dsl_pool.c revision 321567
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28 */
29
30#include <sys/dsl_pool.h>
31#include <sys/dsl_dataset.h>
32#include <sys/dsl_prop.h>
33#include <sys/dsl_dir.h>
34#include <sys/dsl_synctask.h>
35#include <sys/dsl_scan.h>
36#include <sys/dnode.h>
37#include <sys/dmu_tx.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/zap.h>
41#include <sys/zio.h>
42#include <sys/zfs_context.h>
43#include <sys/fs/zfs.h>
44#include <sys/zfs_znode.h>
45#include <sys/spa_impl.h>
46#include <sys/dsl_deadlist.h>
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
49#include <sys/zil_impl.h>
50#include <sys/dsl_userhold.h>
51
52#if defined(__FreeBSD__) && defined(_KERNEL)
53#include <sys/types.h>
54#include <sys/sysctl.h>
55#endif
56
57/*
58 * ZFS Write Throttle
59 * ------------------
60 *
61 * ZFS must limit the rate of incoming writes to the rate at which it is able
62 * to sync data modifications to the backend storage. Throttling by too much
63 * creates an artificial limit; throttling by too little can only be sustained
64 * for short periods and would lead to highly lumpy performance. On a per-pool
65 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
66 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
67 * of dirty data decreases. When the amount of dirty data exceeds a
68 * predetermined threshold further modifications are blocked until the amount
69 * of dirty data decreases (as data is synced out).
70 *
71 * The limit on dirty data is tunable, and should be adjusted according to
72 * both the IO capacity and available memory of the system. The larger the
73 * window, the more ZFS is able to aggregate and amortize metadata (and data)
74 * changes. However, memory is a limited resource, and allowing for more dirty
75 * data comes at the cost of keeping other useful data in memory (for example
76 * ZFS data cached by the ARC).
77 *
78 * Implementation
79 *
80 * As buffers are modified dsl_pool_willuse_space() increments both the per-
81 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
82 * dirty space used; dsl_pool_dirty_space() decrements those values as data
83 * is synced out from dsl_pool_sync(). While only the poolwide value is
84 * relevant, the per-txg value is useful for debugging. The tunable
85 * zfs_dirty_data_max determines the dirty space limit. Once that value is
86 * exceeded, new writes are halted until space frees up.
87 *
88 * The zfs_dirty_data_sync tunable dictates the threshold at which we
89 * ensure that there is a txg syncing (see the comment in txg.c for a full
90 * description of transaction group stages).
91 *
92 * The IO scheduler uses both the dirty space limit and current amount of
93 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
94 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
95 *
96 * The delay is also calculated based on the amount of dirty data.  See the
97 * comment above dmu_tx_delay() for details.
98 */
99
100/*
101 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
102 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
103 */
104uint64_t zfs_dirty_data_max;
105uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
106int zfs_dirty_data_max_percent = 10;
107
108/*
109 * If there is at least this much dirty data, push out a txg.
110 */
111uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
112
113/*
114 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
115 * and delay each transaction.
116 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
117 */
118int zfs_delay_min_dirty_percent = 60;
119
120/*
121 * This controls how quickly the delay approaches infinity.
122 * Larger values cause it to delay more for a given amount of dirty data.
123 * Therefore larger values will cause there to be less dirty data for a
124 * given throughput.
125 *
126 * For the smoothest delay, this value should be about 1 billion divided
127 * by the maximum number of operations per second.  This will smoothly
128 * handle between 10x and 1/10th this number.
129 *
130 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
131 * multiply in dmu_tx_delay().
132 */
133uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
134
135/*
136 * This determines the number of threads used by the dp_sync_taskq.
