dbuf.c revision 321547
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/dmu.h>
33#include <sys/dmu_send.h>
34#include <sys/dmu_impl.h>
35#include <sys/dbuf.h>
36#include <sys/dmu_objset.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dmu_tx.h>
40#include <sys/spa.h>
41#include <sys/zio.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/sa.h>
44#include <sys/sa_impl.h>
45#include <sys/zfeature.h>
46#include <sys/blkptr.h>
47#include <sys/range_tree.h>
48#include <sys/callb.h>
49
50uint_t zfs_dbuf_evict_key;
51
52static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54
55#ifndef __lint
56extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57    dmu_buf_evict_func_t *evict_func_sync,
58    dmu_buf_evict_func_t *evict_func_async,
59    dmu_buf_t **clear_on_evict_dbufp);
60#endif /* ! __lint */
61
62/*
63 * Global data structures and functions for the dbuf cache.
64 */
65static kmem_cache_t *dbuf_kmem_cache;
66static taskq_t *dbu_evict_taskq;
67
68static kthread_t *dbuf_cache_evict_thread;
69static kmutex_t dbuf_evict_lock;
70static kcondvar_t dbuf_evict_cv;
71static boolean_t dbuf_evict_thread_exit;
72
73/*
74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75 * are not currently held but have been recently released. These dbufs
76 * are not eligible for arc eviction until they are aged out of the cache.
77 * Dbufs are added to the dbuf cache once the last hold is released. If a
78 * dbuf is later accessed and still exists in the dbuf cache, then it will
79 * be removed from the cache and later re-added to the head of the cache.
80 * Dbufs that are aged out of the cache will be immediately destroyed and
81 * become eligible for arc eviction.
82 */
83static multilist_t dbuf_cache;
84static refcount_t dbuf_cache_size;
85uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86
87/* Cap the size of the dbuf cache to log2 fraction of arc size. */
88int dbuf_cache_max_shift = 5;
89
90/*
91 * The dbuf cache uses a three-stage eviction policy:
92 *	- A low water marker designates when the dbuf eviction thread
93 *	should stop evicting from the dbuf cache.
94 *	- When we reach the maximum size (aka mid water mark), we
95 *	signal the eviction thread to run.
96 *	- The high water mark indicates when the eviction thread
97 *	is unable to keep up with the incoming load and eviction must
98 *	happen in the context of the calling thread.
99 *
100 * The dbuf cache:
101 *                                                 (max size)
102 *                                      low water   mid water   hi water
103 * +----------------------------------------+----------+----------+
104 * |                                        |          |          |
105 * |                                        |          |          |
106 * |                                        |          |          |
107 * |                                        |          |          |
108 * +----------------------------------------+----------+----------+
109 *                                        stop        signal     evict
110 *                                      evicting     eviction   directly
111 *                                                    thread
112 *
113 * The high and low water marks indicate the operating range for the eviction
114 * thread. The low water mark is, by default, 90% of the total size of the
115 * cache and the high water mark is at 110% (both of these percentages can be
116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117 * respectively). The eviction thread will try to ensure that the cache remains
118 * within this range by waking up every second and checking if the cache is
119 * above the low water mark. The thread can also be woken up by callers adding
120 * elements into the cache if the cache is larger than the mid water (i.e max
121 * cache size). Once the eviction thread is woken up and eviction is required,
122 * it will continue evicting buffers until it's able to reduce the cache size
123 * to the low water mark. If the cache size continues to grow and hits the high
124 * water mark, then callers adding elments to the cache will begin to evict
125 * directly from the cache until the cache is no longer above the high water
126 * mark.
127 */
128
129/*
130 * The percentage above and below the maximum cache size.
131 */
132uint_t dbuf_cache_hiwater_pct = 10;
133uint_t dbuf_cache_lowater_pct = 10;
134
135/* ARGSUSED */
136static int
137dbuf_cons(void *vdb, void *unused, int kmflag)
138{
139	dmu_buf_impl_t *db = vdb;
140	bzero(db, sizeof (dmu_buf_impl_t));
141
142	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
143	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
144	multilist_link_init(&db->db_cache_link);
145	refcount_create(&db->db_holds);
146
147	return (0);
148}
149
150/* ARGSUSED */
151static void
152dbuf_dest(void *vdb, void *unused)
153{
154	dmu_buf_impl_t *db = vdb;
155	mutex_destroy(&db->db_mtx);
156	cv_destroy(&db->db_changed);
157	ASSERT(!multilist_link_active(&db->db_cache_link));
158	refcount_destroy(&db->db_holds);
159}
160
161/*
162 * dbuf hash table routines
163 */
164static dbuf_hash_table_t dbuf_hash_table;
165
166static uint64_t dbuf_hash_count;
167
168static uint64_t
169dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
170{
171	uintptr_t osv = (uintptr_t)os;
172	uint64_t crc = -1ULL;
173
174	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
175	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
176	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
177	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
178	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
179	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
180	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
181
182	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
183
184	return (crc);
185}
186
187#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
188	((dbuf)->db.db_object == (obj) &&		\
189	(dbuf)->db_objset == (os) &&			\
190	(dbuf)->db_level == (level) &&			\
191	(dbuf)->db_blkid == (blkid))
192
193dmu_buf_impl_t *
194dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
195{
196	dbuf_hash_table_t *h = &dbuf_hash_table;
197	uint64_t hv = dbuf_hash(os, obj, level, blkid);
198	uint64_t idx = hv & h->hash_table_mask;
199	dmu_buf_impl_t *db;
200
201	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
203		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
204			mutex_enter(&db->db_mtx);
205			if (db->db_state != DB_EVICTING) {
206				mutex_exit(DBUF_HASH_MUTEX(h, idx));
207				return (db);
208			}
209			mutex_exit(&db->db_mtx);
210		}
211	}
212	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213	return (NULL);
214}
215
216static dmu_buf_impl_t *
217dbuf_find_bonus(objset_t *os, uint64_t object)
218{
219	dnode_t *dn;
220	dmu_buf_impl_t *db = NULL;
221
222	if (dnode_hold(os, object, FTAG, &dn) == 0) {
223		rw_enter(&dn->dn_struct_rwlock, RW_READER);
224		if (dn->dn_bonus != NULL) {
225			db = dn->dn_bonus;
226			mutex_enter(&db->db_mtx);
227		}
228		rw_exit(&dn->dn_struct_rwlock);
229		dnode_rele(dn, FTAG);
230	}
231	return (db);
232}
233
234/*
235 * Insert an entry into the hash table.  If there is already an element
236 * equal to elem in the hash table, then the already existing element
237 * will be returned and the new element will not be inserted.
238 * Otherwise returns NULL.
239 */
240static dmu_buf_impl_t *
241dbuf_hash_insert(dmu_buf_impl_t *db)
242{
243	dbuf_hash_table_t *h = &dbuf_hash_table;
244	objset_t *os = db->db_objset;
245	uint64_t obj = db->db.db_object;
246	int level = db->db_level;
247	uint64_t blkid = db->db_blkid;
248	uint64_t hv = dbuf_hash(os, obj, level, blkid);
249	uint64_t idx = hv & h->hash_table_mask;
250	dmu_buf_impl_t *dbf;
251
252	mutex_enter(DBUF_HASH_MUTEX(h, idx));
253	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
254		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
255			mutex_enter(&dbf->db_mtx);
256			if (dbf->db_state != DB_EVICTING) {
257				mutex_exit(DBUF_HASH_MUTEX(h, idx));
258				return (dbf);
259			}
260			mutex_exit(&dbf->db_mtx);
261		}
262	}
263
264	mutex_enter(&db->db_mtx);
265	db->db_hash_next = h->hash_table[idx];
266	h->hash_table[idx] = db;
267	mutex_exit(DBUF_HASH_MUTEX(h, idx));
268	atomic_inc_64(&dbuf_hash_count);
269
270	return (NULL);
271}
272
273/*
274 * Remove an entry from the hash table.  It must be in the EVICTING state.
275 */
276static void
277dbuf_hash_remove(dmu_buf_impl_t *db)
278{
279	dbuf_hash_table_t *h = &dbuf_hash_table;
280	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
281	    db->db_level, db->db_blkid);
282	uint64_t idx = hv & h->hash_table_mask;
283	dmu_buf_impl_t *dbf, **dbp;
284
285	/*
286	 * We musn't hold db_mtx to maintain lock ordering:
287	 * DBUF_HASH_MUTEX > db_mtx.
288	 */
289	ASSERT(refcount_is_zero(&db->db_holds));
290	ASSERT(db->db_state == DB_EVICTING);
291	ASSERT(!MUTEX_HELD(&db->db_mtx));
292
293	mutex_enter(DBUF_HASH_MUTEX(h, idx));
294	dbp = &h->hash_table[idx];
295	while ((dbf = *dbp) != db) {
296		dbp = &dbf->db_hash_next;
297		ASSERT(dbf != NULL);
298	}
299	*dbp = db->db_hash_next;
300	db->db_hash_next = NULL;
301	mutex_exit(DBUF_HASH_MUTEX(h, idx));
302	atomic_dec_64(&dbuf_hash_count);
303}
304
305typedef enum {
306	DBVU_EVICTING,
307	DBVU_NOT_EVICTING
308} dbvu_verify_type_t;
309
310static void
311dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
312{
313#ifdef ZFS_DEBUG
314	int64_t holds;
315
316	if (db->db_user == NULL)
317		return;
318
319	/* Only data blocks support the attachment of user data. */
320	ASSERT(db->db_level == 0);
321
322	/* Clients must resolve a dbuf before attaching user data. */
323	ASSERT(db->db.db_data != NULL);
324	ASSERT3U(db->db_state, ==, DB_CACHED);
325
326	holds = refcount_count(&db->db_holds);
327	if (verify_type == DBVU_EVICTING) {
328		/*
329		 * Immediate eviction occurs when holds == dirtycnt.
330		 * For normal eviction buffers, holds is zero on
331		 * eviction, except when dbuf_fix_old_data() calls
332		 * dbuf_clear_data().  However, the hold count can grow
333		 * during eviction even though db_mtx is held (see
334		 * dmu_bonus_hold() for an example), so we can only
335		 * test the generic invariant that holds >= dirtycnt.
336		 */
337		ASSERT3U(holds, >=, db->db_dirtycnt);
338	} else {
339		if (db->db_user_immediate_evict == TRUE)
340			ASSERT3U(holds, >=, db->db_dirtycnt);
341		else
342			ASSERT3U(holds, >, 0);
343	}
344#endif
345}
346
347static void
348dbuf_evict_user(dmu_buf_impl_t *db)
349{
350	dmu_buf_user_t *dbu = db->db_user;
351
352	ASSERT(MUTEX_HELD(&db->db_mtx));
353
354	if (dbu == NULL)
355		return;
356
357	dbuf_verify_user(db, DBVU_EVICTING);
358	db->db_user = NULL;
359
360#ifdef ZFS_DEBUG
361	if (dbu->dbu_clear_on_evict_dbufp != NULL)
362		*dbu->dbu_clear_on_evict_dbufp = NULL;
363#endif
364
365	/*
366	 * There are two eviction callbacks - one that we call synchronously
367	 * and one that we invoke via a taskq.  The async one is useful for
368	 * avoiding lock order reversals and limiting stack depth.
369	 *
370	 * Note that if we have a sync callback but no async callback,
371	 * it's likely that the sync callback will free the structure
372	 * containing the dbu.  In that case we need to take care to not
373	 * dereference dbu after calling the sync evict func.
374	 */
375	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
376
377	if (dbu->dbu_evict_func_sync != NULL)
378		dbu->dbu_evict_func_sync(dbu);
379
380	if (has_async) {
381		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
382		    dbu, 0, &dbu->dbu_tqent);
383	}
384}
385
386boolean_t
387dbuf_is_metadata(dmu_buf_impl_t *db)
388{
389	if (db->db_level > 0) {
390		return (B_TRUE);
391	} else {
392		boolean_t is_metadata;
393
394		DB_DNODE_ENTER(db);
395		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
396		DB_DNODE_EXIT(db);
397
398		return (is_metadata);
399	}
400}
401
402/*
403 * This function *must* return indices evenly distributed between all
404 * sublists of the multilist. This is needed due to how the dbuf eviction
405 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
406 * distributed between all sublists and uses this assumption when
407 * deciding which sublist to evict from and how much to evict from it.
408 */
409unsigned int
410dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
411{
412	dmu_buf_impl_t *db = obj;
413
414	/*
415	 * The assumption here, is the hash value for a given
416	 * dmu_buf_impl_t will remain constant throughout it's lifetime
417	 * (i.e. it's objset, object, level and blkid fields don't change).
418	 * Thus, we don't need to store the dbuf's sublist index
419	 * on insertion, as this index can be recalculated on removal.
420	 *
421	 * Also, the low order bits of the hash value are thought to be
422	 * distributed evenly. Otherwise, in the case that the multilist
423	 * has a power of two number of sublists, each sublists' usage
424	 * would not be evenly distributed.
425	 */
426	return (dbuf_hash(db->db_objset, db->db.db_object,
427	    db->db_level, db->db_blkid) %
428	    multilist_get_num_sublists(ml));
429}
430
431static inline boolean_t
432dbuf_cache_above_hiwater(void)
433{
434	uint64_t dbuf_cache_hiwater_bytes =
435	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
436
437	return (refcount_count(&dbuf_cache_size) >
438	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
439}
440
441static inline boolean_t
442dbuf_cache_above_lowater(void)
443{
444	uint64_t dbuf_cache_lowater_bytes =
445	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
446
447	return (refcount_count(&dbuf_cache_size) >
448	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
449}
450
451/*
452 * Evict the oldest eligible dbuf from the dbuf cache.
453 */
454static void
455dbuf_evict_one(void)
456{
457	int idx = multilist_get_random_index(&dbuf_cache);
458	multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
459
460	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
461
462	/*
463	 * Set the thread's tsd to indicate that it's processing evictions.
464	 * Once a thread stops evicting from the dbuf cache it will
465	 * reset its tsd to NULL.
