dmu_send.c revision 339110
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2012, Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright 2014 HybridCluster. All rights reserved.
28 * Copyright 2016 RackTop Systems.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32#include <sys/dmu.h>
33#include <sys/dmu_impl.h>
34#include <sys/dmu_tx.h>
35#include <sys/dbuf.h>
36#include <sys/dnode.h>
37#include <sys/zfs_context.h>
38#include <sys/dmu_objset.h>
39#include <sys/dmu_traverse.h>
40#include <sys/dsl_dataset.h>
41#include <sys/dsl_dir.h>
42#include <sys/dsl_prop.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_synctask.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/zap.h>
47#include <sys/zio_checksum.h>
48#include <sys/zfs_znode.h>
49#include <zfs_fletcher.h>
50#include <sys/avl.h>
51#include <sys/ddt.h>
52#include <sys/zfs_onexit.h>
53#include <sys/dmu_send.h>
54#include <sys/dsl_destroy.h>
55#include <sys/blkptr.h>
56#include <sys/dsl_bookmark.h>
57#include <sys/zfeature.h>
58#include <sys/bqueue.h>
59
60#ifdef __FreeBSD__
61#undef dump_write
62#define dump_write dmu_dump_write
63#endif
64
65/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
66int zfs_send_corrupt_data = B_FALSE;
67int zfs_send_queue_length = 16 * 1024 * 1024;
68int zfs_recv_queue_length = 16 * 1024 * 1024;
69/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
70int zfs_send_set_freerecords_bit = B_TRUE;
71
72#ifdef _KERNEL
73TUNABLE_INT("vfs.zfs.send_set_freerecords_bit", &zfs_send_set_freerecords_bit);
74#endif
75
76static char *dmu_recv_tag = "dmu_recv_tag";
77const char *recv_clone_name = "%recv";
78
79/*
80 * Use this to override the recordsize calculation for fast zfs send estimates.
81 */
82uint64_t zfs_override_estimate_recordsize = 0;
83
84#define	BP_SPAN(datablkszsec, indblkshift, level) \
85	(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
86	(level) * (indblkshift - SPA_BLKPTRSHIFT)))
87
88static void byteswap_record(dmu_replay_record_t *drr);
89
90struct send_thread_arg {
91	bqueue_t	q;
92	dsl_dataset_t	*ds;		/* Dataset to traverse */
93	uint64_t	fromtxg;	/* Traverse from this txg */
94	int		flags;		/* flags to pass to traverse_dataset */
95	int		error_code;
96	boolean_t	cancel;
97	zbookmark_phys_t resume;
98};
99
100struct send_block_record {
101	boolean_t		eos_marker; /* Marks the end of the stream */
102	blkptr_t		bp;
103	zbookmark_phys_t	zb;
104	uint8_t			indblkshift;
105	uint16_t		datablkszsec;
106	bqueue_node_t		ln;
107};
108
109static int
110dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
111{
112	dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
113	struct uio auio;
114	struct iovec aiov;
115
116	/*
117	 * The code does not rely on this (len being a multiple of 8).  We keep
118	 * this assertion because of the corresponding assertion in
119	 * receive_read().  Keeping this assertion ensures that we do not
120	 * inadvertently break backwards compatibility (causing the assertion
121	 * in receive_read() to trigger on old software).
122	 *
123	 * Removing the assertions could be rolled into a new feature that uses
124	 * data that isn't 8-byte aligned; if the assertions were removed, a
125	 * feature flag would have to be added.
126	 */
127
128	ASSERT0(len % 8);
129
130	aiov.iov_base = buf;
131	aiov.iov_len = len;
132	auio.uio_iov = &aiov;
133	auio.uio_iovcnt = 1;
134	auio.uio_resid = len;
135	auio.uio_segflg = UIO_SYSSPACE;
136	auio.uio_rw = UIO_WRITE;
137	auio.uio_offset = (off_t)-1;
138	auio.uio_td = dsp->dsa_td;
139#ifdef _KERNEL
140	if (dsp->dsa_fp->f_type == DTYPE_VNODE)
141		bwillwrite();
142	dsp->dsa_err = fo_write(dsp->dsa_fp, &auio, dsp->dsa_td->td_ucred, 0,
143	    dsp->dsa_td);
144#else
145	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
146	dsp->dsa_err = EOPNOTSUPP;
147#endif
148	mutex_enter(&ds->ds_sendstream_lock);
149	*dsp->dsa_off += len;
150	mutex_exit(&ds->ds_sendstream_lock);
151
152	return (dsp->dsa_err);
153}
154
155/*
156 * For all record types except BEGIN, fill in the checksum (overlaid in
157 * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
158 * up to the start of the checksum itself.
159 */
160static int
161dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
162{
163	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
164	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
165	(void) fletcher_4_incremental_native(dsp->dsa_drr,
166	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
167	    &dsp->dsa_zc);
168	if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
169		dsp->dsa_sent_begin = B_TRUE;
170	} else {
171		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
172		    drr_checksum.drr_checksum));
173		dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
174	}
175	if (dsp->dsa_drr->drr_type == DRR_END) {
176		dsp->dsa_sent_end = B_TRUE;
177	}
178	(void) fletcher_4_incremental_native(&dsp->dsa_drr->
179	    drr_u.drr_checksum.drr_checksum,
180	    sizeof (zio_cksum_t), &dsp->dsa_zc);
181	if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
182		return (SET_ERROR(EINTR));
183	if (payload_len != 0) {
184		(void) fletcher_4_incremental_native(payload, payload_len,
185		    &dsp->dsa_zc);
186		if (dump_bytes(dsp, payload, payload_len) != 0)
187			return (SET_ERROR(EINTR));
188	}
189	return (0);
190}
191
192/*
193 * Fill in the drr_free struct, or perform aggregation if the previous record is
194 * also a free record, and the two are adjacent.
195 *
196 * Note that we send free records even for a full send, because we want to be
197 * able to receive a full send as a clone, which requires a list of all the free
198 * and freeobject records that were generated on the source.
199 */
200static int
201dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
202    uint64_t length)
203{
204	struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
205
206	/*
207	 * When we receive a free record, dbuf_free_range() assumes
208	 * that the receiving system doesn't have any dbufs in the range
209	 * being freed.  This is always true because there is a one-record
210	 * constraint: we only send one WRITE record for any given
211	 * object,offset.  We know that the one-record constraint is
212	 * true because we always send data in increasing order by
213	 * object,offset.
214	 *
215	 * If the increasing-order constraint ever changes, we should find
216	 * another way to assert that the one-record constraint is still
217	 * satisfied.
218	 */
219	ASSERT(object > dsp->dsa_last_data_object ||
220	    (object == dsp->dsa_last_data_object &&
221	    offset > dsp->dsa_last_data_offset));
222
223	if (length != -1ULL && offset + length < offset)
224		length = -1ULL;
225
226	/*
227	 * If there is a pending op, but it's not PENDING_FREE, push it out,
228	 * since free block aggregation can only be done for blocks of the
229	 * same type (i.e., DRR_FREE records can only be aggregated with
230	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
231	 * aggregated with other DRR_FREEOBJECTS records.
232	 */
233	if (dsp->dsa_pending_op != PENDING_NONE &&
234	    dsp->dsa_pending_op != PENDING_FREE) {
235		if (dump_record(dsp, NULL, 0) != 0)
236			return (SET_ERROR(EINTR));
237		dsp->dsa_pending_op = PENDING_NONE;
238	}
239
240	if (dsp->dsa_pending_op == PENDING_FREE) {
241		/*
242		 * There should never be a PENDING_FREE if length is -1
243		 * (because dump_dnode is the only place where this
244		 * function is called with a -1, and only after flushing
245		 * any pending record).
246		 */
247		ASSERT(length != -1ULL);
248		/*
249		 * Check to see whether this free block can be aggregated
250		 * with pending one.
251		 */
252		if (drrf->drr_object == object && drrf->drr_offset +
253		    drrf->drr_length == offset) {
254			drrf->drr_length += length;
255			return (0);
256		} else {
257			/* not a continuation.  Push out pending record */
258			if (dump_record(dsp, NULL, 0) != 0)
259				return (SET_ERROR(EINTR));
260			dsp->dsa_pending_op = PENDING_NONE;
261		}
262	}
263	/* create a FREE record and make it pending */
264	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
265	dsp->dsa_drr->drr_type = DRR_FREE;
266	drrf->drr_object = object;
267	drrf->drr_offset = offset;
268	drrf->drr_length = length;
269	drrf->drr_toguid = dsp->dsa_toguid;
270	if (length == -1ULL) {
271		if (dump_record(dsp, NULL, 0) != 0)
272			return (SET_ERROR(EINTR));
273	} else {
274		dsp->dsa_pending_op = PENDING_FREE;
275	}
276
277	return (0);
278}
279
280static int
281dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
282    uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp,
283    void *data)
284{
285	uint64_t payload_size;
286	struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
287
288	/*
289	 * We send data in increasing object, offset order.
290	 * See comment in dump_free() for details.
291	 */
292	ASSERT(object > dsp->dsa_last_data_object ||
293	    (object == dsp->dsa_last_data_object &&
294	    offset > dsp->dsa_last_data_offset));
295	dsp->dsa_last_data_object = object;
296	dsp->dsa_last_data_offset = offset + lsize - 1;
297
298	/*
299	 * If there is any kind of pending aggregation (currently either
300	 * a grouping of free objects or free blocks), push it out to
301	 * the stream, since aggregation can't be done across operations
302	 * of different types.
303	 */
304	if (dsp->dsa_pending_op != PENDING_NONE) {
305		if (dump_record(dsp, NULL, 0) != 0)
306			return (SET_ERROR(EINTR));
307		dsp->dsa_pending_op = PENDING_NONE;
308	}
309	/* write a WRITE record */
310	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
311	dsp->dsa_drr->drr_type = DRR_WRITE;
312	drrw->drr_object = object;
313	drrw->drr_type = type;
314	drrw->drr_offset = offset;
315	drrw->drr_toguid = dsp->dsa_toguid;
316	drrw->drr_logical_size = lsize;
317
318	/* only set the compression fields if the buf is compressed */
319	if (lsize != psize) {
320		ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED);
321		ASSERT(!BP_IS_EMBEDDED(bp));
322		ASSERT(!BP_SHOULD_BYTESWAP(bp));
323		ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
324		ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
325		ASSERT3S(psize, >, 0);
326		ASSERT3S(lsize, >=, psize);
327
328		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
329		drrw->drr_compressed_size = psize;
330		payload_size = drrw->drr_compressed_size;
331	} else {
332		payload_size = drrw->drr_logical_size;
333	}
334
335	if (bp == NULL || BP_IS_EMBEDDED(bp)) {
336		/*
337		 * There's no pre-computed checksum for partial-block
338		 * writes or embedded BP's, so (like
339		 * fletcher4-checkummed blocks) userland will have to
340		 * compute a dedup-capable checksum itself.
341		 */
342		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
343	} else {
344		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
345		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
346		    ZCHECKSUM_FLAG_DEDUP)
347			drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
348		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
349		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
350		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
351		drrw->drr_key.ddk_cksum = bp->blk_cksum;
352	}
353
354	if (dump_record(dsp, data, payload_size) != 0)
355		return (SET_ERROR(EINTR));
356	return (0);
357}
358
359static int
360dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
361    int blksz, const blkptr_t *bp)
362{
363	char buf[BPE_PAYLOAD_SIZE];
364	struct drr_write_embedded *drrw =
365	    &(dsp->dsa_drr->drr_u.drr_write_embedded);
366
367	if (dsp->dsa_pending_op != PENDING_NONE) {
368		if (dump_record(dsp, NULL, 0) != 0)
369			return (EINTR);
370		dsp->dsa_pending_op = PENDING_NONE;
371	}
372
373	ASSERT(BP_IS_EMBEDDED(bp));
374
375	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
376	dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
377	drrw->drr_object = object;
378	drrw->drr_offset = offset;
379	drrw->drr_length = blksz;
380	drrw->drr_toguid = dsp->dsa_toguid;
381	drrw->drr_compression = BP_GET_COMPRESS(bp);
382	drrw->drr_etype = BPE_GET_ETYPE(bp);
383	drrw->drr_lsize = BPE_GET_LSIZE(bp);
384	drrw->drr_psize = BPE_GET_PSIZE(bp);
385
386	decode_embedded_bp_compressed(bp, buf);
387
388	if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
389		return (EINTR);
390	return (0);
391}
392
393static int
394dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
395{
396	struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
397
398	if (dsp->dsa_pending_op != PENDING_NONE) {
399		if (dump_record(dsp, NULL, 0) != 0)
400			return (SET_ERROR(EINTR));
401		dsp->dsa_pending_op = PENDING_NONE;
402	}
403
404	/* write a SPILL record */
405	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
406	dsp->dsa_drr->drr_type = DRR_SPILL;
407	drrs->drr_object = object;
408	drrs->drr_length = blksz;
409	drrs->drr_toguid = dsp->dsa_toguid;
410
411	if (dump_record(dsp, data, blksz) != 0)
412		return (SET_ERROR(EINTR));
413	return (0);
414}
415
416static int
417dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
418{
419	struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
420
421	/*
422	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
423	 * push it out, since free block aggregation can only be done for
424	 * blocks of the same type (i.e., DRR_FREE records can only be
425	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
426	 * can only be aggregated with other DRR_FREEOBJECTS records.
