arc.c revision 332785
1139749Simp/*
2113584Ssimokawa * CDDL HEADER START
3103285Sikob *
4103285Sikob * The contents of this file are subject to the terms of the
5103285Sikob * Common Development and Distribution License (the "License").
6103285Sikob * You may not use this file except in compliance with the License.
7103285Sikob *
8103285Sikob * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9103285Sikob * or http://www.opensolaris.org/os/licensing.
10103285Sikob * See the License for the specific language governing permissions
11103285Sikob * and limitations under the License.
12103285Sikob *
13103285Sikob * When distributing Covered Code, include this CDDL HEADER in each
14103285Sikob * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15103285Sikob * If applicable, add the following below this CDDL HEADER, with the
16103285Sikob * fields enclosed by brackets "[]" replaced with your own identifying
17103285Sikob * information: Portions Copyright [yyyy] [name of copyright owner]
18103285Sikob *
19103285Sikob * CDDL HEADER END
20103285Sikob */
21103285Sikob/*
22103285Sikob * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23103285Sikob * Copyright (c) 2018, Joyent, Inc.
24103285Sikob * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25103285Sikob * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26103285Sikob * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27103285Sikob */
28103285Sikob
29103285Sikob/*
30103285Sikob * DVA-based Adjustable Replacement Cache
31103285Sikob *
32103285Sikob * While much of the theory of operation used here is
33103285Sikob * based on the self-tuning, low overhead replacement cache
34103285Sikob * presented by Megiddo and Modha at FAST 2003, there are some
35103285Sikob * significant differences:
36103285Sikob *
37103285Sikob * 1. The Megiddo and Modha model assumes any page is evictable.
38127468Ssimokawa * Pages in its cache cannot be "locked" into memory.  This makes
39127468Ssimokawa * the eviction algorithm simple: evict the last page in the list.
40127468Ssimokawa * This also make the performance characteristics easy to reason
41127468Ssimokawa * about.  Our cache is not so simple.  At any given moment, some
42103285Sikob * subset of the blocks in the cache are un-evictable because we
43103285Sikob * have handed out a reference to them.  Blocks are only evictable
44103285Sikob * when there are no external references active.  This makes
45103285Sikob * eviction far more problematic:  we choose to evict the evictable
46103285Sikob * blocks that are the "lowest" in the list.
47103285Sikob *
48103285Sikob * There are times when it is not possible to evict the requested
49113584Ssimokawa * space.  In these circumstances we are unable to adjust the cache
50113584Ssimokawa * size.  To prevent the cache growing unbounded at these times we
51103285Sikob * implement a "cache throttle" that slows the flow of new data
52103285Sikob * into the cache until we can make space available.
53169130Ssimokawa *
54169130Ssimokawa * 2. The Megiddo and Modha model assumes a fixed cache size.
55103285Sikob * Pages are evicted when the cache is full and there is a cache
56129585Sdfr * miss.  Our model has a variable sized cache.  It grows with
57103285Sikob * high use, but also tries to react to memory pressure from the
58129585Sdfr * operating system: decreasing its size when system memory is
59129585Sdfr * tight.
60129585Sdfr *
61129585Sdfr * 3. The Megiddo and Modha model assumes a fixed page size. All
62103285Sikob * elements of the cache are therefore exactly the same size.  So
63103285Sikob * when adjusting the cache size following a cache miss, its simply
64103285Sikob * a matter of choosing a single page to evict.  In our model, we
65129585Sdfr * have variable sized cache blocks (rangeing from 512 bytes to
66103285Sikob * 128K bytes).  We therefore choose a set of blocks to evict to make
67106810Ssimokawa * space for a cache miss that approximates as closely as possible
68129585Sdfr * the space used by the new block.
69103285Sikob *
70103285Sikob * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71103285Sikob * by N. Megiddo & D. Modha, FAST 2003
72110193Ssimokawa */
73103285Sikob
74109645Ssimokawa/*
75103285Sikob * The locking model:
76127468Ssimokawa *
77130585Sphk * A new reference to a cache buffer can be obtained in two
78103285Sikob * ways: 1) via a hash table lookup using the DVA as a key,
79103285Sikob * or 2) via one of the ARC lists.  The arc_read() interface
80103285Sikob * uses method 1, while the internal ARC algorithms for
81109645Ssimokawa * adjusting the cache use method 2.  We therefore provide two
82103285Sikob * types of locks: 1) the hash table lock array, and 2) the
83103285Sikob * ARC list locks.
84103285Sikob *
85109645Ssimokawa * Buffers do not have their own mutexes, rather they rely on the
86103285Sikob * hash table mutexes for the bulk of their protection (i.e. most
87103285Sikob * fields in the arc_buf_hdr_t are protected by these mutexes).
88103285Sikob *
89124169Ssimokawa * buf_hash_find() returns the appropriate mutex (held) when it
90124169Ssimokawa * locates the requested buffer in the hash table.  It returns
91103285Sikob * NULL for the mutex if the buffer was not in the table.
92103285Sikob *
93103285Sikob * buf_hash_remove() expects the appropriate hash mutex to be
94103285Sikob * already held before it is invoked.
95103285Sikob *
96103285Sikob * Each ARC state also has a mutex which is used to protect the
97103285Sikob * buffer list associated with the state.  When attempting to
98103285Sikob * obtain a hash table lock while holding an ARC list lock you
99103285Sikob * must use: mutex_tryenter() to avoid deadlock.  Also note that
100103285Sikob * the active state mutex must be held before the ghost state mutex.
101103285Sikob *
102103285Sikob * Note that the majority of the performance stats are manipulated
103103285Sikob * with atomic operations.
104103285Sikob *
105103285Sikob * The L2ARC uses the l2ad_mtx on each vdev for the following:
106129585Sdfr *
107103285Sikob *	- L2ARC buflist creation
108103285Sikob *	- L2ARC buflist eviction
109103285Sikob *	- L2ARC write completion, which walks L2ARC buflists
110103285Sikob *	- ARC header destruction, as it removes from L2ARC buflists
111103285Sikob *	- ARC header release, as it removes from L2ARC buflists
112103285Sikob */
113103285Sikob
114103285Sikob/*
115103285Sikob * ARC operation:
116129585Sdfr *
117169806Ssimokawa * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118116978Ssimokawa * This structure can point either to a block that is still in the cache or to
119103285Sikob * one that is only accessible in an L2 ARC device, or it can provide
120103285Sikob * information about a block that was recently evicted. If a block is
121103285Sikob * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122103285Sikob * information to retrieve it from the L2ARC device. This information is
123103285Sikob * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124103285Sikob * that is in this state cannot access the data directly.
125103285Sikob *
126103285Sikob * Blocks that are actively being referenced or have not been evicted
127103285Sikob * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128103285Sikob * the arc_buf_hdr_t that will point to the data block in memory. A block can
129109814Ssimokawa * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130103285Sikob * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131103285Sikob * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132169130Ssimokawa *
133103285Sikob * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134110193Ssimokawa * ability to store the physical data (b_pabd) associated with the DVA of the
135103285Sikob * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136103285Sikob * it will match its on-disk compression characteristics. This behavior can be
137129585Sdfr * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138103285Sikob * compressed ARC functionality is disabled, the b_pabd will point to an
139129585Sdfr * uncompressed version of the on-disk data.
140116376Ssimokawa *
141116376Ssimokawa * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142116376Ssimokawa * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143103285Sikob * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144103285Sikob * consumer. The ARC will provide references to this data and will keep it
145108853Ssimokawa * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146110193Ssimokawa * data block and will evict any arc_buf_t that is no longer referenced. The
147110193Ssimokawa * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148129585Sdfr * "overhead_size" kstat.
149124169Ssimokawa *
150129585Sdfr * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151130585Sphk * compressed form. The typical case is that consumers will want uncompressed
152124169Ssimokawa * data, and when that happens a new data buffer is allocated where the data is
153124169Ssimokawa * decompressed for them to use. Currently the only consumer who wants
154124169Ssimokawa * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155124169Ssimokawa * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156124169Ssimokawa * with the arc_buf_hdr_t.
157124169Ssimokawa *
158124169Ssimokawa * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159129585Sdfr * first one is owned by a compressed send consumer (and therefore references
160129585Sdfr * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161103285Sikob * used by any other consumer (and has its own uncompressed copy of the data
162113584Ssimokawa * buffer).
163103285Sikob *
164103285Sikob *   arc_buf_hdr_t
165103285Sikob *   +-----------+
166109645Ssimokawa *   | fields    |
167109645Ssimokawa *   | common to |
168109645Ssimokawa *   | L1- and   |
169109645Ssimokawa *   | L2ARC     |
170109645Ssimokawa *   +-----------+
171109645Ssimokawa *   | l2arc_buf_hdr_t
172109645Ssimokawa *   |           |
173109645Ssimokawa *   +-----------+
174109645Ssimokawa *   | l1arc_buf_hdr_t
175109645Ssimokawa *   |           |              arc_buf_t
176109645Ssimokawa *   | b_buf     +------------>+-----------+      arc_buf_t
177109645Ssimokawa *   | b_pabd    +-+           |b_next     +---->+-----------+
178109645Ssimokawa *   +-----------+ |           |-----------|     |b_next     +-->NULL
179109645Ssimokawa *                 |           |b_comp = T |     +-----------+
180124169Ssimokawa *                 |           |b_data     +-+   |b_comp = F |
181118293Ssimokawa *                 |           +-----------+ |   |b_data     +-+
182169130Ssimokawa *                 +->+------+               |   +-----------+ |
183109645Ssimokawa *        compressed  |      |               |                 |
184109645Ssimokawa *           data     |      |<--------------+                 | uncompressed
185109645Ssimokawa *                    +------+          compressed,            |     data
186113584Ssimokawa *                                        shared               +-->+------+
187109645Ssimokawa *                                         data                    |      |
188109645Ssimokawa *                                                                 |      |
189109645Ssimokawa *                                                                 +------+
190109645Ssimokawa *
191109645Ssimokawa * When a consumer reads a block, the ARC must first look to see if the
192109890Ssimokawa * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193109645Ssimokawa * arc_buf_t and either copies uncompressed data into a new data buffer from an
194109645Ssimokawa * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195109645Ssimokawa * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196124169Ssimokawa * hdr is compressed and the desired compression characteristics of the
197109645Ssimokawa * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198109645Ssimokawa * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199109645Ssimokawa * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200113584Ssimokawa * be anywhere in the hdr's list.
201111942Ssimokawa *
202109645Ssimokawa * The diagram below shows an example of an uncompressed ARC hdr that is
203109645Ssimokawa * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204109645Ssimokawa * the last element in the buf list):
205111942Ssimokawa *
206109645Ssimokawa *                arc_buf_hdr_t
207109645Ssimokawa *                +-----------+
208109645Ssimokawa *                |           |
209120660Ssimokawa *                |           |
210120660Ssimokawa *                |           |
211169130Ssimokawa *                +-----------+
212109645Ssimokawa * l2arc_buf_hdr_t|           |
213109645Ssimokawa *                |           |
214169130Ssimokawa *                +-----------+
215109645Ssimokawa * l1arc_buf_hdr_t|           |
216109645Ssimokawa *                |           |                 arc_buf_t    (shared)
217103285Sikob *                |    b_buf  +------------>+---------+      arc_buf_t
218103285Sikob *                |           |             |b_next   +---->+---------+
219103285Sikob *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220103285Sikob *                +-----------+ |           |         |     +---------+
221110577Ssimokawa *                              |           |b_data   +-+   |         |
222113584Ssimokawa *                              |           +---------+ |   |b_data   +-+
223103285Sikob *                              +->+------+             |   +---------+ |
224103285Sikob *                                 |      |             |               |
225103285Sikob *                   uncompressed  |      |             |               |
226103285Sikob *                        data     +------+             |               |
227103285Sikob *                                    ^                 +->+------+     |
228103285Sikob *                                    |       uncompressed |      |     |
229103285Sikob *                                    |           data     |      |     |
230129585Sdfr *                                    |                    +------+     |
231169119Ssimokawa *                                    +---------------------------------+
232167632Ssimokawa *
233103285Sikob * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234120660Ssimokawa * since the physical block is about to be rewritten. The new data contents
235129585Sdfr * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236129585Sdfr * it may compress the data before writing it to disk. The ARC will be called
237129585Sdfr * with the transformed data and will bcopy the transformed on-disk block into
238103285Sikob * a newly allocated b_pabd. Writes are always done into buffers which have
239103285Sikob * either been loaned (and hence are new and don't have other readers) or
240103285Sikob * buffers which have been released (and hence have their own hdr, if there
241169119Ssimokawa * were originally other readers of the buf's original hdr). This ensures that
242110269Ssimokawa * the ARC only needs to update a single buf and its hdr after a write occurs.
243103285Sikob *
244120660Ssimokawa * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245120660Ssimokawa * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246120660Ssimokawa * that when compressed ARC is enabled that the L2ARC blocks are identical
247120660Ssimokawa * to the on-disk block in the main data pool. This provides a significant
248120660Ssimokawa * advantage since the ARC can leverage the bp's checksum when reading from the
249120660Ssimokawa * L2ARC to determine if the contents are valid. However, if the compressed
250129585Sdfr * ARC is disabled, then the L2ARC's block must be transformed to look
251120660Ssimokawa * like the physical block in the main data pool before comparing the
252120660Ssimokawa * checksum and determining its validity.
253129585Sdfr */
254124169Ssimokawa
255124169Ssimokawa#include <sys/spa.h>
256124169Ssimokawa#include <sys/zio.h>
257124169Ssimokawa#include <sys/spa_impl.h>
258124169Ssimokawa#include <sys/zio_compress.h>
259124169Ssimokawa#include <sys/zio_checksum.h>
260124169Ssimokawa#include <sys/zfs_context.h>
261124169Ssimokawa#include <sys/arc.h>
262124169Ssimokawa#include <sys/refcount.h>
263124169Ssimokawa#include <sys/vdev.h>
264124169Ssimokawa#include <sys/vdev_impl.h>
265169130Ssimokawa#include <sys/dsl_pool.h>
266169130Ssimokawa#include <sys/zio_checksum.h>
267169130Ssimokawa#include <sys/multilist.h>
268124169Ssimokawa#include <sys/abd.h>
269169117Ssimokawa#ifdef _KERNEL
270129585Sdfr#include <sys/dnlc.h>
271124169Ssimokawa#include <sys/racct.h>
272124169Ssimokawa#endif
273124169Ssimokawa#include <sys/callb.h>
274124169Ssimokawa#include <sys/kstat.h>
275124169Ssimokawa#include <sys/trim_map.h>
276124169Ssimokawa#include <zfs_fletcher.h>
277129585Sdfr#include <sys/sdt.h>
278124169Ssimokawa#include <sys/aggsum.h>
279124169Ssimokawa#include <sys/cityhash.h>
280124169Ssimokawa
281148868Srwatson#include <machine/vmparam.h>
282103285Sikob
283103285Sikob#ifdef illumos
284103285Sikob#ifndef _KERNEL
285103285Sikob/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
286127468Ssimokawaboolean_t arc_watch = B_FALSE;
287127468Ssimokawaint arc_procfd;
288127468Ssimokawa#endif
289103285Sikob#endif /* illumos */
290127468Ssimokawa
291103285Sikobstatic kmutex_t		arc_reclaim_lock;
292127468Ssimokawastatic kcondvar_t	arc_reclaim_thread_cv;
293127468Ssimokawastatic boolean_t	arc_reclaim_thread_exit;
294127468Ssimokawastatic kcondvar_t	arc_reclaim_waiters_cv;
295111615Ssimokawa
296111615Ssimokawastatic kmutex_t		arc_dnlc_evicts_lock;
297111615Ssimokawastatic kcondvar_t	arc_dnlc_evicts_cv;
298127468Ssimokawastatic boolean_t	arc_dnlc_evicts_thread_exit;
299120660Ssimokawa
300120660Ssimokawauint_t arc_reduce_dnlc_percent = 3;
301120660Ssimokawa
302120660Ssimokawa/*
303120660Ssimokawa * The number of headers to evict in arc_evict_state_impl() before
304120660Ssimokawa * dropping the sublist lock and evicting from another sublist. A lower
305120660Ssimokawa * value means we're more likely to evict the "correct" header (i.e. the
306120660Ssimokawa * oldest header in the arc state), but comes with higher overhead
307120660Ssimokawa * (i.e. more invocations of arc_evict_state_impl()).
