dsl_pool.c revision 310511
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
31#include <sys/dsl_prop.h>
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
45#include <sys/dsl_deadlist.h>
46#include <sys/bptree.h>
47#include <sys/zfeature.h>
48#include <sys/zil_impl.h>
49#include <sys/dsl_userhold.h>
50
51#if defined(__FreeBSD__) && defined(_KERNEL)
52#include <sys/types.h>
53#include <sys/sysctl.h>
54#endif
55
56/*
57 * ZFS Write Throttle
58 * ------------------
59 *
60 * ZFS must limit the rate of incoming writes to the rate at which it is able
61 * to sync data modifications to the backend storage. Throttling by too much
62 * creates an artificial limit; throttling by too little can only be sustained
63 * for short periods and would lead to highly lumpy performance. On a per-pool
64 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
65 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
66 * of dirty data decreases. When the amount of dirty data exceeds a
67 * predetermined threshold further modifications are blocked until the amount
68 * of dirty data decreases (as data is synced out).
69 *
70 * The limit on dirty data is tunable, and should be adjusted according to
71 * both the IO capacity and available memory of the system. The larger the
72 * window, the more ZFS is able to aggregate and amortize metadata (and data)
73 * changes. However, memory is a limited resource, and allowing for more dirty
74 * data comes at the cost of keeping other useful data in memory (for example
75 * ZFS data cached by the ARC).
76 *
77 * Implementation
78 *
79 * As buffers are modified dsl_pool_willuse_space() increments both the per-
80 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
81 * dirty space used; dsl_pool_dirty_space() decrements those values as data
82 * is synced out from dsl_pool_sync(). While only the poolwide value is
83 * relevant, the per-txg value is useful for debugging. The tunable
84 * zfs_dirty_data_max determines the dirty space limit. Once that value is
85 * exceeded, new writes are halted until space frees up.
86 *
87 * The zfs_dirty_data_sync tunable dictates the threshold at which we
88 * ensure that there is a txg syncing (see the comment in txg.c for a full
89 * description of transaction group stages).
90 *
91 * The IO scheduler uses both the dirty space limit and current amount of
92 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
93 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
94 *
95 * The delay is also calculated based on the amount of dirty data.  See the
96 * comment above dmu_tx_delay() for details.
97 */
98
99/*
100 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
101 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
102 */
103uint64_t zfs_dirty_data_max;
104uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
105int zfs_dirty_data_max_percent = 10;
106
107/*
108 * If there is at least this much dirty data, push out a txg.
109 */
110uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
111
112/*
113 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
114 * and delay each transaction.
115 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
116 */
117int zfs_delay_min_dirty_percent = 60;
118
119/*
120 * This controls how quickly the delay approaches infinity.
121 * Larger values cause it to delay more for a given amount of dirty data.
122 * Therefore larger values will cause there to be less dirty data for a
123 * given throughput.
124 *
125 * For the smoothest delay, this value should be about 1 billion divided
126 * by the maximum number of operations per second.  This will smoothly
127 * handle between 10x and 1/10th this number.
128 *
129 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
130 * multiply in dmu_tx_delay().
