
646	 */
647	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
648		return (SET_ERROR(EINVAL));
649
650	/*
651	 * Determine whether we're a log vdev.
652	 */
653	islog = 0;
654	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
655	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
656		return (SET_ERROR(ENOTSUP));
657
658	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
659		return (SET_ERROR(ENOTSUP));
660
661	/*
662	 * Set the nparity property for RAID-Z vdevs.
663	 */
664	nparity = -1ULL;
665	if (ops == &vdev_raidz_ops) {
666		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
667		    &nparity) == 0) {
668			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
669				return (SET_ERROR(EINVAL));
670			/*
671			 * Previous versions could only support 1 or 2 parity
672			 * device.
673			 */
674			if (nparity > 1 &&
675			    spa_version(spa) < SPA_VERSION_RAIDZ2)
676				return (SET_ERROR(ENOTSUP));
677			if (nparity > 2 &&
678			    spa_version(spa) < SPA_VERSION_RAIDZ3)
679				return (SET_ERROR(ENOTSUP));
680		} else {
681			/*
682			 * We require the parity to be specified for SPAs that
683			 * support multiple parity levels.
684			 */
685			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
686				return (SET_ERROR(EINVAL));
687			/*
688			 * Otherwise, we default to 1 parity device for RAID-Z.
689			 */
690			nparity = 1;
691		}
692	} else {
693		nparity = 0;
694	}
695	ASSERT(nparity != -1ULL);
696
697	vd = vdev_alloc_common(spa, id, guid, ops);
698	vic = &vd->vdev_indirect_config;
699
700	vd->vdev_islog = islog;
701	vd->vdev_nparity = nparity;
702
703	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
704		vd->vdev_path = spa_strdup(vd->vdev_path);
705	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
706		vd->vdev_devid = spa_strdup(vd->vdev_devid);
707	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
708	    &vd->vdev_physpath) == 0)
709		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
710	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
711		vd->vdev_fru = spa_strdup(vd->vdev_fru);
712
713	/*
714	 * Set the whole_disk property.  If it's not specified, leave the value
715	 * as -1.
716	 */
717	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
718	    &vd->vdev_wholedisk) != 0)
719		vd->vdev_wholedisk = -1ULL;
720
721	ASSERT0(vic->vic_mapping_object);
722	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
723	    &vic->vic_mapping_object);
724	ASSERT0(vic->vic_births_object);
725	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
726	    &vic->vic_births_object);
727	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
728	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
729	    &vic->vic_prev_indirect_vdev);
730
731	/*
732	 * Look for the 'not present' flag.  This will only be set if the device
733	 * was not present at the time of import.
734	 */
735	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
736	    &vd->vdev_not_present);
737
738	/*
739	 * Get the alignment requirement.
740	 */
741	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
742
743	/*
744	 * Retrieve the vdev creation time.
745	 */
746	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
747	    &vd->vdev_crtxg);
748
749	/*
750	 * If we're a top-level vdev, try to load the allocation parameters.
751	 */
752	if (parent && !parent->vdev_parent &&
753	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
754		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
755		    &vd->vdev_ms_array);
756		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
757		    &vd->vdev_ms_shift);
758		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
759		    &vd->vdev_asize);
760		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
761		    &vd->vdev_removing);
762		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
763		    &vd->vdev_top_zap);
764	} else {
765		ASSERT0(vd->vdev_top_zap);
766	}
767
768	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
769		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
770		    alloctype == VDEV_ALLOC_ADD ||
771		    alloctype == VDEV_ALLOC_SPLIT ||
772		    alloctype == VDEV_ALLOC_ROOTPOOL);
773		vd->vdev_mg = metaslab_group_create(islog ?
774		    spa_log_class(spa) : spa_normal_class(spa), vd,
775		    spa->spa_alloc_count);
776	}
777
778	if (vd->vdev_ops->vdev_op_leaf &&
779	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
780		(void) nvlist_lookup_uint64(nv,
781		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
782	} else {
783		ASSERT0(vd->vdev_leaf_zap);
784	}
785
786	/*
787	 * If we're a leaf vdev, try to load the DTL object and other state.
788	 */
789
790	if (vd->vdev_ops->vdev_op_leaf &&
791	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
792	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
793		if (alloctype == VDEV_ALLOC_LOAD) {
794			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
795			    &vd->vdev_dtl_object);
796			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
797			    &vd->vdev_unspare);
798		}
799
800		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
801			uint64_t spare = 0;
802
803			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
804			    &spare) == 0 && spare)
805				spa_spare_add(vd);
806		}
807
808		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
809		    &vd->vdev_offline);
810
811		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
812		    &vd->vdev_resilver_txg);
813
814		/*
815		 * When importing a pool, we want to ignore the persistent fault
816		 * state, as the diagnosis made on another system may not be
817		 * valid in the current context.  Local vdevs will
818		 * remain in the faulted state.
819		 */
820		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
821			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
822			    &vd->vdev_faulted);
823			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
824			    &vd->vdev_degraded);
825			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
826			    &vd->vdev_removed);
827
828			if (vd->vdev_faulted || vd->vdev_degraded) {
829				char *aux;
830
831				vd->vdev_label_aux =
832				    VDEV_AUX_ERR_EXCEEDED;
833				if (nvlist_lookup_string(nv,
834				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
835				    strcmp(aux, "external") == 0)
836					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
837			}
838		}
839	}
840
841	/*
842	 * Add ourselves to the parent's list of children.
843	 */
844	vdev_add_child(parent, vd);
845
846	*vdp = vd;
847
848	return (0);
849}
850
851void
852vdev_free(vdev_t *vd)
853{
854	spa_t *spa = vd->vdev_spa;
855	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
856
857	/*
858	 * Scan queues are normally destroyed at the end of a scan. If the
859	 * queue exists here, that implies the vdev is being removed while
860	 * the scan is still running.
861	 */
862	if (vd->vdev_scan_io_queue != NULL) {
863		mutex_enter(&vd->vdev_scan_io_queue_lock);
864		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
865		vd->vdev_scan_io_queue = NULL;
866		mutex_exit(&vd->vdev_scan_io_queue_lock);
867	}
868
869	/*
870	 * vdev_free() implies closing the vdev first.  This is simpler than
871	 * trying to ensure complicated semantics for all callers.
872	 */
873	vdev_close(vd);
874
875	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
876	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
877
878	/*
879	 * Free all children.
880	 */
881	for (int c = 0; c < vd->vdev_children; c++)
882		vdev_free(vd->vdev_child[c]);
883
884	ASSERT(vd->vdev_child == NULL);
885	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
886	ASSERT(vd->vdev_initialize_thread == NULL);
887
888	/*
889	 * Discard allocation state.
890	 */
891	if (vd->vdev_mg != NULL) {
892		vdev_metaslab_fini(vd);
893		metaslab_group_destroy(vd->vdev_mg);
894	}
895
896	ASSERT0(vd->vdev_stat.vs_space);
897	ASSERT0(vd->vdev_stat.vs_dspace);
898	ASSERT0(vd->vdev_stat.vs_alloc);
899
900	/*
901	 * Remove this vdev from its parent's child list.
902	 */
903	vdev_remove_child(vd->vdev_parent, vd);
904
905	ASSERT(vd->vdev_parent == NULL);
906
907	/*
908	 * Clean up vdev structure.
909	 */
910	vdev_queue_fini(vd);
911	vdev_cache_fini(vd);
912
913	if (vd->vdev_path)
914		spa_strfree(vd->vdev_path);
915	if (vd->vdev_devid)
916		spa_strfree(vd->vdev_devid);
917	if (vd->vdev_physpath)
918		spa_strfree(vd->vdev_physpath);
919	if (vd->vdev_fru)
920		spa_strfree(vd->vdev_fru);
921
922	if (vd->vdev_isspare)
923		spa_spare_remove(vd);
924	if (vd->vdev_isl2cache)
925		spa_l2cache_remove(vd);
926
927	txg_list_destroy(&vd->vdev_ms_list);
928	txg_list_destroy(&vd->vdev_dtl_list);
929
930	mutex_enter(&vd->vdev_dtl_lock);
931	space_map_close(vd->vdev_dtl_sm);
932	for (int t = 0; t < DTL_TYPES; t++) {
933		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
934		range_tree_destroy(vd->vdev_dtl[t]);
935	}
936	mutex_exit(&vd->vdev_dtl_lock);
937
938	EQUIV(vd->vdev_indirect_births != NULL,
939	    vd->vdev_indirect_mapping != NULL);
940	if (vd->vdev_indirect_births != NULL) {
941		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
942		vdev_indirect_births_close(vd->vdev_indirect_births);
943	}
944
945	if (vd->vdev_obsolete_sm != NULL) {
946		ASSERT(vd->vdev_removing ||
947		    vd->vdev_ops == &vdev_indirect_ops);
948		space_map_close(vd->vdev_obsolete_sm);
949		vd->vdev_obsolete_sm = NULL;
950	}
951	range_tree_destroy(vd->vdev_obsolete_segments);
952	rw_destroy(&vd->vdev_indirect_rwlock);
953	mutex_destroy(&vd->vdev_obsolete_lock);
954
955	mutex_destroy(&vd->vdev_queue_lock);
956	mutex_destroy(&vd->vdev_dtl_lock);
957	mutex_destroy(&vd->vdev_stat_lock);
958	mutex_destroy(&vd->vdev_probe_lock);
959	mutex_destroy(&vd->vdev_scan_io_queue_lock);
960	mutex_destroy(&vd->vdev_initialize_lock);
961	mutex_destroy(&vd->vdev_initialize_io_lock);
962	cv_destroy(&vd->vdev_initialize_io_cv);
963	cv_destroy(&vd->vdev_initialize_cv);
964
965	if (vd == spa->spa_root_vdev)
966		spa->spa_root_vdev = NULL;
967
968	kmem_free(vd, sizeof (vdev_t));
969}
970
971/*
972 * Transfer top-level vdev state from svd to tvd.
973 */
974static void
975vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
976{
977	spa_t *spa = svd->vdev_spa;
978	metaslab_t *msp;
979	vdev_t *vd;
980	int t;
981
982	ASSERT(tvd == tvd->vdev_top);
983
984	tvd->vdev_ms_array = svd->vdev_ms_array;
985	tvd->vdev_ms_shift = svd->vdev_ms_shift;
986	tvd->vdev_ms_count = svd->vdev_ms_count;
987	tvd->vdev_top_zap = svd->vdev_top_zap;
988
989	svd->vdev_ms_array = 0;
990	svd->vdev_ms_shift = 0;
991	svd->vdev_ms_count = 0;
992	svd->vdev_top_zap = 0;
993
994	if (tvd->vdev_mg)
995		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
996	tvd->vdev_mg = svd->vdev_mg;
997	tvd->vdev_ms = svd->vdev_ms;
998
999	svd->vdev_mg = NULL;
1000	svd->vdev_ms = NULL;
1001
1002	if (tvd->vdev_mg != NULL)
1003		tvd->vdev_mg->mg_vd = tvd;
1004
1005	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1006	svd->vdev_checkpoint_sm = NULL;
1007
1008	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1009	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1010	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1011
1012	svd->vdev_stat.vs_alloc = 0;
1013	svd->vdev_stat.vs_space = 0;
1014	svd->vdev_stat.vs_dspace = 0;
1015
1016	/*
1017	 * State which may be set on a top-level vdev that's in the
1018	 * process of being removed.
1019	 */
1020	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1021	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1022	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1023	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1024	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1025	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1026	ASSERT0(tvd->vdev_removing);
1027	tvd->vdev_removing = svd->vdev_removing;
1028	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1029	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1030	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1031	range_tree_swap(&svd->vdev_obsolete_segments,
1032	    &tvd->vdev_obsolete_segments);
1033	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1034	svd->vdev_indirect_config.vic_mapping_object = 0;
1035	svd->vdev_indirect_config.vic_births_object = 0;
1036	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1037	svd->vdev_indirect_mapping = NULL;
1038	svd->vdev_indirect_births = NULL;
1039	svd->vdev_obsolete_sm = NULL;
1040	svd->vdev_removing = 0;
1041
1042	for (t = 0; t < TXG_SIZE; t++) {
1043		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1044			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1045		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1046			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1047		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1048			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1049	}
1050
1051	if (list_link_active(&svd->vdev_config_dirty_node)) {
1052		vdev_config_clean(svd);
1053		vdev_config_dirty(tvd);
1054	}
1055
1056	if (list_link_active(&svd->vdev_state_dirty_node)) {
1057		vdev_state_clean(svd);
1058		vdev_state_dirty(tvd);
1059	}
1060
1061	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1062	svd->vdev_deflate_ratio = 0;
1063
1064	tvd->vdev_islog = svd->vdev_islog;
1065	svd->vdev_islog = 0;
1066
1067	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1068}
1069
1070static void
1071vdev_top_update(vdev_t *tvd, vdev_t *vd)
1072{
1073	if (vd == NULL)
1074		return;
1075
1076	vd->vdev_top = tvd;
1077
1078	for (int c = 0; c < vd->vdev_children; c++)
1079		vdev_top_update(tvd, vd->vdev_child[c]);
1080}
1081
1082/*
1083 * Add a mirror/replacing vdev above an existing vdev.
1084 */
1085vdev_t *
1086vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1087{
1088	spa_t *spa = cvd->vdev_spa;
1089	vdev_t *pvd = cvd->vdev_parent;
1090	vdev_t *mvd;
1091
1092	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1093
1094	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1095
1096	mvd->vdev_asize = cvd->vdev_asize;
1097	mvd->vdev_min_asize = cvd->vdev_min_asize;
1098	mvd->vdev_max_asize = cvd->vdev_max_asize;
1099	mvd->vdev_psize = cvd->vdev_psize;
1100	mvd->vdev_ashift = cvd->vdev_ashift;
1101	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1102	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1103	mvd->vdev_state = cvd->vdev_state;
1104	mvd->vdev_crtxg = cvd->vdev_crtxg;
1105
1106	vdev_remove_child(pvd, cvd);
1107	vdev_add_child(pvd, mvd);
1108	cvd->vdev_id = mvd->vdev_children;
1109	vdev_add_child(mvd, cvd);
1110	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1111
1112	if (mvd == mvd->vdev_top)
1113		vdev_top_transfer(cvd, mvd);
1114
1115	return (mvd);
1116}
1117
1118/*
1119 * Remove a 1-way mirror/replacing vdev from the tree.