466	 */
467	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
468	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
469
470	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
471	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
472		db = multilist_sublist_prev(mls, db);
473	}
474
475	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
476	    multilist_sublist_t *, mls);
477
478	if (db != NULL) {
479		multilist_sublist_remove(mls, db);
480		multilist_sublist_unlock(mls);
481		(void) refcount_remove_many(&dbuf_cache_size,
482		    db->db.db_size, db);
483		dbuf_destroy(db);
484	} else {
485		multilist_sublist_unlock(mls);
486	}
487	(void) tsd_set(zfs_dbuf_evict_key, NULL);
488}
489
490/*
491 * The dbuf evict thread is responsible for aging out dbufs from the
492 * cache. Once the cache has reached it's maximum size, dbufs are removed
493 * and destroyed. The eviction thread will continue running until the size
494 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
495 * out of the cache it is destroyed and becomes eligible for arc eviction.
496 */
497static void
498dbuf_evict_thread(void *dummy __unused)
499{
500	callb_cpr_t cpr;
501
502	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
503
504	mutex_enter(&dbuf_evict_lock);
505	while (!dbuf_evict_thread_exit) {
506		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
507			CALLB_CPR_SAFE_BEGIN(&cpr);
508			(void) cv_timedwait_hires(&dbuf_evict_cv,
509			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
510			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
511		}
512		mutex_exit(&dbuf_evict_lock);
513
514		/*
515		 * Keep evicting as long as we're above the low water mark
516		 * for the cache. We do this without holding the locks to
517		 * minimize lock contention.
518		 */
519		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
520			dbuf_evict_one();
521		}
522
523		mutex_enter(&dbuf_evict_lock);
524	}
525
526	dbuf_evict_thread_exit = B_FALSE;
527	cv_broadcast(&dbuf_evict_cv);
528	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
529	thread_exit();
530}
531
532/*
533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
534 * If the dbuf cache is at its high water mark, then evict a dbuf from the
535 * dbuf cache using the callers context.
536 */
537static void
538dbuf_evict_notify(void)
539{
540
541	/*
542	 * We use thread specific data to track when a thread has
543	 * started processing evictions. This allows us to avoid deeply
544	 * nested stacks that would have a call flow similar to this:
545	 *
546	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
547	 *	^						|
548	 *	|						|
549	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
550	 *
551	 * The dbuf_eviction_thread will always have its tsd set until
552	 * that thread exits. All other threads will only set their tsd
553	 * if they are participating in the eviction process. This only
554	 * happens if the eviction thread is unable to process evictions
555	 * fast enough. To keep the dbuf cache size in check, other threads
556	 * can evict from the dbuf cache directly. Those threads will set
557	 * their tsd values so that we ensure that they only evict one dbuf
558	 * from the dbuf cache.
559	 */
560	if (tsd_get(zfs_dbuf_evict_key) != NULL)
561		return;
562
563	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
564		boolean_t evict_now = B_FALSE;
565
566		mutex_enter(&dbuf_evict_lock);
567		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
568			evict_now = dbuf_cache_above_hiwater();
569			cv_signal(&dbuf_evict_cv);
570		}
571		mutex_exit(&dbuf_evict_lock);
572
573		if (evict_now) {
574			dbuf_evict_one();
575		}
576	}
577}
578
579void
580dbuf_init(void)
581{
582	uint64_t hsize = 1ULL << 16;
583	dbuf_hash_table_t *h = &dbuf_hash_table;
584	int i;
585
586	/*
587	 * The hash table is big enough to fill all of physical memory
588	 * with an average 4K block size.  The table will take up
589	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
590	 */
591	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
592		hsize <<= 1;
593
594retry:
595	h->hash_table_mask = hsize - 1;
596	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
597	if (h->hash_table == NULL) {
598		/* XXX - we should really return an error instead of assert */
599		ASSERT(hsize > (1ULL << 10));
600		hsize >>= 1;
601		goto retry;
602	}
603
604	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
605	    sizeof (dmu_buf_impl_t),
606	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
607
608	for (i = 0; i < DBUF_MUTEXES; i++)
609		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
610
611	/*
612	 * Setup the parameters for the dbuf cache. We cap the size of the
613	 * dbuf cache to 1/32nd (default) of the size of the ARC.
614	 */
615	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
616	    arc_max_bytes() >> dbuf_cache_max_shift);
617
618	/*
619	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
620	 * configuration is not required.
621	 */
622	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
623
624	multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
625	    offsetof(dmu_buf_impl_t, db_cache_link),
626	    zfs_arc_num_sublists_per_state,
627	    dbuf_cache_multilist_index_func);
628	refcount_create(&dbuf_cache_size);
629
630	tsd_create(&zfs_dbuf_evict_key, NULL);
631	dbuf_evict_thread_exit = B_FALSE;
632	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
633	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
634	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
635	    NULL, 0, &p0, TS_RUN, minclsyspri);
636}
637
638void
639dbuf_fini(void)
640{
641	dbuf_hash_table_t *h = &dbuf_hash_table;
642	int i;
643
644	for (i = 0; i < DBUF_MUTEXES; i++)
645		mutex_destroy(&h->hash_mutexes[i]);
646	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
647	kmem_cache_destroy(dbuf_kmem_cache);
648	taskq_destroy(dbu_evict_taskq);
649
650	mutex_enter(&dbuf_evict_lock);
651	dbuf_evict_thread_exit = B_TRUE;
652	while (dbuf_evict_thread_exit) {
653		cv_signal(&dbuf_evict_cv);
654		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
655	}
656	mutex_exit(&dbuf_evict_lock);
657	tsd_destroy(&zfs_dbuf_evict_key);
658
659	mutex_destroy(&dbuf_evict_lock);
660	cv_destroy(&dbuf_evict_cv);
661
662	refcount_destroy(&dbuf_cache_size);
663	multilist_destroy(&dbuf_cache);
664}
665
666/*
667 * Other stuff.
668 */
669
670#ifdef ZFS_DEBUG
671static void
672dbuf_verify(dmu_buf_impl_t *db)
673{
674	dnode_t *dn;
675	dbuf_dirty_record_t *dr;
676
677	ASSERT(MUTEX_HELD(&db->db_mtx));
678
679	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
680		return;
681
682	ASSERT(db->db_objset != NULL);
683	DB_DNODE_ENTER(db);
684	dn = DB_DNODE(db);
685	if (dn == NULL) {
686		ASSERT(db->db_parent == NULL);
687		ASSERT(db->db_blkptr == NULL);
688	} else {
689		ASSERT3U(db->db.db_object, ==, dn->dn_object);
690		ASSERT3P(db->db_objset, ==, dn->dn_objset);
691		ASSERT3U(db->db_level, <, dn->dn_nlevels);
692		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
693		    db->db_blkid == DMU_SPILL_BLKID ||
694		    !avl_is_empty(&dn->dn_dbufs));
695	}
696	if (db->db_blkid == DMU_BONUS_BLKID) {
697		ASSERT(dn != NULL);
698		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
699		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
700	} else if (db->db_blkid == DMU_SPILL_BLKID) {
701		ASSERT(dn != NULL);
702		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
703		ASSERT0(db->db.db_offset);
704	} else {
705		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
706	}
707
708	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
709		ASSERT(dr->dr_dbuf == db);
710
711	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
712		ASSERT(dr->dr_dbuf == db);
713
714	/*
715	 * We can't assert that db_size matches dn_datablksz because it
716	 * can be momentarily different when another thread is doing
717	 * dnode_set_blksz().
718	 */
719	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
720		dr = db->db_data_pending;
721		/*
722		 * It should only be modified in syncing context, so
723		 * make sure we only have one copy of the data.
724		 */
725		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
726	}
727
728	/* verify db->db_blkptr */
729	if (db->db_blkptr) {
730		if (db->db_parent == dn->dn_dbuf) {
731			/* db is pointed to by the dnode */
732			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
733			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
734				ASSERT(db->db_parent == NULL);
735			else
736				ASSERT(db->db_parent != NULL);
737			if (db->db_blkid != DMU_SPILL_BLKID)
738				ASSERT3P(db->db_blkptr, ==,
739				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
740		} else {
741			/* db is pointed to by an indirect block */
742			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
743			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
744			ASSERT3U(db->db_parent->db.db_object, ==,
745			    db->db.db_object);
746			/*
747			 * dnode_grow_indblksz() can make this fail if we don't
748			 * have the struct_rwlock.  XXX indblksz no longer
749			 * grows.  safe to do this now?
750			 */
751			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
752				ASSERT3P(db->db_blkptr, ==,
753				    ((blkptr_t *)db->db_parent->db.db_data +
754				    db->db_blkid % epb));
755			}
756		}
757	}
758	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
759	    (db->db_buf == NULL || db->db_buf->b_data) &&
760	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
761	    db->db_state != DB_FILL && !dn->dn_free_txg) {
762		/*
763		 * If the blkptr isn't set but they have nonzero data,
764		 * it had better be dirty, otherwise we'll lose that
765		 * data when we evict this buffer.
766		 *
767		 * There is an exception to this rule for indirect blocks; in
768		 * this case, if the indirect block is a hole, we fill in a few
769		 * fields on each of the child blocks (importantly, birth time)
770		 * to prevent hole birth times from being lost when you
771		 * partially fill in a hole.
772		 */
773		if (db->db_dirtycnt == 0) {
774			if (db->db_level == 0) {
775				uint64_t *buf = db->db.db_data;
776				int i;
777
778				for (i = 0; i < db->db.db_size >> 3; i++) {
779					ASSERT(buf[i] == 0);
780				}
781			} else {
782				blkptr_t *bps = db->db.db_data;
783				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
784				    db->db.db_size);
785				/*
786				 * We want to verify that all the blkptrs in the
787				 * indirect block are holes, but we may have
788				 * automatically set up a few fields for them.
789				 * We iterate through each blkptr and verify
790				 * they only have those fields set.
791				 */
792				for (int i = 0;
793				    i < db->db.db_size / sizeof (blkptr_t);
794				    i++) {
795					blkptr_t *bp = &bps[i];
796					ASSERT(ZIO_CHECKSUM_IS_ZERO(
797					    &bp->blk_cksum));
798					ASSERT(
799					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
800					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
801					    DVA_IS_EMPTY(&bp->blk_dva[2]));
802					ASSERT0(bp->blk_fill);
803					ASSERT0(bp->blk_pad[0]);
804					ASSERT0(bp->blk_pad[1]);
805					ASSERT(!BP_IS_EMBEDDED(bp));
806					ASSERT(BP_IS_HOLE(bp));
807					ASSERT0(bp->blk_phys_birth);
808				}
809			}
810		}
811	}
812	DB_DNODE_EXIT(db);
813}
814#endif
815
816static void
817dbuf_clear_data(dmu_buf_impl_t *db)
818{
819	ASSERT(MUTEX_HELD(&db->db_mtx));
820	dbuf_evict_user(db);
821	ASSERT3P(db->db_buf, ==, NULL);
822	db->db.db_data = NULL;
823	if (db->db_state != DB_NOFILL)
824		db->db_state = DB_UNCACHED;
825}
826
827static void
828dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
829{
830	ASSERT(MUTEX_HELD(&db->db_mtx));
831	ASSERT(buf != NULL);
832
833	db->db_buf = buf;
834	ASSERT(buf->b_data != NULL);
835	db->db.db_data = buf->b_data;
836}
837
838/*
839 * Loan out an arc_buf for read.  Return the loaned arc_buf.
840 */
841arc_buf_t *
842dbuf_loan_arcbuf(dmu_buf_impl_t *db)
843{
844	arc_buf_t *abuf;
845
846	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
847	mutex_enter(&db->db_mtx);
848	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
849		int blksz = db->db.db_size;
850		spa_t *spa = db->db_objset->os_spa;
851
852		mutex_exit(&db->db_mtx);
853		abuf = arc_loan_buf(spa, B_FALSE, blksz);
854		bcopy(db->db.db_data, abuf->b_data, blksz);
855	} else {
856		abuf = db->db_buf;
857		arc_loan_inuse_buf(abuf, db);
858		db->db_buf = NULL;
859		dbuf_clear_data(db);
860		mutex_exit(&db->db_mtx);
861	}
862	return (abuf);
863}
864
865/*
866 * Calculate which level n block references the data at the level 0 offset
867 * provided.
868 */
869uint64_t
870dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
871{
872	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
873		/*
874		 * The level n blkid is equal to the level 0 blkid divided by
875		 * the number of level 0s in a level n block.
876		 *
877		 * The level 0 blkid is offset >> datablkshift =
878		 * offset / 2^datablkshift.
879		 *
880		 * The number of level 0s in a level n is the number of block
881		 * pointers in an indirect block, raised to the power of level.