137 */
138int zfs_sync_taskq_batch_pct = 75;
139
140#if defined(__FreeBSD__) && defined(_KERNEL)
141
142extern int zfs_vdev_async_write_active_max_dirty_percent;
143
144SYSCTL_DECL(_vfs_zfs);
145
146SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
147    &zfs_dirty_data_max, 0,
148    "The maximum amount of dirty data in bytes after which new writes are "
149    "halted until space becomes available");
150
151SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
152    &zfs_dirty_data_max_max, 0,
153    "The absolute cap on dirty_data_max when auto calculating");
154
155static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
156SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
157    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
158    sysctl_zfs_dirty_data_max_percent, "I",
159    "The percent of physical memory used to auto calculate dirty_data_max");
160
161SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
162    &zfs_dirty_data_sync, 0,
163    "Force a txg if the number of dirty buffer bytes exceed this value");
164
165static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
166/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
167SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
168    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
169    sysctl_zfs_delay_min_dirty_percent, "I",
170    "The limit of outstanding dirty data before transations are delayed");
171
172static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
173/* No zfs_delay_scale tunable due to limit requirements */
174SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
175    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
176    sysctl_zfs_delay_scale, "QU",
177    "Controls how quickly the delay approaches infinity");
178
179static int
180sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
181{
182	int val, err;
183
184	val = zfs_dirty_data_max_percent;
185	err = sysctl_handle_int(oidp, &val, 0, req);
186	if (err != 0 || req->newptr == NULL)
187		return (err);
188
189	if (val < 0 || val > 100)
190		return (EINVAL);
191
192	zfs_dirty_data_max_percent = val;
193
194	return (0);
195}
196
197static int
198sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
199{
200	int val, err;
201
202	val = zfs_delay_min_dirty_percent;
203	err = sysctl_handle_int(oidp, &val, 0, req);
204	if (err != 0 || req->newptr == NULL)
205		return (err);
206
207	if (val < zfs_vdev_async_write_active_max_dirty_percent)
208		return (EINVAL);
209
210	zfs_delay_min_dirty_percent = val;
211
212	return (0);
213}
214
215static int
216sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
217{
218	uint64_t val;
219	int err;
220
221	val = zfs_delay_scale;
222	err = sysctl_handle_64(oidp, &val, 0, req);
223	if (err != 0 || req->newptr == NULL)
224		return (err);
225
226	if (val > UINT64_MAX / zfs_dirty_data_max)
227		return (EINVAL);
228
229	zfs_delay_scale = val;
230
231	return (0);
232}
233#endif
234
235int
236dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
237{
238	uint64_t obj;
239	int err;
240
241	err = zap_lookup(dp->dp_meta_objset,
242	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
243	    name, sizeof (obj), 1, &obj);
244	if (err)
245		return (err);
246
247	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
248}
249
250static dsl_pool_t *
251dsl_pool_open_impl(spa_t *spa, uint64_t txg)
252{
253	dsl_pool_t *dp;
254	blkptr_t *bp = spa_get_rootblkptr(spa);
255
256	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
257	dp->dp_spa = spa;
258	dp->dp_meta_rootbp = *bp;
259	rrw_init(&dp->dp_config_rwlock, B_TRUE);
260	txg_init(dp, txg);
261
262	txg_list_create(&dp->dp_dirty_datasets, spa,
263	    offsetof(dsl_dataset_t, ds_dirty_link));
264	txg_list_create(&dp->dp_dirty_zilogs, spa,
265	    offsetof(zilog_t, zl_dirty_link));
266	txg_list_create(&dp->dp_dirty_dirs, spa,
267	    offsetof(dsl_dir_t, dd_dirty_link));
268	txg_list_create(&dp->dp_sync_tasks, spa,
269	    offsetof(dsl_sync_task_t, dst_node));
270
271	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
272	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
273	    TASKQ_THREADS_CPU_PCT);
274
275	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
276	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
277
278	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
279	    1, 4, 0);
280
281	return (dp);
282}
283
284int
285dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
286{
287	int err;
288	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
289
290	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
291	    &dp->dp_meta_objset);
292	if (err != 0)
293		dsl_pool_close(dp);
294	else
295		*dpp = dp;
296
297	return (err);
298}
299
300int
301dsl_pool_open(dsl_pool_t *dp)
302{
303	int err;
304	dsl_dir_t *dd;
305	dsl_dataset_t *ds;
306	uint64_t obj;
307
308	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
309	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
310	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
311	    &dp->dp_root_dir_obj);
312	if (err)
313		goto out;
314
315	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
316	    NULL, dp, &dp->dp_root_dir);
317	if (err)
318		goto out;
319
320	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
321	if (err)
322		goto out;
323
324	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
325		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
326		if (err)
327			goto out;
328		err = dsl_dataset_hold_obj(dp,
329		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
330		if (err == 0) {
331			err = dsl_dataset_hold_obj(dp,
332			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
333			    &dp->dp_origin_snap);
334			dsl_dataset_rele(ds, FTAG);
335		}
336		dsl_dir_rele(dd, dp);
337		if (err)
338			goto out;
339	}
340
341	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
342		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
343		    &dp->dp_free_dir);
344		if (err)
345			goto out;
346
347		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
348		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
349		if (err)
350			goto out;
351		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
352		    dp->dp_meta_objset, obj));
353	}
354
355	/*
356	 * Note: errors ignored, because the leak dir will not exist if we
357	 * have not encountered a leak yet.
