dsl_pool.c revision 325911
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28 */
29
30#include <sys/dsl_pool.h>
31#include <sys/dsl_dataset.h>
32#include <sys/dsl_prop.h>
33#include <sys/dsl_dir.h>
34#include <sys/dsl_synctask.h>
35#include <sys/dsl_scan.h>
36#include <sys/dnode.h>
37#include <sys/dmu_tx.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/zap.h>
41#include <sys/zio.h>
42#include <sys/zfs_context.h>
43#include <sys/fs/zfs.h>
44#include <sys/zfs_znode.h>
45#include <sys/spa_impl.h>
46#include <sys/dsl_deadlist.h>
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
49#include <sys/zil_impl.h>
50#include <sys/dsl_userhold.h>
51
52#if defined(__FreeBSD__) && defined(_KERNEL)
53#include <sys/types.h>
54#include <sys/sysctl.h>
55#endif
56
57/*
58 * ZFS Write Throttle
59 * ------------------
60 *
61 * ZFS must limit the rate of incoming writes to the rate at which it is able
62 * to sync data modifications to the backend storage. Throttling by too much
63 * creates an artificial limit; throttling by too little can only be sustained
64 * for short periods and would lead to highly lumpy performance. On a per-pool
65 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
66 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
67 * of dirty data decreases. When the amount of dirty data exceeds a
68 * predetermined threshold further modifications are blocked until the amount
69 * of dirty data decreases (as data is synced out).
70 *
71 * The limit on dirty data is tunable, and should be adjusted according to
72 * both the IO capacity and available memory of the system. The larger the
73 * window, the more ZFS is able to aggregate and amortize metadata (and data)
74 * changes. However, memory is a limited resource, and allowing for more dirty
75 * data comes at the cost of keeping other useful data in memory (for example
76 * ZFS data cached by the ARC).
77 *
78 * Implementation
79 *
80 * As buffers are modified dsl_pool_willuse_space() increments both the per-
81 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
82 * dirty space used; dsl_pool_dirty_space() decrements those values as data
83 * is synced out from dsl_pool_sync(). While only the poolwide value is
84 * relevant, the per-txg value is useful for debugging. The tunable
85 * zfs_dirty_data_max determines the dirty space limit. Once that value is
86 * exceeded, new writes are halted until space frees up.
87 *
88 * The zfs_dirty_data_sync tunable dictates the threshold at which we
89 * ensure that there is a txg syncing (see the comment in txg.c for a full
90 * description of transaction group stages).
91 *
92 * The IO scheduler uses both the dirty space limit and current amount of
93 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
94 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
95 *
96 * The delay is also calculated based on the amount of dirty data.  See the
97 * comment above dmu_tx_delay() for details.
98 */
99
100/*
101 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
102 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
103 */
104uint64_t zfs_dirty_data_max;
105uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
106int zfs_dirty_data_max_percent = 10;
107
108/*
109 * If there is at least this much dirty data, push out a txg.
110 */
111uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
112
113/*
114 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
115 * and delay each transaction.
116 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
117 */
118int zfs_delay_min_dirty_percent = 60;
119
120/*
121 * This controls how quickly the delay approaches infinity.
122 * Larger values cause it to delay more for a given amount of dirty data.
123 * Therefore larger values will cause there to be less dirty data for a
124 * given throughput.
125 *
126 * For the smoothest delay, this value should be about 1 billion divided
127 * by the maximum number of operations per second.  This will smoothly
128 * handle between 10x and 1/10th this number.
129 *
130 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
131 * multiply in dmu_tx_delay().
132 */
133uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
134
135/*
136 * This determines the number of threads used by the dp_sync_taskq.
137 */
138int zfs_sync_taskq_batch_pct = 75;
139
140/*
141 * These tunables determine the behavior of how zil_itxg_clean() is
142 * called via zil_clean() in the context of spa_sync(). When an itxg
143 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
144 * If the dispatch fails, the call to zil_itxg_clean() will occur
145 * synchronously in the context of spa_sync(), which can negatively
146 * impact the performance of spa_sync() (e.g. in the case of the itxg
147 * list having a large number of itxs that needs to be cleaned).