427	 */
428	if (dsp->dsa_pending_op != PENDING_NONE &&
429	    dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
430		if (dump_record(dsp, NULL, 0) != 0)
431			return (SET_ERROR(EINTR));
432		dsp->dsa_pending_op = PENDING_NONE;
433	}
434	if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
435		/*
436		 * See whether this free object array can be aggregated
437		 * with pending one
438		 */
439		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
440			drrfo->drr_numobjs += numobjs;
441			return (0);
442		} else {
443			/* can't be aggregated.  Push out pending record */
444			if (dump_record(dsp, NULL, 0) != 0)
445				return (SET_ERROR(EINTR));
446			dsp->dsa_pending_op = PENDING_NONE;
447		}
448	}
449
450	/* write a FREEOBJECTS record */
451	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
452	dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
453	drrfo->drr_firstobj = firstobj;
454	drrfo->drr_numobjs = numobjs;
455	drrfo->drr_toguid = dsp->dsa_toguid;
456
457	dsp->dsa_pending_op = PENDING_FREEOBJECTS;
458
459	return (0);
460}
461
462static int
463dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
464{
465	struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
466
467	if (object < dsp->dsa_resume_object) {
468		/*
469		 * Note: when resuming, we will visit all the dnodes in
470		 * the block of dnodes that we are resuming from.  In
471		 * this case it's unnecessary to send the dnodes prior to
472		 * the one we are resuming from.  We should be at most one
473		 * block's worth of dnodes behind the resume point.
474		 */
475		ASSERT3U(dsp->dsa_resume_object - object, <,
476		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
477		return (0);
478	}
479
480	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
481		return (dump_freeobjects(dsp, object, 1));
482
483	if (dsp->dsa_pending_op != PENDING_NONE) {
484		if (dump_record(dsp, NULL, 0) != 0)
485			return (SET_ERROR(EINTR));
486		dsp->dsa_pending_op = PENDING_NONE;
487	}
488
489	/* write an OBJECT record */
490	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
491	dsp->dsa_drr->drr_type = DRR_OBJECT;
492	drro->drr_object = object;
493	drro->drr_type = dnp->dn_type;
494	drro->drr_bonustype = dnp->dn_bonustype;
495	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
496	drro->drr_bonuslen = dnp->dn_bonuslen;
497	drro->drr_checksumtype = dnp->dn_checksum;
498	drro->drr_compress = dnp->dn_compress;
499	drro->drr_toguid = dsp->dsa_toguid;
500
501	if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
502	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
503		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
504
505	if (dump_record(dsp, DN_BONUS(dnp),
506	    P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
507		return (SET_ERROR(EINTR));
508	}
509
510	/* Free anything past the end of the file. */
511	if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
512	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
513		return (SET_ERROR(EINTR));
514	if (dsp->dsa_err != 0)
515		return (SET_ERROR(EINTR));
516	return (0);
517}
518
519static boolean_t
520backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
521{
522	if (!BP_IS_EMBEDDED(bp))
523		return (B_FALSE);
524
525	/*
526	 * Compression function must be legacy, or explicitly enabled.
527	 */
528	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
529	    !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4)))
530		return (B_FALSE);
531
532	/*
533	 * Embed type must be explicitly enabled.
534	 */
535	switch (BPE_GET_ETYPE(bp)) {
536	case BP_EMBEDDED_TYPE_DATA:
537		if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
538			return (B_TRUE);
539		break;
540	default:
541		return (B_FALSE);
542	}
543	return (B_FALSE);
544}
545
546/*
547 * This is the callback function to traverse_dataset that acts as the worker
548 * thread for dmu_send_impl.
549 */
550/*ARGSUSED*/
551static int
552send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
553    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
554{
555	struct send_thread_arg *sta = arg;
556	struct send_block_record *record;
557	uint64_t record_size;
558	int err = 0;
559
560	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
561	    zb->zb_object >= sta->resume.zb_object);
562
563	if (sta->cancel)
564		return (SET_ERROR(EINTR));
565
566	if (bp == NULL) {
567		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
568		return (0);
569	} else if (zb->zb_level < 0) {
570		return (0);
571	}
572
573	record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
574	record->eos_marker = B_FALSE;
575	record->bp = *bp;
576	record->zb = *zb;
577	record->indblkshift = dnp->dn_indblkshift;
578	record->datablkszsec = dnp->dn_datablkszsec;
579	record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
580	bqueue_enqueue(&sta->q, record, record_size);
581
582	return (err);
583}
584
585/*
586 * This function kicks off the traverse_dataset.  It also handles setting the
587 * error code of the thread in case something goes wrong, and pushes the End of
588 * Stream record when the traverse_dataset call has finished.  If there is no
589 * dataset to traverse, the thread immediately pushes End of Stream marker.
590 */
591static void
592send_traverse_thread(void *arg)
593{
594	struct send_thread_arg *st_arg = arg;
595	int err;
596	struct send_block_record *data;
597
598	if (st_arg->ds != NULL) {
599		err = traverse_dataset_resume(st_arg->ds,
600		    st_arg->fromtxg, &st_arg->resume,
601		    st_arg->flags, send_cb, st_arg);
602
603		if (err != EINTR)
604			st_arg->error_code = err;
605	}
606	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
607	data->eos_marker = B_TRUE;
608	bqueue_enqueue(&st_arg->q, data, 1);
609	thread_exit();
610}
611
612/*
613 * This function actually handles figuring out what kind of record needs to be
614 * dumped, reading the data (which has hopefully been prefetched), and calling
615 * the appropriate helper function.
616 */
617static int
618do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
619{
620	dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
621	const blkptr_t *bp = &data->bp;
622	const zbookmark_phys_t *zb = &data->zb;
623	uint8_t indblkshift = data->indblkshift;
624	uint16_t dblkszsec = data->datablkszsec;
625	spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
626	dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
627	int err = 0;
628
629	ASSERT3U(zb->zb_level, >=, 0);
630
631	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
632	    zb->zb_object >= dsa->dsa_resume_object);
633
634	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
635	    DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
636		return (0);
637	} else if (BP_IS_HOLE(bp) &&
638	    zb->zb_object == DMU_META_DNODE_OBJECT) {
639		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
640		uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
641		err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
642	} else if (BP_IS_HOLE(bp)) {
643		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
644		uint64_t offset = zb->zb_blkid * span;
645		err = dump_free(dsa, zb->zb_object, offset, span);
646	} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
647		return (0);
648	} else if (type == DMU_OT_DNODE) {
649		int blksz = BP_GET_LSIZE(bp);
650		arc_flags_t aflags = ARC_FLAG_WAIT;
651		arc_buf_t *abuf;
652
653		ASSERT0(zb->zb_level);
654
655		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
656		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
657		    &aflags, zb) != 0)
658			return (SET_ERROR(EIO));
659
660		dnode_phys_t *blk = abuf->b_data;
661		uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
662		for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
663			err = dump_dnode(dsa, dnobj + i, blk + i);
664			if (err != 0)
665				break;
666		}
667		arc_buf_destroy(abuf, &abuf);
668	} else if (type == DMU_OT_SA) {
669		arc_flags_t aflags = ARC_FLAG_WAIT;
670		arc_buf_t *abuf;
671		int blksz = BP_GET_LSIZE(bp);
672
673		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
674		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
675		    &aflags, zb) != 0)
676			return (SET_ERROR(EIO));
677
678		err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
679		arc_buf_destroy(abuf, &abuf);
680	} else if (backup_do_embed(dsa, bp)) {
681		/* it's an embedded level-0 block of a regular object */
682		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
683		ASSERT0(zb->zb_level);
684		err = dump_write_embedded(dsa, zb->zb_object,
685		    zb->zb_blkid * blksz, blksz, bp);
686	} else {
687		/* it's a level-0 block of a regular object */
688		arc_flags_t aflags = ARC_FLAG_WAIT;
689		arc_buf_t *abuf;
690		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
691		uint64_t offset;
692
693		/*
694		 * If we have large blocks stored on disk but the send flags
695		 * don't allow us to send large blocks, we split the data from
696		 * the arc buf into chunks.
697		 */
698		boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE &&
699		    !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
700		/*
701		 * We should only request compressed data from the ARC if all
702		 * the following are true:
703		 *  - stream compression was requested
704		 *  - we aren't splitting large blocks into smaller chunks
705		 *  - the data won't need to be byteswapped before sending
706		 *  - this isn't an embedded block
707		 *  - this isn't metadata (if receiving on a different endian
708		 *    system it can be byteswapped more easily)
709		 */
710		boolean_t request_compressed =
711		    (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
712		    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
713		    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
714
715		ASSERT0(zb->zb_level);
716		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
717		    (zb->zb_object == dsa->dsa_resume_object &&
718		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
719
720		ASSERT0(zb->zb_level);
721		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
722		    (zb->zb_object == dsa->dsa_resume_object &&
723		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
724
725		ASSERT3U(blksz, ==, BP_GET_LSIZE(bp));
726
727		enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
728		if (request_compressed)
729			zioflags |= ZIO_FLAG_RAW;
730		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
731		    ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) {
732			if (zfs_send_corrupt_data) {
733				/* Send a block filled with 0x"zfs badd bloc" */
734				abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA,
735				    blksz);
736				uint64_t *ptr;
737				for (ptr = abuf->b_data;
738				    (char *)ptr < (char *)abuf->b_data + blksz;
739				    ptr++)
740					*ptr = 0x2f5baddb10cULL;
741			} else {
742				return (SET_ERROR(EIO));
743			}
744		}
745
746		offset = zb->zb_blkid * blksz;
747
748		if (split_large_blocks) {
749			ASSERT3U(arc_get_compression(abuf), ==,
750			    ZIO_COMPRESS_OFF);
751			char *buf = abuf->b_data;
752			while (blksz > 0 && err == 0) {
753				int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
754				err = dump_write(dsa, type, zb->zb_object,
755				    offset, n, n, NULL, buf);
756				offset += n;
757				buf += n;
758				blksz -= n;
759			}
760		} else {
761			err = dump_write(dsa, type, zb->zb_object, offset,
762			    blksz, arc_buf_size(abuf), bp, abuf->b_data);
763		}
764		arc_buf_destroy(abuf, &abuf);
765	}
766
767	ASSERT(err == 0 || err == EINTR);
768	return (err);
769}
770
771/*
772 * Pop the new data off the queue, and free the old data.
773 */
774static struct send_block_record *
775get_next_record(bqueue_t *bq, struct send_block_record *data)
776{
777	struct send_block_record *tmp = bqueue_dequeue(bq);
778	kmem_free(data, sizeof (*data));
779	return (tmp);
780}
781
782/*
783 * Actually do the bulk of the work in a zfs send.
784 *
785 * Note: Releases dp using the specified tag.
