arc.c revision 339114
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Note that the majority of the performance stats are manipulated
103 * with atomic operations.
104 *
105 * The L2ARC uses the l2ad_mtx on each vdev for the following:
106 *
107 *	- L2ARC buflist creation
108 *	- L2ARC buflist eviction
109 *	- L2ARC write completion, which walks L2ARC buflists
110 *	- ARC header destruction, as it removes from L2ARC buflists
111 *	- ARC header release, as it removes from L2ARC buflists
112 */
113
114/*
115 * ARC operation:
116 *
117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118 * This structure can point either to a block that is still in the cache or to
119 * one that is only accessible in an L2 ARC device, or it can provide
120 * information about a block that was recently evicted. If a block is
121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122 * information to retrieve it from the L2ARC device. This information is
123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124 * that is in this state cannot access the data directly.
125 *
126 * Blocks that are actively being referenced or have not been evicted
127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128 * the arc_buf_hdr_t that will point to the data block in memory. A block can
129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132 *
133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134 * ability to store the physical data (b_pabd) associated with the DVA of the
135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136 * it will match its on-disk compression characteristics. This behavior can be
137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138 * compressed ARC functionality is disabled, the b_pabd will point to an
139 * uncompressed version of the on-disk data.
140 *
141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144 * consumer. The ARC will provide references to this data and will keep it
145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146 * data block and will evict any arc_buf_t that is no longer referenced. The
147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148 * "overhead_size" kstat.
149 *
150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151 * compressed form. The typical case is that consumers will want uncompressed
152 * data, and when that happens a new data buffer is allocated where the data is
153 * decompressed for them to use. Currently the only consumer who wants
154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156 * with the arc_buf_hdr_t.
157 *
158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159 * first one is owned by a compressed send consumer (and therefore references
160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161 * used by any other consumer (and has its own uncompressed copy of the data
162 * buffer).
163 *
164 *   arc_buf_hdr_t
165 *   +-----------+
166 *   | fields    |
167 *   | common to |
168 *   | L1- and   |
169 *   | L2ARC     |
170 *   +-----------+
171 *   | l2arc_buf_hdr_t
172 *   |           |
173 *   +-----------+
174 *   | l1arc_buf_hdr_t
175 *   |           |              arc_buf_t
176 *   | b_buf     +------------>+-----------+      arc_buf_t
177 *   | b_pabd    +-+           |b_next     +---->+-----------+
178 *   +-----------+ |           |-----------|     |b_next     +-->NULL
179 *                 |           |b_comp = T |     +-----------+
180 *                 |           |b_data     +-+   |b_comp = F |
181 *                 |           +-----------+ |   |b_data     +-+
182 *                 +->+------+               |   +-----------+ |
183 *        compressed  |      |               |                 |
184 *           data     |      |<--------------+                 | uncompressed
185 *                    +------+          compressed,            |     data
186 *                                        shared               +-->+------+
187 *                                         data                    |      |
188 *                                                                 |      |
189 *                                                                 +------+
190 *
191 * When a consumer reads a block, the ARC must first look to see if the
192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193 * arc_buf_t and either copies uncompressed data into a new data buffer from an
194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196 * hdr is compressed and the desired compression characteristics of the
197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200 * be anywhere in the hdr's list.
201 *
202 * The diagram below shows an example of an uncompressed ARC hdr that is
203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204 * the last element in the buf list):
205 *
206 *                arc_buf_hdr_t
207 *                +-----------+
208 *                |           |
209 *                |           |
210 *                |           |
211 *                +-----------+
212 * l2arc_buf_hdr_t|           |
213 *                |           |
214 *                +-----------+
215 * l1arc_buf_hdr_t|           |
216 *                |           |                 arc_buf_t    (shared)
217 *                |    b_buf  +------------>+---------+      arc_buf_t
218 *                |           |             |b_next   +---->+---------+
219 *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220 *                +-----------+ |           |         |     +---------+
221 *                              |           |b_data   +-+   |         |
222 *                              |           +---------+ |   |b_data   +-+
223 *                              +->+------+             |   +---------+ |
224 *                                 |      |             |               |
225 *                   uncompressed  |      |             |               |
226 *                        data     +------+             |               |
227 *                                    ^                 +->+------+     |
228 *                                    |       uncompressed |      |     |
229 *                                    |           data     |      |     |
230 *                                    |                    +------+     |
231 *                                    +---------------------------------+
232 *
233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234 * since the physical block is about to be rewritten. The new data contents
235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236 * it may compress the data before writing it to disk. The ARC will be called
237 * with the transformed data and will bcopy the transformed on-disk block into
238 * a newly allocated b_pabd. Writes are always done into buffers which have
239 * either been loaned (and hence are new and don't have other readers) or
240 * buffers which have been released (and hence have their own hdr, if there
241 * were originally other readers of the buf's original hdr). This ensures that
242 * the ARC only needs to update a single buf and its hdr after a write occurs.
243 *
244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246 * that when compressed ARC is enabled that the L2ARC blocks are identical
247 * to the on-disk block in the main data pool. This provides a significant
248 * advantage since the ARC can leverage the bp's checksum when reading from the
249 * L2ARC to determine if the contents are valid. However, if the compressed
250 * ARC is disabled, then the L2ARC's block must be transformed to look
251 * like the physical block in the main data pool before comparing the
252 * checksum and determining its validity.
253 */
254
255#include <sys/spa.h>
256#include <sys/zio.h>
257#include <sys/spa_impl.h>
258#include <sys/zio_compress.h>
259#include <sys/zio_checksum.h>
260#include <sys/zfs_context.h>
261#include <sys/arc.h>
262#include <sys/refcount.h>
263#include <sys/vdev.h>
264#include <sys/vdev_impl.h>
265#include <sys/dsl_pool.h>
266#include <sys/zio_checksum.h>
267#include <sys/multilist.h>
268#include <sys/abd.h>
269#ifdef _KERNEL
270#include <sys/dnlc.h>
271#include <sys/racct.h>
272#endif
273#include <sys/callb.h>
274#include <sys/kstat.h>
275#include <sys/trim_map.h>
276#include <zfs_fletcher.h>
277#include <sys/sdt.h>
278#include <sys/aggsum.h>
279#include <sys/cityhash.h>
280
281#include <machine/vmparam.h>
282
283#ifdef illumos
284#ifndef _KERNEL
285/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
286boolean_t arc_watch = B_FALSE;
287int arc_procfd;
288#endif
289#endif /* illumos */
290
291static kmutex_t		arc_reclaim_lock;
292static kcondvar_t	arc_reclaim_thread_cv;
293static boolean_t	arc_reclaim_thread_exit;
294static kcondvar_t	arc_reclaim_waiters_cv;
295
296static kmutex_t		arc_dnlc_evicts_lock;
297static kcondvar_t	arc_dnlc_evicts_cv;
298static boolean_t	arc_dnlc_evicts_thread_exit;
299
300uint_t arc_reduce_dnlc_percent = 3;
301
302/*
303 * The number of headers to evict in arc_evict_state_impl() before
304 * dropping the sublist lock and evicting from another sublist. A lower
305 * value means we're more likely to evict the "correct" header (i.e. the
306 * oldest header in the arc state), but comes with higher overhead
307 * (i.e. more invocations of arc_evict_state_impl()).
308 */
309int zfs_arc_evict_batch_limit = 10;
310
311/* number of seconds before growing cache again */
312static int		arc_grow_retry = 60;
313
314/* number of milliseconds before attempting a kmem-cache-reap */
315static int		arc_kmem_cache_reap_retry_ms = 0;
316
317/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
318int		zfs_arc_overflow_shift = 8;
319
320/* shift of arc_c for calculating both min and max arc_p */
321static int		arc_p_min_shift = 4;
322
323/* log2(fraction of arc to reclaim) */
324static int		arc_shrink_shift = 7;
325
326/*
327 * log2(fraction of ARC which must be free to allow growing).
328 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
329 * when reading a new block into the ARC, we will evict an equal-sized block
330 * from the ARC.
331 *
332 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
333 * we will still not allow it to grow.
334 */
335int			arc_no_grow_shift = 5;
336
337
338/*
339 * minimum lifespan of a prefetch block in clock ticks
340 * (initialized in arc_init())
341 */
342static int		zfs_arc_min_prefetch_ms = 1;
343static int		zfs_arc_min_prescient_prefetch_ms = 6;
344
345/*
346 * If this percent of memory is free, don't throttle.
347 */
348int arc_lotsfree_percent = 10;
349
350static int arc_dead;
351extern boolean_t zfs_prefetch_disable;
352
353/*
354 * The arc has filled available memory and has now warmed up.
355 */
356static boolean_t arc_warm;
357
358/*
359 * log2 fraction of the zio arena to keep free.
360 */
361int arc_zio_arena_free_shift = 2;
362
363/*
364 * These tunables are for performance analysis.
365 */
366uint64_t zfs_arc_max;
367uint64_t zfs_arc_min;
368uint64_t zfs_arc_meta_limit = 0;
369uint64_t zfs_arc_meta_min = 0;
370int zfs_arc_grow_retry = 0;
371int zfs_arc_shrink_shift = 0;
372int zfs_arc_no_grow_shift = 0;
373int zfs_arc_p_min_shift = 0;
374uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
375u_int zfs_arc_free_target = 0;
376
377/* Absolute min for arc min / max is 16MB. */
378static uint64_t arc_abs_min = 16 << 20;
379
380boolean_t zfs_compressed_arc_enabled = B_TRUE;
381
382static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
383static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
384static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
385static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
386static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
387
388#if defined(__FreeBSD__) && defined(_KERNEL)
389static void
390arc_free_target_init(void *unused __unused)
391{
392
393	zfs_arc_free_target = vm_pageout_wakeup_thresh;
394}
395SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
396    arc_free_target_init, NULL);
397
398TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
399TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
400TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
401TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
402TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
403SYSCTL_DECL(_vfs_zfs);
404SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
405    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
406SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
407    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
408SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
409    0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
410    "log2(fraction of ARC which must be free to allow growing)");
411SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
412    &zfs_arc_average_blocksize, 0,
413    "ARC average blocksize");
414SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
415    &arc_shrink_shift, 0,
416    "log2(fraction of arc to reclaim)");
417SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
418    &arc_grow_retry, 0,
419    "Wait in seconds before considering growing ARC");
420SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
421    &zfs_compressed_arc_enabled, 0,
422    "Enable compressed ARC");
423SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_kmem_cache_reap_retry_ms, CTLFLAG_RWTUN,
424    &arc_kmem_cache_reap_retry_ms, 0,
425    "Interval between ARC kmem_cache reapings");
426
427/*
428 * We don't have a tunable for arc_free_target due to the dependency on
429 * pagedaemon initialisation.
430 */
431SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
432    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
433    sysctl_vfs_zfs_arc_free_target, "IU",
434    "Desired number of free pages below which ARC triggers reclaim");
435
436static int
437sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
438{
439	u_int val;
440	int err;
441
442	val = zfs_arc_free_target;
443	err = sysctl_handle_int(oidp, &val, 0, req);
444	if (err != 0 || req->newptr == NULL)
445		return (err);
446
447	if (val < minfree)
448		return (EINVAL);
449	if (val > vm_cnt.v_page_count)
450		return (EINVAL);
451
452	zfs_arc_free_target = val;
453
454	return (0);
455}
456
457/*
458 * Must be declared here, before the definition of corresponding kstat
459 * macro which uses the same names will confuse the compiler.
460 */
461SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
462    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
463    sysctl_vfs_zfs_arc_meta_limit, "QU",
464    "ARC metadata limit");
465#endif
466
467/*
468 * Note that buffers can be in one of 6 states:
469 *	ARC_anon	- anonymous (discussed below)
470 *	ARC_mru		- recently used, currently cached
471 *	ARC_mru_ghost	- recentely used, no longer in cache
472 *	ARC_mfu		- frequently used, currently cached
473 *	ARC_mfu_ghost	- frequently used, no longer in cache
474 *	ARC_l2c_only	- exists in L2ARC but not other states
475 * When there are no active references to the buffer, they are
476 * are linked onto a list in one of these arc states.  These are
477 * the only buffers that can be evicted or deleted.  Within each
478 * state there are multiple lists, one for meta-data and one for
479 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
480 * etc.) is tracked separately so that it can be managed more
481 * explicitly: favored over data, limited explicitly.
482 *
483 * Anonymous buffers are buffers that are not associated with
484 * a DVA.  These are buffers that hold dirty block copies
485 * before they are written to stable storage.  By definition,
486 * they are "ref'd" and are considered part of arc_mru
487 * that cannot be freed.  Generally, they will aquire a DVA
488 * as they are written and migrate onto the arc_mru list.
489 *
490 * The ARC_l2c_only state is for buffers that are in the second
491 * level ARC but no longer in any of the ARC_m* lists.  The second
492 * level ARC itself may also contain buffers that are in any of
493 * the ARC_m* states - meaning that a buffer can exist in two
494 * places.  The reason for the ARC_l2c_only state is to keep the
495 * buffer header in the hash table, so that reads that hit the
496 * second level ARC benefit from these fast lookups.
497 */
498
499typedef struct arc_state {
500	/*
501	 * list of evictable buffers
502	 */
503	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
504	/*
505	 * total amount of evictable data in this state
506	 */
507	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
508	/*
509	 * total amount of data in this state; this includes: evictable,
510	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
511	 */
512	refcount_t arcs_size;
513} arc_state_t;
514
515/* The 6 states: */
516static arc_state_t ARC_anon;
517static arc_state_t ARC_mru;
518static arc_state_t ARC_mru_ghost;
519static arc_state_t ARC_mfu;
520static arc_state_t ARC_mfu_ghost;
521static arc_state_t ARC_l2c_only;
522
523typedef struct arc_stats {
524	kstat_named_t arcstat_hits;
525	kstat_named_t arcstat_misses;
526	kstat_named_t arcstat_demand_data_hits;
527	kstat_named_t arcstat_demand_data_misses;
528	kstat_named_t arcstat_demand_metadata_hits;
529	kstat_named_t arcstat_demand_metadata_misses;
530	kstat_named_t arcstat_prefetch_data_hits;
531	kstat_named_t arcstat_prefetch_data_misses;
532	kstat_named_t arcstat_prefetch_metadata_hits;
533	kstat_named_t arcstat_prefetch_metadata_misses;
534	kstat_named_t arcstat_mru_hits;
535	kstat_named_t arcstat_mru_ghost_hits;
536	kstat_named_t arcstat_mfu_hits;
537	kstat_named_t arcstat_mfu_ghost_hits;
538	kstat_named_t arcstat_allocated;
539	kstat_named_t arcstat_deleted;
540	/*
541	 * Number of buffers that could not be evicted because the hash lock
542	 * was held by another thread.  The lock may not necessarily be held
543	 * by something using the same buffer, since hash locks are shared
544	 * by multiple buffers.
545	 */
546	kstat_named_t arcstat_mutex_miss;
547	/*
548	 * Number of buffers skipped when updating the access state due to the
549	 * header having already been released after acquiring the hash lock.
550	 */
551	kstat_named_t arcstat_access_skip;
552	/*
553	 * Number of buffers skipped because they have I/O in progress, are
554	 * indirect prefetch buffers that have not lived long enough, or are
555	 * not from the spa we're trying to evict from.
556	 */
557	kstat_named_t arcstat_evict_skip;
558	/*
559	 * Number of times arc_evict_state() was unable to evict enough
560	 * buffers to reach it's target amount.
561	 */
562	kstat_named_t arcstat_evict_not_enough;
563	kstat_named_t arcstat_evict_l2_cached;
564	kstat_named_t arcstat_evict_l2_eligible;
565	kstat_named_t arcstat_evict_l2_ineligible;
566	kstat_named_t arcstat_evict_l2_skip;
567	kstat_named_t arcstat_hash_elements;
568	kstat_named_t arcstat_hash_elements_max;
569	kstat_named_t arcstat_hash_collisions;
570	kstat_named_t arcstat_hash_chains;
571	kstat_named_t arcstat_hash_chain_max;
572	kstat_named_t arcstat_p;
573	kstat_named_t arcstat_c;
574	kstat_named_t arcstat_c_min;
575	kstat_named_t arcstat_c_max;
576	/* Not updated directly; only synced in arc_kstat_update. */
577	kstat_named_t arcstat_size;
578	/*
579	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
580	 * Note that the compressed bytes may match the uncompressed bytes
581	 * if the block is either not compressed or compressed arc is disabled.
582	 */
583	kstat_named_t arcstat_compressed_size;
584	/*
585	 * Uncompressed size of the data stored in b_pabd. If compressed
586	 * arc is disabled then this value will be identical to the stat
587	 * above.
588	 */
589	kstat_named_t arcstat_uncompressed_size;
590	/*
591	 * Number of bytes stored in all the arc_buf_t's. This is classified
592	 * as "overhead" since this data is typically short-lived and will
593	 * be evicted from the arc when it becomes unreferenced unless the
594	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
595	 * values have been set (see comment in dbuf.c for more information).
596	 */
597	kstat_named_t arcstat_overhead_size;
598	/*
599	 * Number of bytes consumed by internal ARC structures necessary
600	 * for tracking purposes; these structures are not actually
601	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
602	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
603	 * caches), and arc_buf_t structures (allocated via arc_buf_t
604	 * cache).
605	 * Not updated directly; only synced in arc_kstat_update.
606	 */
607	kstat_named_t arcstat_hdr_size;
608	/*
609	 * Number of bytes consumed by ARC buffers of type equal to
610	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
611	 * on disk user data (e.g. plain file contents).
612	 * Not updated directly; only synced in arc_kstat_update.
613	 */
614	kstat_named_t arcstat_data_size;
615	/*
616	 * Number of bytes consumed by ARC buffers of type equal to
617	 * ARC_BUFC_METADATA. This is generally consumed by buffers
618	 * backing on disk data that is used for internal ZFS
619	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
620	 * Not updated directly; only synced in arc_kstat_update.
621	 */
622	kstat_named_t arcstat_metadata_size;
623	/*
624	 * Number of bytes consumed by various buffers and structures
625	 * not actually backed with ARC buffers. This includes bonus
626	 * buffers (allocated directly via zio_buf_* functions),
627	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
628	 * cache), and dnode_t structures (allocated via dnode_t cache).
629	 * Not updated directly; only synced in arc_kstat_update.
630	 */
631	kstat_named_t arcstat_other_size;
632	/*
633	 * Total number of bytes consumed by ARC buffers residing in the
634	 * arc_anon state. This includes *all* buffers in the arc_anon
635	 * state; e.g. data, metadata, evictable, and unevictable buffers
636	 * are all included in this value.
637	 * Not updated directly; only synced in arc_kstat_update.
638	 */
639	kstat_named_t arcstat_anon_size;
640	/*
641	 * Number of bytes consumed by ARC buffers that meet the
642	 * following criteria: backing buffers of type ARC_BUFC_DATA,
643	 * residing in the arc_anon state, and are eligible for eviction
644	 * (e.g. have no outstanding holds on the buffer).
645	 * Not updated directly; only synced in arc_kstat_update.
646	 */
647	kstat_named_t arcstat_anon_evictable_data;
648	/*
649	 * Number of bytes consumed by ARC buffers that meet the
650	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
651	 * residing in the arc_anon state, and are eligible for eviction
652	 * (e.g. have no outstanding holds on the buffer).
653	 * Not updated directly; only synced in arc_kstat_update.
654	 */
655	kstat_named_t arcstat_anon_evictable_metadata;
656	/*
657	 * Total number of bytes consumed by ARC buffers residing in the
658	 * arc_mru state. This includes *all* buffers in the arc_mru
659	 * state; e.g. data, metadata, evictable, and unevictable buffers
660	 * are all included in this value.
661	 * Not updated directly; only synced in arc_kstat_update.
662	 */
663	kstat_named_t arcstat_mru_size;
664	/*
665	 * Number of bytes consumed by ARC buffers that meet the
666	 * following criteria: backing buffers of type ARC_BUFC_DATA,
667	 * residing in the arc_mru state, and are eligible for eviction
668	 * (e.g. have no outstanding holds on the buffer).
669	 * Not updated directly; only synced in arc_kstat_update.
670	 */
671	kstat_named_t arcstat_mru_evictable_data;
672	/*
673	 * Number of bytes consumed by ARC buffers that meet the
674	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
675	 * residing in the arc_mru state, and are eligible for eviction
676	 * (e.g. have no outstanding holds on the buffer).
677	 * Not updated directly; only synced in arc_kstat_update.
678	 */
679	kstat_named_t arcstat_mru_evictable_metadata;
680	/*
681	 * Total number of bytes that *would have been* consumed by ARC
682	 * buffers in the arc_mru_ghost state. The key thing to note
683	 * here, is the fact that this size doesn't actually indicate
684	 * RAM consumption. The ghost lists only consist of headers and
685	 * don't actually have ARC buffers linked off of these headers.
686	 * Thus, *if* the headers had associated ARC buffers, these
687	 * buffers *would have* consumed this number of bytes.
688	 * Not updated directly; only synced in arc_kstat_update.
689	 */
690	kstat_named_t arcstat_mru_ghost_size;
691	/*
692	 * Number of bytes that *would have been* consumed by ARC
693	 * buffers that are eligible for eviction, of type
694	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
695	 * Not updated directly; only synced in arc_kstat_update.
696	 */
697	kstat_named_t arcstat_mru_ghost_evictable_data;
698	/*
699	 * Number of bytes that *would have been* consumed by ARC
700	 * buffers that are eligible for eviction, of type
701	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
702	 * Not updated directly; only synced in arc_kstat_update.
703	 */
704	kstat_named_t arcstat_mru_ghost_evictable_metadata;
705	/*
706	 * Total number of bytes consumed by ARC buffers residing in the
707	 * arc_mfu state. This includes *all* buffers in the arc_mfu
708	 * state; e.g. data, metadata, evictable, and unevictable buffers
709	 * are all included in this value.
710	 * Not updated directly; only synced in arc_kstat_update.
711	 */
712	kstat_named_t arcstat_mfu_size;
713	/*
714	 * Number of bytes consumed by ARC buffers that are eligible for
715	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
716	 * state.
717	 * Not updated directly; only synced in arc_kstat_update.
718	 */
719	kstat_named_t arcstat_mfu_evictable_data;
720	/*
721	 * Number of bytes consumed by ARC buffers that are eligible for
722	 * eviction, of type ARC_BUFC_METADATA, and reside in the
723	 * arc_mfu state.
724	 * Not updated directly; only synced in arc_kstat_update.
725	 */
726	kstat_named_t arcstat_mfu_evictable_metadata;
727	/*
728	 * Total number of bytes that *would have been* consumed by ARC
729	 * buffers in the arc_mfu_ghost state. See the comment above
730	 * arcstat_mru_ghost_size for more details.
731	 * Not updated directly; only synced in arc_kstat_update.
732	 */
733	kstat_named_t arcstat_mfu_ghost_size;
734	/*
735	 * Number of bytes that *would have been* consumed by ARC
736	 * buffers that are eligible for eviction, of type
737	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
738	 * Not updated directly; only synced in arc_kstat_update.
739	 */
740	kstat_named_t arcstat_mfu_ghost_evictable_data;
741	/*
742	 * Number of bytes that *would have been* consumed by ARC
743	 * buffers that are eligible for eviction, of type
744	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
745	 * Not updated directly; only synced in arc_kstat_update.
746	 */
747	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
748	kstat_named_t arcstat_l2_hits;
749	kstat_named_t arcstat_l2_misses;
750	kstat_named_t arcstat_l2_feeds;
751	kstat_named_t arcstat_l2_rw_clash;
752	kstat_named_t arcstat_l2_read_bytes;
753	kstat_named_t arcstat_l2_write_bytes;
754	kstat_named_t arcstat_l2_writes_sent;
755	kstat_named_t arcstat_l2_writes_done;
756	kstat_named_t arcstat_l2_writes_error;
757	kstat_named_t arcstat_l2_writes_lock_retry;
758	kstat_named_t arcstat_l2_evict_lock_retry;
759	kstat_named_t arcstat_l2_evict_reading;
760	kstat_named_t arcstat_l2_evict_l1cached;
761	kstat_named_t arcstat_l2_free_on_write;
762	kstat_named_t arcstat_l2_abort_lowmem;
763	kstat_named_t arcstat_l2_cksum_bad;
764	kstat_named_t arcstat_l2_io_error;
765	kstat_named_t arcstat_l2_lsize;
766	kstat_named_t arcstat_l2_psize;
767	/* Not updated directly; only synced in arc_kstat_update. */
768	kstat_named_t arcstat_l2_hdr_size;
769	kstat_named_t arcstat_l2_write_trylock_fail;
770	kstat_named_t arcstat_l2_write_passed_headroom;
771	kstat_named_t arcstat_l2_write_spa_mismatch;
772	kstat_named_t arcstat_l2_write_in_l2;
773	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
774	kstat_named_t arcstat_l2_write_not_cacheable;
775	kstat_named_t arcstat_l2_write_full;
776	kstat_named_t arcstat_l2_write_buffer_iter;
777	kstat_named_t arcstat_l2_write_pios;
778	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
779	kstat_named_t arcstat_l2_write_buffer_list_iter;
780	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
781	kstat_named_t arcstat_memory_throttle_count;
782	/* Not updated directly; only synced in arc_kstat_update. */
783	kstat_named_t arcstat_meta_used;
784	kstat_named_t arcstat_meta_limit;
785	kstat_named_t arcstat_meta_max;
786	kstat_named_t arcstat_meta_min;
787	kstat_named_t arcstat_async_upgrade_sync;
788	kstat_named_t arcstat_demand_hit_predictive_prefetch;
789	kstat_named_t arcstat_demand_hit_prescient_prefetch;
790} arc_stats_t;
791
792static arc_stats_t arc_stats = {
793	{ "hits",			KSTAT_DATA_UINT64 },
794	{ "misses",			KSTAT_DATA_UINT64 },
795	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
796	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
797	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
798	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
799	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
800	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
801	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
802	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
803	{ "mru_hits",			KSTAT_DATA_UINT64 },
804	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
805	{ "mfu_hits",			KSTAT_DATA_UINT64 },
806	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
807	{ "allocated",			KSTAT_DATA_UINT64 },
808	{ "deleted",			KSTAT_DATA_UINT64 },
809	{ "mutex_miss",			KSTAT_DATA_UINT64 },
810	{ "access_skip",		KSTAT_DATA_UINT64 },
811	{ "evict_skip",			KSTAT_DATA_UINT64 },
812	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
813	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
814	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
815	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
816	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
817	{ "hash_elements",		KSTAT_DATA_UINT64 },
818	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
819	{ "hash_collisions",		KSTAT_DATA_UINT64 },
820	{ "hash_chains",		KSTAT_DATA_UINT64 },
821	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
822	{ "p",				KSTAT_DATA_UINT64 },
823	{ "c",				KSTAT_DATA_UINT64 },
824	{ "c_min",			KSTAT_DATA_UINT64 },
825	{ "c_max",			KSTAT_DATA_UINT64 },
826	{ "size",			KSTAT_DATA_UINT64 },
827	{ "compressed_size",		KSTAT_DATA_UINT64 },
828	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
829	{ "overhead_size",		KSTAT_DATA_UINT64 },
830	{ "hdr_size",			KSTAT_DATA_UINT64 },
831	{ "data_size",			KSTAT_DATA_UINT64 },
832	{ "metadata_size",		KSTAT_DATA_UINT64 },
833	{ "other_size",			KSTAT_DATA_UINT64 },
834	{ "anon_size",			KSTAT_DATA_UINT64 },
835	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
836	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
837	{ "mru_size",			KSTAT_DATA_UINT64 },
838	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
839	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
840	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
841	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
842	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
843	{ "mfu_size",			KSTAT_DATA_UINT64 },
844	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
845	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
846	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
847	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
848	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
849	{ "l2_hits",			KSTAT_DATA_UINT64 },
850	{ "l2_misses",			KSTAT_DATA_UINT64 },
851	{ "l2_feeds",			KSTAT_DATA_UINT64 },
852	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
853	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
854	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
855	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
856	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
857	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
858	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
859	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
860	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
861	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
862	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
863	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
864	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
865	{ "l2_io_error",		KSTAT_DATA_UINT64 },
866	{ "l2_size",			KSTAT_DATA_UINT64 },
867	{ "l2_asize",			KSTAT_DATA_UINT64 },
868	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
869	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
870	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
871	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
872	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
873	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
874	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
875	{ "l2_write_full",		KSTAT_DATA_UINT64 },
876	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
877	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
878	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
879	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
880	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
881	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
882	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
883	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
884	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
885	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
886	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
887	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
888	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
889};
890
891#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
892
893#define	ARCSTAT_INCR(stat, val) \
894	atomic_add_64(&arc_stats.stat.value.ui64, (val))
895
896#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
897#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
898
899#define	ARCSTAT_MAX(stat, val) {					\
900	uint64_t m;							\
901	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
902	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
903		continue;						\
904}
905
906#define	ARCSTAT_MAXSTAT(stat) \
907	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
908
909/*
910 * We define a macro to allow ARC hits/misses to be easily broken down by
911 * two separate conditions, giving a total of four different subtypes for
912 * each of hits and misses (so eight statistics total).
913 */
914#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
915	if (cond1) {							\
916		if (cond2) {						\
917			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
918		} else {						\
919			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
920		}							\
921	} else {							\
922		if (cond2) {						\
923			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
924		} else {						\
925			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
926		}							\
927	}
928
929kstat_t			*arc_ksp;
930static arc_state_t	*arc_anon;
931static arc_state_t	*arc_mru;
932static arc_state_t	*arc_mru_ghost;
933static arc_state_t	*arc_mfu;
934static arc_state_t	*arc_mfu_ghost;
935static arc_state_t	*arc_l2c_only;
936
937/*
938 * There are several ARC variables that are critical to export as kstats --
939 * but we don't want to have to grovel around in the kstat whenever we wish to
940 * manipulate them.  For these variables, we therefore define them to be in
941 * terms of the statistic variable.  This assures that we are not introducing
942 * the possibility of inconsistency by having shadow copies of the variables,
943 * while still allowing the code to be readable.
944 */
945#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
946#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
947#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
948#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
949#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
950#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
951#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
952
953/* compressed size of entire arc */
954#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
955/* uncompressed size of entire arc */
956#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
957/* number of bytes in the arc from arc_buf_t's */
958#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
959
960/*
961 * There are also some ARC variables that we want to export, but that are
962 * updated so often that having the canonical representation be the statistic
963 * variable causes a performance bottleneck. We want to use aggsum_t's for these
964 * instead, but still be able to export the kstat in the same way as before.
965 * The solution is to always use the aggsum version, except in the kstat update
966 * callback.