131 */
132uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
133
134
135#if defined(__FreeBSD__) && defined(_KERNEL)
136
137extern int zfs_vdev_async_write_active_max_dirty_percent;
138
139SYSCTL_DECL(_vfs_zfs);
140
141SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
142    &zfs_dirty_data_max, 0,
143    "The maximum amount of dirty data in bytes after which new writes are "
144    "halted until space becomes available");
145
146SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
147    &zfs_dirty_data_max_max, 0,
148    "The absolute cap on dirty_data_max when auto calculating");
149
150static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
151SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
152    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
153    sysctl_zfs_dirty_data_max_percent, "I",
154    "The percent of physical memory used to auto calculate dirty_data_max");
155
156SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
157    &zfs_dirty_data_sync, 0,
158    "Force a txg if the number of dirty buffer bytes exceed this value");
159
160static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
161/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
162SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
163    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
164    sysctl_zfs_delay_min_dirty_percent, "I",
165    "The limit of outstanding dirty data before transations are delayed");
166
167static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
168/* No zfs_delay_scale tunable due to limit requirements */
169SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
170    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
171    sysctl_zfs_delay_scale, "QU",
172    "Controls how quickly the delay approaches infinity");
173
174static int
175sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
176{
177	int val, err;
178
179	val = zfs_dirty_data_max_percent;
180	err = sysctl_handle_int(oidp, &val, 0, req);
181	if (err != 0 || req->newptr == NULL)
182		return (err);
183
184	if (val < 0 || val > 100)
185		return (EINVAL);
186
187	zfs_dirty_data_max_percent = val;
188
189	return (0);
190}
191
192static int
193sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
194{
195	int val, err;
196
197	val = zfs_delay_min_dirty_percent;
198	err = sysctl_handle_int(oidp, &val, 0, req);
199	if (err != 0 || req->newptr == NULL)
200		return (err);
201
202	if (val < zfs_vdev_async_write_active_max_dirty_percent)
203		return (EINVAL);
204
205	zfs_delay_min_dirty_percent = val;
206
207	return (0);
208}
209
210static int
211sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
212{
213	uint64_t val;
214	int err;
215
216	val = zfs_delay_scale;
217	err = sysctl_handle_64(oidp, &val, 0, req);
218	if (err != 0 || req->newptr == NULL)
219		return (err);
220
221	if (val > UINT64_MAX / zfs_dirty_data_max)
222		return (EINVAL);
223
224	zfs_delay_scale = val;
225
226	return (0);
227}
228#endif
229
230hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
231hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
232
233int
234dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
235{
236	uint64_t obj;
237	int err;
238
239	err = zap_lookup(dp->dp_meta_objset,
240	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
241	    name, sizeof (obj), 1, &obj);
242	if (err)
243		return (err);
244
245	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
246}
247
248static dsl_pool_t *
249dsl_pool_open_impl(spa_t *spa, uint64_t txg)
250{
251	dsl_pool_t *dp;
252	blkptr_t *bp = spa_get_rootblkptr(spa);
253
254	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
255	dp->dp_spa = spa;
256	dp->dp_meta_rootbp = *bp;
257	rrw_init(&dp->dp_config_rwlock, B_TRUE);
258	txg_init(dp, txg);
259
260	txg_list_create(&dp->dp_dirty_datasets,
261	    offsetof(dsl_dataset_t, ds_dirty_link));
262	txg_list_create(&dp->dp_dirty_zilogs,
263	    offsetof(zilog_t, zl_dirty_link));
264	txg_list_create(&dp->dp_dirty_dirs,
265	    offsetof(dsl_dir_t, dd_dirty_link));
266	txg_list_create(&dp->dp_sync_tasks,
267	    offsetof(dsl_sync_task_t, dst_node));
268
269	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
270	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
271
272	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
273	    1, 4, 0);
274
275	return (dp);
276}
277
278int
279dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
280{
281	int err;
282	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
283
284	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
285	    &dp->dp_meta_objset);
286	if (err != 0)
287		dsl_pool_close(dp);
288	else
289		*dpp = dp;
290
291	return (err);
292}
293
294int
295dsl_pool_open(dsl_pool_t *dp)
296{
297	int err;
298	dsl_dir_t *dd;
299	dsl_dataset_t *ds;
300	uint64_t obj;
301
302	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
303	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
304	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
305	    &dp->dp_root_dir_obj);
306	if (err)
307		goto out;
308
309	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
310	    NULL, dp, &dp->dp_root_dir);
311	if (err)
312		goto out;
313
314	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
315	if (err)
316		goto out;
317
318	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
319		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
320		if (err)
321			goto out;
322		err = dsl_dataset_hold_obj(dp,
323		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
324		if (err == 0) {
325			err = dsl_dataset_hold_obj(dp,
326			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
327			    &dp->dp_origin_snap);
328			dsl_dataset_rele(ds, FTAG);
329		}
330		dsl_dir_rele(dd, dp);
331		if (err)
332			goto out;
333	}
334
335	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
336		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
337		    &dp->dp_free_dir);
338		if (err)
339			goto out;
340
341		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
342		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
343		if (err)
344			goto out;
345		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
346		    dp->dp_meta_objset, obj));
347	}
348
349	/*
350	 * Note: errors ignored, because the leak dir will not exist if we
351	 * have not encountered a leak yet.