1120 */
1121void
1122vdev_remove_parent(vdev_t *cvd)
1123{
1124	vdev_t *mvd = cvd->vdev_parent;
1125	vdev_t *pvd = mvd->vdev_parent;
1126
1127	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1128
1129	ASSERT(mvd->vdev_children == 1);
1130	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1131	    mvd->vdev_ops == &vdev_replacing_ops ||
1132	    mvd->vdev_ops == &vdev_spare_ops);
1133	cvd->vdev_ashift = mvd->vdev_ashift;
1134	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1135	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1136
1137	vdev_remove_child(mvd, cvd);
1138	vdev_remove_child(pvd, mvd);
1139
1140	/*
1141	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1142	 * Otherwise, we could have detached an offline device, and when we
1143	 * go to import the pool we'll think we have two top-level vdevs,
1144	 * instead of a different version of the same top-level vdev.
1145	 */
1146	if (mvd->vdev_top == mvd) {
1147		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1148		cvd->vdev_orig_guid = cvd->vdev_guid;
1149		cvd->vdev_guid += guid_delta;
1150		cvd->vdev_guid_sum += guid_delta;
1151	}
1152	cvd->vdev_id = mvd->vdev_id;
1153	vdev_add_child(pvd, cvd);
1154	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1155
1156	if (cvd == cvd->vdev_top)
1157		vdev_top_transfer(mvd, cvd);
1158
1159	ASSERT(mvd->vdev_children == 0);
1160	vdev_free(mvd);
1161}
1162
1163int
1164vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1165{
1166	spa_t *spa = vd->vdev_spa;
1167	objset_t *mos = spa->spa_meta_objset;
1168	uint64_t m;
1169	uint64_t oldc = vd->vdev_ms_count;
1170	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1171	metaslab_t **mspp;
1172	int error;
1173
1174	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1175
1176	/*
1177	 * This vdev is not being allocated from yet or is a hole.
1178	 */
1179	if (vd->vdev_ms_shift == 0)
1180		return (0);
1181
1182	ASSERT(!vd->vdev_ishole);
1183
1184	ASSERT(oldc <= newc);
1185
1186	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1187
1188	if (oldc != 0) {
1189		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1190		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1191	}
1192
1193	vd->vdev_ms = mspp;
1194	vd->vdev_ms_count = newc;
1195	for (m = oldc; m < newc; m++) {
1196		uint64_t object = 0;
1197
1198		/*
1199		 * vdev_ms_array may be 0 if we are creating the "fake"
1200		 * metaslabs for an indirect vdev for zdb's leak detection.
1201		 * See zdb_leak_init().
1202		 */
1203		if (txg == 0 && vd->vdev_ms_array != 0) {
1204			error = dmu_read(mos, vd->vdev_ms_array,
1205			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1206			    DMU_READ_PREFETCH);
1207			if (error != 0) {
1208				vdev_dbgmsg(vd, "unable to read the metaslab "
1209				    "array [error=%d]", error);
1210				return (error);
1211			}
1212		}
1213
1214		error = metaslab_init(vd->vdev_mg, m, object, txg,
1215		    &(vd->vdev_ms[m]));
1216		if (error != 0) {
1217			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1218			    error);
1219			return (error);
1220		}
1221	}
1222
1223	if (txg == 0)
1224		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1225
1226	/*
1227	 * If the vdev is being removed we don't activate
1228	 * the metaslabs since we want to ensure that no new
1229	 * allocations are performed on this device.
1230	 */
1231	if (oldc == 0 && !vd->vdev_removing)
1232		metaslab_group_activate(vd->vdev_mg);
1233
1234	if (txg == 0)
1235		spa_config_exit(spa, SCL_ALLOC, FTAG);
1236
1237	return (0);
1238}
1239
1240void
1241vdev_metaslab_fini(vdev_t *vd)
1242{
1243	if (vd->vdev_checkpoint_sm != NULL) {
1244		ASSERT(spa_feature_is_active(vd->vdev_spa,
1245		    SPA_FEATURE_POOL_CHECKPOINT));
1246		space_map_close(vd->vdev_checkpoint_sm);
1247		/*
1248		 * Even though we close the space map, we need to set its
1249		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1250		 * may be called multiple times for certain operations
1251		 * (i.e. when destroying a pool) so we need to ensure that
1252		 * this clause never executes twice. This logic is similar
1253		 * to the one used for the vdev_ms clause below.
1254		 */
1255		vd->vdev_checkpoint_sm = NULL;
1256	}
1257
1258	if (vd->vdev_ms != NULL) {
1259		uint64_t count = vd->vdev_ms_count;
1260
1261		metaslab_group_passivate(vd->vdev_mg);
1262		for (uint64_t m = 0; m < count; m++) {
1263			metaslab_t *msp = vd->vdev_ms[m];
1264
1265			if (msp != NULL)
1266				metaslab_fini(msp);
1267		}
1268		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1269		vd->vdev_ms = NULL;
1270
1271		vd->vdev_ms_count = 0;
1272	}
1273	ASSERT0(vd->vdev_ms_count);
1274}
1275
1276typedef struct vdev_probe_stats {
1277	boolean_t	vps_readable;
1278	boolean_t	vps_writeable;
1279	int		vps_flags;
1280} vdev_probe_stats_t;
1281
1282static void
1283vdev_probe_done(zio_t *zio)
1284{
1285	spa_t *spa = zio->io_spa;
1286	vdev_t *vd = zio->io_vd;
1287	vdev_probe_stats_t *vps = zio->io_private;
1288
1289	ASSERT(vd->vdev_probe_zio != NULL);
1290
1291	if (zio->io_type == ZIO_TYPE_READ) {
1292		if (zio->io_error == 0)
1293			vps->vps_readable = 1;
1294		if (zio->io_error == 0 && spa_writeable(spa)) {
1295			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1296			    zio->io_offset, zio->io_size, zio->io_abd,
1297			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1298			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1299		} else {
1300			abd_free(zio->io_abd);
1301		}
1302	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1303		if (zio->io_error == 0)
1304			vps->vps_writeable = 1;
1305		abd_free(zio->io_abd);
1306	} else if (zio->io_type == ZIO_TYPE_NULL) {
1307		zio_t *pio;
1308
1309		vd->vdev_cant_read |= !vps->vps_readable;
1310		vd->vdev_cant_write |= !vps->vps_writeable;
1311
1312		if (vdev_readable(vd) &&
1313		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1314			zio->io_error = 0;
1315		} else {
1316			ASSERT(zio->io_error != 0);
1317			vdev_dbgmsg(vd, "failed probe");
1318			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1319			    spa, vd, NULL, 0, 0);
1320			zio->io_error = SET_ERROR(ENXIO);
1321		}
1322
1323		mutex_enter(&vd->vdev_probe_lock);
1324		ASSERT(vd->vdev_probe_zio == zio);
1325		vd->vdev_probe_zio = NULL;
1326		mutex_exit(&vd->vdev_probe_lock);
1327
1328		zio_link_t *zl = NULL;
1329		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1330			if (!vdev_accessible(vd, pio))
1331				pio->io_error = SET_ERROR(ENXIO);
1332
1333		kmem_free(vps, sizeof (*vps));
1334	}
1335}
1336
1337/*
1338 * Determine whether this device is accessible.
1339 *
1340 * Read and write to several known locations: the pad regions of each
1341 * vdev label but the first, which we leave alone in case it contains
1342 * a VTOC.
1343 */
1344zio_t *
1345vdev_probe(vdev_t *vd, zio_t *zio)
1346{
1347	spa_t *spa = vd->vdev_spa;
1348	vdev_probe_stats_t *vps = NULL;
1349	zio_t *pio;
1350
1351	ASSERT(vd->vdev_ops->vdev_op_leaf);
1352
1353	/*
1354	 * Don't probe the probe.
1355	 */
1356	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1357		return (NULL);
1358
1359	/*
1360	 * To prevent 'probe storms' when a device fails, we create
1361	 * just one probe i/o at a time.  All zios that want to probe
1362	 * this vdev will become parents of the probe io.
1363	 */
1364	mutex_enter(&vd->vdev_probe_lock);
1365
1366	if ((pio = vd->vdev_probe_zio) == NULL) {
1367		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1368
1369		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1370		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1371		    ZIO_FLAG_TRYHARD;
1372
1373		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1374			/*
1375			 * vdev_cant_read and vdev_cant_write can only
1376			 * transition from TRUE to FALSE when we have the
1377			 * SCL_ZIO lock as writer; otherwise they can only
1378			 * transition from FALSE to TRUE.  This ensures that
1379			 * any zio looking at these values can assume that
1380			 * failures persist for the life of the I/O.  That's
1381			 * important because when a device has intermittent
1382			 * connectivity problems, we want to ensure that
1383			 * they're ascribed to the device (ENXIO) and not
1384			 * the zio (EIO).
1385			 *
1386			 * Since we hold SCL_ZIO as writer here, clear both
1387			 * values so the probe can reevaluate from first
1388			 * principles.
1389			 */
1390			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1391			vd->vdev_cant_read = B_FALSE;
1392			vd->vdev_cant_write = B_FALSE;
1393		}
1394
1395		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1396		    vdev_probe_done, vps,
1397		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1398
1399		/*
1400		 * We can't change the vdev state in this context, so we
1401		 * kick off an async task to do it on our behalf.
1402		 */
1403		if (zio != NULL) {
1404			vd->vdev_probe_wanted = B_TRUE;
1405			spa_async_request(spa, SPA_ASYNC_PROBE);
1406		}
1407	}
1408
1409	if (zio != NULL)
1410		zio_add_child(zio, pio);
1411
1412	mutex_exit(&vd->vdev_probe_lock);
1413
1414	if (vps == NULL) {
1415		ASSERT(zio != NULL);
1416		return (NULL);
1417	}
1418
1419	for (int l = 1; l < VDEV_LABELS; l++) {
1420		zio_nowait(zio_read_phys(pio, vd,
1421		    vdev_label_offset(vd->vdev_psize, l,
1422		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1423		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1424		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1425		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1426	}
1427
1428	if (zio == NULL)
1429		return (pio);
1430
1431	zio_nowait(pio);
1432	return (NULL);
1433}
1434
1435static void
1436vdev_open_child(void *arg)
1437{
1438	vdev_t *vd = arg;
1439
1440	vd->vdev_open_thread = curthread;
1441	vd->vdev_open_error = vdev_open(vd);
1442	vd->vdev_open_thread = NULL;
1443}
1444
1445boolean_t
1446vdev_uses_zvols(vdev_t *vd)
1447{
1448	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1449	    strlen(ZVOL_DIR)) == 0)
1450		return (B_TRUE);
1451	for (int c = 0; c < vd->vdev_children; c++)
1452		if (vdev_uses_zvols(vd->vdev_child[c]))
1453			return (B_TRUE);
1454	return (B_FALSE);
1455}
1456
1457void
1458vdev_open_children(vdev_t *vd)
1459{
1460	taskq_t *tq;
1461	int children = vd->vdev_children;
1462
1463	/*
1464	 * in order to handle pools on top of zvols, do the opens
1465	 * in a single thread so that the same thread holds the
1466	 * spa_namespace_lock
1467	 */
1468	if (B_TRUE || vdev_uses_zvols(vd)) {
1469		for (int c = 0; c < children; c++)
1470			vd->vdev_child[c]->vdev_open_error =
1471			    vdev_open(vd->vdev_child[c]);
1472		return;
1473	}
1474	tq = taskq_create("vdev_open", children, minclsyspri,
1475	    children, children, TASKQ_PREPOPULATE);
1476
1477	for (int c = 0; c < children; c++)
1478		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1479		    TQ_SLEEP) != 0);
1480
1481	taskq_destroy(tq);
1482}
1483
1484/*
1485 * Compute the raidz-deflation ratio.  Note, we hard-code
1486 * in 128k (1 << 17) because it is the "typical" blocksize.
1487 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1488 * otherwise it would inconsistently account for existing bp's.
1489 */
1490static void
1491vdev_set_deflate_ratio(vdev_t *vd)
1492{
1493	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1494		vd->vdev_deflate_ratio = (1 << 17) /
1495		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1496	}
1497}
1498
1499/*
1500 * Prepare a virtual device for access.
1501 */
1502int
1503vdev_open(vdev_t *vd)
1504{
1505	spa_t *spa = vd->vdev_spa;
1506	int error;
1507	uint64_t osize = 0;
1508	uint64_t max_osize = 0;
1509	uint64_t asize, max_asize, psize;
1510	uint64_t logical_ashift = 0;
1511	uint64_t physical_ashift = 0;
1512
1513	ASSERT(vd->vdev_open_thread == curthread ||
1514	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1515	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1516	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1517	    vd->vdev_state == VDEV_STATE_OFFLINE);
1518
1519	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1520	vd->vdev_cant_read = B_FALSE;
1521	vd->vdev_cant_write = B_FALSE;
1522	vd->vdev_notrim = B_FALSE;
1523	vd->vdev_min_asize = vdev_get_min_asize(vd);
1524
1525	/*
1526	 * If this vdev is not removed, check its fault status.  If it's
1527	 * faulted, bail out of the open.
1528	 */
1529	if (!vd->vdev_removed && vd->vdev_faulted) {
1530		ASSERT(vd->vdev_children == 0);
1531		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1532		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1533		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1534		    vd->vdev_label_aux);
1535		return (SET_ERROR(ENXIO));
1536	} else if (vd->vdev_offline) {
1537		ASSERT(vd->vdev_children == 0);
1538		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1539		return (SET_ERROR(ENXIO));
1540	}
1541
1542	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1543	    &logical_ashift, &physical_ashift);
1544
1545	/*
1546	 * Reset the vdev_reopening flag so that we actually close
1547	 * the vdev on error.