967 */
968aggsum_t arc_size;
969aggsum_t arc_meta_used;
970aggsum_t astat_data_size;
971aggsum_t astat_metadata_size;
972aggsum_t astat_hdr_size;
973aggsum_t astat_other_size;
974aggsum_t astat_l2_hdr_size;
975
976static int		arc_no_grow;	/* Don't try to grow cache size */
977static uint64_t		arc_tempreserve;
978static uint64_t		arc_loaned_bytes;
979
980typedef struct arc_callback arc_callback_t;
981
982struct arc_callback {
983	void			*acb_private;
984	arc_read_done_func_t	*acb_done;
985	arc_buf_t		*acb_buf;
986	boolean_t		acb_compressed;
987	zio_t			*acb_zio_dummy;
988	zio_t			*acb_zio_head;
989	arc_callback_t		*acb_next;
990};
991
992typedef struct arc_write_callback arc_write_callback_t;
993
994struct arc_write_callback {
995	void			*awcb_private;
996	arc_write_done_func_t	*awcb_ready;
997	arc_write_done_func_t	*awcb_children_ready;
998	arc_write_done_func_t	*awcb_physdone;
999	arc_write_done_func_t	*awcb_done;
1000	arc_buf_t		*awcb_buf;
1001};
1002
1003/*
1004 * ARC buffers are separated into multiple structs as a memory saving measure:
1005 *   - Common fields struct, always defined, and embedded within it:
1006 *       - L2-only fields, always allocated but undefined when not in L2ARC
1007 *       - L1-only fields, only allocated when in L1ARC
1008 *
1009 *           Buffer in L1                     Buffer only in L2
1010 *    +------------------------+          +------------------------+
1011 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
1012 *    |                        |          |                        |
1013 *    |                        |          |                        |
1014 *    |                        |          |                        |
1015 *    +------------------------+          +------------------------+
1016 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
1017 *    | (undefined if L1-only) |          |                        |
1018 *    +------------------------+          +------------------------+
1019 *    | l1arc_buf_hdr_t        |
1020 *    |                        |
1021 *    |                        |
1022 *    |                        |
1023 *    |                        |
1024 *    +------------------------+
1025 *
1026 * Because it's possible for the L2ARC to become extremely large, we can wind
1027 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
1028 * is minimized by only allocating the fields necessary for an L1-cached buffer
1029 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
1030 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
1031 * words in pointers. arc_hdr_realloc() is used to switch a header between
1032 * these two allocation states.
1033 */
1034typedef struct l1arc_buf_hdr {
1035	kmutex_t		b_freeze_lock;
1036	zio_cksum_t		*b_freeze_cksum;
1037#ifdef ZFS_DEBUG
1038	/*
1039	 * Used for debugging with kmem_flags - by allocating and freeing
1040	 * b_thawed when the buffer is thawed, we get a record of the stack
1041	 * trace that thawed it.
1042	 */
1043	void			*b_thawed;
1044#endif
1045
1046	arc_buf_t		*b_buf;
1047	uint32_t		b_bufcnt;
1048	/* for waiting on writes to complete */
1049	kcondvar_t		b_cv;
1050	uint8_t			b_byteswap;
1051
1052	/* protected by arc state mutex */
1053	arc_state_t		*b_state;
1054	multilist_node_t	b_arc_node;
1055
1056	/* updated atomically */
1057	clock_t			b_arc_access;
1058
1059	/* self protecting */
1060	refcount_t		b_refcnt;
1061
1062	arc_callback_t		*b_acb;
1063	abd_t			*b_pabd;
1064} l1arc_buf_hdr_t;
1065
1066typedef struct l2arc_dev l2arc_dev_t;
1067
1068typedef struct l2arc_buf_hdr {
1069	/* protected by arc_buf_hdr mutex */
1070	l2arc_dev_t		*b_dev;		/* L2ARC device */
1071	uint64_t		b_daddr;	/* disk address, offset byte */
1072
1073	list_node_t		b_l2node;
1074} l2arc_buf_hdr_t;
1075
1076struct arc_buf_hdr {
1077	/* protected by hash lock */
1078	dva_t			b_dva;
1079	uint64_t		b_birth;
1080
1081	arc_buf_contents_t	b_type;
1082	arc_buf_hdr_t		*b_hash_next;
1083	arc_flags_t		b_flags;
1084
1085	/*
1086	 * This field stores the size of the data buffer after
1087	 * compression, and is set in the arc's zio completion handlers.
1088	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1089	 *
1090	 * While the block pointers can store up to 32MB in their psize
1091	 * field, we can only store up to 32MB minus 512B. This is due
1092	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1093	 * a field of zeros represents 512B in the bp). We can't use a
1094	 * bias of 1 since we need to reserve a psize of zero, here, to
1095	 * represent holes and embedded blocks.
1096	 *
1097	 * This isn't a problem in practice, since the maximum size of a
1098	 * buffer is limited to 16MB, so we never need to store 32MB in
1099	 * this field. Even in the upstream illumos code base, the
1100	 * maximum size of a buffer is limited to 16MB.
1101	 */
1102	uint16_t		b_psize;
1103
1104	/*
1105	 * This field stores the size of the data buffer before
1106	 * compression, and cannot change once set. It is in units
1107	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1108	 */
1109	uint16_t		b_lsize;	/* immutable */
1110	uint64_t		b_spa;		/* immutable */
1111
1112	/* L2ARC fields. Undefined when not in L2ARC. */
1113	l2arc_buf_hdr_t		b_l2hdr;
1114	/* L1ARC fields. Undefined when in l2arc_only state */
1115	l1arc_buf_hdr_t		b_l1hdr;
1116};
1117
1118#if defined(__FreeBSD__) && defined(_KERNEL)
1119static int
1120sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1121{
1122	uint64_t val;
1123	int err;
1124
1125	val = arc_meta_limit;
1126	err = sysctl_handle_64(oidp, &val, 0, req);
1127	if (err != 0 || req->newptr == NULL)
1128		return (err);
1129
1130        if (val <= 0 || val > arc_c_max)
1131		return (EINVAL);
1132
1133	arc_meta_limit = val;
1134	return (0);
1135}
1136
1137static int
1138sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
1139{
1140	uint32_t val;
1141	int err;
1142
1143	val = arc_no_grow_shift;
1144	err = sysctl_handle_32(oidp, &val, 0, req);
1145	if (err != 0 || req->newptr == NULL)
1146		return (err);
1147
1148        if (val >= arc_shrink_shift)
1149		return (EINVAL);
1150
1151	arc_no_grow_shift = val;
1152	return (0);
1153}
1154
1155static int
1156sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1157{
1158	uint64_t val;
1159	int err;
1160
1161	val = zfs_arc_max;
1162	err = sysctl_handle_64(oidp, &val, 0, req);
1163	if (err != 0 || req->newptr == NULL)
1164		return (err);
1165
1166	if (zfs_arc_max == 0) {
1167		/* Loader tunable so blindly set */
1168		zfs_arc_max = val;
1169		return (0);
1170	}
1171
1172	if (val < arc_abs_min || val > kmem_size())
1173		return (EINVAL);
1174	if (val < arc_c_min)
1175		return (EINVAL);
1176	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1177		return (EINVAL);
1178
1179	arc_c_max = val;
1180
1181	arc_c = arc_c_max;
1182        arc_p = (arc_c >> 1);
1183
1184	if (zfs_arc_meta_limit == 0) {
1185		/* limit meta-data to 1/4 of the arc capacity */
1186		arc_meta_limit = arc_c_max / 4;
1187	}
1188
1189	/* if kmem_flags are set, lets try to use less memory */
1190	if (kmem_debugging())
1191		arc_c = arc_c / 2;
1192
1193	zfs_arc_max = arc_c;
1194
1195	return (0);
1196}
1197
1198static int
1199sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1200{
1201	uint64_t val;
1202	int err;
1203
1204	val = zfs_arc_min;
1205	err = sysctl_handle_64(oidp, &val, 0, req);
1206	if (err != 0 || req->newptr == NULL)
1207		return (err);
1208
1209	if (zfs_arc_min == 0) {
1210		/* Loader tunable so blindly set */
1211		zfs_arc_min = val;
1212		return (0);
1213	}
1214
1215	if (val < arc_abs_min || val > arc_c_max)
1216		return (EINVAL);
1217
1218	arc_c_min = val;
1219
1220	if (zfs_arc_meta_min == 0)
1221                arc_meta_min = arc_c_min / 2;
1222
1223	if (arc_c < arc_c_min)
1224                arc_c = arc_c_min;
1225
1226	zfs_arc_min = arc_c_min;
1227
1228	return (0);
1229}
1230#endif
1231
1232#define	GHOST_STATE(state)	\
1233	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1234	(state) == arc_l2c_only)
1235
1236#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1237#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1238#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1239#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1240#define	HDR_PRESCIENT_PREFETCH(hdr)	\
1241	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
1242#define	HDR_COMPRESSION_ENABLED(hdr)	\
1243	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1244
1245#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1246#define	HDR_L2_READING(hdr)	\
1247	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1248	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1249#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1250#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1251#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1252#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1253
1254#define	HDR_ISTYPE_METADATA(hdr)	\
1255	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1256#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1257
1258#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1259#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1260
1261/* For storing compression mode in b_flags */
1262#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1263
1264#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1265	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1266#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1267	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1268
1269#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1270#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1271#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1272
1273/*
1274 * Other sizes
1275 */
1276
1277#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1278#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1279
1280/*
1281 * Hash table routines
1282 */
1283
1284#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1285
1286struct ht_lock {
1287	kmutex_t	ht_lock;
1288#ifdef _KERNEL
1289	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1290#endif
1291};
1292
1293#define	BUF_LOCKS 256
1294typedef struct buf_hash_table {
1295	uint64_t ht_mask;
1296	arc_buf_hdr_t **ht_table;
1297	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1298} buf_hash_table_t;
1299
1300static buf_hash_table_t buf_hash_table;
1301
1302#define	BUF_HASH_INDEX(spa, dva, birth) \
1303	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1304#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1305#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1306#define	HDR_LOCK(hdr) \
1307	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1308
1309uint64_t zfs_crc64_table[256];
1310
1311/*
1312 * Level 2 ARC
1313 */
1314
1315#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1316#define	L2ARC_HEADROOM		2			/* num of writes */
1317/*
1318 * If we discover during ARC scan any buffers to be compressed, we boost
1319 * our headroom for the next scanning cycle by this percentage multiple.
1320 */
1321#define	L2ARC_HEADROOM_BOOST	200
1322#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1323#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1324
1325#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1326#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1327
1328/* L2ARC Performance Tunables */
1329uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1330uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1331uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1332uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1333uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1334uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1335boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1336boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1337boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1338
1339SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1340    &l2arc_write_max, 0, "max write size");
1341SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1342    &l2arc_write_boost, 0, "extra write during warmup");
1343SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1344    &l2arc_headroom, 0, "number of dev writes");
1345SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1346    &l2arc_feed_secs, 0, "interval seconds");
1347SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1348    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1349
1350SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1351    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1352SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1353    &l2arc_feed_again, 0, "turbo warmup");
1354SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1355    &l2arc_norw, 0, "no reads during writes");
1356
1357SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1358    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1359SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1360    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1361    "size of anonymous state");
1362SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1363    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1364    "size of anonymous state");
1365
1366SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1367    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1368SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1369    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1370    "size of metadata in mru state");
1371SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1372    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1373    "size of data in mru state");
1374
1375SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1376    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1377SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1378    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1379    "size of metadata in mru ghost state");
1380SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1381    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1382    "size of data in mru ghost state");
1383
1384SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1385    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1386SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1387    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1388    "size of metadata in mfu state");
1389SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1390    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1391    "size of data in mfu state");
1392
1393SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1394    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1395SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1396    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1397    "size of metadata in mfu ghost state");
1398SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1399    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1400    "size of data in mfu ghost state");
1401
1402SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1403    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1404
1405SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prefetch_ms, CTLFLAG_RW,
1406    &zfs_arc_min_prefetch_ms, 0, "Min life of prefetch block in ms");
1407SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prescient_prefetch_ms, CTLFLAG_RW,
1408    &zfs_arc_min_prescient_prefetch_ms, 0, "Min life of prescient prefetched block in ms");
1409
1410/*
1411 * L2ARC Internals
1412 */
1413struct l2arc_dev {
1414	vdev_t			*l2ad_vdev;	/* vdev */
1415	spa_t			*l2ad_spa;	/* spa */
1416	uint64_t		l2ad_hand;	/* next write location */
1417	uint64_t		l2ad_start;	/* first addr on device */
1418	uint64_t		l2ad_end;	/* last addr on device */
1419	boolean_t		l2ad_first;	/* first sweep through */
1420	boolean_t		l2ad_writing;	/* currently writing */
1421	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1422	list_t			l2ad_buflist;	/* buffer list */
1423	list_node_t		l2ad_node;	/* device list node */
1424	refcount_t		l2ad_alloc;	/* allocated bytes */
1425};
1426
1427static list_t L2ARC_dev_list;			/* device list */
1428static list_t *l2arc_dev_list;			/* device list pointer */
1429static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1430static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1431static list_t L2ARC_free_on_write;		/* free after write buf list */
1432static list_t *l2arc_free_on_write;		/* free after write list ptr */
1433static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1434static uint64_t l2arc_ndev;			/* number of devices */
1435
1436typedef struct l2arc_read_callback {
1437	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1438	blkptr_t		l2rcb_bp;		/* original blkptr */
1439	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1440	int			l2rcb_flags;		/* original flags */
1441	abd_t			*l2rcb_abd;		/* temporary buffer */
1442} l2arc_read_callback_t;
1443
1444typedef struct l2arc_write_callback {
1445	l2arc_dev_t	*l2wcb_dev;		/* device info */
1446	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1447} l2arc_write_callback_t;
1448
1449typedef struct l2arc_data_free {
1450	/* protected by l2arc_free_on_write_mtx */
1451	abd_t		*l2df_abd;
1452	size_t		l2df_size;
1453	arc_buf_contents_t l2df_type;
1454	list_node_t	l2df_list_node;
1455} l2arc_data_free_t;
1456
1457static kmutex_t l2arc_feed_thr_lock;
1458static kcondvar_t l2arc_feed_thr_cv;
1459static uint8_t l2arc_thread_exit;
1460
1461static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1462static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1463static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1464static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1465static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1466static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1467static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1468static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1469static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1470static boolean_t arc_is_overflowing();
1471static void arc_buf_watch(arc_buf_t *);
1472
1473static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1474static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1475static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1476static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1477
1478static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1479static void l2arc_read_done(zio_t *);
1480
1481static void
1482l2arc_trim(const arc_buf_hdr_t *hdr)
1483{
1484	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1485
1486	ASSERT(HDR_HAS_L2HDR(hdr));
1487	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1488
1489	if (HDR_GET_PSIZE(hdr) != 0) {
1490		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1491		    HDR_GET_PSIZE(hdr), 0);
1492	}
1493}
1494
1495/*
1496 * We use Cityhash for this. It's fast, and has good hash properties without
1497 * requiring any large static buffers.
1498 */
1499static uint64_t
1500buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1501{
1502	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1503}
1504
1505#define	HDR_EMPTY(hdr)						\
1506	((hdr)->b_dva.dva_word[0] == 0 &&			\
1507	(hdr)->b_dva.dva_word[1] == 0)
1508
1509#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1510	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1511	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1512	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1513
1514static void
1515buf_discard_identity(arc_buf_hdr_t *hdr)
1516{
1517	hdr->b_dva.dva_word[0] = 0;
1518	hdr->b_dva.dva_word[1] = 0;
1519	hdr->b_birth = 0;
1520}
1521
1522static arc_buf_hdr_t *
1523buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1524{
1525	const dva_t *dva = BP_IDENTITY(bp);
1526	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1527	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1528	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1529	arc_buf_hdr_t *hdr;
1530
1531	mutex_enter(hash_lock);
1532	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1533	    hdr = hdr->b_hash_next) {
1534		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1535			*lockp = hash_lock;
1536			return (hdr);
1537		}
1538	}
1539	mutex_exit(hash_lock);
1540	*lockp = NULL;
1541	return (NULL);
1542}
1543
1544/*
1545 * Insert an entry into the hash table.  If there is already an element
1546 * equal to elem in the hash table, then the already existing element
1547 * will be returned and the new element will not be inserted.
1548 * Otherwise returns NULL.
1549 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1550 */
1551static arc_buf_hdr_t *
1552buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1553{
1554	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1555	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1556	arc_buf_hdr_t *fhdr;
1557	uint32_t i;
1558
1559	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1560	ASSERT(hdr->b_birth != 0);
1561	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1562
1563	if (lockp != NULL) {
1564		*lockp = hash_lock;
1565		mutex_enter(hash_lock);
1566	} else {
1567		ASSERT(MUTEX_HELD(hash_lock));
1568	}
1569
1570	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1571	    fhdr = fhdr->b_hash_next, i++) {
1572		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1573			return (fhdr);
1574	}
1575
1576	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1577	buf_hash_table.ht_table[idx] = hdr;
1578	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1579
1580	/* collect some hash table performance data */
1581	if (i > 0) {
1582		ARCSTAT_BUMP(arcstat_hash_collisions);
1583		if (i == 1)
1584			ARCSTAT_BUMP(arcstat_hash_chains);
1585
1586		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1587	}
1588
1589	ARCSTAT_BUMP(arcstat_hash_elements);
1590	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1591
1592	return (NULL);
1593}
1594
1595static void
1596buf_hash_remove(arc_buf_hdr_t *hdr)
1597{
1598	arc_buf_hdr_t *fhdr, **hdrp;
1599	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1600
1601	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1602	ASSERT(HDR_IN_HASH_TABLE(hdr));
1603
1604	hdrp = &buf_hash_table.ht_table[idx];
1605	while ((fhdr = *hdrp) != hdr) {
1606		ASSERT3P(fhdr, !=, NULL);
1607		hdrp = &fhdr->b_hash_next;
1608	}
1609	*hdrp = hdr->b_hash_next;
1610	hdr->b_hash_next = NULL;
1611	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1612
1613	/* collect some hash table performance data */
1614	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1615
1616	if (buf_hash_table.ht_table[idx] &&
1617	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1618		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1619}
1620
1621/*
1622 * Global data structures and functions for the buf kmem cache.
1623 */
1624static kmem_cache_t *hdr_full_cache;
1625static kmem_cache_t *hdr_l2only_cache;
1626static kmem_cache_t *buf_cache;
1627
1628static void
1629buf_fini(void)
1630{
1631	int i;
1632
1633	kmem_free(buf_hash_table.ht_table,
1634	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1635	for (i = 0; i < BUF_LOCKS; i++)
1636		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1637	kmem_cache_destroy(hdr_full_cache);
1638	kmem_cache_destroy(hdr_l2only_cache);
1639	kmem_cache_destroy(buf_cache);
1640}
1641
1642/*
1643 * Constructor callback - called when the cache is empty
1644 * and a new buf is requested.
1645 */
1646/* ARGSUSED */
1647static int
1648hdr_full_cons(void *vbuf, void *unused, int kmflag)
1649{
1650	arc_buf_hdr_t *hdr = vbuf;
1651
1652	bzero(hdr, HDR_FULL_SIZE);
1653	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1654	refcount_create(&hdr->b_l1hdr.b_refcnt);
1655	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1656	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1657	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1658
1659	return (0);
1660}
1661
1662/* ARGSUSED */
1663static int
1664hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1665{
1666	arc_buf_hdr_t *hdr = vbuf;
1667
1668	bzero(hdr, HDR_L2ONLY_SIZE);
1669	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1670
1671	return (0);
1672}
1673
1674/* ARGSUSED */
1675static int
1676buf_cons(void *vbuf, void *unused, int kmflag)
1677{
1678	arc_buf_t *buf = vbuf;
1679
1680	bzero(buf, sizeof (arc_buf_t));
1681	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1682	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1683
1684	return (0);
1685}
1686
1687/*
1688 * Destructor callback - called when a cached buf is
1689 * no longer required.
1690 */
1691/* ARGSUSED */
1692static void
1693hdr_full_dest(void *vbuf, void *unused)
1694{
1695	arc_buf_hdr_t *hdr = vbuf;
1696
1697	ASSERT(HDR_EMPTY(hdr));
1698	cv_destroy(&hdr->b_l1hdr.b_cv);
1699	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1700	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1701	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1702	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1703}
1704
1705/* ARGSUSED */
1706static void
1707hdr_l2only_dest(void *vbuf, void *unused)
1708{
1709	arc_buf_hdr_t *hdr = vbuf;
1710
1711	ASSERT(HDR_EMPTY(hdr));
1712	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1713}
1714
1715/* ARGSUSED */
1716static void
1717buf_dest(void *vbuf, void *unused)
1718{
1719	arc_buf_t *buf = vbuf;
1720
1721	mutex_destroy(&buf->b_evict_lock);
1722	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1723}
1724
1725/*
1726 * Reclaim callback -- invoked when memory is low.
1727 */
1728/* ARGSUSED */
1729static void
1730hdr_recl(void *unused)
1731{
1732	dprintf("hdr_recl called\n");
1733	/*
1734	 * umem calls the reclaim func when we destroy the buf cache,
1735	 * which is after we do arc_fini().
1736	 */
1737	if (!arc_dead)
1738		cv_signal(&arc_reclaim_thread_cv);
1739}
1740
1741static void
1742buf_init(void)
1743{
1744	uint64_t *ct;
1745	uint64_t hsize = 1ULL << 12;
1746	int i, j;
1747
1748	/*
1749	 * The hash table is big enough to fill all of physical memory
1750	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1751	 * By default, the table will take up
1752	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1753	 */
1754	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1755		hsize <<= 1;
1756retry:
1757	buf_hash_table.ht_mask = hsize - 1;
1758	buf_hash_table.ht_table =
1759	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1760	if (buf_hash_table.ht_table == NULL) {
1761		ASSERT(hsize > (1ULL << 8));
1762		hsize >>= 1;
1763		goto retry;
1764	}
1765
1766	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1767	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1768	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1769	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1770	    NULL, NULL, 0);
1771	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1772	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1773
1774	for (i = 0; i < 256; i++)
1775		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1776			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1777
1778	for (i = 0; i < BUF_LOCKS; i++) {
1779		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1780		    NULL, MUTEX_DEFAULT, NULL);
1781	}
1782}
1783
1784/*
1785 * This is the size that the buf occupies in memory. If the buf is compressed,
1786 * it will correspond to the compressed size. You should use this method of
1787 * getting the buf size unless you explicitly need the logical size.
1788 */
1789int32_t
1790arc_buf_size(arc_buf_t *buf)
1791{
1792	return (ARC_BUF_COMPRESSED(buf) ?
1793	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1794}
1795
1796int32_t
1797arc_buf_lsize(arc_buf_t *buf)
1798{
1799	return (HDR_GET_LSIZE(buf->b_hdr));
1800}
1801
1802enum zio_compress
1803arc_get_compression(arc_buf_t *buf)
1804{
1805	return (ARC_BUF_COMPRESSED(buf) ?
1806	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1807}
1808
1809#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1810
1811static inline boolean_t
1812arc_buf_is_shared(arc_buf_t *buf)
1813{
1814	boolean_t shared = (buf->b_data != NULL &&
1815	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1816	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1817	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1818	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1819	IMPLY(shared, ARC_BUF_SHARED(buf));
1820	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1821
1822	/*
1823	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1824	 * already being shared" requirement prevents us from doing that.
1825	 */
1826
1827	return (shared);
1828}
1829
1830/*
1831 * Free the checksum associated with this header. If there is no checksum, this
1832 * is a no-op.
1833 */
1834static inline void
1835arc_cksum_free(arc_buf_hdr_t *hdr)
1836{
1837	ASSERT(HDR_HAS_L1HDR(hdr));
1838	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1839	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1840		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1841		hdr->b_l1hdr.b_freeze_cksum = NULL;
1842	}
1843	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1844}
1845
1846/*
1847 * Return true iff at least one of the bufs on hdr is not compressed.
1848 */
1849static boolean_t
1850arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1851{
1852	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1853		if (!ARC_BUF_COMPRESSED(b)) {
1854			return (B_TRUE);
1855		}
1856	}
1857	return (B_FALSE);
1858}
1859
1860/*
1861 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1862 * matches the checksum that is stored in the hdr. If there is no checksum,
1863 * or if the buf is compressed, this is a no-op.
1864 */
1865static void
1866arc_cksum_verify(arc_buf_t *buf)
1867{
1868	arc_buf_hdr_t *hdr = buf->b_hdr;
1869	zio_cksum_t zc;
1870
1871	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1872		return;
1873
1874	if (ARC_BUF_COMPRESSED(buf)) {
1875		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1876		    arc_hdr_has_uncompressed_buf(hdr));
1877		return;
1878	}
1879
1880	ASSERT(HDR_HAS_L1HDR(hdr));
1881
1882	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1883	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1884		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1885		return;
1886	}
1887
1888	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1889	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1890		panic("buffer modified while frozen!");
1891	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1892}
1893
1894static boolean_t
1895arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1896{
1897	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1898	boolean_t valid_cksum;
1899
1900	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1901	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1902
1903	/*
1904	 * We rely on the blkptr's checksum to determine if the block
1905	 * is valid or not. When compressed arc is enabled, the l2arc
1906	 * writes the block to the l2arc just as it appears in the pool.
1907	 * This allows us to use the blkptr's checksum to validate the
1908	 * data that we just read off of the l2arc without having to store
1909	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1910	 * arc is disabled, then the data written to the l2arc is always
1911	 * uncompressed and won't match the block as it exists in the main
1912	 * pool. When this is the case, we must first compress it if it is
1913	 * compressed on the main pool before we can validate the checksum.
1914	 */
1915	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1916		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1917		uint64_t lsize = HDR_GET_LSIZE(hdr);
1918		uint64_t csize;
1919
1920		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1921		csize = zio_compress_data(compress, zio->io_abd,
1922		    abd_to_buf(cdata), lsize);
1923
1924		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1925		if (csize < HDR_GET_PSIZE(hdr)) {
1926			/*
1927			 * Compressed blocks are always a multiple of the
1928			 * smallest ashift in the pool. Ideally, we would
1929			 * like to round up the csize to the next
1930			 * spa_min_ashift but that value may have changed
1931			 * since the block was last written. Instead,
1932			 * we rely on the fact that the hdr's psize
1933			 * was set to the psize of the block when it was
1934			 * last written. We set the csize to that value
1935			 * and zero out any part that should not contain
1936			 * data.
1937			 */
1938			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1939			csize = HDR_GET_PSIZE(hdr);
1940		}
1941		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1942	}
1943
1944	/*
1945	 * Block pointers always store the checksum for the logical data.
1946	 * If the block pointer has the gang bit set, then the checksum
1947	 * it represents is for the reconstituted data and not for an
1948	 * individual gang member. The zio pipeline, however, must be able to
1949	 * determine the checksum of each of the gang constituents so it
1950	 * treats the checksum comparison differently than what we need
1951	 * for l2arc blocks. This prevents us from using the
1952	 * zio_checksum_error() interface directly. Instead we must call the
1953	 * zio_checksum_error_impl() so that we can ensure the checksum is
1954	 * generated using the correct checksum algorithm and accounts for the
1955	 * logical I/O size and not just a gang fragment.
1956	 */
1957	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1958	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1959	    zio->io_offset, NULL) == 0);
1960	zio_pop_transforms(zio);
1961	return (valid_cksum);
1962}
1963
1964/*
1965 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1966 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1967 * isn't modified later on. If buf is compressed or there is already a checksum
1968 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1969 */
1970static void
1971arc_cksum_compute(arc_buf_t *buf)
1972{
1973	arc_buf_hdr_t *hdr = buf->b_hdr;
1974
1975	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1976		return;
1977
1978	ASSERT(HDR_HAS_L1HDR(hdr));
1979
1980	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1981	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1982		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1983		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1984		return;
1985	} else if (ARC_BUF_COMPRESSED(buf)) {
1986		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1987		return;
1988	}
1989
1990	ASSERT(!ARC_BUF_COMPRESSED(buf));
1991	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1992	    KM_SLEEP);
1993	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1994	    hdr->b_l1hdr.b_freeze_cksum);
1995	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1996#ifdef illumos
1997	arc_buf_watch(buf);
1998#endif
1999}
2000
2001#ifdef illumos
2002#ifndef _KERNEL
2003typedef struct procctl {
2004	long cmd;
2005	prwatch_t prwatch;
2006} procctl_t;
2007#endif
2008
2009/* ARGSUSED */
2010static void
2011arc_buf_unwatch(arc_buf_t *buf)
2012{
2013#ifndef _KERNEL
2014	if (arc_watch) {
2015		int result;
2016		procctl_t ctl;
2017		ctl.cmd = PCWATCH;
2018		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2019		ctl.prwatch.pr_size = 0;
2020		ctl.prwatch.pr_wflags = 0;
2021		result = write(arc_procfd, &ctl, sizeof (ctl));
2022		ASSERT3U(result, ==, sizeof (ctl));
2023	}
2024#endif
2025}
2026
2027/* ARGSUSED */
2028static void
2029arc_buf_watch(arc_buf_t *buf)
2030{
2031#ifndef _KERNEL
2032	if (arc_watch) {
2033		int result;
2034		procctl_t ctl;
2035		ctl.cmd = PCWATCH;
2036		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2037		ctl.prwatch.pr_size = arc_buf_size(buf);
2038		ctl.prwatch.pr_wflags = WA_WRITE;
2039		result = write(arc_procfd, &ctl, sizeof (ctl));
2040		ASSERT3U(result, ==, sizeof (ctl));
2041	}
2042#endif
2043}
2044#endif /* illumos */
2045
2046static arc_buf_contents_t
2047arc_buf_type(arc_buf_hdr_t *hdr)
2048{
2049	arc_buf_contents_t type;
2050	if (HDR_ISTYPE_METADATA(hdr)) {
2051		type = ARC_BUFC_METADATA;
2052	} else {
2053		type = ARC_BUFC_DATA;
2054	}
2055	VERIFY3U(hdr->b_type, ==, type);
2056	return (type);
2057}
2058
2059boolean_t
2060arc_is_metadata(arc_buf_t *buf)
2061{
2062	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
2063}
2064
2065static uint32_t
2066arc_bufc_to_flags(arc_buf_contents_t type)
2067{
2068	switch (type) {
2069	case ARC_BUFC_DATA:
2070		/* metadata field is 0 if buffer contains normal data */
2071		return (0);
2072	case ARC_BUFC_METADATA:
2073		return (ARC_FLAG_BUFC_METADATA);
2074	default:
2075		break;
2076	}
2077	panic("undefined ARC buffer type!");
2078	return ((uint32_t)-1);
2079}
2080
2081void
2082arc_buf_thaw(arc_buf_t *buf)
2083{
2084	arc_buf_hdr_t *hdr = buf->b_hdr;
2085
2086	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2087	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2088
2089	arc_cksum_verify(buf);
2090
2091	/*
2092	 * Compressed buffers do not manipulate the b_freeze_cksum or
2093	 * allocate b_thawed.
