dmu.c revision 226620
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/dmu.h>
26#include <sys/dmu_impl.h>
27#include <sys/dmu_tx.h>
28#include <sys/dbuf.h>
29#include <sys/dnode.h>
30#include <sys/zfs_context.h>
31#include <sys/dmu_objset.h>
32#include <sys/dmu_traverse.h>
33#include <sys/dsl_dataset.h>
34#include <sys/dsl_dir.h>
35#include <sys/dsl_pool.h>
36#include <sys/dsl_synctask.h>
37#include <sys/dsl_prop.h>
38#include <sys/dmu_zfetch.h>
39#include <sys/zfs_ioctl.h>
40#include <sys/zap.h>
41#include <sys/zio_checksum.h>
42#include <sys/sa.h>
43#ifdef _KERNEL
44#include <sys/zfs_znode.h>
45#endif
46
47const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
48	{	byteswap_uint8_array,	TRUE,	"unallocated"		},
49	{	zap_byteswap,		TRUE,	"object directory"	},
50	{	byteswap_uint64_array,	TRUE,	"object array"		},
51	{	byteswap_uint8_array,	TRUE,	"packed nvlist"		},
52	{	byteswap_uint64_array,	TRUE,	"packed nvlist size"	},
53	{	byteswap_uint64_array,	TRUE,	"bpobj"			},
54	{	byteswap_uint64_array,	TRUE,	"bpobj header"		},
55	{	byteswap_uint64_array,	TRUE,	"SPA space map header"	},
56	{	byteswap_uint64_array,	TRUE,	"SPA space map"		},
57	{	byteswap_uint64_array,	TRUE,	"ZIL intent log"	},
58	{	dnode_buf_byteswap,	TRUE,	"DMU dnode"		},
59	{	dmu_objset_byteswap,	TRUE,	"DMU objset"		},
60	{	byteswap_uint64_array,	TRUE,	"DSL directory"		},
61	{	zap_byteswap,		TRUE,	"DSL directory child map"},
62	{	zap_byteswap,		TRUE,	"DSL dataset snap map"	},
63	{	zap_byteswap,		TRUE,	"DSL props"		},
64	{	byteswap_uint64_array,	TRUE,	"DSL dataset"		},
65	{	zfs_znode_byteswap,	TRUE,	"ZFS znode"		},
66	{	zfs_oldacl_byteswap,	TRUE,	"ZFS V0 ACL"		},
67	{	byteswap_uint8_array,	FALSE,	"ZFS plain file"	},
68	{	zap_byteswap,		TRUE,	"ZFS directory"		},
69	{	zap_byteswap,		TRUE,	"ZFS master node"	},
70	{	zap_byteswap,		TRUE,	"ZFS delete queue"	},
71	{	byteswap_uint8_array,	FALSE,	"zvol object"		},
72	{	zap_byteswap,		TRUE,	"zvol prop"		},
73	{	byteswap_uint8_array,	FALSE,	"other uint8[]"		},
74	{	byteswap_uint64_array,	FALSE,	"other uint64[]"	},
75	{	zap_byteswap,		TRUE,	"other ZAP"		},
76	{	zap_byteswap,		TRUE,	"persistent error log"	},
77	{	byteswap_uint8_array,	TRUE,	"SPA history"		},
78	{	byteswap_uint64_array,	TRUE,	"SPA history offsets"	},
79	{	zap_byteswap,		TRUE,	"Pool properties"	},
80	{	zap_byteswap,		TRUE,	"DSL permissions"	},
81	{	zfs_acl_byteswap,	TRUE,	"ZFS ACL"		},
82	{	byteswap_uint8_array,	TRUE,	"ZFS SYSACL"		},
83	{	byteswap_uint8_array,	TRUE,	"FUID table"		},
84	{	byteswap_uint64_array,	TRUE,	"FUID table size"	},
85	{	zap_byteswap,		TRUE,	"DSL dataset next clones"},
86	{	zap_byteswap,		TRUE,	"scan work queue"	},
87	{	zap_byteswap,		TRUE,	"ZFS user/group used"	},
88	{	zap_byteswap,		TRUE,	"ZFS user/group quota"	},
89	{	zap_byteswap,		TRUE,	"snapshot refcount tags"},
90	{	zap_byteswap,		TRUE,	"DDT ZAP algorithm"	},
91	{	zap_byteswap,		TRUE,	"DDT statistics"	},
92	{	byteswap_uint8_array,	TRUE,	"System attributes"	},
93	{	zap_byteswap,		TRUE,	"SA master node"	},
94	{	zap_byteswap,		TRUE,	"SA attr registration"	},
95	{	zap_byteswap,		TRUE,	"SA attr layouts"	},
96	{	zap_byteswap,		TRUE,	"scan translations"	},
97	{	byteswap_uint8_array,	FALSE,	"deduplicated block"	},
98	{	zap_byteswap,		TRUE,	"DSL deadlist map"	},
99	{	byteswap_uint64_array,	TRUE,	"DSL deadlist map hdr"	},
100	{	zap_byteswap,		TRUE,	"DSL dir clones"	},
101	{	byteswap_uint64_array,	TRUE,	"bpobj subobj"		},
102};
103
104int
105dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
106    void *tag, dmu_buf_t **dbp, int flags)
107{
108	dnode_t *dn;
109	uint64_t blkid;
110	dmu_buf_impl_t *db;
111	int err;
112	int db_flags = DB_RF_CANFAIL;
113
114	if (flags & DMU_READ_NO_PREFETCH)
115		db_flags |= DB_RF_NOPREFETCH;
116
117	err = dnode_hold(os, object, FTAG, &dn);
118	if (err)
119		return (err);
120	blkid = dbuf_whichblock(dn, offset);
121	rw_enter(&dn->dn_struct_rwlock, RW_READER);
122	db = dbuf_hold(dn, blkid, tag);
123	rw_exit(&dn->dn_struct_rwlock);
124	if (db == NULL) {
125		err = EIO;
126	} else {
127		err = dbuf_read(db, NULL, db_flags);
128		if (err) {
129			dbuf_rele(db, tag);
130			db = NULL;
131		}
132	}
133
134	dnode_rele(dn, FTAG);
135	*dbp = &db->db; /* NULL db plus first field offset is NULL */
136	return (err);
137}
138
139int
140dmu_bonus_max(void)
141{
142	return (DN_MAX_BONUSLEN);
143}
144
145int
146dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
147{
148	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
149	dnode_t *dn;
150	int error;
151
152	DB_DNODE_ENTER(db);