1548	 */
1549	vd->vdev_reopening = B_FALSE;
1550	if (zio_injection_enabled && error == 0)
1551		error = zio_handle_device_injection(vd, NULL, ENXIO);
1552
1553	if (error) {
1554		if (vd->vdev_removed &&
1555		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1556			vd->vdev_removed = B_FALSE;
1557
1558		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1559			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1560			    vd->vdev_stat.vs_aux);
1561		} else {
1562			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1563			    vd->vdev_stat.vs_aux);
1564		}
1565		return (error);
1566	}
1567
1568	vd->vdev_removed = B_FALSE;
1569
1570	/*
1571	 * Recheck the faulted flag now that we have confirmed that
1572	 * the vdev is accessible.  If we're faulted, bail.
1573	 */
1574	if (vd->vdev_faulted) {
1575		ASSERT(vd->vdev_children == 0);
1576		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1577		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1578		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1579		    vd->vdev_label_aux);
1580		return (SET_ERROR(ENXIO));
1581	}
1582
1583	if (vd->vdev_degraded) {
1584		ASSERT(vd->vdev_children == 0);
1585		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1586		    VDEV_AUX_ERR_EXCEEDED);
1587	} else {
1588		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1589	}
1590
1591	/*
1592	 * For hole or missing vdevs we just return success.
1593	 */
1594	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1595		return (0);
1596
1597	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1598		trim_map_create(vd);
1599
1600	for (int c = 0; c < vd->vdev_children; c++) {
1601		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1602			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1603			    VDEV_AUX_NONE);
1604			break;
1605		}
1606	}
1607
1608	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1609	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1610
1611	if (vd->vdev_children == 0) {
1612		if (osize < SPA_MINDEVSIZE) {
1613			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1614			    VDEV_AUX_TOO_SMALL);
1615			return (SET_ERROR(EOVERFLOW));
1616		}
1617		psize = osize;
1618		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1619		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1620		    VDEV_LABEL_END_SIZE);
1621	} else {
1622		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1623		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1624			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1625			    VDEV_AUX_TOO_SMALL);
1626			return (SET_ERROR(EOVERFLOW));
1627		}
1628		psize = 0;
1629		asize = osize;
1630		max_asize = max_osize;
1631	}
1632
1633	vd->vdev_psize = psize;
1634
1635	/*
1636	 * Make sure the allocatable size hasn't shrunk too much.
1637	 */
1638	if (asize < vd->vdev_min_asize) {
1639		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1640		    VDEV_AUX_BAD_LABEL);
1641		return (SET_ERROR(EINVAL));
1642	}
1643
1644	vd->vdev_physical_ashift =
1645	    MAX(physical_ashift, vd->vdev_physical_ashift);
1646	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1647	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1648
1649	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1650		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1651		    VDEV_AUX_ASHIFT_TOO_BIG);
1652		return (EINVAL);
1653	}
1654
1655	if (vd->vdev_asize == 0) {
1656		/*
1657		 * This is the first-ever open, so use the computed values.
1658		 * For testing purposes, a higher ashift can be requested.
1659		 */
1660		vd->vdev_asize = asize;
1661		vd->vdev_max_asize = max_asize;
1662	} else {
1663		/*
1664		 * Make sure the alignment requirement hasn't increased.
1665		 */
1666		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1667		    vd->vdev_ops->vdev_op_leaf) {
1668			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1669			    VDEV_AUX_BAD_LABEL);
1670			return (EINVAL);
1671		}
1672		vd->vdev_max_asize = max_asize;
1673	}
1674
1675	/*
1676	 * If all children are healthy we update asize if either:
1677	 * The asize has increased, due to a device expansion caused by dynamic
1678	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1679	 * making the additional space available.
1680	 *
1681	 * The asize has decreased, due to a device shrink usually caused by a
1682	 * vdev replace with a smaller device. This ensures that calculations
1683	 * based of max_asize and asize e.g. esize are always valid. It's safe
1684	 * to do this as we've already validated that asize is greater than
1685	 * vdev_min_asize.
1686	 */
1687	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1688	    ((asize > vd->vdev_asize &&
1689	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1690	    (asize < vd->vdev_asize)))
1691		vd->vdev_asize = asize;
1692
1693	vdev_set_min_asize(vd);
1694
1695	/*
1696	 * Ensure we can issue some IO before declaring the
1697	 * vdev open for business.
1698	 */
1699	if (vd->vdev_ops->vdev_op_leaf &&
1700	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1701		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1702		    VDEV_AUX_ERR_EXCEEDED);
1703		return (error);
1704	}
1705
1706	/*
1707	 * Track the min and max ashift values for normal data devices.
1708	 */
1709	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1710	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1711		if (vd->vdev_ashift > spa->spa_max_ashift)
1712			spa->spa_max_ashift = vd->vdev_ashift;
1713		if (vd->vdev_ashift < spa->spa_min_ashift)
1714			spa->spa_min_ashift = vd->vdev_ashift;
1715	}
1716
1717	/*
1718	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1719	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1720	 * since this would just restart the scrub we are already doing.
1721	 */
1722	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1723	    vdev_resilver_needed(vd, NULL, NULL))
1724		spa_async_request(spa, SPA_ASYNC_RESILVER);
1725
1726	return (0);
1727}
1728
1729/*
1730 * Called once the vdevs are all opened, this routine validates the label
1731 * contents. This needs to be done before vdev_load() so that we don't
1732 * inadvertently do repair I/Os to the wrong device.
1733 *
1734 * This function will only return failure if one of the vdevs indicates that it
1735 * has since been destroyed or exported.  This is only possible if
1736 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1737 * will be updated but the function will return 0.
1738 */
1739int
1740vdev_validate(vdev_t *vd)
1741{
1742	spa_t *spa = vd->vdev_spa;
1743	nvlist_t *label;
1744	uint64_t guid = 0, aux_guid = 0, top_guid;
1745	uint64_t state;
1746	nvlist_t *nvl;
1747	uint64_t txg;
1748
1749	if (vdev_validate_skip)
1750		return (0);
1751
1752	for (uint64_t c = 0; c < vd->vdev_children; c++)
1753		if (vdev_validate(vd->vdev_child[c]) != 0)
1754			return (SET_ERROR(EBADF));
1755
1756	/*
1757	 * If the device has already failed, or was marked offline, don't do
1758	 * any further validation.  Otherwise, label I/O will fail and we will
1759	 * overwrite the previous state.
1760	 */
1761	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1762		return (0);
1763
1764	/*
1765	 * If we are performing an extreme rewind, we allow for a label that
1766	 * was modified at a point after the current txg.
1767	 * If config lock is not held do not check for the txg. spa_sync could
1768	 * be updating the vdev's label before updating spa_last_synced_txg.
1769	 */
1770	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1771	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1772		txg = UINT64_MAX;
1773	else
1774		txg = spa_last_synced_txg(spa);
1775
1776	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1777		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1778		    VDEV_AUX_BAD_LABEL);
1779		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1780		    "txg %llu", (u_longlong_t)txg);
1781		return (0);
1782	}
1783
1784	/*
1785	 * Determine if this vdev has been split off into another
1786	 * pool.  If so, then refuse to open it.
1787	 */
1788	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1789	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1790		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1791		    VDEV_AUX_SPLIT_POOL);
1792		nvlist_free(label);
1793		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1794		return (0);
1795	}
1796
1797	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1798		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1799		    VDEV_AUX_CORRUPT_DATA);
1800		nvlist_free(label);
1801		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1802		    ZPOOL_CONFIG_POOL_GUID);
1803		return (0);
1804	}
1805
1806	/*
1807	 * If config is not trusted then ignore the spa guid check. This is
1808	 * necessary because if the machine crashed during a re-guid the new
1809	 * guid might have been written to all of the vdev labels, but not the
1810	 * cached config. The check will be performed again once we have the
1811	 * trusted config from the MOS.
1812	 */
1813	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1814		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1815		    VDEV_AUX_CORRUPT_DATA);
1816		nvlist_free(label);
1817		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1818		    "match config (%llu != %llu)", (u_longlong_t)guid,
1819		    (u_longlong_t)spa_guid(spa));
1820		return (0);
1821	}
1822
1823	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1824	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1825	    &aux_guid) != 0)
1826		aux_guid = 0;
1827
1828	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1829		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1830		    VDEV_AUX_CORRUPT_DATA);
1831		nvlist_free(label);
1832		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1833		    ZPOOL_CONFIG_GUID);
1834		return (0);
1835	}
1836
1837	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1838	    != 0) {
1839		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1840		    VDEV_AUX_CORRUPT_DATA);
1841		nvlist_free(label);
1842		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1843		    ZPOOL_CONFIG_TOP_GUID);
1844		return (0);
1845	}
1846
1847	/*
1848	 * If this vdev just became a top-level vdev because its sibling was
1849	 * detached, it will have adopted the parent's vdev guid -- but the
1850	 * label may or may not be on disk yet. Fortunately, either version
1851	 * of the label will have the same top guid, so if we're a top-level
1852	 * vdev, we can safely compare to that instead.
1853	 * However, if the config comes from a cachefile that failed to update
1854	 * after the detach, a top-level vdev will appear as a non top-level
1855	 * vdev in the config. Also relax the constraints if we perform an
1856	 * extreme rewind.
1857	 *
1858	 * If we split this vdev off instead, then we also check the
1859	 * original pool's guid. We don't want to consider the vdev
1860	 * corrupt if it is partway through a split operation.
1861	 */
1862	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1863		boolean_t mismatch = B_FALSE;
1864		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1865			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1866				mismatch = B_TRUE;
1867		} else {
1868			if (vd->vdev_guid != top_guid &&
1869			    vd->vdev_top->vdev_guid != guid)
1870				mismatch = B_TRUE;
1871		}
1872
1873		if (mismatch) {
1874			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1875			    VDEV_AUX_CORRUPT_DATA);
1876			nvlist_free(label);
1877			vdev_dbgmsg(vd, "vdev_validate: config guid "
1878			    "doesn't match label guid");
1879			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1880			    (u_longlong_t)vd->vdev_guid,
1881			    (u_longlong_t)vd->vdev_top->vdev_guid);
1882			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1883			    "aux_guid %llu", (u_longlong_t)guid,
1884			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1885			return (0);
1886		}
1887	}
1888
1889	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1890	    &state) != 0) {
1891		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1892		    VDEV_AUX_CORRUPT_DATA);
1893		nvlist_free(label);
1894		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1895		    ZPOOL_CONFIG_POOL_STATE);
1896		return (0);
1897	}
1898
1899	nvlist_free(label);
1900
1901	/*
1902	 * If this is a verbatim import, no need to check the
1903	 * state of the pool.
1904	 */
1905	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1906	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1907	    state != POOL_STATE_ACTIVE) {
1908		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1909		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1910		return (SET_ERROR(EBADF));
1911	}
1912
1913	/*
1914	 * If we were able to open and validate a vdev that was
1915	 * previously marked permanently unavailable, clear that state
1916	 * now.
1917	 */
1918	if (vd->vdev_not_present)
1919		vd->vdev_not_present = 0;
1920
1921	return (0);
1922}
1923
1924static void
1925vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1926{
1927	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1928		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1929			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1930			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1931			    dvd->vdev_path, svd->vdev_path);
1932			spa_strfree(dvd->vdev_path);
1933			dvd->vdev_path = spa_strdup(svd->vdev_path);
1934		}
1935	} else if (svd->vdev_path != NULL) {
1936		dvd->vdev_path = spa_strdup(svd->vdev_path);
1937		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1938		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1939	}
1940}
1941
1942/*
1943 * Recursively copy vdev paths from one vdev to another. Source and destination
1944 * vdev trees must have same geometry otherwise return error. Intended to copy
1945 * paths from userland config into MOS config.
1946 */
1947int
1948vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1949{
1950	if ((svd->vdev_ops == &vdev_missing_ops) ||
1951	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1952	    (dvd->vdev_ops == &vdev_indirect_ops))
1953		return (0);
1954
1955	if (svd->vdev_ops != dvd->vdev_ops) {
1956		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1957		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1958		return (SET_ERROR(EINVAL));
1959	}
1960
1961	if (svd->vdev_guid != dvd->vdev_guid) {
1962		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1963		    "%llu)", (u_longlong_t)svd->vdev_guid,
1964		    (u_longlong_t)dvd->vdev_guid);
1965		return (SET_ERROR(EINVAL));
1966	}
1967
1968	if (svd->vdev_children != dvd->vdev_children) {
1969		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1970		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1971		    (u_longlong_t)dvd->vdev_children);
1972		return (SET_ERROR(EINVAL));
1973	}
1974
1975	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1976		int error = vdev_copy_path_strict(svd->vdev_child[i],
1977		    dvd->vdev_child[i]);
1978		if (error != 0)
1979			return (error);
1980	}
1981
1982	if (svd->vdev_ops->vdev_op_leaf)
1983		vdev_copy_path_impl(svd, dvd);
1984
1985	return (0);
1986}
1987
1988static void
1989vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1990{
1991	ASSERT(stvd->vdev_top == stvd);
1992	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1993
1994	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1995		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1996	}
1997
1998	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1999		return;
2000
2001	/*
2002	 * The idea here is that while a vdev can shift positions within
2003	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2004	 * step outside of it.
2005	 */
2006	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2007
2008	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2009		return;
2010
2011	ASSERT(vd->vdev_ops->vdev_op_leaf);
2012
2013	vdev_copy_path_impl(vd, dvd);
2014}
2015
2016/*
2017 * Recursively copy vdev paths from one root vdev to another. Source and
2018 * destination vdev trees may differ in geometry. For each destination leaf
2019 * vdev, search a vdev with the same guid and top vdev id in the source.
2020 * Intended to copy paths from userland config into MOS config.
2021 */
2022void
2023vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2024{
2025	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2026	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2027	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2028
2029	for (uint64_t i = 0; i < children; i++) {
2030		vdev_copy_path_search(srvd->vdev_child[i],
2031		    drvd->vdev_child[i]);
2032	}
2033}
2034
2035/*
2036 * Close a virtual device.