148 *
149 * Thus, these tunables can be used to manipulate the behavior of the
150 * taskq used by zil_clean(); they determine the number of taskq entries
151 * that are pre-populated when the taskq is first created (via the
152 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
153 * taskq entries that are cached after an on-demand allocation (via the
154 * "zfs_zil_clean_taskq_maxalloc").
155 *
156 * The idea being, we want to try reasonably hard to ensure there will
157 * already be a taskq entry pre-allocated by the time that it is needed
158 * by zil_clean(). This way, we can avoid the possibility of an
159 * on-demand allocation of a new taskq entry from failing, which would
160 * result in zil_itxg_clean() being called synchronously from zil_clean()
161 * (which can adversely affect performance of spa_sync()).
162 *
163 * Additionally, the number of threads used by the taskq can be
164 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
165 */
166int zfs_zil_clean_taskq_nthr_pct = 100;
167int zfs_zil_clean_taskq_minalloc = 1024;
168int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
169
170#if defined(__FreeBSD__) && defined(_KERNEL)
171
172extern int zfs_vdev_async_write_active_max_dirty_percent;
173
174SYSCTL_DECL(_vfs_zfs);
175
176SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
177    &zfs_dirty_data_max, 0,
178    "The maximum amount of dirty data in bytes after which new writes are "
179    "halted until space becomes available");
180
181SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
182    &zfs_dirty_data_max_max, 0,
183    "The absolute cap on dirty_data_max when auto calculating");
184
185static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
186SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
187    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
188    sysctl_zfs_dirty_data_max_percent, "I",
189    "The percent of physical memory used to auto calculate dirty_data_max");
190
191SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
192    &zfs_dirty_data_sync, 0,
193    "Force a txg if the number of dirty buffer bytes exceed this value");
194
195static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
196/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
197SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
198    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
199    sysctl_zfs_delay_min_dirty_percent, "I",
200    "The limit of outstanding dirty data before transactions are delayed");
201
202static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
203/* No zfs_delay_scale tunable due to limit requirements */
204SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
205    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
206    sysctl_zfs_delay_scale, "QU",
207    "Controls how quickly the delay approaches infinity");
208
209static int
210sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
211{
212	int val, err;
213
214	val = zfs_dirty_data_max_percent;
215	err = sysctl_handle_int(oidp, &val, 0, req);
216	if (err != 0 || req->newptr == NULL)
217		return (err);
218
219	if (val < 0 || val > 100)
220		return (EINVAL);
221
222	zfs_dirty_data_max_percent = val;
223
224	return (0);
225}
226
227static int
228sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
229{
230	int val, err;
231
232	val = zfs_delay_min_dirty_percent;
233	err = sysctl_handle_int(oidp, &val, 0, req);
234	if (err != 0 || req->newptr == NULL)
235		return (err);
236
237	if (val < zfs_vdev_async_write_active_max_dirty_percent)
238		return (EINVAL);
239
240	zfs_delay_min_dirty_percent = val;
241
242	return (0);
243}
244
245static int
246sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
247{
248	uint64_t val;
249	int err;
250
251	val = zfs_delay_scale;
252	err = sysctl_handle_64(oidp, &val, 0, req);
253	if (err != 0 || req->newptr == NULL)
254		return (err);
255
256	if (val > UINT64_MAX / zfs_dirty_data_max)
257		return (EINVAL);
258
259	zfs_delay_scale = val;
260
261	return (0);
262}
263#endif
264
265int
266dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
267{
268	uint64_t obj;
269	int err;
270
271	err = zap_lookup(dp->dp_meta_objset,
272	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
273	    name, sizeof (obj), 1, &obj);
274	if (err)
275		return (err);
276
277	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
278}
279
280static dsl_pool_t *
281dsl_pool_open_impl(spa_t *spa, uint64_t txg)
282{
283	dsl_pool_t *dp;
284	blkptr_t *bp = spa_get_rootblkptr(spa);
285
286	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
287	dp->dp_spa = spa;
288	dp->dp_meta_rootbp = *bp;
289	rrw_init(&dp->dp_config_rwlock, B_TRUE);
290	txg_init(dp, txg);
291
292	txg_list_create(&dp->dp_dirty_datasets, spa,
293	    offsetof(dsl_dataset_t, ds_dirty_link));
294	txg_list_create(&dp->dp_dirty_zilogs, spa,
295	    offsetof(zilog_t, zl_dirty_link));
296	txg_list_create(&dp->dp_dirty_dirs, spa,
297	    offsetof(dsl_dir_t, dd_dirty_link));