153	dn = DB_DNODE(db);
154
155	if (dn->dn_bonus != db) {
156		error = EINVAL;
157	} else if (newsize < 0 || newsize > db_fake->db_size) {
158		error = EINVAL;
159	} else {
160		dnode_setbonuslen(dn, newsize, tx);
161		error = 0;
162	}
163
164	DB_DNODE_EXIT(db);
165	return (error);
166}
167
168int
169dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
170{
171	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
172	dnode_t *dn;
173	int error;
174
175	DB_DNODE_ENTER(db);
176	dn = DB_DNODE(db);
177
178	if (type > DMU_OT_NUMTYPES) {
179		error = EINVAL;
180	} else if (dn->dn_bonus != db) {
181		error = EINVAL;
182	} else {
183		dnode_setbonus_type(dn, type, tx);
184		error = 0;
185	}
186
187	DB_DNODE_EXIT(db);
188	return (error);
189}
190
191dmu_object_type_t
192dmu_get_bonustype(dmu_buf_t *db_fake)
193{
194	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
195	dnode_t *dn;
196	dmu_object_type_t type;
197
198	DB_DNODE_ENTER(db);
199	dn = DB_DNODE(db);
200	type = dn->dn_bonustype;
201	DB_DNODE_EXIT(db);
202
203	return (type);
204}
205
206int
207dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
208{
209	dnode_t *dn;
210	int error;
211
212	error = dnode_hold(os, object, FTAG, &dn);
213	dbuf_rm_spill(dn, tx);
214	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
215	dnode_rm_spill(dn, tx);
216	rw_exit(&dn->dn_struct_rwlock);
217	dnode_rele(dn, FTAG);
218	return (error);
219}
220
221/*
222 * returns ENOENT, EIO, or 0.
223 */
224int
225dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
226{
227	dnode_t *dn;
228	dmu_buf_impl_t *db;
229	int error;
230
231	error = dnode_hold(os, object, FTAG, &dn);
232	if (error)
233		return (error);
234
235	rw_enter(&dn->dn_struct_rwlock, RW_READER);
236	if (dn->dn_bonus == NULL) {
237		rw_exit(&dn->dn_struct_rwlock);
238		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
239		if (dn->dn_bonus == NULL)
240			dbuf_create_bonus(dn);
241	}
242	db = dn->dn_bonus;
243
244	/* as long as the bonus buf is held, the dnode will be held */
245	if (refcount_add(&db->db_holds, tag) == 1) {
246		VERIFY(dnode_add_ref(dn, db));
247		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
248	}
249
250	/*
251	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
252	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
253	 * a dnode hold for every dbuf.
254	 */
255	rw_exit(&dn->dn_struct_rwlock);
256
257	dnode_rele(dn, FTAG);
258
259	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
260
261	*dbp = &db->db;
262	return (0);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 *
268 * This interface will allocate a blank spill dbuf when a spill blk
269 * doesn't already exist on the dnode.
270 *
271 * if you only want to find an already existing spill db, then
272 * dmu_spill_hold_existing() should be used.
273 */
274int
275dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
276{
277	dmu_buf_impl_t *db = NULL;
278	int err;
279
280	if ((flags & DB_RF_HAVESTRUCT) == 0)
281		rw_enter(&dn->dn_struct_rwlock, RW_READER);
282
283	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
284
285	if ((flags & DB_RF_HAVESTRUCT) == 0)
286		rw_exit(&dn->dn_struct_rwlock);
287
288	ASSERT(db != NULL);
289	err = dbuf_read(db, NULL, flags);
290	if (err == 0)
291		*dbp = &db->db;
292	else
293		dbuf_rele(db, tag);
294	return (err);
295}
296
297int
298dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
299{
300	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
301	dnode_t *dn;
302	int err;
303
304	DB_DNODE_ENTER(db);
305	dn = DB_DNODE(db);
306
307	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
308		err = EINVAL;
309	} else {
310		rw_enter(&dn->dn_struct_rwlock, RW_READER);
311
312		if (!dn->dn_have_spill) {
313			err = ENOENT;
314		} else {
315			err = dmu_spill_hold_by_dnode(dn,
316			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
317		}
318
319		rw_exit(&dn->dn_struct_rwlock);
320	}
321
322	DB_DNODE_EXIT(db);
323	return (err);
324}
325
326int
327dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
328{
329	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
330	dnode_t *dn;
331	int err;
332
333	DB_DNODE_ENTER(db);
334	dn = DB_DNODE(db);
335	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
336	DB_DNODE_EXIT(db);
337
338	return (err);
339}
340
341/*
342 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
343 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
344 * and can induce severe lock contention when writing to several files
345 * whose dnodes are in the same block.