308120660Ssimokawa */
309120660Ssimokawaint zfs_arc_evict_batch_limit = 10;
310120660Ssimokawa
311120660Ssimokawa/* number of seconds before growing cache again */
312120660Ssimokawastatic int		arc_grow_retry = 60;
313120660Ssimokawa
314121780Ssimokawa/* number of milliseconds before attempting a kmem-cache-reap */
315120660Ssimokawastatic int		arc_kmem_cache_reap_retry_ms = 1000;
316120660Ssimokawa
317110195Ssimokawa/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
318110269Ssimokawaint		zfs_arc_overflow_shift = 8;
319
320/* shift of arc_c for calculating both min and max arc_p */
321static int		arc_p_min_shift = 4;
322
323/* log2(fraction of arc to reclaim) */
324static int		arc_shrink_shift = 7;
325
326/*
327 * log2(fraction of ARC which must be free to allow growing).
328 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
329 * when reading a new block into the ARC, we will evict an equal-sized block
330 * from the ARC.
331 *
332 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
333 * we will still not allow it to grow.
334 */
335int			arc_no_grow_shift = 5;
336
337
338/*
339 * minimum lifespan of a prefetch block in clock ticks
340 * (initialized in arc_init())
341 */
342static int		arc_min_prefetch_lifespan;
343
344/*
345 * If this percent of memory is free, don't throttle.
346 */
347int arc_lotsfree_percent = 10;
348
349static int arc_dead;
350extern boolean_t zfs_prefetch_disable;
351
352/*
353 * The arc has filled available memory and has now warmed up.
354 */
355static boolean_t arc_warm;
356
357/*
358 * log2 fraction of the zio arena to keep free.
359 */
360int arc_zio_arena_free_shift = 2;
361
362/*
363 * These tunables are for performance analysis.
364 */
365uint64_t zfs_arc_max;
366uint64_t zfs_arc_min;
367uint64_t zfs_arc_meta_limit = 0;
368uint64_t zfs_arc_meta_min = 0;
369int zfs_arc_grow_retry = 0;
370int zfs_arc_shrink_shift = 0;
371int zfs_arc_no_grow_shift = 0;
372int zfs_arc_p_min_shift = 0;
373uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
374u_int zfs_arc_free_target = 0;
375
376/* Absolute min for arc min / max is 16MB. */
377static uint64_t arc_abs_min = 16 << 20;
378
379boolean_t zfs_compressed_arc_enabled = B_TRUE;
380
381static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
382static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
383static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
384static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
385static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
386
387#if defined(__FreeBSD__) && defined(_KERNEL)
388static void
389arc_free_target_init(void *unused __unused)
390{
391
392	zfs_arc_free_target = vm_pageout_wakeup_thresh;
393}
394SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
395    arc_free_target_init, NULL);
396
397TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
398TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
399TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
400TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
401TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
402SYSCTL_DECL(_vfs_zfs);
403SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
404    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
405SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
406    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
407SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
408    0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
409    "log2(fraction of ARC which must be free to allow growing)");
410SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
411    &zfs_arc_average_blocksize, 0,
412    "ARC average blocksize");
413SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
414    &arc_shrink_shift, 0,
415    "log2(fraction of arc to reclaim)");
416SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
417    &arc_grow_retry, 0,
418    "Wait in seconds before considering growing ARC");
419SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
420    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
421
422/*
423 * We don't have a tunable for arc_free_target due to the dependency on
424 * pagedaemon initialisation.
425 */
426SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
427    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
428    sysctl_vfs_zfs_arc_free_target, "IU",
429    "Desired number of free pages below which ARC triggers reclaim");
430
431static int
432sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
433{
434	u_int val;
435	int err;
436
437	val = zfs_arc_free_target;
438	err = sysctl_handle_int(oidp, &val, 0, req);
439	if (err != 0 || req->newptr == NULL)
440		return (err);
441
442	if (val < minfree)
443		return (EINVAL);
444	if (val > vm_cnt.v_page_count)
445		return (EINVAL);
446
447	zfs_arc_free_target = val;
448
449	return (0);
450}
451
452/*
453 * Must be declared here, before the definition of corresponding kstat
454 * macro which uses the same names will confuse the compiler.
455 */
456SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
457    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
458    sysctl_vfs_zfs_arc_meta_limit, "QU",
459    "ARC metadata limit");
460#endif
461
462/*
463 * Note that buffers can be in one of 6 states:
464 *	ARC_anon	- anonymous (discussed below)
465 *	ARC_mru		- recently used, currently cached
466 *	ARC_mru_ghost	- recentely used, no longer in cache
467 *	ARC_mfu		- frequently used, currently cached
468 *	ARC_mfu_ghost	- frequently used, no longer in cache
469 *	ARC_l2c_only	- exists in L2ARC but not other states
470 * When there are no active references to the buffer, they are
471 * are linked onto a list in one of these arc states.  These are
472 * the only buffers that can be evicted or deleted.  Within each
473 * state there are multiple lists, one for meta-data and one for
474 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
475 * etc.) is tracked separately so that it can be managed more
476 * explicitly: favored over data, limited explicitly.
477 *
478 * Anonymous buffers are buffers that are not associated with
479 * a DVA.  These are buffers that hold dirty block copies
480 * before they are written to stable storage.  By definition,
481 * they are "ref'd" and are considered part of arc_mru
482 * that cannot be freed.  Generally, they will aquire a DVA
483 * as they are written and migrate onto the arc_mru list.
484 *
485 * The ARC_l2c_only state is for buffers that are in the second
486 * level ARC but no longer in any of the ARC_m* lists.  The second
487 * level ARC itself may also contain buffers that are in any of
488 * the ARC_m* states - meaning that a buffer can exist in two
489 * places.  The reason for the ARC_l2c_only state is to keep the
490 * buffer header in the hash table, so that reads that hit the
491 * second level ARC benefit from these fast lookups.
492 */
493
494typedef struct arc_state {
495	/*
496	 * list of evictable buffers
497	 */
498	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
499	/*
500	 * total amount of evictable data in this state
501	 */
502	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
503	/*
504	 * total amount of data in this state; this includes: evictable,
505	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
506	 */
507	refcount_t arcs_size;
508} arc_state_t;
509
510/* The 6 states: */
511static arc_state_t ARC_anon;
512static arc_state_t ARC_mru;
513static arc_state_t ARC_mru_ghost;
514static arc_state_t ARC_mfu;
515static arc_state_t ARC_mfu_ghost;
516static arc_state_t ARC_l2c_only;
517
518typedef struct arc_stats {
519	kstat_named_t arcstat_hits;
520	kstat_named_t arcstat_misses;
521	kstat_named_t arcstat_demand_data_hits;
522	kstat_named_t arcstat_demand_data_misses;
523	kstat_named_t arcstat_demand_metadata_hits;
524	kstat_named_t arcstat_demand_metadata_misses;
525	kstat_named_t arcstat_prefetch_data_hits;
526	kstat_named_t arcstat_prefetch_data_misses;
527	kstat_named_t arcstat_prefetch_metadata_hits;
528	kstat_named_t arcstat_prefetch_metadata_misses;
529	kstat_named_t arcstat_mru_hits;
530	kstat_named_t arcstat_mru_ghost_hits;
531	kstat_named_t arcstat_mfu_hits;
532	kstat_named_t arcstat_mfu_ghost_hits;
533	kstat_named_t arcstat_allocated;
534	kstat_named_t arcstat_deleted;
535	/*
536	 * Number of buffers that could not be evicted because the hash lock
537	 * was held by another thread.  The lock may not necessarily be held
538	 * by something using the same buffer, since hash locks are shared
539	 * by multiple buffers.
540	 */
541	kstat_named_t arcstat_mutex_miss;
542	/*
543	 * Number of buffers skipped when updating the access state due to the
544	 * header having already been released after acquiring the hash lock.
545	 */
546	kstat_named_t arcstat_access_skip;
547	/*
548	 * Number of buffers skipped because they have I/O in progress, are
549	 * indirect prefetch buffers that have not lived long enough, or are
550	 * not from the spa we're trying to evict from.
551	 */
552	kstat_named_t arcstat_evict_skip;
553	/*
554	 * Number of times arc_evict_state() was unable to evict enough
555	 * buffers to reach it's target amount.
556	 */
557	kstat_named_t arcstat_evict_not_enough;
558	kstat_named_t arcstat_evict_l2_cached;
559	kstat_named_t arcstat_evict_l2_eligible;
560	kstat_named_t arcstat_evict_l2_ineligible;
561	kstat_named_t arcstat_evict_l2_skip;
562	kstat_named_t arcstat_hash_elements;
563	kstat_named_t arcstat_hash_elements_max;
564	kstat_named_t arcstat_hash_collisions;
565	kstat_named_t arcstat_hash_chains;
566	kstat_named_t arcstat_hash_chain_max;
567	kstat_named_t arcstat_p;
568	kstat_named_t arcstat_c;
569	kstat_named_t arcstat_c_min;
570	kstat_named_t arcstat_c_max;
571	/* Not updated directly; only synced in arc_kstat_update. */
572	kstat_named_t arcstat_size;
573	/*
574	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
575	 * Note that the compressed bytes may match the uncompressed bytes
576	 * if the block is either not compressed or compressed arc is disabled.
577	 */
578	kstat_named_t arcstat_compressed_size;
579	/*
580	 * Uncompressed size of the data stored in b_pabd. If compressed
581	 * arc is disabled then this value will be identical to the stat
582	 * above.
583	 */
584	kstat_named_t arcstat_uncompressed_size;
585	/*
586	 * Number of bytes stored in all the arc_buf_t's. This is classified
587	 * as "overhead" since this data is typically short-lived and will
588	 * be evicted from the arc when it becomes unreferenced unless the
589	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
590	 * values have been set (see comment in dbuf.c for more information).
591	 */
592	kstat_named_t arcstat_overhead_size;
593	/*
594	 * Number of bytes consumed by internal ARC structures necessary
595	 * for tracking purposes; these structures are not actually
596	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
597	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
598	 * caches), and arc_buf_t structures (allocated via arc_buf_t
599	 * cache).
600	 * Not updated directly; only synced in arc_kstat_update.
601	 */
602	kstat_named_t arcstat_hdr_size;
603	/*
604	 * Number of bytes consumed by ARC buffers of type equal to
605	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
606	 * on disk user data (e.g. plain file contents).
607	 * Not updated directly; only synced in arc_kstat_update.
608	 */
609	kstat_named_t arcstat_data_size;
610	/*
611	 * Number of bytes consumed by ARC buffers of type equal to
612	 * ARC_BUFC_METADATA. This is generally consumed by buffers
613	 * backing on disk data that is used for internal ZFS
614	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
615	 * Not updated directly; only synced in arc_kstat_update.
616	 */
617	kstat_named_t arcstat_metadata_size;
618	/*
619	 * Number of bytes consumed by various buffers and structures
620	 * not actually backed with ARC buffers. This includes bonus
621	 * buffers (allocated directly via zio_buf_* functions),
622	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
623	 * cache), and dnode_t structures (allocated via dnode_t cache).
624	 * Not updated directly; only synced in arc_kstat_update.
625	 */
626	kstat_named_t arcstat_other_size;
627	/*
628	 * Total number of bytes consumed by ARC buffers residing in the
629	 * arc_anon state. This includes *all* buffers in the arc_anon
630	 * state; e.g. data, metadata, evictable, and unevictable buffers
631	 * are all included in this value.
632	 * Not updated directly; only synced in arc_kstat_update.
633	 */
634	kstat_named_t arcstat_anon_size;
635	/*
636	 * Number of bytes consumed by ARC buffers that meet the
637	 * following criteria: backing buffers of type ARC_BUFC_DATA,
638	 * residing in the arc_anon state, and are eligible for eviction
639	 * (e.g. have no outstanding holds on the buffer).
640	 * Not updated directly; only synced in arc_kstat_update.
641	 */
642	kstat_named_t arcstat_anon_evictable_data;
643	/*
644	 * Number of bytes consumed by ARC buffers that meet the
645	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
646	 * residing in the arc_anon state, and are eligible for eviction
647	 * (e.g. have no outstanding holds on the buffer).
648	 * Not updated directly; only synced in arc_kstat_update.
649	 */
650	kstat_named_t arcstat_anon_evictable_metadata;
651	/*
652	 * Total number of bytes consumed by ARC buffers residing in the
653	 * arc_mru state. This includes *all* buffers in the arc_mru
654	 * state; e.g. data, metadata, evictable, and unevictable buffers
655	 * are all included in this value.
656	 * Not updated directly; only synced in arc_kstat_update.
657	 */
658	kstat_named_t arcstat_mru_size;
659	/*
660	 * Number of bytes consumed by ARC buffers that meet the
661	 * following criteria: backing buffers of type ARC_BUFC_DATA,
662	 * residing in the arc_mru state, and are eligible for eviction
663	 * (e.g. have no outstanding holds on the buffer).
664	 * Not updated directly; only synced in arc_kstat_update.
665	 */
666	kstat_named_t arcstat_mru_evictable_data;
667	/*
668	 * Number of bytes consumed by ARC buffers that meet the
669	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
670	 * residing in the arc_mru state, and are eligible for eviction
671	 * (e.g. have no outstanding holds on the buffer).
672	 * Not updated directly; only synced in arc_kstat_update.
673	 */
674	kstat_named_t arcstat_mru_evictable_metadata;
675	/*
676	 * Total number of bytes that *would have been* consumed by ARC
677	 * buffers in the arc_mru_ghost state. The key thing to note
678	 * here, is the fact that this size doesn't actually indicate
679	 * RAM consumption. The ghost lists only consist of headers and
680	 * don't actually have ARC buffers linked off of these headers.
681	 * Thus, *if* the headers had associated ARC buffers, these
682	 * buffers *would have* consumed this number of bytes.
683	 * Not updated directly; only synced in arc_kstat_update.
684	 */
685	kstat_named_t arcstat_mru_ghost_size;
686	/*
687	 * Number of bytes that *would have been* consumed by ARC
688	 * buffers that are eligible for eviction, of type
689	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
690	 * Not updated directly; only synced in arc_kstat_update.
691	 */
692	kstat_named_t arcstat_mru_ghost_evictable_data;
693	/*
694	 * Number of bytes that *would have been* consumed by ARC
695	 * buffers that are eligible for eviction, of type
696	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
697	 * Not updated directly; only synced in arc_kstat_update.
698	 */
699	kstat_named_t arcstat_mru_ghost_evictable_metadata;
700	/*
701	 * Total number of bytes consumed by ARC buffers residing in the
702	 * arc_mfu state. This includes *all* buffers in the arc_mfu
703	 * state; e.g. data, metadata, evictable, and unevictable buffers
704	 * are all included in this value.
705	 * Not updated directly; only synced in arc_kstat_update.
706	 */
707	kstat_named_t arcstat_mfu_size;
708	/*
709	 * Number of bytes consumed by ARC buffers that are eligible for
710	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
711	 * state.
712	 * Not updated directly; only synced in arc_kstat_update.
713	 */
714	kstat_named_t arcstat_mfu_evictable_data;
715	/*
716	 * Number of bytes consumed by ARC buffers that are eligible for
717	 * eviction, of type ARC_BUFC_METADATA, and reside in the
718	 * arc_mfu state.
719	 * Not updated directly; only synced in arc_kstat_update.
720	 */
721	kstat_named_t arcstat_mfu_evictable_metadata;
722	/*
723	 * Total number of bytes that *would have been* consumed by ARC
724	 * buffers in the arc_mfu_ghost state. See the comment above
725	 * arcstat_mru_ghost_size for more details.
726	 * Not updated directly; only synced in arc_kstat_update.
727	 */
728	kstat_named_t arcstat_mfu_ghost_size;
729	/*
730	 * Number of bytes that *would have been* consumed by ARC
731	 * buffers that are eligible for eviction, of type
732	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
733	 * Not updated directly; only synced in arc_kstat_update.
734	 */
735	kstat_named_t arcstat_mfu_ghost_evictable_data;
736	/*
737	 * Number of bytes that *would have been* consumed by ARC
738	 * buffers that are eligible for eviction, of type
739	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
740	 * Not updated directly; only synced in arc_kstat_update.