298	txg_list_create(&dp->dp_sync_tasks, spa,
299	    offsetof(dsl_sync_task_t, dst_node));
300
301	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
302	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
303	    TASKQ_THREADS_CPU_PCT);
304
305	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
306	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
307	    zfs_zil_clean_taskq_minalloc,
308	    zfs_zil_clean_taskq_maxalloc,
309	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
310
311	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
312	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
313
314	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
315	    1, 4, 0);
316
317	return (dp);
318}
319
320int
321dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
322{
323	int err;
324	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
325
326	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
327	    &dp->dp_meta_objset);
328	if (err != 0)
329		dsl_pool_close(dp);
330	else
331		*dpp = dp;
332
333	return (err);
334}
335
336int
337dsl_pool_open(dsl_pool_t *dp)
338{
339	int err;
340	dsl_dir_t *dd;
341	dsl_dataset_t *ds;
342	uint64_t obj;
343
344	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
345	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
346	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
347	    &dp->dp_root_dir_obj);
348	if (err)
349		goto out;
350
351	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
352	    NULL, dp, &dp->dp_root_dir);
353	if (err)
354		goto out;
355
356	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
357	if (err)
358		goto out;
359
360	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
361		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
362		if (err)
363			goto out;
364		err = dsl_dataset_hold_obj(dp,
365		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
366		if (err == 0) {
367			err = dsl_dataset_hold_obj(dp,
368			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
369			    &dp->dp_origin_snap);
370			dsl_dataset_rele(ds, FTAG);
371		}
372		dsl_dir_rele(dd, dp);
373		if (err)
374			goto out;
375	}
376
377	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
378		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
379		    &dp->dp_free_dir);
380		if (err)
381			goto out;
382
383		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
384		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
385		if (err)
386			goto out;
387		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
388		    dp->dp_meta_objset, obj));
389	}
390
391	/*
392	 * Note: errors ignored, because the leak dir will not exist if we
393	 * have not encountered a leak yet.
394	 */
395	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
396	    &dp->dp_leak_dir);
397
398	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
399		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
400		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
401		    &dp->dp_bptree_obj);
402		if (err != 0)
403			goto out;
404	}
405
406	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
407		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
408		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
409		    &dp->dp_empty_bpobj);
410		if (err != 0)
411			goto out;
412	}
413
414	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
415	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
416	    &dp->dp_tmp_userrefs_obj);
417	if (err == ENOENT)
418		err = 0;
419	if (err)
420		goto out;
421
422	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
423
424out:
425	rrw_exit(&dp->dp_config_rwlock, FTAG);
426	return (err);
427}
428
429void
430dsl_pool_close(dsl_pool_t *dp)
431{
432	/*
433	 * Drop our references from dsl_pool_open().
434	 *
435	 * Since we held the origin_snap from "syncing" context (which
436	 * includes pool-opening context), it actually only got a "ref"
437	 * and not a hold, so just drop that here.
438	 */
439	if (dp->dp_origin_snap)
440		dsl_dataset_rele(dp->dp_origin_snap, dp);
441	if (dp->dp_mos_dir)
442		dsl_dir_rele(dp->dp_mos_dir, dp);
443	if (dp->dp_free_dir)
444		dsl_dir_rele(dp->dp_free_dir, dp);
445	if (dp->dp_leak_dir)
446		dsl_dir_rele(dp->dp_leak_dir, dp);
447	if (dp->dp_root_dir)
448		dsl_dir_rele(dp->dp_root_dir, dp);
449
450	bpobj_close(&dp->dp_free_bpobj);
451
452	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
453	if (dp->dp_meta_objset)
454		dmu_objset_evict(dp->dp_meta_objset);
455
456	txg_list_destroy(&dp->dp_dirty_datasets);
457	txg_list_destroy(&dp->dp_dirty_zilogs);
458	txg_list_destroy(&dp->dp_sync_tasks);
459	txg_list_destroy(&dp->dp_dirty_dirs);
460
461	taskq_destroy(dp->dp_zil_clean_taskq);
462	taskq_destroy(dp->dp_sync_taskq);
463
464	/*
465	 * We can't set retry to TRUE since we're explicitly specifying
466	 * a spa to flush. This is good enough; any missed buffers for
467	 * this spa won't cause trouble, and they'll eventually fall
468	 * out of the ARC just like any other unused buffer.