346 */
347static int
348dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
349    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
350{
351	dsl_pool_t *dp = NULL;
352	dmu_buf_t **dbp;
353	uint64_t blkid, nblks, i;
354	uint32_t dbuf_flags;
355	int err;
356	zio_t *zio;
357	hrtime_t start;
358
359	ASSERT(length <= DMU_MAX_ACCESS);
360
361	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
362	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
363		dbuf_flags |= DB_RF_NOPREFETCH;
364
365	rw_enter(&dn->dn_struct_rwlock, RW_READER);
366	if (dn->dn_datablkshift) {
367		int blkshift = dn->dn_datablkshift;
368		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
369		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
370	} else {
371		if (offset + length > dn->dn_datablksz) {
372			zfs_panic_recover("zfs: accessing past end of object "
373			    "%llx/%llx (size=%u access=%llu+%llu)",
374			    (longlong_t)dn->dn_objset->
375			    os_dsl_dataset->ds_object,
376			    (longlong_t)dn->dn_object, dn->dn_datablksz,
377			    (longlong_t)offset, (longlong_t)length);
378			rw_exit(&dn->dn_struct_rwlock);
379			return (EIO);
380		}
381		nblks = 1;
382	}
383	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
384
385	if (dn->dn_objset->os_dsl_dataset)
386		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
387	if (dp && dsl_pool_sync_context(dp))
388		start = gethrtime();
389	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
390	blkid = dbuf_whichblock(dn, offset);
391	for (i = 0; i < nblks; i++) {
392		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
393		if (db == NULL) {
394			rw_exit(&dn->dn_struct_rwlock);
395			dmu_buf_rele_array(dbp, nblks, tag);
396			zio_nowait(zio);
397			return (EIO);
398		}
399		/* initiate async i/o */
400		if (read)
401			(void) dbuf_read(db, zio, dbuf_flags);
402#ifdef _KERNEL
403		else
404			curthread->td_ru.ru_oublock++;
405#endif
406		dbp[i] = &db->db;
407	}
408	rw_exit(&dn->dn_struct_rwlock);
409
410	/* wait for async i/o */
411	err = zio_wait(zio);
412	/* track read overhead when we are in sync context */
413	if (dp && dsl_pool_sync_context(dp))
414		dp->dp_read_overhead += gethrtime() - start;
415	if (err) {
416		dmu_buf_rele_array(dbp, nblks, tag);
417		return (err);
418	}
419
420	/* wait for other io to complete */
421	if (read) {
422		for (i = 0; i < nblks; i++) {
423			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
424			mutex_enter(&db->db_mtx);
425			while (db->db_state == DB_READ ||
426			    db->db_state == DB_FILL)
427				cv_wait(&db->db_changed, &db->db_mtx);
428			if (db->db_state == DB_UNCACHED)
429				err = EIO;
430			mutex_exit(&db->db_mtx);
431			if (err) {
432				dmu_buf_rele_array(dbp, nblks, tag);
433				return (err);
434			}
435		}
436	}
437
438	*numbufsp = nblks;
439	*dbpp = dbp;
440	return (0);
441}
442
443static int
444dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
445    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
446{
447	dnode_t *dn;
448	int err;
449
450	err = dnode_hold(os, object, FTAG, &dn);
451	if (err)
452		return (err);
453
454	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
455	    numbufsp, dbpp, DMU_READ_PREFETCH);
456
457	dnode_rele(dn, FTAG);
458
459	return (err);
460}
461
462int
463dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
464    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
465{
466	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
467	dnode_t *dn;
468	int err;
469
470	DB_DNODE_ENTER(db);
471	dn = DB_DNODE(db);
472	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
473	    numbufsp, dbpp, DMU_READ_PREFETCH);
474	DB_DNODE_EXIT(db);
475
476	return (err);
477}
478
479void
480dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
481{
482	int i;
483	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
484
485	if (numbufs == 0)
486		return;
487
488	for (i = 0; i < numbufs; i++) {
489		if (dbp[i])
490			dbuf_rele(dbp[i], tag);
491	}
492
493	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
494}
495
496void
497dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
498{
499	dnode_t *dn;
500	uint64_t blkid;
501	int nblks, i, err;
502
503	if (zfs_prefetch_disable)
504		return;
505
506	if (len == 0) {  /* they're interested in the bonus buffer */
507		dn = DMU_META_DNODE(os);
508
509		if (object == 0 || object >= DN_MAX_OBJECT)
510			return;
511
512		rw_enter(&dn->dn_struct_rwlock, RW_READER);
513		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
514		dbuf_prefetch(dn, blkid);
515		rw_exit(&dn->dn_struct_rwlock);
516		return;
517	}
518
519	/*
520	 * XXX - Note, if the dnode for the requested object is not
521	 * already cached, we will do a *synchronous* read in the
522	 * dnode_hold() call.  The same is true for any indirects.
523	 */
524	err = dnode_hold(os, object, FTAG, &dn);
525	if (err != 0)
526		return;
527
528	rw_enter(&dn->dn_struct_rwlock, RW_READER);
529	if (dn->dn_datablkshift) {
530		int blkshift = dn->dn_datablkshift;
531		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
532		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
533	} else {
534		nblks = (offset < dn->dn_datablksz);
535	}
536
537	if (nblks != 0) {
538		blkid = dbuf_whichblock(dn, offset);
539		for (i = 0; i < nblks; i++)
540			dbuf_prefetch(dn, blkid+i);
541	}
542
543	rw_exit(&dn->dn_struct_rwlock);
544
545	dnode_rele(dn, FTAG);
546}
547
548/*
549 * Get the next "chunk" of file data to free.  We traverse the file from
550 * the end so that the file gets shorter over time (if we crashes in the
551 * middle, this will leave us in a better state).  We find allocated file
552 * data by simply searching the allocated level 1 indirects.