358	 */
359	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
360	    &dp->dp_leak_dir);
361
362	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
363		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
364		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
365		    &dp->dp_bptree_obj);
366		if (err != 0)
367			goto out;
368	}
369
370	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
371		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
372		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
373		    &dp->dp_empty_bpobj);
374		if (err != 0)
375			goto out;
376	}
377
378	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
379	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
380	    &dp->dp_tmp_userrefs_obj);
381	if (err == ENOENT)
382		err = 0;
383	if (err)
384		goto out;
385
386	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
387
388out:
389	rrw_exit(&dp->dp_config_rwlock, FTAG);
390	return (err);
391}
392
393void
394dsl_pool_close(dsl_pool_t *dp)
395{
396	/*
397	 * Drop our references from dsl_pool_open().
398	 *
399	 * Since we held the origin_snap from "syncing" context (which
400	 * includes pool-opening context), it actually only got a "ref"
401	 * and not a hold, so just drop that here.
402	 */
403	if (dp->dp_origin_snap)
404		dsl_dataset_rele(dp->dp_origin_snap, dp);
405	if (dp->dp_mos_dir)
406		dsl_dir_rele(dp->dp_mos_dir, dp);
407	if (dp->dp_free_dir)
408		dsl_dir_rele(dp->dp_free_dir, dp);
409	if (dp->dp_leak_dir)
410		dsl_dir_rele(dp->dp_leak_dir, dp);
411	if (dp->dp_root_dir)
412		dsl_dir_rele(dp->dp_root_dir, dp);
413
414	bpobj_close(&dp->dp_free_bpobj);
415
416	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
417	if (dp->dp_meta_objset)
418		dmu_objset_evict(dp->dp_meta_objset);
419
420	txg_list_destroy(&dp->dp_dirty_datasets);
421	txg_list_destroy(&dp->dp_dirty_zilogs);
422	txg_list_destroy(&dp->dp_sync_tasks);
423	txg_list_destroy(&dp->dp_dirty_dirs);
424
425	taskq_destroy(dp->dp_sync_taskq);
426
427	/*
428	 * We can't set retry to TRUE since we're explicitly specifying
429	 * a spa to flush. This is good enough; any missed buffers for
430	 * this spa won't cause trouble, and they'll eventually fall
431	 * out of the ARC just like any other unused buffer.