2037 */
2038void
2039vdev_close(vdev_t *vd)
2040{
2041	spa_t *spa = vd->vdev_spa;
2042	vdev_t *pvd = vd->vdev_parent;
2043
2044	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2045
2046	/*
2047	 * If our parent is reopening, then we are as well, unless we are
2048	 * going offline.
2049	 */
2050	if (pvd != NULL && pvd->vdev_reopening)
2051		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2052
2053	vd->vdev_ops->vdev_op_close(vd);
2054
2055	vdev_cache_purge(vd);
2056
2057	if (vd->vdev_ops->vdev_op_leaf)
2058		trim_map_destroy(vd);
2059
2060	/*
2061	 * We record the previous state before we close it, so that if we are
2062	 * doing a reopen(), we don't generate FMA ereports if we notice that
2063	 * it's still faulted.
2064	 */
2065	vd->vdev_prevstate = vd->vdev_state;
2066
2067	if (vd->vdev_offline)
2068		vd->vdev_state = VDEV_STATE_OFFLINE;
2069	else
2070		vd->vdev_state = VDEV_STATE_CLOSED;
2071	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2072}
2073
2074void
2075vdev_hold(vdev_t *vd)
2076{
2077	spa_t *spa = vd->vdev_spa;
2078
2079	ASSERT(spa_is_root(spa));
2080	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2081		return;
2082
2083	for (int c = 0; c < vd->vdev_children; c++)
2084		vdev_hold(vd->vdev_child[c]);
2085
2086	if (vd->vdev_ops->vdev_op_leaf)
2087		vd->vdev_ops->vdev_op_hold(vd);
2088}
2089
2090void
2091vdev_rele(vdev_t *vd)
2092{
2093	spa_t *spa = vd->vdev_spa;
2094
2095	ASSERT(spa_is_root(spa));
2096	for (int c = 0; c < vd->vdev_children; c++)
2097		vdev_rele(vd->vdev_child[c]);
2098
2099	if (vd->vdev_ops->vdev_op_leaf)
2100		vd->vdev_ops->vdev_op_rele(vd);
2101}
2102
2103/*
2104 * Reopen all interior vdevs and any unopened leaves.  We don't actually
2105 * reopen leaf vdevs which had previously been opened as they might deadlock
2106 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2107 * If the leaf has never been opened then open it, as usual.
2108 */
2109void
2110vdev_reopen(vdev_t *vd)
2111{
2112	spa_t *spa = vd->vdev_spa;
2113
2114	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2115
2116	/* set the reopening flag unless we're taking the vdev offline */
2117	vd->vdev_reopening = !vd->vdev_offline;
2118	vdev_close(vd);
2119	(void) vdev_open(vd);
2120
2121	/*
2122	 * Call vdev_validate() here to make sure we have the same device.
2123	 * Otherwise, a device with an invalid label could be successfully
2124	 * opened in response to vdev_reopen().
2125	 */
2126	if (vd->vdev_aux) {
2127		(void) vdev_validate_aux(vd);
2128		if (vdev_readable(vd) && vdev_writeable(vd) &&
2129		    vd->vdev_aux == &spa->spa_l2cache &&
2130		    !l2arc_vdev_present(vd))
2131			l2arc_add_vdev(spa, vd);
2132	} else {
2133		(void) vdev_validate(vd);
2134	}
2135
2136	/*
2137	 * Reassess parent vdev's health.
2138	 */
2139	vdev_propagate_state(vd);
2140}
2141
2142int
2143vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2144{
2145	int error;
2146
2147	/*
2148	 * Normally, partial opens (e.g. of a mirror) are allowed.
2149	 * For a create, however, we want to fail the request if
2150	 * there are any components we can't open.
2151	 */
2152	error = vdev_open(vd);
2153
2154	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2155		vdev_close(vd);
2156		return (error ? error : ENXIO);
2157	}
2158
2159	/*
2160	 * Recursively load DTLs and initialize all labels.
2161	 */
2162	if ((error = vdev_dtl_load(vd)) != 0 ||
2163	    (error = vdev_label_init(vd, txg, isreplacing ?
2164	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2165		vdev_close(vd);
2166		return (error);
2167	}
2168
2169	return (0);
2170}
2171
2172void
2173vdev_metaslab_set_size(vdev_t *vd)
2174{
2175	uint64_t asize = vd->vdev_asize;
2176	uint64_t ms_count = asize >> vdev_default_ms_shift;
2177	uint64_t ms_shift;
2178
2179	/*
2180	 * There are two dimensions to the metaslab sizing calculation:
2181	 * the size of the metaslab and the count of metaslabs per vdev.
2182	 * In general, we aim for vdev_max_ms_count (200) metaslabs. The
2183	 * range of the dimensions are as follows:
2184	 *
2185	 *	2^29 <= ms_size  <= 2^38
2186	 *	  16 <= ms_count <= 131,072
2187	 *
2188	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2189	 * at least 512MB (2^29) to minimize fragmentation effects when
2190	 * testing with smaller devices.  However, the count constraint
2191	 * of at least 16 metaslabs will override this minimum size goal.
2192	 *
2193	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2194	 * size of 256GB.  However, we will cap the total count to 2^17
2195	 * metaslabs to keep our memory footprint in check.
2196	 *
2197	 * The net effect of applying above constrains is summarized below.
2198	 *
2199	 *	vdev size	metaslab count
2200	 *	-------------|-----------------
2201	 *	< 8GB		~16
2202	 *	8GB - 100GB	one per 512MB
2203	 *	100GB - 50TB	~200
2204	 *	50TB - 32PB	one per 256GB
2205	 *	> 32PB		~131,072
2206	 *	-------------------------------
2207	 */
2208
2209	if (ms_count < vdev_min_ms_count)
2210		ms_shift = highbit64(asize / vdev_min_ms_count);
2211	else if (ms_count > vdev_max_ms_count)
2212		ms_shift = highbit64(asize / vdev_max_ms_count);
2213	else
2214		ms_shift = vdev_default_ms_shift;
2215
2216	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2217		ms_shift = SPA_MAXBLOCKSHIFT;
2218	} else if (ms_shift > vdev_max_ms_shift) {
2219		ms_shift = vdev_max_ms_shift;
2220		/* cap the total count to constrain memory footprint */
2221		if ((asize >> ms_shift) > vdev_ms_count_limit)
2222			ms_shift = highbit64(asize / vdev_ms_count_limit);
2223	}
2224
2225	vd->vdev_ms_shift = ms_shift;
2226	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2227}
2228
2229/*
2230 * Maximize performance by inflating the configured ashift for top level
2231 * vdevs to be as close to the physical ashift as possible while maintaining
2232 * administrator defined limits and ensuring it doesn't go below the
2233 * logical ashift.
2234 */
2235void
2236vdev_ashift_optimize(vdev_t *vd)
2237{
2238	if (vd == vd->vdev_top) {
2239		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
2240			vd->vdev_ashift = MIN(
2241			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
2242			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
2243		} else {
2244			/*
2245			 * Unusual case where logical ashift > physical ashift
2246			 * so we can't cap the calculated ashift based on max
2247			 * ashift as that would cause failures.
2248			 * We still check if we need to increase it to match
2249			 * the min ashift.
2250			 */
2251			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
2252			    vd->vdev_ashift);
2253		}
2254	}
2255}
2256
2257void
2258vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2259{
2260	ASSERT(vd == vd->vdev_top);
2261	/* indirect vdevs don't have metaslabs or dtls */
2262	ASSERT(vdev_is_concrete(vd) || flags == 0);
2263	ASSERT(ISP2(flags));
2264	ASSERT(spa_writeable(vd->vdev_spa));
2265
2266	if (flags & VDD_METASLAB)
2267		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2268
2269	if (flags & VDD_DTL)
2270		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2271
2272	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2273}
2274
2275void
2276vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2277{
2278	for (int c = 0; c < vd->vdev_children; c++)
2279		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2280
2281	if (vd->vdev_ops->vdev_op_leaf)
2282		vdev_dirty(vd->vdev_top, flags, vd, txg);
2283}
2284
2285/*
2286 * DTLs.
2287 *
2288 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2289 * the vdev has less than perfect replication.  There are four kinds of DTL:
2290 *
2291 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2292 *
2293 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2294 *
2295 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2296 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2297 *	txgs that was scrubbed.
2298 *
2299 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2300 *	persistent errors or just some device being offline.
2301 *	Unlike the other three, the DTL_OUTAGE map is not generally
2302 *	maintained; it's only computed when needed, typically to
2303 *	determine whether a device can be detached.
2304 *
2305 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2306 * either has the data or it doesn't.
2307 *
2308 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2309 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2310 * if any child is less than fully replicated, then so is its parent.
2311 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2312 * comprising only those txgs which appear in 'maxfaults' or more children;
2313 * those are the txgs we don't have enough replication to read.  For example,
2314 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2315 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2316 * two child DTL_MISSING maps.
2317 *
2318 * It should be clear from the above that to compute the DTLs and outage maps
2319 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2320 * Therefore, that is all we keep on disk.  When loading the pool, or after
2321 * a configuration change, we generate all other DTLs from first principles.
2322 */
2323void
2324vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2325{
2326	range_tree_t *rt = vd->vdev_dtl[t];
2327
2328	ASSERT(t < DTL_TYPES);
2329	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2330	ASSERT(spa_writeable(vd->vdev_spa));
2331
2332	mutex_enter(&vd->vdev_dtl_lock);
2333	if (!range_tree_contains(rt, txg, size))
2334		range_tree_add(rt, txg, size);
2335	mutex_exit(&vd->vdev_dtl_lock);
2336}
2337
2338boolean_t
2339vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2340{
2341	range_tree_t *rt = vd->vdev_dtl[t];
2342	boolean_t dirty = B_FALSE;
2343
2344	ASSERT(t < DTL_TYPES);
2345	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2346
2347	/*
2348	 * While we are loading the pool, the DTLs have not been loaded yet.
2349	 * Ignore the DTLs and try all devices.  This avoids a recursive
2350	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2351	 * when loading the pool (relying on the checksum to ensure that
2352	 * we get the right data -- note that we while loading, we are
2353	 * only reading the MOS, which is always checksummed).
2354	 */
2355	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2356		return (B_FALSE);
2357
2358	mutex_enter(&vd->vdev_dtl_lock);
2359	if (!range_tree_is_empty(rt))
2360		dirty = range_tree_contains(rt, txg, size);
2361	mutex_exit(&vd->vdev_dtl_lock);
2362
2363	return (dirty);
2364}
2365
2366boolean_t
2367vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2368{
2369	range_tree_t *rt = vd->vdev_dtl[t];
2370	boolean_t empty;
2371
2372	mutex_enter(&vd->vdev_dtl_lock);
2373	empty = range_tree_is_empty(rt);
2374	mutex_exit(&vd->vdev_dtl_lock);
2375
2376	return (empty);
2377}
2378
2379/*
2380 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2381 */
2382boolean_t
2383vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2384{
2385        ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2386
2387        if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2388            vd->vdev_ops->vdev_op_leaf)
2389                return (B_TRUE);
2390
2391        return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2392}
2393
2394/*
2395 * Returns the lowest txg in the DTL range.
2396 */
2397static uint64_t
2398vdev_dtl_min(vdev_t *vd)
2399{
2400	range_seg_t *rs;
2401
2402	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2403	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2404	ASSERT0(vd->vdev_children);
2405
2406	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2407	return (rs->rs_start - 1);
2408}
2409
2410/*
2411 * Returns the highest txg in the DTL.
2412 */
2413static uint64_t
2414vdev_dtl_max(vdev_t *vd)
2415{
2416	range_seg_t *rs;
2417
2418	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2419	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2420	ASSERT0(vd->vdev_children);
2421
2422	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2423	return (rs->rs_end);
2424}
2425
2426/*
2427 * Determine if a resilvering vdev should remove any DTL entries from
2428 * its range. If the vdev was resilvering for the entire duration of the
2429 * scan then it should excise that range from its DTLs. Otherwise, this
2430 * vdev is considered partially resilvered and should leave its DTL
2431 * entries intact. The comment in vdev_dtl_reassess() describes how we
2432 * excise the DTLs.
2433 */
2434static boolean_t
2435vdev_dtl_should_excise(vdev_t *vd)
2436{
2437	spa_t *spa = vd->vdev_spa;
2438	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2439
2440	ASSERT0(scn->scn_phys.scn_errors);
2441	ASSERT0(vd->vdev_children);
2442
2443	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2444		return (B_FALSE);
2445
2446	if (vd->vdev_resilver_txg == 0 ||
2447	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2448		return (B_TRUE);
2449
2450	/*
2451	 * When a resilver is initiated the scan will assign the scn_max_txg
2452	 * value to the highest txg value that exists in all DTLs. If this
2453	 * device's max DTL is not part of this scan (i.e. it is not in
2454	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2455	 * for excision.
2456	 */
2457	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2458		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2459		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2460		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2461		return (B_TRUE);
2462	}
2463	return (B_FALSE);
2464}
2465
2466/*
2467 * Reassess DTLs after a config change or scrub completion.
2468 */
2469void
2470vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2471{
2472	spa_t *spa = vd->vdev_spa;
2473	avl_tree_t reftree;
2474	int minref;
2475
2476	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2477
2478	for (int c = 0; c < vd->vdev_children; c++)
2479		vdev_dtl_reassess(vd->vdev_child[c], txg,
2480		    scrub_txg, scrub_done);
2481
2482	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2483		return;
2484
2485	if (vd->vdev_ops->vdev_op_leaf) {
2486		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2487
2488		mutex_enter(&vd->vdev_dtl_lock);
2489
2490		/*
2491		 * If we've completed a scan cleanly then determine
2492		 * if this vdev should remove any DTLs. We only want to
2493		 * excise regions on vdevs that were available during
2494		 * the entire duration of this scan.
2495		 */
2496		if (scrub_txg != 0 &&
2497		    (spa->spa_scrub_started ||
2498		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2499		    vdev_dtl_should_excise(vd)) {
2500			/*
2501			 * We completed a scrub up to scrub_txg.  If we
2502			 * did it without rebooting, then the scrub dtl
2503			 * will be valid, so excise the old region and
2504			 * fold in the scrub dtl.  Otherwise, leave the
2505			 * dtl as-is if there was an error.
