dnode_sync.c revision 339137
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/dbuf.h>
30#include <sys/dnode.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/dmu_objset.h>
34#include <sys/dsl_dataset.h>
35#include <sys/spa.h>
36#include <sys/range_tree.h>
37#include <sys/zfeature.h>
38
39static void
40dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
41{
42	dmu_buf_impl_t *db;
43	int txgoff = tx->tx_txg & TXG_MASK;
44	int nblkptr = dn->dn_phys->dn_nblkptr;
45	int old_toplvl = dn->dn_phys->dn_nlevels - 1;
46	int new_level = dn->dn_next_nlevels[txgoff];
47	int i;
48
49	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
50
51	/* this dnode can't be paged out because it's dirty */
52	ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
53	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
54	ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
55
56	db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
57	ASSERT(db != NULL);
58
59	dn->dn_phys->dn_nlevels = new_level;
60	dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
61	    dn->dn_object, dn->dn_phys->dn_nlevels);
62
63	/* transfer dnode's block pointers to new indirect block */
64	(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
65	ASSERT(db->db.db_data);
66	ASSERT(arc_released(db->db_buf));
67	ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
68	bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
69	    sizeof (blkptr_t) * nblkptr);
70	arc_buf_freeze(db->db_buf);
71
72	/* set dbuf's parent pointers to new indirect buf */
73	for (i = 0; i < nblkptr; i++) {
74		dmu_buf_impl_t *child =
75		    dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
76
77		if (child == NULL)
78			continue;
79#ifdef	DEBUG
80		DB_DNODE_ENTER(child);
81		ASSERT3P(DB_DNODE(child), ==, dn);
82		DB_DNODE_EXIT(child);
83#endif	/* DEBUG */
84		if (child->db_parent && child->db_parent != dn->dn_dbuf) {
85			ASSERT(child->db_parent->db_level == db->db_level);
86			ASSERT(child->db_blkptr !=
87			    &dn->dn_phys->dn_blkptr[child->db_blkid]);
88			mutex_exit(&child->db_mtx);
89			continue;
90		}
91		ASSERT(child->db_parent == NULL ||
92		    child->db_parent == dn->dn_dbuf);
93
94		child->db_parent = db;
95		dbuf_add_ref(db, child);
96		if (db->db.db_data)
97			child->db_blkptr = (blkptr_t *)db->db.db_data + i;
98		else
99			child->db_blkptr = NULL;
100		dprintf_dbuf_bp(child, child->db_blkptr,
101		    "changed db_blkptr to new indirect %s", "");
102
103		mutex_exit(&child->db_mtx);
104	}
105
106	bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
107
108	dbuf_rele(db, FTAG);
109
110	rw_exit(&dn->dn_struct_rwlock);
111}
112
113static void
114free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
115{
116	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
117	uint64_t bytesfreed = 0;
118
119	dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
120
121	for (int i = 0; i < num; i++, bp++) {
122		if (BP_IS_HOLE(bp))
123			continue;
124
125		bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
126		ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
127
128		/*
129		 * Save some useful information on the holes being
130		 * punched, including logical size, type, and indirection
131		 * level. Retaining birth time enables detection of when
132		 * holes are punched for reducing the number of free
133		 * records transmitted during a zfs send.