553 */
554static int
555get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
556{
557	uint64_t len = *start - limit;
558	uint64_t blkcnt = 0;
559	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
560	uint64_t iblkrange =
561	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
562
563	ASSERT(limit <= *start);
564
565	if (len <= iblkrange * maxblks) {
566		*start = limit;
567		return (0);
568	}
569	ASSERT(ISP2(iblkrange));
570
571	while (*start > limit && blkcnt < maxblks) {
572		int err;
573
574		/* find next allocated L1 indirect */
575		err = dnode_next_offset(dn,
576		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
577
578		/* if there are no more, then we are done */
579		if (err == ESRCH) {
580			*start = limit;
581			return (0);
582		} else if (err) {
583			return (err);
584		}
585		blkcnt += 1;
586
587		/* reset offset to end of "next" block back */
588		*start = P2ALIGN(*start, iblkrange);
589		if (*start <= limit)
590			*start = limit;
591		else
592			*start -= 1;
593	}
594	return (0);
595}
596
597static int
598dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
599    uint64_t length, boolean_t free_dnode)
600{
601	dmu_tx_t *tx;
602	uint64_t object_size, start, end, len;
603	boolean_t trunc = (length == DMU_OBJECT_END);
604	int align, err;
605
606	align = 1 << dn->dn_datablkshift;
607	ASSERT(align > 0);
608	object_size = align == 1 ? dn->dn_datablksz :
609	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
610
611	end = offset + length;
612	if (trunc || end > object_size)
613		end = object_size;
614	if (end <= offset)
615		return (0);
616	length = end - offset;
617
618	while (length) {
619		start = end;
620		/* assert(offset <= start) */
621		err = get_next_chunk(dn, &start, offset);
622		if (err)
623			return (err);
624		len = trunc ? DMU_OBJECT_END : end - start;
625
626		tx = dmu_tx_create(os);
627		dmu_tx_hold_free(tx, dn->dn_object, start, len);
628		err = dmu_tx_assign(tx, TXG_WAIT);
629		if (err) {
630			dmu_tx_abort(tx);
631			return (err);
632		}
633
634		dnode_free_range(dn, start, trunc ? -1 : len, tx);
635
636		if (start == 0 && free_dnode) {
637			ASSERT(trunc);
638			dnode_free(dn, tx);
639		}
640
641		length -= end - start;
642
643		dmu_tx_commit(tx);
644		end = start;
645	}
646	return (0);
647}
648
649int
650dmu_free_long_range(objset_t *os, uint64_t object,
651    uint64_t offset, uint64_t length)
652{
653	dnode_t *dn;
654	int err;
655
656	err = dnode_hold(os, object, FTAG, &dn);
657	if (err != 0)
658		return (err);
659	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
660	dnode_rele(dn, FTAG);
661	return (err);
662}
663
664int
665dmu_free_object(objset_t *os, uint64_t object)
666{
667	dnode_t *dn;
668	dmu_tx_t *tx;
669	int err;
670
671	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
672	    FTAG, &dn);
673	if (err != 0)
674		return (err);
675	if (dn->dn_nlevels == 1) {
676		tx = dmu_tx_create(os);
677		dmu_tx_hold_bonus(tx, object);
678		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
679		err = dmu_tx_assign(tx, TXG_WAIT);
680		if (err == 0) {
681			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
682			dnode_free(dn, tx);
683			dmu_tx_commit(tx);
684		} else {
685			dmu_tx_abort(tx);
686		}
687	} else {
688		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
689	}
690	dnode_rele(dn, FTAG);
691	return (err);
692}
693
694int
695dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
696    uint64_t size, dmu_tx_t *tx)
697{
698	dnode_t *dn;
699	int err = dnode_hold(os, object, FTAG, &dn);
700	if (err)
701		return (err);
702	ASSERT(offset < UINT64_MAX);
703	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
704	dnode_free_range(dn, offset, size, tx);
705	dnode_rele(dn, FTAG);
706	return (0);
707}
708
709int
710dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
711    void *buf, uint32_t flags)
712{
713	dnode_t *dn;
714	dmu_buf_t **dbp;
715	int numbufs, err;
716
717	err = dnode_hold(os, object, FTAG, &dn);
718	if (err)
719		return (err);
720
721	/*
722	 * Deal with odd block sizes, where there can't be data past the first
723	 * block.  If we ever do the tail block optimization, we will need to
724	 * handle that here as well.
725	 */
726	if (dn->dn_maxblkid == 0) {
727		int newsz = offset > dn->dn_datablksz ? 0 :
728		    MIN(size, dn->dn_datablksz - offset);
729		bzero((char *)buf + newsz, size - newsz);
730		size = newsz;
731	}
732
733	while (size > 0) {
734		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
735		int i;
736
737		/*
738		 * NB: we could do this block-at-a-time, but it's nice
739		 * to be reading in parallel.
740		 */
741		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
742		    TRUE, FTAG, &numbufs, &dbp, flags);
743		if (err)
744			break;
745
746		for (i = 0; i < numbufs; i++) {
747			int tocpy;
748			int bufoff;
749			dmu_buf_t *db = dbp[i];
750
751			ASSERT(size > 0);
752
753			bufoff = offset - db->db_offset;
754			tocpy = (int)MIN(db->db_size - bufoff, size);
755
756			bcopy((char *)db->db_data + bufoff, buf, tocpy);
757
758			offset += tocpy;
759			size -= tocpy;
760			buf = (char *)buf + tocpy;
761		}
762		dmu_buf_rele_array(dbp, numbufs, FTAG);
763	}
764	dnode_rele(dn, FTAG);
765	return (err);
766}
767
768void
769dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
770    const void *buf, dmu_tx_t *tx)
771{
772	dmu_buf_t **dbp;
773	int numbufs, i;
774
775	if (size == 0)
776		return;
777
778	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
779	    FALSE, FTAG, &numbufs, &dbp));
780
781	for (i = 0; i < numbufs; i++) {
782		int tocpy;
783		int bufoff;
784		dmu_buf_t *db = dbp[i];
785
786		ASSERT(size > 0);
787
788		bufoff = offset - db->db_offset;
789		tocpy = (int)MIN(db->db_size - bufoff, size);
790
791		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
792
793		if (tocpy == db->db_size)
794			dmu_buf_will_fill(db, tx);
795		else
796			dmu_buf_will_dirty(db, tx);
797
798		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
799
800		if (tocpy == db->db_size)
801			dmu_buf_fill_done(db, tx);
802
803		offset += tocpy;
804		size -= tocpy;
805		buf = (char *)buf + tocpy;
806	}
807	dmu_buf_rele_array(dbp, numbufs, FTAG);
808}
809
810void
811dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
812    dmu_tx_t *tx)
813{
814	dmu_buf_t **dbp;
815	int numbufs, i;
816
817	if (size == 0)
818		return;
819
820	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
821	    FALSE, FTAG, &numbufs, &dbp));
822
823	for (i = 0; i < numbufs; i++) {
824		dmu_buf_t *db = dbp[i];
825
826		dmu_buf_will_not_fill(db, tx);
827	}
828	dmu_buf_rele_array(dbp, numbufs, FTAG);
829}
830
831/*
832 * DMU support for xuio
833 */
834kstat_t *xuio_ksp = NULL;
835
836int
837dmu_xuio_init(xuio_t *xuio, int nblk)
838{
839	dmu_xuio_t *priv;
840	uio_t *uio = &xuio->xu_uio;
841
842	uio->uio_iovcnt = nblk;
843	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
844
845	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
846	priv->cnt = nblk;
847	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
848	priv->iovp = uio->uio_iov;
849	XUIO_XUZC_PRIV(xuio) = priv;
850
851	if (XUIO_XUZC_RW(xuio) == UIO_READ)
852		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
853	else
854		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
855
856	return (0);
857}
858
859void
860dmu_xuio_fini(xuio_t *xuio)
861{
862	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
863	int nblk = priv->cnt;
864
865	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
866	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
867	kmem_free(priv, sizeof (dmu_xuio_t));
868
869	if (XUIO_XUZC_RW(xuio) == UIO_READ)
870		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
871	else
872		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
873}
874
875/*
876 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
877 * and increase priv->next by 1.