2094	 */
2095	if (ARC_BUF_COMPRESSED(buf)) {
2096		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2097		    arc_hdr_has_uncompressed_buf(hdr));
2098		return;
2099	}
2100
2101	ASSERT(HDR_HAS_L1HDR(hdr));
2102	arc_cksum_free(hdr);
2103
2104	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
2105#ifdef ZFS_DEBUG
2106	if (zfs_flags & ZFS_DEBUG_MODIFY) {
2107		if (hdr->b_l1hdr.b_thawed != NULL)
2108			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2109		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
2110	}
2111#endif
2112
2113	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2114
2115#ifdef illumos
2116	arc_buf_unwatch(buf);
2117#endif
2118}
2119
2120void
2121arc_buf_freeze(arc_buf_t *buf)
2122{
2123	arc_buf_hdr_t *hdr = buf->b_hdr;
2124	kmutex_t *hash_lock;
2125
2126	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2127		return;
2128
2129	if (ARC_BUF_COMPRESSED(buf)) {
2130		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2131		    arc_hdr_has_uncompressed_buf(hdr));
2132		return;
2133	}
2134
2135	hash_lock = HDR_LOCK(hdr);
2136	mutex_enter(hash_lock);
2137
2138	ASSERT(HDR_HAS_L1HDR(hdr));
2139	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
2140	    hdr->b_l1hdr.b_state == arc_anon);
2141	arc_cksum_compute(buf);
2142	mutex_exit(hash_lock);
2143}
2144
2145/*
2146 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2147 * the following functions should be used to ensure that the flags are
2148 * updated in a thread-safe way. When manipulating the flags either
2149 * the hash_lock must be held or the hdr must be undiscoverable. This
2150 * ensures that we're not racing with any other threads when updating
2151 * the flags.
2152 */
2153static inline void
2154arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2155{
2156	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2157	hdr->b_flags |= flags;
2158}
2159
2160static inline void
2161arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2162{
2163	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2164	hdr->b_flags &= ~flags;
2165}
2166
2167/*
2168 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2169 * done in a special way since we have to clear and set bits
2170 * at the same time. Consumers that wish to set the compression bits
2171 * must use this function to ensure that the flags are updated in
2172 * thread-safe manner.
2173 */
2174static void
2175arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2176{
2177	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2178
2179	/*
2180	 * Holes and embedded blocks will always have a psize = 0 so
2181	 * we ignore the compression of the blkptr and set the
2182	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2183	 * Holes and embedded blocks remain anonymous so we don't
2184	 * want to uncompress them. Mark them as uncompressed.
2185	 */
2186	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2187		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2188		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
2189		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2190		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2191	} else {
2192		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2193		HDR_SET_COMPRESS(hdr, cmp);
2194		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2195		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2196	}
2197}
2198
2199/*
2200 * Looks for another buf on the same hdr which has the data decompressed, copies
2201 * from it, and returns true. If no such buf exists, returns false.
2202 */
2203static boolean_t
2204arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2205{
2206	arc_buf_hdr_t *hdr = buf->b_hdr;
2207	boolean_t copied = B_FALSE;
2208
2209	ASSERT(HDR_HAS_L1HDR(hdr));
2210	ASSERT3P(buf->b_data, !=, NULL);
2211	ASSERT(!ARC_BUF_COMPRESSED(buf));
2212
2213	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2214	    from = from->b_next) {
2215		/* can't use our own data buffer */
2216		if (from == buf) {
2217			continue;
2218		}
2219
2220		if (!ARC_BUF_COMPRESSED(from)) {
2221			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2222			copied = B_TRUE;
2223			break;
2224		}
2225	}
2226
2227	/*
2228	 * There were no decompressed bufs, so there should not be a
2229	 * checksum on the hdr either.
2230	 */
2231	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2232
2233	return (copied);
2234}
2235
2236/*
2237 * Given a buf that has a data buffer attached to it, this function will
2238 * efficiently fill the buf with data of the specified compression setting from
2239 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2240 * are already sharing a data buf, no copy is performed.
2241 *
2242 * If the buf is marked as compressed but uncompressed data was requested, this
2243 * will allocate a new data buffer for the buf, remove that flag, and fill the
2244 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2245 * uncompressed data, and (since we haven't added support for it yet) if you
2246 * want compressed data your buf must already be marked as compressed and have
2247 * the correct-sized data buffer.
2248 */
2249static int
2250arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
2251{
2252	arc_buf_hdr_t *hdr = buf->b_hdr;
2253	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2254	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2255
2256	ASSERT3P(buf->b_data, !=, NULL);
2257	IMPLY(compressed, hdr_compressed);
2258	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2259
2260	if (hdr_compressed == compressed) {
2261		if (!arc_buf_is_shared(buf)) {
2262			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2263			    arc_buf_size(buf));
2264		}
2265	} else {
2266		ASSERT(hdr_compressed);
2267		ASSERT(!compressed);
2268		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2269
2270		/*
2271		 * If the buf is sharing its data with the hdr, unlink it and
2272		 * allocate a new data buffer for the buf.
2273		 */
2274		if (arc_buf_is_shared(buf)) {
2275			ASSERT(ARC_BUF_COMPRESSED(buf));
2276
2277			/* We need to give the buf it's own b_data */
2278			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2279			buf->b_data =
2280			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2281			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2282
2283			/* Previously overhead was 0; just add new overhead */
2284			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2285		} else if (ARC_BUF_COMPRESSED(buf)) {
2286			/* We need to reallocate the buf's b_data */
2287			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2288			    buf);
2289			buf->b_data =
2290			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2291
2292			/* We increased the size of b_data; update overhead */
2293			ARCSTAT_INCR(arcstat_overhead_size,
2294			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2295		}
2296
2297		/*
2298		 * Regardless of the buf's previous compression settings, it
2299		 * should not be compressed at the end of this function.
2300		 */
2301		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2302
2303		/*
2304		 * Try copying the data from another buf which already has a
2305		 * decompressed version. If that's not possible, it's time to
2306		 * bite the bullet and decompress the data from the hdr.
2307		 */
2308		if (arc_buf_try_copy_decompressed_data(buf)) {
2309			/* Skip byteswapping and checksumming (already done) */
2310			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2311			return (0);
2312		} else {
2313			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2314			    hdr->b_l1hdr.b_pabd, buf->b_data,
2315			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2316
2317			/*
2318			 * Absent hardware errors or software bugs, this should
2319			 * be impossible, but log it anyway so we can debug it.
2320			 */
2321			if (error != 0) {
2322				zfs_dbgmsg(
2323				    "hdr %p, compress %d, psize %d, lsize %d",
2324				    hdr, HDR_GET_COMPRESS(hdr),
2325				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2326				return (SET_ERROR(EIO));
2327			}
2328		}
2329	}
2330
2331	/* Byteswap the buf's data if necessary */
2332	if (bswap != DMU_BSWAP_NUMFUNCS) {
2333		ASSERT(!HDR_SHARED_DATA(hdr));
2334		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2335		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2336	}
2337
2338	/* Compute the hdr's checksum if necessary */
2339	arc_cksum_compute(buf);
2340
2341	return (0);
2342}
2343
2344int
2345arc_decompress(arc_buf_t *buf)
2346{
2347	return (arc_buf_fill(buf, B_FALSE));
2348}
2349
2350/*
2351 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2352 */
2353static uint64_t
2354arc_hdr_size(arc_buf_hdr_t *hdr)
2355{
2356	uint64_t size;
2357
2358	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2359	    HDR_GET_PSIZE(hdr) > 0) {
2360		size = HDR_GET_PSIZE(hdr);
2361	} else {
2362		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2363		size = HDR_GET_LSIZE(hdr);
2364	}
2365	return (size);
2366}
2367
2368/*
2369 * Increment the amount of evictable space in the arc_state_t's refcount.
2370 * We account for the space used by the hdr and the arc buf individually
2371 * so that we can add and remove them from the refcount individually.
2372 */
2373static void
2374arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2375{
2376	arc_buf_contents_t type = arc_buf_type(hdr);
2377
2378	ASSERT(HDR_HAS_L1HDR(hdr));
2379
2380	if (GHOST_STATE(state)) {
2381		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2382		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2383		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2384		(void) refcount_add_many(&state->arcs_esize[type],
2385		    HDR_GET_LSIZE(hdr), hdr);
2386		return;
2387	}
2388
2389	ASSERT(!GHOST_STATE(state));
2390	if (hdr->b_l1hdr.b_pabd != NULL) {
2391		(void) refcount_add_many(&state->arcs_esize[type],
2392		    arc_hdr_size(hdr), hdr);
2393	}
2394	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2395	    buf = buf->b_next) {
2396		if (arc_buf_is_shared(buf))
2397			continue;
2398		(void) refcount_add_many(&state->arcs_esize[type],
2399		    arc_buf_size(buf), buf);
2400	}
2401}
2402
2403/*
2404 * Decrement the amount of evictable space in the arc_state_t's refcount.
2405 * We account for the space used by the hdr and the arc buf individually
2406 * so that we can add and remove them from the refcount individually.
2407 */
2408static void
2409arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2410{
2411	arc_buf_contents_t type = arc_buf_type(hdr);
2412
2413	ASSERT(HDR_HAS_L1HDR(hdr));
2414
2415	if (GHOST_STATE(state)) {
2416		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2417		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2418		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2419		(void) refcount_remove_many(&state->arcs_esize[type],
2420		    HDR_GET_LSIZE(hdr), hdr);
2421		return;
2422	}
2423
2424	ASSERT(!GHOST_STATE(state));
2425	if (hdr->b_l1hdr.b_pabd != NULL) {
2426		(void) refcount_remove_many(&state->arcs_esize[type],
2427		    arc_hdr_size(hdr), hdr);
2428	}
2429	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2430	    buf = buf->b_next) {
2431		if (arc_buf_is_shared(buf))
2432			continue;
2433		(void) refcount_remove_many(&state->arcs_esize[type],
2434		    arc_buf_size(buf), buf);
2435	}
2436}
2437
2438/*
2439 * Add a reference to this hdr indicating that someone is actively
2440 * referencing that memory. When the refcount transitions from 0 to 1,
2441 * we remove it from the respective arc_state_t list to indicate that
2442 * it is not evictable.
2443 */
2444static void
2445add_reference(arc_buf_hdr_t *hdr, void *tag)
2446{
2447	ASSERT(HDR_HAS_L1HDR(hdr));
2448	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2449		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2450		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2451		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2452	}
2453
2454	arc_state_t *state = hdr->b_l1hdr.b_state;
2455
2456	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2457	    (state != arc_anon)) {
2458		/* We don't use the L2-only state list. */
2459		if (state != arc_l2c_only) {
2460			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2461			    hdr);
2462			arc_evictable_space_decrement(hdr, state);
2463		}
2464		/* remove the prefetch flag if we get a reference */
2465		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2466	}
2467}
2468
2469/*
2470 * Remove a reference from this hdr. When the reference transitions from
2471 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2472 * list making it eligible for eviction.
2473 */
2474static int
2475remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2476{
2477	int cnt;
2478	arc_state_t *state = hdr->b_l1hdr.b_state;
2479
2480	ASSERT(HDR_HAS_L1HDR(hdr));
2481	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2482	ASSERT(!GHOST_STATE(state));
2483
2484	/*
2485	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2486	 * check to prevent usage of the arc_l2c_only list.
2487	 */
2488	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2489	    (state != arc_anon)) {
2490		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2491		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2492		arc_evictable_space_increment(hdr, state);
2493	}
2494	return (cnt);
2495}
2496
2497/*
2498 * Move the supplied buffer to the indicated state. The hash lock
2499 * for the buffer must be held by the caller.
2500 */
2501static void
2502arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2503    kmutex_t *hash_lock)
2504{
2505	arc_state_t *old_state;
2506	int64_t refcnt;
2507	uint32_t bufcnt;
2508	boolean_t update_old, update_new;
2509	arc_buf_contents_t buftype = arc_buf_type(hdr);
2510
2511	/*
2512	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2513	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2514	 * L1 hdr doesn't always exist when we change state to arc_anon before
2515	 * destroying a header, in which case reallocating to add the L1 hdr is
2516	 * pointless.
2517	 */
2518	if (HDR_HAS_L1HDR(hdr)) {
2519		old_state = hdr->b_l1hdr.b_state;
2520		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2521		bufcnt = hdr->b_l1hdr.b_bufcnt;
2522		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2523	} else {
2524		old_state = arc_l2c_only;
2525		refcnt = 0;
2526		bufcnt = 0;
2527		update_old = B_FALSE;
2528	}
2529	update_new = update_old;
2530
2531	ASSERT(MUTEX_HELD(hash_lock));
2532	ASSERT3P(new_state, !=, old_state);
2533	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2534	ASSERT(old_state != arc_anon || bufcnt <= 1);
2535
2536	/*
2537	 * If this buffer is evictable, transfer it from the
2538	 * old state list to the new state list.
2539	 */
2540	if (refcnt == 0) {
2541		if (old_state != arc_anon && old_state != arc_l2c_only) {
2542			ASSERT(HDR_HAS_L1HDR(hdr));
2543			multilist_remove(old_state->arcs_list[buftype], hdr);
2544
2545			if (GHOST_STATE(old_state)) {
2546				ASSERT0(bufcnt);
2547				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2548				update_old = B_TRUE;
2549			}
2550			arc_evictable_space_decrement(hdr, old_state);
2551		}
2552		if (new_state != arc_anon && new_state != arc_l2c_only) {
2553
2554			/*
2555			 * An L1 header always exists here, since if we're
2556			 * moving to some L1-cached state (i.e. not l2c_only or
2557			 * anonymous), we realloc the header to add an L1hdr
2558			 * beforehand.
2559			 */
2560			ASSERT(HDR_HAS_L1HDR(hdr));
2561			multilist_insert(new_state->arcs_list[buftype], hdr);
2562
2563			if (GHOST_STATE(new_state)) {
2564				ASSERT0(bufcnt);
2565				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2566				update_new = B_TRUE;
2567			}
2568			arc_evictable_space_increment(hdr, new_state);
2569		}
2570	}
2571
2572	ASSERT(!HDR_EMPTY(hdr));
2573	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2574		buf_hash_remove(hdr);
2575
2576	/* adjust state sizes (ignore arc_l2c_only) */
2577
2578	if (update_new && new_state != arc_l2c_only) {
2579		ASSERT(HDR_HAS_L1HDR(hdr));
2580		if (GHOST_STATE(new_state)) {
2581			ASSERT0(bufcnt);
2582
2583			/*
2584			 * When moving a header to a ghost state, we first
2585			 * remove all arc buffers. Thus, we'll have a
2586			 * bufcnt of zero, and no arc buffer to use for
2587			 * the reference. As a result, we use the arc
2588			 * header pointer for the reference.
2589			 */
2590			(void) refcount_add_many(&new_state->arcs_size,
2591			    HDR_GET_LSIZE(hdr), hdr);
2592			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2593		} else {
2594			uint32_t buffers = 0;
2595
2596			/*
2597			 * Each individual buffer holds a unique reference,
2598			 * thus we must remove each of these references one
2599			 * at a time.
2600			 */
2601			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2602			    buf = buf->b_next) {
2603				ASSERT3U(bufcnt, !=, 0);
2604				buffers++;
2605
2606				/*
2607				 * When the arc_buf_t is sharing the data
2608				 * block with the hdr, the owner of the
2609				 * reference belongs to the hdr. Only
2610				 * add to the refcount if the arc_buf_t is
2611				 * not shared.
2612				 */
2613				if (arc_buf_is_shared(buf))
2614					continue;
2615
2616				(void) refcount_add_many(&new_state->arcs_size,
2617				    arc_buf_size(buf), buf);
2618			}
2619			ASSERT3U(bufcnt, ==, buffers);
2620
2621			if (hdr->b_l1hdr.b_pabd != NULL) {
2622				(void) refcount_add_many(&new_state->arcs_size,
2623				    arc_hdr_size(hdr), hdr);
2624			} else {
2625				ASSERT(GHOST_STATE(old_state));
2626			}
2627		}
2628	}
2629
2630	if (update_old && old_state != arc_l2c_only) {
2631		ASSERT(HDR_HAS_L1HDR(hdr));
2632		if (GHOST_STATE(old_state)) {
2633			ASSERT0(bufcnt);
2634			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2635
2636			/*
2637			 * When moving a header off of a ghost state,
2638			 * the header will not contain any arc buffers.
2639			 * We use the arc header pointer for the reference
2640			 * which is exactly what we did when we put the
2641			 * header on the ghost state.
2642			 */
2643
2644			(void) refcount_remove_many(&old_state->arcs_size,
2645			    HDR_GET_LSIZE(hdr), hdr);
2646		} else {
2647			uint32_t buffers = 0;
2648
2649			/*
2650			 * Each individual buffer holds a unique reference,
2651			 * thus we must remove each of these references one
2652			 * at a time.
2653			 */
2654			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2655			    buf = buf->b_next) {
2656				ASSERT3U(bufcnt, !=, 0);
2657				buffers++;
2658
2659				/*
2660				 * When the arc_buf_t is sharing the data
2661				 * block with the hdr, the owner of the
2662				 * reference belongs to the hdr. Only
2663				 * add to the refcount if the arc_buf_t is
2664				 * not shared.
2665				 */
2666				if (arc_buf_is_shared(buf))
2667					continue;
2668
2669				(void) refcount_remove_many(
2670				    &old_state->arcs_size, arc_buf_size(buf),
2671				    buf);
2672			}
2673			ASSERT3U(bufcnt, ==, buffers);
2674			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2675			(void) refcount_remove_many(
2676			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2677		}
2678	}
2679
2680	if (HDR_HAS_L1HDR(hdr))
2681		hdr->b_l1hdr.b_state = new_state;
2682
2683	/*
2684	 * L2 headers should never be on the L2 state list since they don't
2685	 * have L1 headers allocated.
2686	 */
2687	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2688	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2689}
2690
2691void
2692arc_space_consume(uint64_t space, arc_space_type_t type)
2693{
2694	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2695
2696	switch (type) {
2697	case ARC_SPACE_DATA:
2698		aggsum_add(&astat_data_size, space);
2699		break;
2700	case ARC_SPACE_META:
2701		aggsum_add(&astat_metadata_size, space);
2702		break;
2703	case ARC_SPACE_OTHER:
2704		aggsum_add(&astat_other_size, space);
2705		break;
2706	case ARC_SPACE_HDRS:
2707		aggsum_add(&astat_hdr_size, space);
2708		break;
2709	case ARC_SPACE_L2HDRS:
2710		aggsum_add(&astat_l2_hdr_size, space);
2711		break;
2712	}
2713
2714	if (type != ARC_SPACE_DATA)
2715		aggsum_add(&arc_meta_used, space);
2716
2717	aggsum_add(&arc_size, space);
2718}
2719
2720void
2721arc_space_return(uint64_t space, arc_space_type_t type)
2722{
2723	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2724
2725	switch (type) {
2726	case ARC_SPACE_DATA:
2727		aggsum_add(&astat_data_size, -space);
2728		break;
2729	case ARC_SPACE_META:
2730		aggsum_add(&astat_metadata_size, -space);
2731		break;
2732	case ARC_SPACE_OTHER:
2733		aggsum_add(&astat_other_size, -space);
2734		break;
2735	case ARC_SPACE_HDRS:
2736		aggsum_add(&astat_hdr_size, -space);
2737		break;
2738	case ARC_SPACE_L2HDRS:
2739		aggsum_add(&astat_l2_hdr_size, -space);
2740		break;
2741	}
2742
2743	if (type != ARC_SPACE_DATA) {
2744		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2745		/*
2746		 * We use the upper bound here rather than the precise value
2747		 * because the arc_meta_max value doesn't need to be
2748		 * precise. It's only consumed by humans via arcstats.
2749		 */
2750		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2751			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2752		aggsum_add(&arc_meta_used, -space);
2753	}
2754
2755	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2756	aggsum_add(&arc_size, -space);
2757}
2758
2759/*
2760 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2761 * with the hdr's b_pabd.
2762 */
2763static boolean_t
2764arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2765{
2766	/*
2767	 * The criteria for sharing a hdr's data are:
2768	 * 1. the hdr's compression matches the buf's compression
2769	 * 2. the hdr doesn't need to be byteswapped
2770	 * 3. the hdr isn't already being shared
2771	 * 4. the buf is either compressed or it is the last buf in the hdr list
2772	 *
2773	 * Criterion #4 maintains the invariant that shared uncompressed
2774	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2775	 * might ask, "if a compressed buf is allocated first, won't that be the
2776	 * last thing in the list?", but in that case it's impossible to create
2777	 * a shared uncompressed buf anyway (because the hdr must be compressed
2778	 * to have the compressed buf). You might also think that #3 is
2779	 * sufficient to make this guarantee, however it's possible
2780	 * (specifically in the rare L2ARC write race mentioned in
2781	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2782	 * is sharable, but wasn't at the time of its allocation. Rather than
2783	 * allow a new shared uncompressed buf to be created and then shuffle
2784	 * the list around to make it the last element, this simply disallows
2785	 * sharing if the new buf isn't the first to be added.
2786	 */
2787	ASSERT3P(buf->b_hdr, ==, hdr);
2788	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2789	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2790	return (buf_compressed == hdr_compressed &&
2791	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2792	    !HDR_SHARED_DATA(hdr) &&
2793	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2794}
2795
2796/*
2797 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2798 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2799 * copy was made successfully, or an error code otherwise.
2800 */
2801static int
2802arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2803    boolean_t fill, arc_buf_t **ret)
2804{
2805	arc_buf_t *buf;
2806
2807	ASSERT(HDR_HAS_L1HDR(hdr));
2808	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2809	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2810	    hdr->b_type == ARC_BUFC_METADATA);
2811	ASSERT3P(ret, !=, NULL);
2812	ASSERT3P(*ret, ==, NULL);
2813
2814	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2815	buf->b_hdr = hdr;
2816	buf->b_data = NULL;
2817	buf->b_next = hdr->b_l1hdr.b_buf;
2818	buf->b_flags = 0;
2819
2820	add_reference(hdr, tag);
2821
2822	/*
2823	 * We're about to change the hdr's b_flags. We must either
2824	 * hold the hash_lock or be undiscoverable.
2825	 */
2826	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2827
2828	/*
2829	 * Only honor requests for compressed bufs if the hdr is actually
2830	 * compressed.
2831	 */
2832	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2833		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2834
2835	/*
2836	 * If the hdr's data can be shared then we share the data buffer and
2837	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2838	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2839	 * buffer to store the buf's data.
2840	 *
2841	 * There are two additional restrictions here because we're sharing
2842	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2843	 * actively involved in an L2ARC write, because if this buf is used by
2844	 * an arc_write() then the hdr's data buffer will be released when the
2845	 * write completes, even though the L2ARC write might still be using it.
2846	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2847	 * need to be ABD-aware.
2848	 */
2849	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2850	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2851
2852	/* Set up b_data and sharing */
2853	if (can_share) {
2854		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2855		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2856		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2857	} else {
2858		buf->b_data =
2859		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2860		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2861	}
2862	VERIFY3P(buf->b_data, !=, NULL);
2863
2864	hdr->b_l1hdr.b_buf = buf;
2865	hdr->b_l1hdr.b_bufcnt += 1;
2866
2867	/*
2868	 * If the user wants the data from the hdr, we need to either copy or
2869	 * decompress the data.
2870	 */
2871	if (fill) {
2872		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2873	}
2874
2875	return (0);
2876}
2877
2878static char *arc_onloan_tag = "onloan";
2879
2880static inline void
2881arc_loaned_bytes_update(int64_t delta)
2882{
2883	atomic_add_64(&arc_loaned_bytes, delta);
2884
2885	/* assert that it did not wrap around */
2886	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2887}
2888
2889/*
2890 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2891 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2892 * buffers must be returned to the arc before they can be used by the DMU or
2893 * freed.
2894 */
2895arc_buf_t *
2896arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2897{
2898	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2899	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2900
2901	arc_loaned_bytes_update(arc_buf_size(buf));
2902
2903	return (buf);
2904}
2905
2906arc_buf_t *
2907arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2908    enum zio_compress compression_type)
2909{
2910	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2911	    psize, lsize, compression_type);
2912
2913	arc_loaned_bytes_update(arc_buf_size(buf));
2914
2915	return (buf);
2916}
2917
2918
2919/*
2920 * Return a loaned arc buffer to the arc.
2921 */
2922void
2923arc_return_buf(arc_buf_t *buf, void *tag)
2924{
2925	arc_buf_hdr_t *hdr = buf->b_hdr;
2926
2927	ASSERT3P(buf->b_data, !=, NULL);
2928	ASSERT(HDR_HAS_L1HDR(hdr));
2929	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2930	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2931
2932	arc_loaned_bytes_update(-arc_buf_size(buf));
2933}
2934
2935/* Detach an arc_buf from a dbuf (tag) */
2936void
2937arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2938{
2939	arc_buf_hdr_t *hdr = buf->b_hdr;
2940
2941	ASSERT3P(buf->b_data, !=, NULL);
2942	ASSERT(HDR_HAS_L1HDR(hdr));
2943	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2944	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2945
2946	arc_loaned_bytes_update(arc_buf_size(buf));
2947}
2948
2949static void
2950l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2951{
2952	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2953
2954	df->l2df_abd = abd;
2955	df->l2df_size = size;
2956	df->l2df_type = type;
2957	mutex_enter(&l2arc_free_on_write_mtx);
2958	list_insert_head(l2arc_free_on_write, df);
2959	mutex_exit(&l2arc_free_on_write_mtx);
2960}
2961
2962static void
2963arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2964{
2965	arc_state_t *state = hdr->b_l1hdr.b_state;
2966	arc_buf_contents_t type = arc_buf_type(hdr);
2967	uint64_t size = arc_hdr_size(hdr);
2968
2969	/* protected by hash lock, if in the hash table */
2970	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2971		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2972		ASSERT(state != arc_anon && state != arc_l2c_only);
2973
2974		(void) refcount_remove_many(&state->arcs_esize[type],
2975		    size, hdr);
2976	}
2977	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2978	if (type == ARC_BUFC_METADATA) {
2979		arc_space_return(size, ARC_SPACE_META);
2980	} else {
2981		ASSERT(type == ARC_BUFC_DATA);
2982		arc_space_return(size, ARC_SPACE_DATA);
2983	}
2984
2985	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2986}
2987
2988/*
2989 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2990 * data buffer, we transfer the refcount ownership to the hdr and update
2991 * the appropriate kstats.
2992 */
2993static void
2994arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2995{
2996	arc_state_t *state = hdr->b_l1hdr.b_state;
2997
2998	ASSERT(arc_can_share(hdr, buf));
2999	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3000	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3001
3002	/*
3003	 * Start sharing the data buffer. We transfer the
3004	 * refcount ownership to the hdr since it always owns
3005	 * the refcount whenever an arc_buf_t is shared.
3006	 */
3007	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
3008	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3009	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3010	    HDR_ISTYPE_METADATA(hdr));
3011	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3012	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3013
3014	/*
3015	 * Since we've transferred ownership to the hdr we need
3016	 * to increment its compressed and uncompressed kstats and
3017	 * decrement the overhead size.
3018	 */
3019	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3020	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3021	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3022}
3023
3024static void
3025arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3026{
3027	arc_state_t *state = hdr->b_l1hdr.b_state;
3028
3029	ASSERT(arc_buf_is_shared(buf));
3030	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3031	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3032
3033	/*
3034	 * We are no longer sharing this buffer so we need
3035	 * to transfer its ownership to the rightful owner.
3036	 */
3037	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
3038	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3039	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3040	abd_put(hdr->b_l1hdr.b_pabd);
3041	hdr->b_l1hdr.b_pabd = NULL;
3042	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3043
3044	/*
3045	 * Since the buffer is no longer shared between
3046	 * the arc buf and the hdr, count it as overhead.
3047	 */
3048	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3049	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3050	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3051}
3052
3053/*
3054 * Remove an arc_buf_t from the hdr's buf list and return the last
3055 * arc_buf_t on the list. If no buffers remain on the list then return
3056 * NULL.
3057 */
3058static arc_buf_t *
3059arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3060{
3061	ASSERT(HDR_HAS_L1HDR(hdr));
3062	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3063
3064	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3065	arc_buf_t *lastbuf = NULL;
3066
3067	/*
3068	 * Remove the buf from the hdr list and locate the last
3069	 * remaining buffer on the list.
3070	 */
3071	while (*bufp != NULL) {
3072		if (*bufp == buf)
3073			*bufp = buf->b_next;
3074
3075		/*
3076		 * If we've removed a buffer in the middle of
3077		 * the list then update the lastbuf and update
3078		 * bufp.
3079		 */
3080		if (*bufp != NULL) {
3081			lastbuf = *bufp;
3082			bufp = &(*bufp)->b_next;
3083		}
3084	}
3085	buf->b_next = NULL;
3086	ASSERT3P(lastbuf, !=, buf);
3087	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3088	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3089	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3090
3091	return (lastbuf);
3092}
3093
3094/*
3095 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3096 * list and free it.
3097 */
3098static void
3099arc_buf_destroy_impl(arc_buf_t *buf)
3100{
3101	arc_buf_hdr_t *hdr = buf->b_hdr;
3102
3103	/*
3104	 * Free up the data associated with the buf but only if we're not
3105	 * sharing this with the hdr. If we are sharing it with the hdr, the
3106	 * hdr is responsible for doing the free.
3107	 */
3108	if (buf->b_data != NULL) {
3109		/*
3110		 * We're about to change the hdr's b_flags. We must either
3111		 * hold the hash_lock or be undiscoverable.
3112		 */
3113		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3114
3115		arc_cksum_verify(buf);
3116#ifdef illumos
3117		arc_buf_unwatch(buf);
3118#endif
3119
3120		if (arc_buf_is_shared(buf)) {
3121			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3122		} else {
3123			uint64_t size = arc_buf_size(buf);
3124			arc_free_data_buf(hdr, buf->b_data, size, buf);
3125			ARCSTAT_INCR(arcstat_overhead_size, -size);
3126		}
3127		buf->b_data = NULL;
3128
3129		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3130		hdr->b_l1hdr.b_bufcnt -= 1;
3131	}
3132
3133	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3134
3135	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3136		/*
3137		 * If the current arc_buf_t is sharing its data buffer with the
3138		 * hdr, then reassign the hdr's b_pabd to share it with the new
3139		 * buffer at the end of the list. The shared buffer is always
3140		 * the last one on the hdr's buffer list.
3141		 *
3142		 * There is an equivalent case for compressed bufs, but since
3143		 * they aren't guaranteed to be the last buf in the list and
3144		 * that is an exceedingly rare case, we just allow that space be
3145		 * wasted temporarily.
3146		 */
3147		if (lastbuf != NULL) {
3148			/* Only one buf can be shared at once */
3149			VERIFY(!arc_buf_is_shared(lastbuf));
3150			/* hdr is uncompressed so can't have compressed buf */
3151			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3152
3153			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3154			arc_hdr_free_pabd(hdr);
3155
3156			/*
3157			 * We must setup a new shared block between the
3158			 * last buffer and the hdr. The data would have
3159			 * been allocated by the arc buf so we need to transfer
3160			 * ownership to the hdr since it's now being shared.
3161			 */
3162			arc_share_buf(hdr, lastbuf);
3163		}
3164	} else if (HDR_SHARED_DATA(hdr)) {
3165		/*
3166		 * Uncompressed shared buffers are always at the end
3167		 * of the list. Compressed buffers don't have the
3168		 * same requirements. This makes it hard to
3169		 * simply assert that the lastbuf is shared so
3170		 * we rely on the hdr's compression flags to determine
3171		 * if we have a compressed, shared buffer.