469	 */
470	arc_flush(dp->dp_spa, FALSE);
471
472	txg_fini(dp);
473	dsl_scan_fini(dp);
474	dmu_buf_user_evict_wait();
475
476	rrw_destroy(&dp->dp_config_rwlock);
477	mutex_destroy(&dp->dp_lock);
478	taskq_destroy(dp->dp_vnrele_taskq);
479	if (dp->dp_blkstats)
480		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
481	kmem_free(dp, sizeof (dsl_pool_t));
482}
483
484dsl_pool_t *
485dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
486{
487	int err;
488	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
489	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
490	dsl_dataset_t *ds;
491	uint64_t obj;
492
493	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
494
495	/* create and open the MOS (meta-objset) */
496	dp->dp_meta_objset = dmu_objset_create_impl(spa,
497	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
498
499	/* create the pool directory */
500	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
501	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
502	ASSERT0(err);
503
504	/* Initialize scan structures */
505	VERIFY0(dsl_scan_init(dp, txg));
506
507	/* create and open the root dir */
508	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
509	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
510	    NULL, dp, &dp->dp_root_dir));
511
512	/* create and open the meta-objset dir */
513	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
514	VERIFY0(dsl_pool_open_special_dir(dp,
515	    MOS_DIR_NAME, &dp->dp_mos_dir));
516
517	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
518		/* create and open the free dir */
519		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
520		    FREE_DIR_NAME, tx);
521		VERIFY0(dsl_pool_open_special_dir(dp,
522		    FREE_DIR_NAME, &dp->dp_free_dir));
523
524		/* create and open the free_bplist */
525		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
526		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
528		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
529		    dp->dp_meta_objset, obj));
530	}
531
532	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
533		dsl_pool_create_origin(dp, tx);
534
535	/* create the root dataset */
536	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
537
538	/* create the root objset */
539	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
540#ifdef _KERNEL
541	{
542		objset_t *os;
543		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
544		os = dmu_objset_create_impl(dp->dp_spa, ds,
545		    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
546		rrw_exit(&ds->ds_bp_rwlock, FTAG);
547		zfs_create_fs(os, kcred, zplprops, tx);
548	}
549#endif
550	dsl_dataset_rele(ds, FTAG);
551
552	dmu_tx_commit(tx);
553
554	rrw_exit(&dp->dp_config_rwlock, FTAG);
555
556	return (dp);
557}
558
559/*
560 * Account for the meta-objset space in its placeholder dsl_dir.
561 */
562void
563dsl_pool_mos_diduse_space(dsl_pool_t *dp,
564    int64_t used, int64_t comp, int64_t uncomp)
565{
566	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
567	mutex_enter(&dp->dp_lock);
568	dp->dp_mos_used_delta += used;
569	dp->dp_mos_compressed_delta += comp;
570	dp->dp_mos_uncompressed_delta += uncomp;
571	mutex_exit(&dp->dp_lock);
572}
573
574static void
575dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
576{
577	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
578	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
579	VERIFY0(zio_wait(zio));
580	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
581	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
582}
583
584static void
585dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
586{
587	ASSERT(MUTEX_HELD(&dp->dp_lock));
588
589	if (delta < 0)
590		ASSERT3U(-delta, <=, dp->dp_dirty_total);
591
592	dp->dp_dirty_total += delta;
593
594	/*
595	 * Note: we signal even when increasing dp_dirty_total.
596	 * This ensures forward progress -- each thread wakes the next waiter.
597	 */
598	if (dp->dp_dirty_total < zfs_dirty_data_max)
599		cv_signal(&dp->dp_spaceavail_cv);
600}
601
602void
603dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
604{
605	zio_t *zio;
606	dmu_tx_t *tx;
607	dsl_dir_t *dd;
608	dsl_dataset_t *ds;
609	objset_t *mos = dp->dp_meta_objset;
610	list_t synced_datasets;
611
612	list_create(&synced_datasets, sizeof (dsl_dataset_t),
613	    offsetof(dsl_dataset_t, ds_synced_link));
614
615	tx = dmu_tx_create_assigned(dp, txg);
616
617	/*
618	 * Write out all dirty blocks of dirty datasets.
