dmu_zfetch.c revision 315445
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/dnode.h>
32#include <sys/dmu_objset.h>
33#include <sys/dmu_zfetch.h>
34#include <sys/dmu.h>
35#include <sys/dbuf.h>
36#include <sys/kstat.h>
37
38/*
39 * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40 * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41 * prescient prefetch never issues i/os that end up not being needed,
42 * so it can't hurt performance.
43 */
44boolean_t zfs_prefetch_disable = B_FALSE;
45
46/* max # of streams per zfetch */
47uint32_t	zfetch_max_streams = 8;
48/* min time before stream reclaim */
49uint32_t	zfetch_min_sec_reap = 2;
50/* max bytes to prefetch per stream (default 8MB) */
51uint32_t	zfetch_max_distance = 8 * 1024 * 1024;
52/* max bytes to prefetch indirects for per stream (default 64MB) */
53uint32_t	zfetch_max_idistance = 64 * 1024 * 1024;
54/* max number of bytes in an array_read in which we allow prefetching (1MB) */
55uint64_t	zfetch_array_rd_sz = 1024 * 1024;
56
57SYSCTL_DECL(_vfs_zfs);
58SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
59    &zfs_prefetch_disable, 0, "Disable prefetch");
60SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
61SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RWTUN,
62    &zfetch_max_streams, 0, "Max # of streams per zfetch");
63SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
64    &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
65SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
66    &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
67SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_idistance, CTLFLAG_RWTUN,
68    &zfetch_max_idistance, 0, "Max bytes to prefetch indirects for per stream");
69SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
70    &zfetch_array_rd_sz, 0,
71    "Number of bytes in a array_read at which we stop prefetching");
72
73typedef struct zfetch_stats {
74	kstat_named_t zfetchstat_hits;
75	kstat_named_t zfetchstat_misses;
76	kstat_named_t zfetchstat_max_streams;
77} zfetch_stats_t;
78
79static zfetch_stats_t zfetch_stats = {
80	{ "hits",			KSTAT_DATA_UINT64 },
81	{ "misses",			KSTAT_DATA_UINT64 },
82	{ "max_streams",		KSTAT_DATA_UINT64 },
83};
84
85#define	ZFETCHSTAT_BUMP(stat) \
86	atomic_inc_64(&zfetch_stats.stat.value.ui64);
87
88kstat_t		*zfetch_ksp;
89
90void
91zfetch_init(void)
92{
93	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
94	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
95	    KSTAT_FLAG_VIRTUAL);
96
97	if (zfetch_ksp != NULL) {
98		zfetch_ksp->ks_data = &zfetch_stats;
99		kstat_install(zfetch_ksp);
100	}
101}
102
103void
104zfetch_fini(void)
105{
106	if (zfetch_ksp != NULL) {
107		kstat_delete(zfetch_ksp);
108		zfetch_ksp = NULL;
109	}
110}
111
112/*
113 * This takes a pointer to a zfetch structure and a dnode.  It performs the
114 * necessary setup for the zfetch structure, grokking data from the
115 * associated dnode.
116 */
117void
118dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
119{
120	if (zf == NULL)
121		return;
122
123	zf->zf_dnode = dno;
124
125	list_create(&zf->zf_stream, sizeof (zstream_t),
126	    offsetof(zstream_t, zs_node));
127
128	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
129}
130
131static void
132dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
133{
134	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
135	list_remove(&zf->zf_stream, zs);
136	mutex_destroy(&zs->zs_lock);
137	kmem_free(zs, sizeof (*zs));
138}
139
140/*
141 * Clean-up state associated with a zfetch structure (e.g. destroy the
142 * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
143 */
144void
145dmu_zfetch_fini(zfetch_t *zf)
146{
147	zstream_t *zs;
148
149	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
150
151	rw_enter(&zf->zf_rwlock, RW_WRITER);
152	while ((zs = list_head(&zf->zf_stream)) != NULL)
153		dmu_zfetch_stream_remove(zf, zs);
154	rw_exit(&zf->zf_rwlock);
155	list_destroy(&zf->zf_stream);
156	rw_destroy(&zf->zf_rwlock);
157
158	zf->zf_dnode = NULL;
159}
160
161/*
162 * If there aren't too many streams already, create a new stream.
163 * The "blkid" argument is the next block that we expect this stream to access.
164 * While we're here, clean up old streams (which haven't been
165 * accessed for at least zfetch_min_sec_reap seconds).
166 */
167static void
168dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
169{
170	zstream_t *zs_next;
171	int numstreams = 0;
172
173	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
174
175	/*
176	 * Clean up old streams.
177	 */
178	for (zstream_t *zs = list_head(&zf->zf_stream);
179	    zs != NULL; zs = zs_next) {
180		zs_next = list_next(&zf->zf_stream, zs);
181		if (((gethrtime() - zs->zs_atime) / NANOSEC) >
182		    zfetch_min_sec_reap)
183			dmu_zfetch_stream_remove(zf, zs);
184		else
185			numstreams++;
186	}
187
188	/*
189	 * The maximum number of streams is normally zfetch_max_streams,
190	 * but for small files we lower it such that it's at least possible
191	 * for all the streams to be non-overlapping.