741	 */
742	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
743	kstat_named_t arcstat_l2_hits;
744	kstat_named_t arcstat_l2_misses;
745	kstat_named_t arcstat_l2_feeds;
746	kstat_named_t arcstat_l2_rw_clash;
747	kstat_named_t arcstat_l2_read_bytes;
748	kstat_named_t arcstat_l2_write_bytes;
749	kstat_named_t arcstat_l2_writes_sent;
750	kstat_named_t arcstat_l2_writes_done;
751	kstat_named_t arcstat_l2_writes_error;
752	kstat_named_t arcstat_l2_writes_lock_retry;
753	kstat_named_t arcstat_l2_evict_lock_retry;
754	kstat_named_t arcstat_l2_evict_reading;
755	kstat_named_t arcstat_l2_evict_l1cached;
756	kstat_named_t arcstat_l2_free_on_write;
757	kstat_named_t arcstat_l2_abort_lowmem;
758	kstat_named_t arcstat_l2_cksum_bad;
759	kstat_named_t arcstat_l2_io_error;
760	kstat_named_t arcstat_l2_lsize;
761	kstat_named_t arcstat_l2_psize;
762	/* Not updated directly; only synced in arc_kstat_update. */
763	kstat_named_t arcstat_l2_hdr_size;
764	kstat_named_t arcstat_l2_write_trylock_fail;
765	kstat_named_t arcstat_l2_write_passed_headroom;
766	kstat_named_t arcstat_l2_write_spa_mismatch;
767	kstat_named_t arcstat_l2_write_in_l2;
768	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
769	kstat_named_t arcstat_l2_write_not_cacheable;
770	kstat_named_t arcstat_l2_write_full;
771	kstat_named_t arcstat_l2_write_buffer_iter;
772	kstat_named_t arcstat_l2_write_pios;
773	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
774	kstat_named_t arcstat_l2_write_buffer_list_iter;
775	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
776	kstat_named_t arcstat_memory_throttle_count;
777	/* Not updated directly; only synced in arc_kstat_update. */
778	kstat_named_t arcstat_meta_used;
779	kstat_named_t arcstat_meta_limit;
780	kstat_named_t arcstat_meta_max;
781	kstat_named_t arcstat_meta_min;
782	kstat_named_t arcstat_sync_wait_for_async;
783	kstat_named_t arcstat_demand_hit_predictive_prefetch;
784} arc_stats_t;
785
786static arc_stats_t arc_stats = {
787	{ "hits",			KSTAT_DATA_UINT64 },
788	{ "misses",			KSTAT_DATA_UINT64 },
789	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
790	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
791	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
792	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
793	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
794	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
795	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
796	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
797	{ "mru_hits",			KSTAT_DATA_UINT64 },
798	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
799	{ "mfu_hits",			KSTAT_DATA_UINT64 },
800	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
801	{ "allocated",			KSTAT_DATA_UINT64 },
802	{ "deleted",			KSTAT_DATA_UINT64 },
803	{ "mutex_miss",			KSTAT_DATA_UINT64 },
804	{ "access_skip",		KSTAT_DATA_UINT64 },
805	{ "evict_skip",			KSTAT_DATA_UINT64 },
806	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
807	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
808	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
809	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
810	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
811	{ "hash_elements",		KSTAT_DATA_UINT64 },
812	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
813	{ "hash_collisions",		KSTAT_DATA_UINT64 },
814	{ "hash_chains",		KSTAT_DATA_UINT64 },
815	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
816	{ "p",				KSTAT_DATA_UINT64 },
817	{ "c",				KSTAT_DATA_UINT64 },
818	{ "c_min",			KSTAT_DATA_UINT64 },
819	{ "c_max",			KSTAT_DATA_UINT64 },
820	{ "size",			KSTAT_DATA_UINT64 },
821	{ "compressed_size",		KSTAT_DATA_UINT64 },
822	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
823	{ "overhead_size",		KSTAT_DATA_UINT64 },
824	{ "hdr_size",			KSTAT_DATA_UINT64 },
825	{ "data_size",			KSTAT_DATA_UINT64 },
826	{ "metadata_size",		KSTAT_DATA_UINT64 },
827	{ "other_size",			KSTAT_DATA_UINT64 },
828	{ "anon_size",			KSTAT_DATA_UINT64 },
829	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
830	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
831	{ "mru_size",			KSTAT_DATA_UINT64 },
832	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
833	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
834	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
835	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
836	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
837	{ "mfu_size",			KSTAT_DATA_UINT64 },
838	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
839	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
840	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
841	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
842	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
843	{ "l2_hits",			KSTAT_DATA_UINT64 },
844	{ "l2_misses",			KSTAT_DATA_UINT64 },
845	{ "l2_feeds",			KSTAT_DATA_UINT64 },
846	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
847	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
848	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
849	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
850	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
851	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
852	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
853	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
854	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
855	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
856	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
857	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
858	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
859	{ "l2_io_error",		KSTAT_DATA_UINT64 },
860	{ "l2_size",			KSTAT_DATA_UINT64 },
861	{ "l2_asize",			KSTAT_DATA_UINT64 },
862	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
863	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
864	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
865	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
866	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
867	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
868	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
869	{ "l2_write_full",		KSTAT_DATA_UINT64 },
870	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
871	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
872	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
873	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
874	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
875	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
876	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
877	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
878	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
879	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
880	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
881	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
882};
883
884#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
885
886#define	ARCSTAT_INCR(stat, val) \
887	atomic_add_64(&arc_stats.stat.value.ui64, (val))
888
889#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
890#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
891
892#define	ARCSTAT_MAX(stat, val) {					\
893	uint64_t m;							\
894	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
895	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
896		continue;						\
897}
898
899#define	ARCSTAT_MAXSTAT(stat) \
900	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
901
902/*
903 * We define a macro to allow ARC hits/misses to be easily broken down by
904 * two separate conditions, giving a total of four different subtypes for
905 * each of hits and misses (so eight statistics total).
906 */
907#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
908	if (cond1) {							\
909		if (cond2) {						\
910			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
911		} else {						\
912			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
913		}							\
914	} else {							\
915		if (cond2) {						\
916			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
917		} else {						\
918			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
919		}							\
920	}
921
922kstat_t			*arc_ksp;
923static arc_state_t	*arc_anon;
924static arc_state_t	*arc_mru;
925static arc_state_t	*arc_mru_ghost;
926static arc_state_t	*arc_mfu;
927static arc_state_t	*arc_mfu_ghost;
928static arc_state_t	*arc_l2c_only;
929
930/*
931 * There are several ARC variables that are critical to export as kstats --
932 * but we don't want to have to grovel around in the kstat whenever we wish to
933 * manipulate them.  For these variables, we therefore define them to be in
934 * terms of the statistic variable.  This assures that we are not introducing
935 * the possibility of inconsistency by having shadow copies of the variables,
936 * while still allowing the code to be readable.
937 */
938#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
939#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
940#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
941#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
942#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
943#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
944#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
945
946/* compressed size of entire arc */
947#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
948/* uncompressed size of entire arc */
949#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
950/* number of bytes in the arc from arc_buf_t's */
951#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
952
953/*
954 * There are also some ARC variables that we want to export, but that are
955 * updated so often that having the canonical representation be the statistic
956 * variable causes a performance bottleneck. We want to use aggsum_t's for these
957 * instead, but still be able to export the kstat in the same way as before.
958 * The solution is to always use the aggsum version, except in the kstat update
959 * callback.
960 */
961aggsum_t arc_size;
962aggsum_t arc_meta_used;
963aggsum_t astat_data_size;
964aggsum_t astat_metadata_size;
965aggsum_t astat_hdr_size;
966aggsum_t astat_other_size;
967aggsum_t astat_l2_hdr_size;
968
969static int		arc_no_grow;	/* Don't try to grow cache size */
970static uint64_t		arc_tempreserve;
971static uint64_t		arc_loaned_bytes;
972
973typedef struct arc_callback arc_callback_t;
974
975struct arc_callback {
976	void			*acb_private;
977	arc_done_func_t		*acb_done;
978	arc_buf_t		*acb_buf;
979	boolean_t		acb_compressed;
980	zio_t			*acb_zio_dummy;
981	arc_callback_t		*acb_next;
982};
983
984typedef struct arc_write_callback arc_write_callback_t;
985
986struct arc_write_callback {
987	void		*awcb_private;
988	arc_done_func_t	*awcb_ready;
989	arc_done_func_t	*awcb_children_ready;
990	arc_done_func_t	*awcb_physdone;
991	arc_done_func_t	*awcb_done;
992	arc_buf_t	*awcb_buf;
993};
994
995/*
996 * ARC buffers are separated into multiple structs as a memory saving measure:
997 *   - Common fields struct, always defined, and embedded within it:
998 *       - L2-only fields, always allocated but undefined when not in L2ARC
999 *       - L1-only fields, only allocated when in L1ARC
1000 *
1001 *           Buffer in L1                     Buffer only in L2
1002 *    +------------------------+          +------------------------+
1003 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
1004 *    |                        |          |                        |
1005 *    |                        |          |                        |
1006 *    |                        |          |                        |
1007 *    +------------------------+          +------------------------+
1008 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
1009 *    | (undefined if L1-only) |          |                        |
1010 *    +------------------------+          +------------------------+
1011 *    | l1arc_buf_hdr_t        |
1012 *    |                        |
1013 *    |                        |
1014 *    |                        |
1015 *    |                        |
1016 *    +------------------------+
1017 *
1018 * Because it's possible for the L2ARC to become extremely large, we can wind
1019 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
1020 * is minimized by only allocating the fields necessary for an L1-cached buffer
1021 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
1022 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
1023 * words in pointers. arc_hdr_realloc() is used to switch a header between
1024 * these two allocation states.
1025 */
1026typedef struct l1arc_buf_hdr {
1027	kmutex_t		b_freeze_lock;
1028	zio_cksum_t		*b_freeze_cksum;
1029#ifdef ZFS_DEBUG
1030	/*
1031	 * Used for debugging with kmem_flags - by allocating and freeing
1032	 * b_thawed when the buffer is thawed, we get a record of the stack
1033	 * trace that thawed it.
1034	 */
1035	void			*b_thawed;
1036#endif
1037
1038	arc_buf_t		*b_buf;
1039	uint32_t		b_bufcnt;
1040	/* for waiting on writes to complete */
1041	kcondvar_t		b_cv;
1042	uint8_t			b_byteswap;
1043
1044	/* protected by arc state mutex */
1045	arc_state_t		*b_state;
1046	multilist_node_t	b_arc_node;
1047
1048	/* updated atomically */
1049	clock_t			b_arc_access;
1050
1051	/* self protecting */
1052	refcount_t		b_refcnt;
1053
1054	arc_callback_t		*b_acb;
1055	abd_t			*b_pabd;
1056} l1arc_buf_hdr_t;
1057
1058typedef struct l2arc_dev l2arc_dev_t;
1059
1060typedef struct l2arc_buf_hdr {
1061	/* protected by arc_buf_hdr mutex */
1062	l2arc_dev_t		*b_dev;		/* L2ARC device */
1063	uint64_t		b_daddr;	/* disk address, offset byte */
1064
1065	list_node_t		b_l2node;
1066} l2arc_buf_hdr_t;
1067
1068struct arc_buf_hdr {
1069	/* protected by hash lock */
1070	dva_t			b_dva;
1071	uint64_t		b_birth;
1072
1073	arc_buf_contents_t	b_type;
1074	arc_buf_hdr_t		*b_hash_next;
1075	arc_flags_t		b_flags;
1076
1077	/*
1078	 * This field stores the size of the data buffer after
1079	 * compression, and is set in the arc's zio completion handlers.
1080	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1081	 *
1082	 * While the block pointers can store up to 32MB in their psize
1083	 * field, we can only store up to 32MB minus 512B. This is due
1084	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1085	 * a field of zeros represents 512B in the bp). We can't use a
1086	 * bias of 1 since we need to reserve a psize of zero, here, to
1087	 * represent holes and embedded blocks.
1088	 *
1089	 * This isn't a problem in practice, since the maximum size of a
1090	 * buffer is limited to 16MB, so we never need to store 32MB in
1091	 * this field. Even in the upstream illumos code base, the
1092	 * maximum size of a buffer is limited to 16MB.
1093	 */
1094	uint16_t		b_psize;
1095
1096	/*
1097	 * This field stores the size of the data buffer before
1098	 * compression, and cannot change once set. It is in units
1099	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1100	 */
1101	uint16_t		b_lsize;	/* immutable */
1102	uint64_t		b_spa;		/* immutable */
1103
1104	/* L2ARC fields. Undefined when not in L2ARC. */
1105	l2arc_buf_hdr_t		b_l2hdr;
1106	/* L1ARC fields. Undefined when in l2arc_only state */
1107	l1arc_buf_hdr_t		b_l1hdr;
1108};
1109
1110#if defined(__FreeBSD__) && defined(_KERNEL)
1111static int
1112sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1113{
1114	uint64_t val;
1115	int err;
1116
1117	val = arc_meta_limit;
1118	err = sysctl_handle_64(oidp, &val, 0, req);
1119	if (err != 0 || req->newptr == NULL)
1120		return (err);
1121
1122        if (val <= 0 || val > arc_c_max)
1123		return (EINVAL);
1124
1125	arc_meta_limit = val;
1126	return (0);
1127}
1128
1129static int
1130sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
1131{
1132	uint32_t val;
1133	int err;
1134
1135	val = arc_no_grow_shift;
1136	err = sysctl_handle_32(oidp, &val, 0, req);
1137	if (err != 0 || req->newptr == NULL)
1138		return (err);
1139
1140        if (val >= arc_shrink_shift)
1141		return (EINVAL);
1142
1143	arc_no_grow_shift = val;
1144	return (0);
1145}
1146
1147static int
1148sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1149{
1150	uint64_t val;
1151	int err;
1152
1153	val = zfs_arc_max;
1154	err = sysctl_handle_64(oidp, &val, 0, req);
1155	if (err != 0 || req->newptr == NULL)
1156		return (err);
1157
1158	if (zfs_arc_max == 0) {
1159		/* Loader tunable so blindly set */
1160		zfs_arc_max = val;
1161		return (0);
1162	}
1163
1164	if (val < arc_abs_min || val > kmem_size())
1165		return (EINVAL);
1166	if (val < arc_c_min)
1167		return (EINVAL);
1168	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1169		return (EINVAL);
1170
1171	arc_c_max = val;
1172
1173	arc_c = arc_c_max;
1174        arc_p = (arc_c >> 1);
1175
1176	if (zfs_arc_meta_limit == 0) {
1177		/* limit meta-data to 1/4 of the arc capacity */
1178		arc_meta_limit = arc_c_max / 4;
1179	}
1180
1181	/* if kmem_flags are set, lets try to use less memory */
1182	if (kmem_debugging())
1183		arc_c = arc_c / 2;
1184
1185	zfs_arc_max = arc_c;
1186
1187	return (0);
1188}
1189
1190static int
1191sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1192{
1193	uint64_t val;
1194	int err;
1195
1196	val = zfs_arc_min;
1197	err = sysctl_handle_64(oidp, &val, 0, req);
1198	if (err != 0 || req->newptr == NULL)
1199		return (err);
1200
1201	if (zfs_arc_min == 0) {
1202		/* Loader tunable so blindly set */
1203		zfs_arc_min = val;
1204		return (0);
1205	}
1206
1207	if (val < arc_abs_min || val > arc_c_max)
1208		return (EINVAL);
1209
1210	arc_c_min = val;
1211
1212	if (zfs_arc_meta_min == 0)
1213                arc_meta_min = arc_c_min / 2;
1214
1215	if (arc_c < arc_c_min)
1216                arc_c = arc_c_min;
1217
1218	zfs_arc_min = arc_c_min;
1219
1220	return (0);
1221}
1222#endif
1223
1224#define	GHOST_STATE(state)	\
1225	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1226	(state) == arc_l2c_only)
1227
1228#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1229#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1230#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1231#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1232#define	HDR_COMPRESSION_ENABLED(hdr)	\
1233	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1234
1235#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1236#define	HDR_L2_READING(hdr)	\
1237	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1238	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1239#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1240#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1241#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1242#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1243
1244#define	HDR_ISTYPE_METADATA(hdr)	\
1245	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1246#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1247
1248#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1249#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1250
1251/* For storing compression mode in b_flags */
1252#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1253
1254#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1255	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1256#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1257	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1258
1259#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1260#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1261#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1262
1263/*
1264 * Other sizes
1265 */
1266
1267#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1268#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1269
1270/*
1271 * Hash table routines
1272 */
1273
1274#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1275
1276struct ht_lock {
1277	kmutex_t	ht_lock;
1278#ifdef _KERNEL
1279	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1280#endif
1281};
1282
1283#define	BUF_LOCKS 256
1284typedef struct buf_hash_table {
1285	uint64_t ht_mask;
1286	arc_buf_hdr_t **ht_table;
1287	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1288} buf_hash_table_t;
1289
1290static buf_hash_table_t buf_hash_table;
1291
1292#define	BUF_HASH_INDEX(spa, dva, birth) \
1293	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1294#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1295#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1296#define	HDR_LOCK(hdr) \
1297	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1298
1299uint64_t zfs_crc64_table[256];
1300
1301/*
1302 * Level 2 ARC
1303 */
1304
1305#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1306#define	L2ARC_HEADROOM		2			/* num of writes */
1307/*
1308 * If we discover during ARC scan any buffers to be compressed, we boost
1309 * our headroom for the next scanning cycle by this percentage multiple.