2506			 *
2507			 * There's little trick here: to excise the beginning
2508			 * of the DTL_MISSING map, we put it into a reference
2509			 * tree and then add a segment with refcnt -1 that
2510			 * covers the range [0, scrub_txg).  This means
2511			 * that each txg in that range has refcnt -1 or 0.
2512			 * We then add DTL_SCRUB with a refcnt of 2, so that
2513			 * entries in the range [0, scrub_txg) will have a
2514			 * positive refcnt -- either 1 or 2.  We then convert
2515			 * the reference tree into the new DTL_MISSING map.
2516			 */
2517			space_reftree_create(&reftree);
2518			space_reftree_add_map(&reftree,
2519			    vd->vdev_dtl[DTL_MISSING], 1);
2520			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2521			space_reftree_add_map(&reftree,
2522			    vd->vdev_dtl[DTL_SCRUB], 2);
2523			space_reftree_generate_map(&reftree,
2524			    vd->vdev_dtl[DTL_MISSING], 1);
2525			space_reftree_destroy(&reftree);
2526		}
2527		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2528		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2529		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2530		if (scrub_done)
2531			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2532		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2533		if (!vdev_readable(vd))
2534			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2535		else
2536			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2537			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2538
2539		/*
2540		 * If the vdev was resilvering and no longer has any
2541		 * DTLs then reset its resilvering flag and dirty
2542		 * the top level so that we persist the change.
2543		 */
2544		if (vd->vdev_resilver_txg != 0 &&
2545		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2546		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2547			vd->vdev_resilver_txg = 0;
2548			vdev_config_dirty(vd->vdev_top);
2549		}
2550
2551		mutex_exit(&vd->vdev_dtl_lock);
2552
2553		if (txg != 0)
2554			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2555		return;
2556	}
2557
2558	mutex_enter(&vd->vdev_dtl_lock);
2559	for (int t = 0; t < DTL_TYPES; t++) {
2560		/* account for child's outage in parent's missing map */
2561		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2562		if (t == DTL_SCRUB)
2563			continue;			/* leaf vdevs only */
2564		if (t == DTL_PARTIAL)
2565			minref = 1;			/* i.e. non-zero */
2566		else if (vd->vdev_nparity != 0)
2567			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2568		else
2569			minref = vd->vdev_children;	/* any kind of mirror */
2570		space_reftree_create(&reftree);
2571		for (int c = 0; c < vd->vdev_children; c++) {
2572			vdev_t *cvd = vd->vdev_child[c];
2573			mutex_enter(&cvd->vdev_dtl_lock);
2574			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2575			mutex_exit(&cvd->vdev_dtl_lock);
2576		}
2577		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2578		space_reftree_destroy(&reftree);
2579	}
2580	mutex_exit(&vd->vdev_dtl_lock);
2581}
2582
2583int
2584vdev_dtl_load(vdev_t *vd)
2585{
2586	spa_t *spa = vd->vdev_spa;
2587	objset_t *mos = spa->spa_meta_objset;
2588	int error = 0;
2589
2590	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2591		ASSERT(vdev_is_concrete(vd));
2592
2593		error = space_map_open(&vd->vdev_dtl_sm, mos,
2594		    vd->vdev_dtl_object, 0, -1ULL, 0);
2595		if (error)
2596			return (error);
2597		ASSERT(vd->vdev_dtl_sm != NULL);
2598
2599		mutex_enter(&vd->vdev_dtl_lock);
2600
2601		/*
2602		 * Now that we've opened the space_map we need to update
2603		 * the in-core DTL.
2604		 */
2605		space_map_update(vd->vdev_dtl_sm);
2606
2607		error = space_map_load(vd->vdev_dtl_sm,
2608		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2609		mutex_exit(&vd->vdev_dtl_lock);
2610
2611		return (error);
2612	}
2613
2614	for (int c = 0; c < vd->vdev_children; c++) {
2615		error = vdev_dtl_load(vd->vdev_child[c]);
2616		if (error != 0)
2617			break;
2618	}
2619
2620	return (error);
2621}
2622
2623void
2624vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2625{
2626	spa_t *spa = vd->vdev_spa;
2627
2628	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2629	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2630	    zapobj, tx));
2631}
2632
2633uint64_t
2634vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2635{
2636	spa_t *spa = vd->vdev_spa;
2637	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2638	    DMU_OT_NONE, 0, tx);
2639
2640	ASSERT(zap != 0);
2641	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2642	    zap, tx));
2643
2644	return (zap);
2645}
2646
2647void
2648vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2649{
2650	if (vd->vdev_ops != &vdev_hole_ops &&
2651	    vd->vdev_ops != &vdev_missing_ops &&
2652	    vd->vdev_ops != &vdev_root_ops &&
2653	    !vd->vdev_top->vdev_removing) {
2654		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2655			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2656		}
2657		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2658			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2659		}
2660	}
2661	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2662		vdev_construct_zaps(vd->vdev_child[i], tx);
2663	}
2664}
2665
2666void
2667vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2668{
2669	spa_t *spa = vd->vdev_spa;
2670	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2671	objset_t *mos = spa->spa_meta_objset;
2672	range_tree_t *rtsync;
2673	dmu_tx_t *tx;
2674	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2675
2676	ASSERT(vdev_is_concrete(vd));
2677	ASSERT(vd->vdev_ops->vdev_op_leaf);
2678
2679	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2680
2681	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2682		mutex_enter(&vd->vdev_dtl_lock);
2683		space_map_free(vd->vdev_dtl_sm, tx);
2684		space_map_close(vd->vdev_dtl_sm);
2685		vd->vdev_dtl_sm = NULL;
2686		mutex_exit(&vd->vdev_dtl_lock);
2687
2688		/*
2689		 * We only destroy the leaf ZAP for detached leaves or for
2690		 * removed log devices. Removed data devices handle leaf ZAP
2691		 * cleanup later, once cancellation is no longer possible.
2692		 */
2693		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2694		    vd->vdev_top->vdev_islog)) {
2695			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2696			vd->vdev_leaf_zap = 0;
2697		}
2698
2699		dmu_tx_commit(tx);
2700		return;
2701	}
2702
2703	if (vd->vdev_dtl_sm == NULL) {
2704		uint64_t new_object;
2705
2706		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2707		VERIFY3U(new_object, !=, 0);
2708
2709		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2710		    0, -1ULL, 0));
2711		ASSERT(vd->vdev_dtl_sm != NULL);
2712	}
2713
2714	rtsync = range_tree_create(NULL, NULL);
2715
2716	mutex_enter(&vd->vdev_dtl_lock);
2717	range_tree_walk(rt, range_tree_add, rtsync);
2718	mutex_exit(&vd->vdev_dtl_lock);
2719
2720	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2721	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2722	range_tree_vacate(rtsync, NULL, NULL);
2723
2724	range_tree_destroy(rtsync);
2725
2726	/*
2727	 * If the object for the space map has changed then dirty
2728	 * the top level so that we update the config.
2729	 */
2730	if (object != space_map_object(vd->vdev_dtl_sm)) {
2731		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2732		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2733		    (u_longlong_t)object,
2734		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2735		vdev_config_dirty(vd->vdev_top);
2736	}
2737
2738	dmu_tx_commit(tx);
2739
2740	mutex_enter(&vd->vdev_dtl_lock);
2741	space_map_update(vd->vdev_dtl_sm);
2742	mutex_exit(&vd->vdev_dtl_lock);
2743}
2744
2745/*
2746 * Determine whether the specified vdev can be offlined/detached/removed
2747 * without losing data.
2748 */
2749boolean_t
2750vdev_dtl_required(vdev_t *vd)
2751{
2752	spa_t *spa = vd->vdev_spa;
2753	vdev_t *tvd = vd->vdev_top;
2754	uint8_t cant_read = vd->vdev_cant_read;
2755	boolean_t required;
2756
2757	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2758
2759	if (vd == spa->spa_root_vdev || vd == tvd)
2760		return (B_TRUE);
2761
2762	/*
2763	 * Temporarily mark the device as unreadable, and then determine
2764	 * whether this results in any DTL outages in the top-level vdev.
2765	 * If not, we can safely offline/detach/remove the device.
2766	 */
2767	vd->vdev_cant_read = B_TRUE;
2768	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2769	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2770	vd->vdev_cant_read = cant_read;
2771	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2772
2773	if (!required && zio_injection_enabled)
2774		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2775
2776	return (required);
2777}
2778
2779/*
2780 * Determine if resilver is needed, and if so the txg range.
2781 */
2782boolean_t
2783vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2784{
2785	boolean_t needed = B_FALSE;
2786	uint64_t thismin = UINT64_MAX;
2787	uint64_t thismax = 0;
2788
2789	if (vd->vdev_children == 0) {
2790		mutex_enter(&vd->vdev_dtl_lock);
2791		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2792		    vdev_writeable(vd)) {
2793
2794			thismin = vdev_dtl_min(vd);
2795			thismax = vdev_dtl_max(vd);
2796			needed = B_TRUE;
2797		}
2798		mutex_exit(&vd->vdev_dtl_lock);
2799	} else {
2800		for (int c = 0; c < vd->vdev_children; c++) {
2801			vdev_t *cvd = vd->vdev_child[c];
2802			uint64_t cmin, cmax;
2803
2804			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2805				thismin = MIN(thismin, cmin);
2806				thismax = MAX(thismax, cmax);
2807				needed = B_TRUE;
2808			}
2809		}
2810	}
2811
2812	if (needed && minp) {
2813		*minp = thismin;
2814		*maxp = thismax;
2815	}
2816	return (needed);
2817}
2818
2819/*
2820 * Gets the checkpoint space map object from the vdev's ZAP.
2821 * Returns the spacemap object, or 0 if it wasn't in the ZAP
2822 * or the ZAP doesn't exist yet.
2823 */
2824int
2825vdev_checkpoint_sm_object(vdev_t *vd)
2826{
2827	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2828	if (vd->vdev_top_zap == 0) {
2829		return (0);
2830	}
2831
2832	uint64_t sm_obj = 0;
2833	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2834	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2835
2836	ASSERT(err == 0 || err == ENOENT);
2837
2838	return (sm_obj);
2839}
2840
2841int
2842vdev_load(vdev_t *vd)
2843{
2844	int error = 0;
2845	/*
2846	 * Recursively load all children.
2847	 */
2848	for (int c = 0; c < vd->vdev_children; c++) {
2849		error = vdev_load(vd->vdev_child[c]);
2850		if (error != 0) {
2851			return (error);
2852		}
2853	}
2854
2855	vdev_set_deflate_ratio(vd);
2856
2857	/*
2858	 * If this is a top-level vdev, initialize its metaslabs.
2859	 */
2860	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2861		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2862			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2863			    VDEV_AUX_CORRUPT_DATA);
2864			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2865			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2866			    (u_longlong_t)vd->vdev_asize);
2867			return (SET_ERROR(ENXIO));
2868		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2869			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2870			    "[error=%d]", error);
2871			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2872			    VDEV_AUX_CORRUPT_DATA);
2873			return (error);
2874		}
2875
2876		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2877		if (checkpoint_sm_obj != 0) {
2878			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2879			ASSERT(vd->vdev_asize != 0);
2880			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2881
2882			if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2883			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2884			    vd->vdev_ashift))) {
2885				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2886				    "failed for checkpoint spacemap (obj %llu) "
2887				    "[error=%d]",
2888				    (u_longlong_t)checkpoint_sm_obj, error);
2889				return (error);
2890			}
2891			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2892			space_map_update(vd->vdev_checkpoint_sm);
2893
2894			/*
2895			 * Since the checkpoint_sm contains free entries
2896			 * exclusively we can use sm_alloc to indicate the
2897			 * culmulative checkpointed space that has been freed.
2898			 */
2899			vd->vdev_stat.vs_checkpoint_space =
2900			    -vd->vdev_checkpoint_sm->sm_alloc;
2901			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2902			    vd->vdev_stat.vs_checkpoint_space;
2903		}
2904	}
2905
2906	/*
2907	 * If this is a leaf vdev, load its DTL.
2908	 */
2909	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2910		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2911		    VDEV_AUX_CORRUPT_DATA);
2912		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2913		    "[error=%d]", error);
2914		return (error);
2915	}
2916
2917	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2918	if (obsolete_sm_object != 0) {
2919		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2920		ASSERT(vd->vdev_asize != 0);
2921		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2922
2923		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2924		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2925			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2926			    VDEV_AUX_CORRUPT_DATA);
2927			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2928			    "obsolete spacemap (obj %llu) [error=%d]",
2929			    (u_longlong_t)obsolete_sm_object, error);
2930			return (error);
2931		}
2932		space_map_update(vd->vdev_obsolete_sm);
2933	}
2934
2935	return (0);
2936}
2937
2938/*
2939 * The special vdev case is used for hot spares and l2cache devices.  Its
2940 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2941 * we make sure that we can open the underlying device, then try to read the
2942 * label, and make sure that the label is sane and that it hasn't been
2943 * repurposed to another pool.
2944 */
2945int
2946vdev_validate_aux(vdev_t *vd)
2947{
2948	nvlist_t *label;
2949	uint64_t guid, version;
2950	uint64_t state;
2951
2952	if (!vdev_readable(vd))
2953		return (0);
2954
2955	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2956		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2957		    VDEV_AUX_CORRUPT_DATA);
2958		return (-1);
2959	}
2960
2961	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2962	    !SPA_VERSION_IS_SUPPORTED(version) ||
2963	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2964	    guid != vd->vdev_guid ||
2965	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2966		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2967		    VDEV_AUX_CORRUPT_DATA);
2968		nvlist_free(label);
2969		return (-1);
2970	}
2971
2972	/*
2973	 * We don't actually check the pool state here.  If it's in fact in
2974	 * use by another pool, we update this fact on the fly when requested.