432	 */
433	arc_flush(dp->dp_spa, FALSE);
434
435	txg_fini(dp);
436	dsl_scan_fini(dp);
437	dmu_buf_user_evict_wait();
438
439	rrw_destroy(&dp->dp_config_rwlock);
440	mutex_destroy(&dp->dp_lock);
441	taskq_destroy(dp->dp_vnrele_taskq);
442	if (dp->dp_blkstats)
443		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
444	kmem_free(dp, sizeof (dsl_pool_t));
445}
446
447dsl_pool_t *
448dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
449{
450	int err;
451	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
452	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
453	objset_t *os;
454	dsl_dataset_t *ds;
455	uint64_t obj;
456
457	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
458
459	/* create and open the MOS (meta-objset) */
460	dp->dp_meta_objset = dmu_objset_create_impl(spa,
461	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
462
463	/* create the pool directory */
464	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
465	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
466	ASSERT0(err);
467
468	/* Initialize scan structures */
469	VERIFY0(dsl_scan_init(dp, txg));
470
471	/* create and open the root dir */
472	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
473	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
474	    NULL, dp, &dp->dp_root_dir));
475
476	/* create and open the meta-objset dir */
477	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
478	VERIFY0(dsl_pool_open_special_dir(dp,
479	    MOS_DIR_NAME, &dp->dp_mos_dir));
480
481	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
482		/* create and open the free dir */
483		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
484		    FREE_DIR_NAME, tx);
485		VERIFY0(dsl_pool_open_special_dir(dp,
486		    FREE_DIR_NAME, &dp->dp_free_dir));
487
488		/* create and open the free_bplist */
489		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
490		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
491		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
492		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
493		    dp->dp_meta_objset, obj));
494	}
495
496	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
497		dsl_pool_create_origin(dp, tx);
498
499	/* create the root dataset */
500	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
501
502	/* create the root objset */
503	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
504	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
505	os = dmu_objset_create_impl(dp->dp_spa, ds,
506	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
507	rrw_exit(&ds->ds_bp_rwlock, FTAG);
508#ifdef _KERNEL
509	zfs_create_fs(os, kcred, zplprops, tx);
510#endif
511	dsl_dataset_rele(ds, FTAG);
512
513	dmu_tx_commit(tx);
514
515	rrw_exit(&dp->dp_config_rwlock, FTAG);
516
517	return (dp);
518}
519
520/*
521 * Account for the meta-objset space in its placeholder dsl_dir.
522 */
523void
524dsl_pool_mos_diduse_space(dsl_pool_t *dp,
525    int64_t used, int64_t comp, int64_t uncomp)
526{
527	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
528	mutex_enter(&dp->dp_lock);
529	dp->dp_mos_used_delta += used;
530	dp->dp_mos_compressed_delta += comp;
531	dp->dp_mos_uncompressed_delta += uncomp;
532	mutex_exit(&dp->dp_lock);
533}
534
535static void
536dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
537{
538	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
539	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
540	VERIFY0(zio_wait(zio));
541	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
542	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
543}
544
545static void
546dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
547{
548	ASSERT(MUTEX_HELD(&dp->dp_lock));
549
550	if (delta < 0)
551		ASSERT3U(-delta, <=, dp->dp_dirty_total);
552
553	dp->dp_dirty_total += delta;
554
555	/*
556	 * Note: we signal even when increasing dp_dirty_total.
557	 * This ensures forward progress -- each thread wakes the next waiter.
558	 */
559	if (dp->dp_dirty_total < zfs_dirty_data_max)
560		cv_signal(&dp->dp_spaceavail_cv);
561}
562
563void
564dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
565{
566	zio_t *zio;
567	dmu_tx_t *tx;
568	dsl_dir_t *dd;
569	dsl_dataset_t *ds;
570	objset_t *mos = dp->dp_meta_objset;
571	list_t synced_datasets;
572
573	list_create(&synced_datasets, sizeof (dsl_dataset_t),
574	    offsetof(dsl_dataset_t, ds_synced_link));
575
576	tx = dmu_tx_create_assigned(dp, txg);
577
578	/*
579	 * Write out all dirty blocks of dirty datasets.
580	 */
581	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
582	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
583		/*
584		 * We must not sync any non-MOS datasets twice, because
585		 * we may have taken a snapshot of them.  However, we
586		 * may sync newly-created datasets on pass 2.
587		 */
588		ASSERT(!list_link_active(&ds->ds_synced_link));
589		list_insert_tail(&synced_datasets, ds);
590		dsl_dataset_sync(ds, zio, tx);
591	}
592	VERIFY0(zio_wait(zio));
593
594	/*
595	 * We have written all of the accounted dirty data, so our
596	 * dp_space_towrite should now be zero.  However, some seldom-used
597	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
598	 * rounding error in dbuf_write_physdone).