352	 */
353	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
354	    &dp->dp_leak_dir);
355
356	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
357		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
358		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
359		    &dp->dp_bptree_obj);
360		if (err != 0)
361			goto out;
362	}
363
364	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
365		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
366		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
367		    &dp->dp_empty_bpobj);
368		if (err != 0)
369			goto out;
370	}
371
372	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
373	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
374	    &dp->dp_tmp_userrefs_obj);
375	if (err == ENOENT)
376		err = 0;
377	if (err)
378		goto out;
379
380	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
381
382out:
383	rrw_exit(&dp->dp_config_rwlock, FTAG);
384	return (err);
385}
386
387void
388dsl_pool_close(dsl_pool_t *dp)
389{
390	/*
391	 * Drop our references from dsl_pool_open().
392	 *
393	 * Since we held the origin_snap from "syncing" context (which
394	 * includes pool-opening context), it actually only got a "ref"
395	 * and not a hold, so just drop that here.
396	 */
397	if (dp->dp_origin_snap)
398		dsl_dataset_rele(dp->dp_origin_snap, dp);
399	if (dp->dp_mos_dir)
400		dsl_dir_rele(dp->dp_mos_dir, dp);
401	if (dp->dp_free_dir)
402		dsl_dir_rele(dp->dp_free_dir, dp);
403	if (dp->dp_leak_dir)
404		dsl_dir_rele(dp->dp_leak_dir, dp);
405	if (dp->dp_root_dir)
406		dsl_dir_rele(dp->dp_root_dir, dp);
407
408	bpobj_close(&dp->dp_free_bpobj);
409
410	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
411	if (dp->dp_meta_objset)
412		dmu_objset_evict(dp->dp_meta_objset);
413
414	txg_list_destroy(&dp->dp_dirty_datasets);
415	txg_list_destroy(&dp->dp_dirty_zilogs);
416	txg_list_destroy(&dp->dp_sync_tasks);
417	txg_list_destroy(&dp->dp_dirty_dirs);
418
419	/*
420	 * We can't set retry to TRUE since we're explicitly specifying
421	 * a spa to flush. This is good enough; any missed buffers for
422	 * this spa won't cause trouble, and they'll eventually fall
423	 * out of the ARC just like any other unused buffer.
424	 */
425	arc_flush(dp->dp_spa, FALSE);
426
427	txg_fini(dp);
428	dsl_scan_fini(dp);
429	dmu_buf_user_evict_wait();
430
431	rrw_destroy(&dp->dp_config_rwlock);
432	mutex_destroy(&dp->dp_lock);
433	taskq_destroy(dp->dp_vnrele_taskq);
434	if (dp->dp_blkstats)
435		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
436	kmem_free(dp, sizeof (dsl_pool_t));
437}
438
439dsl_pool_t *
440dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
441{
442	int err;
443	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
444	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
445	objset_t *os;
446	dsl_dataset_t *ds;
447	uint64_t obj;
448
449	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
450
451	/* create and open the MOS (meta-objset) */
452	dp->dp_meta_objset = dmu_objset_create_impl(spa,
453	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
454
455	/* create the pool directory */
456	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
457	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
458	ASSERT0(err);
459
460	/* Initialize scan structures */
461	VERIFY0(dsl_scan_init(dp, txg));
462
463	/* create and open the root dir */
464	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
465	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
466	    NULL, dp, &dp->dp_root_dir));
467
468	/* create and open the meta-objset dir */
469	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
470	VERIFY0(dsl_pool_open_special_dir(dp,
471	    MOS_DIR_NAME, &dp->dp_mos_dir));
472
473	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
474		/* create and open the free dir */
475		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
476		    FREE_DIR_NAME, tx);
477		VERIFY0(dsl_pool_open_special_dir(dp,
478		    FREE_DIR_NAME, &dp->dp_free_dir));
479
480		/* create and open the free_bplist */
481		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
482		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
483		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
484		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
485		    dp->dp_meta_objset, obj));
486	}
487
488	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
489		dsl_pool_create_origin(dp, tx);
490
491	/* create the root dataset */
492	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
493
494	/* create the root objset */
495	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
496	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
497	os = dmu_objset_create_impl(dp->dp_spa, ds,
498	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
499	rrw_exit(&ds->ds_bp_rwlock, FTAG);
500#ifdef _KERNEL
501	zfs_create_fs(os, kcred, zplprops, tx);
502#endif
503	dsl_dataset_rele(ds, FTAG);
504
505	dmu_tx_commit(tx);
506
507	rrw_exit(&dp->dp_config_rwlock, FTAG);
508
509	return (dp);
510}
511
512/*
513 * Account for the meta-objset space in its placeholder dsl_dir.