878 */
879int
880dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
881{
882	struct iovec *iov;
883	uio_t *uio = &xuio->xu_uio;
884	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
885	int i = priv->next++;
886
887	ASSERT(i < priv->cnt);
888	ASSERT(off + n <= arc_buf_size(abuf));
889	iov = uio->uio_iov + i;
890	iov->iov_base = (char *)abuf->b_data + off;
891	iov->iov_len = n;
892	priv->bufs[i] = abuf;
893	return (0);
894}
895
896int
897dmu_xuio_cnt(xuio_t *xuio)
898{
899	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
900	return (priv->cnt);
901}
902
903arc_buf_t *
904dmu_xuio_arcbuf(xuio_t *xuio, int i)
905{
906	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
907
908	ASSERT(i < priv->cnt);
909	return (priv->bufs[i]);
910}
911
912void
913dmu_xuio_clear(xuio_t *xuio, int i)
914{
915	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
916
917	ASSERT(i < priv->cnt);
918	priv->bufs[i] = NULL;
919}
920
921static void
922xuio_stat_init(void)
923{
924	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
925	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
926	    KSTAT_FLAG_VIRTUAL);
927	if (xuio_ksp != NULL) {
928		xuio_ksp->ks_data = &xuio_stats;
929		kstat_install(xuio_ksp);
930	}
931}
932
933static void
934xuio_stat_fini(void)
935{
936	if (xuio_ksp != NULL) {
937		kstat_delete(xuio_ksp);
938		xuio_ksp = NULL;
939	}
940}
941
942void
943xuio_stat_wbuf_copied()
944{
945	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
946}
947
948void
949xuio_stat_wbuf_nocopy()
950{
951	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
952}
953
954#ifdef _KERNEL
955int
956dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
957{
958	dmu_buf_t **dbp;
959	int numbufs, i, err;
960	xuio_t *xuio = NULL;
961
962	/*
963	 * NB: we could do this block-at-a-time, but it's nice
964	 * to be reading in parallel.
965	 */
966	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
967	    &numbufs, &dbp);
968	if (err)
969		return (err);
970
971#ifdef UIO_XUIO
972	if (uio->uio_extflg == UIO_XUIO)
973		xuio = (xuio_t *)uio;
974#endif
975
976	for (i = 0; i < numbufs; i++) {
977		int tocpy;
978		int bufoff;
979		dmu_buf_t *db = dbp[i];
980
981		ASSERT(size > 0);
982
983		bufoff = uio->uio_loffset - db->db_offset;
984		tocpy = (int)MIN(db->db_size - bufoff, size);
985
986		if (xuio) {
987			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
988			arc_buf_t *dbuf_abuf = dbi->db_buf;
989			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
990			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
991			if (!err) {
992				uio->uio_resid -= tocpy;
993				uio->uio_loffset += tocpy;
994			}
995
996			if (abuf == dbuf_abuf)
997				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
998			else
999				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1000		} else {
1001			err = uiomove((char *)db->db_data + bufoff, tocpy,
1002			    UIO_READ, uio);
1003		}
1004		if (err)
1005			break;
1006
1007		size -= tocpy;
1008	}
1009	dmu_buf_rele_array(dbp, numbufs, FTAG);
1010
1011	return (err);
1012}
1013
1014static int
1015dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1016{
1017	dmu_buf_t **dbp;
1018	int numbufs;
1019	int err = 0;
1020	int i;
1021
1022	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1023	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1024	if (err)
1025		return (err);
1026
1027	for (i = 0; i < numbufs; i++) {
1028		int tocpy;
1029		int bufoff;
1030		dmu_buf_t *db = dbp[i];
1031
1032		ASSERT(size > 0);
1033
1034		bufoff = uio->uio_loffset - db->db_offset;
1035		tocpy = (int)MIN(db->db_size - bufoff, size);
1036
1037		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1038
1039		if (tocpy == db->db_size)
1040			dmu_buf_will_fill(db, tx);
1041		else
1042			dmu_buf_will_dirty(db, tx);
1043
1044		/*
1045		 * XXX uiomove could block forever (eg. nfs-backed
1046		 * pages).  There needs to be a uiolockdown() function
1047		 * to lock the pages in memory, so that uiomove won't
1048		 * block.
1049		 */
1050		err = uiomove((char *)db->db_data + bufoff, tocpy,
1051		    UIO_WRITE, uio);
1052
1053		if (tocpy == db->db_size)
1054			dmu_buf_fill_done(db, tx);
1055
1056		if (err)
1057			break;
1058
1059		size -= tocpy;
1060	}
1061
1062	dmu_buf_rele_array(dbp, numbufs, FTAG);
1063	return (err);
1064}
1065
1066int
1067dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1068    dmu_tx_t *tx)
1069{
1070	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1071	dnode_t *dn;
1072	int err;
1073
1074	if (size == 0)
1075		return (0);
1076
1077	DB_DNODE_ENTER(db);
1078	dn = DB_DNODE(db);
1079	err = dmu_write_uio_dnode(dn, uio, size, tx);
1080	DB_DNODE_EXIT(db);
1081
1082	return (err);
1083}
1084
1085int
1086dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1087    dmu_tx_t *tx)
1088{
1089	dnode_t *dn;
1090	int err;
1091
1092	if (size == 0)
1093		return (0);
1094
1095	err = dnode_hold(os, object, FTAG, &dn);
1096	if (err)
1097		return (err);
1098
1099	err = dmu_write_uio_dnode(dn, uio, size, tx);
1100
1101	dnode_rele(dn, FTAG);
1102
1103	return (err);
1104}
1105
1106#ifdef sun
1107int
1108dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1109    page_t *pp, dmu_tx_t *tx)
1110{
1111	dmu_buf_t **dbp;
1112	int numbufs, i;
1113	int err;
1114
1115	if (size == 0)
1116		return (0);
1117
1118	err = dmu_buf_hold_array(os, object, offset, size,
1119	    FALSE, FTAG, &numbufs, &dbp);
1120	if (err)
1121		return (err);
1122
1123	for (i = 0; i < numbufs; i++) {
1124		int tocpy, copied, thiscpy;
1125		int bufoff;
1126		dmu_buf_t *db = dbp[i];
1127		caddr_t va;
1128
1129		ASSERT(size > 0);
1130		ASSERT3U(db->db_size, >=, PAGESIZE);
1131
1132		bufoff = offset - db->db_offset;
1133		tocpy = (int)MIN(db->db_size - bufoff, size);
1134
1135		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1136
1137		if (tocpy == db->db_size)
1138			dmu_buf_will_fill(db, tx);
1139		else
1140			dmu_buf_will_dirty(db, tx);
1141
1142		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1143			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1144			thiscpy = MIN(PAGESIZE, tocpy - copied);
1145			va = zfs_map_page(pp, S_READ);
1146			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1147			zfs_unmap_page(pp, va);
1148			pp = pp->p_next;
1149			bufoff += PAGESIZE;
1150		}
1151
1152		if (tocpy == db->db_size)
1153			dmu_buf_fill_done(db, tx);
1154
1155		offset += tocpy;
1156		size -= tocpy;
1157	}
1158	dmu_buf_rele_array(dbp, numbufs, FTAG);
1159	return (err);
1160}
1161#endif	/* sun */
1162#endif
1163
1164/*
1165 * Allocate a loaned anonymous arc buffer.