786 */
787static int
788dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
789    zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone,
790    boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
791    int outfd, uint64_t resumeobj, uint64_t resumeoff,
792#ifdef illumos
793    vnode_t *vp, offset_t *off)
794#else
795    struct file *fp, offset_t *off)
796#endif
797{
798	objset_t *os;
799	dmu_replay_record_t *drr;
800	dmu_sendarg_t *dsp;
801	int err;
802	uint64_t fromtxg = 0;
803	uint64_t featureflags = 0;
804	struct send_thread_arg to_arg = { 0 };
805
806	err = dmu_objset_from_ds(to_ds, &os);
807	if (err != 0) {
808		dsl_pool_rele(dp, tag);
809		return (err);
810	}
811
812	drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
813	drr->drr_type = DRR_BEGIN;
814	drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
815	DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
816	    DMU_SUBSTREAM);
817
818#ifdef _KERNEL
819	if (dmu_objset_type(os) == DMU_OST_ZFS) {
820		uint64_t version;
821		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
822			kmem_free(drr, sizeof (dmu_replay_record_t));
823			dsl_pool_rele(dp, tag);
824			return (SET_ERROR(EINVAL));
825		}
826		if (version >= ZPL_VERSION_SA) {
827			featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
828		}
829	}
830#endif
831
832	if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
833		featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
834	if (embedok &&
835	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
836		featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
837		if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
838			featureflags |= DMU_BACKUP_FEATURE_LZ4;
839	}
840	if (compressok) {
841		featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
842	}
843	if ((featureflags &
844	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) !=
845	    0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
846		featureflags |= DMU_BACKUP_FEATURE_LZ4;
847	}
848
849	if (resumeobj != 0 || resumeoff != 0) {
850		featureflags |= DMU_BACKUP_FEATURE_RESUMING;
851	}
852
853	DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
854	    featureflags);
855
856	drr->drr_u.drr_begin.drr_creation_time =
857	    dsl_dataset_phys(to_ds)->ds_creation_time;
858	drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
859	if (is_clone)
860		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
861	drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
862	if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
863		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
864	if (zfs_send_set_freerecords_bit)
865		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
866
867	if (ancestor_zb != NULL) {
868		drr->drr_u.drr_begin.drr_fromguid =
869		    ancestor_zb->zbm_guid;
870		fromtxg = ancestor_zb->zbm_creation_txg;
871	}
872	dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
873	if (!to_ds->ds_is_snapshot) {
874		(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
875		    sizeof (drr->drr_u.drr_begin.drr_toname));
876	}
877
878	dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
879
880	dsp->dsa_drr = drr;
881	dsp->dsa_outfd = outfd;
882	dsp->dsa_proc = curproc;
883	dsp->dsa_td = curthread;
884	dsp->dsa_fp = fp;
885	dsp->dsa_os = os;
886	dsp->dsa_off = off;
887	dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
888	dsp->dsa_pending_op = PENDING_NONE;
889	dsp->dsa_featureflags = featureflags;
890	dsp->dsa_resume_object = resumeobj;
891	dsp->dsa_resume_offset = resumeoff;
892
893	mutex_enter(&to_ds->ds_sendstream_lock);
894	list_insert_head(&to_ds->ds_sendstreams, dsp);
895	mutex_exit(&to_ds->ds_sendstream_lock);
896
897	dsl_dataset_long_hold(to_ds, FTAG);
898	dsl_pool_rele(dp, tag);
899
900	void *payload = NULL;
901	size_t payload_len = 0;
902	if (resumeobj != 0 || resumeoff != 0) {
903		dmu_object_info_t to_doi;
904		err = dmu_object_info(os, resumeobj, &to_doi);
905		if (err != 0)
906			goto out;
907		SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
908		    resumeoff / to_doi.doi_data_block_size);
909
910		nvlist_t *nvl = fnvlist_alloc();
911		fnvlist_add_uint64(nvl, "resume_object", resumeobj);
912		fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
913		payload = fnvlist_pack(nvl, &payload_len);
914		drr->drr_payloadlen = payload_len;
915		fnvlist_free(nvl);
916	}
917
918	err = dump_record(dsp, payload, payload_len);
919	fnvlist_pack_free(payload, payload_len);
920	if (err != 0) {
921		err = dsp->dsa_err;
922		goto out;
923	}
924
925	err = bqueue_init(&to_arg.q, zfs_send_queue_length,
926	    offsetof(struct send_block_record, ln));
927	to_arg.error_code = 0;
928	to_arg.cancel = B_FALSE;
929	to_arg.ds = to_ds;
930	to_arg.fromtxg = fromtxg;
931	to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
932	(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, &p0,
933	    TS_RUN, minclsyspri);
934
935	struct send_block_record *to_data;
936	to_data = bqueue_dequeue(&to_arg.q);
937
938	while (!to_data->eos_marker && err == 0) {
939		err = do_dump(dsp, to_data);
940		to_data = get_next_record(&to_arg.q, to_data);
941		if (issig(JUSTLOOKING) && issig(FORREAL))
942			err = EINTR;
943	}
944
945	if (err != 0) {
946		to_arg.cancel = B_TRUE;
947		while (!to_data->eos_marker) {
948			to_data = get_next_record(&to_arg.q, to_data);
949		}
950	}
951	kmem_free(to_data, sizeof (*to_data));
952
953	bqueue_destroy(&to_arg.q);
954
955	if (err == 0 && to_arg.error_code != 0)
956		err = to_arg.error_code;
957
958	if (err != 0)
959		goto out;
960
961	if (dsp->dsa_pending_op != PENDING_NONE)
962		if (dump_record(dsp, NULL, 0) != 0)
963			err = SET_ERROR(EINTR);
964
965	if (err != 0) {
966		if (err == EINTR && dsp->dsa_err != 0)
967			err = dsp->dsa_err;
968		goto out;
969	}
970
971	bzero(drr, sizeof (dmu_replay_record_t));
972	drr->drr_type = DRR_END;
973	drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
974	drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
975
976	if (dump_record(dsp, NULL, 0) != 0)
977		err = dsp->dsa_err;
978
979out:
980	mutex_enter(&to_ds->ds_sendstream_lock);
981	list_remove(&to_ds->ds_sendstreams, dsp);
982	mutex_exit(&to_ds->ds_sendstream_lock);
983
984	VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
985
986	kmem_free(drr, sizeof (dmu_replay_record_t));
987	kmem_free(dsp, sizeof (dmu_sendarg_t));
988
989	dsl_dataset_long_rele(to_ds, FTAG);
990
991	return (err);
992}
993
994int
995dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
996    boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
997#ifdef illumos
998    int outfd, vnode_t *vp, offset_t *off)
999#else
1000    int outfd, struct file *fp, offset_t *off)
1001#endif
1002{
1003	dsl_pool_t *dp;
1004	dsl_dataset_t *ds;
1005	dsl_dataset_t *fromds = NULL;
1006	int err;
1007
1008	err = dsl_pool_hold(pool, FTAG, &dp);
1009	if (err != 0)
1010		return (err);
1011
1012	err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
1013	if (err != 0) {
1014		dsl_pool_rele(dp, FTAG);
1015		return (err);
1016	}
1017
1018	if (fromsnap != 0) {
1019		zfs_bookmark_phys_t zb;
1020		boolean_t is_clone;
1021
1022		err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
1023		if (err != 0) {
1024			dsl_dataset_rele(ds, FTAG);
1025			dsl_pool_rele(dp, FTAG);
1026			return (err);
1027		}
1028		if (!dsl_dataset_is_before(ds, fromds, 0))
1029			err = SET_ERROR(EXDEV);
1030		zb.zbm_creation_time =
1031		    dsl_dataset_phys(fromds)->ds_creation_time;
1032		zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
1033		zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1034		is_clone = (fromds->ds_dir != ds->ds_dir);
1035		dsl_dataset_rele(fromds, FTAG);
1036		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1037		    embedok, large_block_ok, compressok, outfd, 0, 0, fp, off);
1038	} else {
1039		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1040		    embedok, large_block_ok, compressok, outfd, 0, 0, fp, off);
1041	}
1042	dsl_dataset_rele(ds, FTAG);
1043	return (err);
1044}
1045
1046int
1047dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
1048    boolean_t large_block_ok, boolean_t compressok, int outfd,
1049    uint64_t resumeobj, uint64_t resumeoff,
1050#ifdef illumos
1051    vnode_t *vp, offset_t *off)
1052#else
1053    struct file *fp, offset_t *off)
1054#endif
1055{
1056	dsl_pool_t *dp;
1057	dsl_dataset_t *ds;
1058	int err;
1059	boolean_t owned = B_FALSE;
1060
1061	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
1062		return (SET_ERROR(EINVAL));
1063
1064	err = dsl_pool_hold(tosnap, FTAG, &dp);
1065	if (err != 0)
1066		return (err);
1067
1068	if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
1069		/*
1070		 * We are sending a filesystem or volume.  Ensure
1071		 * that it doesn't change by owning the dataset.
1072		 */
1073		err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
1074		owned = B_TRUE;
1075	} else {
1076		err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
1077	}
1078	if (err != 0) {
1079		dsl_pool_rele(dp, FTAG);
1080		return (err);
1081	}
1082
1083	if (fromsnap != NULL) {
1084		zfs_bookmark_phys_t zb;
1085		boolean_t is_clone = B_FALSE;
1086		int fsnamelen = strchr(tosnap, '@') - tosnap;
1087
1088		/*
1089		 * If the fromsnap is in a different filesystem, then
1090		 * mark the send stream as a clone.
1091		 */
1092		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1093		    (fromsnap[fsnamelen] != '@' &&
1094		    fromsnap[fsnamelen] != '#')) {
1095			is_clone = B_TRUE;
1096		}
1097
1098		if (strchr(fromsnap, '@')) {
1099			dsl_dataset_t *fromds;
1100			err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1101			if (err == 0) {
1102				if (!dsl_dataset_is_before(ds, fromds, 0))
1103					err = SET_ERROR(EXDEV);
1104				zb.zbm_creation_time =
1105				    dsl_dataset_phys(fromds)->ds_creation_time;
1106				zb.zbm_creation_txg =
1107				    dsl_dataset_phys(fromds)->ds_creation_txg;
1108				zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1109				is_clone = (ds->ds_dir != fromds->ds_dir);
1110				dsl_dataset_rele(fromds, FTAG);
1111			}
1112		} else {
1113			err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1114		}
1115		if (err != 0) {
1116			dsl_dataset_rele(ds, FTAG);
1117			dsl_pool_rele(dp, FTAG);
1118			return (err);
1119		}
1120		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1121		    embedok, large_block_ok, compressok,
1122		    outfd, resumeobj, resumeoff, fp, off);
1123	} else {
1124		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1125		    embedok, large_block_ok, compressok,
1126		    outfd, resumeobj, resumeoff, fp, off);
1127	}
1128	if (owned)
1129		dsl_dataset_disown(ds, FTAG);
1130	else
1131		dsl_dataset_rele(ds, FTAG);
1132	return (err);
1133}
1134
1135static int
1136dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
1137    uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
1138{
1139	int err = 0;
1140	uint64_t size;
1141	/*
1142	 * Assume that space (both on-disk and in-stream) is dominated by
1143	 * data.  We will adjust for indirect blocks and the copies property,
1144	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1145	 */
1146	uint64_t recordsize;
1147	uint64_t record_count;
1148	objset_t *os;
1149	VERIFY0(dmu_objset_from_ds(ds, &os));
1150
1151	/* Assume all (uncompressed) blocks are recordsize. */
1152	if (zfs_override_estimate_recordsize != 0) {
1153		recordsize = zfs_override_estimate_recordsize;
1154	} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
1155		err = dsl_prop_get_int_ds(ds,
1156		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
1157	} else {
1158		err = dsl_prop_get_int_ds(ds,
1159		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
1160	}
1161	if (err != 0)
1162		return (err);
1163	record_count = uncompressed / recordsize;
1164
1165	/*
1166	 * If we're estimating a send size for a compressed stream, use the
1167	 * compressed data size to estimate the stream size. Otherwise, use the
1168	 * uncompressed data size.
1169	 */
1170	size = stream_compressed ? compressed : uncompressed;
1171
1172	/*
1173	 * Subtract out approximate space used by indirect blocks.
1174	 * Assume most space is used by data blocks (non-indirect, non-dnode).
1175	 * Assume no ditto blocks or internal fragmentation.
1176	 *
1177	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1178	 * block.
1179	 */
1180	size -= record_count * sizeof (blkptr_t);
1181
1182	/* Add in the space for the record associated with each block. */
1183	size += record_count * sizeof (dmu_replay_record_t);
1184
1185	*sizep = size;
1186
1187	return (0);
1188}
1189
1190int
1191dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1192    boolean_t stream_compressed, uint64_t *sizep)
1193{
1194	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1195	int err;
1196	uint64_t uncomp, comp;
1197
1198	ASSERT(dsl_pool_config_held(dp));
1199
1200	/* tosnap must be a snapshot */
1201	if (!ds->ds_is_snapshot)
1202		return (SET_ERROR(EINVAL));
1203
1204	/* fromsnap, if provided, must be a snapshot */
1205	if (fromds != NULL && !fromds->ds_is_snapshot)
1206		return (SET_ERROR(EINVAL));
1207
1208	/*
1209	 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1210	 * or the origin's fs.
1211	 */
1212	if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1213		return (SET_ERROR(EXDEV));
1214
1215	/* Get compressed and uncompressed size estimates of changed data. */
1216	if (fromds == NULL) {
1217		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1218		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
1219	} else {
1220		uint64_t used;
1221		err = dsl_dataset_space_written(fromds, ds,
1222		    &used, &comp, &uncomp);
1223		if (err != 0)
1224			return (err);
1225	}
1226
1227	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
1228	    stream_compressed, sizep);
1229	/*
1230	 * Add the size of the BEGIN and END records to the estimate.
1231	 */
1232	*sizep += 2 * sizeof (dmu_replay_record_t);
1233	return (err);
1234}
1235
1236struct calculate_send_arg {
1237	uint64_t uncompressed;
1238	uint64_t compressed;
1239};
1240
1241/*
1242 * Simple callback used to traverse the blocks of a snapshot and sum their
1243 * uncompressed and compressed sizes.
1244 */
1245/* ARGSUSED */
1246static int
1247dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1248    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1249{
1250	struct calculate_send_arg *space = arg;
1251	if (bp != NULL && !BP_IS_HOLE(bp)) {
1252		space->uncompressed += BP_GET_UCSIZE(bp);
1253		space->compressed += BP_GET_PSIZE(bp);
1254	}
1255	return (0);
1256}
1257
1258/*
1259 * Given a desination snapshot and a TXG, calculate the approximate size of a
1260 * send stream sent from that TXG. from_txg may be zero, indicating that the
1261 * whole snapshot will be sent.