514 */
515void
516dsl_pool_mos_diduse_space(dsl_pool_t *dp,
517    int64_t used, int64_t comp, int64_t uncomp)
518{
519	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
520	mutex_enter(&dp->dp_lock);
521	dp->dp_mos_used_delta += used;
522	dp->dp_mos_compressed_delta += comp;
523	dp->dp_mos_uncompressed_delta += uncomp;
524	mutex_exit(&dp->dp_lock);
525}
526
527static void
528dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
529{
530	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
531	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
532	VERIFY0(zio_wait(zio));
533	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
534	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
535}
536
537static void
538dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
539{
540	ASSERT(MUTEX_HELD(&dp->dp_lock));
541
542	if (delta < 0)
543		ASSERT3U(-delta, <=, dp->dp_dirty_total);
544
545	dp->dp_dirty_total += delta;
546
547	/*
548	 * Note: we signal even when increasing dp_dirty_total.
549	 * This ensures forward progress -- each thread wakes the next waiter.
550	 */
551	if (dp->dp_dirty_total <= zfs_dirty_data_max)
552		cv_signal(&dp->dp_spaceavail_cv);
553}
554
555void
556dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
557{
558	zio_t *zio;
559	dmu_tx_t *tx;
560	dsl_dir_t *dd;
561	dsl_dataset_t *ds;
562	objset_t *mos = dp->dp_meta_objset;
563	list_t synced_datasets;
564
565	list_create(&synced_datasets, sizeof (dsl_dataset_t),
566	    offsetof(dsl_dataset_t, ds_synced_link));
567
568	tx = dmu_tx_create_assigned(dp, txg);
569
570	/*
571	 * Write out all dirty blocks of dirty datasets.
572	 */
573	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
574	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
575		/*
576		 * We must not sync any non-MOS datasets twice, because
577		 * we may have taken a snapshot of them.  However, we
578		 * may sync newly-created datasets on pass 2.
579		 */
580		ASSERT(!list_link_active(&ds->ds_synced_link));
581		list_insert_tail(&synced_datasets, ds);
582		dsl_dataset_sync(ds, zio, tx);
583	}
584	VERIFY0(zio_wait(zio));
585
586	/*
587	 * We have written all of the accounted dirty data, so our
588	 * dp_space_towrite should now be zero.  However, some seldom-used
589	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
590	 * rounding error in dbuf_write_physdone).
591	 * Shore up the accounting of any dirtied space now.
592	 */
593	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
594
595	/*
596	 * After the data blocks have been written (ensured by the zio_wait()
597	 * above), update the user/group space accounting.
598	 */
599	for (ds = list_head(&synced_datasets); ds != NULL;
600	    ds = list_next(&synced_datasets, ds)) {
601		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
602	}
603
604	/*
605	 * Sync the datasets again to push out the changes due to
606	 * userspace updates.  This must be done before we process the
607	 * sync tasks, so that any snapshots will have the correct
608	 * user accounting information (and we won't get confused
609	 * about which blocks are part of the snapshot).
610	 */
611	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
612	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
613		ASSERT(list_link_active(&ds->ds_synced_link));
614		dmu_buf_rele(ds->ds_dbuf, ds);
615		dsl_dataset_sync(ds, zio, tx);
616	}
617	VERIFY0(zio_wait(zio));
618
619	/*
620	 * Now that the datasets have been completely synced, we can
621	 * clean up our in-memory structures accumulated while syncing:
622	 *
623	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
624	 *  - release hold from dsl_dataset_dirty()
625	 */
626	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
627		dsl_dataset_sync_done(ds, tx);
628	}
629	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
630		dsl_dir_sync(dd, tx);
631	}
632
633	/*
634	 * The MOS's space is accounted for in the pool/$MOS
635	 * (dp_mos_dir).  We can't modify the mos while we're syncing
636	 * it, so we remember the deltas and apply them here.
637	 */
638	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
639	    dp->dp_mos_uncompressed_delta != 0) {
640		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
641		    dp->dp_mos_used_delta,
642		    dp->dp_mos_compressed_delta,
643		    dp->dp_mos_uncompressed_delta, tx);
644		dp->dp_mos_used_delta = 0;
645		dp->dp_mos_compressed_delta = 0;
646		dp->dp_mos_uncompressed_delta = 0;
647	}
648
649	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
650	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
651		dsl_pool_sync_mos(dp, tx);
652	}
653
654	/*
655	 * If we modify a dataset in the same txg that we want to destroy it,
656	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
657	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
658	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
659	 * and clearing the hold on it) before we process the sync_tasks.