882		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
883		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
884		 *
885		 * Thus, the level n blkid is: offset /
886		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
887		 * = offset / 2^(datablkshift + level *
888		 *   (indblkshift - SPA_BLKPTRSHIFT))
889		 * = offset >> (datablkshift + level *
890		 *   (indblkshift - SPA_BLKPTRSHIFT))
891		 */
892		return (offset >> (dn->dn_datablkshift + level *
893		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
894	} else {
895		ASSERT3U(offset, <, dn->dn_datablksz);
896		return (0);
897	}
898}
899
900static void
901dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
902{
903	dmu_buf_impl_t *db = vdb;
904
905	mutex_enter(&db->db_mtx);
906	ASSERT3U(db->db_state, ==, DB_READ);
907	/*
908	 * All reads are synchronous, so we must have a hold on the dbuf
909	 */
910	ASSERT(refcount_count(&db->db_holds) > 0);
911	ASSERT(db->db_buf == NULL);
912	ASSERT(db->db.db_data == NULL);
913	if (db->db_level == 0 && db->db_freed_in_flight) {
914		/* we were freed in flight; disregard any error */
915		arc_release(buf, db);
916		bzero(buf->b_data, db->db.db_size);
917		arc_buf_freeze(buf);
918		db->db_freed_in_flight = FALSE;
919		dbuf_set_data(db, buf);
920		db->db_state = DB_CACHED;
921	} else if (zio == NULL || zio->io_error == 0) {
922		dbuf_set_data(db, buf);
923		db->db_state = DB_CACHED;
924	} else {
925		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
926		ASSERT3P(db->db_buf, ==, NULL);
927		arc_buf_destroy(buf, db);
928		db->db_state = DB_UNCACHED;
929	}
930	cv_broadcast(&db->db_changed);
931	dbuf_rele_and_unlock(db, NULL);
932}
933
934static void
935dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
936{
937	dnode_t *dn;
938	zbookmark_phys_t zb;
939	arc_flags_t aflags = ARC_FLAG_NOWAIT;
940
941	DB_DNODE_ENTER(db);
942	dn = DB_DNODE(db);
943	ASSERT(!refcount_is_zero(&db->db_holds));
944	/* We need the struct_rwlock to prevent db_blkptr from changing. */
945	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
946	ASSERT(MUTEX_HELD(&db->db_mtx));
947	ASSERT(db->db_state == DB_UNCACHED);
948	ASSERT(db->db_buf == NULL);
949
950	if (db->db_blkid == DMU_BONUS_BLKID) {
951		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
952
953		ASSERT3U(bonuslen, <=, db->db.db_size);
954		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
955		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
956		if (bonuslen < DN_MAX_BONUSLEN)
957			bzero(db->db.db_data, DN_MAX_BONUSLEN);
958		if (bonuslen)
959			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
960		DB_DNODE_EXIT(db);
961		db->db_state = DB_CACHED;
962		mutex_exit(&db->db_mtx);
963		return;
964	}
965
966	/*
967	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
968	 * processes the delete record and clears the bp while we are waiting
969	 * for the dn_mtx (resulting in a "no" from block_freed).
970	 */
971	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
972	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
973	    BP_IS_HOLE(db->db_blkptr)))) {
974		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
975
976		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
977		    db->db.db_size));
978		bzero(db->db.db_data, db->db.db_size);
979
980		if (db->db_blkptr != NULL && db->db_level > 0 &&
981		    BP_IS_HOLE(db->db_blkptr) &&
982		    db->db_blkptr->blk_birth != 0) {
983			blkptr_t *bps = db->db.db_data;
984			for (int i = 0; i < ((1 <<
985			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
986			    i++) {
987				blkptr_t *bp = &bps[i];
988				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
989				    1 << dn->dn_indblkshift);
990				BP_SET_LSIZE(bp,
991				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
992				    dn->dn_datablksz :
993				    BP_GET_LSIZE(db->db_blkptr));
994				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
995				BP_SET_LEVEL(bp,
996				    BP_GET_LEVEL(db->db_blkptr) - 1);
997				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
998			}
999		}
1000		DB_DNODE_EXIT(db);
1001		db->db_state = DB_CACHED;
1002		mutex_exit(&db->db_mtx);
1003		return;
1004	}
1005
1006	DB_DNODE_EXIT(db);
1007
1008	db->db_state = DB_READ;
1009	mutex_exit(&db->db_mtx);
1010
1011	if (DBUF_IS_L2CACHEABLE(db))
1012		aflags |= ARC_FLAG_L2CACHE;
1013
1014	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1015	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1016	    db->db.db_object, db->db_level, db->db_blkid);
1017
1018	dbuf_add_ref(db, NULL);
1019
1020	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1021	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1022	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1023	    &aflags, &zb);
1024}
1025
1026/*
1027 * This is our just-in-time copy function.  It makes a copy of buffers that
1028 * have been modified in a previous transaction group before we access them in
1029 * the current active group.
1030 *
1031 * This function is used in three places: when we are dirtying a buffer for the
1032 * first time in a txg, when we are freeing a range in a dnode that includes
1033 * this buffer, and when we are accessing a buffer which was received compressed
1034 * and later referenced in a WRITE_BYREF record.
1035 *
1036 * Note that when we are called from dbuf_free_range() we do not put a hold on
1037 * the buffer, we just traverse the active dbuf list for the dnode.
1038 */
1039static void
1040dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1041{
1042	dbuf_dirty_record_t *dr = db->db_last_dirty;
1043
1044	ASSERT(MUTEX_HELD(&db->db_mtx));
1045	ASSERT(db->db.db_data != NULL);
1046	ASSERT(db->db_level == 0);
1047	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1048
1049	if (dr == NULL ||
1050	    (dr->dt.dl.dr_data !=
1051	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1052		return;
1053
1054	/*
1055	 * If the last dirty record for this dbuf has not yet synced
1056	 * and its referencing the dbuf data, either:
1057	 *	reset the reference to point to a new copy,
1058	 * or (if there a no active holders)
1059	 *	just null out the current db_data pointer.
1060	 */
1061	ASSERT(dr->dr_txg >= txg - 2);
1062	if (db->db_blkid == DMU_BONUS_BLKID) {
1063		/* Note that the data bufs here are zio_bufs */
1064		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1065		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1066		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1067	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1068		int size = arc_buf_size(db->db_buf);
1069		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1070		spa_t *spa = db->db_objset->os_spa;
1071		enum zio_compress compress_type =
1072		    arc_get_compression(db->db_buf);
1073
1074		if (compress_type == ZIO_COMPRESS_OFF) {
1075			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1076		} else {
1077			ASSERT3U(type, ==, ARC_BUFC_DATA);
1078			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1079			    size, arc_buf_lsize(db->db_buf), compress_type);
1080		}
1081		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1082	} else {
1083		db->db_buf = NULL;
1084		dbuf_clear_data(db);
1085	}
1086}
1087
1088int
1089dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1090{
1091	int err = 0;
1092	boolean_t havepzio = (zio != NULL);
1093	boolean_t prefetch;
1094	dnode_t *dn;
1095
1096	/*
1097	 * We don't have to hold the mutex to check db_state because it
1098	 * can't be freed while we have a hold on the buffer.
1099	 */
1100	ASSERT(!refcount_is_zero(&db->db_holds));
1101
1102	if (db->db_state == DB_NOFILL)
1103		return (SET_ERROR(EIO));
1104
1105	DB_DNODE_ENTER(db);
1106	dn = DB_DNODE(db);
1107	if ((flags & DB_RF_HAVESTRUCT) == 0)
1108		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1109
1110	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1111	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1112	    DBUF_IS_CACHEABLE(db);
1113
1114	mutex_enter(&db->db_mtx);
1115	if (db->db_state == DB_CACHED) {
1116		/*
1117		 * If the arc buf is compressed, we need to decompress it to
1118		 * read the data. This could happen during the "zfs receive" of
1119		 * a stream which is compressed and deduplicated.
1120		 */
1121		if (db->db_buf != NULL &&
1122		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1123			dbuf_fix_old_data(db,
1124			    spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1125			err = arc_decompress(db->db_buf);
1126			dbuf_set_data(db, db->db_buf);
1127		}
1128		mutex_exit(&db->db_mtx);
1129		if (prefetch)
1130			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1131		if ((flags & DB_RF_HAVESTRUCT) == 0)
1132			rw_exit(&dn->dn_struct_rwlock);
1133		DB_DNODE_EXIT(db);
1134	} else if (db->db_state == DB_UNCACHED) {
1135		spa_t *spa = dn->dn_objset->os_spa;
1136
1137		if (zio == NULL)
1138			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1139		dbuf_read_impl(db, zio, flags);
1140
1141		/* dbuf_read_impl has dropped db_mtx for us */
1142
1143		if (prefetch)
1144			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1145
1146		if ((flags & DB_RF_HAVESTRUCT) == 0)
1147			rw_exit(&dn->dn_struct_rwlock);
1148		DB_DNODE_EXIT(db);
1149
1150		if (!havepzio)
1151			err = zio_wait(zio);
1152	} else {
1153		/*
1154		 * Another reader came in while the dbuf was in flight
1155		 * between UNCACHED and CACHED.  Either a writer will finish
1156		 * writing the buffer (sending the dbuf to CACHED) or the
1157		 * first reader's request will reach the read_done callback
1158		 * and send the dbuf to CACHED.  Otherwise, a failure
1159		 * occurred and the dbuf went to UNCACHED.
1160		 */
1161		mutex_exit(&db->db_mtx);
1162		if (prefetch)
1163			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1164		if ((flags & DB_RF_HAVESTRUCT) == 0)
1165			rw_exit(&dn->dn_struct_rwlock);
1166		DB_DNODE_EXIT(db);
1167
1168		/* Skip the wait per the caller's request. */
1169		mutex_enter(&db->db_mtx);
1170		if ((flags & DB_RF_NEVERWAIT) == 0) {
1171			while (db->db_state == DB_READ ||
1172			    db->db_state == DB_FILL) {
1173				ASSERT(db->db_state == DB_READ ||
1174				    (flags & DB_RF_HAVESTRUCT) == 0);
1175				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1176				    db, zio_t *, zio);
1177				cv_wait(&db->db_changed, &db->db_mtx);
1178			}
1179			if (db->db_state == DB_UNCACHED)
1180				err = SET_ERROR(EIO);
1181		}
1182		mutex_exit(&db->db_mtx);
1183	}
1184
1185	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1186	return (err);
1187}
1188
1189static void
1190dbuf_noread(dmu_buf_impl_t *db)
1191{
1192	ASSERT(!refcount_is_zero(&db->db_holds));
1193	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1194	mutex_enter(&db->db_mtx);
1195	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1196		cv_wait(&db->db_changed, &db->db_mtx);
1197	if (db->db_state == DB_UNCACHED) {
1198		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1199		spa_t *spa = db->db_objset->os_spa;
1200
1201		ASSERT(db->db_buf == NULL);
1202		ASSERT(db->db.db_data == NULL);
1203		dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1204		db->db_state = DB_FILL;
1205	} else if (db->db_state == DB_NOFILL) {
1206		dbuf_clear_data(db);
1207	} else {
1208		ASSERT3U(db->db_state, ==, DB_CACHED);
1209	}
1210	mutex_exit(&db->db_mtx);
1211}
1212
1213void
1214dbuf_unoverride(dbuf_dirty_record_t *dr)
1215{
1216	dmu_buf_impl_t *db = dr->dr_dbuf;
1217	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1218	uint64_t txg = dr->dr_txg;
1219
1220	ASSERT(MUTEX_HELD(&db->db_mtx));
1221	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1222	ASSERT(db->db_level == 0);
1223
1224	if (db->db_blkid == DMU_BONUS_BLKID ||
1225	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1226		return;
1227
1228	ASSERT(db->db_data_pending != dr);
1229
1230	/* free this block */
1231	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1232		zio_free(db->db_objset->os_spa, txg, bp);
1233
1234	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1235	dr->dt.dl.dr_nopwrite = B_FALSE;
1236
1237	/*
1238	 * Release the already-written buffer, so we leave it in
1239	 * a consistent dirty state.  Note that all callers are
1240	 * modifying the buffer, so they will immediately do
1241	 * another (redundant) arc_release().  Therefore, leave
1242	 * the buf thawed to save the effort of freezing &
1243	 * immediately re-thawing it.
1244	 */
1245	arc_release(dr->dt.dl.dr_data, db);
1246}
1247
1248/*
1249 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1250 * data blocks in the free range, so that any future readers will find
1251 * empty blocks.
1252 */
1253void
1254dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1255    dmu_tx_t *tx)
1256{
1257	dmu_buf_impl_t db_search;
1258	dmu_buf_impl_t *db, *db_next;
1259	uint64_t txg = tx->tx_txg;
1260	avl_index_t where;
1261
1262	if (end_blkid > dn->dn_maxblkid &&
1263	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1264		end_blkid = dn->dn_maxblkid;
1265	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1266
1267	db_search.db_level = 0;
1268	db_search.db_blkid = start_blkid;
1269	db_search.db_state = DB_SEARCH;
1270
1271	mutex_enter(&dn->dn_dbufs_mtx);
1272	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1273	ASSERT3P(db, ==, NULL);
1274
1275	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1276
1277	for (; db != NULL; db = db_next) {
1278		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1279		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1280
1281		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1282			break;
1283		}
1284		ASSERT3U(db->db_blkid, >=, start_blkid);
1285
1286		/* found a level 0 buffer in the range */
1287		mutex_enter(&db->db_mtx);
1288		if (dbuf_undirty(db, tx)) {
1289			/* mutex has been dropped and dbuf destroyed */
1290			continue;
1291		}
1292
1293		if (db->db_state == DB_UNCACHED ||
1294		    db->db_state == DB_NOFILL ||
1295		    db->db_state == DB_EVICTING) {
1296			ASSERT(db->db.db_data == NULL);
1297			mutex_exit(&db->db_mtx);
1298			continue;
1299		}
1300		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1301			/* will be handled in dbuf_read_done or dbuf_rele */
1302			db->db_freed_in_flight = TRUE;
1303			mutex_exit(&db->db_mtx);
1304			continue;
1305		}
1306		if (refcount_count(&db->db_holds) == 0) {
1307			ASSERT(db->db_buf);
1308			dbuf_destroy(db);
1309			continue;
1310		}
1311		/* The dbuf is referenced */
1312
1313		if (db->db_last_dirty != NULL) {
1314			dbuf_dirty_record_t *dr = db->db_last_dirty;
1315
1316			if (dr->dr_txg == txg) {
1317				/*
1318				 * This buffer is "in-use", re-adjust the file
1319				 * size to reflect that this buffer may
1320				 * contain new data when we sync.
1321				 */
1322				if (db->db_blkid != DMU_SPILL_BLKID &&
1323				    db->db_blkid > dn->dn_maxblkid)
1324					dn->dn_maxblkid = db->db_blkid;
1325				dbuf_unoverride(dr);
1326			} else {
1327				/*
1328				 * This dbuf is not dirty in the open context.
1329				 * Either uncache it (if its not referenced in
1330				 * the open context) or reset its contents to
1331				 * empty.