1310 */
1311#define	L2ARC_HEADROOM_BOOST	200
1312#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1313#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1314
1315#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1316#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1317
1318/* L2ARC Performance Tunables */
1319uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1320uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1321uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1322uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1323uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1324uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1325boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1326boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1327boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1328
1329SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1330    &l2arc_write_max, 0, "max write size");
1331SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1332    &l2arc_write_boost, 0, "extra write during warmup");
1333SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1334    &l2arc_headroom, 0, "number of dev writes");
1335SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1336    &l2arc_feed_secs, 0, "interval seconds");
1337SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1338    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1339
1340SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1341    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1342SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1343    &l2arc_feed_again, 0, "turbo warmup");
1344SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1345    &l2arc_norw, 0, "no reads during writes");
1346
1347SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1348    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1349SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1350    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1351    "size of anonymous state");
1352SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1353    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1354    "size of anonymous state");
1355
1356SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1357    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1358SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1359    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1360    "size of metadata in mru state");
1361SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1362    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1363    "size of data in mru state");
1364
1365SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1366    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1367SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1368    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1369    "size of metadata in mru ghost state");
1370SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1371    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1372    "size of data in mru ghost state");
1373
1374SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1375    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1376SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1377    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1378    "size of metadata in mfu state");
1379SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1380    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1381    "size of data in mfu state");
1382
1383SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1384    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1385SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1386    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1387    "size of metadata in mfu ghost state");
1388SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1389    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1390    "size of data in mfu ghost state");
1391
1392SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1393    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1394
1395/*
1396 * L2ARC Internals
1397 */
1398struct l2arc_dev {
1399	vdev_t			*l2ad_vdev;	/* vdev */
1400	spa_t			*l2ad_spa;	/* spa */
1401	uint64_t		l2ad_hand;	/* next write location */
1402	uint64_t		l2ad_start;	/* first addr on device */
1403	uint64_t		l2ad_end;	/* last addr on device */
1404	boolean_t		l2ad_first;	/* first sweep through */
1405	boolean_t		l2ad_writing;	/* currently writing */
1406	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1407	list_t			l2ad_buflist;	/* buffer list */
1408	list_node_t		l2ad_node;	/* device list node */
1409	refcount_t		l2ad_alloc;	/* allocated bytes */
1410};
1411
1412static list_t L2ARC_dev_list;			/* device list */
1413static list_t *l2arc_dev_list;			/* device list pointer */
1414static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1415static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1416static list_t L2ARC_free_on_write;		/* free after write buf list */
1417static list_t *l2arc_free_on_write;		/* free after write list ptr */
1418static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1419static uint64_t l2arc_ndev;			/* number of devices */
1420
1421typedef struct l2arc_read_callback {
1422	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1423	blkptr_t		l2rcb_bp;		/* original blkptr */
1424	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1425	int			l2rcb_flags;		/* original flags */
1426	abd_t			*l2rcb_abd;		/* temporary buffer */
1427} l2arc_read_callback_t;
1428
1429typedef struct l2arc_write_callback {
1430	l2arc_dev_t	*l2wcb_dev;		/* device info */
1431	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1432} l2arc_write_callback_t;
1433
1434typedef struct l2arc_data_free {
1435	/* protected by l2arc_free_on_write_mtx */
1436	abd_t		*l2df_abd;
1437	size_t		l2df_size;
1438	arc_buf_contents_t l2df_type;
1439	list_node_t	l2df_list_node;
1440} l2arc_data_free_t;
1441
1442static kmutex_t l2arc_feed_thr_lock;
1443static kcondvar_t l2arc_feed_thr_cv;
1444static uint8_t l2arc_thread_exit;
1445
1446static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1447static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1448static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1449static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1450static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1451static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1452static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1453static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1454static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1455static boolean_t arc_is_overflowing();
1456static void arc_buf_watch(arc_buf_t *);
1457
1458static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1459static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1460static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1461static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1462
1463static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1464static void l2arc_read_done(zio_t *);
1465
1466static void
1467l2arc_trim(const arc_buf_hdr_t *hdr)
1468{
1469	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1470
1471	ASSERT(HDR_HAS_L2HDR(hdr));
1472	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1473
1474	if (HDR_GET_PSIZE(hdr) != 0) {
1475		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1476		    HDR_GET_PSIZE(hdr), 0);
1477	}
1478}
1479
1480/*
1481 * We use Cityhash for this. It's fast, and has good hash properties without
1482 * requiring any large static buffers.
1483 */
1484static uint64_t
1485buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1486{
1487	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1488}
1489
1490#define	HDR_EMPTY(hdr)						\
1491	((hdr)->b_dva.dva_word[0] == 0 &&			\
1492	(hdr)->b_dva.dva_word[1] == 0)
1493
1494#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1495	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1496	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1497	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1498
1499static void
1500buf_discard_identity(arc_buf_hdr_t *hdr)
1501{
1502	hdr->b_dva.dva_word[0] = 0;
1503	hdr->b_dva.dva_word[1] = 0;
1504	hdr->b_birth = 0;
1505}
1506
1507static arc_buf_hdr_t *
1508buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1509{
1510	const dva_t *dva = BP_IDENTITY(bp);
1511	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1512	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1513	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1514	arc_buf_hdr_t *hdr;
1515
1516	mutex_enter(hash_lock);
1517	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1518	    hdr = hdr->b_hash_next) {
1519		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1520			*lockp = hash_lock;
1521			return (hdr);
1522		}
1523	}
1524	mutex_exit(hash_lock);
1525	*lockp = NULL;
1526	return (NULL);
1527}
1528
1529/*
1530 * Insert an entry into the hash table.  If there is already an element
1531 * equal to elem in the hash table, then the already existing element
1532 * will be returned and the new element will not be inserted.
1533 * Otherwise returns NULL.
1534 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1535 */
1536static arc_buf_hdr_t *
1537buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1538{
1539	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1540	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1541	arc_buf_hdr_t *fhdr;
1542	uint32_t i;
1543
1544	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1545	ASSERT(hdr->b_birth != 0);
1546	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1547
1548	if (lockp != NULL) {
1549		*lockp = hash_lock;
1550		mutex_enter(hash_lock);
1551	} else {
1552		ASSERT(MUTEX_HELD(hash_lock));
1553	}
1554
1555	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1556	    fhdr = fhdr->b_hash_next, i++) {
1557		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1558			return (fhdr);
1559	}
1560
1561	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1562	buf_hash_table.ht_table[idx] = hdr;
1563	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1564
1565	/* collect some hash table performance data */
1566	if (i > 0) {
1567		ARCSTAT_BUMP(arcstat_hash_collisions);
1568		if (i == 1)
1569			ARCSTAT_BUMP(arcstat_hash_chains);
1570
1571		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1572	}
1573
1574	ARCSTAT_BUMP(arcstat_hash_elements);
1575	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1576
1577	return (NULL);
1578}
1579
1580static void
1581buf_hash_remove(arc_buf_hdr_t *hdr)
1582{
1583	arc_buf_hdr_t *fhdr, **hdrp;
1584	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1585
1586	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1587	ASSERT(HDR_IN_HASH_TABLE(hdr));
1588
1589	hdrp = &buf_hash_table.ht_table[idx];
1590	while ((fhdr = *hdrp) != hdr) {
1591		ASSERT3P(fhdr, !=, NULL);
1592		hdrp = &fhdr->b_hash_next;
1593	}
1594	*hdrp = hdr->b_hash_next;
1595	hdr->b_hash_next = NULL;
1596	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1597
1598	/* collect some hash table performance data */
1599	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1600
1601	if (buf_hash_table.ht_table[idx] &&
1602	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1603		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1604}
1605
1606/*
1607 * Global data structures and functions for the buf kmem cache.
1608 */
1609static kmem_cache_t *hdr_full_cache;
1610static kmem_cache_t *hdr_l2only_cache;
1611static kmem_cache_t *buf_cache;
1612
1613static void
1614buf_fini(void)
1615{
1616	int i;
1617
1618	kmem_free(buf_hash_table.ht_table,
1619	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1620	for (i = 0; i < BUF_LOCKS; i++)
1621		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1622	kmem_cache_destroy(hdr_full_cache);
1623	kmem_cache_destroy(hdr_l2only_cache);
1624	kmem_cache_destroy(buf_cache);
1625}
1626
1627/*
1628 * Constructor callback - called when the cache is empty
1629 * and a new buf is requested.
1630 */
1631/* ARGSUSED */
1632static int
1633hdr_full_cons(void *vbuf, void *unused, int kmflag)
1634{
1635	arc_buf_hdr_t *hdr = vbuf;
1636
1637	bzero(hdr, HDR_FULL_SIZE);
1638	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1639	refcount_create(&hdr->b_l1hdr.b_refcnt);
1640	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1641	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1642	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1643
1644	return (0);
1645}
1646
1647/* ARGSUSED */
1648static int
1649hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1650{
1651	arc_buf_hdr_t *hdr = vbuf;
1652
1653	bzero(hdr, HDR_L2ONLY_SIZE);
1654	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1655
1656	return (0);
1657}
1658
1659/* ARGSUSED */
1660static int
1661buf_cons(void *vbuf, void *unused, int kmflag)
1662{
1663	arc_buf_t *buf = vbuf;
1664
1665	bzero(buf, sizeof (arc_buf_t));
1666	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1667	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1668
1669	return (0);
1670}
1671
1672/*
1673 * Destructor callback - called when a cached buf is
1674 * no longer required.
1675 */
1676/* ARGSUSED */
1677static void
1678hdr_full_dest(void *vbuf, void *unused)
1679{
1680	arc_buf_hdr_t *hdr = vbuf;
1681
1682	ASSERT(HDR_EMPTY(hdr));
1683	cv_destroy(&hdr->b_l1hdr.b_cv);
1684	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1685	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1686	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1687	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1688}
1689
1690/* ARGSUSED */
1691static void
1692hdr_l2only_dest(void *vbuf, void *unused)
1693{
1694	arc_buf_hdr_t *hdr = vbuf;
1695
1696	ASSERT(HDR_EMPTY(hdr));
1697	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1698}
1699
1700/* ARGSUSED */
1701static void
1702buf_dest(void *vbuf, void *unused)
1703{
1704	arc_buf_t *buf = vbuf;
1705
1706	mutex_destroy(&buf->b_evict_lock);
1707	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1708}
1709
1710/*
1711 * Reclaim callback -- invoked when memory is low.
1712 */
1713/* ARGSUSED */
1714static void
1715hdr_recl(void *unused)
1716{
1717	dprintf("hdr_recl called\n");
1718	/*
1719	 * umem calls the reclaim func when we destroy the buf cache,
1720	 * which is after we do arc_fini().
1721	 */
1722	if (!arc_dead)
1723		cv_signal(&arc_reclaim_thread_cv);
1724}
1725
1726static void
1727buf_init(void)
1728{
1729	uint64_t *ct;
1730	uint64_t hsize = 1ULL << 12;
1731	int i, j;
1732
1733	/*
1734	 * The hash table is big enough to fill all of physical memory
1735	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1736	 * By default, the table will take up
1737	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1738	 */
1739	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1740		hsize <<= 1;
1741retry:
1742	buf_hash_table.ht_mask = hsize - 1;
1743	buf_hash_table.ht_table =
1744	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1745	if (buf_hash_table.ht_table == NULL) {
1746		ASSERT(hsize > (1ULL << 8));
1747		hsize >>= 1;
1748		goto retry;
1749	}
1750
1751	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1752	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1753	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1754	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1755	    NULL, NULL, 0);
1756	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1757	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1758
1759	for (i = 0; i < 256; i++)
1760		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1761			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1762
1763	for (i = 0; i < BUF_LOCKS; i++) {
1764		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1765		    NULL, MUTEX_DEFAULT, NULL);
1766	}
1767}
1768
1769/*
1770 * This is the size that the buf occupies in memory. If the buf is compressed,
1771 * it will correspond to the compressed size. You should use this method of
1772 * getting the buf size unless you explicitly need the logical size.
1773 */
1774int32_t
1775arc_buf_size(arc_buf_t *buf)
1776{
1777	return (ARC_BUF_COMPRESSED(buf) ?
1778	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1779}
1780
1781int32_t
1782arc_buf_lsize(arc_buf_t *buf)
1783{
1784	return (HDR_GET_LSIZE(buf->b_hdr));
1785}
1786
1787enum zio_compress
1788arc_get_compression(arc_buf_t *buf)
1789{
1790	return (ARC_BUF_COMPRESSED(buf) ?
1791	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1792}
1793
1794#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1795
1796static inline boolean_t
1797arc_buf_is_shared(arc_buf_t *buf)
1798{
1799	boolean_t shared = (buf->b_data != NULL &&
1800	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1801	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1802	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1803	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1804	IMPLY(shared, ARC_BUF_SHARED(buf));
1805	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1806
1807	/*
1808	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1809	 * already being shared" requirement prevents us from doing that.
1810	 */
1811
1812	return (shared);
1813}
1814
1815/*
1816 * Free the checksum associated with this header. If there is no checksum, this
1817 * is a no-op.
1818 */
1819static inline void
1820arc_cksum_free(arc_buf_hdr_t *hdr)
1821{
1822	ASSERT(HDR_HAS_L1HDR(hdr));
1823	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1824	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1825		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1826		hdr->b_l1hdr.b_freeze_cksum = NULL;
1827	}
1828	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1829}
1830
1831/*
1832 * Return true iff at least one of the bufs on hdr is not compressed.
1833 */
1834static boolean_t
1835arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1836{
1837	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1838		if (!ARC_BUF_COMPRESSED(b)) {
1839			return (B_TRUE);
1840		}
1841	}
1842	return (B_FALSE);
1843}
1844
1845/*
1846 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1847 * matches the checksum that is stored in the hdr. If there is no checksum,
1848 * or if the buf is compressed, this is a no-op.
1849 */
1850static void
1851arc_cksum_verify(arc_buf_t *buf)
1852{
1853	arc_buf_hdr_t *hdr = buf->b_hdr;
1854	zio_cksum_t zc;
1855
1856	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1857		return;
1858
1859	if (ARC_BUF_COMPRESSED(buf)) {
1860		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1861		    arc_hdr_has_uncompressed_buf(hdr));
1862		return;
1863	}
1864
1865	ASSERT(HDR_HAS_L1HDR(hdr));
1866
1867	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1868	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1869		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1870		return;
1871	}
1872
1873	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1874	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1875		panic("buffer modified while frozen!");
1876	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1877}
1878
1879static boolean_t
1880arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1881{
1882	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1883	boolean_t valid_cksum;
1884
1885	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1886	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1887
1888	/*
1889	 * We rely on the blkptr's checksum to determine if the block
1890	 * is valid or not. When compressed arc is enabled, the l2arc
1891	 * writes the block to the l2arc just as it appears in the pool.
1892	 * This allows us to use the blkptr's checksum to validate the
1893	 * data that we just read off of the l2arc without having to store
1894	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1895	 * arc is disabled, then the data written to the l2arc is always
1896	 * uncompressed and won't match the block as it exists in the main
1897	 * pool. When this is the case, we must first compress it if it is
1898	 * compressed on the main pool before we can validate the checksum.