619	 */
620	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
621	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
622		/*
623		 * We must not sync any non-MOS datasets twice, because
624		 * we may have taken a snapshot of them.  However, we
625		 * may sync newly-created datasets on pass 2.
626		 */
627		ASSERT(!list_link_active(&ds->ds_synced_link));
628		list_insert_tail(&synced_datasets, ds);
629		dsl_dataset_sync(ds, zio, tx);
630	}
631	VERIFY0(zio_wait(zio));
632
633	/*
634	 * We have written all of the accounted dirty data, so our
635	 * dp_space_towrite should now be zero.  However, some seldom-used
636	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
637	 * rounding error in dbuf_write_physdone).
638	 * Shore up the accounting of any dirtied space now.
639	 */
640	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
641
642	/*
643	 * Update the long range free counter after
644	 * we're done syncing user data
645	 */
646	mutex_enter(&dp->dp_lock);
647	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
648	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
649	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
650	mutex_exit(&dp->dp_lock);
651
652	/*
653	 * After the data blocks have been written (ensured by the zio_wait()
654	 * above), update the user/group space accounting.  This happens
655	 * in tasks dispatched to dp_sync_taskq, so wait for them before
656	 * continuing.
657	 */
658	for (ds = list_head(&synced_datasets); ds != NULL;
659	    ds = list_next(&synced_datasets, ds)) {
660		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
661	}
662	taskq_wait(dp->dp_sync_taskq);
663
664	/*
665	 * Sync the datasets again to push out the changes due to
666	 * userspace updates.  This must be done before we process the
667	 * sync tasks, so that any snapshots will have the correct
668	 * user accounting information (and we won't get confused
669	 * about which blocks are part of the snapshot).
670	 */
671	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
672	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
673		ASSERT(list_link_active(&ds->ds_synced_link));
674		dmu_buf_rele(ds->ds_dbuf, ds);
675		dsl_dataset_sync(ds, zio, tx);
676	}
677	VERIFY0(zio_wait(zio));
678
679	/*
680	 * Now that the datasets have been completely synced, we can
681	 * clean up our in-memory structures accumulated while syncing:
682	 *
683	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
684	 *  - release hold from dsl_dataset_dirty()
685	 */
686	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
687		dsl_dataset_sync_done(ds, tx);
688	}
689	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
690		dsl_dir_sync(dd, tx);
691	}
692
693	/*
694	 * The MOS's space is accounted for in the pool/$MOS
695	 * (dp_mos_dir).  We can't modify the mos while we're syncing
696	 * it, so we remember the deltas and apply them here.
697	 */
698	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
699	    dp->dp_mos_uncompressed_delta != 0) {
700		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
701		    dp->dp_mos_used_delta,
702		    dp->dp_mos_compressed_delta,
703		    dp->dp_mos_uncompressed_delta, tx);
704		dp->dp_mos_used_delta = 0;
705		dp->dp_mos_compressed_delta = 0;
706		dp->dp_mos_uncompressed_delta = 0;
707	}
708
709	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
710		dsl_pool_sync_mos(dp, tx);
711	}
712
713	/*
714	 * If we modify a dataset in the same txg that we want to destroy it,
715	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
716	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
717	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
718	 * and clearing the hold on it) before we process the sync_tasks.
719	 * The MOS data dirtied by the sync_tasks will be synced on the next
720	 * pass.
721	 */
722	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
723		dsl_sync_task_t *dst;
724		/*
725		 * No more sync tasks should have been added while we
726		 * were syncing.
727		 */
728		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
729		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
730			dsl_sync_task_sync(dst, tx);
731	}
732
733	dmu_tx_commit(tx);
734
735	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
736}
737
738void
739dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
740{
741	zilog_t *zilog;
742
743	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
744		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
745		/*
746		 * We don't remove the zilog from the dp_dirty_zilogs
747		 * list until after we've cleaned it. This ensures that
748		 * callers of zilog_is_dirty() receive an accurate
749		 * answer when they are racing with the spa sync thread.