1332				 */
1333				dbuf_fix_old_data(db, txg);
1334			}
1335		}
1336		/* clear the contents if its cached */
1337		if (db->db_state == DB_CACHED) {
1338			ASSERT(db->db.db_data != NULL);
1339			arc_release(db->db_buf, db);
1340			bzero(db->db.db_data, db->db.db_size);
1341			arc_buf_freeze(db->db_buf);
1342		}
1343
1344		mutex_exit(&db->db_mtx);
1345	}
1346	mutex_exit(&dn->dn_dbufs_mtx);
1347}
1348
1349void
1350dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1351{
1352	arc_buf_t *buf, *obuf;
1353	int osize = db->db.db_size;
1354	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1355	dnode_t *dn;
1356
1357	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1358
1359	DB_DNODE_ENTER(db);
1360	dn = DB_DNODE(db);
1361
1362	/* XXX does *this* func really need the lock? */
1363	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1364
1365	/*
1366	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1367	 * is OK, because there can be no other references to the db
1368	 * when we are changing its size, so no concurrent DB_FILL can
1369	 * be happening.
1370	 */
1371	/*
1372	 * XXX we should be doing a dbuf_read, checking the return
1373	 * value and returning that up to our callers
1374	 */
1375	dmu_buf_will_dirty(&db->db, tx);
1376
1377	/* create the data buffer for the new block */
1378	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1379
1380	/* copy old block data to the new block */
1381	obuf = db->db_buf;
1382	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1383	/* zero the remainder */
1384	if (size > osize)
1385		bzero((uint8_t *)buf->b_data + osize, size - osize);
1386
1387	mutex_enter(&db->db_mtx);
1388	dbuf_set_data(db, buf);
1389	arc_buf_destroy(obuf, db);
1390	db->db.db_size = size;
1391
1392	if (db->db_level == 0) {
1393		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1394		db->db_last_dirty->dt.dl.dr_data = buf;
1395	}
1396	mutex_exit(&db->db_mtx);
1397
1398	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1399	DB_DNODE_EXIT(db);
1400}
1401
1402void
1403dbuf_release_bp(dmu_buf_impl_t *db)
1404{
1405	objset_t *os = db->db_objset;
1406
1407	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1408	ASSERT(arc_released(os->os_phys_buf) ||
1409	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1410	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1411
1412	(void) arc_release(db->db_buf, db);
1413}
1414
1415/*
1416 * We already have a dirty record for this TXG, and we are being
1417 * dirtied again.
1418 */
1419static void
1420dbuf_redirty(dbuf_dirty_record_t *dr)
1421{
1422	dmu_buf_impl_t *db = dr->dr_dbuf;
1423
1424	ASSERT(MUTEX_HELD(&db->db_mtx));
1425
1426	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1427		/*
1428		 * If this buffer has already been written out,
1429		 * we now need to reset its state.
1430		 */
1431		dbuf_unoverride(dr);
1432		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1433		    db->db_state != DB_NOFILL) {
1434			/* Already released on initial dirty, so just thaw. */
1435			ASSERT(arc_released(db->db_buf));
1436			arc_buf_thaw(db->db_buf);
1437		}
1438	}
1439}
1440
1441dbuf_dirty_record_t *
1442dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1443{
1444	dnode_t *dn;
1445	objset_t *os;
1446	dbuf_dirty_record_t **drp, *dr;
1447	int drop_struct_lock = FALSE;
1448	int txgoff = tx->tx_txg & TXG_MASK;
1449
1450	ASSERT(tx->tx_txg != 0);
1451	ASSERT(!refcount_is_zero(&db->db_holds));
1452	DMU_TX_DIRTY_BUF(tx, db);
1453
1454	DB_DNODE_ENTER(db);
1455	dn = DB_DNODE(db);
1456	/*
1457	 * Shouldn't dirty a regular buffer in syncing context.  Private
1458	 * objects may be dirtied in syncing context, but only if they
1459	 * were already pre-dirtied in open context.
1460	 */
1461#ifdef DEBUG
1462	if (dn->dn_objset->os_dsl_dataset != NULL) {
1463		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1464		    RW_READER, FTAG);
1465	}
1466	ASSERT(!dmu_tx_is_syncing(tx) ||
1467	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1468	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1469	    dn->dn_objset->os_dsl_dataset == NULL);
1470	if (dn->dn_objset->os_dsl_dataset != NULL)
1471		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1472#endif
1473	/*
1474	 * We make this assert for private objects as well, but after we
1475	 * check if we're already dirty.  They are allowed to re-dirty
1476	 * in syncing context.
1477	 */
1478	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1479	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1480	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1481
1482	mutex_enter(&db->db_mtx);
1483	/*
1484	 * XXX make this true for indirects too?  The problem is that
1485	 * transactions created with dmu_tx_create_assigned() from
1486	 * syncing context don't bother holding ahead.
1487	 */
1488	ASSERT(db->db_level != 0 ||
1489	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1490	    db->db_state == DB_NOFILL);
1491
1492	mutex_enter(&dn->dn_mtx);
1493	/*
1494	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1495	 * initialize the objset.
1496	 */
1497	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1498		if (dn->dn_objset->os_dsl_dataset != NULL) {
1499			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1500			    RW_READER, FTAG);
1501		}
1502		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1503			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1504			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1505			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1506			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1507		}
1508		if (dn->dn_objset->os_dsl_dataset != NULL) {
1509			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1510			    FTAG);
1511		}
1512	}
1513	mutex_exit(&dn->dn_mtx);
1514
1515	if (db->db_blkid == DMU_SPILL_BLKID)
1516		dn->dn_have_spill = B_TRUE;
1517
1518	/*
1519	 * If this buffer is already dirty, we're done.
1520	 */
1521	drp = &db->db_last_dirty;
1522	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1523	    db->db.db_object == DMU_META_DNODE_OBJECT);
1524	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1525		drp = &dr->dr_next;
1526	if (dr && dr->dr_txg == tx->tx_txg) {
1527		DB_DNODE_EXIT(db);
1528
1529		dbuf_redirty(dr);
1530		mutex_exit(&db->db_mtx);
1531		return (dr);
1532	}
1533
1534	/*
1535	 * Only valid if not already dirty.
1536	 */
1537	ASSERT(dn->dn_object == 0 ||
1538	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1539	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1540
1541	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1542	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1543	    dn->dn_phys->dn_nlevels > db->db_level ||
1544	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1545	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1546	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1547
1548	/*
1549	 * We should only be dirtying in syncing context if it's the
1550	 * mos or we're initializing the os or it's a special object.
1551	 * However, we are allowed to dirty in syncing context provided
1552	 * we already dirtied it in open context.  Hence we must make
1553	 * this assertion only if we're not already dirty.
1554	 */
1555	os = dn->dn_objset;
1556#ifdef DEBUG
1557	if (dn->dn_objset->os_dsl_dataset != NULL)
1558		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1559	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1560	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1561	if (dn->dn_objset->os_dsl_dataset != NULL)
1562		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1563#endif
1564	ASSERT(db->db.db_size != 0);
1565
1566	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1567
1568	if (db->db_blkid != DMU_BONUS_BLKID) {
1569		dmu_objset_willuse_space(os, db->db.db_size, tx);
1570	}
1571
1572	/*
1573	 * If this buffer is dirty in an old transaction group we need
1574	 * to make a copy of it so that the changes we make in this
1575	 * transaction group won't leak out when we sync the older txg.
1576	 */
1577	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1578	if (db->db_level == 0) {
1579		void *data_old = db->db_buf;
1580
1581		if (db->db_state != DB_NOFILL) {
1582			if (db->db_blkid == DMU_BONUS_BLKID) {
1583				dbuf_fix_old_data(db, tx->tx_txg);
1584				data_old = db->db.db_data;
1585			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1586				/*
1587				 * Release the data buffer from the cache so
1588				 * that we can modify it without impacting
1589				 * possible other users of this cached data
1590				 * block.  Note that indirect blocks and
1591				 * private objects are not released until the
1592				 * syncing state (since they are only modified
1593				 * then).
1594				 */
1595				arc_release(db->db_buf, db);
1596				dbuf_fix_old_data(db, tx->tx_txg);
1597				data_old = db->db_buf;
1598			}
1599			ASSERT(data_old != NULL);
1600		}
1601		dr->dt.dl.dr_data = data_old;
1602	} else {
1603		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1604		list_create(&dr->dt.di.dr_children,
1605		    sizeof (dbuf_dirty_record_t),
1606		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1607	}
1608	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1609		dr->dr_accounted = db->db.db_size;
1610	dr->dr_dbuf = db;
1611	dr->dr_txg = tx->tx_txg;
1612	dr->dr_next = *drp;
1613	*drp = dr;
1614
1615	/*
1616	 * We could have been freed_in_flight between the dbuf_noread
1617	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1618	 * happened after the free.
1619	 */
1620	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1621	    db->db_blkid != DMU_SPILL_BLKID) {
1622		mutex_enter(&dn->dn_mtx);
1623		if (dn->dn_free_ranges[txgoff] != NULL) {
1624			range_tree_clear(dn->dn_free_ranges[txgoff],
1625			    db->db_blkid, 1);
1626		}
1627		mutex_exit(&dn->dn_mtx);
1628		db->db_freed_in_flight = FALSE;
1629	}
1630
1631	/*
1632	 * This buffer is now part of this txg
1633	 */
1634	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1635	db->db_dirtycnt += 1;
1636	ASSERT3U(db->db_dirtycnt, <=, 3);
1637
1638	mutex_exit(&db->db_mtx);
1639
1640	if (db->db_blkid == DMU_BONUS_BLKID ||
1641	    db->db_blkid == DMU_SPILL_BLKID) {
1642		mutex_enter(&dn->dn_mtx);
1643		ASSERT(!list_link_active(&dr->dr_dirty_node));
1644		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1645		mutex_exit(&dn->dn_mtx);
1646		dnode_setdirty(dn, tx);
1647		DB_DNODE_EXIT(db);
1648		return (dr);
1649	}
1650
1651	/*
1652	 * The dn_struct_rwlock prevents db_blkptr from changing
1653	 * due to a write from syncing context completing
1654	 * while we are running, so we want to acquire it before
1655	 * looking at db_blkptr.
1656	 */
1657	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1658		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1659		drop_struct_lock = TRUE;
1660	}
1661
1662	/*
1663	 * If we are overwriting a dedup BP, then unless it is snapshotted,
1664	 * when we get to syncing context we will need to decrement its
1665	 * refcount in the DDT.  Prefetch the relevant DDT block so that
1666	 * syncing context won't have to wait for the i/o.
1667	 */
1668	ddt_prefetch(os->os_spa, db->db_blkptr);
1669
1670	if (db->db_level == 0) {
1671		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1672		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1673	}
1674
1675	if (db->db_level+1 < dn->dn_nlevels) {
1676		dmu_buf_impl_t *parent = db->db_parent;
1677		dbuf_dirty_record_t *di;
1678		int parent_held = FALSE;
1679
1680		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1681			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1682
1683			parent = dbuf_hold_level(dn, db->db_level+1,
1684			    db->db_blkid >> epbs, FTAG);
1685			ASSERT(parent != NULL);
1686			parent_held = TRUE;
1687		}
1688		if (drop_struct_lock)
1689			rw_exit(&dn->dn_struct_rwlock);
1690		ASSERT3U(db->db_level+1, ==, parent->db_level);
1691		di = dbuf_dirty(parent, tx);
1692		if (parent_held)
1693			dbuf_rele(parent, FTAG);
1694
1695		mutex_enter(&db->db_mtx);
1696		/*
1697		 * Since we've dropped the mutex, it's possible that
1698		 * dbuf_undirty() might have changed this out from under us.
1699		 */
1700		if (db->db_last_dirty == dr ||
1701		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1702			mutex_enter(&di->dt.di.dr_mtx);
1703			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1704			ASSERT(!list_link_active(&dr->dr_dirty_node));
1705			list_insert_tail(&di->dt.di.dr_children, dr);
1706			mutex_exit(&di->dt.di.dr_mtx);
1707			dr->dr_parent = di;
1708		}
1709		mutex_exit(&db->db_mtx);
1710	} else {
1711		ASSERT(db->db_level+1 == dn->dn_nlevels);
1712		ASSERT(db->db_blkid < dn->dn_nblkptr);
1713		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1714		mutex_enter(&dn->dn_mtx);
1715		ASSERT(!list_link_active(&dr->dr_dirty_node));
1716		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1717		mutex_exit(&dn->dn_mtx);
1718		if (drop_struct_lock)
1719			rw_exit(&dn->dn_struct_rwlock);
1720	}
1721
1722	dnode_setdirty(dn, tx);
1723	DB_DNODE_EXIT(db);
1724	return (dr);
1725}
1726
1727/*
1728 * Undirty a buffer in the transaction group referenced by the given
1729 * transaction.  Return whether this evicted the dbuf.
1730 */
1731static boolean_t
1732dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1733{
1734	dnode_t *dn;
1735	uint64_t txg = tx->tx_txg;
1736	dbuf_dirty_record_t *dr, **drp;
1737
1738	ASSERT(txg != 0);
1739
1740	/*
1741	 * Due to our use of dn_nlevels below, this can only be called
1742	 * in open context, unless we are operating on the MOS.
1743	 * From syncing context, dn_nlevels may be different from the
1744	 * dn_nlevels used when dbuf was dirtied.
1745	 */
1746	ASSERT(db->db_objset ==
1747	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1748	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1749	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1750	ASSERT0(db->db_level);
1751	ASSERT(MUTEX_HELD(&db->db_mtx));
1752
1753	/*
1754	 * If this buffer is not dirty, we're done.
1755	 */
1756	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1757		if (dr->dr_txg <= txg)
1758			break;
1759	if (dr == NULL || dr->dr_txg < txg)
1760		return (B_FALSE);
1761	ASSERT(dr->dr_txg == txg);
1762	ASSERT(dr->dr_dbuf == db);
1763
1764	DB_DNODE_ENTER(db);
1765	dn = DB_DNODE(db);
1766
1767	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1768
1769	ASSERT(db->db.db_size != 0);
1770
1771	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1772	    dr->dr_accounted, txg);
1773
1774	*drp = dr->dr_next;
1775
1776	/*
1777	 * Note that there are three places in dbuf_dirty()
1778	 * where this dirty record may be put on a list.
1779	 * Make sure to do a list_remove corresponding to
1780	 * every one of those list_insert calls.