3172		 */
3173		ASSERT3P(lastbuf, !=, NULL);
3174		ASSERT(arc_buf_is_shared(lastbuf) ||
3175		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
3176	}
3177
3178	/*
3179	 * Free the checksum if we're removing the last uncompressed buf from
3180	 * this hdr.
3181	 */
3182	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3183		arc_cksum_free(hdr);
3184	}
3185
3186	/* clean up the buf */
3187	buf->b_hdr = NULL;
3188	kmem_cache_free(buf_cache, buf);
3189}
3190
3191static void
3192arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
3193{
3194	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3195	ASSERT(HDR_HAS_L1HDR(hdr));
3196	ASSERT(!HDR_SHARED_DATA(hdr));
3197
3198	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3199	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
3200	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3201	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3202
3203	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3204	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3205}
3206
3207static void
3208arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
3209{
3210	ASSERT(HDR_HAS_L1HDR(hdr));
3211	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3212
3213	/*
3214	 * If the hdr is currently being written to the l2arc then
3215	 * we defer freeing the data by adding it to the l2arc_free_on_write
3216	 * list. The l2arc will free the data once it's finished
3217	 * writing it to the l2arc device.
3218	 */
3219	if (HDR_L2_WRITING(hdr)) {
3220		arc_hdr_free_on_write(hdr);
3221		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3222	} else {
3223		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3224		    arc_hdr_size(hdr), hdr);
3225	}
3226	hdr->b_l1hdr.b_pabd = NULL;
3227	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3228
3229	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3230	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3231}
3232
3233static arc_buf_hdr_t *
3234arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3235    enum zio_compress compression_type, arc_buf_contents_t type)
3236{
3237	arc_buf_hdr_t *hdr;
3238
3239	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3240
3241	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3242	ASSERT(HDR_EMPTY(hdr));
3243	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3244	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3245	HDR_SET_PSIZE(hdr, psize);
3246	HDR_SET_LSIZE(hdr, lsize);
3247	hdr->b_spa = spa;
3248	hdr->b_type = type;
3249	hdr->b_flags = 0;
3250	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3251	arc_hdr_set_compress(hdr, compression_type);
3252
3253	hdr->b_l1hdr.b_state = arc_anon;
3254	hdr->b_l1hdr.b_arc_access = 0;
3255	hdr->b_l1hdr.b_bufcnt = 0;
3256	hdr->b_l1hdr.b_buf = NULL;
3257
3258	/*
3259	 * Allocate the hdr's buffer. This will contain either
3260	 * the compressed or uncompressed data depending on the block
3261	 * it references and compressed arc enablement.
3262	 */
3263	arc_hdr_alloc_pabd(hdr);
3264	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3265
3266	return (hdr);
3267}
3268
3269/*
3270 * Transition between the two allocation states for the arc_buf_hdr struct.
3271 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3272 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3273 * version is used when a cache buffer is only in the L2ARC in order to reduce
3274 * memory usage.
3275 */
3276static arc_buf_hdr_t *
3277arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3278{
3279	ASSERT(HDR_HAS_L2HDR(hdr));
3280
3281	arc_buf_hdr_t *nhdr;
3282	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3283
3284	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3285	    (old == hdr_l2only_cache && new == hdr_full_cache));
3286
3287	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3288
3289	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3290	buf_hash_remove(hdr);
3291
3292	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3293
3294	if (new == hdr_full_cache) {
3295		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3296		/*
3297		 * arc_access and arc_change_state need to be aware that a
3298		 * header has just come out of L2ARC, so we set its state to
3299		 * l2c_only even though it's about to change.
3300		 */
3301		nhdr->b_l1hdr.b_state = arc_l2c_only;
3302
3303		/* Verify previous threads set to NULL before freeing */
3304		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3305	} else {
3306		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3307		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3308		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3309
3310		/*
3311		 * If we've reached here, We must have been called from
3312		 * arc_evict_hdr(), as such we should have already been
3313		 * removed from any ghost list we were previously on
3314		 * (which protects us from racing with arc_evict_state),
3315		 * thus no locking is needed during this check.
3316		 */
3317		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3318
3319		/*
3320		 * A buffer must not be moved into the arc_l2c_only
3321		 * state if it's not finished being written out to the
3322		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3323		 * might try to be accessed, even though it was removed.
3324		 */
3325		VERIFY(!HDR_L2_WRITING(hdr));
3326		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3327
3328#ifdef ZFS_DEBUG
3329		if (hdr->b_l1hdr.b_thawed != NULL) {
3330			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3331			hdr->b_l1hdr.b_thawed = NULL;
3332		}
3333#endif
3334
3335		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3336	}
3337	/*
3338	 * The header has been reallocated so we need to re-insert it into any
3339	 * lists it was on.
3340	 */
3341	(void) buf_hash_insert(nhdr, NULL);
3342
3343	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3344
3345	mutex_enter(&dev->l2ad_mtx);
3346
3347	/*
3348	 * We must place the realloc'ed header back into the list at
3349	 * the same spot. Otherwise, if it's placed earlier in the list,
3350	 * l2arc_write_buffers() could find it during the function's
3351	 * write phase, and try to write it out to the l2arc.
3352	 */
3353	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3354	list_remove(&dev->l2ad_buflist, hdr);
3355
3356	mutex_exit(&dev->l2ad_mtx);
3357
3358	/*
3359	 * Since we're using the pointer address as the tag when
3360	 * incrementing and decrementing the l2ad_alloc refcount, we
3361	 * must remove the old pointer (that we're about to destroy) and
3362	 * add the new pointer to the refcount. Otherwise we'd remove
3363	 * the wrong pointer address when calling arc_hdr_destroy() later.
3364	 */
3365
3366	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3367	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3368
3369	buf_discard_identity(hdr);
3370	kmem_cache_free(old, hdr);
3371
3372	return (nhdr);
3373}
3374
3375/*
3376 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3377 * The buf is returned thawed since we expect the consumer to modify it.
3378 */
3379arc_buf_t *
3380arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3381{
3382	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3383	    ZIO_COMPRESS_OFF, type);
3384	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3385
3386	arc_buf_t *buf = NULL;
3387	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3388	arc_buf_thaw(buf);
3389
3390	return (buf);
3391}
3392
3393/*
3394 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3395 * for bufs containing metadata.
3396 */
3397arc_buf_t *
3398arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3399    enum zio_compress compression_type)
3400{
3401	ASSERT3U(lsize, >, 0);
3402	ASSERT3U(lsize, >=, psize);
3403	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3404	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3405
3406	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3407	    compression_type, ARC_BUFC_DATA);
3408	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3409
3410	arc_buf_t *buf = NULL;
3411	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3412	arc_buf_thaw(buf);
3413	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3414
3415	if (!arc_buf_is_shared(buf)) {
3416		/*
3417		 * To ensure that the hdr has the correct data in it if we call
3418		 * arc_decompress() on this buf before it's been written to
3419		 * disk, it's easiest if we just set up sharing between the
3420		 * buf and the hdr.
3421		 */
3422		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3423		arc_hdr_free_pabd(hdr);
3424		arc_share_buf(hdr, buf);
3425	}
3426
3427	return (buf);
3428}
3429
3430static void
3431arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3432{
3433	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3434	l2arc_dev_t *dev = l2hdr->b_dev;
3435	uint64_t psize = arc_hdr_size(hdr);
3436
3437	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3438	ASSERT(HDR_HAS_L2HDR(hdr));
3439
3440	list_remove(&dev->l2ad_buflist, hdr);
3441
3442	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3443	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3444
3445	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3446
3447	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3448	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3449}
3450
3451static void
3452arc_hdr_destroy(arc_buf_hdr_t *hdr)
3453{
3454	if (HDR_HAS_L1HDR(hdr)) {
3455		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3456		    hdr->b_l1hdr.b_bufcnt > 0);
3457		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3458		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3459	}
3460	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3461	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3462
3463	if (!HDR_EMPTY(hdr))
3464		buf_discard_identity(hdr);
3465
3466	if (HDR_HAS_L2HDR(hdr)) {
3467		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3468		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3469
3470		if (!buflist_held)
3471			mutex_enter(&dev->l2ad_mtx);
3472
3473		/*
3474		 * Even though we checked this conditional above, we
3475		 * need to check this again now that we have the
3476		 * l2ad_mtx. This is because we could be racing with
3477		 * another thread calling l2arc_evict() which might have
3478		 * destroyed this header's L2 portion as we were waiting
3479		 * to acquire the l2ad_mtx. If that happens, we don't
3480		 * want to re-destroy the header's L2 portion.
3481		 */
3482		if (HDR_HAS_L2HDR(hdr)) {
3483			l2arc_trim(hdr);
3484			arc_hdr_l2hdr_destroy(hdr);
3485		}
3486
3487		if (!buflist_held)
3488			mutex_exit(&dev->l2ad_mtx);
3489	}
3490
3491	if (HDR_HAS_L1HDR(hdr)) {
3492		arc_cksum_free(hdr);
3493
3494		while (hdr->b_l1hdr.b_buf != NULL)
3495			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3496
3497#ifdef ZFS_DEBUG
3498		if (hdr->b_l1hdr.b_thawed != NULL) {
3499			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3500			hdr->b_l1hdr.b_thawed = NULL;
3501		}
3502#endif
3503
3504		if (hdr->b_l1hdr.b_pabd != NULL) {
3505			arc_hdr_free_pabd(hdr);
3506		}
3507	}
3508
3509	ASSERT3P(hdr->b_hash_next, ==, NULL);
3510	if (HDR_HAS_L1HDR(hdr)) {
3511		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3512		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3513		kmem_cache_free(hdr_full_cache, hdr);
3514	} else {
3515		kmem_cache_free(hdr_l2only_cache, hdr);
3516	}
3517}
3518
3519void
3520arc_buf_destroy(arc_buf_t *buf, void* tag)
3521{
3522	arc_buf_hdr_t *hdr = buf->b_hdr;
3523	kmutex_t *hash_lock = HDR_LOCK(hdr);
3524
3525	if (hdr->b_l1hdr.b_state == arc_anon) {
3526		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3527		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3528		VERIFY0(remove_reference(hdr, NULL, tag));
3529		arc_hdr_destroy(hdr);
3530		return;
3531	}
3532
3533	mutex_enter(hash_lock);
3534	ASSERT3P(hdr, ==, buf->b_hdr);
3535	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3536	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3537	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3538	ASSERT3P(buf->b_data, !=, NULL);
3539
3540	(void) remove_reference(hdr, hash_lock, tag);
3541	arc_buf_destroy_impl(buf);
3542	mutex_exit(hash_lock);
3543}
3544
3545/*
3546 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3547 * state of the header is dependent on it's state prior to entering this
3548 * function. The following transitions are possible:
3549 *
3550 *    - arc_mru -> arc_mru_ghost
3551 *    - arc_mfu -> arc_mfu_ghost
3552 *    - arc_mru_ghost -> arc_l2c_only
3553 *    - arc_mru_ghost -> deleted
3554 *    - arc_mfu_ghost -> arc_l2c_only
3555 *    - arc_mfu_ghost -> deleted
3556 */
3557static int64_t
3558arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3559{
3560	arc_state_t *evicted_state, *state;
3561	int64_t bytes_evicted = 0;
3562	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3563	    zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3564
3565	ASSERT(MUTEX_HELD(hash_lock));
3566	ASSERT(HDR_HAS_L1HDR(hdr));
3567
3568	state = hdr->b_l1hdr.b_state;
3569	if (GHOST_STATE(state)) {
3570		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3571		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3572
3573		/*
3574		 * l2arc_write_buffers() relies on a header's L1 portion
3575		 * (i.e. its b_pabd field) during it's write phase.
3576		 * Thus, we cannot push a header onto the arc_l2c_only
3577		 * state (removing it's L1 piece) until the header is
3578		 * done being written to the l2arc.
3579		 */
3580		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3581			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3582			return (bytes_evicted);
3583		}
3584
3585		ARCSTAT_BUMP(arcstat_deleted);
3586		bytes_evicted += HDR_GET_LSIZE(hdr);
3587
3588		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3589
3590		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3591		if (HDR_HAS_L2HDR(hdr)) {
3592			/*
3593			 * This buffer is cached on the 2nd Level ARC;
3594			 * don't destroy the header.
3595			 */
3596			arc_change_state(arc_l2c_only, hdr, hash_lock);
3597			/*
3598			 * dropping from L1+L2 cached to L2-only,
3599			 * realloc to remove the L1 header.
3600			 */
3601			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3602			    hdr_l2only_cache);
3603		} else {
3604			arc_change_state(arc_anon, hdr, hash_lock);
3605			arc_hdr_destroy(hdr);
3606		}
3607		return (bytes_evicted);
3608	}
3609
3610	ASSERT(state == arc_mru || state == arc_mfu);
3611	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3612
3613	/* prefetch buffers have a minimum lifespan */
3614	if (HDR_IO_IN_PROGRESS(hdr) ||
3615	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3616	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3617		ARCSTAT_BUMP(arcstat_evict_skip);
3618		return (bytes_evicted);
3619	}
3620
3621	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3622	while (hdr->b_l1hdr.b_buf) {
3623		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3624		if (!mutex_tryenter(&buf->b_evict_lock)) {
3625			ARCSTAT_BUMP(arcstat_mutex_miss);
3626			break;
3627		}
3628		if (buf->b_data != NULL)
3629			bytes_evicted += HDR_GET_LSIZE(hdr);
3630		mutex_exit(&buf->b_evict_lock);
3631		arc_buf_destroy_impl(buf);
3632	}
3633
3634	if (HDR_HAS_L2HDR(hdr)) {
3635		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3636	} else {
3637		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3638			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3639			    HDR_GET_LSIZE(hdr));
3640		} else {
3641			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3642			    HDR_GET_LSIZE(hdr));
3643		}
3644	}
3645
3646	if (hdr->b_l1hdr.b_bufcnt == 0) {
3647		arc_cksum_free(hdr);
3648
3649		bytes_evicted += arc_hdr_size(hdr);
3650
3651		/*
3652		 * If this hdr is being evicted and has a compressed
3653		 * buffer then we discard it here before we change states.
3654		 * This ensures that the accounting is updated correctly
3655		 * in arc_free_data_impl().
3656		 */
3657		arc_hdr_free_pabd(hdr);
3658
3659		arc_change_state(evicted_state, hdr, hash_lock);
3660		ASSERT(HDR_IN_HASH_TABLE(hdr));
3661		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3662		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3663	}
3664
3665	return (bytes_evicted);
3666}
3667
3668static uint64_t
3669arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3670    uint64_t spa, int64_t bytes)
3671{
3672	multilist_sublist_t *mls;
3673	uint64_t bytes_evicted = 0;
3674	arc_buf_hdr_t *hdr;
3675	kmutex_t *hash_lock;
3676	int evict_count = 0;
3677
3678	ASSERT3P(marker, !=, NULL);
3679	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3680
3681	mls = multilist_sublist_lock(ml, idx);
3682
3683	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3684	    hdr = multilist_sublist_prev(mls, marker)) {
3685		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3686		    (evict_count >= zfs_arc_evict_batch_limit))
3687			break;
3688
3689		/*
3690		 * To keep our iteration location, move the marker
3691		 * forward. Since we're not holding hdr's hash lock, we
3692		 * must be very careful and not remove 'hdr' from the
3693		 * sublist. Otherwise, other consumers might mistake the
3694		 * 'hdr' as not being on a sublist when they call the
3695		 * multilist_link_active() function (they all rely on
3696		 * the hash lock protecting concurrent insertions and
3697		 * removals). multilist_sublist_move_forward() was
3698		 * specifically implemented to ensure this is the case
3699		 * (only 'marker' will be removed and re-inserted).
3700		 */
3701		multilist_sublist_move_forward(mls, marker);
3702
3703		/*
3704		 * The only case where the b_spa field should ever be
3705		 * zero, is the marker headers inserted by
3706		 * arc_evict_state(). It's possible for multiple threads
3707		 * to be calling arc_evict_state() concurrently (e.g.
3708		 * dsl_pool_close() and zio_inject_fault()), so we must
3709		 * skip any markers we see from these other threads.
3710		 */
3711		if (hdr->b_spa == 0)
3712			continue;
3713
3714		/* we're only interested in evicting buffers of a certain spa */
3715		if (spa != 0 && hdr->b_spa != spa) {
3716			ARCSTAT_BUMP(arcstat_evict_skip);
3717			continue;
3718		}
3719
3720		hash_lock = HDR_LOCK(hdr);
3721
3722		/*
3723		 * We aren't calling this function from any code path
3724		 * that would already be holding a hash lock, so we're
3725		 * asserting on this assumption to be defensive in case
3726		 * this ever changes. Without this check, it would be
3727		 * possible to incorrectly increment arcstat_mutex_miss
3728		 * below (e.g. if the code changed such that we called
3729		 * this function with a hash lock held).
3730		 */
3731		ASSERT(!MUTEX_HELD(hash_lock));
3732
3733		if (mutex_tryenter(hash_lock)) {
3734			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3735			mutex_exit(hash_lock);
3736
3737			bytes_evicted += evicted;
3738
3739			/*
3740			 * If evicted is zero, arc_evict_hdr() must have
3741			 * decided to skip this header, don't increment
3742			 * evict_count in this case.
3743			 */
3744			if (evicted != 0)
3745				evict_count++;
3746
3747			/*
3748			 * If arc_size isn't overflowing, signal any
3749			 * threads that might happen to be waiting.
3750			 *
3751			 * For each header evicted, we wake up a single
3752			 * thread. If we used cv_broadcast, we could
3753			 * wake up "too many" threads causing arc_size
3754			 * to significantly overflow arc_c; since
3755			 * arc_get_data_impl() doesn't check for overflow
3756			 * when it's woken up (it doesn't because it's
3757			 * possible for the ARC to be overflowing while
3758			 * full of un-evictable buffers, and the
3759			 * function should proceed in this case).
3760			 *
3761			 * If threads are left sleeping, due to not
3762			 * using cv_broadcast, they will be woken up
3763			 * just before arc_reclaim_thread() sleeps.
3764			 */
3765			mutex_enter(&arc_reclaim_lock);
3766			if (!arc_is_overflowing())
3767				cv_signal(&arc_reclaim_waiters_cv);
3768			mutex_exit(&arc_reclaim_lock);
3769		} else {
3770			ARCSTAT_BUMP(arcstat_mutex_miss);
3771		}
3772	}
3773
3774	multilist_sublist_unlock(mls);
3775
3776	return (bytes_evicted);
3777}
3778
3779/*
3780 * Evict buffers from the given arc state, until we've removed the
3781 * specified number of bytes. Move the removed buffers to the
3782 * appropriate evict state.
3783 *
3784 * This function makes a "best effort". It skips over any buffers
3785 * it can't get a hash_lock on, and so, may not catch all candidates.
3786 * It may also return without evicting as much space as requested.
3787 *
3788 * If bytes is specified using the special value ARC_EVICT_ALL, this
3789 * will evict all available (i.e. unlocked and evictable) buffers from
3790 * the given arc state; which is used by arc_flush().
3791 */
3792static uint64_t
3793arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3794    arc_buf_contents_t type)
3795{
3796	uint64_t total_evicted = 0;
3797	multilist_t *ml = state->arcs_list[type];
3798	int num_sublists;
3799	arc_buf_hdr_t **markers;
3800
3801	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3802
3803	num_sublists = multilist_get_num_sublists(ml);
3804
3805	/*
3806	 * If we've tried to evict from each sublist, made some
3807	 * progress, but still have not hit the target number of bytes
3808	 * to evict, we want to keep trying. The markers allow us to
3809	 * pick up where we left off for each individual sublist, rather
3810	 * than starting from the tail each time.
3811	 */
3812	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3813	for (int i = 0; i < num_sublists; i++) {
3814		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3815
3816		/*
3817		 * A b_spa of 0 is used to indicate that this header is
3818		 * a marker. This fact is used in arc_adjust_type() and
3819		 * arc_evict_state_impl().
3820		 */
3821		markers[i]->b_spa = 0;
3822
3823		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3824		multilist_sublist_insert_tail(mls, markers[i]);
3825		multilist_sublist_unlock(mls);
3826	}
3827
3828	/*
3829	 * While we haven't hit our target number of bytes to evict, or
3830	 * we're evicting all available buffers.
3831	 */
3832	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3833		/*
3834		 * Start eviction using a randomly selected sublist,
3835		 * this is to try and evenly balance eviction across all
3836		 * sublists. Always starting at the same sublist
3837		 * (e.g. index 0) would cause evictions to favor certain
3838		 * sublists over others.
3839		 */
3840		int sublist_idx = multilist_get_random_index(ml);
3841		uint64_t scan_evicted = 0;
3842
3843		for (int i = 0; i < num_sublists; i++) {
3844			uint64_t bytes_remaining;
3845			uint64_t bytes_evicted;
3846
3847			if (bytes == ARC_EVICT_ALL)
3848				bytes_remaining = ARC_EVICT_ALL;
3849			else if (total_evicted < bytes)
3850				bytes_remaining = bytes - total_evicted;
3851			else
3852				break;
3853
3854			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3855			    markers[sublist_idx], spa, bytes_remaining);
3856
3857			scan_evicted += bytes_evicted;
3858			total_evicted += bytes_evicted;
3859
3860			/* we've reached the end, wrap to the beginning */
3861			if (++sublist_idx >= num_sublists)
3862				sublist_idx = 0;
3863		}
3864
3865		/*
3866		 * If we didn't evict anything during this scan, we have
3867		 * no reason to believe we'll evict more during another
3868		 * scan, so break the loop.
3869		 */
3870		if (scan_evicted == 0) {
3871			/* This isn't possible, let's make that obvious */
3872			ASSERT3S(bytes, !=, 0);
3873
3874			/*
3875			 * When bytes is ARC_EVICT_ALL, the only way to
3876			 * break the loop is when scan_evicted is zero.
3877			 * In that case, we actually have evicted enough,
3878			 * so we don't want to increment the kstat.
3879			 */
3880			if (bytes != ARC_EVICT_ALL) {
3881				ASSERT3S(total_evicted, <, bytes);
3882				ARCSTAT_BUMP(arcstat_evict_not_enough);
3883			}
3884
3885			break;
3886		}
3887	}
3888
3889	for (int i = 0; i < num_sublists; i++) {
3890		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3891		multilist_sublist_remove(mls, markers[i]);
3892		multilist_sublist_unlock(mls);
3893
3894		kmem_cache_free(hdr_full_cache, markers[i]);
3895	}
3896	kmem_free(markers, sizeof (*markers) * num_sublists);
3897
3898	return (total_evicted);
3899}
3900
3901/*
3902 * Flush all "evictable" data of the given type from the arc state
3903 * specified. This will not evict any "active" buffers (i.e. referenced).
3904 *
3905 * When 'retry' is set to B_FALSE, the function will make a single pass
3906 * over the state and evict any buffers that it can. Since it doesn't
3907 * continually retry the eviction, it might end up leaving some buffers
3908 * in the ARC due to lock misses.
3909 *
3910 * When 'retry' is set to B_TRUE, the function will continually retry the
3911 * eviction until *all* evictable buffers have been removed from the
3912 * state. As a result, if concurrent insertions into the state are
3913 * allowed (e.g. if the ARC isn't shutting down), this function might
3914 * wind up in an infinite loop, continually trying to evict buffers.
3915 */
3916static uint64_t
3917arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3918    boolean_t retry)
3919{
3920	uint64_t evicted = 0;
3921
3922	while (refcount_count(&state->arcs_esize[type]) != 0) {
3923		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3924
3925		if (!retry)
3926			break;
3927	}
3928
3929	return (evicted);
3930}
3931
3932/*
3933 * Evict the specified number of bytes from the state specified,
3934 * restricting eviction to the spa and type given. This function
3935 * prevents us from trying to evict more from a state's list than
3936 * is "evictable", and to skip evicting altogether when passed a
3937 * negative value for "bytes". In contrast, arc_evict_state() will
3938 * evict everything it can, when passed a negative value for "bytes".
3939 */
3940static uint64_t
3941arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3942    arc_buf_contents_t type)
3943{
3944	int64_t delta;
3945
3946	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3947		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3948		return (arc_evict_state(state, spa, delta, type));
3949	}
3950
3951	return (0);
3952}
3953
3954/*
3955 * Evict metadata buffers from the cache, such that arc_meta_used is
3956 * capped by the arc_meta_limit tunable.
3957 */
3958static uint64_t
3959arc_adjust_meta(uint64_t meta_used)
3960{
3961	uint64_t total_evicted = 0;
3962	int64_t target;
3963
3964	/*
3965	 * If we're over the meta limit, we want to evict enough
3966	 * metadata to get back under the meta limit. We don't want to
3967	 * evict so much that we drop the MRU below arc_p, though. If
3968	 * we're over the meta limit more than we're over arc_p, we
3969	 * evict some from the MRU here, and some from the MFU below.
3970	 */
3971	target = MIN((int64_t)(meta_used - arc_meta_limit),
3972	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3973	    refcount_count(&arc_mru->arcs_size) - arc_p));
3974
3975	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3976
3977	/*
3978	 * Similar to the above, we want to evict enough bytes to get us
3979	 * below the meta limit, but not so much as to drop us below the
3980	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3981	 */
3982	target = MIN((int64_t)(meta_used - arc_meta_limit),
3983	    (int64_t)(refcount_count(&arc_mfu->arcs_size) -
3984	    (arc_c - arc_p)));
3985
3986	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3987
3988	return (total_evicted);
3989}
3990
3991/*
3992 * Return the type of the oldest buffer in the given arc state
3993 *
3994 * This function will select a random sublist of type ARC_BUFC_DATA and
3995 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3996 * is compared, and the type which contains the "older" buffer will be
3997 * returned.
3998 */
3999static arc_buf_contents_t
4000arc_adjust_type(arc_state_t *state)
4001{
4002	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4003	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4004	int data_idx = multilist_get_random_index(data_ml);
4005	int meta_idx = multilist_get_random_index(meta_ml);
4006	multilist_sublist_t *data_mls;
4007	multilist_sublist_t *meta_mls;
4008	arc_buf_contents_t type;
4009	arc_buf_hdr_t *data_hdr;
4010	arc_buf_hdr_t *meta_hdr;
4011
4012	/*
4013	 * We keep the sublist lock until we're finished, to prevent
4014	 * the headers from being destroyed via arc_evict_state().
4015	 */
4016	data_mls = multilist_sublist_lock(data_ml, data_idx);
4017	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4018
4019	/*
4020	 * These two loops are to ensure we skip any markers that
4021	 * might be at the tail of the lists due to arc_evict_state().
4022	 */
4023
4024	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4025	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4026		if (data_hdr->b_spa != 0)
4027			break;
4028	}
4029
4030	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4031	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4032		if (meta_hdr->b_spa != 0)
4033			break;
4034	}
4035
4036	if (data_hdr == NULL && meta_hdr == NULL) {
4037		type = ARC_BUFC_DATA;
4038	} else if (data_hdr == NULL) {
4039		ASSERT3P(meta_hdr, !=, NULL);
4040		type = ARC_BUFC_METADATA;
4041	} else if (meta_hdr == NULL) {
4042		ASSERT3P(data_hdr, !=, NULL);
4043		type = ARC_BUFC_DATA;
4044	} else {
4045		ASSERT3P(data_hdr, !=, NULL);
4046		ASSERT3P(meta_hdr, !=, NULL);
4047
4048		/* The headers can't be on the sublist without an L1 header */
4049		ASSERT(HDR_HAS_L1HDR(data_hdr));
4050		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4051
4052		if (data_hdr->b_l1hdr.b_arc_access <
4053		    meta_hdr->b_l1hdr.b_arc_access) {
4054			type = ARC_BUFC_DATA;
4055		} else {
4056			type = ARC_BUFC_METADATA;
4057		}
4058	}
4059
4060	multilist_sublist_unlock(meta_mls);
4061	multilist_sublist_unlock(data_mls);
4062
4063	return (type);
4064}
4065
4066/*
4067 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4068 */
4069static uint64_t
4070arc_adjust(void)
4071{
4072	uint64_t total_evicted = 0;
4073	uint64_t bytes;
4074	int64_t target;
4075	uint64_t asize = aggsum_value(&arc_size);
4076	uint64_t ameta = aggsum_value(&arc_meta_used);
4077
4078	/*
4079	 * If we're over arc_meta_limit, we want to correct that before
4080	 * potentially evicting data buffers below.
4081	 */
4082	total_evicted += arc_adjust_meta(ameta);
4083
4084	/*
4085	 * Adjust MRU size
4086	 *
4087	 * If we're over the target cache size, we want to evict enough
4088	 * from the list to get back to our target size. We don't want
4089	 * to evict too much from the MRU, such that it drops below
4090	 * arc_p. So, if we're over our target cache size more than
4091	 * the MRU is over arc_p, we'll evict enough to get back to
4092	 * arc_p here, and then evict more from the MFU below.
4093	 */
4094	target = MIN((int64_t)(asize - arc_c),
4095	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
4096	    refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4097
4098	/*
4099	 * If we're below arc_meta_min, always prefer to evict data.
4100	 * Otherwise, try to satisfy the requested number of bytes to
4101	 * evict from the type which contains older buffers; in an
4102	 * effort to keep newer buffers in the cache regardless of their
4103	 * type. If we cannot satisfy the number of bytes from this
4104	 * type, spill over into the next type.
4105	 */
4106	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4107	    ameta > arc_meta_min) {
4108		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4109		total_evicted += bytes;
4110
4111		/*
4112		 * If we couldn't evict our target number of bytes from
4113		 * metadata, we try to get the rest from data.
4114		 */
4115		target -= bytes;
4116
4117		total_evicted +=
4118		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4119	} else {
4120		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4121		total_evicted += bytes;
4122
4123		/*
4124		 * If we couldn't evict our target number of bytes from
4125		 * data, we try to get the rest from metadata.
4126		 */
4127		target -= bytes;
4128
4129		total_evicted +=
4130		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4131	}
4132
4133	/*
4134	 * Re-sum ARC stats after the first round of evictions.
4135	 */
4136	asize = aggsum_value(&arc_size);
4137	ameta = aggsum_value(&arc_meta_used);
4138
4139	/*
4140	 * Adjust MFU size
4141	 *
4142	 * Now that we've tried to evict enough from the MRU to get its
4143	 * size back to arc_p, if we're still above the target cache
4144	 * size, we evict the rest from the MFU.
4145	 */
4146	target = asize - arc_c;
4147
4148	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4149	    ameta > arc_meta_min) {
4150		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4151		total_evicted += bytes;
4152
4153		/*
4154		 * If we couldn't evict our target number of bytes from
4155		 * metadata, we try to get the rest from data.
4156		 */
4157		target -= bytes;
4158
4159		total_evicted +=
4160		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4161	} else {
4162		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4163		total_evicted += bytes;
4164
4165		/*
4166		 * If we couldn't evict our target number of bytes from
4167		 * data, we try to get the rest from data.