2975	 */
2976	nvlist_free(label);
2977	return (0);
2978}
2979
2980/*
2981 * Free the objects used to store this vdev's spacemaps, and the array
2982 * that points to them.
2983 */
2984void
2985vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2986{
2987	if (vd->vdev_ms_array == 0)
2988		return;
2989
2990	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2991	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2992	size_t array_bytes = array_count * sizeof (uint64_t);
2993	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2994	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2995	    array_bytes, smobj_array, 0));
2996
2997	for (uint64_t i = 0; i < array_count; i++) {
2998		uint64_t smobj = smobj_array[i];
2999		if (smobj == 0)
3000			continue;
3001
3002		space_map_free_obj(mos, smobj, tx);
3003	}
3004
3005	kmem_free(smobj_array, array_bytes);
3006	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3007	vd->vdev_ms_array = 0;
3008}
3009
3010static void
3011vdev_remove_empty(vdev_t *vd, uint64_t txg)
3012{
3013	spa_t *spa = vd->vdev_spa;
3014	dmu_tx_t *tx;
3015
3016	ASSERT(vd == vd->vdev_top);
3017	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3018
3019	if (vd->vdev_ms != NULL) {
3020		metaslab_group_t *mg = vd->vdev_mg;
3021
3022		metaslab_group_histogram_verify(mg);
3023		metaslab_class_histogram_verify(mg->mg_class);
3024
3025		for (int m = 0; m < vd->vdev_ms_count; m++) {
3026			metaslab_t *msp = vd->vdev_ms[m];
3027
3028			if (msp == NULL || msp->ms_sm == NULL)
3029				continue;
3030
3031			mutex_enter(&msp->ms_lock);
3032			/*
3033			 * If the metaslab was not loaded when the vdev
3034			 * was removed then the histogram accounting may
3035			 * not be accurate. Update the histogram information
3036			 * here so that we ensure that the metaslab group
3037			 * and metaslab class are up-to-date.
3038			 */
3039			metaslab_group_histogram_remove(mg, msp);
3040
3041			VERIFY0(space_map_allocated(msp->ms_sm));
3042			space_map_close(msp->ms_sm);
3043			msp->ms_sm = NULL;
3044			mutex_exit(&msp->ms_lock);
3045		}
3046
3047		if (vd->vdev_checkpoint_sm != NULL) {
3048			ASSERT(spa_has_checkpoint(spa));
3049			space_map_close(vd->vdev_checkpoint_sm);
3050			vd->vdev_checkpoint_sm = NULL;
3051		}
3052
3053		metaslab_group_histogram_verify(mg);
3054		metaslab_class_histogram_verify(mg->mg_class);
3055		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3056			ASSERT0(mg->mg_histogram[i]);
3057	}
3058
3059	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3060	vdev_destroy_spacemaps(vd, tx);
3061
3062	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
3063		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3064		vd->vdev_top_zap = 0;
3065	}
3066	dmu_tx_commit(tx);
3067}
3068
3069void
3070vdev_sync_done(vdev_t *vd, uint64_t txg)
3071{
3072	metaslab_t *msp;
3073	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3074
3075	ASSERT(vdev_is_concrete(vd));
3076
3077	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3078	    != NULL)
3079		metaslab_sync_done(msp, txg);
3080
3081	if (reassess)
3082		metaslab_sync_reassess(vd->vdev_mg);
3083}
3084
3085void
3086vdev_sync(vdev_t *vd, uint64_t txg)
3087{
3088	spa_t *spa = vd->vdev_spa;
3089	vdev_t *lvd;
3090	metaslab_t *msp;
3091	dmu_tx_t *tx;
3092
3093	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3094		dmu_tx_t *tx;
3095
3096		ASSERT(vd->vdev_removing ||
3097		    vd->vdev_ops == &vdev_indirect_ops);
3098
3099		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3100		vdev_indirect_sync_obsolete(vd, tx);
3101		dmu_tx_commit(tx);
3102
3103		/*
3104		 * If the vdev is indirect, it can't have dirty
3105		 * metaslabs or DTLs.
3106		 */
3107		if (vd->vdev_ops == &vdev_indirect_ops) {
3108			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3109			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3110			return;
3111		}
3112	}
3113
3114	ASSERT(vdev_is_concrete(vd));
3115
3116	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3117	    !vd->vdev_removing) {
3118		ASSERT(vd == vd->vdev_top);
3119		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3120		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3121		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3122		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3123		ASSERT(vd->vdev_ms_array != 0);
3124		vdev_config_dirty(vd);
3125		dmu_tx_commit(tx);
3126	}
3127
3128	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3129		metaslab_sync(msp, txg);
3130		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3131	}
3132
3133	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3134		vdev_dtl_sync(lvd, txg);
3135
3136	/*
3137	 * Remove the metadata associated with this vdev once it's empty.
3138	 * Note that this is typically used for log/cache device removal;
3139	 * we don't empty toplevel vdevs when removing them.  But if
3140	 * a toplevel happens to be emptied, this is not harmful.
3141	 */
3142	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
3143		vdev_remove_empty(vd, txg);
3144	}
3145
3146	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3147}
3148
3149uint64_t
3150vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3151{
3152	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3153}
3154
3155/*
3156 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3157 * not be opened, and no I/O is attempted.
3158 */
3159int
3160vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3161{
3162	vdev_t *vd, *tvd;
3163
3164	spa_vdev_state_enter(spa, SCL_NONE);
3165
3166	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3167		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3168
3169	if (!vd->vdev_ops->vdev_op_leaf)
3170		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3171
3172	tvd = vd->vdev_top;
3173
3174	/*
3175	 * We don't directly use the aux state here, but if we do a
3176	 * vdev_reopen(), we need this value to be present to remember why we
3177	 * were faulted.
3178	 */
3179	vd->vdev_label_aux = aux;
3180
3181	/*
3182	 * Faulted state takes precedence over degraded.
3183	 */
3184	vd->vdev_delayed_close = B_FALSE;
3185	vd->vdev_faulted = 1ULL;
3186	vd->vdev_degraded = 0ULL;
3187	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3188
3189	/*
3190	 * If this device has the only valid copy of the data, then
3191	 * back off and simply mark the vdev as degraded instead.
3192	 */
3193	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3194		vd->vdev_degraded = 1ULL;
3195		vd->vdev_faulted = 0ULL;
3196
3197		/*
3198		 * If we reopen the device and it's not dead, only then do we
3199		 * mark it degraded.
3200		 */
3201		vdev_reopen(tvd);
3202
3203		if (vdev_readable(vd))
3204			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3205	}
3206
3207	return (spa_vdev_state_exit(spa, vd, 0));
3208}
3209
3210/*
3211 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3212 * user that something is wrong.  The vdev continues to operate as normal as far
3213 * as I/O is concerned.
3214 */
3215int
3216vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3217{
3218	vdev_t *vd;
3219
3220	spa_vdev_state_enter(spa, SCL_NONE);
3221
3222	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3223		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3224
3225	if (!vd->vdev_ops->vdev_op_leaf)
3226		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3227
3228	/*
3229	 * If the vdev is already faulted, then don't do anything.
3230	 */
3231	if (vd->vdev_faulted || vd->vdev_degraded)
3232		return (spa_vdev_state_exit(spa, NULL, 0));
3233
3234	vd->vdev_degraded = 1ULL;
3235	if (!vdev_is_dead(vd))
3236		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3237		    aux);
3238
3239	return (spa_vdev_state_exit(spa, vd, 0));
3240}
3241
3242/*
3243 * Online the given vdev.
3244 *
3245 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3246 * spare device should be detached when the device finishes resilvering.
3247 * Second, the online should be treated like a 'test' online case, so no FMA
3248 * events are generated if the device fails to open.
3249 */
3250int
3251vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3252{
3253	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3254	boolean_t wasoffline;
3255	vdev_state_t oldstate;
3256
3257	spa_vdev_state_enter(spa, SCL_NONE);
3258
3259	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3260		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3261
3262	if (!vd->vdev_ops->vdev_op_leaf)
3263		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3264
3265	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3266	oldstate = vd->vdev_state;
3267
3268	tvd = vd->vdev_top;
3269	vd->vdev_offline = B_FALSE;
3270	vd->vdev_tmpoffline = B_FALSE;
3271	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3272	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3273
3274	/* XXX - L2ARC 1.0 does not support expansion */
3275	if (!vd->vdev_aux) {
3276		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3277			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3278	}
3279
3280	vdev_reopen(tvd);
3281	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3282
3283	if (!vd->vdev_aux) {
3284		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3285			pvd->vdev_expanding = B_FALSE;
3286	}
3287
3288	if (newstate)
3289		*newstate = vd->vdev_state;
3290	if ((flags & ZFS_ONLINE_UNSPARE) &&
3291	    !vdev_is_dead(vd) && vd->vdev_parent &&
3292	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3293	    vd->vdev_parent->vdev_child[0] == vd)
3294		vd->vdev_unspare = B_TRUE;
3295
3296	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3297
3298		/* XXX - L2ARC 1.0 does not support expansion */
3299		if (vd->vdev_aux)
3300			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3301		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3302	}
3303
3304	/* Restart initializing if necessary */
3305	mutex_enter(&vd->vdev_initialize_lock);
3306	if (vdev_writeable(vd) &&
3307	    vd->vdev_initialize_thread == NULL &&
3308	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3309		(void) vdev_initialize(vd);
3310	}
3311	mutex_exit(&vd->vdev_initialize_lock);
3312
3313	if (wasoffline ||
3314	    (oldstate < VDEV_STATE_DEGRADED &&
3315	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3316		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3317
3318	return (spa_vdev_state_exit(spa, vd, 0));
3319}
3320
3321static int
3322vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3323{
3324	vdev_t *vd, *tvd;
3325	int error = 0;
3326	uint64_t generation;
3327	metaslab_group_t *mg;
3328
3329top:
3330	spa_vdev_state_enter(spa, SCL_ALLOC);
3331
3332	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3333		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3334
3335	if (!vd->vdev_ops->vdev_op_leaf)
3336		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3337
3338	tvd = vd->vdev_top;
3339	mg = tvd->vdev_mg;
3340	generation = spa->spa_config_generation + 1;
3341
3342	/*
3343	 * If the device isn't already offline, try to offline it.
3344	 */
3345	if (!vd->vdev_offline) {
3346		/*
3347		 * If this device has the only valid copy of some data,
3348		 * don't allow it to be offlined. Log devices are always
3349		 * expendable.
3350		 */
3351		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3352		    vdev_dtl_required(vd))
3353			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3354
3355		/*
3356		 * If the top-level is a slog and it has had allocations
3357		 * then proceed.  We check that the vdev's metaslab group
3358		 * is not NULL since it's possible that we may have just
3359		 * added this vdev but not yet initialized its metaslabs.
3360		 */
3361		if (tvd->vdev_islog && mg != NULL) {
3362			/*
3363			 * Prevent any future allocations.
3364			 */
3365			metaslab_group_passivate(mg);
3366			(void) spa_vdev_state_exit(spa, vd, 0);
3367
3368			error = spa_reset_logs(spa);
3369
3370			/*
3371			 * If the log device was successfully reset but has
3372			 * checkpointed data, do not offline it.
3373			 */
3374			if (error == 0 &&
3375			    tvd->vdev_checkpoint_sm != NULL) {
3376				ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3377				    !=, 0);
3378				error = ZFS_ERR_CHECKPOINT_EXISTS;
3379			}
3380
3381			spa_vdev_state_enter(spa, SCL_ALLOC);
3382
3383			/*
3384			 * Check to see if the config has changed.
3385			 */
3386			if (error || generation != spa->spa_config_generation) {
3387				metaslab_group_activate(mg);
3388				if (error)
3389					return (spa_vdev_state_exit(spa,
3390					    vd, error));
3391				(void) spa_vdev_state_exit(spa, vd, 0);
3392				goto top;
3393			}
3394			ASSERT0(tvd->vdev_stat.vs_alloc);
3395		}
3396
3397		/*
3398		 * Offline this device and reopen its top-level vdev.
3399		 * If the top-level vdev is a log device then just offline
3400		 * it. Otherwise, if this action results in the top-level
3401		 * vdev becoming unusable, undo it and fail the request.
3402		 */
3403		vd->vdev_offline = B_TRUE;
3404		vdev_reopen(tvd);
3405
3406		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3407		    vdev_is_dead(tvd)) {
3408			vd->vdev_offline = B_FALSE;
3409			vdev_reopen(tvd);
3410			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3411		}
3412
3413		/*
3414		 * Add the device back into the metaslab rotor so that
3415		 * once we online the device it's open for business.
3416		 */
3417		if (tvd->vdev_islog && mg != NULL)
3418			metaslab_group_activate(mg);
3419	}
3420
3421	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3422
3423	return (spa_vdev_state_exit(spa, vd, 0));
3424}
3425
3426int
3427vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3428{
3429	int error;
3430
3431	mutex_enter(&spa->spa_vdev_top_lock);
3432	error = vdev_offline_locked(spa, guid, flags);
3433	mutex_exit(&spa->spa_vdev_top_lock);
3434
3435	return (error);
3436}
3437
3438/*
3439 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3440 * vdev_offline(), we assume the spa config is locked.  We also clear all
3441 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3442 */
3443void
3444vdev_clear(spa_t *spa, vdev_t *vd)
3445{
3446	vdev_t *rvd = spa->spa_root_vdev;
3447
3448	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3449
3450	if (vd == NULL)
3451		vd = rvd;
3452
3453	vd->vdev_stat.vs_read_errors = 0;
3454	vd->vdev_stat.vs_write_errors = 0;
3455	vd->vdev_stat.vs_checksum_errors = 0;
3456
3457	for (int c = 0; c < vd->vdev_children; c++)
3458		vdev_clear(spa, vd->vdev_child[c]);
3459
3460	if (vd == rvd) {
3461		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
3462			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
3463
3464		for (int c = 0; c < spa->spa_spares.sav_count; c++)
3465			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
3466	}
3467
3468	/*
3469	 * It makes no sense to "clear" an indirect vdev.