1781	 */
1782	if (dr->dr_parent) {
1783		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1784		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1785		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1786	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1787	    db->db_level + 1 == dn->dn_nlevels) {
1788		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1789		mutex_enter(&dn->dn_mtx);
1790		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1791		mutex_exit(&dn->dn_mtx);
1792	}
1793	DB_DNODE_EXIT(db);
1794
1795	if (db->db_state != DB_NOFILL) {
1796		dbuf_unoverride(dr);
1797
1798		ASSERT(db->db_buf != NULL);
1799		ASSERT(dr->dt.dl.dr_data != NULL);
1800		if (dr->dt.dl.dr_data != db->db_buf)
1801			arc_buf_destroy(dr->dt.dl.dr_data, db);
1802	}
1803
1804	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1805
1806	ASSERT(db->db_dirtycnt > 0);
1807	db->db_dirtycnt -= 1;
1808
1809	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1810		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1811		dbuf_destroy(db);
1812		return (B_TRUE);
1813	}
1814
1815	return (B_FALSE);
1816}
1817
1818void
1819dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1820{
1821	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1822	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1823
1824	ASSERT(tx->tx_txg != 0);
1825	ASSERT(!refcount_is_zero(&db->db_holds));
1826
1827	/*
1828	 * Quick check for dirtyness.  For already dirty blocks, this
1829	 * reduces runtime of this function by >90%, and overall performance
1830	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1831	 * cached).
1832	 */
1833	mutex_enter(&db->db_mtx);
1834	dbuf_dirty_record_t *dr;
1835	for (dr = db->db_last_dirty;
1836	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1837		/*
1838		 * It's possible that it is already dirty but not cached,
1839		 * because there are some calls to dbuf_dirty() that don't
1840		 * go through dmu_buf_will_dirty().
1841		 */
1842		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1843			/* This dbuf is already dirty and cached. */
1844			dbuf_redirty(dr);
1845			mutex_exit(&db->db_mtx);
1846			return;
1847		}
1848	}
1849	mutex_exit(&db->db_mtx);
1850
1851	DB_DNODE_ENTER(db);
1852	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1853		rf |= DB_RF_HAVESTRUCT;
1854	DB_DNODE_EXIT(db);
1855	(void) dbuf_read(db, NULL, rf);
1856	(void) dbuf_dirty(db, tx);
1857}
1858
1859void
1860dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1861{
1862	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1863
1864	db->db_state = DB_NOFILL;
1865
1866	dmu_buf_will_fill(db_fake, tx);
1867}
1868
1869void
1870dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1871{
1872	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1873
1874	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1875	ASSERT(tx->tx_txg != 0);
1876	ASSERT(db->db_level == 0);
1877	ASSERT(!refcount_is_zero(&db->db_holds));
1878
1879	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1880	    dmu_tx_private_ok(tx));
1881
1882	dbuf_noread(db);
1883	(void) dbuf_dirty(db, tx);
1884}
1885
1886#pragma weak dmu_buf_fill_done = dbuf_fill_done
1887/* ARGSUSED */
1888void
1889dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1890{
1891	mutex_enter(&db->db_mtx);
1892	DBUF_VERIFY(db);
1893
1894	if (db->db_state == DB_FILL) {
1895		if (db->db_level == 0 && db->db_freed_in_flight) {
1896			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897			/* we were freed while filling */
1898			/* XXX dbuf_undirty? */
1899			bzero(db->db.db_data, db->db.db_size);
1900			db->db_freed_in_flight = FALSE;
1901		}
1902		db->db_state = DB_CACHED;
1903		cv_broadcast(&db->db_changed);
1904	}
1905	mutex_exit(&db->db_mtx);
1906}
1907
1908void
1909dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1910    bp_embedded_type_t etype, enum zio_compress comp,
1911    int uncompressed_size, int compressed_size, int byteorder,
1912    dmu_tx_t *tx)
1913{
1914	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1915	struct dirty_leaf *dl;
1916	dmu_object_type_t type;
1917
1918	if (etype == BP_EMBEDDED_TYPE_DATA) {
1919		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1920		    SPA_FEATURE_EMBEDDED_DATA));
1921	}
1922
1923	DB_DNODE_ENTER(db);
1924	type = DB_DNODE(db)->dn_type;
1925	DB_DNODE_EXIT(db);
1926
1927	ASSERT0(db->db_level);
1928	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1929
1930	dmu_buf_will_not_fill(dbuf, tx);
1931
1932	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1933	dl = &db->db_last_dirty->dt.dl;
1934	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1935	    data, comp, uncompressed_size, compressed_size);
1936	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1937	BP_SET_TYPE(&dl->dr_overridden_by, type);
1938	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1939	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1940
1941	dl->dr_override_state = DR_OVERRIDDEN;
1942	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1943}
1944
1945/*
1946 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1947 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1948 */
1949void
1950dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1951{
1952	ASSERT(!refcount_is_zero(&db->db_holds));
1953	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1954	ASSERT(db->db_level == 0);
1955	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1956	ASSERT(buf != NULL);
1957	ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1958	ASSERT(tx->tx_txg != 0);
1959
1960	arc_return_buf(buf, db);
1961	ASSERT(arc_released(buf));
1962
1963	mutex_enter(&db->db_mtx);
1964
1965	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1966		cv_wait(&db->db_changed, &db->db_mtx);
1967
1968	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1969
1970	if (db->db_state == DB_CACHED &&
1971	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1972		mutex_exit(&db->db_mtx);
1973		(void) dbuf_dirty(db, tx);
1974		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1975		arc_buf_destroy(buf, db);
1976		xuio_stat_wbuf_copied();
1977		return;
1978	}
1979
1980	xuio_stat_wbuf_nocopy();
1981	if (db->db_state == DB_CACHED) {
1982		dbuf_dirty_record_t *dr = db->db_last_dirty;
1983
1984		ASSERT(db->db_buf != NULL);
1985		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1986			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1987			if (!arc_released(db->db_buf)) {
1988				ASSERT(dr->dt.dl.dr_override_state ==
1989				    DR_OVERRIDDEN);
1990				arc_release(db->db_buf, db);
1991			}
1992			dr->dt.dl.dr_data = buf;
1993			arc_buf_destroy(db->db_buf, db);
1994		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1995			arc_release(db->db_buf, db);
1996			arc_buf_destroy(db->db_buf, db);
1997		}
1998		db->db_buf = NULL;
1999	}
2000	ASSERT(db->db_buf == NULL);
2001	dbuf_set_data(db, buf);
2002	db->db_state = DB_FILL;
2003	mutex_exit(&db->db_mtx);
2004	(void) dbuf_dirty(db, tx);
2005	dmu_buf_fill_done(&db->db, tx);
2006}
2007
2008void
2009dbuf_destroy(dmu_buf_impl_t *db)
2010{
2011	dnode_t *dn;
2012	dmu_buf_impl_t *parent = db->db_parent;
2013	dmu_buf_impl_t *dndb;
2014
2015	ASSERT(MUTEX_HELD(&db->db_mtx));
2016	ASSERT(refcount_is_zero(&db->db_holds));
2017
2018	if (db->db_buf != NULL) {
2019		arc_buf_destroy(db->db_buf, db);
2020		db->db_buf = NULL;
2021	}
2022
2023	if (db->db_blkid == DMU_BONUS_BLKID) {
2024		ASSERT(db->db.db_data != NULL);
2025		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2026		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2027		db->db_state = DB_UNCACHED;
2028	}
2029
2030	dbuf_clear_data(db);
2031
2032	if (multilist_link_active(&db->db_cache_link)) {
2033		multilist_remove(&dbuf_cache, db);
2034		(void) refcount_remove_many(&dbuf_cache_size,
2035		    db->db.db_size, db);
2036	}
2037
2038	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2039	ASSERT(db->db_data_pending == NULL);
2040
2041	db->db_state = DB_EVICTING;
2042	db->db_blkptr = NULL;
2043
2044	/*
2045	 * Now that db_state is DB_EVICTING, nobody else can find this via
2046	 * the hash table.  We can now drop db_mtx, which allows us to
2047	 * acquire the dn_dbufs_mtx.
2048	 */
2049	mutex_exit(&db->db_mtx);
2050
2051	DB_DNODE_ENTER(db);
2052	dn = DB_DNODE(db);
2053	dndb = dn->dn_dbuf;
2054	if (db->db_blkid != DMU_BONUS_BLKID) {
2055		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2056		if (needlock)
2057			mutex_enter(&dn->dn_dbufs_mtx);
2058		avl_remove(&dn->dn_dbufs, db);
2059		atomic_dec_32(&dn->dn_dbufs_count);
2060		membar_producer();
2061		DB_DNODE_EXIT(db);
2062		if (needlock)
2063			mutex_exit(&dn->dn_dbufs_mtx);
2064		/*
2065		 * Decrementing the dbuf count means that the hold corresponding
2066		 * to the removed dbuf is no longer discounted in dnode_move(),
2067		 * so the dnode cannot be moved until after we release the hold.
2068		 * The membar_producer() ensures visibility of the decremented
2069		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2070		 * release any lock.
2071		 */
2072		dnode_rele(dn, db);
2073		db->db_dnode_handle = NULL;
2074
2075		dbuf_hash_remove(db);
2076	} else {
2077		DB_DNODE_EXIT(db);
2078	}
2079
2080	ASSERT(refcount_is_zero(&db->db_holds));
2081
2082	db->db_parent = NULL;
2083
2084	ASSERT(db->db_buf == NULL);
2085	ASSERT(db->db.db_data == NULL);
2086	ASSERT(db->db_hash_next == NULL);
2087	ASSERT(db->db_blkptr == NULL);
2088	ASSERT(db->db_data_pending == NULL);
2089	ASSERT(!multilist_link_active(&db->db_cache_link));
2090
2091	kmem_cache_free(dbuf_kmem_cache, db);
2092	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2093
2094	/*
2095	 * If this dbuf is referenced from an indirect dbuf,
2096	 * decrement the ref count on the indirect dbuf.
2097	 */
2098	if (parent && parent != dndb)
2099		dbuf_rele(parent, db);
2100}
2101
2102/*
2103 * Note: While bpp will always be updated if the function returns success,
2104 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2105 * this happens when the dnode is the meta-dnode, or a userused or groupused
2106 * object.
2107 */
2108static int
2109dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2110    dmu_buf_impl_t **parentp, blkptr_t **bpp)
2111{
2112	*parentp = NULL;
2113	*bpp = NULL;
2114
2115	ASSERT(blkid != DMU_BONUS_BLKID);
2116
2117	if (blkid == DMU_SPILL_BLKID) {
2118		mutex_enter(&dn->dn_mtx);
2119		if (dn->dn_have_spill &&
2120		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2121			*bpp = &dn->dn_phys->dn_spill;
2122		else
2123			*bpp = NULL;
2124		dbuf_add_ref(dn->dn_dbuf, NULL);
2125		*parentp = dn->dn_dbuf;
2126		mutex_exit(&dn->dn_mtx);
2127		return (0);
2128	}
2129
2130	int nlevels =
2131	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2132	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2133
2134	ASSERT3U(level * epbs, <, 64);
2135	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2136	/*
2137	 * This assertion shouldn't trip as long as the max indirect block size
2138	 * is less than 1M.  The reason for this is that up to that point,
2139	 * the number of levels required to address an entire object with blocks
2140	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2141	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2142	 * (i.e. we can address the entire object), objects will all use at most
2143	 * N-1 levels and the assertion won't overflow.  However, once epbs is
2144	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2145	 * enough to address an entire object, so objects will have 5 levels,
2146	 * but then this assertion will overflow.
2147	 *
2148	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2149	 * need to redo this logic to handle overflows.
2150	 */
2151	ASSERT(level >= nlevels ||
2152	    ((nlevels - level - 1) * epbs) +
2153	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2154	if (level >= nlevels ||
2155	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2156	    ((nlevels - level - 1) * epbs)) ||
2157	    (fail_sparse &&
2158	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2159		/* the buffer has no parent yet */
2160		return (SET_ERROR(ENOENT));
2161	} else if (level < nlevels-1) {
2162		/* this block is referenced from an indirect block */
2163		int err = dbuf_hold_impl(dn, level+1,
2164		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2165		if (err)
2166			return (err);
2167		err = dbuf_read(*parentp, NULL,
2168		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2169		if (err) {
2170			dbuf_rele(*parentp, NULL);
2171			*parentp = NULL;
2172			return (err);
2173		}
2174		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2175		    (blkid & ((1ULL << epbs) - 1));
2176		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2177			ASSERT(BP_IS_HOLE(*bpp));
2178		return (0);
2179	} else {
2180		/* the block is referenced from the dnode */
2181		ASSERT3U(level, ==, nlevels-1);
2182		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2183		    blkid < dn->dn_phys->dn_nblkptr);
2184		if (dn->dn_dbuf) {
2185			dbuf_add_ref(dn->dn_dbuf, NULL);
2186			*parentp = dn->dn_dbuf;
2187		}
2188		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2189		return (0);
2190	}
2191}
2192
2193static dmu_buf_impl_t *
2194dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2195    dmu_buf_impl_t *parent, blkptr_t *blkptr)
2196{
2197	objset_t *os = dn->dn_objset;
2198	dmu_buf_impl_t *db, *odb;
2199
2200	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2201	ASSERT(dn->dn_type != DMU_OT_NONE);
2202
2203	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2204
2205	db->db_objset = os;
2206	db->db.db_object = dn->dn_object;
2207	db->db_level = level;
2208	db->db_blkid = blkid;
2209	db->db_last_dirty = NULL;
2210	db->db_dirtycnt = 0;
2211	db->db_dnode_handle = dn->dn_handle;
2212	db->db_parent = parent;
2213	db->db_blkptr = blkptr;
2214
2215	db->db_user = NULL;
2216	db->db_user_immediate_evict = FALSE;
2217	db->db_freed_in_flight = FALSE;
2218	db->db_pending_evict = FALSE;
2219
2220	if (blkid == DMU_BONUS_BLKID) {
2221		ASSERT3P(parent, ==, dn->dn_dbuf);
2222		db->db.db_size = DN_MAX_BONUSLEN -
2223		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2224		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2225		db->db.db_offset = DMU_BONUS_BLKID;
2226		db->db_state = DB_UNCACHED;
2227		/* the bonus dbuf is not placed in the hash table */
2228		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2229		return (db);
2230	} else if (blkid == DMU_SPILL_BLKID) {
2231		db->db.db_size = (blkptr != NULL) ?