1899	 */
1900	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1901		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1902		uint64_t lsize = HDR_GET_LSIZE(hdr);
1903		uint64_t csize;
1904
1905		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1906		csize = zio_compress_data(compress, zio->io_abd,
1907		    abd_to_buf(cdata), lsize);
1908
1909		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1910		if (csize < HDR_GET_PSIZE(hdr)) {
1911			/*
1912			 * Compressed blocks are always a multiple of the
1913			 * smallest ashift in the pool. Ideally, we would
1914			 * like to round up the csize to the next
1915			 * spa_min_ashift but that value may have changed
1916			 * since the block was last written. Instead,
1917			 * we rely on the fact that the hdr's psize
1918			 * was set to the psize of the block when it was
1919			 * last written. We set the csize to that value
1920			 * and zero out any part that should not contain
1921			 * data.
1922			 */
1923			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1924			csize = HDR_GET_PSIZE(hdr);
1925		}
1926		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1927	}
1928
1929	/*
1930	 * Block pointers always store the checksum for the logical data.
1931	 * If the block pointer has the gang bit set, then the checksum
1932	 * it represents is for the reconstituted data and not for an
1933	 * individual gang member. The zio pipeline, however, must be able to
1934	 * determine the checksum of each of the gang constituents so it
1935	 * treats the checksum comparison differently than what we need
1936	 * for l2arc blocks. This prevents us from using the
1937	 * zio_checksum_error() interface directly. Instead we must call the
1938	 * zio_checksum_error_impl() so that we can ensure the checksum is
1939	 * generated using the correct checksum algorithm and accounts for the
1940	 * logical I/O size and not just a gang fragment.
1941	 */
1942	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1943	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1944	    zio->io_offset, NULL) == 0);
1945	zio_pop_transforms(zio);
1946	return (valid_cksum);
1947}
1948
1949/*
1950 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1951 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1952 * isn't modified later on. If buf is compressed or there is already a checksum
1953 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1954 */
1955static void
1956arc_cksum_compute(arc_buf_t *buf)
1957{
1958	arc_buf_hdr_t *hdr = buf->b_hdr;
1959
1960	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1961		return;
1962
1963	ASSERT(HDR_HAS_L1HDR(hdr));
1964
1965	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1966	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1967		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1968		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1969		return;
1970	} else if (ARC_BUF_COMPRESSED(buf)) {
1971		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1972		return;
1973	}
1974
1975	ASSERT(!ARC_BUF_COMPRESSED(buf));
1976	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1977	    KM_SLEEP);
1978	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1979	    hdr->b_l1hdr.b_freeze_cksum);
1980	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1981#ifdef illumos
1982	arc_buf_watch(buf);
1983#endif
1984}
1985
1986#ifdef illumos
1987#ifndef _KERNEL
1988typedef struct procctl {
1989	long cmd;
1990	prwatch_t prwatch;
1991} procctl_t;
1992#endif
1993
1994/* ARGSUSED */
1995static void
1996arc_buf_unwatch(arc_buf_t *buf)
1997{
1998#ifndef _KERNEL
1999	if (arc_watch) {
2000		int result;
2001		procctl_t ctl;
2002		ctl.cmd = PCWATCH;
2003		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2004		ctl.prwatch.pr_size = 0;
2005		ctl.prwatch.pr_wflags = 0;
2006		result = write(arc_procfd, &ctl, sizeof (ctl));
2007		ASSERT3U(result, ==, sizeof (ctl));
2008	}
2009#endif
2010}
2011
2012/* ARGSUSED */
2013static void
2014arc_buf_watch(arc_buf_t *buf)
2015{
2016#ifndef _KERNEL
2017	if (arc_watch) {
2018		int result;
2019		procctl_t ctl;
2020		ctl.cmd = PCWATCH;
2021		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2022		ctl.prwatch.pr_size = arc_buf_size(buf);
2023		ctl.prwatch.pr_wflags = WA_WRITE;
2024		result = write(arc_procfd, &ctl, sizeof (ctl));
2025		ASSERT3U(result, ==, sizeof (ctl));
2026	}
2027#endif
2028}
2029#endif /* illumos */
2030
2031static arc_buf_contents_t
2032arc_buf_type(arc_buf_hdr_t *hdr)
2033{
2034	arc_buf_contents_t type;
2035	if (HDR_ISTYPE_METADATA(hdr)) {
2036		type = ARC_BUFC_METADATA;
2037	} else {
2038		type = ARC_BUFC_DATA;
2039	}
2040	VERIFY3U(hdr->b_type, ==, type);
2041	return (type);
2042}
2043
2044boolean_t
2045arc_is_metadata(arc_buf_t *buf)
2046{
2047	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
2048}
2049
2050static uint32_t
2051arc_bufc_to_flags(arc_buf_contents_t type)
2052{
2053	switch (type) {
2054	case ARC_BUFC_DATA:
2055		/* metadata field is 0 if buffer contains normal data */
2056		return (0);
2057	case ARC_BUFC_METADATA:
2058		return (ARC_FLAG_BUFC_METADATA);
2059	default:
2060		break;
2061	}
2062	panic("undefined ARC buffer type!");
2063	return ((uint32_t)-1);
2064}
2065
2066void
2067arc_buf_thaw(arc_buf_t *buf)
2068{
2069	arc_buf_hdr_t *hdr = buf->b_hdr;
2070
2071	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2072	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2073
2074	arc_cksum_verify(buf);
2075
2076	/*
2077	 * Compressed buffers do not manipulate the b_freeze_cksum or
2078	 * allocate b_thawed.
2079	 */
2080	if (ARC_BUF_COMPRESSED(buf)) {
2081		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2082		    arc_hdr_has_uncompressed_buf(hdr));
2083		return;
2084	}
2085
2086	ASSERT(HDR_HAS_L1HDR(hdr));
2087	arc_cksum_free(hdr);
2088
2089	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
2090#ifdef ZFS_DEBUG
2091	if (zfs_flags & ZFS_DEBUG_MODIFY) {
2092		if (hdr->b_l1hdr.b_thawed != NULL)
2093			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2094		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
2095	}
2096#endif
2097
2098	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2099
2100#ifdef illumos
2101	arc_buf_unwatch(buf);
2102#endif
2103}
2104
2105void
2106arc_buf_freeze(arc_buf_t *buf)
2107{
2108	arc_buf_hdr_t *hdr = buf->b_hdr;
2109	kmutex_t *hash_lock;
2110
2111	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2112		return;
2113
2114	if (ARC_BUF_COMPRESSED(buf)) {
2115		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2116		    arc_hdr_has_uncompressed_buf(hdr));
2117		return;
2118	}
2119
2120	hash_lock = HDR_LOCK(hdr);
2121	mutex_enter(hash_lock);
2122
2123	ASSERT(HDR_HAS_L1HDR(hdr));
2124	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
2125	    hdr->b_l1hdr.b_state == arc_anon);
2126	arc_cksum_compute(buf);
2127	mutex_exit(hash_lock);
2128}
2129
2130/*
2131 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2132 * the following functions should be used to ensure that the flags are
2133 * updated in a thread-safe way. When manipulating the flags either
2134 * the hash_lock must be held or the hdr must be undiscoverable. This
2135 * ensures that we're not racing with any other threads when updating
2136 * the flags.
2137 */
2138static inline void
2139arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2140{
2141	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2142	hdr->b_flags |= flags;
2143}
2144
2145static inline void
2146arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2147{
2148	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2149	hdr->b_flags &= ~flags;
2150}
2151
2152/*
2153 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2154 * done in a special way since we have to clear and set bits
2155 * at the same time. Consumers that wish to set the compression bits
2156 * must use this function to ensure that the flags are updated in
2157 * thread-safe manner.
2158 */
2159static void
2160arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2161{
2162	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2163
2164	/*
2165	 * Holes and embedded blocks will always have a psize = 0 so
2166	 * we ignore the compression of the blkptr and set the
2167	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2168	 * Holes and embedded blocks remain anonymous so we don't
2169	 * want to uncompress them. Mark them as uncompressed.
2170	 */
2171	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2172		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2173		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
2174		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2175		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2176	} else {
2177		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2178		HDR_SET_COMPRESS(hdr, cmp);
2179		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2180		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2181	}
2182}
2183
2184/*
2185 * Looks for another buf on the same hdr which has the data decompressed, copies
2186 * from it, and returns true. If no such buf exists, returns false.
2187 */
2188static boolean_t
2189arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2190{
2191	arc_buf_hdr_t *hdr = buf->b_hdr;
2192	boolean_t copied = B_FALSE;
2193
2194	ASSERT(HDR_HAS_L1HDR(hdr));
2195	ASSERT3P(buf->b_data, !=, NULL);
2196	ASSERT(!ARC_BUF_COMPRESSED(buf));
2197
2198	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2199	    from = from->b_next) {
2200		/* can't use our own data buffer */
2201		if (from == buf) {
2202			continue;
2203		}
2204
2205		if (!ARC_BUF_COMPRESSED(from)) {
2206			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2207			copied = B_TRUE;
2208			break;
2209		}
2210	}
2211
2212	/*
2213	 * There were no decompressed bufs, so there should not be a
2214	 * checksum on the hdr either.
2215	 */
2216	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2217
2218	return (copied);
2219}
2220
2221/*
2222 * Given a buf that has a data buffer attached to it, this function will
2223 * efficiently fill the buf with data of the specified compression setting from
2224 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2225 * are already sharing a data buf, no copy is performed.
2226 *
2227 * If the buf is marked as compressed but uncompressed data was requested, this
2228 * will allocate a new data buffer for the buf, remove that flag, and fill the
2229 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2230 * uncompressed data, and (since we haven't added support for it yet) if you
2231 * want compressed data your buf must already be marked as compressed and have
2232 * the correct-sized data buffer.
2233 */
2234static int
2235arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
2236{
2237	arc_buf_hdr_t *hdr = buf->b_hdr;
2238	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2239	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2240
2241	ASSERT3P(buf->b_data, !=, NULL);
2242	IMPLY(compressed, hdr_compressed);
2243	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2244
2245	if (hdr_compressed == compressed) {
2246		if (!arc_buf_is_shared(buf)) {
2247			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2248			    arc_buf_size(buf));
2249		}
2250	} else {
2251		ASSERT(hdr_compressed);
2252		ASSERT(!compressed);
2253		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2254
2255		/*
2256		 * If the buf is sharing its data with the hdr, unlink it and
2257		 * allocate a new data buffer for the buf.
2258		 */
2259		if (arc_buf_is_shared(buf)) {
2260			ASSERT(ARC_BUF_COMPRESSED(buf));
2261
2262			/* We need to give the buf it's own b_data */
2263			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2264			buf->b_data =
2265			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2266			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2267
2268			/* Previously overhead was 0; just add new overhead */
2269			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2270		} else if (ARC_BUF_COMPRESSED(buf)) {
2271			/* We need to reallocate the buf's b_data */
2272			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2273			    buf);
2274			buf->b_data =
2275			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2276
2277			/* We increased the size of b_data; update overhead */
2278			ARCSTAT_INCR(arcstat_overhead_size,
2279			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2280		}
2281
2282		/*
2283		 * Regardless of the buf's previous compression settings, it
2284		 * should not be compressed at the end of this function.
2285		 */
2286		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2287
2288		/*
2289		 * Try copying the data from another buf which already has a
2290		 * decompressed version. If that's not possible, it's time to
2291		 * bite the bullet and decompress the data from the hdr.
2292		 */
2293		if (arc_buf_try_copy_decompressed_data(buf)) {
2294			/* Skip byteswapping and checksumming (already done) */
2295			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2296			return (0);
2297		} else {
2298			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2299			    hdr->b_l1hdr.b_pabd, buf->b_data,
2300			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2301
2302			/*
2303			 * Absent hardware errors or software bugs, this should
2304			 * be impossible, but log it anyway so we can debug it.
2305			 */
2306			if (error != 0) {
2307				zfs_dbgmsg(
2308				    "hdr %p, compress %d, psize %d, lsize %d",
2309				    hdr, HDR_GET_COMPRESS(hdr),
2310				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2311				return (SET_ERROR(EIO));
2312			}
2313		}
2314	}
2315
2316	/* Byteswap the buf's data if necessary */
2317	if (bswap != DMU_BSWAP_NUMFUNCS) {
2318		ASSERT(!HDR_SHARED_DATA(hdr));
2319		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2320		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2321	}
2322
2323	/* Compute the hdr's checksum if necessary */
2324	arc_cksum_compute(buf);
2325
2326	return (0);
2327}
2328
2329int
2330arc_decompress(arc_buf_t *buf)
2331{
2332	return (arc_buf_fill(buf, B_FALSE));
2333}
2334
2335/*
2336 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2337 */
2338static uint64_t
2339arc_hdr_size(arc_buf_hdr_t *hdr)
2340{
2341	uint64_t size;
2342
2343	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2344	    HDR_GET_PSIZE(hdr) > 0) {
2345		size = HDR_GET_PSIZE(hdr);
2346	} else {
2347		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2348		size = HDR_GET_LSIZE(hdr);
2349	}
2350	return (size);
2351}
2352
2353/*
2354 * Increment the amount of evictable space in the arc_state_t's refcount.
2355 * We account for the space used by the hdr and the arc buf individually
2356 * so that we can add and remove them from the refcount individually.
2357 */
2358static void
2359arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2360{
2361	arc_buf_contents_t type = arc_buf_type(hdr);
2362
2363	ASSERT(HDR_HAS_L1HDR(hdr));
2364
2365	if (GHOST_STATE(state)) {
2366		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2367		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2368		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2369		(void) refcount_add_many(&state->arcs_esize[type],
2370		    HDR_GET_LSIZE(hdr), hdr);
2371		return;
2372	}
2373
2374	ASSERT(!GHOST_STATE(state));
2375	if (hdr->b_l1hdr.b_pabd != NULL) {
2376		(void) refcount_add_many(&state->arcs_esize[type],
2377		    arc_hdr_size(hdr), hdr);
2378	}
2379	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2380	    buf = buf->b_next) {
2381		if (arc_buf_is_shared(buf))
2382			continue;
2383		(void) refcount_add_many(&state->arcs_esize[type],
2384		    arc_buf_size(buf), buf);
2385	}
2386}
2387
2388/*
2389 * Decrement the amount of evictable space in the arc_state_t's refcount.
2390 * We account for the space used by the hdr and the arc buf individually
2391 * so that we can add and remove them from the refcount individually.
2392 */
2393static void
2394arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2395{
2396	arc_buf_contents_t type = arc_buf_type(hdr);
2397
2398	ASSERT(HDR_HAS_L1HDR(hdr));
2399
2400	if (GHOST_STATE(state)) {
2401		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2402		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2403		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2404		(void) refcount_remove_many(&state->arcs_esize[type],
2405		    HDR_GET_LSIZE(hdr), hdr);
2406		return;
2407	}
2408
2409	ASSERT(!GHOST_STATE(state));
2410	if (hdr->b_l1hdr.b_pabd != NULL) {
2411		(void) refcount_remove_many(&state->arcs_esize[type],
2412		    arc_hdr_size(hdr), hdr);
2413	}
2414	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2415	    buf = buf->b_next) {
2416		if (arc_buf_is_shared(buf))
2417			continue;
2418		(void) refcount_remove_many(&state->arcs_esize[type],
2419		    arc_buf_size(buf), buf);
2420	}
2421}
2422
2423/*
2424 * Add a reference to this hdr indicating that someone is actively
2425 * referencing that memory. When the refcount transitions from 0 to 1,
2426 * we remove it from the respective arc_state_t list to indicate that
2427 * it is not evictable.
2428 */
2429static void
2430add_reference(arc_buf_hdr_t *hdr, void *tag)
2431{
2432	ASSERT(HDR_HAS_L1HDR(hdr));
2433	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2434		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2435		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2436		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2437	}
2438
2439	arc_state_t *state = hdr->b_l1hdr.b_state;
2440
2441	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2442	    (state != arc_anon)) {
2443		/* We don't use the L2-only state list. */
2444		if (state != arc_l2c_only) {
2445			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2446			    hdr);
2447			arc_evictable_space_decrement(hdr, state);
2448		}
2449		/* remove the prefetch flag if we get a reference */
2450		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2451	}
2452}
2453
2454/*
2455 * Remove a reference from this hdr. When the reference transitions from
2456 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2457 * list making it eligible for eviction.
2458 */
2459static int
2460remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2461{
2462	int cnt;
2463	arc_state_t *state = hdr->b_l1hdr.b_state;
2464
2465	ASSERT(HDR_HAS_L1HDR(hdr));
2466	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2467	ASSERT(!GHOST_STATE(state));
2468
2469	/*
2470	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2471	 * check to prevent usage of the arc_l2c_only list.