134		 */
135
136		uint64_t lsize = BP_GET_LSIZE(bp);
137		dmu_object_type_t type = BP_GET_TYPE(bp);
138		uint64_t lvl = BP_GET_LEVEL(bp);
139
140		bzero(bp, sizeof (blkptr_t));
141
142		if (spa_feature_is_active(dn->dn_objset->os_spa,
143		    SPA_FEATURE_HOLE_BIRTH)) {
144			BP_SET_LSIZE(bp, lsize);
145			BP_SET_TYPE(bp, type);
146			BP_SET_LEVEL(bp, lvl);
147			BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
148		}
149	}
150	dnode_diduse_space(dn, -bytesfreed);
151}
152
153#ifdef ZFS_DEBUG
154static void
155free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
156{
157	int off, num;
158	int i, err, epbs;
159	uint64_t txg = tx->tx_txg;
160	dnode_t *dn;
161
162	DB_DNODE_ENTER(db);
163	dn = DB_DNODE(db);
164	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
165	off = start - (db->db_blkid * 1<<epbs);
166	num = end - start + 1;
167
168	ASSERT3U(off, >=, 0);
169	ASSERT3U(num, >=, 0);
170	ASSERT3U(db->db_level, >, 0);
171	ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
172	ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
173	ASSERT(db->db_blkptr != NULL);
174
175	for (i = off; i < off+num; i++) {
176		uint64_t *buf;
177		dmu_buf_impl_t *child;
178		dbuf_dirty_record_t *dr;
179		int j;
180
181		ASSERT(db->db_level == 1);
182
183		rw_enter(&dn->dn_struct_rwlock, RW_READER);
184		err = dbuf_hold_impl(dn, db->db_level-1,
185		    (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
186		rw_exit(&dn->dn_struct_rwlock);
187		if (err == ENOENT)
188			continue;
189		ASSERT(err == 0);
190		ASSERT(child->db_level == 0);
191		dr = child->db_last_dirty;
192		while (dr && dr->dr_txg > txg)
193			dr = dr->dr_next;
194		ASSERT(dr == NULL || dr->dr_txg == txg);
195
196		/* data_old better be zeroed */
197		if (dr) {
198			buf = dr->dt.dl.dr_data->b_data;
199			for (j = 0; j < child->db.db_size >> 3; j++) {
200				if (buf[j] != 0) {
201					panic("freed data not zero: "
202					    "child=%p i=%d off=%d num=%d\n",
203					    (void *)child, i, off, num);
204				}
205			}
206		}
207
208		/*
209		 * db_data better be zeroed unless it's dirty in a
210		 * future txg.
211		 */
212		mutex_enter(&child->db_mtx);
213		buf = child->db.db_data;
214		if (buf != NULL && child->db_state != DB_FILL &&
215		    child->db_last_dirty == NULL) {
216			for (j = 0; j < child->db.db_size >> 3; j++) {
217				if (buf[j] != 0) {
218					panic("freed data not zero: "
219					    "child=%p i=%d off=%d num=%d\n",
220					    (void *)child, i, off, num);
221				}
222			}
223		}
224		mutex_exit(&child->db_mtx);
225
226		dbuf_rele(child, FTAG);
227	}
228	DB_DNODE_EXIT(db);
229}
230#endif
231
232/*
233 * We don't usually free the indirect blocks here.  If in one txg we have a
234 * free_range and a write to the same indirect block, it's important that we
235 * preserve the hole's birth times. Therefore, we don't free any any indirect
236 * blocks in free_children().  If an indirect block happens to turn into all
237 * holes, it will be freed by dbuf_write_children_ready, which happens at a
238 * point in the syncing process where we know for certain the contents of the
239 * indirect block.
240 *
241 * However, if we're freeing a dnode, its space accounting must go to zero
242 * before we actually try to free the dnode, or we will trip an assertion. In
243 * addition, we know the case described above cannot occur, because the dnode is
244 * being freed.  Therefore, we free the indirect blocks immediately in that
245 * case.
246 */
247static void
248free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
249    boolean_t free_indirects, dmu_tx_t *tx)
250{
251	dnode_t *dn;
252	blkptr_t *bp;
253	dmu_buf_impl_t *subdb;
254	uint64_t start, end, dbstart, dbend;
255	unsigned int epbs, shift, i;
256
257	/*
258	 * There is a small possibility that this block will not be cached:
259	 *   1 - if level > 1 and there are no children with level <= 1
260	 *   2 - if this block was evicted since we read it from
261	 *	 dmu_tx_hold_free().
262	 */
263	if (db->db_state != DB_CACHED)
264		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
265
266	/*
267	 * If we modify this indirect block, and we are not freeing the
268	 * dnode (!free_indirects), then this indirect block needs to get
269	 * written to disk by dbuf_write().  If it is dirty, we know it will
270	 * be written (otherwise, we would have incorrect on-disk state
271	 * because the space would be freed but still referenced by the BP
272	 * in this indirect block).  Therefore we VERIFY that it is
273	 * dirty.