1166 */
1167arc_buf_t *
1168dmu_request_arcbuf(dmu_buf_t *handle, int size)
1169{
1170	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1171	spa_t *spa;
1172
1173	DB_GET_SPA(&spa, db);
1174	return (arc_loan_buf(spa, size));
1175}
1176
1177/*
1178 * Free a loaned arc buffer.
1179 */
1180void
1181dmu_return_arcbuf(arc_buf_t *buf)
1182{
1183	arc_return_buf(buf, FTAG);
1184	VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
1185}
1186
1187/*
1188 * When possible directly assign passed loaned arc buffer to a dbuf.
1189 * If this is not possible copy the contents of passed arc buf via
1190 * dmu_write().
1191 */
1192void
1193dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1194    dmu_tx_t *tx)
1195{
1196	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1197	dnode_t *dn;
1198	dmu_buf_impl_t *db;
1199	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1200	uint64_t blkid;
1201
1202	DB_DNODE_ENTER(dbuf);
1203	dn = DB_DNODE(dbuf);
1204	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1205	blkid = dbuf_whichblock(dn, offset);
1206	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1207	rw_exit(&dn->dn_struct_rwlock);
1208	DB_DNODE_EXIT(dbuf);
1209
1210	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1211		dbuf_assign_arcbuf(db, buf, tx);
1212		dbuf_rele(db, FTAG);
1213	} else {
1214		objset_t *os;
1215		uint64_t object;
1216
1217		DB_DNODE_ENTER(dbuf);
1218		dn = DB_DNODE(dbuf);
1219		os = dn->dn_objset;
1220		object = dn->dn_object;
1221		DB_DNODE_EXIT(dbuf);
1222
1223		dbuf_rele(db, FTAG);
1224		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1225		dmu_return_arcbuf(buf);
1226		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1227	}
1228}
1229
1230typedef struct {
1231	dbuf_dirty_record_t	*dsa_dr;
1232	dmu_sync_cb_t		*dsa_done;
1233	zgd_t			*dsa_zgd;
1234	dmu_tx_t		*dsa_tx;
1235} dmu_sync_arg_t;
1236
1237/* ARGSUSED */
1238static void
1239dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1240{
1241	dmu_sync_arg_t *dsa = varg;
1242	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1243	blkptr_t *bp = zio->io_bp;
1244
1245	if (zio->io_error == 0) {
1246		if (BP_IS_HOLE(bp)) {
1247			/*
1248			 * A block of zeros may compress to a hole, but the
1249			 * block size still needs to be known for replay.
1250			 */
1251			BP_SET_LSIZE(bp, db->db_size);
1252		} else {
1253			ASSERT(BP_GET_LEVEL(bp) == 0);
1254			bp->blk_fill = 1;
1255		}
1256	}
1257}
1258
1259static void
1260dmu_sync_late_arrival_ready(zio_t *zio)
1261{
1262	dmu_sync_ready(zio, NULL, zio->io_private);
1263}
1264
1265/* ARGSUSED */
1266static void
1267dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1268{
1269	dmu_sync_arg_t *dsa = varg;
1270	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1271	dmu_buf_impl_t *db = dr->dr_dbuf;
1272
1273	mutex_enter(&db->db_mtx);
1274	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1275	if (zio->io_error == 0) {
1276		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1277		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1278		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1279		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1280			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1281	} else {
1282		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1283	}
1284	cv_broadcast(&db->db_changed);
1285	mutex_exit(&db->db_mtx);
1286
1287	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1288
1289	kmem_free(dsa, sizeof (*dsa));
1290}
1291
1292static void
1293dmu_sync_late_arrival_done(zio_t *zio)
1294{
1295	blkptr_t *bp = zio->io_bp;
1296	dmu_sync_arg_t *dsa = zio->io_private;
1297
1298	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1299		ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1300		ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1301		zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1302	}
1303
1304	dmu_tx_commit(dsa->dsa_tx);
1305
1306	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1307
1308	kmem_free(dsa, sizeof (*dsa));
1309}
1310
1311static int
1312dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1313    zio_prop_t *zp, zbookmark_t *zb)
1314{
1315	dmu_sync_arg_t *dsa;
1316	dmu_tx_t *tx;
1317
1318	tx = dmu_tx_create(os);
1319	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1320	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1321		dmu_tx_abort(tx);
1322		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1323	}
1324
1325	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1326	dsa->dsa_dr = NULL;
1327	dsa->dsa_done = done;
1328	dsa->dsa_zgd = zgd;
1329	dsa->dsa_tx = tx;
1330
1331	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1332	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1333	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1334	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1335
1336	return (0);
1337}
1338
1339/*
1340 * Intent log support: sync the block associated with db to disk.
1341 * N.B. and XXX: the caller is responsible for making sure that the
1342 * data isn't changing while dmu_sync() is writing it.
1343 *
1344 * Return values:
1345 *
1346 *	EEXIST: this txg has already been synced, so there's nothing to to.
1347 *		The caller should not log the write.
1348 *
1349 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1350 *		The caller should not log the write.
1351 *
1352 *	EALREADY: this block is already in the process of being synced.