599	 * Shore up the accounting of any dirtied space now.
600	 */
601	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
602
603	/*
604	 * Update the long range free counter after
605	 * we're done syncing user data
606	 */
607	mutex_enter(&dp->dp_lock);
608	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
609	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
610	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
611	mutex_exit(&dp->dp_lock);
612
613	/*
614	 * After the data blocks have been written (ensured by the zio_wait()
615	 * above), update the user/group space accounting.  This happens
616	 * in tasks dispatched to dp_sync_taskq, so wait for them before
617	 * continuing.
618	 */
619	for (ds = list_head(&synced_datasets); ds != NULL;
620	    ds = list_next(&synced_datasets, ds)) {
621		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
622	}
623	taskq_wait(dp->dp_sync_taskq);
624
625	/*
626	 * Sync the datasets again to push out the changes due to
627	 * userspace updates.  This must be done before we process the
628	 * sync tasks, so that any snapshots will have the correct
629	 * user accounting information (and we won't get confused
630	 * about which blocks are part of the snapshot).
631	 */
632	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
633	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
634		ASSERT(list_link_active(&ds->ds_synced_link));
635		dmu_buf_rele(ds->ds_dbuf, ds);
636		dsl_dataset_sync(ds, zio, tx);
637	}
638	VERIFY0(zio_wait(zio));
639
640	/*
641	 * Now that the datasets have been completely synced, we can
642	 * clean up our in-memory structures accumulated while syncing:
643	 *
644	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
645	 *  - release hold from dsl_dataset_dirty()
646	 */
647	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
648		dsl_dataset_sync_done(ds, tx);
649	}
650	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
651		dsl_dir_sync(dd, tx);
652	}
653
654	/*
655	 * The MOS's space is accounted for in the pool/$MOS
656	 * (dp_mos_dir).  We can't modify the mos while we're syncing
657	 * it, so we remember the deltas and apply them here.
658	 */
659	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
660	    dp->dp_mos_uncompressed_delta != 0) {
661		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
662		    dp->dp_mos_used_delta,
663		    dp->dp_mos_compressed_delta,
664		    dp->dp_mos_uncompressed_delta, tx);
665		dp->dp_mos_used_delta = 0;
666		dp->dp_mos_compressed_delta = 0;
667		dp->dp_mos_uncompressed_delta = 0;
668	}
669
670	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
671		dsl_pool_sync_mos(dp, tx);
672	}
673
674	/*
675	 * If we modify a dataset in the same txg that we want to destroy it,
676	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
677	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
678	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
679	 * and clearing the hold on it) before we process the sync_tasks.
680	 * The MOS data dirtied by the sync_tasks will be synced on the next
681	 * pass.
682	 */
683	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
684		dsl_sync_task_t *dst;
685		/*
686		 * No more sync tasks should have been added while we
687		 * were syncing.
688		 */
689		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
690		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
691			dsl_sync_task_sync(dst, tx);
692	}
693
694	dmu_tx_commit(tx);
695
696	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
697}
698
699void
700dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
701{
702	zilog_t *zilog;
703
704	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
705		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
706		/*
707		 * We don't remove the zilog from the dp_dirty_zilogs
708		 * list until after we've cleaned it. This ensures that
709		 * callers of zilog_is_dirty() receive an accurate
710		 * answer when they are racing with the spa sync thread.
711		 */
712		zil_clean(zilog, txg);
713		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
714		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
715		dmu_buf_rele(ds->ds_dbuf, zilog);
716	}
717	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
718}
719
720/*
721 * TRUE if the current thread is the tx_sync_thread or if we
722 * are being called from SPA context during pool initialization.