274	 *
275	 * Our VERIFY covers some cases that do not actually have to be
276	 * dirty, but the open-context code happens to dirty.  E.g. if the
277	 * blocks we are freeing are all holes, because in that case, we
278	 * are only freeing part of this indirect block, so it is an
279	 * ancestor of the first or last block to be freed.  The first and
280	 * last L1 indirect blocks are always dirtied by dnode_free_range().
281	 */
282	VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
283
284	dbuf_release_bp(db);
285	bp = db->db.db_data;
286
287	DB_DNODE_ENTER(db);
288	dn = DB_DNODE(db);
289	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
290	ASSERT3U(epbs, <, 31);
291	shift = (db->db_level - 1) * epbs;
292	dbstart = db->db_blkid << epbs;
293	start = blkid >> shift;
294	if (dbstart < start) {
295		bp += start - dbstart;
296	} else {
297		start = dbstart;
298	}
299	dbend = ((db->db_blkid + 1) << epbs) - 1;
300	end = (blkid + nblks - 1) >> shift;
301	if (dbend <= end)
302		end = dbend;
303
304	ASSERT3U(start, <=, end);
305
306	if (db->db_level == 1) {
307		FREE_VERIFY(db, start, end, tx);
308		free_blocks(dn, bp, end-start+1, tx);
309	} else {
310		for (uint64_t id = start; id <= end; id++, bp++) {
311			if (BP_IS_HOLE(bp))
312				continue;
313			rw_enter(&dn->dn_struct_rwlock, RW_READER);
314			VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
315			    id, TRUE, FALSE, FTAG, &subdb));
316			rw_exit(&dn->dn_struct_rwlock);
317			ASSERT3P(bp, ==, subdb->db_blkptr);
318
319			free_children(subdb, blkid, nblks, free_indirects, tx);
320			dbuf_rele(subdb, FTAG);
321		}
322	}
323
324	if (free_indirects) {
325		for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
326			ASSERT(BP_IS_HOLE(bp));
327		bzero(db->db.db_data, db->db.db_size);
328		free_blocks(dn, db->db_blkptr, 1, tx);
329	}
330
331	DB_DNODE_EXIT(db);
332	arc_buf_freeze(db->db_buf);
333}
334
335/*
336 * Traverse the indicated range of the provided file
337 * and "free" all the blocks contained there.
338 */
339static void
340dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
341    boolean_t free_indirects, dmu_tx_t *tx)
342{
343	blkptr_t *bp = dn->dn_phys->dn_blkptr;
344	int dnlevel = dn->dn_phys->dn_nlevels;
345	boolean_t trunc = B_FALSE;
346
347	if (blkid > dn->dn_phys->dn_maxblkid)
348		return;
349
350	ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
351	if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
352		nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
353		trunc = B_TRUE;
354	}
355
356	/* There are no indirect blocks in the object */
357	if (dnlevel == 1) {
358		if (blkid >= dn->dn_phys->dn_nblkptr) {
359			/* this range was never made persistent */
360			return;
361		}
362		ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
363		free_blocks(dn, bp + blkid, nblks, tx);
364	} else {
365		int shift = (dnlevel - 1) *
366		    (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
367		int start = blkid >> shift;
368		int end = (blkid + nblks - 1) >> shift;
369		dmu_buf_impl_t *db;
370
371		ASSERT(start < dn->dn_phys->dn_nblkptr);
372		bp += start;
373		for (int i = start; i <= end; i++, bp++) {
374			if (BP_IS_HOLE(bp))
375				continue;
376			rw_enter(&dn->dn_struct_rwlock, RW_READER);
377			VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
378			    TRUE, FALSE, FTAG, &db));
379			rw_exit(&dn->dn_struct_rwlock);
380
381			free_children(db, blkid, nblks, free_indirects, tx);
382			dbuf_rele(db, FTAG);
383		}
384	}
385
386	if (trunc) {
387		dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
388
389		uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
390		    (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
391		ASSERT(off < dn->dn_phys->dn_maxblkid ||
392		    dn->dn_phys->dn_maxblkid == 0 ||
393		    dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
394	}
395}
396
397typedef struct dnode_sync_free_range_arg {
398	dnode_t *dsfra_dnode;
399	dmu_tx_t *dsfra_tx;
400	boolean_t dsfra_free_indirects;
401} dnode_sync_free_range_arg_t;
402
403static void
404dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
405{
406	dnode_sync_free_range_arg_t *dsfra = arg;
407	dnode_t *dn = dsfra->dsfra_dnode;
408
409	mutex_exit(&dn->dn_mtx);
410	dnode_sync_free_range_impl(dn, blkid, nblks,
411	    dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
412	mutex_enter(&dn->dn_mtx);
413}
414
415/*
416 * Try to kick all the dnode's dbufs out of the cache...