1262 */
1263int
1264dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1265    boolean_t stream_compressed, uint64_t *sizep)
1266{
1267	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1268	int err;
1269	struct calculate_send_arg size = { 0 };
1270
1271	ASSERT(dsl_pool_config_held(dp));
1272
1273	/* tosnap must be a snapshot */
1274	if (!ds->ds_is_snapshot)
1275		return (SET_ERROR(EINVAL));
1276
1277	/* verify that from_txg is before the provided snapshot was taken */
1278	if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1279		return (SET_ERROR(EXDEV));
1280	}
1281
1282	/*
1283	 * traverse the blocks of the snapshot with birth times after
1284	 * from_txg, summing their uncompressed size
1285	 */
1286	err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1287	    dmu_calculate_send_traversal, &size);
1288	if (err)
1289		return (err);
1290
1291	err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed,
1292	    size.compressed, stream_compressed, sizep);
1293	return (err);
1294}
1295
1296typedef struct dmu_recv_begin_arg {
1297	const char *drba_origin;
1298	dmu_recv_cookie_t *drba_cookie;
1299	cred_t *drba_cred;
1300	uint64_t drba_snapobj;
1301} dmu_recv_begin_arg_t;
1302
1303static int
1304recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1305    uint64_t fromguid)
1306{
1307	uint64_t val;
1308	int error;
1309	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1310
1311	/* temporary clone name must not exist */
1312	error = zap_lookup(dp->dp_meta_objset,
1313	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1314	    8, 1, &val);
1315	if (error != ENOENT)
1316		return (error == 0 ? EBUSY : error);
1317
1318	/* new snapshot name must not exist */
1319	error = zap_lookup(dp->dp_meta_objset,
1320	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1321	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
1322	if (error != ENOENT)
1323		return (error == 0 ? EEXIST : error);
1324
1325	/*
1326	 * Check snapshot limit before receiving. We'll recheck again at the
1327	 * end, but might as well abort before receiving if we're already over
1328	 * the limit.
1329	 *
1330	 * Note that we do not check the file system limit with
1331	 * dsl_dir_fscount_check because the temporary %clones don't count
1332	 * against that limit.
1333	 */
1334	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1335	    NULL, drba->drba_cred);
1336	if (error != 0)
1337		return (error);
1338
1339	if (fromguid != 0) {
1340		dsl_dataset_t *snap;
1341		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1342
1343		/* Find snapshot in this dir that matches fromguid. */
1344		while (obj != 0) {
1345			error = dsl_dataset_hold_obj(dp, obj, FTAG,
1346			    &snap);
1347			if (error != 0)
1348				return (SET_ERROR(ENODEV));
1349			if (snap->ds_dir != ds->ds_dir) {
1350				dsl_dataset_rele(snap, FTAG);
1351				return (SET_ERROR(ENODEV));
1352			}
1353			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1354				break;
1355			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1356			dsl_dataset_rele(snap, FTAG);
1357		}
1358		if (obj == 0)
1359			return (SET_ERROR(ENODEV));
1360
1361		if (drba->drba_cookie->drc_force) {
1362			drba->drba_snapobj = obj;
1363		} else {
1364			/*
1365			 * If we are not forcing, there must be no
1366			 * changes since fromsnap.
1367			 */
1368			if (dsl_dataset_modified_since_snap(ds, snap)) {
1369				dsl_dataset_rele(snap, FTAG);
1370				return (SET_ERROR(ETXTBSY));
1371			}
1372			drba->drba_snapobj = ds->ds_prev->ds_object;
1373		}
1374
1375		dsl_dataset_rele(snap, FTAG);
1376	} else {
1377		/* if full, then must be forced */
1378		if (!drba->drba_cookie->drc_force)
1379			return (SET_ERROR(EEXIST));
1380		/* start from $ORIGIN@$ORIGIN, if supported */
1381		drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1382		    dp->dp_origin_snap->ds_object : 0;
1383	}
1384
1385	return (0);
1386
1387}
1388
1389static int
1390dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1391{
1392	dmu_recv_begin_arg_t *drba = arg;
1393	dsl_pool_t *dp = dmu_tx_pool(tx);
1394	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1395	uint64_t fromguid = drrb->drr_fromguid;
1396	int flags = drrb->drr_flags;
1397	int error;
1398	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1399	dsl_dataset_t *ds;
1400	const char *tofs = drba->drba_cookie->drc_tofs;
1401
1402	/* already checked */
1403	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1404	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1405
1406	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1407	    DMU_COMPOUNDSTREAM ||
1408	    drrb->drr_type >= DMU_OST_NUMTYPES ||
1409	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1410		return (SET_ERROR(EINVAL));
1411
1412	/* Verify pool version supports SA if SA_SPILL feature set */
1413	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1414	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1415		return (SET_ERROR(ENOTSUP));
1416
1417	if (drba->drba_cookie->drc_resumable &&
1418	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1419		return (SET_ERROR(ENOTSUP));
1420
1421	/*
1422	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1423	 * record to a plain WRITE record, so the pool must have the
1424	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1425	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1426	 */
1427	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1428	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1429		return (SET_ERROR(ENOTSUP));
1430	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1431	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1432		return (SET_ERROR(ENOTSUP));
1433
1434	/*
1435	 * The receiving code doesn't know how to translate large blocks
1436	 * to smaller ones, so the pool must have the LARGE_BLOCKS
1437	 * feature enabled if the stream has LARGE_BLOCKS.
1438	 */
1439	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1440	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1441		return (SET_ERROR(ENOTSUP));
1442
1443	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1444	if (error == 0) {
1445		/* target fs already exists; recv into temp clone */
1446
1447		/* Can't recv a clone into an existing fs */
1448		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1449			dsl_dataset_rele(ds, FTAG);
1450			return (SET_ERROR(EINVAL));
1451		}
1452
1453		error = recv_begin_check_existing_impl(drba, ds, fromguid);
1454		dsl_dataset_rele(ds, FTAG);
1455	} else if (error == ENOENT) {
1456		/* target fs does not exist; must be a full backup or clone */
1457		char buf[ZFS_MAX_DATASET_NAME_LEN];
1458
1459		/*
1460		 * If it's a non-clone incremental, we are missing the
1461		 * target fs, so fail the recv.
1462		 */
1463		if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1464		    drba->drba_origin))
1465			return (SET_ERROR(ENOENT));
1466
1467		/*
1468		 * If we're receiving a full send as a clone, and it doesn't
1469		 * contain all the necessary free records and freeobject
1470		 * records, reject it.
1471		 */
1472		if (fromguid == 0 && drba->drba_origin &&
1473		    !(flags & DRR_FLAG_FREERECORDS))
1474			return (SET_ERROR(EINVAL));
1475
1476		/* Open the parent of tofs */
1477		ASSERT3U(strlen(tofs), <, sizeof (buf));
1478		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1479		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1480		if (error != 0)
1481			return (error);
1482
1483		/*
1484		 * Check filesystem and snapshot limits before receiving. We'll
1485		 * recheck snapshot limits again at the end (we create the
1486		 * filesystems and increment those counts during begin_sync).
1487		 */
1488		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1489		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1490		if (error != 0) {
1491			dsl_dataset_rele(ds, FTAG);
1492			return (error);
1493		}
1494
1495		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1496		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1497		if (error != 0) {
1498			dsl_dataset_rele(ds, FTAG);
1499			return (error);
1500		}
1501
1502		if (drba->drba_origin != NULL) {
1503			dsl_dataset_t *origin;
1504			error = dsl_dataset_hold(dp, drba->drba_origin,
1505			    FTAG, &origin);
1506			if (error != 0) {
1507				dsl_dataset_rele(ds, FTAG);
1508				return (error);
1509			}
1510			if (!origin->ds_is_snapshot) {
1511				dsl_dataset_rele(origin, FTAG);
1512				dsl_dataset_rele(ds, FTAG);
1513				return (SET_ERROR(EINVAL));
1514			}
1515			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1516			    fromguid != 0) {
1517				dsl_dataset_rele(origin, FTAG);
1518				dsl_dataset_rele(ds, FTAG);
1519				return (SET_ERROR(ENODEV));
1520			}
1521			dsl_dataset_rele(origin, FTAG);
1522		}
1523		dsl_dataset_rele(ds, FTAG);
1524		error = 0;
1525	}
1526	return (error);
1527}
1528
1529static void
1530dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1531{
1532	dmu_recv_begin_arg_t *drba = arg;
1533	dsl_pool_t *dp = dmu_tx_pool(tx);
1534	objset_t *mos = dp->dp_meta_objset;
1535	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1536	const char *tofs = drba->drba_cookie->drc_tofs;
1537	dsl_dataset_t *ds, *newds;
1538	uint64_t dsobj;
1539	int error;
1540	uint64_t crflags = 0;
1541
1542	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1543		crflags |= DS_FLAG_CI_DATASET;
1544
1545	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1546	if (error == 0) {
1547		/* create temporary clone */
1548		dsl_dataset_t *snap = NULL;
1549		if (drba->drba_snapobj != 0) {
1550			VERIFY0(dsl_dataset_hold_obj(dp,
1551			    drba->drba_snapobj, FTAG, &snap));
1552		}
1553		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1554		    snap, crflags, drba->drba_cred, tx);
1555		if (drba->drba_snapobj != 0)
1556			dsl_dataset_rele(snap, FTAG);
1557		dsl_dataset_rele(ds, FTAG);
1558	} else {
1559		dsl_dir_t *dd;
1560		const char *tail;
1561		dsl_dataset_t *origin = NULL;
1562
1563		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1564
1565		if (drba->drba_origin != NULL) {
1566			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1567			    FTAG, &origin));
1568		}
1569
1570		/* Create new dataset. */
1571		dsobj = dsl_dataset_create_sync(dd,
1572		    strrchr(tofs, '/') + 1,
1573		    origin, crflags, drba->drba_cred, tx);
1574		if (origin != NULL)
1575			dsl_dataset_rele(origin, FTAG);
1576		dsl_dir_rele(dd, FTAG);
1577		drba->drba_cookie->drc_newfs = B_TRUE;
1578	}
1579	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1580
1581	if (drba->drba_cookie->drc_resumable) {
1582		dsl_dataset_zapify(newds, tx);
1583		if (drrb->drr_fromguid != 0) {
1584			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1585			    8, 1, &drrb->drr_fromguid, tx));
1586		}
1587		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1588		    8, 1, &drrb->drr_toguid, tx));
1589		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1590		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1591		uint64_t one = 1;
1592		uint64_t zero = 0;
1593		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1594		    8, 1, &one, tx));
1595		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1596		    8, 1, &zero, tx));
1597		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1598		    8, 1, &zero, tx));
1599		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1600		    DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
1601			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
1602			    8, 1, &one, tx));
1603		}
1604		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1605		    DMU_BACKUP_FEATURE_EMBED_DATA) {
1606			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1607			    8, 1, &one, tx));
1608		}
1609		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1610		    DMU_BACKUP_FEATURE_COMPRESSED) {
1611			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
1612			    8, 1, &one, tx));
1613		}
1614	}
1615
1616	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1617	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1618
1619	/*
1620	 * If we actually created a non-clone, we need to create the
1621	 * objset in our new dataset.
1622	 */
1623	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1624	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1625		(void) dmu_objset_create_impl(dp->dp_spa,
1626		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1627	}
1628	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1629
1630	drba->drba_cookie->drc_ds = newds;
1631
1632	spa_history_log_internal_ds(newds, "receive", tx, "");
1633}
1634
1635static int
1636dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1637{
1638	dmu_recv_begin_arg_t *drba = arg;
1639	dsl_pool_t *dp = dmu_tx_pool(tx);
1640	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1641	int error;
1642	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1643	dsl_dataset_t *ds;
1644	const char *tofs = drba->drba_cookie->drc_tofs;
1645
1646	/* already checked */
1647	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1648	ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1649
1650	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1651	    DMU_COMPOUNDSTREAM ||
1652	    drrb->drr_type >= DMU_OST_NUMTYPES)
1653		return (SET_ERROR(EINVAL));
1654
1655	/* Verify pool version supports SA if SA_SPILL feature set */
1656	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1657	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1658		return (SET_ERROR(ENOTSUP));
1659
1660	/*
1661	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1662	 * record to a plain WRITE record, so the pool must have the
1663	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1664	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1665	 */
1666	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1667	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1668		return (SET_ERROR(ENOTSUP));
1669	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1670	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1671		return (SET_ERROR(ENOTSUP));
1672
1673	/* 6 extra bytes for /%recv */
1674	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1675
1676	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1677	    tofs, recv_clone_name);
1678
1679	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1680		/* %recv does not exist; continue in tofs */
1681		error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1682		if (error != 0)
1683			return (error);
1684	}
1685
1686	/* check that ds is marked inconsistent */
1687	if (!DS_IS_INCONSISTENT(ds)) {
1688		dsl_dataset_rele(ds, FTAG);
1689		return (SET_ERROR(EINVAL));
1690	}
1691
1692	/* check that there is resuming data, and that the toguid matches */
1693	if (!dsl_dataset_is_zapified(ds)) {
1694		dsl_dataset_rele(ds, FTAG);
1695		return (SET_ERROR(EINVAL));
1696	}
1697	uint64_t val;
1698	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1699	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1700	if (error != 0 || drrb->drr_toguid != val) {
1701		dsl_dataset_rele(ds, FTAG);
1702		return (SET_ERROR(EINVAL));
1703	}
1704
1705	/*
1706	 * Check if the receive is still running.  If so, it will be owned.