3470	 */
3471	if (!vdev_is_concrete(vd))
3472		return;
3473
3474	/*
3475	 * If we're in the FAULTED state or have experienced failed I/O, then
3476	 * clear the persistent state and attempt to reopen the device.  We
3477	 * also mark the vdev config dirty, so that the new faulted state is
3478	 * written out to disk.
3479	 */
3480	if (vd->vdev_faulted || vd->vdev_degraded ||
3481	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3482
3483		/*
3484		 * When reopening in reponse to a clear event, it may be due to
3485		 * a fmadm repair request.  In this case, if the device is
3486		 * still broken, we want to still post the ereport again.
3487		 */
3488		vd->vdev_forcefault = B_TRUE;
3489
3490		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3491		vd->vdev_cant_read = B_FALSE;
3492		vd->vdev_cant_write = B_FALSE;
3493
3494		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3495
3496		vd->vdev_forcefault = B_FALSE;
3497
3498		if (vd != rvd && vdev_writeable(vd->vdev_top))
3499			vdev_state_dirty(vd->vdev_top);
3500
3501		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3502			spa_async_request(spa, SPA_ASYNC_RESILVER);
3503
3504		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3505	}
3506
3507	/*
3508	 * When clearing a FMA-diagnosed fault, we always want to
3509	 * unspare the device, as we assume that the original spare was
3510	 * done in response to the FMA fault.
3511	 */
3512	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3513	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3514	    vd->vdev_parent->vdev_child[0] == vd)
3515		vd->vdev_unspare = B_TRUE;
3516}
3517
3518boolean_t
3519vdev_is_dead(vdev_t *vd)
3520{
3521	/*
3522	 * Holes and missing devices are always considered "dead".
3523	 * This simplifies the code since we don't have to check for
3524	 * these types of devices in the various code paths.
3525	 * Instead we rely on the fact that we skip over dead devices
3526	 * before issuing I/O to them.
3527	 */
3528	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3529	    vd->vdev_ops == &vdev_hole_ops ||
3530	    vd->vdev_ops == &vdev_missing_ops);
3531}
3532
3533boolean_t
3534vdev_readable(vdev_t *vd)
3535{
3536	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3537}
3538
3539boolean_t
3540vdev_writeable(vdev_t *vd)
3541{
3542	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3543	    vdev_is_concrete(vd));
3544}
3545
3546boolean_t
3547vdev_allocatable(vdev_t *vd)
3548{
3549	uint64_t state = vd->vdev_state;
3550
3551	/*
3552	 * We currently allow allocations from vdevs which may be in the
3553	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3554	 * fails to reopen then we'll catch it later when we're holding
3555	 * the proper locks.  Note that we have to get the vdev state
3556	 * in a local variable because although it changes atomically,
3557	 * we're asking two separate questions about it.
3558	 */
3559	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3560	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3561	    vd->vdev_mg->mg_initialized);
3562}
3563
3564boolean_t
3565vdev_accessible(vdev_t *vd, zio_t *zio)
3566{
3567	ASSERT(zio->io_vd == vd);
3568
3569	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3570		return (B_FALSE);
3571
3572	if (zio->io_type == ZIO_TYPE_READ)
3573		return (!vd->vdev_cant_read);
3574
3575	if (zio->io_type == ZIO_TYPE_WRITE)
3576		return (!vd->vdev_cant_write);
3577
3578	return (B_TRUE);
3579}
3580
3581boolean_t
3582vdev_is_spacemap_addressable(vdev_t *vd)
3583{
3584	/*
3585	 * Assuming 47 bits of the space map entry dedicated for the entry's
3586	 * offset (see description in space_map.h), we calculate the maximum
3587	 * address that can be described by a space map entry for the given
3588	 * device.
3589	 */
3590	uint64_t shift = vd->vdev_ashift + 47;
3591
3592	if (shift >= 63) /* detect potential overflow */
3593		return (B_TRUE);
3594
3595	return (vd->vdev_asize < (1ULL << shift));
3596}
3597
3598/*
3599 * Get statistics for the given vdev.
3600 */
3601void
3602vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3603{
3604	spa_t *spa = vd->vdev_spa;
3605	vdev_t *rvd = spa->spa_root_vdev;
3606	vdev_t *tvd = vd->vdev_top;
3607
3608	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3609
3610	mutex_enter(&vd->vdev_stat_lock);
3611	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3612	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3613	vs->vs_state = vd->vdev_state;
3614	vs->vs_rsize = vdev_get_min_asize(vd);
3615	if (vd->vdev_ops->vdev_op_leaf) {
3616		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3617		/*
3618		 * Report intializing progress. Since we don't have the
3619		 * initializing locks held, this is only an estimate (although a
3620		 * fairly accurate one).
3621		 */
3622		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3623		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3624		vs->vs_initialize_state = vd->vdev_initialize_state;
3625		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3626	}
3627	/*
3628	 * Report expandable space on top-level, non-auxillary devices only.
3629	 * The expandable space is reported in terms of metaslab sized units
3630	 * since that determines how much space the pool can expand.
3631	 */
3632	if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3633		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3634		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3635	}
3636	vs->vs_configured_ashift = vd->vdev_top != NULL
3637	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3638	vs->vs_logical_ashift = vd->vdev_logical_ashift;
3639	vs->vs_physical_ashift = vd->vdev_physical_ashift;
3640	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3641	    vdev_is_concrete(vd)) {
3642		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3643	}
3644
3645	/*
3646	 * If we're getting stats on the root vdev, aggregate the I/O counts
3647	 * over all top-level vdevs (i.e. the direct children of the root).
3648	 */
3649	if (vd == rvd) {
3650		for (int c = 0; c < rvd->vdev_children; c++) {
3651			vdev_t *cvd = rvd->vdev_child[c];
3652			vdev_stat_t *cvs = &cvd->vdev_stat;
3653
3654			for (int t = 0; t < ZIO_TYPES; t++) {
3655				vs->vs_ops[t] += cvs->vs_ops[t];
3656				vs->vs_bytes[t] += cvs->vs_bytes[t];
3657			}
3658			cvs->vs_scan_removing = cvd->vdev_removing;
3659		}
3660	}
3661	mutex_exit(&vd->vdev_stat_lock);
3662}
3663
3664void
3665vdev_clear_stats(vdev_t *vd)
3666{
3667	mutex_enter(&vd->vdev_stat_lock);
3668	vd->vdev_stat.vs_space = 0;
3669	vd->vdev_stat.vs_dspace = 0;
3670	vd->vdev_stat.vs_alloc = 0;
3671	mutex_exit(&vd->vdev_stat_lock);
3672}
3673
3674void
3675vdev_scan_stat_init(vdev_t *vd)
3676{
3677	vdev_stat_t *vs = &vd->vdev_stat;
3678
3679	for (int c = 0; c < vd->vdev_children; c++)
3680		vdev_scan_stat_init(vd->vdev_child[c]);
3681
3682	mutex_enter(&vd->vdev_stat_lock);
3683	vs->vs_scan_processed = 0;
3684	mutex_exit(&vd->vdev_stat_lock);
3685}
3686
3687void
3688vdev_stat_update(zio_t *zio, uint64_t psize)
3689{
3690	spa_t *spa = zio->io_spa;
3691	vdev_t *rvd = spa->spa_root_vdev;
3692	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3693	vdev_t *pvd;
3694	uint64_t txg = zio->io_txg;
3695	vdev_stat_t *vs = &vd->vdev_stat;
3696	zio_type_t type = zio->io_type;
3697	int flags = zio->io_flags;
3698
3699	/*
3700	 * If this i/o is a gang leader, it didn't do any actual work.
3701	 */
3702	if (zio->io_gang_tree)
3703		return;
3704
3705	if (zio->io_error == 0) {
3706		/*
3707		 * If this is a root i/o, don't count it -- we've already
3708		 * counted the top-level vdevs, and vdev_get_stats() will
3709		 * aggregate them when asked.  This reduces contention on
3710		 * the root vdev_stat_lock and implicitly handles blocks
3711		 * that compress away to holes, for which there is no i/o.
3712		 * (Holes never create vdev children, so all the counters
3713		 * remain zero, which is what we want.)
3714		 *
3715		 * Note: this only applies to successful i/o (io_error == 0)
3716		 * because unlike i/o counts, errors are not additive.
3717		 * When reading a ditto block, for example, failure of
3718		 * one top-level vdev does not imply a root-level error.
3719		 */
3720		if (vd == rvd)
3721			return;
3722
3723		ASSERT(vd == zio->io_vd);
3724
3725		if (flags & ZIO_FLAG_IO_BYPASS)
3726			return;
3727
3728		mutex_enter(&vd->vdev_stat_lock);
3729
3730		if (flags & ZIO_FLAG_IO_REPAIR) {
3731			if (flags & ZIO_FLAG_SCAN_THREAD) {
3732				dsl_scan_phys_t *scn_phys =
3733				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3734				uint64_t *processed = &scn_phys->scn_processed;
3735
3736				/* XXX cleanup? */
3737				if (vd->vdev_ops->vdev_op_leaf)
3738					atomic_add_64(processed, psize);
3739				vs->vs_scan_processed += psize;
3740			}
3741
3742			if (flags & ZIO_FLAG_SELF_HEAL)
3743				vs->vs_self_healed += psize;
3744		}
3745
3746		vs->vs_ops[type]++;
3747		vs->vs_bytes[type] += psize;
3748
3749		mutex_exit(&vd->vdev_stat_lock);
3750		return;
3751	}
3752
3753	if (flags & ZIO_FLAG_SPECULATIVE)
3754		return;
3755
3756	/*
3757	 * If this is an I/O error that is going to be retried, then ignore the
3758	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3759	 * hard errors, when in reality they can happen for any number of
3760	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3761	 */
3762	if (zio->io_error == EIO &&
3763	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3764		return;
3765
3766	/*
3767	 * Intent logs writes won't propagate their error to the root
3768	 * I/O so don't mark these types of failures as pool-level
3769	 * errors.
3770	 */
3771	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3772		return;
3773
3774	mutex_enter(&vd->vdev_stat_lock);
3775	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3776		if (zio->io_error == ECKSUM)
3777			vs->vs_checksum_errors++;
3778		else
3779			vs->vs_read_errors++;
3780	}
3781	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3782		vs->vs_write_errors++;
3783	mutex_exit(&vd->vdev_stat_lock);
3784
3785	if (spa->spa_load_state == SPA_LOAD_NONE &&
3786	    type == ZIO_TYPE_WRITE && txg != 0 &&
3787	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3788	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3789	    spa->spa_claiming)) {
3790		/*
3791		 * This is either a normal write (not a repair), or it's
3792		 * a repair induced by the scrub thread, or it's a repair
3793		 * made by zil_claim() during spa_load() in the first txg.
3794		 * In the normal case, we commit the DTL change in the same
3795		 * txg as the block was born.  In the scrub-induced repair
3796		 * case, we know that scrubs run in first-pass syncing context,
3797		 * so we commit the DTL change in spa_syncing_txg(spa).
3798		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3799		 *
3800		 * We currently do not make DTL entries for failed spontaneous
3801		 * self-healing writes triggered by normal (non-scrubbing)
3802		 * reads, because we have no transactional context in which to
3803		 * do so -- and it's not clear that it'd be desirable anyway.
3804		 */
3805		if (vd->vdev_ops->vdev_op_leaf) {
3806			uint64_t commit_txg = txg;
3807			if (flags & ZIO_FLAG_SCAN_THREAD) {
3808				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3809				ASSERT(spa_sync_pass(spa) == 1);
3810				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3811				commit_txg = spa_syncing_txg(spa);
3812			} else if (spa->spa_claiming) {
3813				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3814				commit_txg = spa_first_txg(spa);
3815			}
3816			ASSERT(commit_txg >= spa_syncing_txg(spa));
3817			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3818				return;
3819			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3820				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3821			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3822		}
3823		if (vd != rvd)
3824			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3825	}
3826}
3827
3828/*
3829 * Update the in-core space usage stats for this vdev, its metaslab class,
3830 * and the root vdev.
3831 */
3832void
3833vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3834    int64_t space_delta)
3835{
3836	int64_t dspace_delta = space_delta;
3837	spa_t *spa = vd->vdev_spa;
3838	vdev_t *rvd = spa->spa_root_vdev;
3839	metaslab_group_t *mg = vd->vdev_mg;
3840	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3841
3842	ASSERT(vd == vd->vdev_top);
3843
3844	/*
3845	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3846	 * factor.  We must calculate this here and not at the root vdev
3847	 * because the root vdev's psize-to-asize is simply the max of its
3848	 * childrens', thus not accurate enough for us.
3849	 */
3850	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3851	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3852	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3853	    vd->vdev_deflate_ratio;
3854
3855	mutex_enter(&vd->vdev_stat_lock);
3856	vd->vdev_stat.vs_alloc += alloc_delta;
3857	vd->vdev_stat.vs_space += space_delta;
3858	vd->vdev_stat.vs_dspace += dspace_delta;
3859	mutex_exit(&vd->vdev_stat_lock);
3860
3861	if (mc == spa_normal_class(spa)) {
3862		mutex_enter(&rvd->vdev_stat_lock);
3863		rvd->vdev_stat.vs_alloc += alloc_delta;
3864		rvd->vdev_stat.vs_space += space_delta;
3865		rvd->vdev_stat.vs_dspace += dspace_delta;
3866		mutex_exit(&rvd->vdev_stat_lock);
3867	}
3868
3869	if (mc != NULL) {
3870		ASSERT(rvd == vd->vdev_parent);
3871		ASSERT(vd->vdev_ms_count != 0);
3872
3873		metaslab_class_space_update(mc,
3874		    alloc_delta, defer_delta, space_delta, dspace_delta);
3875	}
3876}
3877
3878/*
3879 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3880 * so that it will be written out next time the vdev configuration is synced.
3881 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3882 */
3883void
3884vdev_config_dirty(vdev_t *vd)
3885{
3886	spa_t *spa = vd->vdev_spa;
3887	vdev_t *rvd = spa->spa_root_vdev;
3888	int c;
3889
3890	ASSERT(spa_writeable(spa));
3891
3892	/*
3893	 * If this is an aux vdev (as with l2cache and spare devices), then we
3894	 * update the vdev config manually and set the sync flag.