4168		 */
4169		target -= bytes;
4170
4171		total_evicted +=
4172		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4173	}
4174
4175	/*
4176	 * Adjust ghost lists
4177	 *
4178	 * In addition to the above, the ARC also defines target values
4179	 * for the ghost lists. The sum of the mru list and mru ghost
4180	 * list should never exceed the target size of the cache, and
4181	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4182	 * ghost list should never exceed twice the target size of the
4183	 * cache. The following logic enforces these limits on the ghost
4184	 * caches, and evicts from them as needed.
4185	 */
4186	target = refcount_count(&arc_mru->arcs_size) +
4187	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4188
4189	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4190	total_evicted += bytes;
4191
4192	target -= bytes;
4193
4194	total_evicted +=
4195	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4196
4197	/*
4198	 * We assume the sum of the mru list and mfu list is less than
4199	 * or equal to arc_c (we enforced this above), which means we
4200	 * can use the simpler of the two equations below:
4201	 *
4202	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4203	 *		    mru ghost + mfu ghost <= arc_c
4204	 */
4205	target = refcount_count(&arc_mru_ghost->arcs_size) +
4206	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4207
4208	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4209	total_evicted += bytes;
4210
4211	target -= bytes;
4212
4213	total_evicted +=
4214	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4215
4216	return (total_evicted);
4217}
4218
4219void
4220arc_flush(spa_t *spa, boolean_t retry)
4221{
4222	uint64_t guid = 0;
4223
4224	/*
4225	 * If retry is B_TRUE, a spa must not be specified since we have
4226	 * no good way to determine if all of a spa's buffers have been
4227	 * evicted from an arc state.
4228	 */
4229	ASSERT(!retry || spa == 0);
4230
4231	if (spa != NULL)
4232		guid = spa_load_guid(spa);
4233
4234	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4235	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4236
4237	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4238	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4239
4240	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4241	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4242
4243	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4244	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4245}
4246
4247void
4248arc_shrink(int64_t to_free)
4249{
4250	uint64_t asize = aggsum_value(&arc_size);
4251	if (arc_c > arc_c_min) {
4252		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
4253			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
4254		if (arc_c > arc_c_min + to_free)
4255			atomic_add_64(&arc_c, -to_free);
4256		else
4257			arc_c = arc_c_min;
4258
4259		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4260		if (asize < arc_c)
4261			arc_c = MAX(asize, arc_c_min);
4262		if (arc_p > arc_c)
4263			arc_p = (arc_c >> 1);
4264
4265		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
4266			arc_p);
4267
4268		ASSERT(arc_c >= arc_c_min);
4269		ASSERT((int64_t)arc_p >= 0);
4270	}
4271
4272	if (asize > arc_c) {
4273		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, asize,
4274			uint64_t, arc_c);
4275		(void) arc_adjust();
4276	}
4277}
4278
4279typedef enum free_memory_reason_t {
4280	FMR_UNKNOWN,
4281	FMR_NEEDFREE,
4282	FMR_LOTSFREE,
4283	FMR_SWAPFS_MINFREE,
4284	FMR_PAGES_PP_MAXIMUM,
4285	FMR_HEAP_ARENA,
4286	FMR_ZIO_ARENA,
4287	FMR_ZIO_FRAG,
4288} free_memory_reason_t;
4289
4290int64_t last_free_memory;
4291free_memory_reason_t last_free_reason;
4292
4293/*
4294 * Additional reserve of pages for pp_reserve.
4295 */
4296int64_t arc_pages_pp_reserve = 64;
4297
4298/*
4299 * Additional reserve of pages for swapfs.
4300 */
4301int64_t arc_swapfs_reserve = 64;
4302
4303/*
4304 * Return the amount of memory that can be consumed before reclaim will be
4305 * needed.  Positive if there is sufficient free memory, negative indicates
4306 * the amount of memory that needs to be freed up.
4307 */
4308static int64_t
4309arc_available_memory(void)
4310{
4311	int64_t lowest = INT64_MAX;
4312	int64_t n;
4313	free_memory_reason_t r = FMR_UNKNOWN;
4314
4315#ifdef _KERNEL
4316#ifdef __FreeBSD__
4317	/*
4318	 * Cooperate with pagedaemon when it's time for it to scan
4319	 * and reclaim some pages.
4320	 */
4321	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
4322	if (n < lowest) {
4323		lowest = n;
4324		r = FMR_LOTSFREE;
4325	}
4326
4327#else
4328	if (needfree > 0) {
4329		n = PAGESIZE * (-needfree);
4330		if (n < lowest) {
4331			lowest = n;
4332			r = FMR_NEEDFREE;
4333		}
4334	}
4335
4336	/*
4337	 * check that we're out of range of the pageout scanner.  It starts to
4338	 * schedule paging if freemem is less than lotsfree and needfree.
4339	 * lotsfree is the high-water mark for pageout, and needfree is the
4340	 * number of needed free pages.  We add extra pages here to make sure
4341	 * the scanner doesn't start up while we're freeing memory.
4342	 */
4343	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4344	if (n < lowest) {
4345		lowest = n;
4346		r = FMR_LOTSFREE;
4347	}
4348
4349	/*
4350	 * check to make sure that swapfs has enough space so that anon
4351	 * reservations can still succeed. anon_resvmem() checks that the
4352	 * availrmem is greater than swapfs_minfree, and the number of reserved
4353	 * swap pages.  We also add a bit of extra here just to prevent
4354	 * circumstances from getting really dire.
4355	 */
4356	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4357	    desfree - arc_swapfs_reserve);
4358	if (n < lowest) {
4359		lowest = n;
4360		r = FMR_SWAPFS_MINFREE;
4361	}
4362
4363
4364	/*
4365	 * Check that we have enough availrmem that memory locking (e.g., via
4366	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4367	 * stores the number of pages that cannot be locked; when availrmem
4368	 * drops below pages_pp_maximum, page locking mechanisms such as
4369	 * page_pp_lock() will fail.)
4370	 */
4371	n = PAGESIZE * (availrmem - pages_pp_maximum -
4372	    arc_pages_pp_reserve);
4373	if (n < lowest) {
4374		lowest = n;
4375		r = FMR_PAGES_PP_MAXIMUM;
4376	}
4377
4378#endif	/* __FreeBSD__ */
4379#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4380	/*
4381	 * If we're on an i386 platform, it's possible that we'll exhaust the
4382	 * kernel heap space before we ever run out of available physical
4383	 * memory.  Most checks of the size of the heap_area compare against
4384	 * tune.t_minarmem, which is the minimum available real memory that we
4385	 * can have in the system.  However, this is generally fixed at 25 pages
4386	 * which is so low that it's useless.  In this comparison, we seek to
4387	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4388	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4389	 * free)
4390	 */
4391	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4392	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4393	if (n < lowest) {
4394		lowest = n;
4395		r = FMR_HEAP_ARENA;
4396	}
4397#define	zio_arena	NULL
4398#else
4399#define	zio_arena	heap_arena
4400#endif
4401
4402	/*
4403	 * If zio data pages are being allocated out of a separate heap segment,
4404	 * then enforce that the size of available vmem for this arena remains
4405	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4406	 *
4407	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4408	 * memory (in the zio_arena) free, which can avoid memory
4409	 * fragmentation issues.
4410	 */
4411	if (zio_arena != NULL) {
4412		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4413		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4414		    arc_zio_arena_free_shift);
4415		if (n < lowest) {
4416			lowest = n;
4417			r = FMR_ZIO_ARENA;
4418		}
4419	}
4420
4421	/*
4422	 * Above limits know nothing about real level of KVA fragmentation.
4423	 * Start aggressive reclamation if too little sequential KVA left.
4424	 */
4425	if (lowest > 0) {
4426		n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ?
4427		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
4428		    INT64_MAX;
4429		if (n < lowest) {
4430			lowest = n;
4431			r = FMR_ZIO_FRAG;
4432		}
4433	}
4434
4435#else	/* _KERNEL */
4436	/* Every 100 calls, free a small amount */
4437	if (spa_get_random(100) == 0)
4438		lowest = -1024;
4439#endif	/* _KERNEL */
4440
4441	last_free_memory = lowest;
4442	last_free_reason = r;
4443	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
4444	return (lowest);
4445}
4446
4447
4448/*
4449 * Determine if the system is under memory pressure and is asking
4450 * to reclaim memory. A return value of B_TRUE indicates that the system
4451 * is under memory pressure and that the arc should adjust accordingly.
4452 */
4453static boolean_t
4454arc_reclaim_needed(void)
4455{
4456	return (arc_available_memory() < 0);
4457}
4458
4459extern kmem_cache_t	*zio_buf_cache[];
4460extern kmem_cache_t	*zio_data_buf_cache[];
4461extern kmem_cache_t	*range_seg_cache;
4462extern kmem_cache_t	*abd_chunk_cache;
4463
4464static __noinline void
4465arc_kmem_reap_now(void)
4466{
4467	size_t			i;
4468	kmem_cache_t		*prev_cache = NULL;
4469	kmem_cache_t		*prev_data_cache = NULL;
4470
4471	DTRACE_PROBE(arc__kmem_reap_start);
4472#ifdef _KERNEL
4473	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4474		/*
4475		 * We are exceeding our meta-data cache limit.
4476		 * Purge some DNLC entries to release holds on meta-data.
4477		 */
4478		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4479	}
4480#if defined(__i386)
4481	/*
4482	 * Reclaim unused memory from all kmem caches.
4483	 */
4484	kmem_reap();
4485#endif
4486#endif
4487
4488	/*
4489	 * If a kmem reap is already active, don't schedule more.  We must
4490	 * check for this because kmem_cache_reap_soon() won't actually
4491	 * block on the cache being reaped (this is to prevent callers from
4492	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4493	 * on a system with many, many full magazines, can take minutes).
4494	 */
4495	if (kmem_cache_reap_active())
4496		return;
4497
4498	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4499		if (zio_buf_cache[i] != prev_cache) {
4500			prev_cache = zio_buf_cache[i];
4501			kmem_cache_reap_soon(zio_buf_cache[i]);
4502		}
4503		if (zio_data_buf_cache[i] != prev_data_cache) {
4504			prev_data_cache = zio_data_buf_cache[i];
4505			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4506		}
4507	}
4508	kmem_cache_reap_soon(abd_chunk_cache);
4509	kmem_cache_reap_soon(buf_cache);
4510	kmem_cache_reap_soon(hdr_full_cache);
4511	kmem_cache_reap_soon(hdr_l2only_cache);
4512	kmem_cache_reap_soon(range_seg_cache);
4513
4514#ifdef illumos
4515	if (zio_arena != NULL) {
4516		/*
4517		 * Ask the vmem arena to reclaim unused memory from its
4518		 * quantum caches.
4519		 */
4520		vmem_qcache_reap(zio_arena);
4521	}
4522#endif
4523	DTRACE_PROBE(arc__kmem_reap_end);
4524}
4525
4526/*
4527 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4528 * enough data and signal them to proceed. When this happens, the threads in
4529 * arc_get_data_impl() are sleeping while holding the hash lock for their
4530 * particular arc header. Thus, we must be careful to never sleep on a
4531 * hash lock in this thread. This is to prevent the following deadlock:
4532 *
4533 *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4534 *    waiting for the reclaim thread to signal it.
4535 *
4536 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4537 *    fails, and goes to sleep forever.
4538 *
4539 * This possible deadlock is avoided by always acquiring a hash lock
4540 * using mutex_tryenter() from arc_reclaim_thread().
4541 */
4542/* ARGSUSED */
4543static void
4544arc_reclaim_thread(void *unused __unused)
4545{
4546	hrtime_t		growtime = 0;
4547	hrtime_t		kmem_reap_time = 0;
4548	callb_cpr_t		cpr;
4549
4550	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4551
4552	mutex_enter(&arc_reclaim_lock);
4553	while (!arc_reclaim_thread_exit) {
4554		uint64_t evicted = 0;
4555
4556		/*
4557		 * This is necessary in order for the mdb ::arc dcmd to
4558		 * show up to date information. Since the ::arc command
4559		 * does not call the kstat's update function, without
4560		 * this call, the command may show stale stats for the
4561		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4562		 * with this change, the data might be up to 1 second
4563		 * out of date; but that should suffice. The arc_state_t
4564		 * structures can be queried directly if more accurate
4565		 * information is needed.
4566		 */
4567		if (arc_ksp != NULL)
4568			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4569
4570		mutex_exit(&arc_reclaim_lock);
4571
4572		/*
4573		 * We call arc_adjust() before (possibly) calling
4574		 * arc_kmem_reap_now(), so that we can wake up
4575		 * arc_get_data_impl() sooner.
4576		 */
4577		evicted = arc_adjust();
4578
4579		int64_t free_memory = arc_available_memory();
4580		if (free_memory < 0) {
4581			hrtime_t curtime = gethrtime();
4582			arc_no_grow = B_TRUE;
4583			arc_warm = B_TRUE;
4584
4585			/*
4586			 * Wait at least zfs_grow_retry (default 60) seconds
4587			 * before considering growing.
4588			 */
4589			growtime = curtime + SEC2NSEC(arc_grow_retry);
4590
4591			/*
4592			 * Wait at least arc_kmem_cache_reap_retry_ms
4593			 * between arc_kmem_reap_now() calls. Without
4594			 * this check it is possible to end up in a
4595			 * situation where we spend lots of time
4596			 * reaping caches, while we're near arc_c_min.
4597			 */
4598			if (curtime >= kmem_reap_time) {
4599				arc_kmem_reap_now();
4600				kmem_reap_time = gethrtime() +
4601				    MSEC2NSEC(arc_kmem_cache_reap_retry_ms);
4602			}
4603
4604			/*
4605			 * If we are still low on memory, shrink the ARC
4606			 * so that we have arc_shrink_min free space.
4607			 */
4608			free_memory = arc_available_memory();
4609
4610			int64_t to_free =
4611			    (arc_c >> arc_shrink_shift) - free_memory;
4612			if (to_free > 0) {
4613#ifdef _KERNEL
4614#ifdef illumos
4615				to_free = MAX(to_free, ptob(needfree));
4616#endif
4617#endif
4618				arc_shrink(to_free);
4619			}
4620		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4621			arc_no_grow = B_TRUE;
4622		} else if (gethrtime() >= growtime) {
4623			arc_no_grow = B_FALSE;
4624		}
4625
4626		mutex_enter(&arc_reclaim_lock);
4627
4628		/*
4629		 * If evicted is zero, we couldn't evict anything via
4630		 * arc_adjust(). This could be due to hash lock
4631		 * collisions, but more likely due to the majority of
4632		 * arc buffers being unevictable. Therefore, even if
4633		 * arc_size is above arc_c, another pass is unlikely to
4634		 * be helpful and could potentially cause us to enter an
4635		 * infinite loop.
4636		 */
4637		if (aggsum_compare(&arc_size, arc_c) <= 0|| evicted == 0) {
4638			/*
4639			 * We're either no longer overflowing, or we
4640			 * can't evict anything more, so we should wake
4641			 * up any threads before we go to sleep.
4642			 */
4643			cv_broadcast(&arc_reclaim_waiters_cv);
4644
4645			/*
4646			 * Block until signaled, or after one second (we
4647			 * might need to perform arc_kmem_reap_now()
4648			 * even if we aren't being signalled)
4649			 */
4650			CALLB_CPR_SAFE_BEGIN(&cpr);
4651			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4652			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4653			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4654		}
4655	}
4656
4657	arc_reclaim_thread_exit = B_FALSE;
4658	cv_broadcast(&arc_reclaim_thread_cv);
4659	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4660	thread_exit();
4661}
4662
4663static u_int arc_dnlc_evicts_arg;
4664extern struct vfsops zfs_vfsops;
4665
4666static void
4667arc_dnlc_evicts_thread(void *dummy __unused)
4668{
4669	callb_cpr_t cpr;
4670	u_int percent;
4671
4672	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
4673
4674	mutex_enter(&arc_dnlc_evicts_lock);
4675	while (!arc_dnlc_evicts_thread_exit) {
4676		CALLB_CPR_SAFE_BEGIN(&cpr);
4677		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
4678		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
4679		if (arc_dnlc_evicts_arg != 0) {
4680			percent = arc_dnlc_evicts_arg;
4681			mutex_exit(&arc_dnlc_evicts_lock);
4682#ifdef _KERNEL
4683			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
4684#endif
4685			mutex_enter(&arc_dnlc_evicts_lock);
4686			/*
4687			 * Clear our token only after vnlru_free()
4688			 * pass is done, to avoid false queueing of
4689			 * the requests.
4690			 */
4691			arc_dnlc_evicts_arg = 0;
4692		}
4693	}
4694	arc_dnlc_evicts_thread_exit = FALSE;
4695	cv_broadcast(&arc_dnlc_evicts_cv);
4696	CALLB_CPR_EXIT(&cpr);
4697	thread_exit();
4698}
4699
4700void
4701dnlc_reduce_cache(void *arg)
4702{
4703	u_int percent;
4704
4705	percent = (u_int)(uintptr_t)arg;
4706	mutex_enter(&arc_dnlc_evicts_lock);
4707	if (arc_dnlc_evicts_arg == 0) {
4708		arc_dnlc_evicts_arg = percent;
4709		cv_broadcast(&arc_dnlc_evicts_cv);
4710	}
4711	mutex_exit(&arc_dnlc_evicts_lock);
4712}
4713
4714/*
4715 * Adapt arc info given the number of bytes we are trying to add and
4716 * the state that we are comming from.  This function is only called
4717 * when we are adding new content to the cache.
4718 */
4719static void
4720arc_adapt(int bytes, arc_state_t *state)
4721{
4722	int mult;
4723	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4724	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4725	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4726
4727	if (state == arc_l2c_only)
4728		return;
4729
4730	ASSERT(bytes > 0);
4731	/*
4732	 * Adapt the target size of the MRU list:
4733	 *	- if we just hit in the MRU ghost list, then increase
4734	 *	  the target size of the MRU list.
4735	 *	- if we just hit in the MFU ghost list, then increase
4736	 *	  the target size of the MFU list by decreasing the
4737	 *	  target size of the MRU list.
4738	 */
4739	if (state == arc_mru_ghost) {
4740		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4741		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4742
4743		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4744	} else if (state == arc_mfu_ghost) {
4745		uint64_t delta;
4746
4747		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4748		mult = MIN(mult, 10);
4749
4750		delta = MIN(bytes * mult, arc_p);
4751		arc_p = MAX(arc_p_min, arc_p - delta);
4752	}
4753	ASSERT((int64_t)arc_p >= 0);
4754
4755	if (arc_reclaim_needed()) {
4756		cv_signal(&arc_reclaim_thread_cv);
4757		return;
4758	}
4759
4760	if (arc_no_grow)
4761		return;
4762
4763	if (arc_c >= arc_c_max)
4764		return;
4765
4766	/*
4767	 * If we're within (2 * maxblocksize) bytes of the target
4768	 * cache size, increment the target cache size
4769	 */
4770	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4771	    0) {
4772		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4773		atomic_add_64(&arc_c, (int64_t)bytes);
4774		if (arc_c > arc_c_max)
4775			arc_c = arc_c_max;
4776		else if (state == arc_anon)
4777			atomic_add_64(&arc_p, (int64_t)bytes);
4778		if (arc_p > arc_c)
4779			arc_p = arc_c;
4780	}
4781	ASSERT((int64_t)arc_p >= 0);
4782}
4783
4784/*
4785 * Check if arc_size has grown past our upper threshold, determined by
4786 * zfs_arc_overflow_shift.
4787 */
4788static boolean_t
4789arc_is_overflowing(void)
4790{
4791	/* Always allow at least one block of overflow */
4792	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4793	    arc_c >> zfs_arc_overflow_shift);
4794
4795	/*
4796	 * We just compare the lower bound here for performance reasons. Our
4797	 * primary goals are to make sure that the arc never grows without
4798	 * bound, and that it can reach its maximum size. This check
4799	 * accomplishes both goals. The maximum amount we could run over by is
4800	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4801	 * in the ARC. In practice, that's in the tens of MB, which is low
4802	 * enough to be safe.
4803	 */
4804	return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4805}
4806
4807static abd_t *
4808arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4809{
4810	arc_buf_contents_t type = arc_buf_type(hdr);
4811
4812	arc_get_data_impl(hdr, size, tag);
4813	if (type == ARC_BUFC_METADATA) {
4814		return (abd_alloc(size, B_TRUE));
4815	} else {
4816		ASSERT(type == ARC_BUFC_DATA);
4817		return (abd_alloc(size, B_FALSE));
4818	}
4819}
4820
4821static void *
4822arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4823{
4824	arc_buf_contents_t type = arc_buf_type(hdr);
4825
4826	arc_get_data_impl(hdr, size, tag);
4827	if (type == ARC_BUFC_METADATA) {
4828		return (zio_buf_alloc(size));
4829	} else {
4830		ASSERT(type == ARC_BUFC_DATA);
4831		return (zio_data_buf_alloc(size));
4832	}
4833}
4834
4835/*
4836 * Allocate a block and return it to the caller. If we are hitting the
4837 * hard limit for the cache size, we must sleep, waiting for the eviction
4838 * thread to catch up. If we're past the target size but below the hard
4839 * limit, we'll only signal the reclaim thread and continue on.
4840 */
4841static void
4842arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4843{
4844	arc_state_t *state = hdr->b_l1hdr.b_state;
4845	arc_buf_contents_t type = arc_buf_type(hdr);
4846
4847	arc_adapt(size, state);
4848
4849	/*
4850	 * If arc_size is currently overflowing, and has grown past our
4851	 * upper limit, we must be adding data faster than the evict
4852	 * thread can evict. Thus, to ensure we don't compound the
4853	 * problem by adding more data and forcing arc_size to grow even
4854	 * further past it's target size, we halt and wait for the
4855	 * eviction thread to catch up.
4856	 *
4857	 * It's also possible that the reclaim thread is unable to evict
4858	 * enough buffers to get arc_size below the overflow limit (e.g.
4859	 * due to buffers being un-evictable, or hash lock collisions).
4860	 * In this case, we want to proceed regardless if we're
4861	 * overflowing; thus we don't use a while loop here.
4862	 */
4863	if (arc_is_overflowing()) {
4864		mutex_enter(&arc_reclaim_lock);
4865
4866		/*
4867		 * Now that we've acquired the lock, we may no longer be
4868		 * over the overflow limit, lets check.
4869		 *
4870		 * We're ignoring the case of spurious wake ups. If that
4871		 * were to happen, it'd let this thread consume an ARC
4872		 * buffer before it should have (i.e. before we're under
4873		 * the overflow limit and were signalled by the reclaim
4874		 * thread). As long as that is a rare occurrence, it
4875		 * shouldn't cause any harm.
4876		 */
4877		if (arc_is_overflowing()) {
4878			cv_signal(&arc_reclaim_thread_cv);
4879			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4880		}
4881
4882		mutex_exit(&arc_reclaim_lock);
4883	}
4884
4885	VERIFY3U(hdr->b_type, ==, type);
4886	if (type == ARC_BUFC_METADATA) {
4887		arc_space_consume(size, ARC_SPACE_META);
4888	} else {
4889		arc_space_consume(size, ARC_SPACE_DATA);
4890	}
4891
4892	/*
4893	 * Update the state size.  Note that ghost states have a
4894	 * "ghost size" and so don't need to be updated.
4895	 */
4896	if (!GHOST_STATE(state)) {
4897
4898		(void) refcount_add_many(&state->arcs_size, size, tag);
4899
4900		/*
4901		 * If this is reached via arc_read, the link is
4902		 * protected by the hash lock. If reached via
4903		 * arc_buf_alloc, the header should not be accessed by
4904		 * any other thread. And, if reached via arc_read_done,
4905		 * the hash lock will protect it if it's found in the
4906		 * hash table; otherwise no other thread should be
4907		 * trying to [add|remove]_reference it.
4908		 */
4909		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4910			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4911			(void) refcount_add_many(&state->arcs_esize[type],
4912			    size, tag);
4913		}
4914
4915		/*
4916		 * If we are growing the cache, and we are adding anonymous
4917		 * data, and we have outgrown arc_p, update arc_p
4918		 */
4919		if (aggsum_compare(&arc_size, arc_c) < 0 &&
4920		    hdr->b_l1hdr.b_state == arc_anon &&
4921		    (refcount_count(&arc_anon->arcs_size) +
4922		    refcount_count(&arc_mru->arcs_size) > arc_p))
4923			arc_p = MIN(arc_c, arc_p + size);
4924	}
4925	ARCSTAT_BUMP(arcstat_allocated);
4926}
4927
4928static void
4929arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4930{
4931	arc_free_data_impl(hdr, size, tag);
4932	abd_free(abd);
4933}
4934
4935static void
4936arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4937{
4938	arc_buf_contents_t type = arc_buf_type(hdr);
4939
4940	arc_free_data_impl(hdr, size, tag);
4941	if (type == ARC_BUFC_METADATA) {
4942		zio_buf_free(buf, size);
4943	} else {
4944		ASSERT(type == ARC_BUFC_DATA);
4945		zio_data_buf_free(buf, size);
4946	}
4947}
4948
4949/*
4950 * Free the arc data buffer.
4951 */
4952static void
4953arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4954{
4955	arc_state_t *state = hdr->b_l1hdr.b_state;
4956	arc_buf_contents_t type = arc_buf_type(hdr);
4957
4958	/* protected by hash lock, if in the hash table */
4959	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4960		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4961		ASSERT(state != arc_anon && state != arc_l2c_only);
4962
4963		(void) refcount_remove_many(&state->arcs_esize[type],
4964		    size, tag);
4965	}
4966	(void) refcount_remove_many(&state->arcs_size, size, tag);
4967
4968	VERIFY3U(hdr->b_type, ==, type);
4969	if (type == ARC_BUFC_METADATA) {
4970		arc_space_return(size, ARC_SPACE_META);
4971	} else {
4972		ASSERT(type == ARC_BUFC_DATA);
4973		arc_space_return(size, ARC_SPACE_DATA);
4974	}
4975}
4976
4977/*
4978 * This routine is called whenever a buffer is accessed.
4979 * NOTE: the hash lock is dropped in this function.
4980 */
4981static void
4982arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4983{
4984	clock_t now;
4985
4986	ASSERT(MUTEX_HELD(hash_lock));
4987	ASSERT(HDR_HAS_L1HDR(hdr));
4988
4989	if (hdr->b_l1hdr.b_state == arc_anon) {
4990		/*
4991		 * This buffer is not in the cache, and does not
4992		 * appear in our "ghost" list.  Add the new buffer
4993		 * to the MRU state.
4994		 */
4995
4996		ASSERT0(hdr->b_l1hdr.b_arc_access);
4997		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4998		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4999		arc_change_state(arc_mru, hdr, hash_lock);
5000
5001	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5002		now = ddi_get_lbolt();
5003
5004		/*
5005		 * If this buffer is here because of a prefetch, then either:
5006		 * - clear the flag if this is a "referencing" read
5007		 *   (any subsequent access will bump this into the MFU state).
5008		 * or
5009		 * - move the buffer to the head of the list if this is
5010		 *   another prefetch (to make it less likely to be evicted).
5011		 */
5012		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5013			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5014				/* link protected by hash lock */
5015				ASSERT(multilist_link_active(
5016				    &hdr->b_l1hdr.b_arc_node));
5017			} else {
5018				arc_hdr_clear_flags(hdr,
5019				    ARC_FLAG_PREFETCH |
5020				    ARC_FLAG_PRESCIENT_PREFETCH);
5021				ARCSTAT_BUMP(arcstat_mru_hits);
5022			}
5023			hdr->b_l1hdr.b_arc_access = now;
5024			return;
5025		}
5026
5027		/*
5028		 * This buffer has been "accessed" only once so far,
5029		 * but it is still in the cache. Move it to the MFU
5030		 * state.
5031		 */
5032		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5033			/*
5034			 * More than 125ms have passed since we
5035			 * instantiated this buffer.  Move it to the
5036			 * most frequently used state.
5037			 */
5038			hdr->b_l1hdr.b_arc_access = now;
5039			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5040			arc_change_state(arc_mfu, hdr, hash_lock);
5041		}
5042		ARCSTAT_BUMP(arcstat_mru_hits);
5043	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5044		arc_state_t	*new_state;
5045		/*
5046		 * This buffer has been "accessed" recently, but
5047		 * was evicted from the cache.  Move it to the
5048		 * MFU state.
5049		 */
5050
5051		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5052			new_state = arc_mru;
5053			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5054				arc_hdr_clear_flags(hdr,
5055				    ARC_FLAG_PREFETCH |
5056				    ARC_FLAG_PRESCIENT_PREFETCH);
5057			}
5058			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5059		} else {
5060			new_state = arc_mfu;
5061			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5062		}
5063
5064		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5065		arc_change_state(new_state, hdr, hash_lock);
5066
5067		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5068	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5069		/*
5070		 * This buffer has been accessed more than once and is
5071		 * still in the cache.  Keep it in the MFU state.
5072		 *
5073		 * NOTE: an add_reference() that occurred when we did
5074		 * the arc_read() will have kicked this off the list.
5075		 * If it was a prefetch, we will explicitly move it to
5076		 * the head of the list now.
5077		 */
5078
5079		ARCSTAT_BUMP(arcstat_mfu_hits);
5080		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5081	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5082		arc_state_t	*new_state = arc_mfu;
5083		/*
5084		 * This buffer has been accessed more than once but has
5085		 * been evicted from the cache.  Move it back to the
5086		 * MFU state.
5087		 */
5088
5089		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5090			/*
5091			 * This is a prefetch access...
5092			 * move this block back to the MRU state.
5093			 */
5094			new_state = arc_mru;
5095		}
5096
5097		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5098		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5099		arc_change_state(new_state, hdr, hash_lock);
5100
5101		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5102	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5103		/*
5104		 * This buffer is on the 2nd Level ARC.
5105		 */
5106
5107		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5108		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5109		arc_change_state(arc_mfu, hdr, hash_lock);
5110	} else {
5111		ASSERT(!"invalid arc state");
5112	}
5113}
5114
5115/*
5116 * This routine is called by dbuf_hold() to update the arc_access() state
5117 * which otherwise would be skipped for entries in the dbuf cache.
5118 */
5119void
5120arc_buf_access(arc_buf_t *buf)
5121{
5122	mutex_enter(&buf->b_evict_lock);
5123	arc_buf_hdr_t *hdr = buf->b_hdr;
5124
5125	/*
5126	 * Avoid taking the hash_lock when possible as an optimization.
5127	 * The header must be checked again under the hash_lock in order
5128	 * to handle the case where it is concurrently being released.