750		 */
751		zil_clean(zilog, txg);
752		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
753		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
754		dmu_buf_rele(ds->ds_dbuf, zilog);
755	}
756	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
757}
758
759/*
760 * TRUE if the current thread is the tx_sync_thread or if we
761 * are being called from SPA context during pool initialization.
762 */
763int
764dsl_pool_sync_context(dsl_pool_t *dp)
765{
766	return (curthread == dp->dp_tx.tx_sync_thread ||
767	    spa_is_initializing(dp->dp_spa) ||
768	    taskq_member(dp->dp_sync_taskq, curthread));
769}
770
771uint64_t
772dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
773{
774	uint64_t space, resv;
775
776	/*
777	 * If we're trying to assess whether it's OK to do a free,
778	 * cut the reservation in half to allow forward progress
779	 * (e.g. make it possible to rm(1) files from a full pool).
780	 */
781	space = spa_get_dspace(dp->dp_spa);
782	resv = spa_get_slop_space(dp->dp_spa);
783	if (netfree)
784		resv >>= 1;
785
786	return (space - resv);
787}
788
789boolean_t
790dsl_pool_need_dirty_delay(dsl_pool_t *dp)
791{
792	uint64_t delay_min_bytes =
793	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
794	boolean_t rv;
795
796	mutex_enter(&dp->dp_lock);
797	if (dp->dp_dirty_total > zfs_dirty_data_sync)
798		txg_kick(dp);
799	rv = (dp->dp_dirty_total > delay_min_bytes);
800	mutex_exit(&dp->dp_lock);
801	return (rv);
802}
803
804void
805dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
806{
807	if (space > 0) {
808		mutex_enter(&dp->dp_lock);
809		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
810		dsl_pool_dirty_delta(dp, space);
811		mutex_exit(&dp->dp_lock);
812	}
813}
814
815void
816dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
817{
818	ASSERT3S(space, >=, 0);
819	if (space == 0)
820		return;
821	mutex_enter(&dp->dp_lock);
822	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
823		/* XXX writing something we didn't dirty? */
824		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
825	}
826	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
827	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
828	ASSERT3U(dp->dp_dirty_total, >=, space);
829	dsl_pool_dirty_delta(dp, -space);
830	mutex_exit(&dp->dp_lock);
831}
832
833/* ARGSUSED */
834static int
835upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
836{
837	dmu_tx_t *tx = arg;
838	dsl_dataset_t *ds, *prev = NULL;
839	int err;
840
841	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
842	if (err)
843		return (err);
844
845	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
846		err = dsl_dataset_hold_obj(dp,
847		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
848		if (err) {
849			dsl_dataset_rele(ds, FTAG);
850			return (err);
851		}
852
853		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
854			break;
855		dsl_dataset_rele(ds, FTAG);
856		ds = prev;
857		prev = NULL;
858	}
859
860	if (prev == NULL) {
861		prev = dp->dp_origin_snap;
862
863		/*
864		 * The $ORIGIN can't have any data, or the accounting
865		 * will be wrong.