417 */
418void
419dnode_evict_dbufs(dnode_t *dn)
420{
421	dmu_buf_impl_t db_marker;
422	dmu_buf_impl_t *db, *db_next;
423
424	mutex_enter(&dn->dn_dbufs_mtx);
425	for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
426
427#ifdef	DEBUG
428		DB_DNODE_ENTER(db);
429		ASSERT3P(DB_DNODE(db), ==, dn);
430		DB_DNODE_EXIT(db);
431#endif	/* DEBUG */
432
433		mutex_enter(&db->db_mtx);
434		if (db->db_state != DB_EVICTING &&
435		    refcount_is_zero(&db->db_holds)) {
436			db_marker.db_level = db->db_level;
437			db_marker.db_blkid = db->db_blkid;
438			db_marker.db_state = DB_SEARCH;
439			avl_insert_here(&dn->dn_dbufs, &db_marker, db,
440			    AVL_BEFORE);
441
442			dbuf_destroy(db);
443
444			db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker);
445			avl_remove(&dn->dn_dbufs, &db_marker);
446		} else {
447			db->db_pending_evict = TRUE;
448			mutex_exit(&db->db_mtx);
449			db_next = AVL_NEXT(&dn->dn_dbufs, db);
450		}
451	}
452	mutex_exit(&dn->dn_dbufs_mtx);
453
454	dnode_evict_bonus(dn);
455}
456
457void
458dnode_evict_bonus(dnode_t *dn)
459{
460	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
461	if (dn->dn_bonus != NULL) {
462		if (refcount_is_zero(&dn->dn_bonus->db_holds)) {
463			mutex_enter(&dn->dn_bonus->db_mtx);
464			dbuf_destroy(dn->dn_bonus);
465			dn->dn_bonus = NULL;
466		} else {
467			dn->dn_bonus->db_pending_evict = TRUE;
468		}
469	}
470	rw_exit(&dn->dn_struct_rwlock);
471}
472
473static void
474dnode_undirty_dbufs(list_t *list)
475{
476	dbuf_dirty_record_t *dr;
477
478	while (dr = list_head(list)) {
479		dmu_buf_impl_t *db = dr->dr_dbuf;
480		uint64_t txg = dr->dr_txg;
481
482		if (db->db_level != 0)
483			dnode_undirty_dbufs(&dr->dt.di.dr_children);
484
485		mutex_enter(&db->db_mtx);
486		/* XXX - use dbuf_undirty()? */
487		list_remove(list, dr);
488		ASSERT(db->db_last_dirty == dr);
489		db->db_last_dirty = NULL;
490		db->db_dirtycnt -= 1;
491		if (db->db_level == 0) {
492			ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
493			    dr->dt.dl.dr_data == db->db_buf);
494			dbuf_unoverride(dr);
495		} else {
496			mutex_destroy(&dr->dt.di.dr_mtx);
497			list_destroy(&dr->dt.di.dr_children);
498		}
499		kmem_free(dr, sizeof (dbuf_dirty_record_t));
500		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
501	}
502}
503
504static void
505dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
506{
507	int txgoff = tx->tx_txg & TXG_MASK;
508
509	ASSERT(dmu_tx_is_syncing(tx));
510
511	/*
512	 * Our contents should have been freed in dnode_sync() by the
513	 * free range record inserted by the caller of dnode_free().