1707	 * Note that nothing else can own the dataset (e.g. after the receive
1708	 * fails) because it will be marked inconsistent.
1709	 */
1710	if (dsl_dataset_has_owner(ds)) {
1711		dsl_dataset_rele(ds, FTAG);
1712		return (SET_ERROR(EBUSY));
1713	}
1714
1715	/* There should not be any snapshots of this fs yet. */
1716	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1717		dsl_dataset_rele(ds, FTAG);
1718		return (SET_ERROR(EINVAL));
1719	}
1720
1721	/*
1722	 * Note: resume point will be checked when we process the first WRITE
1723	 * record.
1724	 */
1725
1726	/* check that the origin matches */
1727	val = 0;
1728	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1729	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1730	if (drrb->drr_fromguid != val) {
1731		dsl_dataset_rele(ds, FTAG);
1732		return (SET_ERROR(EINVAL));
1733	}
1734
1735	dsl_dataset_rele(ds, FTAG);
1736	return (0);
1737}
1738
1739static void
1740dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1741{
1742	dmu_recv_begin_arg_t *drba = arg;
1743	dsl_pool_t *dp = dmu_tx_pool(tx);
1744	const char *tofs = drba->drba_cookie->drc_tofs;
1745	dsl_dataset_t *ds;
1746	uint64_t dsobj;
1747	/* 6 extra bytes for /%recv */
1748	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1749
1750	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1751	    tofs, recv_clone_name);
1752
1753	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1754		/* %recv does not exist; continue in tofs */
1755		VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1756		drba->drba_cookie->drc_newfs = B_TRUE;
1757	}
1758
1759	/* clear the inconsistent flag so that we can own it */
1760	ASSERT(DS_IS_INCONSISTENT(ds));
1761	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1762	dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1763	dsobj = ds->ds_object;
1764	dsl_dataset_rele(ds, FTAG);
1765
1766	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1767
1768	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1769	dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1770
1771	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1772	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1773	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1774
1775	drba->drba_cookie->drc_ds = ds;
1776
1777	spa_history_log_internal_ds(ds, "resume receive", tx, "");
1778}
1779
1780/*
1781 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1782 * succeeds; otherwise we will leak the holds on the datasets.
1783 */
1784int
1785dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1786    boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1787{
1788	dmu_recv_begin_arg_t drba = { 0 };
1789
1790	bzero(drc, sizeof (dmu_recv_cookie_t));
1791	drc->drc_drr_begin = drr_begin;
1792	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1793	drc->drc_tosnap = tosnap;
1794	drc->drc_tofs = tofs;
1795	drc->drc_force = force;
1796	drc->drc_resumable = resumable;
1797	drc->drc_cred = CRED();
1798
1799	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1800		drc->drc_byteswap = B_TRUE;
1801		(void) fletcher_4_incremental_byteswap(drr_begin,
1802		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1803		byteswap_record(drr_begin);
1804	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1805		(void) fletcher_4_incremental_native(drr_begin,
1806		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1807	} else {
1808		return (SET_ERROR(EINVAL));
1809	}
1810
1811	drba.drba_origin = origin;
1812	drba.drba_cookie = drc;
1813	drba.drba_cred = CRED();
1814
1815	if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1816	    DMU_BACKUP_FEATURE_RESUMING) {
1817		return (dsl_sync_task(tofs,
1818		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1819		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1820	} else  {
1821		return (dsl_sync_task(tofs,
1822		    dmu_recv_begin_check, dmu_recv_begin_sync,
1823		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1824	}
1825}
1826
1827struct receive_record_arg {
1828	dmu_replay_record_t header;
1829	void *payload; /* Pointer to a buffer containing the payload */
1830	/*
1831	 * If the record is a write, pointer to the arc_buf_t containing the
1832	 * payload.
1833	 */
1834	arc_buf_t *write_buf;
1835	int payload_size;
1836	uint64_t bytes_read; /* bytes read from stream when record created */
1837	boolean_t eos_marker; /* Marks the end of the stream */
1838	bqueue_node_t node;
1839};
1840
1841struct receive_writer_arg {
1842	objset_t *os;
1843	boolean_t byteswap;
1844	bqueue_t q;
1845
1846	/*
1847	 * These three args are used to signal to the main thread that we're
1848	 * done.
1849	 */
1850	kmutex_t mutex;
1851	kcondvar_t cv;
1852	boolean_t done;
1853
1854	int err;
1855	/* A map from guid to dataset to help handle dedup'd streams. */
1856	avl_tree_t *guid_to_ds_map;
1857	boolean_t resumable;
1858	uint64_t last_object, last_offset;
1859	uint64_t bytes_read; /* bytes read when current record created */
1860};
1861
1862struct objlist {
1863	list_t list; /* List of struct receive_objnode. */
1864	/*
1865	 * Last object looked up. Used to assert that objects are being looked
1866	 * up in ascending order.
1867	 */
1868	uint64_t last_lookup;
1869};
1870
1871struct receive_objnode {
1872	list_node_t node;
1873	uint64_t object;
1874};
1875
1876struct receive_arg {
1877	objset_t *os;
1878	kthread_t *td;
1879	struct file *fp;
1880	uint64_t voff; /* The current offset in the stream */
1881	uint64_t bytes_read;
1882	/*
1883	 * A record that has had its payload read in, but hasn't yet been handed
1884	 * off to the worker thread.
1885	 */
1886	struct receive_record_arg *rrd;
1887	/* A record that has had its header read in, but not its payload. */
1888	struct receive_record_arg *next_rrd;
1889	zio_cksum_t cksum;
1890	zio_cksum_t prev_cksum;
1891	int err;
1892	boolean_t byteswap;
1893	/* Sorted list of objects not to issue prefetches for. */
1894	struct objlist ignore_objlist;
1895};
1896
1897typedef struct guid_map_entry {
1898	uint64_t	guid;
1899	dsl_dataset_t	*gme_ds;
1900	avl_node_t	avlnode;
1901} guid_map_entry_t;
1902
1903static int
1904guid_compare(const void *arg1, const void *arg2)
1905{
1906	const guid_map_entry_t *gmep1 = arg1;
1907	const guid_map_entry_t *gmep2 = arg2;
1908
1909	if (gmep1->guid < gmep2->guid)
1910		return (-1);
1911	else if (gmep1->guid > gmep2->guid)
1912		return (1);
1913	return (0);
1914}
1915
1916static void
1917free_guid_map_onexit(void *arg)
1918{
1919	avl_tree_t *ca = arg;
1920	void *cookie = NULL;
1921	guid_map_entry_t *gmep;
1922
1923	while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1924		dsl_dataset_long_rele(gmep->gme_ds, gmep);
1925		dsl_dataset_rele(gmep->gme_ds, gmep);
1926		kmem_free(gmep, sizeof (guid_map_entry_t));
1927	}
1928	avl_destroy(ca);
1929	kmem_free(ca, sizeof (avl_tree_t));
1930}
1931
1932static int
1933restore_bytes(struct receive_arg *ra, void *buf, int len, off_t off, ssize_t *resid)
1934{
1935	struct uio auio;
1936	struct iovec aiov;
1937	int error;
1938
1939	aiov.iov_base = buf;
1940	aiov.iov_len = len;
1941	auio.uio_iov = &aiov;
1942	auio.uio_iovcnt = 1;
1943	auio.uio_resid = len;
1944	auio.uio_segflg = UIO_SYSSPACE;
1945	auio.uio_rw = UIO_READ;
1946	auio.uio_offset = off;
1947	auio.uio_td = ra->td;
1948#ifdef _KERNEL
1949	error = fo_read(ra->fp, &auio, ra->td->td_ucred, FOF_OFFSET, ra->td);
1950#else
1951	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
1952	error = EOPNOTSUPP;
1953#endif
1954	*resid = auio.uio_resid;
1955	return (error);
1956}
1957
1958static int
1959receive_read(struct receive_arg *ra, int len, void *buf)
1960{
1961	int done = 0;
1962
1963	/*
1964	 * The code doesn't rely on this (lengths being multiples of 8).  See
1965	 * comment in dump_bytes.
1966	 */
1967	ASSERT0(len % 8);
1968
1969	while (done < len) {
1970		ssize_t resid;
1971
1972		ra->err = restore_bytes(ra, buf + done,
1973		    len - done, ra->voff, &resid);
1974
1975		if (resid == len - done) {
1976			/*
1977			 * Note: ECKSUM indicates that the receive
1978			 * was interrupted and can potentially be resumed.
1979			 */
1980			ra->err = SET_ERROR(ECKSUM);
1981		}
1982		ra->voff += len - done - resid;
1983		done = len - resid;
1984		if (ra->err != 0)
1985			return (ra->err);
1986	}
1987
1988	ra->bytes_read += len;
1989
1990	ASSERT3U(done, ==, len);
1991	return (0);
1992}
1993
1994static void
1995byteswap_record(dmu_replay_record_t *drr)
1996{
1997#define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1998#define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1999	drr->drr_type = BSWAP_32(drr->drr_type);
2000	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
2001
2002	switch (drr->drr_type) {
2003	case DRR_BEGIN:
2004		DO64(drr_begin.drr_magic);
2005		DO64(drr_begin.drr_versioninfo);
2006		DO64(drr_begin.drr_creation_time);
2007		DO32(drr_begin.drr_type);
2008		DO32(drr_begin.drr_flags);
2009		DO64(drr_begin.drr_toguid);
2010		DO64(drr_begin.drr_fromguid);
2011		break;
2012	case DRR_OBJECT:
2013		DO64(drr_object.drr_object);
2014		DO32(drr_object.drr_type);
2015		DO32(drr_object.drr_bonustype);
2016		DO32(drr_object.drr_blksz);
2017		DO32(drr_object.drr_bonuslen);
2018		DO64(drr_object.drr_toguid);
2019		break;
2020	case DRR_FREEOBJECTS:
2021		DO64(drr_freeobjects.drr_firstobj);
2022		DO64(drr_freeobjects.drr_numobjs);
2023		DO64(drr_freeobjects.drr_toguid);
2024		break;
2025	case DRR_WRITE:
2026		DO64(drr_write.drr_object);
2027		DO32(drr_write.drr_type);
2028		DO64(drr_write.drr_offset);
2029		DO64(drr_write.drr_logical_size);
2030		DO64(drr_write.drr_toguid);
2031		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
2032		DO64(drr_write.drr_key.ddk_prop);
2033		DO64(drr_write.drr_compressed_size);
2034		break;
2035	case DRR_WRITE_BYREF:
2036		DO64(drr_write_byref.drr_object);
2037		DO64(drr_write_byref.drr_offset);
2038		DO64(drr_write_byref.drr_length);
2039		DO64(drr_write_byref.drr_toguid);
2040		DO64(drr_write_byref.drr_refguid);
2041		DO64(drr_write_byref.drr_refobject);
2042		DO64(drr_write_byref.drr_refoffset);
2043		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
2044		    drr_key.ddk_cksum);
2045		DO64(drr_write_byref.drr_key.ddk_prop);
2046		break;
2047	case DRR_WRITE_EMBEDDED:
2048		DO64(drr_write_embedded.drr_object);
2049		DO64(drr_write_embedded.drr_offset);
2050		DO64(drr_write_embedded.drr_length);
2051		DO64(drr_write_embedded.drr_toguid);
2052		DO32(drr_write_embedded.drr_lsize);
2053		DO32(drr_write_embedded.drr_psize);
2054		break;
2055	case DRR_FREE:
2056		DO64(drr_free.drr_object);
2057		DO64(drr_free.drr_offset);
2058		DO64(drr_free.drr_length);
2059		DO64(drr_free.drr_toguid);
2060		break;
2061	case DRR_SPILL:
2062		DO64(drr_spill.drr_object);
2063		DO64(drr_spill.drr_length);
2064		DO64(drr_spill.drr_toguid);
2065		break;
2066	case DRR_END:
2067		DO64(drr_end.drr_toguid);
2068		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
2069		break;
2070	}
2071
2072	if (drr->drr_type != DRR_BEGIN) {
2073		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
2074	}
2075
2076#undef DO64
2077#undef DO32
2078}
2079
2080static inline uint8_t
2081deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
2082{
2083	if (bonus_type == DMU_OT_SA) {
2084		return (1);
2085	} else {
2086		return (1 +
2087		    ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
2088	}
2089}
2090
2091static void
2092save_resume_state(struct receive_writer_arg *rwa,
2093    uint64_t object, uint64_t offset, dmu_tx_t *tx)
2094{
2095	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2096
2097	if (!rwa->resumable)
2098		return;
2099
2100	/*
2101	 * We use ds_resume_bytes[] != 0 to indicate that we need to
2102	 * update this on disk, so it must not be 0.
2103	 */
2104	ASSERT(rwa->bytes_read != 0);
2105
2106	/*
2107	 * We only resume from write records, which have a valid
2108	 * (non-meta-dnode) object number.