2472	 */
2473	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2474	    (state != arc_anon)) {
2475		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2476		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2477		arc_evictable_space_increment(hdr, state);
2478	}
2479	return (cnt);
2480}
2481
2482/*
2483 * Move the supplied buffer to the indicated state. The hash lock
2484 * for the buffer must be held by the caller.
2485 */
2486static void
2487arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2488    kmutex_t *hash_lock)
2489{
2490	arc_state_t *old_state;
2491	int64_t refcnt;
2492	uint32_t bufcnt;
2493	boolean_t update_old, update_new;
2494	arc_buf_contents_t buftype = arc_buf_type(hdr);
2495
2496	/*
2497	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2498	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2499	 * L1 hdr doesn't always exist when we change state to arc_anon before
2500	 * destroying a header, in which case reallocating to add the L1 hdr is
2501	 * pointless.
2502	 */
2503	if (HDR_HAS_L1HDR(hdr)) {
2504		old_state = hdr->b_l1hdr.b_state;
2505		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2506		bufcnt = hdr->b_l1hdr.b_bufcnt;
2507		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2508	} else {
2509		old_state = arc_l2c_only;
2510		refcnt = 0;
2511		bufcnt = 0;
2512		update_old = B_FALSE;
2513	}
2514	update_new = update_old;
2515
2516	ASSERT(MUTEX_HELD(hash_lock));
2517	ASSERT3P(new_state, !=, old_state);
2518	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2519	ASSERT(old_state != arc_anon || bufcnt <= 1);
2520
2521	/*
2522	 * If this buffer is evictable, transfer it from the
2523	 * old state list to the new state list.
2524	 */
2525	if (refcnt == 0) {
2526		if (old_state != arc_anon && old_state != arc_l2c_only) {
2527			ASSERT(HDR_HAS_L1HDR(hdr));
2528			multilist_remove(old_state->arcs_list[buftype], hdr);
2529
2530			if (GHOST_STATE(old_state)) {
2531				ASSERT0(bufcnt);
2532				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2533				update_old = B_TRUE;
2534			}
2535			arc_evictable_space_decrement(hdr, old_state);
2536		}
2537		if (new_state != arc_anon && new_state != arc_l2c_only) {
2538
2539			/*
2540			 * An L1 header always exists here, since if we're
2541			 * moving to some L1-cached state (i.e. not l2c_only or
2542			 * anonymous), we realloc the header to add an L1hdr
2543			 * beforehand.
2544			 */
2545			ASSERT(HDR_HAS_L1HDR(hdr));
2546			multilist_insert(new_state->arcs_list[buftype], hdr);
2547
2548			if (GHOST_STATE(new_state)) {
2549				ASSERT0(bufcnt);
2550				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2551				update_new = B_TRUE;
2552			}
2553			arc_evictable_space_increment(hdr, new_state);
2554		}
2555	}
2556
2557	ASSERT(!HDR_EMPTY(hdr));
2558	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2559		buf_hash_remove(hdr);
2560
2561	/* adjust state sizes (ignore arc_l2c_only) */
2562
2563	if (update_new && new_state != arc_l2c_only) {
2564		ASSERT(HDR_HAS_L1HDR(hdr));
2565		if (GHOST_STATE(new_state)) {
2566			ASSERT0(bufcnt);
2567
2568			/*
2569			 * When moving a header to a ghost state, we first
2570			 * remove all arc buffers. Thus, we'll have a
2571			 * bufcnt of zero, and no arc buffer to use for
2572			 * the reference. As a result, we use the arc
2573			 * header pointer for the reference.
2574			 */
2575			(void) refcount_add_many(&new_state->arcs_size,
2576			    HDR_GET_LSIZE(hdr), hdr);
2577			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2578		} else {
2579			uint32_t buffers = 0;
2580
2581			/*
2582			 * Each individual buffer holds a unique reference,
2583			 * thus we must remove each of these references one
2584			 * at a time.
2585			 */
2586			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2587			    buf = buf->b_next) {
2588				ASSERT3U(bufcnt, !=, 0);
2589				buffers++;
2590
2591				/*
2592				 * When the arc_buf_t is sharing the data
2593				 * block with the hdr, the owner of the
2594				 * reference belongs to the hdr. Only
2595				 * add to the refcount if the arc_buf_t is
2596				 * not shared.
2597				 */
2598				if (arc_buf_is_shared(buf))
2599					continue;
2600
2601				(void) refcount_add_many(&new_state->arcs_size,
2602				    arc_buf_size(buf), buf);
2603			}
2604			ASSERT3U(bufcnt, ==, buffers);
2605
2606			if (hdr->b_l1hdr.b_pabd != NULL) {
2607				(void) refcount_add_many(&new_state->arcs_size,
2608				    arc_hdr_size(hdr), hdr);
2609			} else {
2610				ASSERT(GHOST_STATE(old_state));
2611			}
2612		}
2613	}
2614
2615	if (update_old && old_state != arc_l2c_only) {
2616		ASSERT(HDR_HAS_L1HDR(hdr));
2617		if (GHOST_STATE(old_state)) {
2618			ASSERT0(bufcnt);
2619			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2620
2621			/*
2622			 * When moving a header off of a ghost state,
2623			 * the header will not contain any arc buffers.
2624			 * We use the arc header pointer for the reference
2625			 * which is exactly what we did when we put the
2626			 * header on the ghost state.
2627			 */
2628
2629			(void) refcount_remove_many(&old_state->arcs_size,
2630			    HDR_GET_LSIZE(hdr), hdr);
2631		} else {
2632			uint32_t buffers = 0;
2633
2634			/*
2635			 * Each individual buffer holds a unique reference,
2636			 * thus we must remove each of these references one
2637			 * at a time.
2638			 */
2639			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2640			    buf = buf->b_next) {
2641				ASSERT3U(bufcnt, !=, 0);
2642				buffers++;
2643
2644				/*
2645				 * When the arc_buf_t is sharing the data
2646				 * block with the hdr, the owner of the
2647				 * reference belongs to the hdr. Only
2648				 * add to the refcount if the arc_buf_t is
2649				 * not shared.
2650				 */
2651				if (arc_buf_is_shared(buf))
2652					continue;
2653
2654				(void) refcount_remove_many(
2655				    &old_state->arcs_size, arc_buf_size(buf),
2656				    buf);
2657			}
2658			ASSERT3U(bufcnt, ==, buffers);
2659			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2660			(void) refcount_remove_many(
2661			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2662		}
2663	}
2664
2665	if (HDR_HAS_L1HDR(hdr))
2666		hdr->b_l1hdr.b_state = new_state;
2667
2668	/*
2669	 * L2 headers should never be on the L2 state list since they don't
2670	 * have L1 headers allocated.
2671	 */
2672	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2673	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2674}
2675
2676void
2677arc_space_consume(uint64_t space, arc_space_type_t type)
2678{
2679	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2680
2681	switch (type) {
2682	case ARC_SPACE_DATA:
2683		aggsum_add(&astat_data_size, space);
2684		break;
2685	case ARC_SPACE_META:
2686		aggsum_add(&astat_metadata_size, space);
2687		break;
2688	case ARC_SPACE_OTHER:
2689		aggsum_add(&astat_other_size, space);
2690		break;
2691	case ARC_SPACE_HDRS:
2692		aggsum_add(&astat_hdr_size, space);
2693		break;
2694	case ARC_SPACE_L2HDRS:
2695		aggsum_add(&astat_l2_hdr_size, space);
2696		break;
2697	}
2698
2699	if (type != ARC_SPACE_DATA)
2700		aggsum_add(&arc_meta_used, space);
2701
2702	aggsum_add(&arc_size, space);
2703}
2704
2705void
2706arc_space_return(uint64_t space, arc_space_type_t type)
2707{
2708	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2709
2710	switch (type) {
2711	case ARC_SPACE_DATA:
2712		aggsum_add(&astat_data_size, -space);
2713		break;
2714	case ARC_SPACE_META:
2715		aggsum_add(&astat_metadata_size, -space);
2716		break;
2717	case ARC_SPACE_OTHER:
2718		aggsum_add(&astat_other_size, -space);
2719		break;
2720	case ARC_SPACE_HDRS:
2721		aggsum_add(&astat_hdr_size, -space);
2722		break;
2723	case ARC_SPACE_L2HDRS:
2724		aggsum_add(&astat_l2_hdr_size, -space);
2725		break;
2726	}
2727
2728	if (type != ARC_SPACE_DATA) {
2729		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2730		/*
2731		 * We use the upper bound here rather than the precise value
2732		 * because the arc_meta_max value doesn't need to be
2733		 * precise. It's only consumed by humans via arcstats.
2734		 */
2735		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2736			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2737		aggsum_add(&arc_meta_used, -space);
2738	}
2739
2740	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2741	aggsum_add(&arc_size, -space);
2742}
2743
2744/*
2745 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2746 * with the hdr's b_pabd.
2747 */
2748static boolean_t
2749arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2750{
2751	/*
2752	 * The criteria for sharing a hdr's data are:
2753	 * 1. the hdr's compression matches the buf's compression
2754	 * 2. the hdr doesn't need to be byteswapped
2755	 * 3. the hdr isn't already being shared
2756	 * 4. the buf is either compressed or it is the last buf in the hdr list
2757	 *
2758	 * Criterion #4 maintains the invariant that shared uncompressed
2759	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2760	 * might ask, "if a compressed buf is allocated first, won't that be the
2761	 * last thing in the list?", but in that case it's impossible to create
2762	 * a shared uncompressed buf anyway (because the hdr must be compressed
2763	 * to have the compressed buf). You might also think that #3 is
2764	 * sufficient to make this guarantee, however it's possible
2765	 * (specifically in the rare L2ARC write race mentioned in
2766	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2767	 * is sharable, but wasn't at the time of its allocation. Rather than
2768	 * allow a new shared uncompressed buf to be created and then shuffle
2769	 * the list around to make it the last element, this simply disallows
2770	 * sharing if the new buf isn't the first to be added.
2771	 */
2772	ASSERT3P(buf->b_hdr, ==, hdr);
2773	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2774	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2775	return (buf_compressed == hdr_compressed &&
2776	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2777	    !HDR_SHARED_DATA(hdr) &&
2778	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2779}
2780
2781/*
2782 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2783 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2784 * copy was made successfully, or an error code otherwise.
2785 */
2786static int
2787arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2788    boolean_t fill, arc_buf_t **ret)
2789{
2790	arc_buf_t *buf;
2791
2792	ASSERT(HDR_HAS_L1HDR(hdr));
2793	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2794	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2795	    hdr->b_type == ARC_BUFC_METADATA);
2796	ASSERT3P(ret, !=, NULL);
2797	ASSERT3P(*ret, ==, NULL);
2798
2799	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2800	buf->b_hdr = hdr;
2801	buf->b_data = NULL;
2802	buf->b_next = hdr->b_l1hdr.b_buf;
2803	buf->b_flags = 0;
2804
2805	add_reference(hdr, tag);
2806
2807	/*
2808	 * We're about to change the hdr's b_flags. We must either
2809	 * hold the hash_lock or be undiscoverable.
2810	 */
2811	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2812
2813	/*
2814	 * Only honor requests for compressed bufs if the hdr is actually
2815	 * compressed.
2816	 */
2817	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2818		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2819
2820	/*
2821	 * If the hdr's data can be shared then we share the data buffer and
2822	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2823	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2824	 * buffer to store the buf's data.
2825	 *
2826	 * There are two additional restrictions here because we're sharing
2827	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2828	 * actively involved in an L2ARC write, because if this buf is used by
2829	 * an arc_write() then the hdr's data buffer will be released when the
2830	 * write completes, even though the L2ARC write might still be using it.
2831	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2832	 * need to be ABD-aware.
2833	 */
2834	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2835	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2836
2837	/* Set up b_data and sharing */
2838	if (can_share) {
2839		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2840		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2841		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2842	} else {
2843		buf->b_data =
2844		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2845		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2846	}
2847	VERIFY3P(buf->b_data, !=, NULL);
2848
2849	hdr->b_l1hdr.b_buf = buf;
2850	hdr->b_l1hdr.b_bufcnt += 1;
2851
2852	/*
2853	 * If the user wants the data from the hdr, we need to either copy or
2854	 * decompress the data.
2855	 */
2856	if (fill) {
2857		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2858	}
2859
2860	return (0);
2861}
2862
2863static char *arc_onloan_tag = "onloan";
2864
2865static inline void
2866arc_loaned_bytes_update(int64_t delta)
2867{
2868	atomic_add_64(&arc_loaned_bytes, delta);
2869
2870	/* assert that it did not wrap around */
2871	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2872}
2873
2874/*
2875 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2876 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2877 * buffers must be returned to the arc before they can be used by the DMU or
2878 * freed.
2879 */
2880arc_buf_t *
2881arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2882{
2883	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2884	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2885
2886	arc_loaned_bytes_update(arc_buf_size(buf));
2887
2888	return (buf);
2889}
2890
2891arc_buf_t *
2892arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2893    enum zio_compress compression_type)
2894{
2895	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2896	    psize, lsize, compression_type);
2897
2898	arc_loaned_bytes_update(arc_buf_size(buf));
2899
2900	return (buf);
2901}
2902
2903
2904/*
2905 * Return a loaned arc buffer to the arc.
2906 */
2907void
2908arc_return_buf(arc_buf_t *buf, void *tag)
2909{
2910	arc_buf_hdr_t *hdr = buf->b_hdr;
2911
2912	ASSERT3P(buf->b_data, !=, NULL);
2913	ASSERT(HDR_HAS_L1HDR(hdr));
2914	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2915	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2916
2917	arc_loaned_bytes_update(-arc_buf_size(buf));
2918}
2919
2920/* Detach an arc_buf from a dbuf (tag) */
2921void
2922arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2923{
2924	arc_buf_hdr_t *hdr = buf->b_hdr;
2925
2926	ASSERT3P(buf->b_data, !=, NULL);
2927	ASSERT(HDR_HAS_L1HDR(hdr));
2928	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2929	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2930
2931	arc_loaned_bytes_update(arc_buf_size(buf));
2932}
2933
2934static void
2935l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2936{
2937	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2938
2939	df->l2df_abd = abd;
2940	df->l2df_size = size;
2941	df->l2df_type = type;
2942	mutex_enter(&l2arc_free_on_write_mtx);
2943	list_insert_head(l2arc_free_on_write, df);
2944	mutex_exit(&l2arc_free_on_write_mtx);
2945}
2946
2947static void
2948arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2949{
2950	arc_state_t *state = hdr->b_l1hdr.b_state;
2951	arc_buf_contents_t type = arc_buf_type(hdr);
2952	uint64_t size = arc_hdr_size(hdr);
2953
2954	/* protected by hash lock, if in the hash table */
2955	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2956		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2957		ASSERT(state != arc_anon && state != arc_l2c_only);
2958
2959		(void) refcount_remove_many(&state->arcs_esize[type],
2960		    size, hdr);
2961	}
2962	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2963	if (type == ARC_BUFC_METADATA) {
2964		arc_space_return(size, ARC_SPACE_META);
2965	} else {
2966		ASSERT(type == ARC_BUFC_DATA);
2967		arc_space_return(size, ARC_SPACE_DATA);
2968	}
2969
2970	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2971}
2972
2973/*
2974 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2975 * data buffer, we transfer the refcount ownership to the hdr and update
2976 * the appropriate kstats.
2977 */
2978static void
2979arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2980{
2981	arc_state_t *state = hdr->b_l1hdr.b_state;
2982
2983	ASSERT(arc_can_share(hdr, buf));
2984	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2985	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2986
2987	/*
2988	 * Start sharing the data buffer. We transfer the
2989	 * refcount ownership to the hdr since it always owns
2990	 * the refcount whenever an arc_buf_t is shared.
2991	 */
2992	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2993	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2994	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2995	    HDR_ISTYPE_METADATA(hdr));
2996	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2997	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2998
2999	/*
3000	 * Since we've transferred ownership to the hdr we need
3001	 * to increment its compressed and uncompressed kstats and
3002	 * decrement the overhead size.