514	 */
515	ASSERT0(DN_USED_BYTES(dn->dn_phys));
516	ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
517
518	dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
519	dnode_evict_dbufs(dn);
520
521	/*
522	 * XXX - It would be nice to assert this, but we may still
523	 * have residual holds from async evictions from the arc...
524	 *
525	 * zfs_obj_to_path() also depends on this being
526	 * commented out.
527	 *
528	 * ASSERT3U(refcount_count(&dn->dn_holds), ==, 1);
529	 */
530
531	/* Undirty next bits */
532	dn->dn_next_nlevels[txgoff] = 0;
533	dn->dn_next_indblkshift[txgoff] = 0;
534	dn->dn_next_blksz[txgoff] = 0;
535
536	/* ASSERT(blkptrs are zero); */
537	ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
538	ASSERT(dn->dn_type != DMU_OT_NONE);
539
540	ASSERT(dn->dn_free_txg > 0);
541	if (dn->dn_allocated_txg != dn->dn_free_txg)
542		dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
543	bzero(dn->dn_phys, sizeof (dnode_phys_t));
544
545	mutex_enter(&dn->dn_mtx);
546	dn->dn_type = DMU_OT_NONE;
547	dn->dn_maxblkid = 0;
548	dn->dn_allocated_txg = 0;
549	dn->dn_free_txg = 0;
550	dn->dn_have_spill = B_FALSE;
551	mutex_exit(&dn->dn_mtx);
552
553	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
554
555	dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
556	/*
557	 * Now that we've released our hold, the dnode may
558	 * be evicted, so we musn't access it.
559	 */
560}
561
562/*
563 * Write out the dnode's dirty buffers.
564 */
565void
566dnode_sync(dnode_t *dn, dmu_tx_t *tx)
567{
568	dnode_phys_t *dnp = dn->dn_phys;
569	int txgoff = tx->tx_txg & TXG_MASK;
570	list_t *list = &dn->dn_dirty_records[txgoff];
571	static const dnode_phys_t zerodn = { 0 };
572	boolean_t kill_spill = B_FALSE;
573
574	ASSERT(dmu_tx_is_syncing(tx));
575	ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
576	ASSERT(dnp->dn_type != DMU_OT_NONE ||
577	    bcmp(dnp, &zerodn, DNODE_SIZE) == 0);
578	DNODE_VERIFY(dn);
579
580	ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
581
582	if (dmu_objset_userused_enabled(dn->dn_objset) &&
583	    !DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
584		mutex_enter(&dn->dn_mtx);
585		dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
586		dn->dn_oldflags = dn->dn_phys->dn_flags;
587		dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
588		mutex_exit(&dn->dn_mtx);
589		dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
590	} else {
591		/* Once we account for it, we should always account for it. */
592		ASSERT(!(dn->dn_phys->dn_flags &
593		    DNODE_FLAG_USERUSED_ACCOUNTED));
594	}
595
596	mutex_enter(&dn->dn_mtx);
597	if (dn->dn_allocated_txg == tx->tx_txg) {
598		/* The dnode is newly allocated or reallocated */
599		if (dnp->dn_type == DMU_OT_NONE) {
600			/* this is a first alloc, not a realloc */
601			dnp->dn_nlevels = 1;
602			dnp->dn_nblkptr = dn->dn_nblkptr;
603		}
604
605		dnp->dn_type = dn->dn_type;
606		dnp->dn_bonustype = dn->dn_bonustype;
607		dnp->dn_bonuslen = dn->dn_bonuslen;
608	}
609	ASSERT(dnp->dn_nlevels > 1 ||
610	    BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
611	    BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
612	    BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
613	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
614	ASSERT(dnp->dn_nlevels < 2 ||
615	    BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
616	    BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
617
618	if (dn->dn_next_type[txgoff] != 0) {
619		dnp->dn_type = dn->dn_type;
620		dn->dn_next_type[txgoff] = 0;
621	}
622
623	if (dn->dn_next_blksz[txgoff] != 0) {
624		ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
625		    SPA_MINBLOCKSIZE) == 0);
626		ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
627		    dn->dn_maxblkid == 0 || list_head(list) != NULL ||
628		    dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
629		    dnp->dn_datablkszsec ||
630		    !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
631		dnp->dn_datablkszsec =
632		    dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
633		dn->dn_next_blksz[txgoff] = 0;
634	}
635
636	if (dn->dn_next_bonuslen[txgoff] != 0) {
637		if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
638			dnp->dn_bonuslen = 0;
639		else
640			dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
641		ASSERT(dnp->dn_bonuslen <= DN_MAX_BONUSLEN);
642		dn->dn_next_bonuslen[txgoff] = 0;
643	}
644
645	if (dn->dn_next_bonustype[txgoff] != 0) {
646		ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
647		dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
648		dn->dn_next_bonustype[txgoff] = 0;
649	}
650
651	boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
652	    dn->dn_free_txg <= tx->tx_txg;
653
654	/*
655	 * Remove the spill block if we have been explicitly asked to
656	 * remove it, or if the object is being removed.