1353 *		The caller should track its progress (somehow).
1354 *
1355 *	EIO: could not do the I/O.
1356 *		The caller should do a txg_wait_synced().
1357 *
1358 *	0: the I/O has been initiated.
1359 *		The caller should log this blkptr in the done callback.
1360 *		It is possible that the I/O will fail, in which case
1361 *		the error will be reported to the done callback and
1362 *		propagated to pio from zio_done().
1363 */
1364int
1365dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1366{
1367	blkptr_t *bp = zgd->zgd_bp;
1368	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1369	objset_t *os = db->db_objset;
1370	dsl_dataset_t *ds = os->os_dsl_dataset;
1371	dbuf_dirty_record_t *dr;
1372	dmu_sync_arg_t *dsa;
1373	zbookmark_t zb;
1374	zio_prop_t zp;
1375	dnode_t *dn;
1376
1377	ASSERT(pio != NULL);
1378	ASSERT(BP_IS_HOLE(bp));
1379	ASSERT(txg != 0);
1380
1381	SET_BOOKMARK(&zb, ds->ds_object,
1382	    db->db.db_object, db->db_level, db->db_blkid);
1383
1384	DB_DNODE_ENTER(db);
1385	dn = DB_DNODE(db);
1386	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1387	DB_DNODE_EXIT(db);
1388
1389	/*
1390	 * If we're frozen (running ziltest), we always need to generate a bp.
1391	 */
1392	if (txg > spa_freeze_txg(os->os_spa))
1393		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1394
1395	/*
1396	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1397	 * and us.  If we determine that this txg is not yet syncing,
1398	 * but it begins to sync a moment later, that's OK because the
1399	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1400	 */
1401	mutex_enter(&db->db_mtx);
1402
1403	if (txg <= spa_last_synced_txg(os->os_spa)) {
1404		/*
1405		 * This txg has already synced.  There's nothing to do.
1406		 */
1407		mutex_exit(&db->db_mtx);
1408		return (EEXIST);
1409	}
1410
1411	if (txg <= spa_syncing_txg(os->os_spa)) {
1412		/*
1413		 * This txg is currently syncing, so we can't mess with
1414		 * the dirty record anymore; just write a new log block.
1415		 */
1416		mutex_exit(&db->db_mtx);
1417		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1418	}
1419
1420	dr = db->db_last_dirty;
1421	while (dr && dr->dr_txg != txg)
1422		dr = dr->dr_next;
1423
1424	if (dr == NULL) {
1425		/*
1426		 * There's no dr for this dbuf, so it must have been freed.
1427		 * There's no need to log writes to freed blocks, so we're done.
1428		 */
1429		mutex_exit(&db->db_mtx);
1430		return (ENOENT);
1431	}
1432
1433	ASSERT(dr->dr_txg == txg);
1434	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1435	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1436		/*
1437		 * We have already issued a sync write for this buffer,
1438		 * or this buffer has already been synced.  It could not
1439		 * have been dirtied since, or we would have cleared the state.
1440		 */
1441		mutex_exit(&db->db_mtx);
1442		return (EALREADY);
1443	}
1444
1445	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1446	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1447	mutex_exit(&db->db_mtx);
1448
1449	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1450	dsa->dsa_dr = dr;
1451	dsa->dsa_done = done;
1452	dsa->dsa_zgd = zgd;
1453	dsa->dsa_tx = NULL;
1454
1455	zio_nowait(arc_write(pio, os->os_spa, txg,
1456	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1457	    dmu_sync_ready, dmu_sync_done, dsa,
1458	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1459
1460	return (0);
1461}
1462
1463int
1464dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1465	dmu_tx_t *tx)
1466{
1467	dnode_t *dn;
1468	int err;
1469
1470	err = dnode_hold(os, object, FTAG, &dn);
1471	if (err)
1472		return (err);
1473	err = dnode_set_blksz(dn, size, ibs, tx);
1474	dnode_rele(dn, FTAG);
1475	return (err);
1476}
1477
1478void
1479dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1480	dmu_tx_t *tx)
1481{
1482	dnode_t *dn;
1483
1484	/* XXX assumes dnode_hold will not get an i/o error */
1485	(void) dnode_hold(os, object, FTAG, &dn);
1486	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1487	dn->dn_checksum = checksum;
1488	dnode_setdirty(dn, tx);
1489	dnode_rele(dn, FTAG);
1490}
1491
1492void
1493dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1494	dmu_tx_t *tx)
1495{
1496	dnode_t *dn;
1497
1498	/* XXX assumes dnode_hold will not get an i/o error */
1499	(void) dnode_hold(os, object, FTAG, &dn);
1500	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1501	dn->dn_compress = compress;
1502	dnode_setdirty(dn, tx);
1503	dnode_rele(dn, FTAG);
1504}
1505
1506int zfs_mdcomp_disable = 0;
1507TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1508SYSCTL_DECL(_vfs_zfs);
1509SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1510    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1511
1512void
1513dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1514{
1515	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1516	boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata ||
1517	    (wp & WP_SPILL));
1518	enum zio_checksum checksum = os->os_checksum;
1519	enum zio_compress compress = os->os_compress;
1520	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1521	boolean_t dedup;
1522	boolean_t dedup_verify = os->os_dedup_verify;
1523	int copies = os->os_copies;
1524
1525	/*
1526	 * Determine checksum setting.
1527	 */
1528	if (ismd) {
1529		/*
1530		 * Metadata always gets checksummed.  If the data
1531		 * checksum is multi-bit correctable, and it's not a
1532		 * ZBT-style checksum, then it's suitable for metadata
1533		 * as well.  Otherwise, the metadata checksum defaults
1534		 * to fletcher4.
1535		 */
1536		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1537		    zio_checksum_table[checksum].ci_eck)
1538			checksum = ZIO_CHECKSUM_FLETCHER_4;
1539	} else {
1540		checksum = zio_checksum_select(dn->dn_checksum, checksum);
1541	}
1542
1543	/*
1544	 * Determine compression setting.
1545	 */
1546	if (ismd) {
1547		/*
1548		 * XXX -- we should design a compression algorithm
1549		 * that specializes in arrays of bps.