2109	 */
2110	ASSERT(object != 0);
2111
2112	/*
2113	 * For resuming to work correctly, we must receive records in order,
2114	 * sorted by object,offset.  This is checked by the callers, but
2115	 * assert it here for good measure.
2116	 */
2117	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
2118	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
2119	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
2120	ASSERT3U(rwa->bytes_read, >=,
2121	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
2122
2123	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
2124	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
2125	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
2126}
2127
2128static int
2129receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
2130    void *data)
2131{
2132	dmu_object_info_t doi;
2133	dmu_tx_t *tx;
2134	uint64_t object;
2135	int err;
2136
2137	if (drro->drr_type == DMU_OT_NONE ||
2138	    !DMU_OT_IS_VALID(drro->drr_type) ||
2139	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
2140	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2141	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2142	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2143	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
2144	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2145	    drro->drr_bonuslen > DN_MAX_BONUSLEN) {
2146		return (SET_ERROR(EINVAL));
2147	}
2148
2149	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2150
2151	if (err != 0 && err != ENOENT)
2152		return (SET_ERROR(EINVAL));
2153	object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2154
2155	/*
2156	 * If we are losing blkptrs or changing the block size this must
2157	 * be a new file instance.  We must clear out the previous file
2158	 * contents before we can change this type of metadata in the dnode.
2159	 */
2160	if (err == 0) {
2161		int nblkptr;
2162
2163		nblkptr = deduce_nblkptr(drro->drr_bonustype,
2164		    drro->drr_bonuslen);
2165
2166		if (drro->drr_blksz != doi.doi_data_block_size ||
2167		    nblkptr < doi.doi_nblkptr) {
2168			err = dmu_free_long_range(rwa->os, drro->drr_object,
2169			    0, DMU_OBJECT_END);
2170			if (err != 0)
2171				return (SET_ERROR(EINVAL));
2172		}
2173	}
2174
2175	tx = dmu_tx_create(rwa->os);
2176	dmu_tx_hold_bonus(tx, object);
2177	err = dmu_tx_assign(tx, TXG_WAIT);
2178	if (err != 0) {
2179		dmu_tx_abort(tx);
2180		return (err);
2181	}
2182
2183	if (object == DMU_NEW_OBJECT) {
2184		/* currently free, want to be allocated */
2185		err = dmu_object_claim(rwa->os, drro->drr_object,
2186		    drro->drr_type, drro->drr_blksz,
2187		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2188	} else if (drro->drr_type != doi.doi_type ||
2189	    drro->drr_blksz != doi.doi_data_block_size ||
2190	    drro->drr_bonustype != doi.doi_bonus_type ||
2191	    drro->drr_bonuslen != doi.doi_bonus_size) {
2192		/* currently allocated, but with different properties */
2193		err = dmu_object_reclaim(rwa->os, drro->drr_object,
2194		    drro->drr_type, drro->drr_blksz,
2195		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2196	}
2197	if (err != 0) {
2198		dmu_tx_commit(tx);
2199		return (SET_ERROR(EINVAL));
2200	}
2201
2202	dmu_object_set_checksum(rwa->os, drro->drr_object,
2203	    drro->drr_checksumtype, tx);
2204	dmu_object_set_compress(rwa->os, drro->drr_object,
2205	    drro->drr_compress, tx);
2206
2207	if (data != NULL) {
2208		dmu_buf_t *db;
2209
2210		VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2211		dmu_buf_will_dirty(db, tx);
2212
2213		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2214		bcopy(data, db->db_data, drro->drr_bonuslen);
2215		if (rwa->byteswap) {
2216			dmu_object_byteswap_t byteswap =
2217			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2218			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2219			    drro->drr_bonuslen);
2220		}
2221		dmu_buf_rele(db, FTAG);
2222	}
2223	dmu_tx_commit(tx);
2224
2225	return (0);
2226}
2227
2228/* ARGSUSED */
2229static int
2230receive_freeobjects(struct receive_writer_arg *rwa,
2231    struct drr_freeobjects *drrfo)
2232{
2233	uint64_t obj;
2234	int next_err = 0;
2235
2236	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2237		return (SET_ERROR(EINVAL));
2238
2239	for (obj = drrfo->drr_firstobj;
2240	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2241	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2242		int err;
2243
2244		if (dmu_object_info(rwa->os, obj, NULL) != 0)
2245			continue;
2246
2247		err = dmu_free_long_object(rwa->os, obj);
2248		if (err != 0)
2249			return (err);
2250	}
2251	if (next_err != ESRCH)
2252		return (next_err);
2253	return (0);
2254}
2255
2256static int
2257receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2258    arc_buf_t *abuf)
2259{
2260	dmu_tx_t *tx;
2261	int err;
2262
2263	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2264	    !DMU_OT_IS_VALID(drrw->drr_type))
2265		return (SET_ERROR(EINVAL));
2266
2267	/*
2268	 * For resuming to work, records must be in increasing order
2269	 * by (object, offset).
2270	 */
2271	if (drrw->drr_object < rwa->last_object ||
2272	    (drrw->drr_object == rwa->last_object &&
2273	    drrw->drr_offset < rwa->last_offset)) {
2274		return (SET_ERROR(EINVAL));
2275	}
2276	rwa->last_object = drrw->drr_object;
2277	rwa->last_offset = drrw->drr_offset;
2278
2279	if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2280		return (SET_ERROR(EINVAL));
2281
2282	tx = dmu_tx_create(rwa->os);
2283
2284	dmu_tx_hold_write(tx, drrw->drr_object,
2285	    drrw->drr_offset, drrw->drr_logical_size);
2286	err = dmu_tx_assign(tx, TXG_WAIT);
2287	if (err != 0) {
2288		dmu_tx_abort(tx);
2289		return (err);
2290	}
2291	if (rwa->byteswap) {
2292		dmu_object_byteswap_t byteswap =
2293		    DMU_OT_BYTESWAP(drrw->drr_type);
2294		dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2295		    DRR_WRITE_PAYLOAD_SIZE(drrw));
2296	}
2297
2298	/* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
2299	dmu_buf_t *bonus;
2300	if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2301		return (SET_ERROR(EINVAL));
2302	dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2303
2304	/*
2305	 * Note: If the receive fails, we want the resume stream to start
2306	 * with the same record that we last successfully received (as opposed
2307	 * to the next record), so that we can verify that we are
2308	 * resuming from the correct location.
2309	 */
2310	save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2311	dmu_tx_commit(tx);
2312	dmu_buf_rele(bonus, FTAG);
2313
2314	return (0);
2315}
2316
2317/*
2318 * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2319 * streams to refer to a copy of the data that is already on the
2320 * system because it came in earlier in the stream.  This function
2321 * finds the earlier copy of the data, and uses that copy instead of
2322 * data from the stream to fulfill this write.
2323 */
2324static int
2325receive_write_byref(struct receive_writer_arg *rwa,
2326    struct drr_write_byref *drrwbr)
2327{
2328	dmu_tx_t *tx;
2329	int err;
2330	guid_map_entry_t gmesrch;
2331	guid_map_entry_t *gmep;
2332	avl_index_t where;
2333	objset_t *ref_os = NULL;
2334	dmu_buf_t *dbp;
2335
2336	if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2337		return (SET_ERROR(EINVAL));
2338
2339	/*
2340	 * If the GUID of the referenced dataset is different from the
2341	 * GUID of the target dataset, find the referenced dataset.
2342	 */
2343	if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2344		gmesrch.guid = drrwbr->drr_refguid;
2345		if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2346		    &where)) == NULL) {
2347			return (SET_ERROR(EINVAL));
2348		}
2349		if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2350			return (SET_ERROR(EINVAL));
2351	} else {
2352		ref_os = rwa->os;
2353	}
2354
2355	err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2356	    drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2357	if (err != 0)
2358		return (err);
2359
2360	tx = dmu_tx_create(rwa->os);
2361
2362	dmu_tx_hold_write(tx, drrwbr->drr_object,
2363	    drrwbr->drr_offset, drrwbr->drr_length);
2364	err = dmu_tx_assign(tx, TXG_WAIT);
2365	if (err != 0) {
2366		dmu_tx_abort(tx);
2367		return (err);
2368	}
2369	dmu_write(rwa->os, drrwbr->drr_object,
2370	    drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2371	dmu_buf_rele(dbp, FTAG);
2372
2373	/* See comment in restore_write. */
2374	save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2375	dmu_tx_commit(tx);
2376	return (0);
2377}
2378
2379static int
2380receive_write_embedded(struct receive_writer_arg *rwa,
2381    struct drr_write_embedded *drrwe, void *data)
2382{
2383	dmu_tx_t *tx;
2384	int err;
2385
2386	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2387		return (EINVAL);
2388
2389	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2390		return (EINVAL);
2391
2392	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2393		return (EINVAL);
2394	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2395		return (EINVAL);
2396
2397	tx = dmu_tx_create(rwa->os);
2398
2399	dmu_tx_hold_write(tx, drrwe->drr_object,
2400	    drrwe->drr_offset, drrwe->drr_length);
2401	err = dmu_tx_assign(tx, TXG_WAIT);
2402	if (err != 0) {
2403		dmu_tx_abort(tx);
2404		return (err);
2405	}
2406
2407	dmu_write_embedded(rwa->os, drrwe->drr_object,
2408	    drrwe->drr_offset, data, drrwe->drr_etype,
2409	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2410	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2411
2412	/* See comment in restore_write. */
2413	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2414	dmu_tx_commit(tx);
2415	return (0);
2416}
2417
2418static int
2419receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2420    void *data)
2421{
2422	dmu_tx_t *tx;
2423	dmu_buf_t *db, *db_spill;
2424	int err;
2425
2426	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2427	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2428		return (SET_ERROR(EINVAL));
2429
2430	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2431		return (SET_ERROR(EINVAL));
2432
2433	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2434	if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2435		dmu_buf_rele(db, FTAG);
2436		return (err);
2437	}
2438
2439	tx = dmu_tx_create(rwa->os);
2440
2441	dmu_tx_hold_spill(tx, db->db_object);
2442
2443	err = dmu_tx_assign(tx, TXG_WAIT);
2444	if (err != 0) {
2445		dmu_buf_rele(db, FTAG);
2446		dmu_buf_rele(db_spill, FTAG);
2447		dmu_tx_abort(tx);
2448		return (err);
2449	}
2450	dmu_buf_will_dirty(db_spill, tx);
2451
2452	if (db_spill->db_size < drrs->drr_length)
2453		VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2454		    drrs->drr_length, tx));
2455	bcopy(data, db_spill->db_data, drrs->drr_length);
2456
2457	dmu_buf_rele(db, FTAG);
2458	dmu_buf_rele(db_spill, FTAG);
2459
2460	dmu_tx_commit(tx);
2461	return (0);
2462}
2463
2464/* ARGSUSED */
2465static int
2466receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2467{
2468	int err;
2469
2470	if (drrf->drr_length != -1ULL &&
2471	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2472		return (SET_ERROR(EINVAL));
2473
2474	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2475		return (SET_ERROR(EINVAL));
2476
2477	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2478	    drrf->drr_offset, drrf->drr_length);
2479
2480	return (err);
2481}
2482
2483/* used to destroy the drc_ds on error */
2484static void
2485dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2486{
2487	if (drc->drc_resumable) {
2488		/* wait for our resume state to be written to disk */
2489		txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2490		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2491	} else {
2492		char name[ZFS_MAX_DATASET_NAME_LEN];
2493		dsl_dataset_name(drc->drc_ds, name);
2494		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2495		(void) dsl_destroy_head(name);
2496	}
2497}
2498
2499static void
2500receive_cksum(struct receive_arg *ra, int len, void *buf)
2501{
2502	if (ra->byteswap) {
2503		(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2504	} else {
2505		(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
2506	}
2507}
2508
2509/*
2510 * Read the payload into a buffer of size len, and update the current record's
2511 * payload field.
2512 * Allocate ra->next_rrd and read the next record's header into
2513 * ra->next_rrd->header.
2514 * Verify checksum of payload and next record.
2515 */
2516static int
2517receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2518{
2519	int err;
2520
2521	if (len != 0) {
2522		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2523		err = receive_read(ra, len, buf);
2524		if (err != 0)
2525			return (err);
2526		receive_cksum(ra, len, buf);
2527
2528		/* note: rrd is NULL when reading the begin record's payload */
2529		if (ra->rrd != NULL) {
2530			ra->rrd->payload = buf;
2531			ra->rrd->payload_size = len;
2532			ra->rrd->bytes_read = ra->bytes_read;
2533		}
2534	}
2535
2536	ra->prev_cksum = ra->cksum;
2537
2538	ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2539	err = receive_read(ra, sizeof (ra->next_rrd->header),
2540	    &ra->next_rrd->header);
2541	ra->next_rrd->bytes_read = ra->bytes_read;
2542	if (err != 0) {
2543		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2544		ra->next_rrd = NULL;
2545		return (err);
2546	}
2547	if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2548		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2549		ra->next_rrd = NULL;
2550		return (SET_ERROR(EINVAL));
2551	}
2552
2553	/*
2554	 * Note: checksum is of everything up to but not including the
2555	 * checksum itself.