5129	 */
5130	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5131		mutex_exit(&buf->b_evict_lock);
5132		ARCSTAT_BUMP(arcstat_access_skip);
5133		return;
5134	}
5135
5136	kmutex_t *hash_lock = HDR_LOCK(hdr);
5137	mutex_enter(hash_lock);
5138
5139	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5140		mutex_exit(hash_lock);
5141		mutex_exit(&buf->b_evict_lock);
5142		ARCSTAT_BUMP(arcstat_access_skip);
5143		return;
5144	}
5145
5146	mutex_exit(&buf->b_evict_lock);
5147
5148	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5149	    hdr->b_l1hdr.b_state == arc_mfu);
5150
5151	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5152	arc_access(hdr, hash_lock);
5153	mutex_exit(hash_lock);
5154
5155	ARCSTAT_BUMP(arcstat_hits);
5156	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5157	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5158}
5159
5160/* a generic arc_read_done_func_t which you can use */
5161/* ARGSUSED */
5162void
5163arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5164    arc_buf_t *buf, void *arg)
5165{
5166	if (buf == NULL)
5167		return;
5168
5169	bcopy(buf->b_data, arg, arc_buf_size(buf));
5170	arc_buf_destroy(buf, arg);
5171}
5172
5173/* a generic arc_read_done_func_t */
5174/* ARGSUSED */
5175void
5176arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5177    arc_buf_t *buf, void *arg)
5178{
5179	arc_buf_t **bufp = arg;
5180	if (buf == NULL) {
5181		ASSERT(zio == NULL || zio->io_error != 0);
5182		*bufp = NULL;
5183	} else {
5184		ASSERT(zio == NULL || zio->io_error == 0);
5185		*bufp = buf;
5186		ASSERT(buf->b_data != NULL);
5187	}
5188}
5189
5190static void
5191arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5192{
5193	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5194		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5195		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5196	} else {
5197		if (HDR_COMPRESSION_ENABLED(hdr)) {
5198			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5199			    BP_GET_COMPRESS(bp));
5200		}
5201		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5202		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5203	}
5204}
5205
5206static void
5207arc_read_done(zio_t *zio)
5208{
5209	arc_buf_hdr_t	*hdr = zio->io_private;
5210	kmutex_t	*hash_lock = NULL;
5211	arc_callback_t	*callback_list;
5212	arc_callback_t	*acb;
5213	boolean_t	freeable = B_FALSE;
5214	boolean_t	no_zio_error = (zio->io_error == 0);
5215
5216	/*
5217	 * The hdr was inserted into hash-table and removed from lists
5218	 * prior to starting I/O.  We should find this header, since
5219	 * it's in the hash table, and it should be legit since it's
5220	 * not possible to evict it during the I/O.  The only possible
5221	 * reason for it not to be found is if we were freed during the
5222	 * read.
5223	 */
5224	if (HDR_IN_HASH_TABLE(hdr)) {
5225		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5226		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5227		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5228		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5229		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5230
5231		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5232		    &hash_lock);
5233
5234		ASSERT((found == hdr &&
5235		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5236		    (found == hdr && HDR_L2_READING(hdr)));
5237		ASSERT3P(hash_lock, !=, NULL);
5238	}
5239
5240	if (no_zio_error) {
5241		/* byteswap if necessary */
5242		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5243			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5244				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5245			} else {
5246				hdr->b_l1hdr.b_byteswap =
5247				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5248			}
5249		} else {
5250			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5251		}
5252	}
5253
5254	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5255	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5256		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5257
5258	callback_list = hdr->b_l1hdr.b_acb;
5259	ASSERT3P(callback_list, !=, NULL);
5260
5261	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5262		/*
5263		 * Only call arc_access on anonymous buffers.  This is because
5264		 * if we've issued an I/O for an evicted buffer, we've already
5265		 * called arc_access (to prevent any simultaneous readers from
5266		 * getting confused).
5267		 */
5268		arc_access(hdr, hash_lock);
5269	}
5270
5271	/*
5272	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5273	 * make a buf containing the data according to the parameters which were
5274	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5275	 * aren't needlessly decompressing the data multiple times.
5276	 */
5277	int callback_cnt = 0;
5278	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5279		if (!acb->acb_done)
5280			continue;
5281
5282		callback_cnt++;
5283
5284		if (no_zio_error) {
5285			int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5286			    acb->acb_compressed, zio->io_error == 0,
5287			    &acb->acb_buf);
5288			if (error != 0) {
5289				/*
5290				 * Decompression failed.  Set io_error
5291				 * so that when we call acb_done (below),
5292				 * we will indicate that the read failed.
5293				 * Note that in the unusual case where one
5294				 * callback is compressed and another
5295				 * uncompressed, we will mark all of them
5296				 * as failed, even though the uncompressed
5297				 * one can't actually fail.  In this case,
5298				 * the hdr will not be anonymous, because
5299				 * if there are multiple callbacks, it's
5300				 * because multiple threads found the same
5301				 * arc buf in the hash table.
5302				 */
5303				zio->io_error = error;
5304			}
5305		}
5306	}
5307	/*
5308	 * If there are multiple callbacks, we must have the hash lock,
5309	 * because the only way for multiple threads to find this hdr is
5310	 * in the hash table.  This ensures that if there are multiple
5311	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5312	 * we couldn't use arc_buf_destroy() in the error case below.
5313	 */
5314	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5315
5316	hdr->b_l1hdr.b_acb = NULL;
5317	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5318	if (callback_cnt == 0) {
5319		ASSERT(HDR_PREFETCH(hdr));
5320		ASSERT0(hdr->b_l1hdr.b_bufcnt);
5321		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5322	}
5323
5324	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5325	    callback_list != NULL);
5326
5327	if (no_zio_error) {
5328		arc_hdr_verify(hdr, zio->io_bp);
5329	} else {
5330		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5331		if (hdr->b_l1hdr.b_state != arc_anon)
5332			arc_change_state(arc_anon, hdr, hash_lock);
5333		if (HDR_IN_HASH_TABLE(hdr))
5334			buf_hash_remove(hdr);
5335		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5336	}
5337
5338	/*
5339	 * Broadcast before we drop the hash_lock to avoid the possibility
5340	 * that the hdr (and hence the cv) might be freed before we get to
5341	 * the cv_broadcast().
5342	 */
5343	cv_broadcast(&hdr->b_l1hdr.b_cv);
5344
5345	if (hash_lock != NULL) {
5346		mutex_exit(hash_lock);
5347	} else {
5348		/*
5349		 * This block was freed while we waited for the read to
5350		 * complete.  It has been removed from the hash table and
5351		 * moved to the anonymous state (so that it won't show up
5352		 * in the cache).
5353		 */
5354		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5355		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5356	}
5357
5358	/* execute each callback and free its structure */
5359	while ((acb = callback_list) != NULL) {
5360		if (acb->acb_done != NULL) {
5361			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5362				/*
5363				 * If arc_buf_alloc_impl() fails during
5364				 * decompression, the buf will still be
5365				 * allocated, and needs to be freed here.
5366				 */
5367				arc_buf_destroy(acb->acb_buf, acb->acb_private);
5368				acb->acb_buf = NULL;
5369			}
5370			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5371			    acb->acb_buf, acb->acb_private);
5372		}
5373
5374		if (acb->acb_zio_dummy != NULL) {
5375			acb->acb_zio_dummy->io_error = zio->io_error;
5376			zio_nowait(acb->acb_zio_dummy);
5377		}
5378
5379		callback_list = acb->acb_next;
5380		kmem_free(acb, sizeof (arc_callback_t));
5381	}
5382
5383	if (freeable)
5384		arc_hdr_destroy(hdr);
5385}
5386
5387/*
5388 * "Read" the block at the specified DVA (in bp) via the
5389 * cache.  If the block is found in the cache, invoke the provided
5390 * callback immediately and return.  Note that the `zio' parameter
5391 * in the callback will be NULL in this case, since no IO was
5392 * required.  If the block is not in the cache pass the read request
5393 * on to the spa with a substitute callback function, so that the
5394 * requested block will be added to the cache.
5395 *
5396 * If a read request arrives for a block that has a read in-progress,
5397 * either wait for the in-progress read to complete (and return the
5398 * results); or, if this is a read with a "done" func, add a record
5399 * to the read to invoke the "done" func when the read completes,
5400 * and return; or just return.
5401 *
5402 * arc_read_done() will invoke all the requested "done" functions
5403 * for readers of this block.
5404 */
5405int
5406arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5407    void *private, zio_priority_t priority, int zio_flags,
5408    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5409{
5410	arc_buf_hdr_t *hdr = NULL;
5411	kmutex_t *hash_lock = NULL;
5412	zio_t *rzio;
5413	uint64_t guid = spa_load_guid(spa);
5414	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5415	int rc = 0;
5416
5417	ASSERT(!BP_IS_EMBEDDED(bp) ||
5418	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5419
5420top:
5421	if (!BP_IS_EMBEDDED(bp)) {
5422		/*
5423		 * Embedded BP's have no DVA and require no I/O to "read".
5424		 * Create an anonymous arc buf to back it.
5425		 */
5426		hdr = buf_hash_find(guid, bp, &hash_lock);
5427	}
5428
5429	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5430		arc_buf_t *buf = NULL;
5431		*arc_flags |= ARC_FLAG_CACHED;
5432
5433		if (HDR_IO_IN_PROGRESS(hdr)) {
5434			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5435
5436			ASSERT3P(head_zio, !=, NULL);
5437			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5438			    priority == ZIO_PRIORITY_SYNC_READ) {
5439				/*
5440				 * This is a sync read that needs to wait for
5441				 * an in-flight async read. Request that the
5442				 * zio have its priority upgraded.
5443				 */
5444				zio_change_priority(head_zio, priority);
5445				DTRACE_PROBE1(arc__async__upgrade__sync,
5446				    arc_buf_hdr_t *, hdr);
5447				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5448			}
5449			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5450				arc_hdr_clear_flags(hdr,
5451				    ARC_FLAG_PREDICTIVE_PREFETCH);
5452			}
5453
5454			if (*arc_flags & ARC_FLAG_WAIT) {
5455				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5456				mutex_exit(hash_lock);
5457				goto top;
5458			}
5459			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5460
5461			if (done) {
5462				arc_callback_t *acb = NULL;
5463
5464				acb = kmem_zalloc(sizeof (arc_callback_t),
5465				    KM_SLEEP);
5466				acb->acb_done = done;
5467				acb->acb_private = private;
5468				acb->acb_compressed = compressed_read;
5469				if (pio != NULL)
5470					acb->acb_zio_dummy = zio_null(pio,
5471					    spa, NULL, NULL, NULL, zio_flags);
5472
5473				ASSERT3P(acb->acb_done, !=, NULL);
5474				acb->acb_zio_head = head_zio;
5475				acb->acb_next = hdr->b_l1hdr.b_acb;
5476				hdr->b_l1hdr.b_acb = acb;
5477				mutex_exit(hash_lock);
5478				return (0);
5479			}
5480			mutex_exit(hash_lock);
5481			return (0);
5482		}
5483
5484		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5485		    hdr->b_l1hdr.b_state == arc_mfu);
5486
5487		if (done) {
5488			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5489				/*
5490				 * This is a demand read which does not have to
5491				 * wait for i/o because we did a predictive
5492				 * prefetch i/o for it, which has completed.
5493				 */
5494				DTRACE_PROBE1(
5495				    arc__demand__hit__predictive__prefetch,
5496				    arc_buf_hdr_t *, hdr);
5497				ARCSTAT_BUMP(
5498				    arcstat_demand_hit_predictive_prefetch);
5499				arc_hdr_clear_flags(hdr,
5500				    ARC_FLAG_PREDICTIVE_PREFETCH);
5501			}
5502
5503			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5504				ARCSTAT_BUMP(
5505                                    arcstat_demand_hit_prescient_prefetch);
5506				arc_hdr_clear_flags(hdr,
5507                                    ARC_FLAG_PRESCIENT_PREFETCH);
5508			}
5509
5510			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5511			/* Get a buf with the desired data in it. */
5512			rc = arc_buf_alloc_impl(hdr, private,
5513			   compressed_read, B_TRUE, &buf);
5514			if (rc != 0) {
5515				arc_buf_destroy(buf, private);
5516				buf = NULL;
5517			}
5518			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5519                            rc == 0 || rc != ENOENT);
5520		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5521		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5522			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5523		}
5524		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5525		arc_access(hdr, hash_lock);
5526		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5527                        arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5528		if (*arc_flags & ARC_FLAG_L2CACHE)
5529			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5530		mutex_exit(hash_lock);
5531		ARCSTAT_BUMP(arcstat_hits);
5532		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5533		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5534		    data, metadata, hits);
5535
5536		if (done)
5537			done(NULL, zb, bp, buf, private);
5538	} else {
5539		uint64_t lsize = BP_GET_LSIZE(bp);
5540		uint64_t psize = BP_GET_PSIZE(bp);
5541		arc_callback_t *acb;
5542		vdev_t *vd = NULL;
5543		uint64_t addr = 0;
5544		boolean_t devw = B_FALSE;
5545		uint64_t size;
5546
5547		if (hdr == NULL) {
5548			/* this block is not in the cache */
5549			arc_buf_hdr_t *exists = NULL;
5550			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5551			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5552			    BP_GET_COMPRESS(bp), type);
5553
5554			if (!BP_IS_EMBEDDED(bp)) {
5555				hdr->b_dva = *BP_IDENTITY(bp);
5556				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5557				exists = buf_hash_insert(hdr, &hash_lock);
5558			}
5559			if (exists != NULL) {
5560				/* somebody beat us to the hash insert */
5561				mutex_exit(hash_lock);
5562				buf_discard_identity(hdr);
5563				arc_hdr_destroy(hdr);
5564				goto top; /* restart the IO request */
5565			}
5566		} else {
5567			/*
5568			 * This block is in the ghost cache. If it was L2-only
5569			 * (and thus didn't have an L1 hdr), we realloc the
5570			 * header to add an L1 hdr.
5571			 */
5572			if (!HDR_HAS_L1HDR(hdr)) {
5573				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5574				    hdr_full_cache);
5575			}
5576			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5577			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5578			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5579			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5580			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5581			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5582
5583			/*
5584			 * This is a delicate dance that we play here.
5585			 * This hdr is in the ghost list so we access it
5586			 * to move it out of the ghost list before we
5587			 * initiate the read. If it's a prefetch then
5588			 * it won't have a callback so we'll remove the
5589			 * reference that arc_buf_alloc_impl() created. We
5590			 * do this after we've called arc_access() to
5591			 * avoid hitting an assert in remove_reference().
5592			 */
5593			arc_access(hdr, hash_lock);
5594			arc_hdr_alloc_pabd(hdr);
5595		}
5596		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5597		size = arc_hdr_size(hdr);
5598
5599		/*
5600		 * If compression is enabled on the hdr, then will do
5601		 * RAW I/O and will store the compressed data in the hdr's
5602		 * data block. Otherwise, the hdr's data block will contain
5603		 * the uncompressed data.
5604		 */
5605		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5606			zio_flags |= ZIO_FLAG_RAW;
5607		}
5608
5609		if (*arc_flags & ARC_FLAG_PREFETCH)
5610			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5611		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5612			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5613
5614		if (*arc_flags & ARC_FLAG_L2CACHE)
5615			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5616		if (BP_GET_LEVEL(bp) > 0)
5617			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5618		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5619			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5620		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5621
5622		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5623		acb->acb_done = done;
5624		acb->acb_private = private;
5625		acb->acb_compressed = compressed_read;
5626
5627		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5628		hdr->b_l1hdr.b_acb = acb;
5629		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5630
5631		if (HDR_HAS_L2HDR(hdr) &&
5632		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5633			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5634			addr = hdr->b_l2hdr.b_daddr;
5635			/*
5636			 * Lock out L2ARC device removal.
5637			 */
5638			if (vdev_is_dead(vd) ||
5639			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5640				vd = NULL;
5641		}
5642
5643		/*
5644		 * We count both async reads and scrub IOs as asynchronous so
5645		 * that both can be upgraded in the event of a cache hit while
5646		 * the read IO is still in-flight.
5647		 */
5648		if (priority == ZIO_PRIORITY_ASYNC_READ ||
5649		    priority == ZIO_PRIORITY_SCRUB)
5650			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5651		else
5652			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5653
5654		/*
5655		 * At this point, we have a level 1 cache miss.  Try again in
5656		 * L2ARC if possible.
5657		 */
5658		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5659
5660		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5661		    uint64_t, lsize, zbookmark_phys_t *, zb);
5662		ARCSTAT_BUMP(arcstat_misses);
5663		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5664		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5665		    data, metadata, misses);
5666#ifdef _KERNEL
5667#ifdef RACCT
5668		if (racct_enable) {
5669			PROC_LOCK(curproc);
5670			racct_add_force(curproc, RACCT_READBPS, size);
5671			racct_add_force(curproc, RACCT_READIOPS, 1);
5672			PROC_UNLOCK(curproc);
5673		}
5674#endif /* RACCT */
5675		curthread->td_ru.ru_inblock++;
5676#endif
5677
5678		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5679			/*
5680			 * Read from the L2ARC if the following are true:
5681			 * 1. The L2ARC vdev was previously cached.
5682			 * 2. This buffer still has L2ARC metadata.
5683			 * 3. This buffer isn't currently writing to the L2ARC.
5684			 * 4. The L2ARC entry wasn't evicted, which may
5685			 *    also have invalidated the vdev.
5686			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5687			 */
5688			if (HDR_HAS_L2HDR(hdr) &&
5689			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5690			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5691				l2arc_read_callback_t *cb;
5692				abd_t *abd;
5693				uint64_t asize;
5694
5695				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5696				ARCSTAT_BUMP(arcstat_l2_hits);
5697
5698				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5699				    KM_SLEEP);
5700				cb->l2rcb_hdr = hdr;
5701				cb->l2rcb_bp = *bp;
5702				cb->l2rcb_zb = *zb;
5703				cb->l2rcb_flags = zio_flags;
5704
5705				asize = vdev_psize_to_asize(vd, size);
5706				if (asize != size) {
5707					abd = abd_alloc_for_io(asize,
5708					    HDR_ISTYPE_METADATA(hdr));
5709					cb->l2rcb_abd = abd;
5710				} else {
5711					abd = hdr->b_l1hdr.b_pabd;
5712				}
5713
5714				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5715				    addr + asize <= vd->vdev_psize -
5716				    VDEV_LABEL_END_SIZE);
5717
5718				/*
5719				 * l2arc read.  The SCL_L2ARC lock will be
5720				 * released by l2arc_read_done().
5721				 * Issue a null zio if the underlying buffer
5722				 * was squashed to zero size by compression.
5723				 */
5724				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5725				    ZIO_COMPRESS_EMPTY);
5726				rzio = zio_read_phys(pio, vd, addr,
5727				    asize, abd,
5728				    ZIO_CHECKSUM_OFF,
5729				    l2arc_read_done, cb, priority,
5730				    zio_flags | ZIO_FLAG_DONT_CACHE |
5731				    ZIO_FLAG_CANFAIL |
5732				    ZIO_FLAG_DONT_PROPAGATE |
5733				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5734				acb->acb_zio_head = rzio;
5735
5736				if (hash_lock != NULL)
5737					mutex_exit(hash_lock);
5738
5739				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5740				    zio_t *, rzio);
5741				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5742
5743				if (*arc_flags & ARC_FLAG_NOWAIT) {
5744					zio_nowait(rzio);
5745					return (0);
5746				}
5747
5748				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5749				if (zio_wait(rzio) == 0)
5750					return (0);
5751
5752				/* l2arc read error; goto zio_read() */
5753				if (hash_lock != NULL)
5754					mutex_enter(hash_lock);
5755			} else {
5756				DTRACE_PROBE1(l2arc__miss,
5757				    arc_buf_hdr_t *, hdr);
5758				ARCSTAT_BUMP(arcstat_l2_misses);
5759				if (HDR_L2_WRITING(hdr))
5760					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5761				spa_config_exit(spa, SCL_L2ARC, vd);
5762			}
5763		} else {
5764			if (vd != NULL)
5765				spa_config_exit(spa, SCL_L2ARC, vd);
5766			if (l2arc_ndev != 0) {
5767				DTRACE_PROBE1(l2arc__miss,
5768				    arc_buf_hdr_t *, hdr);
5769				ARCSTAT_BUMP(arcstat_l2_misses);
5770			}
5771		}
5772
5773		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5774		    arc_read_done, hdr, priority, zio_flags, zb);
5775		acb->acb_zio_head = rzio;
5776
5777		if (hash_lock != NULL)
5778			mutex_exit(hash_lock);
5779
5780		if (*arc_flags & ARC_FLAG_WAIT)
5781			return (zio_wait(rzio));
5782
5783		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5784		zio_nowait(rzio);
5785	}
5786	return (0);
5787}
5788
5789/*
5790 * Notify the arc that a block was freed, and thus will never be used again.
5791 */
5792void
5793arc_freed(spa_t *spa, const blkptr_t *bp)
5794{
5795	arc_buf_hdr_t *hdr;
5796	kmutex_t *hash_lock;
5797	uint64_t guid = spa_load_guid(spa);
5798
5799	ASSERT(!BP_IS_EMBEDDED(bp));
5800
5801	hdr = buf_hash_find(guid, bp, &hash_lock);
5802	if (hdr == NULL)
5803		return;
5804
5805	/*
5806	 * We might be trying to free a block that is still doing I/O
5807	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5808	 * dmu_sync-ed block). If this block is being prefetched, then it
5809	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5810	 * until the I/O completes. A block may also have a reference if it is
5811	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5812	 * have written the new block to its final resting place on disk but
5813	 * without the dedup flag set. This would have left the hdr in the MRU
5814	 * state and discoverable. When the txg finally syncs it detects that
5815	 * the block was overridden in open context and issues an override I/O.
5816	 * Since this is a dedup block, the override I/O will determine if the
5817	 * block is already in the DDT. If so, then it will replace the io_bp
5818	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5819	 * reaches the done callback, dbuf_write_override_done, it will
5820	 * check to see if the io_bp and io_bp_override are identical.
5821	 * If they are not, then it indicates that the bp was replaced with
5822	 * the bp in the DDT and the override bp is freed. This allows
5823	 * us to arrive here with a reference on a block that is being
5824	 * freed. So if we have an I/O in progress, or a reference to
5825	 * this hdr, then we don't destroy the hdr.
5826	 */
5827	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5828	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5829		arc_change_state(arc_anon, hdr, hash_lock);
5830		arc_hdr_destroy(hdr);
5831		mutex_exit(hash_lock);
5832	} else {
5833		mutex_exit(hash_lock);
5834	}
5835
5836}
5837
5838/*
5839 * Release this buffer from the cache, making it an anonymous buffer.  This
5840 * must be done after a read and prior to modifying the buffer contents.
5841 * If the buffer has more than one reference, we must make
5842 * a new hdr for the buffer.
5843 */
5844void
5845arc_release(arc_buf_t *buf, void *tag)
5846{
5847	arc_buf_hdr_t *hdr = buf->b_hdr;
5848
5849	/*
5850	 * It would be nice to assert that if it's DMU metadata (level >
5851	 * 0 || it's the dnode file), then it must be syncing context.
5852	 * But we don't know that information at this level.
5853	 */
5854
5855	mutex_enter(&buf->b_evict_lock);
5856
5857	ASSERT(HDR_HAS_L1HDR(hdr));
5858
5859	/*
5860	 * We don't grab the hash lock prior to this check, because if
5861	 * the buffer's header is in the arc_anon state, it won't be
5862	 * linked into the hash table.
5863	 */
5864	if (hdr->b_l1hdr.b_state == arc_anon) {
5865		mutex_exit(&buf->b_evict_lock);
5866		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5867		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5868		ASSERT(!HDR_HAS_L2HDR(hdr));
5869		ASSERT(HDR_EMPTY(hdr));
5870		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5871		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5872		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5873
5874		hdr->b_l1hdr.b_arc_access = 0;
5875
5876		/*
5877		 * If the buf is being overridden then it may already
5878		 * have a hdr that is not empty.
5879		 */
5880		buf_discard_identity(hdr);
5881		arc_buf_thaw(buf);
5882
5883		return;
5884	}
5885
5886	kmutex_t *hash_lock = HDR_LOCK(hdr);
5887	mutex_enter(hash_lock);
5888
5889	/*
5890	 * This assignment is only valid as long as the hash_lock is
5891	 * held, we must be careful not to reference state or the
5892	 * b_state field after dropping the lock.
5893	 */
5894	arc_state_t *state = hdr->b_l1hdr.b_state;
5895	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5896	ASSERT3P(state, !=, arc_anon);
5897
5898	/* this buffer is not on any list */
5899	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5900
5901	if (HDR_HAS_L2HDR(hdr)) {
5902		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5903
5904		/*
5905		 * We have to recheck this conditional again now that
5906		 * we're holding the l2ad_mtx to prevent a race with
5907		 * another thread which might be concurrently calling
5908		 * l2arc_evict(). In that case, l2arc_evict() might have
5909		 * destroyed the header's L2 portion as we were waiting
5910		 * to acquire the l2ad_mtx.
5911		 */
5912		if (HDR_HAS_L2HDR(hdr)) {
5913			l2arc_trim(hdr);
5914			arc_hdr_l2hdr_destroy(hdr);
5915		}
5916
5917		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5918	}
5919
5920	/*
5921	 * Do we have more than one buf?
5922	 */
5923	if (hdr->b_l1hdr.b_bufcnt > 1) {
5924		arc_buf_hdr_t *nhdr;
5925		uint64_t spa = hdr->b_spa;
5926		uint64_t psize = HDR_GET_PSIZE(hdr);
5927		uint64_t lsize = HDR_GET_LSIZE(hdr);
5928		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5929		arc_buf_contents_t type = arc_buf_type(hdr);
5930		VERIFY3U(hdr->b_type, ==, type);
5931
5932		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5933		(void) remove_reference(hdr, hash_lock, tag);
5934
5935		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5936			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5937			ASSERT(ARC_BUF_LAST(buf));
5938		}
5939
5940		/*
5941		 * Pull the data off of this hdr and attach it to
5942		 * a new anonymous hdr. Also find the last buffer
5943		 * in the hdr's buffer list.
5944		 */
5945		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5946		ASSERT3P(lastbuf, !=, NULL);
5947
5948		/*
5949		 * If the current arc_buf_t and the hdr are sharing their data
5950		 * buffer, then we must stop sharing that block.
5951		 */
5952		if (arc_buf_is_shared(buf)) {
5953			VERIFY(!arc_buf_is_shared(lastbuf));
5954
5955			/*
5956			 * First, sever the block sharing relationship between
5957			 * buf and the arc_buf_hdr_t.
5958			 */
5959			arc_unshare_buf(hdr, buf);
5960
5961			/*
5962			 * Now we need to recreate the hdr's b_pabd. Since we
5963			 * have lastbuf handy, we try to share with it, but if
5964			 * we can't then we allocate a new b_pabd and copy the
5965			 * data from buf into it.
5966			 */
5967			if (arc_can_share(hdr, lastbuf)) {
5968				arc_share_buf(hdr, lastbuf);
5969			} else {
5970				arc_hdr_alloc_pabd(hdr);
5971				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5972				    buf->b_data, psize);
5973			}
5974			VERIFY3P(lastbuf->b_data, !=, NULL);
5975		} else if (HDR_SHARED_DATA(hdr)) {
5976			/*
5977			 * Uncompressed shared buffers are always at the end
5978			 * of the list. Compressed buffers don't have the
5979			 * same requirements. This makes it hard to
5980			 * simply assert that the lastbuf is shared so
5981			 * we rely on the hdr's compression flags to determine
5982			 * if we have a compressed, shared buffer.
5983			 */
5984			ASSERT(arc_buf_is_shared(lastbuf) ||
5985			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5986			ASSERT(!ARC_BUF_SHARED(buf));
5987		}
5988		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5989		ASSERT3P(state, !=, arc_l2c_only);
5990
5991		(void) refcount_remove_many(&state->arcs_size,
5992		    arc_buf_size(buf), buf);
5993
5994		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5995			ASSERT3P(state, !=, arc_l2c_only);
5996			(void) refcount_remove_many(&state->arcs_esize[type],
5997			    arc_buf_size(buf), buf);
5998		}
5999
6000		hdr->b_l1hdr.b_bufcnt -= 1;
6001		arc_cksum_verify(buf);
6002#ifdef illumos
6003		arc_buf_unwatch(buf);
6004#endif
6005
6006		mutex_exit(hash_lock);
6007
6008		/*
6009		 * Allocate a new hdr. The new hdr will contain a b_pabd
6010		 * buffer which will be freed in arc_write().
6011		 */
6012		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
6013		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6014		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6015		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
6016		VERIFY3U(nhdr->b_type, ==, type);
6017		ASSERT(!HDR_SHARED_DATA(nhdr));
6018
6019		nhdr->b_l1hdr.b_buf = buf;
6020		nhdr->b_l1hdr.b_bufcnt = 1;
6021		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6022		buf->b_hdr = nhdr;
6023
6024		mutex_exit(&buf->b_evict_lock);
6025		(void) refcount_add_many(&arc_anon->arcs_size,
6026		    arc_buf_size(buf), buf);
6027	} else {
6028		mutex_exit(&buf->b_evict_lock);
6029		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6030		/* protected by hash lock, or hdr is on arc_anon */
6031		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6032		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6033		arc_change_state(arc_anon, hdr, hash_lock);
6034		hdr->b_l1hdr.b_arc_access = 0;
6035		mutex_exit(hash_lock);
6036
6037		buf_discard_identity(hdr);
6038		arc_buf_thaw(buf);
6039	}
6040}
6041
6042int
6043arc_released(arc_buf_t *buf)
6044{
6045	int released;
6046
6047	mutex_enter(&buf->b_evict_lock);
6048	released = (buf->b_data != NULL &&
6049	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6050	mutex_exit(&buf->b_evict_lock);
6051	return (released);
6052}
6053
6054#ifdef ZFS_DEBUG
6055int
6056arc_referenced(arc_buf_t *buf)
6057{
6058	int referenced;
6059
6060	mutex_enter(&buf->b_evict_lock);
6061	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6062	mutex_exit(&buf->b_evict_lock);
6063	return (referenced);
6064}
6065#endif
6066
6067static void
6068arc_write_ready(zio_t *zio)
6069{
6070	arc_write_callback_t *callback = zio->io_private;
6071	arc_buf_t *buf = callback->awcb_buf;
6072	arc_buf_hdr_t *hdr = buf->b_hdr;
6073	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
6074
6075	ASSERT(HDR_HAS_L1HDR(hdr));
6076	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6077	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6078
6079	/*
6080	 * If we're reexecuting this zio because the pool suspended, then
6081	 * cleanup any state that was previously set the first time the
6082	 * callback was invoked.
6083	 */
6084	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6085		arc_cksum_free(hdr);
6086#ifdef illumos
6087		arc_buf_unwatch(buf);
6088#endif
6089		if (hdr->b_l1hdr.b_pabd != NULL) {
6090			if (arc_buf_is_shared(buf)) {
6091				arc_unshare_buf(hdr, buf);
6092			} else {
6093				arc_hdr_free_pabd(hdr);
6094			}
6095		}
6096	}
6097	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6098	ASSERT(!HDR_SHARED_DATA(hdr));
6099	ASSERT(!arc_buf_is_shared(buf));
6100
6101	callback->awcb_ready(zio, buf, callback->awcb_private);
6102
6103	if (HDR_IO_IN_PROGRESS(hdr))
6104		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6105
6106	arc_cksum_compute(buf);
6107	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6108
6109	enum zio_compress compress;
6110	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6111		compress = ZIO_COMPRESS_OFF;
6112	} else {
6113		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
6114		compress = BP_GET_COMPRESS(zio->io_bp);
6115	}
6116	HDR_SET_PSIZE(hdr, psize);
6117	arc_hdr_set_compress(hdr, compress);
6118
6119
6120	/*
6121	 * Fill the hdr with data. If the hdr is compressed, the data we want
6122	 * is available from the zio, otherwise we can take it from the buf.