723 */
724int
725dsl_pool_sync_context(dsl_pool_t *dp)
726{
727	return (curthread == dp->dp_tx.tx_sync_thread ||
728	    spa_is_initializing(dp->dp_spa) ||
729	    taskq_member(dp->dp_sync_taskq, curthread));
730}
731
732uint64_t
733dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
734{
735	uint64_t space, resv;
736
737	/*
738	 * If we're trying to assess whether it's OK to do a free,
739	 * cut the reservation in half to allow forward progress
740	 * (e.g. make it possible to rm(1) files from a full pool).
741	 */
742	space = spa_get_dspace(dp->dp_spa);
743	resv = spa_get_slop_space(dp->dp_spa);
744	if (netfree)
745		resv >>= 1;
746
747	return (space - resv);
748}
749
750boolean_t
751dsl_pool_need_dirty_delay(dsl_pool_t *dp)
752{
753	uint64_t delay_min_bytes =
754	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
755	boolean_t rv;
756
757	mutex_enter(&dp->dp_lock);
758	if (dp->dp_dirty_total > zfs_dirty_data_sync)
759		txg_kick(dp);
760	rv = (dp->dp_dirty_total > delay_min_bytes);
761	mutex_exit(&dp->dp_lock);
762	return (rv);
763}
764
765void
766dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
767{
768	if (space > 0) {
769		mutex_enter(&dp->dp_lock);
770		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
771		dsl_pool_dirty_delta(dp, space);
772		mutex_exit(&dp->dp_lock);
773	}
774}
775
776void
777dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
778{
779	ASSERT3S(space, >=, 0);
780	if (space == 0)
781		return;
782	mutex_enter(&dp->dp_lock);
783	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
784		/* XXX writing something we didn't dirty? */
785		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
786	}
787	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
788	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
789	ASSERT3U(dp->dp_dirty_total, >=, space);
790	dsl_pool_dirty_delta(dp, -space);
791	mutex_exit(&dp->dp_lock);
792}
793
794/* ARGSUSED */
795static int
796upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
797{
798	dmu_tx_t *tx = arg;
799	dsl_dataset_t *ds, *prev = NULL;
800	int err;
801
802	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
803	if (err)
804		return (err);
805
806	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
807		err = dsl_dataset_hold_obj(dp,
808		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
809		if (err) {
810			dsl_dataset_rele(ds, FTAG);
811			return (err);
812		}
813
814		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
815			break;
816		dsl_dataset_rele(ds, FTAG);
817		ds = prev;
818		prev = NULL;
819	}
820
821	if (prev == NULL) {
822		prev = dp->dp_origin_snap;
823
824		/*
825		 * The $ORIGIN can't have any data, or the accounting
826		 * will be wrong.
827		 */
828		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
829		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
830		rrw_exit(&ds->ds_bp_rwlock, FTAG);
831
832		/* The origin doesn't get attached to itself */
833		if (ds->ds_object == prev->ds_object) {
834			dsl_dataset_rele(ds, FTAG);
835			return (0);
836		}
837
838		dmu_buf_will_dirty(ds->ds_dbuf, tx);
839		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
840		dsl_dataset_phys(ds)->ds_prev_snap_txg =
841		    dsl_dataset_phys(prev)->ds_creation_txg;
842
843		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
844		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
845
846		dmu_buf_will_dirty(prev->ds_dbuf, tx);
847		dsl_dataset_phys(prev)->ds_num_children++;
848
849		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
850			ASSERT(ds->ds_prev == NULL);
851			VERIFY0(dsl_dataset_hold_obj(dp,
852			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
853			    ds, &ds->ds_prev));
854		}
855	}
856
857	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
858	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
859
860	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
861		dmu_buf_will_dirty(prev->ds_dbuf, tx);
862		dsl_dataset_phys(prev)->ds_next_clones_obj =
863		    zap_create(dp->dp_meta_objset,
864		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
865	}
866	VERIFY0(zap_add_int(dp->dp_meta_objset,
867	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
868
869	dsl_dataset_rele(ds, FTAG);
870	if (prev != dp->dp_origin_snap)
871		dsl_dataset_rele(prev, FTAG);
872	return (0);
873}
874
875void
876dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
877{
878	ASSERT(dmu_tx_is_syncing(tx));
879	ASSERT(dp->dp_origin_snap != NULL);
880
881	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