866		 */
867		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
868		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
869		rrw_exit(&ds->ds_bp_rwlock, FTAG);
870
871		/* The origin doesn't get attached to itself */
872		if (ds->ds_object == prev->ds_object) {
873			dsl_dataset_rele(ds, FTAG);
874			return (0);
875		}
876
877		dmu_buf_will_dirty(ds->ds_dbuf, tx);
878		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
879		dsl_dataset_phys(ds)->ds_prev_snap_txg =
880		    dsl_dataset_phys(prev)->ds_creation_txg;
881
882		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
883		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
884
885		dmu_buf_will_dirty(prev->ds_dbuf, tx);
886		dsl_dataset_phys(prev)->ds_num_children++;
887
888		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
889			ASSERT(ds->ds_prev == NULL);
890			VERIFY0(dsl_dataset_hold_obj(dp,
891			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
892			    ds, &ds->ds_prev));
893		}
894	}
895
896	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
897	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
898
899	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
900		dmu_buf_will_dirty(prev->ds_dbuf, tx);
901		dsl_dataset_phys(prev)->ds_next_clones_obj =
902		    zap_create(dp->dp_meta_objset,
903		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
904	}
905	VERIFY0(zap_add_int(dp->dp_meta_objset,
906	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
907
908	dsl_dataset_rele(ds, FTAG);
909	if (prev != dp->dp_origin_snap)
910		dsl_dataset_rele(prev, FTAG);
911	return (0);
912}
913
914void
915dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
916{
917	ASSERT(dmu_tx_is_syncing(tx));
918	ASSERT(dp->dp_origin_snap != NULL);
919
920	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
921	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
922}
923
924/* ARGSUSED */
925static int
926upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
927{
928	dmu_tx_t *tx = arg;
929	objset_t *mos = dp->dp_meta_objset;
930
931	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
932		dsl_dataset_t *origin;
933
934		VERIFY0(dsl_dataset_hold_obj(dp,
935		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
936
937		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
938			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
939			dsl_dir_phys(origin->ds_dir)->dd_clones =
940			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
941			    0, tx);
942		}
943
944		VERIFY0(zap_add_int(dp->dp_meta_objset,
945		    dsl_dir_phys(origin->ds_dir)->dd_clones,
946		    ds->ds_object, tx));
947
948		dsl_dataset_rele(origin, FTAG);
949	}
950	return (0);
951}
952
953void
954dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
955{
956	ASSERT(dmu_tx_is_syncing(tx));
957	uint64_t obj;
958
959	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
960	VERIFY0(dsl_pool_open_special_dir(dp,
961	    FREE_DIR_NAME, &dp->dp_free_dir));
962
963	/*
964	 * We can't use bpobj_alloc(), because spa_version() still
965	 * returns the old version, and we need a new-version bpobj with
966	 * subobj support.  So call dmu_object_alloc() directly.
967	 */
968	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
969	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
970	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
971	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
972	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
973
974	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
975	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
976}
977
978void
979dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
980{
981	uint64_t dsobj;
982	dsl_dataset_t *ds;
983
984	ASSERT(dmu_tx_is_syncing(tx));
985	ASSERT(dp->dp_origin_snap == NULL);
986	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
987
988	/* create the origin dir, ds, & snap-ds */
989	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
990	    NULL, 0, kcred, tx);
991	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
992	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
993	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
994	    dp, &dp->dp_origin_snap));
995	dsl_dataset_rele(ds, FTAG);
996}
997
998taskq_t *
999dsl_pool_vnrele_taskq(dsl_pool_t *dp)
1000{
1001	return (dp->dp_vnrele_taskq);
1002}
1003
1004/*
1005 * Walk through the pool-wide zap object of temporary snapshot user holds
1006 * and release them.
1007 */
1008void
1009dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1010{
1011	zap_attribute_t za;
1012	zap_cursor_t zc;
1013	objset_t *mos = dp->dp_meta_objset;
1014	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1015	nvlist_t *holds;
1016
1017	if (zapobj == 0)
1018		return;
1019	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1020
1021	holds = fnvlist_alloc();
1022
1023	for (zap_cursor_init(&zc, mos, zapobj);
1024	    zap_cursor_retrieve(&zc, &za) == 0;
1025	    zap_cursor_advance(&zc)) {
1026		char *htag;
1027		nvlist_t *tags;
1028
1029		htag = strchr(za.za_name, '-');
1030		*htag = '\0';
1031		++htag;
1032		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1033			tags = fnvlist_alloc();
1034			fnvlist_add_boolean(tags, htag);
1035			fnvlist_add_nvlist(holds, za.za_name, tags);
1036			fnvlist_free(tags);
1037		} else {
1038			fnvlist_add_boolean(tags, htag);
1039		}
1040	}
1041	dsl_dataset_user_release_tmp(dp, holds);
1042	fnvlist_free(holds);
1043	zap_cursor_fini(&zc);
1044}
1045
1046/*
1047 * Create the pool-wide zap object for storing temporary snapshot holds.
1048 */
1049void
1050dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1051{
1052	objset_t *mos = dp->dp_meta_objset;
1053
1054	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1055	ASSERT(dmu_tx_is_syncing(tx));
1056
1057	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1058	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1059}
1060
1061static int
1062dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1063    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1064{
1065	objset_t *mos = dp->dp_meta_objset;
1066	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1067	char *name;
1068	int error;
1069
1070	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1071	ASSERT(dmu_tx_is_syncing(tx));
1072
1073	/*
1074	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1075	 * zap object for temporary holds might not exist yet.