2232		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2233		db->db.db_offset = 0;
2234	} else {
2235		int blocksize =
2236		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2237		db->db.db_size = blocksize;
2238		db->db.db_offset = db->db_blkid * blocksize;
2239	}
2240
2241	/*
2242	 * Hold the dn_dbufs_mtx while we get the new dbuf
2243	 * in the hash table *and* added to the dbufs list.
2244	 * This prevents a possible deadlock with someone
2245	 * trying to look up this dbuf before its added to the
2246	 * dn_dbufs list.
2247	 */
2248	mutex_enter(&dn->dn_dbufs_mtx);
2249	db->db_state = DB_EVICTING;
2250	if ((odb = dbuf_hash_insert(db)) != NULL) {
2251		/* someone else inserted it first */
2252		kmem_cache_free(dbuf_kmem_cache, db);
2253		mutex_exit(&dn->dn_dbufs_mtx);
2254		return (odb);
2255	}
2256	avl_add(&dn->dn_dbufs, db);
2257
2258	db->db_state = DB_UNCACHED;
2259	mutex_exit(&dn->dn_dbufs_mtx);
2260	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2261
2262	if (parent && parent != dn->dn_dbuf)
2263		dbuf_add_ref(parent, db);
2264
2265	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2266	    refcount_count(&dn->dn_holds) > 0);
2267	(void) refcount_add(&dn->dn_holds, db);
2268	atomic_inc_32(&dn->dn_dbufs_count);
2269
2270	dprintf_dbuf(db, "db=%p\n", db);
2271
2272	return (db);
2273}
2274
2275typedef struct dbuf_prefetch_arg {
2276	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2277	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2278	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2279	int dpa_curlevel; /* The current level that we're reading */
2280	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2281	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2282	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2283	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2284} dbuf_prefetch_arg_t;
2285
2286/*
2287 * Actually issue the prefetch read for the block given.
2288 */
2289static void
2290dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2291{
2292	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2293		return;
2294
2295	arc_flags_t aflags =
2296	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2297
2298	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2299	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2300	ASSERT(dpa->dpa_zio != NULL);
2301	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2302	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2303	    &aflags, &dpa->dpa_zb);
2304}
2305
2306/*
2307 * Called when an indirect block above our prefetch target is read in.  This
2308 * will either read in the next indirect block down the tree or issue the actual
2309 * prefetch if the next block down is our target.
2310 */
2311static void
2312dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2313{
2314	dbuf_prefetch_arg_t *dpa = private;
2315
2316	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2317	ASSERT3S(dpa->dpa_curlevel, >, 0);
2318
2319	/*
2320	 * The dpa_dnode is only valid if we are called with a NULL
2321	 * zio. This indicates that the arc_read() returned without
2322	 * first calling zio_read() to issue a physical read. Once
2323	 * a physical read is made the dpa_dnode must be invalidated
2324	 * as the locks guarding it may have been dropped. If the
2325	 * dpa_dnode is still valid, then we want to add it to the dbuf
2326	 * cache. To do so, we must hold the dbuf associated with the block
2327	 * we just prefetched, read its contents so that we associate it
2328	 * with an arc_buf_t, and then release it.
2329	 */
2330	if (zio != NULL) {
2331		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2332		if (zio->io_flags & ZIO_FLAG_RAW) {
2333			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2334		} else {
2335			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2336		}
2337		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2338
2339		dpa->dpa_dnode = NULL;
2340	} else if (dpa->dpa_dnode != NULL) {
2341		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2342		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2343		    dpa->dpa_zb.zb_level));
2344		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2345		    dpa->dpa_curlevel, curblkid, FTAG);
2346		(void) dbuf_read(db, NULL,
2347		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2348		dbuf_rele(db, FTAG);
2349	}
2350
2351	dpa->dpa_curlevel--;
2352
2353	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2354	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2355	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2356	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2357	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2358		kmem_free(dpa, sizeof (*dpa));
2359	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2360		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2361		dbuf_issue_final_prefetch(dpa, bp);
2362		kmem_free(dpa, sizeof (*dpa));
2363	} else {
2364		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2365		zbookmark_phys_t zb;
2366
2367		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2368
2369		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2370		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2371
2372		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2373		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2374		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2375		    &iter_aflags, &zb);
2376	}
2377
2378	arc_buf_destroy(abuf, private);
2379}
2380
2381/*
2382 * Issue prefetch reads for the given block on the given level.  If the indirect
2383 * blocks above that block are not in memory, we will read them in
2384 * asynchronously.  As a result, this call never blocks waiting for a read to
2385 * complete.
2386 */
2387void
2388dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2389    arc_flags_t aflags)
2390{
2391	blkptr_t bp;
2392	int epbs, nlevels, curlevel;
2393	uint64_t curblkid;
2394
2395	ASSERT(blkid != DMU_BONUS_BLKID);
2396	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2397
2398	if (blkid > dn->dn_maxblkid)
2399		return;
2400
2401	if (dnode_block_freed(dn, blkid))
2402		return;
2403
2404	/*
2405	 * This dnode hasn't been written to disk yet, so there's nothing to
2406	 * prefetch.
2407	 */
2408	nlevels = dn->dn_phys->dn_nlevels;
2409	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2410		return;
2411
2412	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2413	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2414		return;
2415
2416	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2417	    level, blkid);
2418	if (db != NULL) {
2419		mutex_exit(&db->db_mtx);
2420		/*
2421		 * This dbuf already exists.  It is either CACHED, or
2422		 * (we assume) about to be read or filled.
2423		 */
2424		return;
2425	}
2426
2427	/*
2428	 * Find the closest ancestor (indirect block) of the target block
2429	 * that is present in the cache.  In this indirect block, we will
2430	 * find the bp that is at curlevel, curblkid.
2431	 */
2432	curlevel = level;
2433	curblkid = blkid;
2434	while (curlevel < nlevels - 1) {
2435		int parent_level = curlevel + 1;
2436		uint64_t parent_blkid = curblkid >> epbs;
2437		dmu_buf_impl_t *db;
2438
2439		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2440		    FALSE, TRUE, FTAG, &db) == 0) {
2441			blkptr_t *bpp = db->db_buf->b_data;
2442			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2443			dbuf_rele(db, FTAG);
2444			break;
2445		}
2446
2447		curlevel = parent_level;
2448		curblkid = parent_blkid;
2449	}
2450
2451	if (curlevel == nlevels - 1) {
2452		/* No cached indirect blocks found. */
2453		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2454		bp = dn->dn_phys->dn_blkptr[curblkid];
2455	}
2456	if (BP_IS_HOLE(&bp))
2457		return;
2458
2459	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2460
2461	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2462	    ZIO_FLAG_CANFAIL);
2463
2464	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2465	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2466	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2467	    dn->dn_object, level, blkid);
2468	dpa->dpa_curlevel = curlevel;
2469	dpa->dpa_prio = prio;
2470	dpa->dpa_aflags = aflags;
2471	dpa->dpa_spa = dn->dn_objset->os_spa;
2472	dpa->dpa_dnode = dn;
2473	dpa->dpa_epbs = epbs;
2474	dpa->dpa_zio = pio;
2475
2476	/*
2477	 * If we have the indirect just above us, no need to do the asynchronous
2478	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2479	 * a higher level, though, we want to issue the prefetches for all the
2480	 * indirect blocks asynchronously, so we can go on with whatever we were
2481	 * doing.
2482	 */
2483	if (curlevel == level) {
2484		ASSERT3U(curblkid, ==, blkid);
2485		dbuf_issue_final_prefetch(dpa, &bp);
2486		kmem_free(dpa, sizeof (*dpa));
2487	} else {
2488		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2489		zbookmark_phys_t zb;
2490
2491		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2492		    dn->dn_object, curlevel, curblkid);
2493		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2494		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2495		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2496		    &iter_aflags, &zb);
2497	}
2498	/*
2499	 * We use pio here instead of dpa_zio since it's possible that
2500	 * dpa may have already been freed.
2501	 */
2502	zio_nowait(pio);
2503}
2504
2505/*
2506 * Returns with db_holds incremented, and db_mtx not held.
2507 * Note: dn_struct_rwlock must be held.
2508 */
2509int
2510dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2511    boolean_t fail_sparse, boolean_t fail_uncached,
2512    void *tag, dmu_buf_impl_t **dbp)
2513{
2514	dmu_buf_impl_t *db, *parent = NULL;
2515
2516	ASSERT(blkid != DMU_BONUS_BLKID);
2517	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2518	ASSERT3U(dn->dn_nlevels, >, level);
2519
2520	*dbp = NULL;
2521top:
2522	/* dbuf_find() returns with db_mtx held */
2523	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2524
2525	if (db == NULL) {
2526		blkptr_t *bp = NULL;
2527		int err;
2528
2529		if (fail_uncached)
2530			return (SET_ERROR(ENOENT));
2531
2532		ASSERT3P(parent, ==, NULL);
2533		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2534		if (fail_sparse) {
2535			if (err == 0 && bp && BP_IS_HOLE(bp))
2536				err = SET_ERROR(ENOENT);
2537			if (err) {
2538				if (parent)
2539					dbuf_rele(parent, NULL);
2540				return (err);
2541			}
2542		}
2543		if (err && err != ENOENT)
2544			return (err);
2545		db = dbuf_create(dn, level, blkid, parent, bp);
2546	}
2547
2548	if (fail_uncached && db->db_state != DB_CACHED) {
2549		mutex_exit(&db->db_mtx);
2550		return (SET_ERROR(ENOENT));
2551	}
2552
2553	if (db->db_buf != NULL)
2554		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2555
2556	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2557
2558	/*
2559	 * If this buffer is currently syncing out, and we are are
2560	 * still referencing it from db_data, we need to make a copy
2561	 * of it in case we decide we want to dirty it again in this txg.
2562	 */
2563	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2564	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2565	    db->db_state == DB_CACHED && db->db_data_pending) {
2566		dbuf_dirty_record_t *dr = db->db_data_pending;
2567
2568		if (dr->dt.dl.dr_data == db->db_buf) {
2569			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2570
2571			dbuf_set_data(db,
2572			    arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2573			    db->db.db_size));
2574			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2575			    db->db.db_size);
2576		}
2577	}
2578
2579	if (multilist_link_active(&db->db_cache_link)) {
2580		ASSERT(refcount_is_zero(&db->db_holds));
2581		multilist_remove(&dbuf_cache, db);
2582		(void) refcount_remove_many(&dbuf_cache_size,
2583		    db->db.db_size, db);
2584	}
2585	(void) refcount_add(&db->db_holds, tag);
2586	DBUF_VERIFY(db);
2587	mutex_exit(&db->db_mtx);
2588
2589	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2590	if (parent)
2591		dbuf_rele(parent, NULL);
2592
2593	ASSERT3P(DB_DNODE(db), ==, dn);
2594	ASSERT3U(db->db_blkid, ==, blkid);
2595	ASSERT3U(db->db_level, ==, level);
2596	*dbp = db;
2597
2598	return (0);
2599}
2600
2601dmu_buf_impl_t *
2602dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2603{
2604	return (dbuf_hold_level(dn, 0, blkid, tag));
2605}
2606
2607dmu_buf_impl_t *
2608dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2609{
2610	dmu_buf_impl_t *db;
2611	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2612	return (err ? NULL : db);
2613}
2614
2615void
2616dbuf_create_bonus(dnode_t *dn)
2617{
2618	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2619
2620	ASSERT(dn->dn_bonus == NULL);
2621	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2622}
2623
2624int
2625dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2626{
2627	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2628	dnode_t *dn;
2629
2630	if (db->db_blkid != DMU_SPILL_BLKID)
2631		return (SET_ERROR(ENOTSUP));
2632	if (blksz == 0)
2633		blksz = SPA_MINBLOCKSIZE;
2634	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2635	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2636
2637	DB_DNODE_ENTER(db);
2638	dn = DB_DNODE(db);
2639	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2640	dbuf_new_size(db, blksz, tx);
2641	rw_exit(&dn->dn_struct_rwlock);
2642	DB_DNODE_EXIT(db);
2643
2644	return (0);
2645}
2646
2647void
2648dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2649{
2650	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2651}
2652
2653#pragma weak dmu_buf_add_ref = dbuf_add_ref
2654void
2655dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2656{
2657	int64_t holds = refcount_add(&db->db_holds, tag);
2658	ASSERT3S(holds, >, 1);
2659}
2660
2661#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2662boolean_t
2663dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2664    void *tag)
2665{
2666	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2667	dmu_buf_impl_t *found_db;
2668	boolean_t result = B_FALSE;
2669
2670	if (db->db_blkid == DMU_BONUS_BLKID)
2671		found_db = dbuf_find_bonus(os, obj);
2672	else
2673		found_db = dbuf_find(os, obj, 0, blkid);
2674
2675	if (found_db != NULL) {
2676		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2677			(void) refcount_add(&db->db_holds, tag);
2678			result = B_TRUE;
2679		}
2680		mutex_exit(&db->db_mtx);
2681	}
2682	return (result);
2683}
2684
2685/*
2686 * If you call dbuf_rele() you had better not be referencing the dnode handle
2687 * unless you have some other direct or indirect hold on the dnode. (An indirect
2688 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2689 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2690 * dnode's parent dbuf evicting its dnode handles.
2691 */
2692void
2693dbuf_rele(dmu_buf_impl_t *db, void *tag)
2694{
2695	mutex_enter(&db->db_mtx);
2696	dbuf_rele_and_unlock(db, tag);
2697}
2698
2699void
2700dmu_buf_rele(dmu_buf_t *db, void *tag)
2701{
2702	dbuf_rele((dmu_buf_impl_t *)db, tag);
2703}
2704
2705/*
2706 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2707 * db_dirtycnt and db_holds to be updated atomically.