882	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
883}
884
885/* ARGSUSED */
886static int
887upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
888{
889	dmu_tx_t *tx = arg;
890	objset_t *mos = dp->dp_meta_objset;
891
892	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
893		dsl_dataset_t *origin;
894
895		VERIFY0(dsl_dataset_hold_obj(dp,
896		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
897
898		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
899			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
900			dsl_dir_phys(origin->ds_dir)->dd_clones =
901			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
902			    0, tx);
903		}
904
905		VERIFY0(zap_add_int(dp->dp_meta_objset,
906		    dsl_dir_phys(origin->ds_dir)->dd_clones,
907		    ds->ds_object, tx));
908
909		dsl_dataset_rele(origin, FTAG);
910	}
911	return (0);
912}
913
914void
915dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
916{
917	ASSERT(dmu_tx_is_syncing(tx));
918	uint64_t obj;
919
920	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
921	VERIFY0(dsl_pool_open_special_dir(dp,
922	    FREE_DIR_NAME, &dp->dp_free_dir));
923
924	/*
925	 * We can't use bpobj_alloc(), because spa_version() still
926	 * returns the old version, and we need a new-version bpobj with
927	 * subobj support.  So call dmu_object_alloc() directly.
928	 */
929	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
930	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
931	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
932	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
933	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
934
935	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
936	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
937}
938
939void
940dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
941{
942	uint64_t dsobj;
943	dsl_dataset_t *ds;
944
945	ASSERT(dmu_tx_is_syncing(tx));
946	ASSERT(dp->dp_origin_snap == NULL);
947	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
948
949	/* create the origin dir, ds, & snap-ds */
950	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
951	    NULL, 0, kcred, tx);
952	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
953	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
954	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
955	    dp, &dp->dp_origin_snap));
956	dsl_dataset_rele(ds, FTAG);
957}
958
959taskq_t *
960dsl_pool_vnrele_taskq(dsl_pool_t *dp)
961{
962	return (dp->dp_vnrele_taskq);
963}
964
965/*
966 * Walk through the pool-wide zap object of temporary snapshot user holds
967 * and release them.
968 */
969void
970dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
971{
972	zap_attribute_t za;
973	zap_cursor_t zc;
974	objset_t *mos = dp->dp_meta_objset;
975	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
976	nvlist_t *holds;
977
978	if (zapobj == 0)
979		return;
980	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
981
982	holds = fnvlist_alloc();
983
984	for (zap_cursor_init(&zc, mos, zapobj);
985	    zap_cursor_retrieve(&zc, &za) == 0;
986	    zap_cursor_advance(&zc)) {
987		char *htag;
988		nvlist_t *tags;
989
990		htag = strchr(za.za_name, '-');
991		*htag = '\0';
992		++htag;
993		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
994			tags = fnvlist_alloc();
995			fnvlist_add_boolean(tags, htag);
996			fnvlist_add_nvlist(holds, za.za_name, tags);
997			fnvlist_free(tags);
998		} else {
999			fnvlist_add_boolean(tags, htag);
1000		}
1001	}
1002	dsl_dataset_user_release_tmp(dp, holds);
1003	fnvlist_free(holds);
1004	zap_cursor_fini(&zc);
1005}
1006
1007/*
1008 * Create the pool-wide zap object for storing temporary snapshot holds.
1009 */
1010void
1011dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1012{
1013	objset_t *mos = dp->dp_meta_objset;
1014
1015	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1016	ASSERT(dmu_tx_is_syncing(tx));
1017
1018	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1019	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1020}
1021
1022static int
1023dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1024    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1025{
1026	objset_t *mos = dp->dp_meta_objset;
1027	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1028	char *name;
1029	int error;
1030
1031	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1032	ASSERT(dmu_tx_is_syncing(tx));
1033
1034	/*
1035	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1036	 * zap object for temporary holds might not exist yet.