2556	 */
2557	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2558	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2559	receive_cksum(ra,
2560	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2561	    &ra->next_rrd->header);
2562
2563	zio_cksum_t cksum_orig =
2564	    ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2565	zio_cksum_t *cksump =
2566	    &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2567
2568	if (ra->byteswap)
2569		byteswap_record(&ra->next_rrd->header);
2570
2571	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2572	    !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2573		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2574		ra->next_rrd = NULL;
2575		return (SET_ERROR(ECKSUM));
2576	}
2577
2578	receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2579
2580	return (0);
2581}
2582
2583static void
2584objlist_create(struct objlist *list)
2585{
2586	list_create(&list->list, sizeof (struct receive_objnode),
2587	    offsetof(struct receive_objnode, node));
2588	list->last_lookup = 0;
2589}
2590
2591static void
2592objlist_destroy(struct objlist *list)
2593{
2594	for (struct receive_objnode *n = list_remove_head(&list->list);
2595	    n != NULL; n = list_remove_head(&list->list)) {
2596		kmem_free(n, sizeof (*n));
2597	}
2598	list_destroy(&list->list);
2599}
2600
2601/*
2602 * This function looks through the objlist to see if the specified object number
2603 * is contained in the objlist.  In the process, it will remove all object
2604 * numbers in the list that are smaller than the specified object number.  Thus,
2605 * any lookup of an object number smaller than a previously looked up object
2606 * number will always return false; therefore, all lookups should be done in
2607 * ascending order.
2608 */
2609static boolean_t
2610objlist_exists(struct objlist *list, uint64_t object)
2611{
2612	struct receive_objnode *node = list_head(&list->list);
2613	ASSERT3U(object, >=, list->last_lookup);
2614	list->last_lookup = object;
2615	while (node != NULL && node->object < object) {
2616		VERIFY3P(node, ==, list_remove_head(&list->list));
2617		kmem_free(node, sizeof (*node));
2618		node = list_head(&list->list);
2619	}
2620	return (node != NULL && node->object == object);
2621}
2622
2623/*
2624 * The objlist is a list of object numbers stored in ascending order.  However,
2625 * the insertion of new object numbers does not seek out the correct location to
2626 * store a new object number; instead, it appends it to the list for simplicity.
2627 * Thus, any users must take care to only insert new object numbers in ascending
2628 * order.
2629 */
2630static void
2631objlist_insert(struct objlist *list, uint64_t object)
2632{
2633	struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2634	node->object = object;
2635#ifdef ZFS_DEBUG
2636	struct receive_objnode *last_object = list_tail(&list->list);
2637	uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2638	ASSERT3U(node->object, >, last_objnum);
2639#endif
2640	list_insert_tail(&list->list, node);
2641}
2642
2643/*
2644 * Issue the prefetch reads for any necessary indirect blocks.
2645 *
2646 * We use the object ignore list to tell us whether or not to issue prefetches
2647 * for a given object.  We do this for both correctness (in case the blocksize
2648 * of an object has changed) and performance (if the object doesn't exist, don't
2649 * needlessly try to issue prefetches).  We also trim the list as we go through
2650 * the stream to prevent it from growing to an unbounded size.
2651 *
2652 * The object numbers within will always be in sorted order, and any write
2653 * records we see will also be in sorted order, but they're not sorted with
2654 * respect to each other (i.e. we can get several object records before
2655 * receiving each object's write records).  As a result, once we've reached a
2656 * given object number, we can safely remove any reference to lower object
2657 * numbers in the ignore list. In practice, we receive up to 32 object records
2658 * before receiving write records, so the list can have up to 32 nodes in it.
2659 */
2660/* ARGSUSED */
2661static void
2662receive_read_prefetch(struct receive_arg *ra,
2663    uint64_t object, uint64_t offset, uint64_t length)
2664{
2665	if (!objlist_exists(&ra->ignore_objlist, object)) {
2666		dmu_prefetch(ra->os, object, 1, offset, length,
2667		    ZIO_PRIORITY_SYNC_READ);
2668	}
2669}
2670
2671/*
2672 * Read records off the stream, issuing any necessary prefetches.
2673 */
2674static int
2675receive_read_record(struct receive_arg *ra)
2676{
2677	int err;
2678
2679	switch (ra->rrd->header.drr_type) {
2680	case DRR_OBJECT:
2681	{
2682		struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2683		uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2684		void *buf = kmem_zalloc(size, KM_SLEEP);
2685		dmu_object_info_t doi;
2686		err = receive_read_payload_and_next_header(ra, size, buf);
2687		if (err != 0) {
2688			kmem_free(buf, size);
2689			return (err);
2690		}
2691		err = dmu_object_info(ra->os, drro->drr_object, &doi);
2692		/*
2693		 * See receive_read_prefetch for an explanation why we're
2694		 * storing this object in the ignore_obj_list.
2695		 */
2696		if (err == ENOENT ||
2697		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2698			objlist_insert(&ra->ignore_objlist, drro->drr_object);
2699			err = 0;
2700		}
2701		return (err);
2702	}
2703	case DRR_FREEOBJECTS:
2704	{
2705		err = receive_read_payload_and_next_header(ra, 0, NULL);
2706		return (err);
2707	}
2708	case DRR_WRITE:
2709	{
2710		struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2711		arc_buf_t *abuf;
2712		boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2713		if (DRR_WRITE_COMPRESSED(drrw)) {
2714			ASSERT3U(drrw->drr_compressed_size, >, 0);
2715			ASSERT3U(drrw->drr_logical_size, >=,
2716			    drrw->drr_compressed_size);
2717			ASSERT(!is_meta);
2718			abuf = arc_loan_compressed_buf(
2719			    dmu_objset_spa(ra->os),
2720			    drrw->drr_compressed_size, drrw->drr_logical_size,
2721			    drrw->drr_compressiontype);
2722		} else {
2723			abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2724			    is_meta, drrw->drr_logical_size);
2725		}
2726
2727		err = receive_read_payload_and_next_header(ra,
2728		    DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2729		if (err != 0) {
2730			dmu_return_arcbuf(abuf);
2731			return (err);
2732		}
2733		ra->rrd->write_buf = abuf;
2734		receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2735		    drrw->drr_logical_size);
2736		return (err);
2737	}
2738	case DRR_WRITE_BYREF:
2739	{
2740		struct drr_write_byref *drrwb =
2741		    &ra->rrd->header.drr_u.drr_write_byref;
2742		err = receive_read_payload_and_next_header(ra, 0, NULL);
2743		receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2744		    drrwb->drr_length);
2745		return (err);
2746	}
2747	case DRR_WRITE_EMBEDDED:
2748	{
2749		struct drr_write_embedded *drrwe =
2750		    &ra->rrd->header.drr_u.drr_write_embedded;
2751		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2752		void *buf = kmem_zalloc(size, KM_SLEEP);
2753
2754		err = receive_read_payload_and_next_header(ra, size, buf);
2755		if (err != 0) {
2756			kmem_free(buf, size);
2757			return (err);
2758		}
2759
2760		receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2761		    drrwe->drr_length);
2762		return (err);
2763	}
2764	case DRR_FREE:
2765	{
2766		/*
2767		 * It might be beneficial to prefetch indirect blocks here, but
2768		 * we don't really have the data to decide for sure.
2769		 */
2770		err = receive_read_payload_and_next_header(ra, 0, NULL);
2771		return (err);
2772	}
2773	case DRR_END:
2774	{
2775		struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2776		if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2777			return (SET_ERROR(ECKSUM));
2778		return (0);
2779	}
2780	case DRR_SPILL:
2781	{
2782		struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2783		void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2784		err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2785		    buf);
2786		if (err != 0)
2787			kmem_free(buf, drrs->drr_length);
2788		return (err);
2789	}
2790	default:
2791		return (SET_ERROR(EINVAL));
2792	}
2793}
2794
2795/*
2796 * Commit the records to the pool.
2797 */
2798static int
2799receive_process_record(struct receive_writer_arg *rwa,
2800    struct receive_record_arg *rrd)
2801{
2802	int err;
2803
2804	/* Processing in order, therefore bytes_read should be increasing. */
2805	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2806	rwa->bytes_read = rrd->bytes_read;
2807
2808	switch (rrd->header.drr_type) {
2809	case DRR_OBJECT:
2810	{
2811		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2812		err = receive_object(rwa, drro, rrd->payload);
2813		kmem_free(rrd->payload, rrd->payload_size);
2814		rrd->payload = NULL;
2815		return (err);
2816	}
2817	case DRR_FREEOBJECTS:
2818	{
2819		struct drr_freeobjects *drrfo =
2820		    &rrd->header.drr_u.drr_freeobjects;
2821		return (receive_freeobjects(rwa, drrfo));
2822	}
2823	case DRR_WRITE:
2824	{
2825		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2826		err = receive_write(rwa, drrw, rrd->write_buf);
2827		/* if receive_write() is successful, it consumes the arc_buf */
2828		if (err != 0)
2829			dmu_return_arcbuf(rrd->write_buf);
2830		rrd->write_buf = NULL;
2831		rrd->payload = NULL;
2832		return (err);
2833	}
2834	case DRR_WRITE_BYREF:
2835	{
2836		struct drr_write_byref *drrwbr =
2837		    &rrd->header.drr_u.drr_write_byref;
2838		return (receive_write_byref(rwa, drrwbr));
2839	}
2840	case DRR_WRITE_EMBEDDED:
2841	{
2842		struct drr_write_embedded *drrwe =
2843		    &rrd->header.drr_u.drr_write_embedded;
2844		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2845		kmem_free(rrd->payload, rrd->payload_size);
2846		rrd->payload = NULL;
2847		return (err);
2848	}
2849	case DRR_FREE:
2850	{
2851		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2852		return (receive_free(rwa, drrf));
2853	}
2854	case DRR_SPILL:
2855	{
2856		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2857		err = receive_spill(rwa, drrs, rrd->payload);
2858		kmem_free(rrd->payload, rrd->payload_size);
2859		rrd->payload = NULL;
2860		return (err);
2861	}
2862	default:
2863		return (SET_ERROR(EINVAL));
2864	}
2865}
2866
2867/*
2868 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2869 * receive_process_record  When we're done, signal the main thread and exit.
2870 */
2871static void
2872receive_writer_thread(void *arg)
2873{
2874	struct receive_writer_arg *rwa = arg;
2875	struct receive_record_arg *rrd;
2876	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2877	    rrd = bqueue_dequeue(&rwa->q)) {
2878		/*
2879		 * If there's an error, the main thread will stop putting things
2880		 * on the queue, but we need to clear everything in it before we
2881		 * can exit.
2882		 */
2883		if (rwa->err == 0) {
2884			rwa->err = receive_process_record(rwa, rrd);
2885		} else if (rrd->write_buf != NULL) {
2886			dmu_return_arcbuf(rrd->write_buf);
2887			rrd->write_buf = NULL;
2888			rrd->payload = NULL;
2889		} else if (rrd->payload != NULL) {
2890			kmem_free(rrd->payload, rrd->payload_size);
2891			rrd->payload = NULL;
2892		}
2893		kmem_free(rrd, sizeof (*rrd));
2894	}
2895	kmem_free(rrd, sizeof (*rrd));
2896	mutex_enter(&rwa->mutex);
2897	rwa->done = B_TRUE;
2898	cv_signal(&rwa->cv);
2899	mutex_exit(&rwa->mutex);
2900	thread_exit();
2901}
2902
2903static int
2904resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2905{
2906	uint64_t val;
2907	objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2908	uint64_t dsobj = dmu_objset_id(ra->os);
2909	uint64_t resume_obj, resume_off;
2910
2911	if (nvlist_lookup_uint64(begin_nvl,
2912	    "resume_object", &resume_obj) != 0 ||
2913	    nvlist_lookup_uint64(begin_nvl,
2914	    "resume_offset", &resume_off) != 0) {
2915		return (SET_ERROR(EINVAL));
2916	}
2917	VERIFY0(zap_lookup(mos, dsobj,
2918	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2919	if (resume_obj != val)
2920		return (SET_ERROR(EINVAL));
2921	VERIFY0(zap_lookup(mos, dsobj,
2922	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2923	if (resume_off != val)
2924		return (SET_ERROR(EINVAL));
2925
2926	return (0);
2927}
2928
2929/*
2930 * Read in the stream's records, one by one, and apply them to the pool.  There
2931 * are two threads involved; the thread that calls this function will spin up a
2932 * worker thread, read the records off the stream one by one, and issue
2933 * prefetches for any necessary indirect blocks.  It will then push the records
2934 * onto an internal blocking queue.  The worker thread will pull the records off
2935 * the queue, and actually write the data into the DMU.  This way, the worker
2936 * thread doesn't have to wait for reads to complete, since everything it needs
2937 * (the indirect blocks) will be prefetched.
2938 *
2939 * NB: callers *must* call dmu_recv_end() if this succeeds.