3003	 */
3004	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3005	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3006	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3007}
3008
3009static void
3010arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3011{
3012	arc_state_t *state = hdr->b_l1hdr.b_state;
3013
3014	ASSERT(arc_buf_is_shared(buf));
3015	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3016	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3017
3018	/*
3019	 * We are no longer sharing this buffer so we need
3020	 * to transfer its ownership to the rightful owner.
3021	 */
3022	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
3023	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3024	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3025	abd_put(hdr->b_l1hdr.b_pabd);
3026	hdr->b_l1hdr.b_pabd = NULL;
3027	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3028
3029	/*
3030	 * Since the buffer is no longer shared between
3031	 * the arc buf and the hdr, count it as overhead.
3032	 */
3033	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3034	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3035	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3036}
3037
3038/*
3039 * Remove an arc_buf_t from the hdr's buf list and return the last
3040 * arc_buf_t on the list. If no buffers remain on the list then return
3041 * NULL.
3042 */
3043static arc_buf_t *
3044arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3045{
3046	ASSERT(HDR_HAS_L1HDR(hdr));
3047	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3048
3049	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3050	arc_buf_t *lastbuf = NULL;
3051
3052	/*
3053	 * Remove the buf from the hdr list and locate the last
3054	 * remaining buffer on the list.
3055	 */
3056	while (*bufp != NULL) {
3057		if (*bufp == buf)
3058			*bufp = buf->b_next;
3059
3060		/*
3061		 * If we've removed a buffer in the middle of
3062		 * the list then update the lastbuf and update
3063		 * bufp.
3064		 */
3065		if (*bufp != NULL) {
3066			lastbuf = *bufp;
3067			bufp = &(*bufp)->b_next;
3068		}
3069	}
3070	buf->b_next = NULL;
3071	ASSERT3P(lastbuf, !=, buf);
3072	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3073	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3074	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3075
3076	return (lastbuf);
3077}
3078
3079/*
3080 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3081 * list and free it.
3082 */
3083static void
3084arc_buf_destroy_impl(arc_buf_t *buf)
3085{
3086	arc_buf_hdr_t *hdr = buf->b_hdr;
3087
3088	/*
3089	 * Free up the data associated with the buf but only if we're not
3090	 * sharing this with the hdr. If we are sharing it with the hdr, the
3091	 * hdr is responsible for doing the free.
3092	 */
3093	if (buf->b_data != NULL) {
3094		/*
3095		 * We're about to change the hdr's b_flags. We must either
3096		 * hold the hash_lock or be undiscoverable.
3097		 */
3098		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3099
3100		arc_cksum_verify(buf);
3101#ifdef illumos
3102		arc_buf_unwatch(buf);
3103#endif
3104
3105		if (arc_buf_is_shared(buf)) {
3106			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3107		} else {
3108			uint64_t size = arc_buf_size(buf);
3109			arc_free_data_buf(hdr, buf->b_data, size, buf);
3110			ARCSTAT_INCR(arcstat_overhead_size, -size);
3111		}
3112		buf->b_data = NULL;
3113
3114		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3115		hdr->b_l1hdr.b_bufcnt -= 1;
3116	}
3117
3118	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3119
3120	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3121		/*
3122		 * If the current arc_buf_t is sharing its data buffer with the
3123		 * hdr, then reassign the hdr's b_pabd to share it with the new
3124		 * buffer at the end of the list. The shared buffer is always
3125		 * the last one on the hdr's buffer list.
3126		 *
3127		 * There is an equivalent case for compressed bufs, but since
3128		 * they aren't guaranteed to be the last buf in the list and
3129		 * that is an exceedingly rare case, we just allow that space be
3130		 * wasted temporarily.
3131		 */
3132		if (lastbuf != NULL) {
3133			/* Only one buf can be shared at once */
3134			VERIFY(!arc_buf_is_shared(lastbuf));
3135			/* hdr is uncompressed so can't have compressed buf */
3136			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3137
3138			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3139			arc_hdr_free_pabd(hdr);
3140
3141			/*
3142			 * We must setup a new shared block between the
3143			 * last buffer and the hdr. The data would have
3144			 * been allocated by the arc buf so we need to transfer
3145			 * ownership to the hdr since it's now being shared.
3146			 */
3147			arc_share_buf(hdr, lastbuf);
3148		}
3149	} else if (HDR_SHARED_DATA(hdr)) {
3150		/*
3151		 * Uncompressed shared buffers are always at the end
3152		 * of the list. Compressed buffers don't have the
3153		 * same requirements. This makes it hard to
3154		 * simply assert that the lastbuf is shared so
3155		 * we rely on the hdr's compression flags to determine
3156		 * if we have a compressed, shared buffer.
3157		 */
3158		ASSERT3P(lastbuf, !=, NULL);
3159		ASSERT(arc_buf_is_shared(lastbuf) ||
3160		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
3161	}
3162
3163	/*
3164	 * Free the checksum if we're removing the last uncompressed buf from
3165	 * this hdr.
3166	 */
3167	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3168		arc_cksum_free(hdr);
3169	}
3170
3171	/* clean up the buf */
3172	buf->b_hdr = NULL;
3173	kmem_cache_free(buf_cache, buf);
3174}
3175
3176static void
3177arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
3178{
3179	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3180	ASSERT(HDR_HAS_L1HDR(hdr));
3181	ASSERT(!HDR_SHARED_DATA(hdr));
3182
3183	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3184	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
3185	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3186	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3187
3188	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3189	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3190}
3191
3192static void
3193arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
3194{
3195	ASSERT(HDR_HAS_L1HDR(hdr));
3196	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3197
3198	/*
3199	 * If the hdr is currently being written to the l2arc then
3200	 * we defer freeing the data by adding it to the l2arc_free_on_write
3201	 * list. The l2arc will free the data once it's finished
3202	 * writing it to the l2arc device.
3203	 */
3204	if (HDR_L2_WRITING(hdr)) {
3205		arc_hdr_free_on_write(hdr);
3206		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3207	} else {
3208		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3209		    arc_hdr_size(hdr), hdr);
3210	}
3211	hdr->b_l1hdr.b_pabd = NULL;
3212	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3213
3214	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3215	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3216}
3217
3218static arc_buf_hdr_t *
3219arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3220    enum zio_compress compression_type, arc_buf_contents_t type)
3221{
3222	arc_buf_hdr_t *hdr;
3223
3224	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3225
3226	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3227	ASSERT(HDR_EMPTY(hdr));
3228	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3229	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3230	HDR_SET_PSIZE(hdr, psize);
3231	HDR_SET_LSIZE(hdr, lsize);
3232	hdr->b_spa = spa;
3233	hdr->b_type = type;
3234	hdr->b_flags = 0;
3235	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3236	arc_hdr_set_compress(hdr, compression_type);
3237
3238	hdr->b_l1hdr.b_state = arc_anon;
3239	hdr->b_l1hdr.b_arc_access = 0;
3240	hdr->b_l1hdr.b_bufcnt = 0;
3241	hdr->b_l1hdr.b_buf = NULL;
3242
3243	/*
3244	 * Allocate the hdr's buffer. This will contain either
3245	 * the compressed or uncompressed data depending on the block
3246	 * it references and compressed arc enablement.
3247	 */
3248	arc_hdr_alloc_pabd(hdr);
3249	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3250
3251	return (hdr);
3252}
3253
3254/*
3255 * Transition between the two allocation states for the arc_buf_hdr struct.
3256 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3257 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3258 * version is used when a cache buffer is only in the L2ARC in order to reduce
3259 * memory usage.
3260 */
3261static arc_buf_hdr_t *
3262arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3263{
3264	ASSERT(HDR_HAS_L2HDR(hdr));
3265
3266	arc_buf_hdr_t *nhdr;
3267	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3268
3269	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3270	    (old == hdr_l2only_cache && new == hdr_full_cache));
3271
3272	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3273
3274	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3275	buf_hash_remove(hdr);
3276
3277	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3278
3279	if (new == hdr_full_cache) {
3280		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3281		/*
3282		 * arc_access and arc_change_state need to be aware that a
3283		 * header has just come out of L2ARC, so we set its state to
3284		 * l2c_only even though it's about to change.
3285		 */
3286		nhdr->b_l1hdr.b_state = arc_l2c_only;
3287
3288		/* Verify previous threads set to NULL before freeing */
3289		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3290	} else {
3291		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3292		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3293		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3294
3295		/*
3296		 * If we've reached here, We must have been called from
3297		 * arc_evict_hdr(), as such we should have already been
3298		 * removed from any ghost list we were previously on
3299		 * (which protects us from racing with arc_evict_state),
3300		 * thus no locking is needed during this check.
3301		 */
3302		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3303
3304		/*
3305		 * A buffer must not be moved into the arc_l2c_only
3306		 * state if it's not finished being written out to the
3307		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3308		 * might try to be accessed, even though it was removed.
3309		 */
3310		VERIFY(!HDR_L2_WRITING(hdr));
3311		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3312
3313#ifdef ZFS_DEBUG
3314		if (hdr->b_l1hdr.b_thawed != NULL) {
3315			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3316			hdr->b_l1hdr.b_thawed = NULL;
3317		}
3318#endif
3319
3320		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3321	}
3322	/*
3323	 * The header has been reallocated so we need to re-insert it into any
3324	 * lists it was on.
3325	 */
3326	(void) buf_hash_insert(nhdr, NULL);
3327
3328	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3329
3330	mutex_enter(&dev->l2ad_mtx);
3331
3332	/*
3333	 * We must place the realloc'ed header back into the list at
3334	 * the same spot. Otherwise, if it's placed earlier in the list,
3335	 * l2arc_write_buffers() could find it during the function's
3336	 * write phase, and try to write it out to the l2arc.
3337	 */
3338	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3339	list_remove(&dev->l2ad_buflist, hdr);
3340
3341	mutex_exit(&dev->l2ad_mtx);
3342
3343	/*
3344	 * Since we're using the pointer address as the tag when
3345	 * incrementing and decrementing the l2ad_alloc refcount, we
3346	 * must remove the old pointer (that we're about to destroy) and
3347	 * add the new pointer to the refcount. Otherwise we'd remove
3348	 * the wrong pointer address when calling arc_hdr_destroy() later.
3349	 */
3350
3351	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3352	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3353
3354	buf_discard_identity(hdr);
3355	kmem_cache_free(old, hdr);
3356
3357	return (nhdr);
3358}
3359
3360/*
3361 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3362 * The buf is returned thawed since we expect the consumer to modify it.
3363 */
3364arc_buf_t *
3365arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3366{
3367	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3368	    ZIO_COMPRESS_OFF, type);
3369	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3370
3371	arc_buf_t *buf = NULL;
3372	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3373	arc_buf_thaw(buf);
3374
3375	return (buf);
3376}
3377
3378/*
3379 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3380 * for bufs containing metadata.
3381 */
3382arc_buf_t *
3383arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3384    enum zio_compress compression_type)
3385{
3386	ASSERT3U(lsize, >, 0);
3387	ASSERT3U(lsize, >=, psize);
3388	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3389	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3390
3391	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3392	    compression_type, ARC_BUFC_DATA);
3393	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3394
3395	arc_buf_t *buf = NULL;
3396	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3397	arc_buf_thaw(buf);
3398	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3399
3400	if (!arc_buf_is_shared(buf)) {
3401		/*
3402		 * To ensure that the hdr has the correct data in it if we call
3403		 * arc_decompress() on this buf before it's been written to
3404		 * disk, it's easiest if we just set up sharing between the
3405		 * buf and the hdr.
3406		 */
3407		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3408		arc_hdr_free_pabd(hdr);
3409		arc_share_buf(hdr, buf);
3410	}
3411
3412	return (buf);
3413}
3414
3415static void
3416arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3417{
3418	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3419	l2arc_dev_t *dev = l2hdr->b_dev;
3420	uint64_t psize = arc_hdr_size(hdr);
3421
3422	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3423	ASSERT(HDR_HAS_L2HDR(hdr));
3424
3425	list_remove(&dev->l2ad_buflist, hdr);
3426
3427	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3428	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3429
3430	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3431
3432	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3433	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3434}
3435
3436static void
3437arc_hdr_destroy(arc_buf_hdr_t *hdr)
3438{
3439	if (HDR_HAS_L1HDR(hdr)) {
3440		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3441		    hdr->b_l1hdr.b_bufcnt > 0);
3442		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3443		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3444	}
3445	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3446	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3447
3448	if (!HDR_EMPTY(hdr))
3449		buf_discard_identity(hdr);
3450
3451	if (HDR_HAS_L2HDR(hdr)) {
3452		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3453		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3454
3455		if (!buflist_held)
3456			mutex_enter(&dev->l2ad_mtx);
3457
3458		/*
3459		 * Even though we checked this conditional above, we
3460		 * need to check this again now that we have the
3461		 * l2ad_mtx. This is because we could be racing with
3462		 * another thread calling l2arc_evict() which might have
3463		 * destroyed this header's L2 portion as we were waiting
3464		 * to acquire the l2ad_mtx. If that happens, we don't
3465		 * want to re-destroy the header's L2 portion.
3466		 */
3467		if (HDR_HAS_L2HDR(hdr)) {
3468			l2arc_trim(hdr);
3469			arc_hdr_l2hdr_destroy(hdr);
3470		}
3471
3472		if (!buflist_held)
3473			mutex_exit(&dev->l2ad_mtx);
3474	}
3475
3476	if (HDR_HAS_L1HDR(hdr)) {
3477		arc_cksum_free(hdr);
3478
3479		while (hdr->b_l1hdr.b_buf != NULL)
3480			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3481
3482#ifdef ZFS_DEBUG
3483		if (hdr->b_l1hdr.b_thawed != NULL) {
3484			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3485			hdr->b_l1hdr.b_thawed = NULL;
3486		}
3487#endif
3488
3489		if (hdr->b_l1hdr.b_pabd != NULL) {
3490			arc_hdr_free_pabd(hdr);
3491		}
3492	}
3493
3494	ASSERT3P(hdr->b_hash_next, ==, NULL);
3495	if (HDR_HAS_L1HDR(hdr)) {
3496		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3497		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3498		kmem_cache_free(hdr_full_cache, hdr);
3499	} else {
3500		kmem_cache_free(hdr_l2only_cache, hdr);
3501	}
3502}
3503
3504void
3505arc_buf_destroy(arc_buf_t *buf, void* tag)
3506{
3507	arc_buf_hdr_t *hdr = buf->b_hdr;
3508	kmutex_t *hash_lock = HDR_LOCK(hdr);
3509
3510	if (hdr->b_l1hdr.b_state == arc_anon) {
3511		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3512		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3513		VERIFY0(remove_reference(hdr, NULL, tag));
3514		arc_hdr_destroy(hdr);
3515		return;
3516	}
3517
3518	mutex_enter(hash_lock);
3519	ASSERT3P(hdr, ==, buf->b_hdr);
3520	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3521	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3522	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3523	ASSERT3P(buf->b_data, !=, NULL);
3524
3525	(void) remove_reference(hdr, hash_lock, tag);
3526	arc_buf_destroy_impl(buf);
3527	mutex_exit(hash_lock);
3528}
3529
3530/*
3531 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3532 * state of the header is dependent on it's state prior to entering this
3533 * function. The following transitions are possible:
3534 *
3535 *    - arc_mru -> arc_mru_ghost
3536 *    - arc_mfu -> arc_mfu_ghost
3537 *    - arc_mru_ghost -> arc_l2c_only
3538 *    - arc_mru_ghost -> deleted
3539 *    - arc_mfu_ghost -> arc_l2c_only
3540 *    - arc_mfu_ghost -> deleted
3541 */
3542static int64_t
3543arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3544{
3545	arc_state_t *evicted_state, *state;
3546	int64_t bytes_evicted = 0;
3547
3548	ASSERT(MUTEX_HELD(hash_lock));
3549	ASSERT(HDR_HAS_L1HDR(hdr));
3550
3551	state = hdr->b_l1hdr.b_state;
3552	if (GHOST_STATE(state)) {
3553		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3554		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3555
3556		/*
3557		 * l2arc_write_buffers() relies on a header's L1 portion
3558		 * (i.e. its b_pabd field) during it's write phase.
3559		 * Thus, we cannot push a header onto the arc_l2c_only
3560		 * state (removing it's L1 piece) until the header is
3561		 * done being written to the l2arc.