660	 * The MOS data dirtied by the sync_tasks will be synced on the next
661	 * pass.
662	 */
663	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
664		dsl_sync_task_t *dst;
665		/*
666		 * No more sync tasks should have been added while we
667		 * were syncing.
668		 */
669		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
670		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
671			dsl_sync_task_sync(dst, tx);
672	}
673
674	dmu_tx_commit(tx);
675
676	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
677}
678
679void
680dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
681{
682	zilog_t *zilog;
683
684	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
685		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
686		zil_clean(zilog, txg);
687		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
688		dmu_buf_rele(ds->ds_dbuf, zilog);
689	}
690	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
691}
692
693/*
694 * TRUE if the current thread is the tx_sync_thread or if we
695 * are being called from SPA context during pool initialization.
696 */
697int
698dsl_pool_sync_context(dsl_pool_t *dp)
699{
700	return (curthread == dp->dp_tx.tx_sync_thread ||
701	    spa_is_initializing(dp->dp_spa));
702}
703
704uint64_t
705dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
706{
707	uint64_t space, resv;
708
709	/*
710	 * If we're trying to assess whether it's OK to do a free,
711	 * cut the reservation in half to allow forward progress
712	 * (e.g. make it possible to rm(1) files from a full pool).
713	 */
714	space = spa_get_dspace(dp->dp_spa);
715	resv = spa_get_slop_space(dp->dp_spa);
716	if (netfree)
717		resv >>= 1;
718
719	return (space - resv);
720}
721
722boolean_t
723dsl_pool_need_dirty_delay(dsl_pool_t *dp)
724{
725	uint64_t delay_min_bytes =
726	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
727	boolean_t rv;
728
729	mutex_enter(&dp->dp_lock);
730	if (dp->dp_dirty_total > zfs_dirty_data_sync)
731		txg_kick(dp);
732	rv = (dp->dp_dirty_total > delay_min_bytes);
733	mutex_exit(&dp->dp_lock);
734	return (rv);
735}
736
737void
738dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
739{
740	if (space > 0) {
741		mutex_enter(&dp->dp_lock);
742		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
743		dsl_pool_dirty_delta(dp, space);
744		mutex_exit(&dp->dp_lock);
745	}
746}
747
748void
749dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
750{
751	ASSERT3S(space, >=, 0);
752	if (space == 0)
753		return;
754	mutex_enter(&dp->dp_lock);
755	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
756		/* XXX writing something we didn't dirty? */
757		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
758	}
759	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
760	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
761	ASSERT3U(dp->dp_dirty_total, >=, space);
762	dsl_pool_dirty_delta(dp, -space);
763	mutex_exit(&dp->dp_lock);
764}
765
766/* ARGSUSED */
767static int
768upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
769{
770	dmu_tx_t *tx = arg;
771	dsl_dataset_t *ds, *prev = NULL;
772	int err;
773
774	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
775	if (err)
776		return (err);
777
778	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
779		err = dsl_dataset_hold_obj(dp,
780		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
781		if (err) {
782			dsl_dataset_rele(ds, FTAG);
783			return (err);
784		}
785
786		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
787			break;
788		dsl_dataset_rele(ds, FTAG);
789		ds = prev;
790		prev = NULL;
791	}
792
793	if (prev == NULL) {
794		prev = dp->dp_origin_snap;
795
796		/*
797		 * The $ORIGIN can't have any data, or the accounting
798		 * will be wrong.