192	 *
193	 * If we are already at the maximum number of streams for this file,
194	 * even after removing old streams, then don't create this stream.
195	 */
196	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
197	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
198	    zfetch_max_distance));
199	if (numstreams >= max_streams) {
200		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
201		return;
202	}
203
204	zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
205	zs->zs_blkid = blkid;
206	zs->zs_pf_blkid = blkid;
207	zs->zs_ipf_blkid = blkid;
208	zs->zs_atime = gethrtime();
209	mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
210
211	list_insert_head(&zf->zf_stream, zs);
212}
213
214/*
215 * This is the predictive prefetch entry point.  It associates dnode access
216 * specified with blkid and nblks arguments with prefetch stream, predicts
217 * further accesses based on that stats and initiates speculative prefetch.
218 * fetch_data argument specifies whether actual data blocks should be fetched:
219 *   FALSE -- prefetch only indirect blocks for predicted data blocks;
220 *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
221 */
222void
223dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
224{
225	zstream_t *zs;
226	int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
227	int64_t pf_ahead_blks, max_blks;
228	int epbs, max_dist_blks, pf_nblks, ipf_nblks;
229	uint64_t end_of_access_blkid = blkid + nblks;
230
231	if (zfs_prefetch_disable)
232		return;
233
234	/*
235	 * As a fast path for small (single-block) files, ignore access
236	 * to the first block.
237	 */
238	if (blkid == 0)
239		return;
240
241	rw_enter(&zf->zf_rwlock, RW_READER);
242
243	for (zs = list_head(&zf->zf_stream); zs != NULL;
244	    zs = list_next(&zf->zf_stream, zs)) {
245		if (blkid == zs->zs_blkid) {
246			mutex_enter(&zs->zs_lock);
247			/*
248			 * zs_blkid could have changed before we
249			 * acquired zs_lock; re-check them here.
250			 */
251			if (blkid != zs->zs_blkid) {
252				mutex_exit(&zs->zs_lock);
253				continue;
254			}
255			break;
256		}
257	}
258
259	if (zs == NULL) {
260		/*
261		 * This access is not part of any existing stream.  Create
262		 * a new stream for it.
263		 */
264		ZFETCHSTAT_BUMP(zfetchstat_misses);
265		if (rw_tryupgrade(&zf->zf_rwlock))
266			dmu_zfetch_stream_create(zf, end_of_access_blkid);
267		rw_exit(&zf->zf_rwlock);
268		return;
269	}
270
271	/*
272	 * This access was to a block that we issued a prefetch for on
273	 * behalf of this stream. Issue further prefetches for this stream.
274	 *
275	 * Normally, we start prefetching where we stopped
276	 * prefetching last (zs_pf_blkid).  But when we get our first
277	 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
278	 * want to prefetch the block we just accessed.  In this case,
279	 * start just after the block we just accessed.
280	 */
281	pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
282
283	/*
284	 * Double our amount of prefetched data, but don't let the
285	 * prefetch get further ahead than zfetch_max_distance.
286	 */
287	if (fetch_data) {
288		max_dist_blks =
289		    zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
290		/*
291		 * Previously, we were (zs_pf_blkid - blkid) ahead.  We
292		 * want to now be double that, so read that amount again,
293		 * plus the amount we are catching up by (i.e. the amount
294		 * read just now).
295		 */
296		pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
297		max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
298		pf_nblks = MIN(pf_ahead_blks, max_blks);
299	} else {
300		pf_nblks = 0;
301	}
302
303	zs->zs_pf_blkid = pf_start + pf_nblks;
304
305	/*
306	 * Do the same for indirects, starting from where we stopped last,
307	 * or where we will stop reading data blocks (and the indirects
308	 * that point to them).
309	 */
310	ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
311	max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
312	/*
313	 * We want to double our distance ahead of the data prefetch
314	 * (or reader, if we are not prefetching data).  Previously, we
315	 * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
316	 * that amount again, plus the amount we are catching up by
317	 * (i.e. the amount read now + the amount of data prefetched now).
318	 */
319	pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
320	max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
321	ipf_nblks = MIN(pf_ahead_blks, max_blks);
322	zs->zs_ipf_blkid = ipf_start + ipf_nblks;
323
324	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
325	ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
326	ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
327
328	zs->zs_atime = gethrtime();
329	zs->zs_blkid = end_of_access_blkid;
330	mutex_exit(&zs->zs_lock);
331	rw_exit(&zf->zf_rwlock);
332
333	/*
334	 * dbuf_prefetch() is asynchronous (even when it needs to read
335	 * indirect blocks), but we still prefer to drop our locks before
336	 * calling it to reduce the time we hold them.
337	 */
338
339	for (int i = 0; i < pf_nblks; i++) {
340		dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
341		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
342	}
343	for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
344		dbuf_prefetch(zf->zf_dnode, 1, iblk,
345		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
346	}
347	ZFETCHSTAT_BUMP(zfetchstat_hits);
348}
349