1076	 */
1077	if (zapobj == 0) {
1078		if (holding) {
1079			dsl_pool_user_hold_create_obj(dp, tx);
1080			zapobj = dp->dp_tmp_userrefs_obj;
1081		} else {
1082			return (SET_ERROR(ENOENT));
1083		}
1084	}
1085
1086	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1087	if (holding)
1088		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1089	else
1090		error = zap_remove(mos, zapobj, name, tx);
1091	strfree(name);
1092
1093	return (error);
1094}
1095
1096/*
1097 * Add a temporary hold for the given dataset object and tag.
1098 */
1099int
1100dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1101    uint64_t now, dmu_tx_t *tx)
1102{
1103	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1104}
1105
1106/*
1107 * Release a temporary hold for the given dataset object and tag.
1108 */
1109int
1110dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1111    dmu_tx_t *tx)
1112{
1113	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1114	    tx, B_FALSE));
1115}
1116
1117/*
1118 * DSL Pool Configuration Lock
1119 *
1120 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1121 * creation / destruction / rename / property setting).  It must be held for
1122 * read to hold a dataset or dsl_dir.  I.e. you must call
1123 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1124 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1125 * must be held continuously until all datasets and dsl_dirs are released.
1126 *
1127 * The only exception to this rule is that if a "long hold" is placed on
1128 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1129 * is still held.  The long hold will prevent the dataset from being
1130 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1131 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1132 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1133 *
1134 * Legitimate long-holders (including owners) should be long-running, cancelable
1135 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1136 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1137 * "zfs send", and "zfs diff".  There are several other long-holders whose
1138 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1139 *
1140 * The usual formula for long-holding would be:
1141 * dsl_pool_hold()
1142 * dsl_dataset_hold()
1143 * ... perform checks ...
1144 * dsl_dataset_long_hold()
1145 * dsl_pool_rele()
1146 * ... perform long-running task ...
1147 * dsl_dataset_long_rele()
1148 * dsl_dataset_rele()
1149 *
1150 * Note that when the long hold is released, the dataset is still held but
1151 * the pool is not held.  The dataset may change arbitrarily during this time
1152 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1153 * dataset except release it.
1154 *
1155 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1156 * or modifying operations.
1157 *
1158 * Modifying operations should generally use dsl_sync_task().  The synctask
1159 * infrastructure enforces proper locking strategy with respect to the
1160 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1161 *
1162 * Read-only operations will manually hold the pool, then the dataset, obtain
1163 * information from the dataset, then release the pool and dataset.
1164 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1165 * hold/rele.
1166 */
1167
1168int
1169dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1170{
1171	spa_t *spa;
1172	int error;
1173
1174	error = spa_open(name, &spa, tag);
1175	if (error == 0) {
1176		*dp = spa_get_dsl(spa);
1177		dsl_pool_config_enter(*dp, tag);
1178	}
1179	return (error);
1180}
1181
1182void
1183dsl_pool_rele(dsl_pool_t *dp, void *tag)
1184{
1185	dsl_pool_config_exit(dp, tag);
1186	spa_close(dp->dp_spa, tag);
1187}
1188
1189void
1190dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1191{
1192	/*
1193	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1194	 *
1195	 * The rrwlock can (with the track_all flag) track all reading threads,
1196	 * which is very useful for debugging which code path failed to release
1197	 * the lock, and for verifying that the *current* thread does hold
1198	 * the lock.
1199	 *
1200	 * (Unlike a rwlock, which knows that N threads hold it for
1201	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1202	 * if any thread holds it for read, even if this thread doesn't).
1203	 */
1204	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1205	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1206}
1207
1208void
1209dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1210{
1211	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1212	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1213}
1214
1215void
1216dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1217{
1218	rrw_exit(&dp->dp_config_rwlock, tag);
1219}
1220
1221boolean_t
1222dsl_pool_config_held(dsl_pool_t *dp)
1223{
1224	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1225}
1226
1227boolean_t
1228dsl_pool_config_held_writer(dsl_pool_t *dp)
1229{
1230	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1231}
1232