657	 */
658	if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
659		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
660			kill_spill = B_TRUE;
661		dn->dn_rm_spillblk[txgoff] = 0;
662	}
663
664	if (dn->dn_next_indblkshift[txgoff] != 0) {
665		ASSERT(dnp->dn_nlevels == 1);
666		dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
667		dn->dn_next_indblkshift[txgoff] = 0;
668	}
669
670	/*
671	 * Just take the live (open-context) values for checksum and compress.
672	 * Strictly speaking it's a future leak, but nothing bad happens if we
673	 * start using the new checksum or compress algorithm a little early.
674	 */
675	dnp->dn_checksum = dn->dn_checksum;
676	dnp->dn_compress = dn->dn_compress;
677
678	mutex_exit(&dn->dn_mtx);
679
680	if (kill_spill) {
681		free_blocks(dn, &dn->dn_phys->dn_spill, 1, tx);
682		mutex_enter(&dn->dn_mtx);
683		dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
684		mutex_exit(&dn->dn_mtx);
685	}
686
687	/* process all the "freed" ranges in the file */
688	if (dn->dn_free_ranges[txgoff] != NULL) {
689		dnode_sync_free_range_arg_t dsfra;
690		dsfra.dsfra_dnode = dn;
691		dsfra.dsfra_tx = tx;
692		dsfra.dsfra_free_indirects = freeing_dnode;
693		if (freeing_dnode) {
694			ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
695			    0, dn->dn_maxblkid + 1));
696		}
697		mutex_enter(&dn->dn_mtx);
698		range_tree_vacate(dn->dn_free_ranges[txgoff],
699		    dnode_sync_free_range, &dsfra);
700		range_tree_destroy(dn->dn_free_ranges[txgoff]);
701		dn->dn_free_ranges[txgoff] = NULL;
702		mutex_exit(&dn->dn_mtx);
703	}
704
705	if (freeing_dnode) {
706		dn->dn_objset->os_freed_dnodes++;
707		dnode_sync_free(dn, tx);
708		return;
709	}
710
711	if (dn->dn_next_nlevels[txgoff]) {
712		dnode_increase_indirection(dn, tx);
713		dn->dn_next_nlevels[txgoff] = 0;
714	}
715
716	if (dn->dn_next_nblkptr[txgoff]) {
717		/* this should only happen on a realloc */
718		ASSERT(dn->dn_allocated_txg == tx->tx_txg);
719		if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
720			/* zero the new blkptrs we are gaining */
721			bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
722			    sizeof (blkptr_t) *
723			    (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
724#ifdef ZFS_DEBUG
725		} else {
726			int i;
727			ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
728			/* the blkptrs we are losing better be unallocated */
729			for (i = dn->dn_next_nblkptr[txgoff];
730			    i < dnp->dn_nblkptr; i++)
731				ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
732#endif
733		}
734		mutex_enter(&dn->dn_mtx);
735		dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
736		dn->dn_next_nblkptr[txgoff] = 0;
737		mutex_exit(&dn->dn_mtx);
738	}
739
740	dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
741
742	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
743		ASSERT3P(list_head(list), ==, NULL);
744		dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
745	}
746
747	/*
748	 * Although we have dropped our reference to the dnode, it
749	 * can't be evicted until its written, and we haven't yet
750	 * initiated the IO for the dnode's dbuf.
751	 */
752}
753