2940 */
2941int
2942dmu_recv_stream(dmu_recv_cookie_t *drc, struct file *fp, offset_t *voffp,
2943    int cleanup_fd, uint64_t *action_handlep)
2944{
2945	int err = 0;
2946	struct receive_arg ra = { 0 };
2947	struct receive_writer_arg rwa = { 0 };
2948	int featureflags;
2949	nvlist_t *begin_nvl = NULL;
2950
2951	ra.byteswap = drc->drc_byteswap;
2952	ra.cksum = drc->drc_cksum;
2953	ra.td = curthread;
2954	ra.fp = fp;
2955	ra.voff = *voffp;
2956
2957	if (dsl_dataset_is_zapified(drc->drc_ds)) {
2958		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2959		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2960		    sizeof (ra.bytes_read), 1, &ra.bytes_read);
2961	}
2962
2963	objlist_create(&ra.ignore_objlist);
2964
2965	/* these were verified in dmu_recv_begin */
2966	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2967	    DMU_SUBSTREAM);
2968	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2969
2970	/*
2971	 * Open the objset we are modifying.
2972	 */
2973	VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2974
2975	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2976
2977	featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2978
2979	/* if this stream is dedup'ed, set up the avl tree for guid mapping */
2980	if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2981		minor_t minor;
2982
2983		if (cleanup_fd == -1) {
2984			ra.err = SET_ERROR(EBADF);
2985			goto out;
2986		}
2987		ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2988		if (ra.err != 0) {
2989			cleanup_fd = -1;
2990			goto out;
2991		}
2992
2993		if (*action_handlep == 0) {
2994			rwa.guid_to_ds_map =
2995			    kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2996			avl_create(rwa.guid_to_ds_map, guid_compare,
2997			    sizeof (guid_map_entry_t),
2998			    offsetof(guid_map_entry_t, avlnode));
2999			err = zfs_onexit_add_cb(minor,
3000			    free_guid_map_onexit, rwa.guid_to_ds_map,
3001			    action_handlep);
3002			if (ra.err != 0)
3003				goto out;
3004		} else {
3005			err = zfs_onexit_cb_data(minor, *action_handlep,
3006			    (void **)&rwa.guid_to_ds_map);
3007			if (ra.err != 0)
3008				goto out;
3009		}
3010
3011		drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
3012	}
3013
3014	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
3015	void *payload = NULL;
3016	if (payloadlen != 0)
3017		payload = kmem_alloc(payloadlen, KM_SLEEP);
3018
3019	err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
3020	if (err != 0) {
3021		if (payloadlen != 0)
3022			kmem_free(payload, payloadlen);
3023		goto out;
3024	}
3025	if (payloadlen != 0) {
3026		err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
3027		kmem_free(payload, payloadlen);
3028		if (err != 0)
3029			goto out;
3030	}
3031
3032	if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3033		err = resume_check(&ra, begin_nvl);
3034		if (err != 0)
3035			goto out;
3036	}
3037
3038	(void) bqueue_init(&rwa.q, zfs_recv_queue_length,
3039	    offsetof(struct receive_record_arg, node));
3040	cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
3041	mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
3042	rwa.os = ra.os;
3043	rwa.byteswap = drc->drc_byteswap;
3044	rwa.resumable = drc->drc_resumable;
3045
3046	(void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, &p0,
3047	    TS_RUN, minclsyspri);
3048	/*
3049	 * We're reading rwa.err without locks, which is safe since we are the
3050	 * only reader, and the worker thread is the only writer.  It's ok if we
3051	 * miss a write for an iteration or two of the loop, since the writer
3052	 * thread will keep freeing records we send it until we send it an eos
3053	 * marker.
3054	 *
3055	 * We can leave this loop in 3 ways:  First, if rwa.err is
3056	 * non-zero.  In that case, the writer thread will free the rrd we just
3057	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3058	 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
3059	 * has been handed off to the writer thread who will free it.  Finally,
3060	 * if receive_read_record fails or we're at the end of the stream, then
3061	 * we free ra.rrd and exit.
3062	 */
3063	while (rwa.err == 0) {
3064		if (issig(JUSTLOOKING) && issig(FORREAL)) {
3065			err = SET_ERROR(EINTR);
3066			break;
3067		}
3068
3069		ASSERT3P(ra.rrd, ==, NULL);
3070		ra.rrd = ra.next_rrd;
3071		ra.next_rrd = NULL;
3072		/* Allocates and loads header into ra.next_rrd */
3073		err = receive_read_record(&ra);
3074
3075		if (ra.rrd->header.drr_type == DRR_END || err != 0) {
3076			kmem_free(ra.rrd, sizeof (*ra.rrd));
3077			ra.rrd = NULL;
3078			break;
3079		}
3080
3081		bqueue_enqueue(&rwa.q, ra.rrd,
3082		    sizeof (struct receive_record_arg) + ra.rrd->payload_size);
3083		ra.rrd = NULL;
3084	}
3085	if (ra.next_rrd == NULL)
3086		ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
3087	ra.next_rrd->eos_marker = B_TRUE;
3088	bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
3089
3090	mutex_enter(&rwa.mutex);
3091	while (!rwa.done) {
3092		cv_wait(&rwa.cv, &rwa.mutex);
3093	}
3094	mutex_exit(&rwa.mutex);
3095
3096	cv_destroy(&rwa.cv);
3097	mutex_destroy(&rwa.mutex);
3098	bqueue_destroy(&rwa.q);
3099	if (err == 0)
3100		err = rwa.err;
3101
3102out:
3103	nvlist_free(begin_nvl);
3104	if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
3105		zfs_onexit_fd_rele(cleanup_fd);
3106
3107	if (err != 0) {
3108		/*
3109		 * Clean up references. If receive is not resumable,
3110		 * destroy what we created, so we don't leave it in
3111		 * the inconsistent state.
3112		 */
3113		dmu_recv_cleanup_ds(drc);
3114	}
3115
3116	*voffp = ra.voff;
3117	objlist_destroy(&ra.ignore_objlist);
3118	return (err);
3119}
3120
3121static int
3122dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3123{
3124	dmu_recv_cookie_t *drc = arg;
3125	dsl_pool_t *dp = dmu_tx_pool(tx);
3126	int error;
3127
3128	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3129
3130	if (!drc->drc_newfs) {
3131		dsl_dataset_t *origin_head;
3132
3133		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3134		if (error != 0)
3135			return (error);
3136		if (drc->drc_force) {
3137			/*
3138			 * We will destroy any snapshots in tofs (i.e. before
3139			 * origin_head) that are after the origin (which is
3140			 * the snap before drc_ds, because drc_ds can not
3141			 * have any snaps of its own).
3142			 */
3143			uint64_t obj;
3144
3145			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3146			while (obj !=
3147			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3148				dsl_dataset_t *snap;
3149				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3150				    &snap);
3151				if (error != 0)
3152					break;
3153				if (snap->ds_dir != origin_head->ds_dir)
3154					error = SET_ERROR(EINVAL);
3155				if (error == 0)  {
3156					error = dsl_destroy_snapshot_check_impl(
3157					    snap, B_FALSE);
3158				}
3159				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3160				dsl_dataset_rele(snap, FTAG);
3161				if (error != 0)
3162					break;
3163			}
3164			if (error != 0) {
3165				dsl_dataset_rele(origin_head, FTAG);
3166				return (error);
3167			}
3168		}
3169		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3170		    origin_head, drc->drc_force, drc->drc_owner, tx);
3171		if (error != 0) {
3172			dsl_dataset_rele(origin_head, FTAG);
3173			return (error);
3174		}
3175		error = dsl_dataset_snapshot_check_impl(origin_head,
3176		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3177		dsl_dataset_rele(origin_head, FTAG);
3178		if (error != 0)
3179			return (error);
3180
3181		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3182	} else {
3183		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3184		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3185	}
3186	return (error);
3187}
3188
3189static void
3190dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3191{
3192	dmu_recv_cookie_t *drc = arg;
3193	dsl_pool_t *dp = dmu_tx_pool(tx);
3194
3195	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3196	    tx, "snap=%s", drc->drc_tosnap);
3197
3198	if (!drc->drc_newfs) {
3199		dsl_dataset_t *origin_head;
3200
3201		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3202		    &origin_head));
3203
3204		if (drc->drc_force) {
3205			/*
3206			 * Destroy any snapshots of drc_tofs (origin_head)
3207			 * after the origin (the snap before drc_ds).
3208			 */
3209			uint64_t obj;
3210
3211			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3212			while (obj !=
3213			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3214				dsl_dataset_t *snap;
3215				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3216				    &snap));
3217				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3218				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3219				dsl_destroy_snapshot_sync_impl(snap,
3220				    B_FALSE, tx);
3221				dsl_dataset_rele(snap, FTAG);
3222			}
3223		}
3224		VERIFY3P(drc->drc_ds->ds_prev, ==,
3225		    origin_head->ds_prev);
3226
3227		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3228		    origin_head, tx);
3229		dsl_dataset_snapshot_sync_impl(origin_head,
3230		    drc->drc_tosnap, tx);
3231
3232		/* set snapshot's creation time and guid */
3233		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3234		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3235		    drc->drc_drrb->drr_creation_time;
3236		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3237		    drc->drc_drrb->drr_toguid;
3238		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3239		    ~DS_FLAG_INCONSISTENT;
3240
3241		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3242		dsl_dataset_phys(origin_head)->ds_flags &=
3243		    ~DS_FLAG_INCONSISTENT;
3244
3245		drc->drc_newsnapobj =
3246		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3247
3248		dsl_dataset_rele(origin_head, FTAG);
3249		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3250
3251		if (drc->drc_owner != NULL)
3252			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3253	} else {
3254		dsl_dataset_t *ds = drc->drc_ds;
3255
3256		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3257
3258		/* set snapshot's creation time and guid */
3259		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3260		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3261		    drc->drc_drrb->drr_creation_time;
3262		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3263		    drc->drc_drrb->drr_toguid;
3264		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3265		    ~DS_FLAG_INCONSISTENT;
3266
3267		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3268		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3269		if (dsl_dataset_has_resume_receive_state(ds)) {
3270			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3271			    DS_FIELD_RESUME_FROMGUID, tx);
3272			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3273			    DS_FIELD_RESUME_OBJECT, tx);
3274			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3275			    DS_FIELD_RESUME_OFFSET, tx);
3276			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3277			    DS_FIELD_RESUME_BYTES, tx);
3278			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3279			    DS_FIELD_RESUME_TOGUID, tx);
3280			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3281			    DS_FIELD_RESUME_TONAME, tx);
3282		}
3283		drc->drc_newsnapobj =
3284		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3285	}
3286	/*
3287	 * Release the hold from dmu_recv_begin.  This must be done before
3288	 * we return to open context, so that when we free the dataset's dnode,
3289	 * we can evict its bonus buffer.
3290	 */
3291	dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3292	drc->drc_ds = NULL;
3293}
3294
3295static int
3296add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3297{
3298	dsl_pool_t *dp;
3299	dsl_dataset_t *snapds;
3300	guid_map_entry_t *gmep;
3301	int err;
3302
3303	ASSERT(guid_map != NULL);
3304
3305	err = dsl_pool_hold(name, FTAG, &dp);
3306	if (err != 0)
3307		return (err);
3308	gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3309	err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3310	if (err == 0) {
3311		gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3312		gmep->gme_ds = snapds;
3313		avl_add(guid_map, gmep);
3314		dsl_dataset_long_hold(snapds, gmep);
3315	} else
3316		kmem_free(gmep, sizeof (*gmep));
3317
3318	dsl_pool_rele(dp, FTAG);
3319	return (err);
3320}
3321
3322static int dmu_recv_end_modified_blocks = 3;
3323
3324static int
3325dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3326{
3327#ifdef _KERNEL
3328	/*
3329	 * We will be destroying the ds; make sure its origin is unmounted if
3330	 * necessary.
3331	 */
3332	char name[ZFS_MAX_DATASET_NAME_LEN];
3333	dsl_dataset_name(drc->drc_ds, name);
3334	zfs_destroy_unmount_origin(name);
3335#endif
3336
3337	return (dsl_sync_task(drc->drc_tofs,
3338	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3339	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3340}
3341
3342static int
3343dmu_recv_new_end(dmu_recv_cookie_t *drc)
3344{
3345	return (dsl_sync_task(drc->drc_tofs,
3346	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3347	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3348}
3349
3350int
3351dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3352{
3353	int error;
3354
3355	drc->drc_owner = owner;
3356
3357	if (drc->drc_newfs)
3358		error = dmu_recv_new_end(drc);
3359	else
3360		error = dmu_recv_existing_end(drc);
3361
3362	if (error != 0) {
3363		dmu_recv_cleanup_ds(drc);
3364	} else if (drc->drc_guid_to_ds_map != NULL) {
3365		(void) add_ds_to_guidmap(drc->drc_tofs,
3366		    drc->drc_guid_to_ds_map,
3367		    drc->drc_newsnapobj);
3368	}
3369	return (error);
3370}
3371
3372/*
3373 * Return TRUE if this objset is currently being received into.
3374 */
3375boolean_t
3376dmu_objset_is_receiving(objset_t *os)
3377{
3378	return (os->os_dsl_dataset != NULL &&
3379	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3380}
3381