6123	 *
6124	 * We might be able to share the buf's data with the hdr here. However,
6125	 * doing so would cause the ARC to be full of linear ABDs if we write a
6126	 * lot of shareable data. As a compromise, we check whether scattered
6127	 * ABDs are allowed, and assume that if they are then the user wants
6128	 * the ARC to be primarily filled with them regardless of the data being
6129	 * written. Therefore, if they're allowed then we allocate one and copy
6130	 * the data into it; otherwise, we share the data directly if we can.
6131	 */
6132	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6133		arc_hdr_alloc_pabd(hdr);
6134
6135		/*
6136		 * Ideally, we would always copy the io_abd into b_pabd, but the
6137		 * user may have disabled compressed ARC, thus we must check the
6138		 * hdr's compression setting rather than the io_bp's.
6139		 */
6140		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
6141			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
6142			    ZIO_COMPRESS_OFF);
6143			ASSERT3U(psize, >, 0);
6144
6145			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6146		} else {
6147			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6148
6149			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6150			    arc_buf_size(buf));
6151		}
6152	} else {
6153		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6154		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6155		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6156
6157		arc_share_buf(hdr, buf);
6158	}
6159
6160	arc_hdr_verify(hdr, zio->io_bp);
6161}
6162
6163static void
6164arc_write_children_ready(zio_t *zio)
6165{
6166	arc_write_callback_t *callback = zio->io_private;
6167	arc_buf_t *buf = callback->awcb_buf;
6168
6169	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6170}
6171
6172/*
6173 * The SPA calls this callback for each physical write that happens on behalf
6174 * of a logical write.  See the comment in dbuf_write_physdone() for details.
6175 */
6176static void
6177arc_write_physdone(zio_t *zio)
6178{
6179	arc_write_callback_t *cb = zio->io_private;
6180	if (cb->awcb_physdone != NULL)
6181		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6182}
6183
6184static void
6185arc_write_done(zio_t *zio)
6186{
6187	arc_write_callback_t *callback = zio->io_private;
6188	arc_buf_t *buf = callback->awcb_buf;
6189	arc_buf_hdr_t *hdr = buf->b_hdr;
6190
6191	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6192
6193	if (zio->io_error == 0) {
6194		arc_hdr_verify(hdr, zio->io_bp);
6195
6196		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6197			buf_discard_identity(hdr);
6198		} else {
6199			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6200			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6201		}
6202	} else {
6203		ASSERT(HDR_EMPTY(hdr));
6204	}
6205
6206	/*
6207	 * If the block to be written was all-zero or compressed enough to be
6208	 * embedded in the BP, no write was performed so there will be no
6209	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6210	 * (and uncached).
6211	 */
6212	if (!HDR_EMPTY(hdr)) {
6213		arc_buf_hdr_t *exists;
6214		kmutex_t *hash_lock;
6215
6216		ASSERT3U(zio->io_error, ==, 0);
6217
6218		arc_cksum_verify(buf);
6219
6220		exists = buf_hash_insert(hdr, &hash_lock);
6221		if (exists != NULL) {
6222			/*
6223			 * This can only happen if we overwrite for
6224			 * sync-to-convergence, because we remove
6225			 * buffers from the hash table when we arc_free().
6226			 */
6227			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6228				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6229					panic("bad overwrite, hdr=%p exists=%p",
6230					    (void *)hdr, (void *)exists);
6231				ASSERT(refcount_is_zero(
6232				    &exists->b_l1hdr.b_refcnt));
6233				arc_change_state(arc_anon, exists, hash_lock);
6234				mutex_exit(hash_lock);
6235				arc_hdr_destroy(exists);
6236				exists = buf_hash_insert(hdr, &hash_lock);
6237				ASSERT3P(exists, ==, NULL);
6238			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6239				/* nopwrite */
6240				ASSERT(zio->io_prop.zp_nopwrite);
6241				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6242					panic("bad nopwrite, hdr=%p exists=%p",
6243					    (void *)hdr, (void *)exists);
6244			} else {
6245				/* Dedup */
6246				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6247				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6248				ASSERT(BP_GET_DEDUP(zio->io_bp));
6249				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6250			}
6251		}
6252		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6253		/* if it's not anon, we are doing a scrub */
6254		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6255			arc_access(hdr, hash_lock);
6256		mutex_exit(hash_lock);
6257	} else {
6258		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6259	}
6260
6261	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6262	callback->awcb_done(zio, buf, callback->awcb_private);
6263
6264	abd_put(zio->io_abd);
6265	kmem_free(callback, sizeof (arc_write_callback_t));
6266}
6267
6268zio_t *
6269arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6270    boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6271    arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6272    arc_write_done_func_t *done, void *private, zio_priority_t priority,
6273    int zio_flags, const zbookmark_phys_t *zb)
6274{
6275	arc_buf_hdr_t *hdr = buf->b_hdr;
6276	arc_write_callback_t *callback;
6277	zio_t *zio;
6278	zio_prop_t localprop = *zp;
6279
6280	ASSERT3P(ready, !=, NULL);
6281	ASSERT3P(done, !=, NULL);
6282	ASSERT(!HDR_IO_ERROR(hdr));
6283	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6284	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6285	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6286	if (l2arc)
6287		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6288	if (ARC_BUF_COMPRESSED(buf)) {
6289		/*
6290		 * We're writing a pre-compressed buffer.  Make the
6291		 * compression algorithm requested by the zio_prop_t match
6292		 * the pre-compressed buffer's compression algorithm.
6293		 */
6294		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6295
6296		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6297		zio_flags |= ZIO_FLAG_RAW;
6298	}
6299	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6300	callback->awcb_ready = ready;
6301	callback->awcb_children_ready = children_ready;
6302	callback->awcb_physdone = physdone;
6303	callback->awcb_done = done;
6304	callback->awcb_private = private;
6305	callback->awcb_buf = buf;
6306
6307	/*
6308	 * The hdr's b_pabd is now stale, free it now. A new data block
6309	 * will be allocated when the zio pipeline calls arc_write_ready().
6310	 */
6311	if (hdr->b_l1hdr.b_pabd != NULL) {
6312		/*
6313		 * If the buf is currently sharing the data block with
6314		 * the hdr then we need to break that relationship here.
6315		 * The hdr will remain with a NULL data pointer and the
6316		 * buf will take sole ownership of the block.
6317		 */
6318		if (arc_buf_is_shared(buf)) {
6319			arc_unshare_buf(hdr, buf);
6320		} else {
6321			arc_hdr_free_pabd(hdr);
6322		}
6323		VERIFY3P(buf->b_data, !=, NULL);
6324		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6325	}
6326	ASSERT(!arc_buf_is_shared(buf));
6327	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6328
6329	zio = zio_write(pio, spa, txg, bp,
6330	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6331	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6332	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6333	    arc_write_physdone, arc_write_done, callback,
6334	    priority, zio_flags, zb);
6335
6336	return (zio);
6337}
6338
6339static int
6340arc_memory_throttle(uint64_t reserve, uint64_t txg)
6341{
6342#ifdef _KERNEL
6343	uint64_t available_memory = ptob(freemem);
6344	static uint64_t page_load = 0;
6345	static uint64_t last_txg = 0;
6346
6347#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
6348	available_memory =
6349	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
6350#endif
6351
6352	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
6353		return (0);
6354
6355	if (txg > last_txg) {
6356		last_txg = txg;
6357		page_load = 0;
6358	}
6359	/*
6360	 * If we are in pageout, we know that memory is already tight,
6361	 * the arc is already going to be evicting, so we just want to
6362	 * continue to let page writes occur as quickly as possible.
6363	 */
6364	if (curproc == pageproc) {
6365		if (page_load > MAX(ptob(minfree), available_memory) / 4)
6366			return (SET_ERROR(ERESTART));
6367		/* Note: reserve is inflated, so we deflate */
6368		page_load += reserve / 8;
6369		return (0);
6370	} else if (page_load > 0 && arc_reclaim_needed()) {
6371		/* memory is low, delay before restarting */
6372		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6373		return (SET_ERROR(EAGAIN));
6374	}
6375	page_load = 0;
6376#endif
6377	return (0);
6378}
6379
6380void
6381arc_tempreserve_clear(uint64_t reserve)
6382{
6383	atomic_add_64(&arc_tempreserve, -reserve);
6384	ASSERT((int64_t)arc_tempreserve >= 0);
6385}
6386
6387int
6388arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6389{
6390	int error;
6391	uint64_t anon_size;
6392
6393	if (reserve > arc_c/4 && !arc_no_grow) {
6394		arc_c = MIN(arc_c_max, reserve * 4);
6395		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
6396	}
6397	if (reserve > arc_c)
6398		return (SET_ERROR(ENOMEM));
6399
6400	/*
6401	 * Don't count loaned bufs as in flight dirty data to prevent long
6402	 * network delays from blocking transactions that are ready to be
6403	 * assigned to a txg.
6404	 */
6405
6406	/* assert that it has not wrapped around */
6407	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6408
6409	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6410	    arc_loaned_bytes), 0);
6411
6412	/*
6413	 * Writes will, almost always, require additional memory allocations
6414	 * in order to compress/encrypt/etc the data.  We therefore need to
6415	 * make sure that there is sufficient available memory for this.
6416	 */
6417	error = arc_memory_throttle(reserve, txg);
6418	if (error != 0)
6419		return (error);
6420
6421	/*
6422	 * Throttle writes when the amount of dirty data in the cache
6423	 * gets too large.  We try to keep the cache less than half full
6424	 * of dirty blocks so that our sync times don't grow too large.
6425	 * Note: if two requests come in concurrently, we might let them
6426	 * both succeed, when one of them should fail.  Not a huge deal.
6427	 */
6428
6429	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6430	    anon_size > arc_c / 4) {
6431		uint64_t meta_esize =
6432		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6433		uint64_t data_esize =
6434		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6435		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6436		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6437		    arc_tempreserve >> 10, meta_esize >> 10,
6438		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6439		return (SET_ERROR(ERESTART));
6440	}
6441	atomic_add_64(&arc_tempreserve, reserve);
6442	return (0);
6443}
6444
6445static void
6446arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6447    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6448{
6449	size->value.ui64 = refcount_count(&state->arcs_size);
6450	evict_data->value.ui64 =
6451	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6452	evict_metadata->value.ui64 =
6453	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6454}
6455
6456static int
6457arc_kstat_update(kstat_t *ksp, int rw)
6458{
6459	arc_stats_t *as = ksp->ks_data;
6460
6461	if (rw == KSTAT_WRITE) {
6462		return (EACCES);
6463	} else {
6464		arc_kstat_update_state(arc_anon,
6465		    &as->arcstat_anon_size,
6466		    &as->arcstat_anon_evictable_data,
6467		    &as->arcstat_anon_evictable_metadata);
6468		arc_kstat_update_state(arc_mru,
6469		    &as->arcstat_mru_size,
6470		    &as->arcstat_mru_evictable_data,
6471		    &as->arcstat_mru_evictable_metadata);
6472		arc_kstat_update_state(arc_mru_ghost,
6473		    &as->arcstat_mru_ghost_size,
6474		    &as->arcstat_mru_ghost_evictable_data,
6475		    &as->arcstat_mru_ghost_evictable_metadata);
6476		arc_kstat_update_state(arc_mfu,
6477		    &as->arcstat_mfu_size,
6478		    &as->arcstat_mfu_evictable_data,
6479		    &as->arcstat_mfu_evictable_metadata);
6480		arc_kstat_update_state(arc_mfu_ghost,
6481		    &as->arcstat_mfu_ghost_size,
6482		    &as->arcstat_mfu_ghost_evictable_data,
6483		    &as->arcstat_mfu_ghost_evictable_metadata);
6484
6485		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6486		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6487		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6488		ARCSTAT(arcstat_metadata_size) =
6489		    aggsum_value(&astat_metadata_size);
6490		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6491		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6492		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6493	}
6494
6495	return (0);
6496}
6497
6498/*
6499 * This function *must* return indices evenly distributed between all
6500 * sublists of the multilist. This is needed due to how the ARC eviction
6501 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6502 * distributed between all sublists and uses this assumption when
6503 * deciding which sublist to evict from and how much to evict from it.
6504 */
6505unsigned int
6506arc_state_multilist_index_func(multilist_t *ml, void *obj)
6507{
6508	arc_buf_hdr_t *hdr = obj;
6509
6510	/*
6511	 * We rely on b_dva to generate evenly distributed index
6512	 * numbers using buf_hash below. So, as an added precaution,
6513	 * let's make sure we never add empty buffers to the arc lists.
6514	 */
6515	ASSERT(!HDR_EMPTY(hdr));
6516
6517	/*
6518	 * The assumption here, is the hash value for a given
6519	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6520	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6521	 * Thus, we don't need to store the header's sublist index
6522	 * on insertion, as this index can be recalculated on removal.
6523	 *
6524	 * Also, the low order bits of the hash value are thought to be
6525	 * distributed evenly. Otherwise, in the case that the multilist
6526	 * has a power of two number of sublists, each sublists' usage
6527	 * would not be evenly distributed.
6528	 */
6529	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6530	    multilist_get_num_sublists(ml));
6531}
6532
6533#ifdef _KERNEL
6534static eventhandler_tag arc_event_lowmem = NULL;
6535
6536static void
6537arc_lowmem(void *arg __unused, int howto __unused)
6538{
6539
6540	mutex_enter(&arc_reclaim_lock);
6541	DTRACE_PROBE1(arc__needfree, int64_t, ((int64_t)freemem - zfs_arc_free_target) * PAGESIZE);
6542	cv_signal(&arc_reclaim_thread_cv);
6543
6544	/*
6545	 * It is unsafe to block here in arbitrary threads, because we can come
6546	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
6547	 * with ARC reclaim thread.
6548	 */
6549	if (curproc == pageproc)
6550		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
6551	mutex_exit(&arc_reclaim_lock);
6552}
6553#endif
6554
6555static void
6556arc_state_init(void)
6557{
6558	arc_anon = &ARC_anon;
6559	arc_mru = &ARC_mru;
6560	arc_mru_ghost = &ARC_mru_ghost;
6561	arc_mfu = &ARC_mfu;
6562	arc_mfu_ghost = &ARC_mfu_ghost;
6563	arc_l2c_only = &ARC_l2c_only;
6564
6565	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6566	    multilist_create(sizeof (arc_buf_hdr_t),
6567	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6568	    arc_state_multilist_index_func);
6569	arc_mru->arcs_list[ARC_BUFC_DATA] =
6570	    multilist_create(sizeof (arc_buf_hdr_t),
6571	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6572	    arc_state_multilist_index_func);
6573	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6574	    multilist_create(sizeof (arc_buf_hdr_t),
6575	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6576	    arc_state_multilist_index_func);
6577	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6578	    multilist_create(sizeof (arc_buf_hdr_t),
6579	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6580	    arc_state_multilist_index_func);
6581	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6582	    multilist_create(sizeof (arc_buf_hdr_t),
6583	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6584	    arc_state_multilist_index_func);
6585	arc_mfu->arcs_list[ARC_BUFC_DATA] =
6586	    multilist_create(sizeof (arc_buf_hdr_t),
6587	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6588	    arc_state_multilist_index_func);
6589	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6590	    multilist_create(sizeof (arc_buf_hdr_t),
6591	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6592	    arc_state_multilist_index_func);
6593	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6594	    multilist_create(sizeof (arc_buf_hdr_t),
6595	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6596	    arc_state_multilist_index_func);
6597	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6598	    multilist_create(sizeof (arc_buf_hdr_t),
6599	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6600	    arc_state_multilist_index_func);
6601	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6602	    multilist_create(sizeof (arc_buf_hdr_t),
6603	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6604	    arc_state_multilist_index_func);
6605
6606	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6607	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6608	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6609	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6610	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6611	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6612	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6613	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6614	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6615	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6616	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6617	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6618
6619	refcount_create(&arc_anon->arcs_size);
6620	refcount_create(&arc_mru->arcs_size);
6621	refcount_create(&arc_mru_ghost->arcs_size);
6622	refcount_create(&arc_mfu->arcs_size);
6623	refcount_create(&arc_mfu_ghost->arcs_size);
6624	refcount_create(&arc_l2c_only->arcs_size);
6625
6626	aggsum_init(&arc_meta_used, 0);
6627	aggsum_init(&arc_size, 0);
6628	aggsum_init(&astat_data_size, 0);
6629	aggsum_init(&astat_metadata_size, 0);
6630	aggsum_init(&astat_hdr_size, 0);
6631	aggsum_init(&astat_other_size, 0);
6632	aggsum_init(&astat_l2_hdr_size, 0);
6633}
6634
6635static void
6636arc_state_fini(void)
6637{
6638	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6639	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6640	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6641	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6642	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6643	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6644	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6645	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6646	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6647	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6648	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6649	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6650
6651	refcount_destroy(&arc_anon->arcs_size);
6652	refcount_destroy(&arc_mru->arcs_size);
6653	refcount_destroy(&arc_mru_ghost->arcs_size);
6654	refcount_destroy(&arc_mfu->arcs_size);
6655	refcount_destroy(&arc_mfu_ghost->arcs_size);
6656	refcount_destroy(&arc_l2c_only->arcs_size);
6657
6658	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6659	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6660	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6661	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6662	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6663	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6664	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6665	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6666}
6667
6668uint64_t
6669arc_max_bytes(void)
6670{
6671	return (arc_c_max);
6672}
6673
6674void
6675arc_init(void)
6676{
6677	int i, prefetch_tunable_set = 0;
6678
6679	/*
6680	 * allmem is "all memory that we could possibly use".
6681	 */
6682#ifdef illumos
6683#ifdef _KERNEL
6684	uint64_t allmem = ptob(physmem - swapfs_minfree);
6685#else
6686	uint64_t allmem = (physmem * PAGESIZE) / 2;
6687#endif
6688#else
6689	uint64_t allmem = kmem_size();
6690#endif
6691
6692
6693	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6694	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6695	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6696
6697	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
6698	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
6699
6700	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
6701	arc_c_min = MAX(allmem / 32, arc_abs_min);
6702	/* set max to 5/8 of all memory, or all but 1GB, whichever is more */
6703	if (allmem >= 1 << 30)
6704		arc_c_max = allmem - (1 << 30);
6705	else
6706		arc_c_max = arc_c_min;
6707	arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
6708
6709	/*
6710	 * In userland, there's only the memory pressure that we artificially
6711	 * create (see arc_available_memory()).  Don't let arc_c get too
6712	 * small, because it can cause transactions to be larger than
6713	 * arc_c, causing arc_tempreserve_space() to fail.
6714	 */
6715#ifndef _KERNEL
6716	arc_c_min = arc_c_max / 2;
6717#endif
6718
6719#ifdef _KERNEL
6720	/*
6721	 * Allow the tunables to override our calculations if they are
6722	 * reasonable.
6723	 */
6724	if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
6725		arc_c_max = zfs_arc_max;
6726		arc_c_min = MIN(arc_c_min, arc_c_max);
6727	}
6728	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6729		arc_c_min = zfs_arc_min;
6730#endif
6731
6732	arc_c = arc_c_max;
6733	arc_p = (arc_c >> 1);
6734
6735	/* limit meta-data to 1/4 of the arc capacity */
6736	arc_meta_limit = arc_c_max / 4;
6737
6738#ifdef _KERNEL
6739	/*
6740	 * Metadata is stored in the kernel's heap.  Don't let us
6741	 * use more than half the heap for the ARC.
6742	 */
6743	arc_meta_limit = MIN(arc_meta_limit,
6744	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6745#endif
6746
6747	/* Allow the tunable to override if it is reasonable */
6748	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6749		arc_meta_limit = zfs_arc_meta_limit;
6750
6751	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6752		arc_c_min = arc_meta_limit / 2;
6753
6754	if (zfs_arc_meta_min > 0) {
6755		arc_meta_min = zfs_arc_meta_min;
6756	} else {
6757		arc_meta_min = arc_c_min / 2;
6758	}
6759
6760	if (zfs_arc_grow_retry > 0)
6761		arc_grow_retry = zfs_arc_grow_retry;
6762
6763	if (zfs_arc_shrink_shift > 0)
6764		arc_shrink_shift = zfs_arc_shrink_shift;
6765
6766	if (zfs_arc_no_grow_shift > 0)
6767		arc_no_grow_shift = zfs_arc_no_grow_shift;
6768	/*
6769	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6770	 */
6771	if (arc_no_grow_shift >= arc_shrink_shift)
6772		arc_no_grow_shift = arc_shrink_shift - 1;
6773
6774	if (zfs_arc_p_min_shift > 0)
6775		arc_p_min_shift = zfs_arc_p_min_shift;
6776
6777	/* if kmem_flags are set, lets try to use less memory */
6778	if (kmem_debugging())
6779		arc_c = arc_c / 2;
6780	if (arc_c < arc_c_min)
6781		arc_c = arc_c_min;
6782
6783	zfs_arc_min = arc_c_min;
6784	zfs_arc_max = arc_c_max;
6785
6786	arc_state_init();
6787	buf_init();
6788
6789	arc_reclaim_thread_exit = B_FALSE;
6790	arc_dnlc_evicts_thread_exit = FALSE;
6791
6792	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6793	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6794
6795	if (arc_ksp != NULL) {
6796		arc_ksp->ks_data = &arc_stats;
6797		arc_ksp->ks_update = arc_kstat_update;
6798		kstat_install(arc_ksp);
6799	}
6800
6801	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6802	    TS_RUN, minclsyspri);
6803
6804#ifdef _KERNEL
6805	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6806	    EVENTHANDLER_PRI_FIRST);
6807#endif
6808
6809	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
6810	    TS_RUN, minclsyspri);
6811
6812	arc_dead = B_FALSE;
6813	arc_warm = B_FALSE;
6814
6815	/*
6816	 * Calculate maximum amount of dirty data per pool.
6817	 *
6818	 * If it has been set by /etc/system, take that.
6819	 * Otherwise, use a percentage of physical memory defined by
6820	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6821	 * zfs_dirty_data_max_max (default 4GB).
6822	 */
6823	if (zfs_dirty_data_max == 0) {
6824		zfs_dirty_data_max = ptob(physmem) *
6825		    zfs_dirty_data_max_percent / 100;
6826		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6827		    zfs_dirty_data_max_max);
6828	}
6829
6830#ifdef _KERNEL
6831	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6832		prefetch_tunable_set = 1;
6833
6834#ifdef __i386__
6835	if (prefetch_tunable_set == 0) {
6836		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6837		    "-- to enable,\n");
6838		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6839		    "to /boot/loader.conf.\n");
6840		zfs_prefetch_disable = 1;
6841	}
6842#else
6843	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6844	    prefetch_tunable_set == 0) {
6845		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6846		    "than 4GB of RAM is present;\n"
6847		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6848		    "to /boot/loader.conf.\n");
6849		zfs_prefetch_disable = 1;
6850	}
6851#endif
6852	/* Warn about ZFS memory and address space requirements. */
6853	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6854		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6855		    "expect unstable behavior.\n");
6856	}
6857	if (allmem < 512 * (1 << 20)) {
6858		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6859		    "expect unstable behavior.\n");
6860		printf("             Consider tuning vm.kmem_size and "
6861		    "vm.kmem_size_max\n");
6862		printf("             in /boot/loader.conf.\n");
6863	}
6864#endif
6865}
6866
6867void
6868arc_fini(void)
6869{
6870#ifdef _KERNEL
6871	if (arc_event_lowmem != NULL)
6872		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6873#endif
6874
6875	mutex_enter(&arc_reclaim_lock);
6876	arc_reclaim_thread_exit = B_TRUE;
6877	/*
6878	 * The reclaim thread will set arc_reclaim_thread_exit back to
6879	 * B_FALSE when it is finished exiting; we're waiting for that.
6880	 */
6881	while (arc_reclaim_thread_exit) {
6882		cv_signal(&arc_reclaim_thread_cv);
6883		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6884	}
6885	mutex_exit(&arc_reclaim_lock);
6886
6887	/* Use B_TRUE to ensure *all* buffers are evicted */
6888	arc_flush(NULL, B_TRUE);
6889
6890	mutex_enter(&arc_dnlc_evicts_lock);
6891	arc_dnlc_evicts_thread_exit = TRUE;
6892	/*
6893	 * The user evicts thread will set arc_user_evicts_thread_exit
6894	 * to FALSE when it is finished exiting; we're waiting for that.
6895	 */
6896	while (arc_dnlc_evicts_thread_exit) {
6897		cv_signal(&arc_dnlc_evicts_cv);
6898		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
6899	}
6900	mutex_exit(&arc_dnlc_evicts_lock);
6901
6902	arc_dead = B_TRUE;
6903
6904	if (arc_ksp != NULL) {
6905		kstat_delete(arc_ksp);
6906		arc_ksp = NULL;
6907	}
6908
6909	mutex_destroy(&arc_reclaim_lock);
6910	cv_destroy(&arc_reclaim_thread_cv);
6911	cv_destroy(&arc_reclaim_waiters_cv);
6912
6913	mutex_destroy(&arc_dnlc_evicts_lock);
6914	cv_destroy(&arc_dnlc_evicts_cv);
6915
6916	arc_state_fini();
6917	buf_fini();
6918
6919	ASSERT0(arc_loaned_bytes);
6920}
6921
6922/*
6923 * Level 2 ARC
6924 *
6925 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6926 * It uses dedicated storage devices to hold cached data, which are populated
6927 * using large infrequent writes.  The main role of this cache is to boost
6928 * the performance of random read workloads.  The intended L2ARC devices
6929 * include short-stroked disks, solid state disks, and other media with
6930 * substantially faster read latency than disk.
6931 *
6932 *                 +-----------------------+
6933 *                 |         ARC           |
6934 *                 +-----------------------+
6935 *                    |         ^     ^
6936 *                    |         |     |
6937 *      l2arc_feed_thread()    arc_read()
6938 *                    |         |     |
6939 *                    |  l2arc read   |
6940 *                    V         |     |
6941 *               +---------------+    |
6942 *               |     L2ARC     |    |
6943 *               +---------------+    |
6944 *                   |    ^           |
6945 *          l2arc_write() |           |
6946 *                   |    |           |
6947 *                   V    |           |
6948 *                 +-------+      +-------+
6949 *                 | vdev  |      | vdev  |
6950 *                 | cache |      | cache |
6951 *                 +-------+      +-------+
6952 *                 +=========+     .-----.
6953 *                 :  L2ARC  :    |-_____-|
6954 *                 : devices :    | Disks |
6955 *                 +=========+    `-_____-'
6956 *
6957 * Read requests are satisfied from the following sources, in order:
6958 *
6959 *	1) ARC
6960 *	2) vdev cache of L2ARC devices
6961 *	3) L2ARC devices
6962 *	4) vdev cache of disks
6963 *	5) disks
6964 *
6965 * Some L2ARC device types exhibit extremely slow write performance.
6966 * To accommodate for this there are some significant differences between
6967 * the L2ARC and traditional cache design:
6968 *
6969 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6970 * the ARC behave as usual, freeing buffers and placing headers on ghost
6971 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6972 * this would add inflated write latencies for all ARC memory pressure.
6973 *
6974 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6975 * It does this by periodically scanning buffers from the eviction-end of
6976 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6977 * not already there. It scans until a headroom of buffers is satisfied,
6978 * which itself is a buffer for ARC eviction. If a compressible buffer is
6979 * found during scanning and selected for writing to an L2ARC device, we
6980 * temporarily boost scanning headroom during the next scan cycle to make
6981 * sure we adapt to compression effects (which might significantly reduce
6982 * the data volume we write to L2ARC). The thread that does this is
6983 * l2arc_feed_thread(), illustrated below; example sizes are included to
6984 * provide a better sense of ratio than this diagram:
6985 *
6986 *	       head -->                        tail
6987 *	        +---------------------+----------+
6988 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6989 *	        +---------------------+----------+   |   o L2ARC eligible
6990 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6991 *	        +---------------------+----------+   |
6992 *	             15.9 Gbytes      ^ 32 Mbytes    |
6993 *	                           headroom          |
6994 *	                                      l2arc_feed_thread()
6995 *	                                             |
6996 *	                 l2arc write hand <--[oooo]--'
6997 *	                         |           8 Mbyte
6998 *	                         |          write max
6999 *	                         V
7000 *		  +==============================+
7001 *	L2ARC dev |####|#|###|###|    |####| ... |
7002 *	          +==============================+
7003 *	                     32 Gbytes
7004 *
7005 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7006 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7007 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7008 * safe to say that this is an uncommon case, since buffers at the end of
7009 * the ARC lists have moved there due to inactivity.
7010 *
7011 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7012 * then the L2ARC simply misses copying some buffers.  This serves as a
7013 * pressure valve to prevent heavy read workloads from both stalling the ARC
7014 * with waits and clogging the L2ARC with writes.  This also helps prevent
7015 * the potential for the L2ARC to churn if it attempts to cache content too
7016 * quickly, such as during backups of the entire pool.
7017 *
7018 * 5. After system boot and before the ARC has filled main memory, there are
7019 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7020 * lists can remain mostly static.  Instead of searching from tail of these
7021 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7022 * for eligible buffers, greatly increasing its chance of finding them.
7023 *
7024 * The L2ARC device write speed is also boosted during this time so that
7025 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7026 * there are no L2ARC reads, and no fear of degrading read performance
7027 * through increased writes.
7028 *
7029 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7030 * the vdev queue can aggregate them into larger and fewer writes.  Each
7031 * device is written to in a rotor fashion, sweeping writes through
7032 * available space then repeating.
7033 *
7034 * 7. The L2ARC does not store dirty content.  It never needs to flush
7035 * write buffers back to disk based storage.
7036 *
7037 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7038 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7039 *
7040 * The performance of the L2ARC can be tweaked by a number of tunables, which
7041 * may be necessary for different workloads:
7042 *
7043 *	l2arc_write_max		max write bytes per interval
7044 *	l2arc_write_boost	extra write bytes during device warmup
7045 *	l2arc_noprefetch	skip caching prefetched buffers
7046 *	l2arc_headroom		number of max device writes to precache
7047 *	l2arc_headroom_boost	when we find compressed buffers during ARC
7048 *				scanning, we multiply headroom by this
7049 *				percentage factor for the next scan cycle,
7050 *				since more compressed buffers are likely to
7051 *				be present
7052 *	l2arc_feed_secs		seconds between L2ARC writing
7053 *
7054 * Tunables may be removed or added as future performance improvements are
7055 * integrated, and also may become zpool properties.
7056 *
7057 * There are three key functions that control how the L2ARC warms up:
7058 *
7059 *	l2arc_write_eligible()	check if a buffer is eligible to cache
7060 *	l2arc_write_size()	calculate how much to write
7061 *	l2arc_write_interval()	calculate sleep delay between writes
7062 *
7063 * These three functions determine what to write, how much, and how quickly
7064 * to send writes.
7065 */
7066
7067static boolean_t
7068l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7069{
7070	/*
7071	 * A buffer is *not* eligible for the L2ARC if it:
7072	 * 1. belongs to a different spa.