799		 */
800		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
801		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
802		rrw_exit(&ds->ds_bp_rwlock, FTAG);
803
804		/* The origin doesn't get attached to itself */
805		if (ds->ds_object == prev->ds_object) {
806			dsl_dataset_rele(ds, FTAG);
807			return (0);
808		}
809
810		dmu_buf_will_dirty(ds->ds_dbuf, tx);
811		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
812		dsl_dataset_phys(ds)->ds_prev_snap_txg =
813		    dsl_dataset_phys(prev)->ds_creation_txg;
814
815		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
816		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
817
818		dmu_buf_will_dirty(prev->ds_dbuf, tx);
819		dsl_dataset_phys(prev)->ds_num_children++;
820
821		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
822			ASSERT(ds->ds_prev == NULL);
823			VERIFY0(dsl_dataset_hold_obj(dp,
824			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
825			    ds, &ds->ds_prev));
826		}
827	}
828
829	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
830	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
831
832	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
833		dmu_buf_will_dirty(prev->ds_dbuf, tx);
834		dsl_dataset_phys(prev)->ds_next_clones_obj =
835		    zap_create(dp->dp_meta_objset,
836		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
837	}
838	VERIFY0(zap_add_int(dp->dp_meta_objset,
839	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
840
841	dsl_dataset_rele(ds, FTAG);
842	if (prev != dp->dp_origin_snap)
843		dsl_dataset_rele(prev, FTAG);
844	return (0);
845}
846
847void
848dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
849{
850	ASSERT(dmu_tx_is_syncing(tx));
851	ASSERT(dp->dp_origin_snap != NULL);
852
853	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
854	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
855}
856
857/* ARGSUSED */
858static int
859upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
860{
861	dmu_tx_t *tx = arg;
862	objset_t *mos = dp->dp_meta_objset;
863
864	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
865		dsl_dataset_t *origin;
866
867		VERIFY0(dsl_dataset_hold_obj(dp,
868		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
869
870		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
871			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
872			dsl_dir_phys(origin->ds_dir)->dd_clones =
873			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
874			    0, tx);
875		}
876
877		VERIFY0(zap_add_int(dp->dp_meta_objset,
878		    dsl_dir_phys(origin->ds_dir)->dd_clones,
879		    ds->ds_object, tx));
880
881		dsl_dataset_rele(origin, FTAG);
882	}
883	return (0);
884}
885
886void
887dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
888{
889	ASSERT(dmu_tx_is_syncing(tx));
890	uint64_t obj;
891
892	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
893	VERIFY0(dsl_pool_open_special_dir(dp,
894	    FREE_DIR_NAME, &dp->dp_free_dir));
895
896	/*
897	 * We can't use bpobj_alloc(), because spa_version() still
898	 * returns the old version, and we need a new-version bpobj with
899	 * subobj support.  So call dmu_object_alloc() directly.
900	 */
901	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
902	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
903	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
904	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
905	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
906
907	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
908	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
909}
910
911void
912dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
913{
914	uint64_t dsobj;
915	dsl_dataset_t *ds;
916
917	ASSERT(dmu_tx_is_syncing(tx));
918	ASSERT(dp->dp_origin_snap == NULL);
919	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
920
921	/* create the origin dir, ds, & snap-ds */
922	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
923	    NULL, 0, kcred, tx);
924	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
925	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
926	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
927	    dp, &dp->dp_origin_snap));
928	dsl_dataset_rele(ds, FTAG);
929}
930
931taskq_t *
932dsl_pool_vnrele_taskq(dsl_pool_t *dp)
933{
934	return (dp->dp_vnrele_taskq);
935}
936
937/*
938 * Walk through the pool-wide zap object of temporary snapshot user holds
939 * and release them.
940 */
941void
942dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
943{
944	zap_attribute_t za;
945	zap_cursor_t zc;
946	objset_t *mos = dp->dp_meta_objset;
947	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
948	nvlist_t *holds;
949
950	if (zapobj == 0)
951		return;
952	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
953
954	holds = fnvlist_alloc();
955
956	for (zap_cursor_init(&zc, mos, zapobj);
957	    zap_cursor_retrieve(&zc, &za) == 0;
958	    zap_cursor_advance(&zc)) {
959		char *htag;
960		nvlist_t *tags;
961
962		htag = strchr(za.za_name, '-');
963		*htag = '\0';
964		++htag;
965		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
966			tags = fnvlist_alloc();
967			fnvlist_add_boolean(tags, htag);
968			fnvlist_add_nvlist(holds, za.za_name, tags);
969			fnvlist_free(tags);
970		} else {
971			fnvlist_add_boolean(tags, htag);
972		}
973	}
974	dsl_dataset_user_release_tmp(dp, holds);
975	fnvlist_free(holds);
976	zap_cursor_fini(&zc);
977}
978
979/*
980 * Create the pool-wide zap object for storing temporary snapshot holds.