1037	 */
1038	if (zapobj == 0) {
1039		if (holding) {
1040			dsl_pool_user_hold_create_obj(dp, tx);
1041			zapobj = dp->dp_tmp_userrefs_obj;
1042		} else {
1043			return (SET_ERROR(ENOENT));
1044		}
1045	}
1046
1047	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1048	if (holding)
1049		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1050	else
1051		error = zap_remove(mos, zapobj, name, tx);
1052	strfree(name);
1053
1054	return (error);
1055}
1056
1057/*
1058 * Add a temporary hold for the given dataset object and tag.
1059 */
1060int
1061dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1062    uint64_t now, dmu_tx_t *tx)
1063{
1064	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1065}
1066
1067/*
1068 * Release a temporary hold for the given dataset object and tag.
1069 */
1070int
1071dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1072    dmu_tx_t *tx)
1073{
1074	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1075	    tx, B_FALSE));
1076}
1077
1078/*
1079 * DSL Pool Configuration Lock
1080 *
1081 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1082 * creation / destruction / rename / property setting).  It must be held for
1083 * read to hold a dataset or dsl_dir.  I.e. you must call
1084 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1085 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1086 * must be held continuously until all datasets and dsl_dirs are released.
1087 *
1088 * The only exception to this rule is that if a "long hold" is placed on
1089 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1090 * is still held.  The long hold will prevent the dataset from being
1091 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1092 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1093 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1094 *
1095 * Legitimate long-holders (including owners) should be long-running, cancelable
1096 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1097 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1098 * "zfs send", and "zfs diff".  There are several other long-holders whose
1099 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1100 *
1101 * The usual formula for long-holding would be:
1102 * dsl_pool_hold()
1103 * dsl_dataset_hold()
1104 * ... perform checks ...
1105 * dsl_dataset_long_hold()
1106 * dsl_pool_rele()
1107 * ... perform long-running task ...
1108 * dsl_dataset_long_rele()
1109 * dsl_dataset_rele()
1110 *
1111 * Note that when the long hold is released, the dataset is still held but
1112 * the pool is not held.  The dataset may change arbitrarily during this time
1113 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1114 * dataset except release it.
1115 *
1116 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1117 * or modifying operations.
1118 *
1119 * Modifying operations should generally use dsl_sync_task().  The synctask
1120 * infrastructure enforces proper locking strategy with respect to the
1121 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1122 *
1123 * Read-only operations will manually hold the pool, then the dataset, obtain
1124 * information from the dataset, then release the pool and dataset.
1125 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1126 * hold/rele.
1127 */
1128
1129int
1130dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1131{
1132	spa_t *spa;
1133	int error;
1134
1135	error = spa_open(name, &spa, tag);
1136	if (error == 0) {
1137		*dp = spa_get_dsl(spa);
1138		dsl_pool_config_enter(*dp, tag);
1139	}
1140	return (error);
1141}
1142
1143void
1144dsl_pool_rele(dsl_pool_t *dp, void *tag)
1145{
1146	dsl_pool_config_exit(dp, tag);
1147	spa_close(dp->dp_spa, tag);
1148}
1149
1150void
1151dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1152{
1153	/*
1154	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1155	 *
1156	 * The rrwlock can (with the track_all flag) track all reading threads,
1157	 * which is very useful for debugging which code path failed to release
1158	 * the lock, and for verifying that the *current* thread does hold
1159	 * the lock.
1160	 *
1161	 * (Unlike a rwlock, which knows that N threads hold it for
1162	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1163	 * if any thread holds it for read, even if this thread doesn't).
1164	 */
1165	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1166	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1167}
1168
1169void
1170dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1171{
1172	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1173	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1174}
1175
1176void
1177dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1178{
1179	rrw_exit(&dp->dp_config_rwlock, tag);
1180}
1181
1182boolean_t
1183dsl_pool_config_held(dsl_pool_t *dp)
1184{
1185	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1186}
1187
1188boolean_t
1189dsl_pool_config_held_writer(dsl_pool_t *dp)
1190{
1191	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1192}
1193