7073	 * 2. is already cached on the L2ARC.
7074	 * 3. has an I/O in progress (it may be an incomplete read).
7075	 * 4. is flagged not eligible (zfs property).
7076	 */
7077	if (hdr->b_spa != spa_guid) {
7078		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
7079		return (B_FALSE);
7080	}
7081	if (HDR_HAS_L2HDR(hdr)) {
7082		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
7083		return (B_FALSE);
7084	}
7085	if (HDR_IO_IN_PROGRESS(hdr)) {
7086		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
7087		return (B_FALSE);
7088	}
7089	if (!HDR_L2CACHE(hdr)) {
7090		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
7091		return (B_FALSE);
7092	}
7093
7094	return (B_TRUE);
7095}
7096
7097static uint64_t
7098l2arc_write_size(void)
7099{
7100	uint64_t size;
7101
7102	/*
7103	 * Make sure our globals have meaningful values in case the user
7104	 * altered them.
7105	 */
7106	size = l2arc_write_max;
7107	if (size == 0) {
7108		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7109		    "be greater than zero, resetting it to the default (%d)",
7110		    L2ARC_WRITE_SIZE);
7111		size = l2arc_write_max = L2ARC_WRITE_SIZE;
7112	}
7113
7114	if (arc_warm == B_FALSE)
7115		size += l2arc_write_boost;
7116
7117	return (size);
7118
7119}
7120
7121static clock_t
7122l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7123{
7124	clock_t interval, next, now;
7125
7126	/*
7127	 * If the ARC lists are busy, increase our write rate; if the
7128	 * lists are stale, idle back.  This is achieved by checking
7129	 * how much we previously wrote - if it was more than half of
7130	 * what we wanted, schedule the next write much sooner.
7131	 */
7132	if (l2arc_feed_again && wrote > (wanted / 2))
7133		interval = (hz * l2arc_feed_min_ms) / 1000;
7134	else
7135		interval = hz * l2arc_feed_secs;
7136
7137	now = ddi_get_lbolt();
7138	next = MAX(now, MIN(now + interval, began + interval));
7139
7140	return (next);
7141}
7142
7143/*
7144 * Cycle through L2ARC devices.  This is how L2ARC load balances.
7145 * If a device is returned, this also returns holding the spa config lock.
7146 */
7147static l2arc_dev_t *
7148l2arc_dev_get_next(void)
7149{
7150	l2arc_dev_t *first, *next = NULL;
7151
7152	/*
7153	 * Lock out the removal of spas (spa_namespace_lock), then removal
7154	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7155	 * both locks will be dropped and a spa config lock held instead.
7156	 */
7157	mutex_enter(&spa_namespace_lock);
7158	mutex_enter(&l2arc_dev_mtx);
7159
7160	/* if there are no vdevs, there is nothing to do */
7161	if (l2arc_ndev == 0)
7162		goto out;
7163
7164	first = NULL;
7165	next = l2arc_dev_last;
7166	do {
7167		/* loop around the list looking for a non-faulted vdev */
7168		if (next == NULL) {
7169			next = list_head(l2arc_dev_list);
7170		} else {
7171			next = list_next(l2arc_dev_list, next);
7172			if (next == NULL)
7173				next = list_head(l2arc_dev_list);
7174		}
7175
7176		/* if we have come back to the start, bail out */
7177		if (first == NULL)
7178			first = next;
7179		else if (next == first)
7180			break;
7181
7182	} while (vdev_is_dead(next->l2ad_vdev));
7183
7184	/* if we were unable to find any usable vdevs, return NULL */
7185	if (vdev_is_dead(next->l2ad_vdev))
7186		next = NULL;
7187
7188	l2arc_dev_last = next;
7189
7190out:
7191	mutex_exit(&l2arc_dev_mtx);
7192
7193	/*
7194	 * Grab the config lock to prevent the 'next' device from being
7195	 * removed while we are writing to it.
7196	 */
7197	if (next != NULL)
7198		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7199	mutex_exit(&spa_namespace_lock);
7200
7201	return (next);
7202}
7203
7204/*
7205 * Free buffers that were tagged for destruction.
7206 */
7207static void
7208l2arc_do_free_on_write()
7209{
7210	list_t *buflist;
7211	l2arc_data_free_t *df, *df_prev;
7212
7213	mutex_enter(&l2arc_free_on_write_mtx);
7214	buflist = l2arc_free_on_write;
7215
7216	for (df = list_tail(buflist); df; df = df_prev) {
7217		df_prev = list_prev(buflist, df);
7218		ASSERT3P(df->l2df_abd, !=, NULL);
7219		abd_free(df->l2df_abd);
7220		list_remove(buflist, df);
7221		kmem_free(df, sizeof (l2arc_data_free_t));
7222	}
7223
7224	mutex_exit(&l2arc_free_on_write_mtx);
7225}
7226
7227/*
7228 * A write to a cache device has completed.  Update all headers to allow
7229 * reads from these buffers to begin.
7230 */
7231static void
7232l2arc_write_done(zio_t *zio)
7233{
7234	l2arc_write_callback_t *cb;
7235	l2arc_dev_t *dev;
7236	list_t *buflist;
7237	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7238	kmutex_t *hash_lock;
7239	int64_t bytes_dropped = 0;
7240
7241	cb = zio->io_private;
7242	ASSERT3P(cb, !=, NULL);
7243	dev = cb->l2wcb_dev;
7244	ASSERT3P(dev, !=, NULL);
7245	head = cb->l2wcb_head;
7246	ASSERT3P(head, !=, NULL);
7247	buflist = &dev->l2ad_buflist;
7248	ASSERT3P(buflist, !=, NULL);
7249	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7250	    l2arc_write_callback_t *, cb);
7251
7252	if (zio->io_error != 0)
7253		ARCSTAT_BUMP(arcstat_l2_writes_error);
7254
7255	/*
7256	 * All writes completed, or an error was hit.
7257	 */
7258top:
7259	mutex_enter(&dev->l2ad_mtx);
7260	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7261		hdr_prev = list_prev(buflist, hdr);
7262
7263		hash_lock = HDR_LOCK(hdr);
7264
7265		/*
7266		 * We cannot use mutex_enter or else we can deadlock
7267		 * with l2arc_write_buffers (due to swapping the order
7268		 * the hash lock and l2ad_mtx are taken).
7269		 */
7270		if (!mutex_tryenter(hash_lock)) {
7271			/*
7272			 * Missed the hash lock. We must retry so we
7273			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7274			 */
7275			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7276
7277			/*
7278			 * We don't want to rescan the headers we've
7279			 * already marked as having been written out, so
7280			 * we reinsert the head node so we can pick up
7281			 * where we left off.
7282			 */
7283			list_remove(buflist, head);
7284			list_insert_after(buflist, hdr, head);
7285
7286			mutex_exit(&dev->l2ad_mtx);
7287
7288			/*
7289			 * We wait for the hash lock to become available
7290			 * to try and prevent busy waiting, and increase
7291			 * the chance we'll be able to acquire the lock
7292			 * the next time around.
7293			 */
7294			mutex_enter(hash_lock);
7295			mutex_exit(hash_lock);
7296			goto top;
7297		}
7298
7299		/*
7300		 * We could not have been moved into the arc_l2c_only
7301		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7302		 * bit being set. Let's just ensure that's being enforced.
7303		 */
7304		ASSERT(HDR_HAS_L1HDR(hdr));
7305
7306		if (zio->io_error != 0) {
7307			/*
7308			 * Error - drop L2ARC entry.
7309			 */
7310			list_remove(buflist, hdr);
7311			l2arc_trim(hdr);
7312			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7313
7314			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7315			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7316
7317			bytes_dropped += arc_hdr_size(hdr);
7318			(void) refcount_remove_many(&dev->l2ad_alloc,
7319			    arc_hdr_size(hdr), hdr);
7320		}
7321
7322		/*
7323		 * Allow ARC to begin reads and ghost list evictions to
7324		 * this L2ARC entry.
7325		 */
7326		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7327
7328		mutex_exit(hash_lock);
7329	}
7330
7331	atomic_inc_64(&l2arc_writes_done);
7332	list_remove(buflist, head);
7333	ASSERT(!HDR_HAS_L1HDR(head));
7334	kmem_cache_free(hdr_l2only_cache, head);
7335	mutex_exit(&dev->l2ad_mtx);
7336
7337	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7338
7339	l2arc_do_free_on_write();
7340
7341	kmem_free(cb, sizeof (l2arc_write_callback_t));
7342}
7343
7344/*
7345 * A read to a cache device completed.  Validate buffer contents before
7346 * handing over to the regular ARC routines.
7347 */
7348static void
7349l2arc_read_done(zio_t *zio)
7350{
7351	l2arc_read_callback_t *cb;
7352	arc_buf_hdr_t *hdr;
7353	kmutex_t *hash_lock;
7354	boolean_t valid_cksum;
7355
7356	ASSERT3P(zio->io_vd, !=, NULL);
7357	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7358
7359	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7360
7361	cb = zio->io_private;
7362	ASSERT3P(cb, !=, NULL);
7363	hdr = cb->l2rcb_hdr;
7364	ASSERT3P(hdr, !=, NULL);
7365
7366	hash_lock = HDR_LOCK(hdr);
7367	mutex_enter(hash_lock);
7368	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7369
7370	/*
7371	 * If the data was read into a temporary buffer,
7372	 * move it and free the buffer.
7373	 */
7374	if (cb->l2rcb_abd != NULL) {
7375		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7376		if (zio->io_error == 0) {
7377			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7378			    arc_hdr_size(hdr));
7379		}
7380
7381		/*
7382		 * The following must be done regardless of whether
7383		 * there was an error:
7384		 * - free the temporary buffer
7385		 * - point zio to the real ARC buffer
7386		 * - set zio size accordingly
7387		 * These are required because zio is either re-used for
7388		 * an I/O of the block in the case of the error
7389		 * or the zio is passed to arc_read_done() and it
7390		 * needs real data.
7391		 */
7392		abd_free(cb->l2rcb_abd);
7393		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7394		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7395	}
7396
7397	ASSERT3P(zio->io_abd, !=, NULL);
7398
7399	/*
7400	 * Check this survived the L2ARC journey.
7401	 */
7402	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7403	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
7404	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
7405
7406	valid_cksum = arc_cksum_is_equal(hdr, zio);
7407	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7408		mutex_exit(hash_lock);
7409		zio->io_private = hdr;
7410		arc_read_done(zio);
7411	} else {
7412		mutex_exit(hash_lock);
7413		/*
7414		 * Buffer didn't survive caching.  Increment stats and
7415		 * reissue to the original storage device.
7416		 */
7417		if (zio->io_error != 0) {
7418			ARCSTAT_BUMP(arcstat_l2_io_error);
7419		} else {
7420			zio->io_error = SET_ERROR(EIO);
7421		}
7422		if (!valid_cksum)
7423			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7424
7425		/*
7426		 * If there's no waiter, issue an async i/o to the primary
7427		 * storage now.  If there *is* a waiter, the caller must
7428		 * issue the i/o in a context where it's OK to block.
7429		 */
7430		if (zio->io_waiter == NULL) {
7431			zio_t *pio = zio_unique_parent(zio);
7432
7433			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7434
7435			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7436			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7437			    hdr, zio->io_priority, cb->l2rcb_flags,
7438			    &cb->l2rcb_zb));
7439		}
7440	}
7441
7442	kmem_free(cb, sizeof (l2arc_read_callback_t));
7443}
7444
7445/*
7446 * This is the list priority from which the L2ARC will search for pages to
7447 * cache.  This is used within loops (0..3) to cycle through lists in the
7448 * desired order.  This order can have a significant effect on cache
7449 * performance.
7450 *
7451 * Currently the metadata lists are hit first, MFU then MRU, followed by
7452 * the data lists.  This function returns a locked list, and also returns
7453 * the lock pointer.
7454 */
7455static multilist_sublist_t *
7456l2arc_sublist_lock(int list_num)
7457{
7458	multilist_t *ml = NULL;
7459	unsigned int idx;
7460
7461	ASSERT(list_num >= 0 && list_num <= 3);
7462
7463	switch (list_num) {
7464	case 0:
7465		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7466		break;
7467	case 1:
7468		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7469		break;
7470	case 2:
7471		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7472		break;
7473	case 3:
7474		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7475		break;
7476	}
7477
7478	/*
7479	 * Return a randomly-selected sublist. This is acceptable
7480	 * because the caller feeds only a little bit of data for each
7481	 * call (8MB). Subsequent calls will result in different
7482	 * sublists being selected.
7483	 */
7484	idx = multilist_get_random_index(ml);
7485	return (multilist_sublist_lock(ml, idx));
7486}
7487
7488/*
7489 * Evict buffers from the device write hand to the distance specified in
7490 * bytes.  This distance may span populated buffers, it may span nothing.
7491 * This is clearing a region on the L2ARC device ready for writing.
7492 * If the 'all' boolean is set, every buffer is evicted.
7493 */
7494static void
7495l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7496{
7497	list_t *buflist;
7498	arc_buf_hdr_t *hdr, *hdr_prev;
7499	kmutex_t *hash_lock;
7500	uint64_t taddr;
7501
7502	buflist = &dev->l2ad_buflist;
7503
7504	if (!all && dev->l2ad_first) {
7505		/*
7506		 * This is the first sweep through the device.  There is
7507		 * nothing to evict.
7508		 */
7509		return;
7510	}
7511
7512	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7513		/*
7514		 * When nearing the end of the device, evict to the end
7515		 * before the device write hand jumps to the start.
7516		 */
7517		taddr = dev->l2ad_end;
7518	} else {
7519		taddr = dev->l2ad_hand + distance;
7520	}
7521	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7522	    uint64_t, taddr, boolean_t, all);
7523
7524top:
7525	mutex_enter(&dev->l2ad_mtx);
7526	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7527		hdr_prev = list_prev(buflist, hdr);
7528
7529		hash_lock = HDR_LOCK(hdr);
7530
7531		/*
7532		 * We cannot use mutex_enter or else we can deadlock
7533		 * with l2arc_write_buffers (due to swapping the order
7534		 * the hash lock and l2ad_mtx are taken).
7535		 */
7536		if (!mutex_tryenter(hash_lock)) {
7537			/*
7538			 * Missed the hash lock.  Retry.
7539			 */
7540			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7541			mutex_exit(&dev->l2ad_mtx);
7542			mutex_enter(hash_lock);
7543			mutex_exit(hash_lock);
7544			goto top;
7545		}
7546
7547		/*
7548		 * A header can't be on this list if it doesn't have L2 header.
7549		 */
7550		ASSERT(HDR_HAS_L2HDR(hdr));
7551
7552		/* Ensure this header has finished being written. */
7553		ASSERT(!HDR_L2_WRITING(hdr));
7554		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
7555
7556		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
7557		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7558			/*
7559			 * We've evicted to the target address,
7560			 * or the end of the device.
7561			 */
7562			mutex_exit(hash_lock);
7563			break;
7564		}
7565
7566		if (!HDR_HAS_L1HDR(hdr)) {
7567			ASSERT(!HDR_L2_READING(hdr));
7568			/*
7569			 * This doesn't exist in the ARC.  Destroy.
7570			 * arc_hdr_destroy() will call list_remove()
7571			 * and decrement arcstat_l2_lsize.
7572			 */
7573			arc_change_state(arc_anon, hdr, hash_lock);
7574			arc_hdr_destroy(hdr);
7575		} else {
7576			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7577			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7578			/*
7579			 * Invalidate issued or about to be issued
7580			 * reads, since we may be about to write
7581			 * over this location.
7582			 */
7583			if (HDR_L2_READING(hdr)) {
7584				ARCSTAT_BUMP(arcstat_l2_evict_reading);
7585				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7586			}
7587
7588			arc_hdr_l2hdr_destroy(hdr);
7589		}
7590		mutex_exit(hash_lock);
7591	}
7592	mutex_exit(&dev->l2ad_mtx);
7593}
7594
7595/*
7596 * Find and write ARC buffers to the L2ARC device.
7597 *
7598 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7599 * for reading until they have completed writing.
7600 * The headroom_boost is an in-out parameter used to maintain headroom boost
7601 * state between calls to this function.
7602 *
7603 * Returns the number of bytes actually written (which may be smaller than
7604 * the delta by which the device hand has changed due to alignment).
7605 */
7606static uint64_t
7607l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7608{
7609	arc_buf_hdr_t *hdr, *hdr_prev, *head;
7610	uint64_t write_asize, write_psize, write_lsize, headroom;
7611	boolean_t full;
7612	l2arc_write_callback_t *cb;
7613	zio_t *pio, *wzio;
7614	uint64_t guid = spa_load_guid(spa);
7615	int try;
7616
7617	ASSERT3P(dev->l2ad_vdev, !=, NULL);
7618
7619	pio = NULL;
7620	write_lsize = write_asize = write_psize = 0;
7621	full = B_FALSE;
7622	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7623	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7624
7625	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
7626	/*
7627	 * Copy buffers for L2ARC writing.
7628	 */
7629	for (try = 0; try <= 3; try++) {
7630		multilist_sublist_t *mls = l2arc_sublist_lock(try);
7631		uint64_t passed_sz = 0;
7632
7633		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
7634
7635		/*
7636		 * L2ARC fast warmup.
7637		 *
7638		 * Until the ARC is warm and starts to evict, read from the
7639		 * head of the ARC lists rather than the tail.
7640		 */
7641		if (arc_warm == B_FALSE)
7642			hdr = multilist_sublist_head(mls);
7643		else
7644			hdr = multilist_sublist_tail(mls);
7645		if (hdr == NULL)
7646			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
7647
7648		headroom = target_sz * l2arc_headroom;
7649		if (zfs_compressed_arc_enabled)
7650			headroom = (headroom * l2arc_headroom_boost) / 100;
7651
7652		for (; hdr; hdr = hdr_prev) {
7653			kmutex_t *hash_lock;
7654
7655			if (arc_warm == B_FALSE)
7656				hdr_prev = multilist_sublist_next(mls, hdr);
7657			else
7658				hdr_prev = multilist_sublist_prev(mls, hdr);
7659			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
7660			    HDR_GET_LSIZE(hdr));
7661
7662			hash_lock = HDR_LOCK(hdr);
7663			if (!mutex_tryenter(hash_lock)) {
7664				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
7665				/*
7666				 * Skip this buffer rather than waiting.
7667				 */
7668				continue;
7669			}
7670
7671			passed_sz += HDR_GET_LSIZE(hdr);
7672			if (passed_sz > headroom) {
7673				/*
7674				 * Searched too far.
7675				 */
7676				mutex_exit(hash_lock);
7677				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
7678				break;
7679			}
7680
7681			if (!l2arc_write_eligible(guid, hdr)) {
7682				mutex_exit(hash_lock);
7683				continue;
7684			}
7685
7686			/*
7687			 * We rely on the L1 portion of the header below, so
7688			 * it's invalid for this header to have been evicted out
7689			 * of the ghost cache, prior to being written out. The
7690			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7691			 */
7692			ASSERT(HDR_HAS_L1HDR(hdr));
7693
7694			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7695			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7696			ASSERT3U(arc_hdr_size(hdr), >, 0);
7697			uint64_t psize = arc_hdr_size(hdr);
7698			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7699			    psize);
7700
7701			if ((write_asize + asize) > target_sz) {
7702				full = B_TRUE;
7703				mutex_exit(hash_lock);
7704				ARCSTAT_BUMP(arcstat_l2_write_full);
7705				break;
7706			}
7707
7708			if (pio == NULL) {
7709				/*
7710				 * Insert a dummy header on the buflist so
7711				 * l2arc_write_done() can find where the
7712				 * write buffers begin without searching.
7713				 */
7714				mutex_enter(&dev->l2ad_mtx);
7715				list_insert_head(&dev->l2ad_buflist, head);
7716				mutex_exit(&dev->l2ad_mtx);
7717
7718				cb = kmem_alloc(
7719				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7720				cb->l2wcb_dev = dev;
7721				cb->l2wcb_head = head;
7722				pio = zio_root(spa, l2arc_write_done, cb,
7723				    ZIO_FLAG_CANFAIL);
7724				ARCSTAT_BUMP(arcstat_l2_write_pios);
7725			}
7726
7727			hdr->b_l2hdr.b_dev = dev;
7728			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7729			arc_hdr_set_flags(hdr,
7730			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7731
7732			mutex_enter(&dev->l2ad_mtx);
7733			list_insert_head(&dev->l2ad_buflist, hdr);
7734			mutex_exit(&dev->l2ad_mtx);
7735
7736			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7737
7738			/*
7739			 * Normally the L2ARC can use the hdr's data, but if
7740			 * we're sharing data between the hdr and one of its
7741			 * bufs, L2ARC needs its own copy of the data so that
7742			 * the ZIO below can't race with the buf consumer.
7743			 * Another case where we need to create a copy of the
7744			 * data is when the buffer size is not device-aligned
7745			 * and we need to pad the block to make it such.
7746			 * That also keeps the clock hand suitably aligned.
7747			 *
7748			 * To ensure that the copy will be available for the
7749			 * lifetime of the ZIO and be cleaned up afterwards, we
7750			 * add it to the l2arc_free_on_write queue.
7751			 */
7752			abd_t *to_write;
7753			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7754				to_write = hdr->b_l1hdr.b_pabd;
7755			} else {
7756				to_write = abd_alloc_for_io(asize,
7757				    HDR_ISTYPE_METADATA(hdr));
7758				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7759				if (asize != psize) {
7760					abd_zero_off(to_write, psize,
7761					    asize - psize);
7762				}
7763				l2arc_free_abd_on_write(to_write, asize,
7764				    arc_buf_type(hdr));
7765			}
7766			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7767			    hdr->b_l2hdr.b_daddr, asize, to_write,
7768			    ZIO_CHECKSUM_OFF, NULL, hdr,
7769			    ZIO_PRIORITY_ASYNC_WRITE,
7770			    ZIO_FLAG_CANFAIL, B_FALSE);
7771
7772			write_lsize += HDR_GET_LSIZE(hdr);
7773			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7774			    zio_t *, wzio);
7775
7776			write_psize += psize;
7777			write_asize += asize;
7778			dev->l2ad_hand += asize;
7779
7780			mutex_exit(hash_lock);
7781
7782			(void) zio_nowait(wzio);
7783		}
7784
7785		multilist_sublist_unlock(mls);
7786
7787		if (full == B_TRUE)
7788			break;
7789	}
7790
7791	/* No buffers selected for writing? */
7792	if (pio == NULL) {
7793		ASSERT0(write_lsize);
7794		ASSERT(!HDR_HAS_L1HDR(head));
7795		kmem_cache_free(hdr_l2only_cache, head);
7796		return (0);
7797	}
7798
7799	ASSERT3U(write_psize, <=, target_sz);
7800	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7801	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7802	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7803	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7804	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7805
7806	/*
7807	 * Bump device hand to the device start if it is approaching the end.
7808	 * l2arc_evict() will already have evicted ahead for this case.
7809	 */
7810	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7811		dev->l2ad_hand = dev->l2ad_start;
7812		dev->l2ad_first = B_FALSE;
7813	}
7814
7815	dev->l2ad_writing = B_TRUE;
7816	(void) zio_wait(pio);
7817	dev->l2ad_writing = B_FALSE;
7818
7819	return (write_asize);
7820}
7821
7822/*
7823 * This thread feeds the L2ARC at regular intervals.  This is the beating
7824 * heart of the L2ARC.
7825 */
7826/* ARGSUSED */
7827static void
7828l2arc_feed_thread(void *unused __unused)
7829{
7830	callb_cpr_t cpr;
7831	l2arc_dev_t *dev;
7832	spa_t *spa;
7833	uint64_t size, wrote;
7834	clock_t begin, next = ddi_get_lbolt();
7835
7836	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7837
7838	mutex_enter(&l2arc_feed_thr_lock);
7839
7840	while (l2arc_thread_exit == 0) {
7841		CALLB_CPR_SAFE_BEGIN(&cpr);
7842		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7843		    next - ddi_get_lbolt());
7844		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7845		next = ddi_get_lbolt() + hz;
7846
7847		/*
7848		 * Quick check for L2ARC devices.
7849		 */
7850		mutex_enter(&l2arc_dev_mtx);
7851		if (l2arc_ndev == 0) {
7852			mutex_exit(&l2arc_dev_mtx);
7853			continue;
7854		}
7855		mutex_exit(&l2arc_dev_mtx);
7856		begin = ddi_get_lbolt();
7857
7858		/*
7859		 * This selects the next l2arc device to write to, and in
7860		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7861		 * will return NULL if there are now no l2arc devices or if
7862		 * they are all faulted.
7863		 *
7864		 * If a device is returned, its spa's config lock is also
7865		 * held to prevent device removal.  l2arc_dev_get_next()
7866		 * will grab and release l2arc_dev_mtx.
7867		 */
7868		if ((dev = l2arc_dev_get_next()) == NULL)
7869			continue;
7870
7871		spa = dev->l2ad_spa;
7872		ASSERT3P(spa, !=, NULL);
7873
7874		/*
7875		 * If the pool is read-only then force the feed thread to
7876		 * sleep a little longer.
7877		 */
7878		if (!spa_writeable(spa)) {
7879			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7880			spa_config_exit(spa, SCL_L2ARC, dev);
7881			continue;
7882		}
7883
7884		/*
7885		 * Avoid contributing to memory pressure.
7886		 */
7887		if (arc_reclaim_needed()) {
7888			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7889			spa_config_exit(spa, SCL_L2ARC, dev);
7890			continue;
7891		}
7892
7893		ARCSTAT_BUMP(arcstat_l2_feeds);
7894
7895		size = l2arc_write_size();
7896
7897		/*
7898		 * Evict L2ARC buffers that will be overwritten.
7899		 */
7900		l2arc_evict(dev, size, B_FALSE);
7901
7902		/*
7903		 * Write ARC buffers.
7904		 */
7905		wrote = l2arc_write_buffers(spa, dev, size);
7906
7907		/*
7908		 * Calculate interval between writes.
7909		 */
7910		next = l2arc_write_interval(begin, size, wrote);
7911		spa_config_exit(spa, SCL_L2ARC, dev);
7912	}
7913
7914	l2arc_thread_exit = 0;
7915	cv_broadcast(&l2arc_feed_thr_cv);
7916	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7917	thread_exit();
7918}
7919
7920boolean_t
7921l2arc_vdev_present(vdev_t *vd)
7922{
7923	l2arc_dev_t *dev;
7924
7925	mutex_enter(&l2arc_dev_mtx);
7926	for (dev = list_head(l2arc_dev_list); dev != NULL;
7927	    dev = list_next(l2arc_dev_list, dev)) {
7928		if (dev->l2ad_vdev == vd)
7929			break;
7930	}
7931	mutex_exit(&l2arc_dev_mtx);
7932
7933	return (dev != NULL);
7934}
7935
7936/*
7937 * Add a vdev for use by the L2ARC.  By this point the spa has already
7938 * validated the vdev and opened it.
7939 */
7940void
7941l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7942{
7943	l2arc_dev_t *adddev;
7944
7945	ASSERT(!l2arc_vdev_present(vd));
7946
7947	vdev_ashift_optimize(vd);
7948
7949	/*
7950	 * Create a new l2arc device entry.
7951	 */
7952	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7953	adddev->l2ad_spa = spa;
7954	adddev->l2ad_vdev = vd;
7955	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7956	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7957	adddev->l2ad_hand = adddev->l2ad_start;
7958	adddev->l2ad_first = B_TRUE;
7959	adddev->l2ad_writing = B_FALSE;
7960
7961	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7962	/*
7963	 * This is a list of all ARC buffers that are still valid on the
7964	 * device.
7965	 */
7966	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7967	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7968
7969	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7970	refcount_create(&adddev->l2ad_alloc);
7971
7972	/*
7973	 * Add device to global list
7974	 */
7975	mutex_enter(&l2arc_dev_mtx);
7976	list_insert_head(l2arc_dev_list, adddev);
7977	atomic_inc_64(&l2arc_ndev);
7978	mutex_exit(&l2arc_dev_mtx);
7979}
7980
7981/*
7982 * Remove a vdev from the L2ARC.
7983 */
7984void
7985l2arc_remove_vdev(vdev_t *vd)
7986{
7987	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7988
7989	/*
7990	 * Find the device by vdev
7991	 */
7992	mutex_enter(&l2arc_dev_mtx);
7993	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7994		nextdev = list_next(l2arc_dev_list, dev);
7995		if (vd == dev->l2ad_vdev) {
7996			remdev = dev;
7997			break;
7998		}
7999	}
8000	ASSERT3P(remdev, !=, NULL);
8001
8002	/*
8003	 * Remove device from global list
8004	 */
8005	list_remove(l2arc_dev_list, remdev);
8006	l2arc_dev_last = NULL;		/* may have been invalidated */
8007	atomic_dec_64(&l2arc_ndev);
8008	mutex_exit(&l2arc_dev_mtx);
8009
8010	/*
8011	 * Clear all buflists and ARC references.  L2ARC device flush.
8012	 */
8013	l2arc_evict(remdev, 0, B_TRUE);
8014	list_destroy(&remdev->l2ad_buflist);
8015	mutex_destroy(&remdev->l2ad_mtx);
8016	refcount_destroy(&remdev->l2ad_alloc);
8017	kmem_free(remdev, sizeof (l2arc_dev_t));
8018}
8019
8020void
8021l2arc_init(void)
8022{
8023	l2arc_thread_exit = 0;
8024	l2arc_ndev = 0;
8025	l2arc_writes_sent = 0;
8026	l2arc_writes_done = 0;
8027
8028	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8029	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8030	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8031	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8032
8033	l2arc_dev_list = &L2ARC_dev_list;
8034	l2arc_free_on_write = &L2ARC_free_on_write;
8035	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8036	    offsetof(l2arc_dev_t, l2ad_node));
8037	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8038	    offsetof(l2arc_data_free_t, l2df_list_node));
8039}
8040
8041void
8042l2arc_fini(void)
8043{
8044	/*
8045	 * This is called from dmu_fini(), which is called from spa_fini();
8046	 * Because of this, we can assume that all l2arc devices have
8047	 * already been removed when the pools themselves were removed.
8048	 */
8049
8050	l2arc_do_free_on_write();
8051
8052	mutex_destroy(&l2arc_feed_thr_lock);
8053	cv_destroy(&l2arc_feed_thr_cv);
8054	mutex_destroy(&l2arc_dev_mtx);
8055	mutex_destroy(&l2arc_free_on_write_mtx);
8056
8057	list_destroy(l2arc_dev_list);
8058	list_destroy(l2arc_free_on_write);
8059}
8060
8061void
8062l2arc_start(void)
8063{
8064	if (!(spa_mode_global & FWRITE))
8065		return;
8066
8067	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8068	    TS_RUN, minclsyspri);
8069}
8070
8071void
8072l2arc_stop(void)
8073{
8074	if (!(spa_mode_global & FWRITE))
8075		return;
8076
8077	mutex_enter(&l2arc_feed_thr_lock);
8078	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
8079	l2arc_thread_exit = 1;
8080	while (l2arc_thread_exit != 0)
8081		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8082	mutex_exit(&l2arc_feed_thr_lock);
8083}
8084