1550		 */
1551		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1552		    ZIO_COMPRESS_LZJB;
1553	} else {
1554		compress = zio_compress_select(dn->dn_compress, compress);
1555	}
1556
1557	/*
1558	 * Determine dedup setting.  If we are in dmu_sync(), we won't
1559	 * actually dedup now because that's all done in syncing context;
1560	 * but we do want to use the dedup checkum.  If the checksum is not
1561	 * strong enough to ensure unique signatures, force dedup_verify.
1562	 */
1563	dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1564	if (dedup) {
1565		checksum = dedup_checksum;
1566		if (!zio_checksum_table[checksum].ci_dedup)
1567			dedup_verify = 1;
1568	}
1569
1570	if (wp & WP_DMU_SYNC)
1571		dedup = 0;
1572
1573	if (wp & WP_NOFILL) {
1574		ASSERT(!ismd && level == 0);
1575		checksum = ZIO_CHECKSUM_OFF;
1576		compress = ZIO_COMPRESS_OFF;
1577		dedup = B_FALSE;
1578	}
1579
1580	zp->zp_checksum = checksum;
1581	zp->zp_compress = compress;
1582	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1583	zp->zp_level = level;
1584	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1585	zp->zp_dedup = dedup;
1586	zp->zp_dedup_verify = dedup && dedup_verify;
1587}
1588
1589int
1590dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1591{
1592	dnode_t *dn;
1593	int i, err;
1594
1595	err = dnode_hold(os, object, FTAG, &dn);
1596	if (err)
1597		return (err);
1598	/*
1599	 * Sync any current changes before
1600	 * we go trundling through the block pointers.
1601	 */
1602	for (i = 0; i < TXG_SIZE; i++) {
1603		if (list_link_active(&dn->dn_dirty_link[i]))
1604			break;
1605	}
1606	if (i != TXG_SIZE) {
1607		dnode_rele(dn, FTAG);
1608		txg_wait_synced(dmu_objset_pool(os), 0);
1609		err = dnode_hold(os, object, FTAG, &dn);
1610		if (err)
1611			return (err);
1612	}
1613
1614	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1615	dnode_rele(dn, FTAG);
1616
1617	return (err);
1618}
1619
1620void
1621dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1622{
1623	dnode_phys_t *dnp;
1624
1625	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1626	mutex_enter(&dn->dn_mtx);
1627
1628	dnp = dn->dn_phys;
1629
1630	doi->doi_data_block_size = dn->dn_datablksz;
1631	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1632	    1ULL << dn->dn_indblkshift : 0;
1633	doi->doi_type = dn->dn_type;
1634	doi->doi_bonus_type = dn->dn_bonustype;
1635	doi->doi_bonus_size = dn->dn_bonuslen;
1636	doi->doi_indirection = dn->dn_nlevels;
1637	doi->doi_checksum = dn->dn_checksum;
1638	doi->doi_compress = dn->dn_compress;
1639	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1640	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1641	doi->doi_fill_count = 0;
1642	for (int i = 0; i < dnp->dn_nblkptr; i++)
1643		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1644
1645	mutex_exit(&dn->dn_mtx);
1646	rw_exit(&dn->dn_struct_rwlock);
1647}
1648
1649/*
1650 * Get information on a DMU object.
1651 * If doi is NULL, just indicates whether the object exists.
1652 */
1653int
1654dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1655{
1656	dnode_t *dn;
1657	int err = dnode_hold(os, object, FTAG, &dn);
1658
1659	if (err)
1660		return (err);
1661
1662	if (doi != NULL)
1663		dmu_object_info_from_dnode(dn, doi);
1664
1665	dnode_rele(dn, FTAG);
1666	return (0);
1667}
1668
1669/*
1670 * As above, but faster; can be used when you have a held dbuf in hand.
1671 */
1672void
1673dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1674{
1675	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1676
1677	DB_DNODE_ENTER(db);
1678	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1679	DB_DNODE_EXIT(db);
1680}
1681
1682/*
1683 * Faster still when you only care about the size.
1684 * This is specifically optimized for zfs_getattr().
1685 */
1686void
1687dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1688    u_longlong_t *nblk512)
1689{
1690	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1691	dnode_t *dn;
1692
1693	DB_DNODE_ENTER(db);
1694	dn = DB_DNODE(db);
1695
1696	*blksize = dn->dn_datablksz;
1697	/* add 1 for dnode space */
1698	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1699	    SPA_MINBLOCKSHIFT) + 1;
1700	DB_DNODE_EXIT(db);
1701}
1702
1703void
1704byteswap_uint64_array(void *vbuf, size_t size)
1705{
1706	uint64_t *buf = vbuf;
1707	size_t count = size >> 3;
1708	int i;
1709
1710	ASSERT((size & 7) == 0);
1711
1712	for (i = 0; i < count; i++)
1713		buf[i] = BSWAP_64(buf[i]);
1714}
1715
1716void
1717byteswap_uint32_array(void *vbuf, size_t size)
1718{
1719	uint32_t *buf = vbuf;
1720	size_t count = size >> 2;
1721	int i;
1722
1723	ASSERT((size & 3) == 0);
1724
1725	for (i = 0; i < count; i++)
1726		buf[i] = BSWAP_32(buf[i]);
1727}
1728
1729void
1730byteswap_uint16_array(void *vbuf, size_t size)
1731{
1732	uint16_t *buf = vbuf;
1733	size_t count = size >> 1;
1734	int i;
1735
1736	ASSERT((size & 1) == 0);
1737
1738	for (i = 0; i < count; i++)
1739		buf[i] = BSWAP_16(buf[i]);
1740}
1741
1742/* ARGSUSED */
1743void
1744byteswap_uint8_array(void *vbuf, size_t size)
1745{
1746}
1747
1748void
1749dmu_init(void)
1750{
1751	zfs_dbgmsg_init();
1752	sa_cache_init();
1753	xuio_stat_init();
1754	dmu_objset_init();
1755	dnode_init();
1756	dbuf_init();
1757	zfetch_init();
1758	arc_init();
1759	l2arc_init();
1760}
1761
1762void
1763dmu_fini(void)
1764{
1765	l2arc_fini();
1766	arc_fini();
1767	zfetch_fini();
1768	dbuf_fini();
1769	dnode_fini();
1770	dmu_objset_fini();
1771	xuio_stat_fini();
1772	sa_cache_fini();
1773	zfs_dbgmsg_fini();
1774}
1775