981 */
982void
983dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
984{
985	objset_t *mos = dp->dp_meta_objset;
986
987	ASSERT(dp->dp_tmp_userrefs_obj == 0);
988	ASSERT(dmu_tx_is_syncing(tx));
989
990	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
991	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
992}
993
994static int
995dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
996    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
997{
998	objset_t *mos = dp->dp_meta_objset;
999	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1000	char *name;
1001	int error;
1002
1003	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1004	ASSERT(dmu_tx_is_syncing(tx));
1005
1006	/*
1007	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1008	 * zap object for temporary holds might not exist yet.
1009	 */
1010	if (zapobj == 0) {
1011		if (holding) {
1012			dsl_pool_user_hold_create_obj(dp, tx);
1013			zapobj = dp->dp_tmp_userrefs_obj;
1014		} else {
1015			return (SET_ERROR(ENOENT));
1016		}
1017	}
1018
1019	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1020	if (holding)
1021		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1022	else
1023		error = zap_remove(mos, zapobj, name, tx);
1024	strfree(name);
1025
1026	return (error);
1027}
1028
1029/*
1030 * Add a temporary hold for the given dataset object and tag.
1031 */
1032int
1033dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1034    uint64_t now, dmu_tx_t *tx)
1035{
1036	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1037}
1038
1039/*
1040 * Release a temporary hold for the given dataset object and tag.
1041 */
1042int
1043dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1044    dmu_tx_t *tx)
1045{
1046	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1047	    tx, B_FALSE));
1048}
1049
1050/*
1051 * DSL Pool Configuration Lock
1052 *
1053 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1054 * creation / destruction / rename / property setting).  It must be held for
1055 * read to hold a dataset or dsl_dir.  I.e. you must call
1056 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1057 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1058 * must be held continuously until all datasets and dsl_dirs are released.
1059 *
1060 * The only exception to this rule is that if a "long hold" is placed on
1061 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1062 * is still held.  The long hold will prevent the dataset from being
1063 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1064 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1065 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1066 *
1067 * Legitimate long-holders (including owners) should be long-running, cancelable
1068 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1069 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1070 * "zfs send", and "zfs diff".  There are several other long-holders whose
1071 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1072 *
1073 * The usual formula for long-holding would be:
1074 * dsl_pool_hold()
1075 * dsl_dataset_hold()
1076 * ... perform checks ...
1077 * dsl_dataset_long_hold()
1078 * dsl_pool_rele()
1079 * ... perform long-running task ...
1080 * dsl_dataset_long_rele()
1081 * dsl_dataset_rele()
1082 *
1083 * Note that when the long hold is released, the dataset is still held but
1084 * the pool is not held.  The dataset may change arbitrarily during this time
1085 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1086 * dataset except release it.
1087 *
1088 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1089 * or modifying operations.
1090 *
1091 * Modifying operations should generally use dsl_sync_task().  The synctask
1092 * infrastructure enforces proper locking strategy with respect to the
1093 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1094 *
1095 * Read-only operations will manually hold the pool, then the dataset, obtain
1096 * information from the dataset, then release the pool and dataset.
1097 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1098 * hold/rele.
1099 */
1100
1101int
1102dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1103{
1104	spa_t *spa;
1105	int error;
1106
1107	error = spa_open(name, &spa, tag);
1108	if (error == 0) {
1109		*dp = spa_get_dsl(spa);
1110		dsl_pool_config_enter(*dp, tag);
1111	}
1112	return (error);
1113}
1114
1115void
1116dsl_pool_rele(dsl_pool_t *dp, void *tag)
1117{
1118	dsl_pool_config_exit(dp, tag);
1119	spa_close(dp->dp_spa, tag);
1120}
1121
1122void
1123dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1124{
1125	/*
1126	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1127	 *
1128	 * The rrwlock can (with the track_all flag) track all reading threads,
1129	 * which is very useful for debugging which code path failed to release
1130	 * the lock, and for verifying that the *current* thread does hold
1131	 * the lock.
1132	 *
1133	 * (Unlike a rwlock, which knows that N threads hold it for
1134	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1135	 * if any thread holds it for read, even if this thread doesn't).
1136	 */
1137	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1138	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1139}
1140
1141void
1142dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1143{
1144	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1145	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1146}
1147
1148void
1149dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1150{
1151	rrw_exit(&dp->dp_config_rwlock, tag);
1152}
1153
1154boolean_t
1155dsl_pool_config_held(dsl_pool_t *dp)
1156{
1157	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1158}
1159
1160boolean_t
1161dsl_pool_config_held_writer(dsl_pool_t *dp)
1162{
1163	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1164}
1165