3895	 */
3896	if (vd->vdev_aux != NULL) {
3897		spa_aux_vdev_t *sav = vd->vdev_aux;
3898		nvlist_t **aux;
3899		uint_t naux;
3900
3901		for (c = 0; c < sav->sav_count; c++) {
3902			if (sav->sav_vdevs[c] == vd)
3903				break;
3904		}
3905
3906		if (c == sav->sav_count) {
3907			/*
3908			 * We're being removed.  There's nothing more to do.
3909			 */
3910			ASSERT(sav->sav_sync == B_TRUE);
3911			return;
3912		}
3913
3914		sav->sav_sync = B_TRUE;
3915
3916		if (nvlist_lookup_nvlist_array(sav->sav_config,
3917		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3918			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3919			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3920		}
3921
3922		ASSERT(c < naux);
3923
3924		/*
3925		 * Setting the nvlist in the middle if the array is a little
3926		 * sketchy, but it will work.
3927		 */
3928		nvlist_free(aux[c]);
3929		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3930
3931		return;
3932	}
3933
3934	/*
3935	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3936	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3937	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3938	 * so this is sufficient to ensure mutual exclusion.
3939	 */
3940	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3941	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3942	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3943
3944	if (vd == rvd) {
3945		for (c = 0; c < rvd->vdev_children; c++)
3946			vdev_config_dirty(rvd->vdev_child[c]);
3947	} else {
3948		ASSERT(vd == vd->vdev_top);
3949
3950		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3951		    vdev_is_concrete(vd)) {
3952			list_insert_head(&spa->spa_config_dirty_list, vd);
3953		}
3954	}
3955}
3956
3957void
3958vdev_config_clean(vdev_t *vd)
3959{
3960	spa_t *spa = vd->vdev_spa;
3961
3962	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3963	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3964	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3965
3966	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3967	list_remove(&spa->spa_config_dirty_list, vd);
3968}
3969
3970/*
3971 * Mark a top-level vdev's state as dirty, so that the next pass of
3972 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3973 * the state changes from larger config changes because they require
3974 * much less locking, and are often needed for administrative actions.
3975 */
3976void
3977vdev_state_dirty(vdev_t *vd)
3978{
3979	spa_t *spa = vd->vdev_spa;
3980
3981	ASSERT(spa_writeable(spa));
3982	ASSERT(vd == vd->vdev_top);
3983
3984	/*
3985	 * The state list is protected by the SCL_STATE lock.  The caller
3986	 * must either hold SCL_STATE as writer, or must be the sync thread
3987	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3988	 * so this is sufficient to ensure mutual exclusion.
3989	 */
3990	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3991	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3992	    spa_config_held(spa, SCL_STATE, RW_READER)));
3993
3994	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3995	    vdev_is_concrete(vd))
3996		list_insert_head(&spa->spa_state_dirty_list, vd);
3997}
3998
3999void
4000vdev_state_clean(vdev_t *vd)
4001{
4002	spa_t *spa = vd->vdev_spa;
4003
4004	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4005	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4006	    spa_config_held(spa, SCL_STATE, RW_READER)));
4007
4008	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4009	list_remove(&spa->spa_state_dirty_list, vd);
4010}
4011
4012/*
4013 * Propagate vdev state up from children to parent.
4014 */
4015void
4016vdev_propagate_state(vdev_t *vd)
4017{
4018	spa_t *spa = vd->vdev_spa;
4019	vdev_t *rvd = spa->spa_root_vdev;
4020	int degraded = 0, faulted = 0;
4021	int corrupted = 0;
4022	vdev_t *child;
4023
4024	if (vd->vdev_children > 0) {
4025		for (int c = 0; c < vd->vdev_children; c++) {
4026			child = vd->vdev_child[c];
4027
4028			/*
4029			 * Don't factor holes or indirect vdevs into the
4030			 * decision.
4031			 */
4032			if (!vdev_is_concrete(child))
4033				continue;
4034
4035			if (!vdev_readable(child) ||
4036			    (!vdev_writeable(child) && spa_writeable(spa))) {
4037				/*
4038				 * Root special: if there is a top-level log
4039				 * device, treat the root vdev as if it were
4040				 * degraded.
4041				 */
4042				if (child->vdev_islog && vd == rvd)
4043					degraded++;
4044				else
4045					faulted++;
4046			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4047				degraded++;
4048			}
4049
4050			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4051				corrupted++;
4052		}
4053
4054		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4055
4056		/*
4057		 * Root special: if there is a top-level vdev that cannot be
4058		 * opened due to corrupted metadata, then propagate the root
4059		 * vdev's aux state as 'corrupt' rather than 'insufficient
4060		 * replicas'.
4061		 */
4062		if (corrupted && vd == rvd &&
4063		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4064			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4065			    VDEV_AUX_CORRUPT_DATA);
4066	}
4067
4068	if (vd->vdev_parent)
4069		vdev_propagate_state(vd->vdev_parent);
4070}
4071
4072/*
4073 * Set a vdev's state.  If this is during an open, we don't update the parent
4074 * state, because we're in the process of opening children depth-first.
4075 * Otherwise, we propagate the change to the parent.
4076 *
4077 * If this routine places a device in a faulted state, an appropriate ereport is
4078 * generated.
4079 */
4080void
4081vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4082{
4083	uint64_t save_state;
4084	spa_t *spa = vd->vdev_spa;
4085
4086	if (state == vd->vdev_state) {
4087		vd->vdev_stat.vs_aux = aux;
4088		return;
4089	}
4090
4091	save_state = vd->vdev_state;
4092
4093	vd->vdev_state = state;
4094	vd->vdev_stat.vs_aux = aux;
4095
4096	/*
4097	 * If we are setting the vdev state to anything but an open state, then
4098	 * always close the underlying device unless the device has requested
4099	 * a delayed close (i.e. we're about to remove or fault the device).
4100	 * Otherwise, we keep accessible but invalid devices open forever.
4101	 * We don't call vdev_close() itself, because that implies some extra
4102	 * checks (offline, etc) that we don't want here.  This is limited to
4103	 * leaf devices, because otherwise closing the device will affect other
4104	 * children.
4105	 */
4106	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4107	    vd->vdev_ops->vdev_op_leaf)
4108		vd->vdev_ops->vdev_op_close(vd);
4109
4110	if (vd->vdev_removed &&
4111	    state == VDEV_STATE_CANT_OPEN &&
4112	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4113		/*
4114		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4115		 * device was previously marked removed and someone attempted to
4116		 * reopen it.  If this failed due to a nonexistent device, then
4117		 * keep the device in the REMOVED state.  We also let this be if
4118		 * it is one of our special test online cases, which is only
4119		 * attempting to online the device and shouldn't generate an FMA
4120		 * fault.
4121		 */
4122		vd->vdev_state = VDEV_STATE_REMOVED;
4123		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4124	} else if (state == VDEV_STATE_REMOVED) {
4125		vd->vdev_removed = B_TRUE;
4126	} else if (state == VDEV_STATE_CANT_OPEN) {
4127		/*
4128		 * If we fail to open a vdev during an import or recovery, we
4129		 * mark it as "not available", which signifies that it was
4130		 * never there to begin with.  Failure to open such a device
4131		 * is not considered an error.
4132		 */
4133		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4134		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4135		    vd->vdev_ops->vdev_op_leaf)
4136			vd->vdev_not_present = 1;
4137
4138		/*
4139		 * Post the appropriate ereport.  If the 'prevstate' field is
4140		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4141		 * that this is part of a vdev_reopen().  In this case, we don't
4142		 * want to post the ereport if the device was already in the
4143		 * CANT_OPEN state beforehand.
4144		 *
4145		 * If the 'checkremove' flag is set, then this is an attempt to
4146		 * online the device in response to an insertion event.  If we
4147		 * hit this case, then we have detected an insertion event for a
4148		 * faulted or offline device that wasn't in the removed state.
4149		 * In this scenario, we don't post an ereport because we are
4150		 * about to replace the device, or attempt an online with
4151		 * vdev_forcefault, which will generate the fault for us.
4152		 */
4153		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4154		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4155		    vd != spa->spa_root_vdev) {
4156			const char *class;
4157
4158			switch (aux) {
4159			case VDEV_AUX_OPEN_FAILED:
4160				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4161				break;
4162			case VDEV_AUX_CORRUPT_DATA:
4163				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4164				break;
4165			case VDEV_AUX_NO_REPLICAS:
4166				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4167				break;
4168			case VDEV_AUX_BAD_GUID_SUM:
4169				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4170				break;
4171			case VDEV_AUX_TOO_SMALL:
4172				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4173				break;
4174			case VDEV_AUX_BAD_LABEL:
4175				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4176				break;
4177			default:
4178				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4179			}
4180
4181			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4182		}
4183
4184		/* Erase any notion of persistent removed state */
4185		vd->vdev_removed = B_FALSE;
4186	} else {
4187		vd->vdev_removed = B_FALSE;
4188	}
4189
4190	/*
4191	* Notify the fmd of the state change.  Be verbose and post
4192	* notifications even for stuff that's not important; the fmd agent can
4193	* sort it out.  Don't emit state change events for non-leaf vdevs since
4194	* they can't change state on their own.  The FMD can check their state
4195	* if it wants to when it sees that a leaf vdev had a state change.
4196	*/
4197	if (vd->vdev_ops->vdev_op_leaf)
4198		zfs_post_state_change(spa, vd);
4199
4200	if (!isopen && vd->vdev_parent)
4201		vdev_propagate_state(vd->vdev_parent);
4202}
4203
4204boolean_t
4205vdev_children_are_offline(vdev_t *vd)
4206{
4207	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4208
4209	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4210		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4211			return (B_FALSE);
4212	}
4213
4214	return (B_TRUE);
4215}
4216
4217/*
4218 * Check the vdev configuration to ensure that it's capable of supporting
4219 * a root pool. We do not support partial configuration.
4220 * In addition, only a single top-level vdev is allowed.
4221 *
4222 * FreeBSD does not have above limitations.
4223 */
4224boolean_t
4225vdev_is_bootable(vdev_t *vd)
4226{
4227#ifdef illumos
4228	if (!vd->vdev_ops->vdev_op_leaf) {
4229		char *vdev_type = vd->vdev_ops->vdev_op_type;
4230
4231		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4232		    vd->vdev_children > 1) {
4233			return (B_FALSE);
4234		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4235		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4236			return (B_FALSE);
4237		}
4238	}
4239
4240	for (int c = 0; c < vd->vdev_children; c++) {
4241		if (!vdev_is_bootable(vd->vdev_child[c]))
4242			return (B_FALSE);
4243	}
4244#endif	/* illumos */
4245	return (B_TRUE);
4246}
4247
4248boolean_t
4249vdev_is_concrete(vdev_t *vd)
4250{
4251	vdev_ops_t *ops = vd->vdev_ops;
4252	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4253	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4254		return (B_FALSE);
4255	} else {
4256		return (B_TRUE);
4257	}
4258}
4259
4260/*
4261 * Determine if a log device has valid content.  If the vdev was
4262 * removed or faulted in the MOS config then we know that
4263 * the content on the log device has already been written to the pool.
4264 */
4265boolean_t
4266vdev_log_state_valid(vdev_t *vd)
4267{
4268	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4269	    !vd->vdev_removed)
4270		return (B_TRUE);
4271
4272	for (int c = 0; c < vd->vdev_children; c++)
4273		if (vdev_log_state_valid(vd->vdev_child[c]))
4274			return (B_TRUE);
4275
4276	return (B_FALSE);
4277}
4278
4279/*
4280 * Expand a vdev if possible.
4281 */
4282void
4283vdev_expand(vdev_t *vd, uint64_t txg)
4284{
4285	ASSERT(vd->vdev_top == vd);
4286	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4287	ASSERT(vdev_is_concrete(vd));
4288
4289	vdev_set_deflate_ratio(vd);
4290
4291	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
4292		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4293		vdev_config_dirty(vd);
4294	}
4295}
4296
4297/*
4298 * Split a vdev.
4299 */
4300void
4301vdev_split(vdev_t *vd)
4302{
4303	vdev_t *cvd, *pvd = vd->vdev_parent;
4304
4305	vdev_remove_child(pvd, vd);
4306	vdev_compact_children(pvd);
4307
4308	cvd = pvd->vdev_child[0];
4309	if (pvd->vdev_children == 1) {
4310		vdev_remove_parent(cvd);
4311		cvd->vdev_splitting = B_TRUE;
4312	}
4313	vdev_propagate_state(cvd);
4314}
4315
4316void
4317vdev_deadman(vdev_t *vd)
4318{
4319	for (int c = 0; c < vd->vdev_children; c++) {
4320		vdev_t *cvd = vd->vdev_child[c];
4321
4322		vdev_deadman(cvd);
4323	}
4324
4325	if (vd->vdev_ops->vdev_op_leaf) {
4326		vdev_queue_t *vq = &vd->vdev_queue;
4327
4328		mutex_enter(&vq->vq_lock);
4329		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4330			spa_t *spa = vd->vdev_spa;
4331			zio_t *fio;
4332			uint64_t delta;
4333
4334			/*
4335			 * Look at the head of all the pending queues,
4336			 * if any I/O has been outstanding for longer than
4337			 * the spa_deadman_synctime we panic the system.
4338			 */
4339			fio = avl_first(&vq->vq_active_tree);
4340			delta = gethrtime() - fio->io_timestamp;
4341			if (delta > spa_deadman_synctime(spa)) {
4342				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4343				    "%lluns, delta %lluns, last io %lluns",
4344				    fio->io_timestamp, (u_longlong_t)delta,
4345				    vq->vq_io_complete_ts);
4346				fm_panic("I/O to pool '%s' appears to be "
4347				    "hung on vdev guid %llu at '%s'.",
4348				    spa_name(spa),
4349				    (long long unsigned int) vd->vdev_guid,
4350				    vd->vdev_path);
4351			}
4352		}
4353		mutex_exit(&vq->vq_lock);
4354	}
4355}
4356