2708 */
2709void
2710dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2711{
2712	int64_t holds;
2713
2714	ASSERT(MUTEX_HELD(&db->db_mtx));
2715	DBUF_VERIFY(db);
2716
2717	/*
2718	 * Remove the reference to the dbuf before removing its hold on the
2719	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2720	 * buffer has a corresponding dnode hold.
2721	 */
2722	holds = refcount_remove(&db->db_holds, tag);
2723	ASSERT(holds >= 0);
2724
2725	/*
2726	 * We can't freeze indirects if there is a possibility that they
2727	 * may be modified in the current syncing context.
2728	 */
2729	if (db->db_buf != NULL &&
2730	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2731		arc_buf_freeze(db->db_buf);
2732	}
2733
2734	if (holds == db->db_dirtycnt &&
2735	    db->db_level == 0 && db->db_user_immediate_evict)
2736		dbuf_evict_user(db);
2737
2738	if (holds == 0) {
2739		if (db->db_blkid == DMU_BONUS_BLKID) {
2740			dnode_t *dn;
2741			boolean_t evict_dbuf = db->db_pending_evict;
2742
2743			/*
2744			 * If the dnode moves here, we cannot cross this
2745			 * barrier until the move completes.
2746			 */
2747			DB_DNODE_ENTER(db);
2748
2749			dn = DB_DNODE(db);
2750			atomic_dec_32(&dn->dn_dbufs_count);
2751
2752			/*
2753			 * Decrementing the dbuf count means that the bonus
2754			 * buffer's dnode hold is no longer discounted in
2755			 * dnode_move(). The dnode cannot move until after
2756			 * the dnode_rele() below.
2757			 */
2758			DB_DNODE_EXIT(db);
2759
2760			/*
2761			 * Do not reference db after its lock is dropped.
2762			 * Another thread may evict it.
2763			 */
2764			mutex_exit(&db->db_mtx);
2765
2766			if (evict_dbuf)
2767				dnode_evict_bonus(dn);
2768
2769			dnode_rele(dn, db);
2770		} else if (db->db_buf == NULL) {
2771			/*
2772			 * This is a special case: we never associated this
2773			 * dbuf with any data allocated from the ARC.
2774			 */
2775			ASSERT(db->db_state == DB_UNCACHED ||
2776			    db->db_state == DB_NOFILL);
2777			dbuf_destroy(db);
2778		} else if (arc_released(db->db_buf)) {
2779			/*
2780			 * This dbuf has anonymous data associated with it.
2781			 */
2782			dbuf_destroy(db);
2783		} else {
2784			boolean_t do_arc_evict = B_FALSE;
2785			blkptr_t bp;
2786			spa_t *spa = dmu_objset_spa(db->db_objset);
2787
2788			if (!DBUF_IS_CACHEABLE(db) &&
2789			    db->db_blkptr != NULL &&
2790			    !BP_IS_HOLE(db->db_blkptr) &&
2791			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2792				do_arc_evict = B_TRUE;
2793				bp = *db->db_blkptr;
2794			}
2795
2796			if (!DBUF_IS_CACHEABLE(db) ||
2797			    db->db_pending_evict) {
2798				dbuf_destroy(db);
2799			} else if (!multilist_link_active(&db->db_cache_link)) {
2800				multilist_insert(&dbuf_cache, db);
2801				(void) refcount_add_many(&dbuf_cache_size,
2802				    db->db.db_size, db);
2803				mutex_exit(&db->db_mtx);
2804
2805				dbuf_evict_notify();
2806			}
2807
2808			if (do_arc_evict)
2809				arc_freed(spa, &bp);
2810		}
2811	} else {
2812		mutex_exit(&db->db_mtx);
2813	}
2814
2815}
2816
2817#pragma weak dmu_buf_refcount = dbuf_refcount
2818uint64_t
2819dbuf_refcount(dmu_buf_impl_t *db)
2820{
2821	return (refcount_count(&db->db_holds));
2822}
2823
2824void *
2825dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2826    dmu_buf_user_t *new_user)
2827{
2828	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2829
2830	mutex_enter(&db->db_mtx);
2831	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2832	if (db->db_user == old_user)
2833		db->db_user = new_user;
2834	else
2835		old_user = db->db_user;
2836	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2837	mutex_exit(&db->db_mtx);
2838
2839	return (old_user);
2840}
2841
2842void *
2843dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2844{
2845	return (dmu_buf_replace_user(db_fake, NULL, user));
2846}
2847
2848void *
2849dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2850{
2851	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2852
2853	db->db_user_immediate_evict = TRUE;
2854	return (dmu_buf_set_user(db_fake, user));
2855}
2856
2857void *
2858dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2859{
2860	return (dmu_buf_replace_user(db_fake, user, NULL));
2861}
2862
2863void *
2864dmu_buf_get_user(dmu_buf_t *db_fake)
2865{
2866	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2867
2868	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2869	return (db->db_user);
2870}
2871
2872void
2873dmu_buf_user_evict_wait()
2874{
2875	taskq_wait(dbu_evict_taskq);
2876}
2877
2878blkptr_t *
2879dmu_buf_get_blkptr(dmu_buf_t *db)
2880{
2881	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2882	return (dbi->db_blkptr);
2883}
2884
2885objset_t *
2886dmu_buf_get_objset(dmu_buf_t *db)
2887{
2888	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2889	return (dbi->db_objset);
2890}
2891
2892dnode_t *
2893dmu_buf_dnode_enter(dmu_buf_t *db)
2894{
2895	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2896	DB_DNODE_ENTER(dbi);
2897	return (DB_DNODE(dbi));
2898}
2899
2900void
2901dmu_buf_dnode_exit(dmu_buf_t *db)
2902{
2903	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2904	DB_DNODE_EXIT(dbi);
2905}
2906
2907static void
2908dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2909{
2910	/* ASSERT(dmu_tx_is_syncing(tx) */
2911	ASSERT(MUTEX_HELD(&db->db_mtx));
2912
2913	if (db->db_blkptr != NULL)
2914		return;
2915
2916	if (db->db_blkid == DMU_SPILL_BLKID) {
2917		db->db_blkptr = &dn->dn_phys->dn_spill;
2918		BP_ZERO(db->db_blkptr);
2919		return;
2920	}
2921	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2922		/*
2923		 * This buffer was allocated at a time when there was
2924		 * no available blkptrs from the dnode, or it was
2925		 * inappropriate to hook it in (i.e., nlevels mis-match).
2926		 */
2927		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2928		ASSERT(db->db_parent == NULL);
2929		db->db_parent = dn->dn_dbuf;
2930		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2931		DBUF_VERIFY(db);
2932	} else {
2933		dmu_buf_impl_t *parent = db->db_parent;
2934		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2935
2936		ASSERT(dn->dn_phys->dn_nlevels > 1);
2937		if (parent == NULL) {
2938			mutex_exit(&db->db_mtx);
2939			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2940			parent = dbuf_hold_level(dn, db->db_level + 1,
2941			    db->db_blkid >> epbs, db);
2942			rw_exit(&dn->dn_struct_rwlock);
2943			mutex_enter(&db->db_mtx);
2944			db->db_parent = parent;
2945		}
2946		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2947		    (db->db_blkid & ((1ULL << epbs) - 1));
2948		DBUF_VERIFY(db);
2949	}
2950}
2951
2952static void
2953dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2954{
2955	dmu_buf_impl_t *db = dr->dr_dbuf;
2956	dnode_t *dn;
2957	zio_t *zio;
2958
2959	ASSERT(dmu_tx_is_syncing(tx));
2960
2961	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2962
2963	mutex_enter(&db->db_mtx);
2964
2965	ASSERT(db->db_level > 0);
2966	DBUF_VERIFY(db);
2967
2968	/* Read the block if it hasn't been read yet. */
2969	if (db->db_buf == NULL) {
2970		mutex_exit(&db->db_mtx);
2971		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2972		mutex_enter(&db->db_mtx);
2973	}
2974	ASSERT3U(db->db_state, ==, DB_CACHED);
2975	ASSERT(db->db_buf != NULL);
2976
2977	DB_DNODE_ENTER(db);
2978	dn = DB_DNODE(db);
2979	/* Indirect block size must match what the dnode thinks it is. */
2980	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2981	dbuf_check_blkptr(dn, db);
2982	DB_DNODE_EXIT(db);
2983
2984	/* Provide the pending dirty record to child dbufs */
2985	db->db_data_pending = dr;
2986
2987	mutex_exit(&db->db_mtx);
2988	dbuf_write(dr, db->db_buf, tx);
2989
2990	zio = dr->dr_zio;
2991	mutex_enter(&dr->dt.di.dr_mtx);
2992	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2993	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2994	mutex_exit(&dr->dt.di.dr_mtx);
2995	zio_nowait(zio);
2996}
2997
2998static void
2999dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3000{
3001	arc_buf_t **datap = &dr->dt.dl.dr_data;
3002	dmu_buf_impl_t *db = dr->dr_dbuf;
3003	dnode_t *dn;
3004	objset_t *os;
3005	uint64_t txg = tx->tx_txg;
3006
3007	ASSERT(dmu_tx_is_syncing(tx));
3008
3009	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3010
3011	mutex_enter(&db->db_mtx);
3012	/*
3013	 * To be synced, we must be dirtied.  But we
3014	 * might have been freed after the dirty.
3015	 */
3016	if (db->db_state == DB_UNCACHED) {
3017		/* This buffer has been freed since it was dirtied */
3018		ASSERT(db->db.db_data == NULL);
3019	} else if (db->db_state == DB_FILL) {
3020		/* This buffer was freed and is now being re-filled */
3021		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3022	} else {
3023		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3024	}
3025	DBUF_VERIFY(db);
3026
3027	DB_DNODE_ENTER(db);
3028	dn = DB_DNODE(db);
3029
3030	if (db->db_blkid == DMU_SPILL_BLKID) {
3031		mutex_enter(&dn->dn_mtx);
3032		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3033		mutex_exit(&dn->dn_mtx);
3034	}
3035
3036	/*
3037	 * If this is a bonus buffer, simply copy the bonus data into the
3038	 * dnode.  It will be written out when the dnode is synced (and it
3039	 * will be synced, since it must have been dirty for dbuf_sync to
3040	 * be called).
3041	 */
3042	if (db->db_blkid == DMU_BONUS_BLKID) {
3043		dbuf_dirty_record_t **drp;
3044
3045		ASSERT(*datap != NULL);
3046		ASSERT0(db->db_level);
3047		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3048		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3049		DB_DNODE_EXIT(db);
3050
3051		if (*datap != db->db.db_data) {
3052			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3053			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3054		}
3055		db->db_data_pending = NULL;
3056		drp = &db->db_last_dirty;
3057		while (*drp != dr)
3058			drp = &(*drp)->dr_next;
3059		ASSERT(dr->dr_next == NULL);
3060		ASSERT(dr->dr_dbuf == db);
3061		*drp = dr->dr_next;
3062		if (dr->dr_dbuf->db_level != 0) {
3063			list_destroy(&dr->dt.di.dr_children);
3064			mutex_destroy(&dr->dt.di.dr_mtx);
3065		}
3066		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3067		ASSERT(db->db_dirtycnt > 0);
3068		db->db_dirtycnt -= 1;
3069		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3070		return;
3071	}
3072
3073	os = dn->dn_objset;
3074
3075	/*
3076	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3077	 * operation to sneak in. As a result, we need to ensure that we
3078	 * don't check the dr_override_state until we have returned from
3079	 * dbuf_check_blkptr.
3080	 */
3081	dbuf_check_blkptr(dn, db);
3082
3083	/*
3084	 * If this buffer is in the middle of an immediate write,
3085	 * wait for the synchronous IO to complete.
3086	 */
3087	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3088		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3089		cv_wait(&db->db_changed, &db->db_mtx);
3090		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3091	}
3092
3093	if (db->db_state != DB_NOFILL &&
3094	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3095	    refcount_count(&db->db_holds) > 1 &&
3096	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3097	    *datap == db->db_buf) {
3098		/*
3099		 * If this buffer is currently "in use" (i.e., there
3100		 * are active holds and db_data still references it),
3101		 * then make a copy before we start the write so that
3102		 * any modifications from the open txg will not leak
3103		 * into this write.
3104		 *
3105		 * NOTE: this copy does not need to be made for
3106		 * objects only modified in the syncing context (e.g.
3107		 * DNONE_DNODE blocks).
3108		 */
3109		int psize = arc_buf_size(*datap);
3110		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3111		enum zio_compress compress_type = arc_get_compression(*datap);
3112
3113		if (compress_type == ZIO_COMPRESS_OFF) {
3114			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
3115		} else {
3116			ASSERT3U(type, ==, ARC_BUFC_DATA);
3117			int lsize = arc_buf_lsize(*datap);
3118			*datap = arc_alloc_compressed_buf(os->os_spa, db,
3119			    psize, lsize, compress_type);
3120		}
3121		bcopy(db->db.db_data, (*datap)->b_data, psize);
3122	}
3123	db->db_data_pending = dr;
3124
3125	mutex_exit(&db->db_mtx);
3126
3127	dbuf_write(dr, *datap, tx);
3128
3129	ASSERT(!list_link_active(&dr->dr_dirty_node));
3130	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3131		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3132		DB_DNODE_EXIT(db);
3133	} else {
3134		/*
3135		 * Although zio_nowait() does not "wait for an IO", it does
3136		 * initiate the IO. If this is an empty write it seems plausible
3137		 * that the IO could actually be completed before the nowait
3138		 * returns. We need to DB_DNODE_EXIT() first in case
3139		 * zio_nowait() invalidates the dbuf.
3140		 */
3141		DB_DNODE_EXIT(db);
3142		zio_nowait(dr->dr_zio);
3143	}
3144}
3145
3146void
3147dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3148{
3149	dbuf_dirty_record_t *dr;
3150
3151	while (dr = list_head(list)) {
3152		if (dr->dr_zio != NULL) {
3153			/*
3154			 * If we find an already initialized zio then we
3155			 * are processing the meta-dnode, and we have finished.
3156			 * The dbufs for all dnodes are put back on the list
3157			 * during processing, so that we can zio_wait()
3158			 * these IOs after initiating all child IOs.
3159			 */
3160			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3161			    DMU_META_DNODE_OBJECT);
3162			break;
3163		}
3164		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3165		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3166			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3167		}
3168		list_remove(list, dr);
3169		if (dr->dr_dbuf->db_level > 0)
3170			dbuf_sync_indirect(dr, tx);
3171		else
3172			dbuf_sync_leaf(dr, tx);
3173	}
3174}
3175
3176/* ARGSUSED */
3177static void
3178dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3179{
3180	dmu_buf_impl_t *db = vdb;
3181	dnode_t *dn;
3182	blkptr_t *bp = zio->io_bp;
3183	blkptr_t *bp_orig = &zio->io_bp_orig;
3184	spa_t *spa = zio->io_spa;
3185	int64_t delta;
3186	uint64_t fill = 0;
3187	int i;
3188
3189	ASSERT3P(db->db_blkptr, !=, NULL);
3190	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3191
3192	DB_DNODE_ENTER(db);
3193	dn = DB_DNODE(db);
3194	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3195	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3196	zio->io_prev_space_delta = delta;
3197
3198	if (bp->blk_birth != 0) {
3199		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3200		    BP_GET_TYPE(bp) == dn->dn_type) ||
3201		    (db->db_blkid == DMU_SPILL_BLKID &&
3202		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3203		    BP_IS_EMBEDDED(bp));
3204		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3205	}
3206
3207	mutex_enter(&db->db_mtx);
3208
3209#ifdef ZFS_DEBUG
3210	if (db->db_blkid == DMU_SPILL_BLKID) {
3211		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3212		ASSERT(!(BP_IS_HOLE(bp)) &&
3213		    db->db_blkptr == &dn->dn_phys->dn_spill);
3214	}
3215#endif
3216
3217	if (db->db_level == 0) {
3218		mutex_enter(&dn->dn_mtx);
3219		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3220		    db->db_blkid != DMU_SPILL_BLKID)
3221			dn->dn_phys->dn_maxblkid = db->db_blkid;
3222		mutex_exit(&dn->dn_mtx);
3223
3224		if (dn->dn_type == DMU_OT_DNODE) {
3225			dnode_phys_t *dnp = db->db.db_data;
3226			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3227			    i--, dnp++) {
3228				if (dnp->dn_type != DMU_OT_NONE)
3229					fill++;
3230			}
3231		} else {
3232			if (BP_IS_HOLE(bp)) {
3233				fill = 0;
3234			} else {
3235				fill = 1;
3236			}
3237		}
3238	} else {
3239		blkptr_t *ibp = db->db.db_data;
3240		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3241		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3242			if (BP_IS_HOLE(ibp))
3243				continue;
3244			fill += BP_GET_FILL(ibp);
3245		}
3246	}
3247	DB_DNODE_EXIT(db);
3248
3249	if (!BP_IS_EMBEDDED(bp))
3250		bp->blk_fill = fill;
3251
3252	mutex_exit(&db->db_mtx);
3253
3254	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3255	*db->db_blkptr = *bp;
3256	rw_exit(&dn->dn_struct_rwlock);
3257}
3258
3259/* ARGSUSED */
3260/*
3261 * This function gets called just prior to running through the compression
3262 * stage of the zio pipeline. If we're an indirect block comprised of only
3263 * holes, then we want this indirect to be compressed away to a hole. In
3264 * order to do that we must zero out any information about the holes that
3265 * this indirect points to prior to before we try to compress it.
3266 */
3267static void
3268dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3269{
3270	dmu_buf_impl_t *db = vdb;
3271	dnode_t *dn;
3272	blkptr_t *bp;
3273	unsigned int epbs, i;
3274
3275	ASSERT3U(db->db_level, >, 0);
3276	DB_DNODE_ENTER(db);
3277	dn = DB_DNODE(db);
3278	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3279	ASSERT3U(epbs, <, 31);
3280
3281	/* Determine if all our children are holes */
3282	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3283		if (!BP_IS_HOLE(bp))
3284			break;
3285	}
3286
3287	/*
3288	 * If all the children are holes, then zero them all out so that
3289	 * we may get compressed away.
3290	 */
3291	if (i == 1 << epbs) {
3292		/*
3293		 * We only found holes. Grab the rwlock to prevent
3294		 * anybody from reading the blocks we're about to
3295		 * zero out.
3296		 */
3297		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3298		bzero(db->db.db_data, db->db.db_size);
3299		rw_exit(&dn->dn_struct_rwlock);
3300	}
3301	DB_DNODE_EXIT(db);
3302}
3303
3304/*
3305 * The SPA will call this callback several times for each zio - once
3306 * for every physical child i/o (zio->io_phys_children times).  This
3307 * allows the DMU to monitor the progress of each logical i/o.  For example,
3308 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3309 * block.  There may be a long delay before all copies/fragments are completed,
3310 * so this callback allows us to retire dirty space gradually, as the physical
3311 * i/os complete.
3312 */
3313/* ARGSUSED */
3314static void
3315dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3316{
3317	dmu_buf_impl_t *db = arg;
3318	objset_t *os = db->db_objset;
3319	dsl_pool_t *dp = dmu_objset_pool(os);
3320	dbuf_dirty_record_t *dr;
3321	int delta = 0;
3322
3323	dr = db->db_data_pending;
3324	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3325
3326	/*
3327	 * The callback will be called io_phys_children times.  Retire one
3328	 * portion of our dirty space each time we are called.  Any rounding
3329	 * error will be cleaned up by dsl_pool_sync()'s call to
3330	 * dsl_pool_undirty_space().
3331	 */
3332	delta = dr->dr_accounted / zio->io_phys_children;
3333	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3334}
3335
3336/* ARGSUSED */
3337static void
3338dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3339{
3340	dmu_buf_impl_t *db = vdb;
3341	blkptr_t *bp_orig = &zio->io_bp_orig;
3342	blkptr_t *bp = db->db_blkptr;
3343	objset_t *os = db->db_objset;
3344	dmu_tx_t *tx = os->os_synctx;
3345	dbuf_dirty_record_t **drp, *dr;
3346
3347	ASSERT0(zio->io_error);
3348	ASSERT(db->db_blkptr == bp);
3349
3350	/*
3351	 * For nopwrites and rewrites we ensure that the bp matches our
3352	 * original and bypass all the accounting.
3353	 */
3354	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3355		ASSERT(BP_EQUAL(bp, bp_orig));
3356	} else {
3357		dsl_dataset_t *ds = os->os_dsl_dataset;
3358		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3359		dsl_dataset_block_born(ds, bp, tx);
3360	}
3361
3362	mutex_enter(&db->db_mtx);
3363
3364	DBUF_VERIFY(db);
3365
3366	drp = &db->db_last_dirty;
3367	while ((dr = *drp) != db->db_data_pending)
3368		drp = &dr->dr_next;
3369	ASSERT(!list_link_active(&dr->dr_dirty_node));
3370	ASSERT(dr->dr_dbuf == db);
3371	ASSERT(dr->dr_next == NULL);
3372	*drp = dr->dr_next;
3373
3374#ifdef ZFS_DEBUG
3375	if (db->db_blkid == DMU_SPILL_BLKID) {
3376		dnode_t *dn;
3377
3378		DB_DNODE_ENTER(db);
3379		dn = DB_DNODE(db);
3380		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3381		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3382		    db->db_blkptr == &dn->dn_phys->dn_spill);
3383		DB_DNODE_EXIT(db);
3384	}
3385#endif
3386
3387	if (db->db_level == 0) {
3388		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3389		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3390		if (db->db_state != DB_NOFILL) {
3391			if (dr->dt.dl.dr_data != db->db_buf)
3392				arc_buf_destroy(dr->dt.dl.dr_data, db);
3393		}
3394	} else {
3395		dnode_t *dn;
3396
3397		DB_DNODE_ENTER(db);
3398		dn = DB_DNODE(db);
3399		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3400		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3401		if (!BP_IS_HOLE(db->db_blkptr)) {
3402			int epbs =
3403			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3404			ASSERT3U(db->db_blkid, <=,
3405			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3406			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3407			    db->db.db_size);
3408		}
3409		DB_DNODE_EXIT(db);
3410		mutex_destroy(&dr->dt.di.dr_mtx);
3411		list_destroy(&dr->dt.di.dr_children);
3412	}
3413	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3414
3415	cv_broadcast(&db->db_changed);
3416	ASSERT(db->db_dirtycnt > 0);
3417	db->db_dirtycnt -= 1;
3418	db->db_data_pending = NULL;
3419	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3420}
3421
3422static void
3423dbuf_write_nofill_ready(zio_t *zio)
3424{
3425	dbuf_write_ready(zio, NULL, zio->io_private);
3426}
3427
3428static void
3429dbuf_write_nofill_done(zio_t *zio)
3430{
3431	dbuf_write_done(zio, NULL, zio->io_private);
3432}
3433
3434static void
3435dbuf_write_override_ready(zio_t *zio)
3436{
3437	dbuf_dirty_record_t *dr = zio->io_private;
3438	dmu_buf_impl_t *db = dr->dr_dbuf;
3439
3440	dbuf_write_ready(zio, NULL, db);
3441}
3442
3443static void
3444dbuf_write_override_done(zio_t *zio)
3445{
3446	dbuf_dirty_record_t *dr = zio->io_private;
3447	dmu_buf_impl_t *db = dr->dr_dbuf;
3448	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3449
3450	mutex_enter(&db->db_mtx);
3451	if (!BP_EQUAL(zio->io_bp, obp)) {
3452		if (!BP_IS_HOLE(obp))
3453			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3454		arc_release(dr->dt.dl.dr_data, db);
3455	}
3456	mutex_exit(&db->db_mtx);
3457
3458	dbuf_write_done(zio, NULL, db);
3459}
3460
3461/* Issue I/O to commit a dirty buffer to disk. */
3462static void
3463dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3464{
3465	dmu_buf_impl_t *db = dr->dr_dbuf;
3466	dnode_t *dn;
3467	objset_t *os;
3468	dmu_buf_impl_t *parent = db->db_parent;
3469	uint64_t txg = tx->tx_txg;
3470	zbookmark_phys_t zb;
3471	zio_prop_t zp;
3472	zio_t *zio;
3473	int wp_flag = 0;
3474
3475	ASSERT(dmu_tx_is_syncing(tx));
3476
3477	DB_DNODE_ENTER(db);
3478	dn = DB_DNODE(db);
3479	os = dn->dn_objset;
3480
3481	if (db->db_state != DB_NOFILL) {
3482		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3483			/*
3484			 * Private object buffers are released here rather
3485			 * than in dbuf_dirty() since they are only modified
3486			 * in the syncing context and we don't want the
3487			 * overhead of making multiple copies of the data.
3488			 */
3489			if (BP_IS_HOLE(db->db_blkptr)) {
3490				arc_buf_thaw(data);
3491			} else {
3492				dbuf_release_bp(db);
3493			}
3494		}
3495	}
3496
3497	if (parent != dn->dn_dbuf) {
3498		/* Our parent is an indirect block. */
3499		/* We have a dirty parent that has been scheduled for write. */
3500		ASSERT(parent && parent->db_data_pending);
3501		/* Our parent's buffer is one level closer to the dnode. */
3502		ASSERT(db->db_level == parent->db_level-1);
3503		/*
3504		 * We're about to modify our parent's db_data by modifying
3505		 * our block pointer, so the parent must be released.
3506		 */
3507		ASSERT(arc_released(parent->db_buf));
3508		zio = parent->db_data_pending->dr_zio;
3509	} else {
3510		/* Our parent is the dnode itself. */
3511		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3512		    db->db_blkid != DMU_SPILL_BLKID) ||
3513		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3514		if (db->db_blkid != DMU_SPILL_BLKID)
3515			ASSERT3P(db->db_blkptr, ==,
3516			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3517		zio = dn->dn_zio;
3518	}
3519
3520	ASSERT(db->db_level == 0 || data == db->db_buf);
3521	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3522	ASSERT(zio);
3523
3524	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3525	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3526	    db->db.db_object, db->db_level, db->db_blkid);
3527
3528	if (db->db_blkid == DMU_SPILL_BLKID)
3529		wp_flag = WP_SPILL;
3530	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3531
3532	dmu_write_policy(os, dn, db->db_level, wp_flag,
3533	    (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ?
3534	    arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp);
3535	DB_DNODE_EXIT(db);
3536
3537	/*
3538	 * We copy the blkptr now (rather than when we instantiate the dirty
3539	 * record), because its value can change between open context and
3540	 * syncing context. We do not need to hold dn_struct_rwlock to read
3541	 * db_blkptr because we are in syncing context.
3542	 */
3543	dr->dr_bp_copy = *db->db_blkptr;
3544
3545	if (db->db_level == 0 &&
3546	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3547		/*
3548		 * The BP for this block has been provided by open context
3549		 * (by dmu_sync() or dmu_buf_write_embedded()).
3550		 */
3551		void *contents = (data != NULL) ? data->b_data : NULL;
3552
3553		dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3554		    contents, db->db.db_size, db->db.db_size, &zp,
3555		    dbuf_write_override_ready, NULL, NULL,
3556		    dbuf_write_override_done,
3557		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3558		mutex_enter(&db->db_mtx);
3559		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3560		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3561		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3562		mutex_exit(&db->db_mtx);
3563	} else if (db->db_state == DB_NOFILL) {
3564		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3565		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3566		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3567		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3568		    dbuf_write_nofill_ready, NULL, NULL,
3569		    dbuf_write_nofill_done, db,
3570		    ZIO_PRIORITY_ASYNC_WRITE,
3571		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3572	} else {
3573		ASSERT(arc_released(data));
3574
3575		/*
3576		 * For indirect blocks, we want to setup the children
3577		 * ready callback so that we can properly handle an indirect
3578		 * block that only contains holes.
3579		 */
3580		arc_done_func_t *children_ready_cb = NULL;
3581		if (db->db_level != 0)
3582			children_ready_cb = dbuf_write_children_ready;
3583
3584		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3585		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3586		    &zp, dbuf_write_ready, children_ready_cb,
3587		    dbuf_write_physdone, dbuf_write_done, db,
3588		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3589	}
3590}
3591