3562		 */
3563		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3564			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3565			return (bytes_evicted);
3566		}
3567
3568		ARCSTAT_BUMP(arcstat_deleted);
3569		bytes_evicted += HDR_GET_LSIZE(hdr);
3570
3571		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3572
3573		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3574		if (HDR_HAS_L2HDR(hdr)) {
3575			/*
3576			 * This buffer is cached on the 2nd Level ARC;
3577			 * don't destroy the header.
3578			 */
3579			arc_change_state(arc_l2c_only, hdr, hash_lock);
3580			/*
3581			 * dropping from L1+L2 cached to L2-only,
3582			 * realloc to remove the L1 header.
3583			 */
3584			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3585			    hdr_l2only_cache);
3586		} else {
3587			arc_change_state(arc_anon, hdr, hash_lock);
3588			arc_hdr_destroy(hdr);
3589		}
3590		return (bytes_evicted);
3591	}
3592
3593	ASSERT(state == arc_mru || state == arc_mfu);
3594	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3595
3596	/* prefetch buffers have a minimum lifespan */
3597	if (HDR_IO_IN_PROGRESS(hdr) ||
3598	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3599	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3600	    arc_min_prefetch_lifespan)) {
3601		ARCSTAT_BUMP(arcstat_evict_skip);
3602		return (bytes_evicted);
3603	}
3604
3605	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3606	while (hdr->b_l1hdr.b_buf) {
3607		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3608		if (!mutex_tryenter(&buf->b_evict_lock)) {
3609			ARCSTAT_BUMP(arcstat_mutex_miss);
3610			break;
3611		}
3612		if (buf->b_data != NULL)
3613			bytes_evicted += HDR_GET_LSIZE(hdr);
3614		mutex_exit(&buf->b_evict_lock);
3615		arc_buf_destroy_impl(buf);
3616	}
3617
3618	if (HDR_HAS_L2HDR(hdr)) {
3619		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3620	} else {
3621		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3622			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3623			    HDR_GET_LSIZE(hdr));
3624		} else {
3625			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3626			    HDR_GET_LSIZE(hdr));
3627		}
3628	}
3629
3630	if (hdr->b_l1hdr.b_bufcnt == 0) {
3631		arc_cksum_free(hdr);
3632
3633		bytes_evicted += arc_hdr_size(hdr);
3634
3635		/*
3636		 * If this hdr is being evicted and has a compressed
3637		 * buffer then we discard it here before we change states.
3638		 * This ensures that the accounting is updated correctly
3639		 * in arc_free_data_impl().
3640		 */
3641		arc_hdr_free_pabd(hdr);
3642
3643		arc_change_state(evicted_state, hdr, hash_lock);
3644		ASSERT(HDR_IN_HASH_TABLE(hdr));
3645		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3646		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3647	}
3648
3649	return (bytes_evicted);
3650}
3651
3652static uint64_t
3653arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3654    uint64_t spa, int64_t bytes)
3655{
3656	multilist_sublist_t *mls;
3657	uint64_t bytes_evicted = 0;
3658	arc_buf_hdr_t *hdr;
3659	kmutex_t *hash_lock;
3660	int evict_count = 0;
3661
3662	ASSERT3P(marker, !=, NULL);
3663	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3664
3665	mls = multilist_sublist_lock(ml, idx);
3666
3667	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3668	    hdr = multilist_sublist_prev(mls, marker)) {
3669		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3670		    (evict_count >= zfs_arc_evict_batch_limit))
3671			break;
3672
3673		/*
3674		 * To keep our iteration location, move the marker
3675		 * forward. Since we're not holding hdr's hash lock, we
3676		 * must be very careful and not remove 'hdr' from the
3677		 * sublist. Otherwise, other consumers might mistake the
3678		 * 'hdr' as not being on a sublist when they call the
3679		 * multilist_link_active() function (they all rely on
3680		 * the hash lock protecting concurrent insertions and
3681		 * removals). multilist_sublist_move_forward() was
3682		 * specifically implemented to ensure this is the case
3683		 * (only 'marker' will be removed and re-inserted).
3684		 */
3685		multilist_sublist_move_forward(mls, marker);
3686
3687		/*
3688		 * The only case where the b_spa field should ever be
3689		 * zero, is the marker headers inserted by
3690		 * arc_evict_state(). It's possible for multiple threads
3691		 * to be calling arc_evict_state() concurrently (e.g.
3692		 * dsl_pool_close() and zio_inject_fault()), so we must
3693		 * skip any markers we see from these other threads.
3694		 */
3695		if (hdr->b_spa == 0)
3696			continue;
3697
3698		/* we're only interested in evicting buffers of a certain spa */
3699		if (spa != 0 && hdr->b_spa != spa) {
3700			ARCSTAT_BUMP(arcstat_evict_skip);
3701			continue;
3702		}
3703
3704		hash_lock = HDR_LOCK(hdr);
3705
3706		/*
3707		 * We aren't calling this function from any code path
3708		 * that would already be holding a hash lock, so we're
3709		 * asserting on this assumption to be defensive in case
3710		 * this ever changes. Without this check, it would be
3711		 * possible to incorrectly increment arcstat_mutex_miss
3712		 * below (e.g. if the code changed such that we called
3713		 * this function with a hash lock held).
3714		 */
3715		ASSERT(!MUTEX_HELD(hash_lock));
3716
3717		if (mutex_tryenter(hash_lock)) {
3718			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3719			mutex_exit(hash_lock);
3720
3721			bytes_evicted += evicted;
3722
3723			/*
3724			 * If evicted is zero, arc_evict_hdr() must have
3725			 * decided to skip this header, don't increment
3726			 * evict_count in this case.
3727			 */
3728			if (evicted != 0)
3729				evict_count++;
3730
3731			/*
3732			 * If arc_size isn't overflowing, signal any
3733			 * threads that might happen to be waiting.
3734			 *
3735			 * For each header evicted, we wake up a single
3736			 * thread. If we used cv_broadcast, we could
3737			 * wake up "too many" threads causing arc_size
3738			 * to significantly overflow arc_c; since
3739			 * arc_get_data_impl() doesn't check for overflow
3740			 * when it's woken up (it doesn't because it's
3741			 * possible for the ARC to be overflowing while
3742			 * full of un-evictable buffers, and the
3743			 * function should proceed in this case).
3744			 *
3745			 * If threads are left sleeping, due to not
3746			 * using cv_broadcast, they will be woken up
3747			 * just before arc_reclaim_thread() sleeps.
3748			 */
3749			mutex_enter(&arc_reclaim_lock);
3750			if (!arc_is_overflowing())
3751				cv_signal(&arc_reclaim_waiters_cv);
3752			mutex_exit(&arc_reclaim_lock);
3753		} else {
3754			ARCSTAT_BUMP(arcstat_mutex_miss);
3755		}
3756	}
3757
3758	multilist_sublist_unlock(mls);
3759
3760	return (bytes_evicted);
3761}
3762
3763/*
3764 * Evict buffers from the given arc state, until we've removed the
3765 * specified number of bytes. Move the removed buffers to the
3766 * appropriate evict state.
3767 *
3768 * This function makes a "best effort". It skips over any buffers
3769 * it can't get a hash_lock on, and so, may not catch all candidates.
3770 * It may also return without evicting as much space as requested.
3771 *
3772 * If bytes is specified using the special value ARC_EVICT_ALL, this
3773 * will evict all available (i.e. unlocked and evictable) buffers from
3774 * the given arc state; which is used by arc_flush().
3775 */
3776static uint64_t
3777arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3778    arc_buf_contents_t type)
3779{
3780	uint64_t total_evicted = 0;
3781	multilist_t *ml = state->arcs_list[type];
3782	int num_sublists;
3783	arc_buf_hdr_t **markers;
3784
3785	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3786
3787	num_sublists = multilist_get_num_sublists(ml);
3788
3789	/*
3790	 * If we've tried to evict from each sublist, made some
3791	 * progress, but still have not hit the target number of bytes
3792	 * to evict, we want to keep trying. The markers allow us to
3793	 * pick up where we left off for each individual sublist, rather
3794	 * than starting from the tail each time.
3795	 */
3796	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3797	for (int i = 0; i < num_sublists; i++) {
3798		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3799
3800		/*
3801		 * A b_spa of 0 is used to indicate that this header is
3802		 * a marker. This fact is used in arc_adjust_type() and
3803		 * arc_evict_state_impl().
3804		 */
3805		markers[i]->b_spa = 0;
3806
3807		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3808		multilist_sublist_insert_tail(mls, markers[i]);
3809		multilist_sublist_unlock(mls);
3810	}
3811
3812	/*
3813	 * While we haven't hit our target number of bytes to evict, or
3814	 * we're evicting all available buffers.
3815	 */
3816	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3817		/*
3818		 * Start eviction using a randomly selected sublist,
3819		 * this is to try and evenly balance eviction across all
3820		 * sublists. Always starting at the same sublist
3821		 * (e.g. index 0) would cause evictions to favor certain
3822		 * sublists over others.
3823		 */
3824		int sublist_idx = multilist_get_random_index(ml);
3825		uint64_t scan_evicted = 0;
3826
3827		for (int i = 0; i < num_sublists; i++) {
3828			uint64_t bytes_remaining;
3829			uint64_t bytes_evicted;
3830
3831			if (bytes == ARC_EVICT_ALL)
3832				bytes_remaining = ARC_EVICT_ALL;
3833			else if (total_evicted < bytes)
3834				bytes_remaining = bytes - total_evicted;
3835			else
3836				break;
3837
3838			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3839			    markers[sublist_idx], spa, bytes_remaining);
3840
3841			scan_evicted += bytes_evicted;
3842			total_evicted += bytes_evicted;
3843
3844			/* we've reached the end, wrap to the beginning */
3845			if (++sublist_idx >= num_sublists)
3846				sublist_idx = 0;
3847		}
3848
3849		/*
3850		 * If we didn't evict anything during this scan, we have
3851		 * no reason to believe we'll evict more during another
3852		 * scan, so break the loop.
3853		 */
3854		if (scan_evicted == 0) {
3855			/* This isn't possible, let's make that obvious */
3856			ASSERT3S(bytes, !=, 0);
3857
3858			/*
3859			 * When bytes is ARC_EVICT_ALL, the only way to
3860			 * break the loop is when scan_evicted is zero.
3861			 * In that case, we actually have evicted enough,
3862			 * so we don't want to increment the kstat.
3863			 */
3864			if (bytes != ARC_EVICT_ALL) {
3865				ASSERT3S(total_evicted, <, bytes);
3866				ARCSTAT_BUMP(arcstat_evict_not_enough);
3867			}
3868
3869			break;
3870		}
3871	}
3872
3873	for (int i = 0; i < num_sublists; i++) {
3874		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3875		multilist_sublist_remove(mls, markers[i]);
3876		multilist_sublist_unlock(mls);
3877
3878		kmem_cache_free(hdr_full_cache, markers[i]);
3879	}
3880	kmem_free(markers, sizeof (*markers) * num_sublists);
3881
3882	return (total_evicted);
3883}
3884
3885/*
3886 * Flush all "evictable" data of the given type from the arc state
3887 * specified. This will not evict any "active" buffers (i.e. referenced).
3888 *
3889 * When 'retry' is set to B_FALSE, the function will make a single pass
3890 * over the state and evict any buffers that it can. Since it doesn't
3891 * continually retry the eviction, it might end up leaving some buffers
3892 * in the ARC due to lock misses.
3893 *
3894 * When 'retry' is set to B_TRUE, the function will continually retry the
3895 * eviction until *all* evictable buffers have been removed from the
3896 * state. As a result, if concurrent insertions into the state are
3897 * allowed (e.g. if the ARC isn't shutting down), this function might
3898 * wind up in an infinite loop, continually trying to evict buffers.
3899 */
3900static uint64_t
3901arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3902    boolean_t retry)
3903{
3904	uint64_t evicted = 0;
3905
3906	while (refcount_count(&state->arcs_esize[type]) != 0) {
3907		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3908
3909		if (!retry)
3910			break;
3911	}
3912
3913	return (evicted);
3914}
3915
3916/*
3917 * Evict the specified number of bytes from the state specified,
3918 * restricting eviction to the spa and type given. This function
3919 * prevents us from trying to evict more from a state's list than
3920 * is "evictable", and to skip evicting altogether when passed a
3921 * negative value for "bytes". In contrast, arc_evict_state() will
3922 * evict everything it can, when passed a negative value for "bytes".
3923 */
3924static uint64_t
3925arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3926    arc_buf_contents_t type)
3927{
3928	int64_t delta;
3929
3930	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3931		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3932		return (arc_evict_state(state, spa, delta, type));
3933	}
3934
3935	return (0);
3936}
3937
3938/*
3939 * Evict metadata buffers from the cache, such that arc_meta_used is
3940 * capped by the arc_meta_limit tunable.
3941 */
3942static uint64_t
3943arc_adjust_meta(uint64_t meta_used)
3944{
3945	uint64_t total_evicted = 0;
3946	int64_t target;
3947
3948	/*
3949	 * If we're over the meta limit, we want to evict enough
3950	 * metadata to get back under the meta limit. We don't want to
3951	 * evict so much that we drop the MRU below arc_p, though. If
3952	 * we're over the meta limit more than we're over arc_p, we
3953	 * evict some from the MRU here, and some from the MFU below.
3954	 */
3955	target = MIN((int64_t)(meta_used - arc_meta_limit),
3956	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3957	    refcount_count(&arc_mru->arcs_size) - arc_p));
3958
3959	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3960
3961	/*
3962	 * Similar to the above, we want to evict enough bytes to get us
3963	 * below the meta limit, but not so much as to drop us below the
3964	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3965	 */
3966	target = MIN((int64_t)(meta_used - arc_meta_limit),
3967	    (int64_t)(refcount_count(&arc_mfu->arcs_size) -
3968	    (arc_c - arc_p)));
3969
3970	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3971
3972	return (total_evicted);
3973}
3974
3975/*
3976 * Return the type of the oldest buffer in the given arc state
3977 *
3978 * This function will select a random sublist of type ARC_BUFC_DATA and
3979 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3980 * is compared, and the type which contains the "older" buffer will be
3981 * returned.
3982 */
3983static arc_buf_contents_t
3984arc_adjust_type(arc_state_t *state)
3985{
3986	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3987	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3988	int data_idx = multilist_get_random_index(data_ml);
3989	int meta_idx = multilist_get_random_index(meta_ml);
3990	multilist_sublist_t *data_mls;
3991	multilist_sublist_t *meta_mls;
3992	arc_buf_contents_t type;
3993	arc_buf_hdr_t *data_hdr;
3994	arc_buf_hdr_t *meta_hdr;
3995
3996	/*
3997	 * We keep the sublist lock until we're finished, to prevent
3998	 * the headers from being destroyed via arc_evict_state().
3999	 */
4000	data_mls = multilist_sublist_lock(data_ml, data_idx);
4001	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4002
4003	/*
4004	 * These two loops are to ensure we skip any markers that
4005	 * might be at the tail of the lists due to arc_evict_state().
4006	 */
4007
4008	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4009	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4010		if (data_hdr->b_spa != 0)
4011			break;
4012	}
4013
4014	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4015	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4016		if (meta_hdr->b_spa != 0)
4017			break;
4018	}
4019
4020	if (data_hdr == NULL && meta_hdr == NULL) {
4021		type = ARC_BUFC_DATA;
4022	} else if (data_hdr == NULL) {
4023		ASSERT3P(meta_hdr, !=, NULL);
4024		type = ARC_BUFC_METADATA;
4025	} else if (meta_hdr == NULL) {
4026		ASSERT3P(data_hdr, !=, NULL);
4027		type = ARC_BUFC_DATA;
4028	} else {
4029		ASSERT3P(data_hdr, !=, NULL);
4030		ASSERT3P(meta_hdr, !=, NULL);
4031
4032		/* The headers can't be on the sublist without an L1 header */
4033		ASSERT(HDR_HAS_L1HDR(data_hdr));
4034		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4035
4036		if (data_hdr->b_l1hdr.b_arc_access <
4037		    meta_hdr->b_l1hdr.b_arc_access) {
4038			type = ARC_BUFC_DATA;
4039		} else {
4040			type = ARC_BUFC_METADATA;
4041		}
4042	}
4043
4044	multilist_sublist_unlock(meta_mls);
4045	multilist_sublist_unlock(data_mls);
4046
4047	return (type);
4048}
4049
4050/*
4051 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4052 */
4053static uint64_t
4054arc_adjust(void)
4055{
4056	uint64_t total_evicted = 0;
4057	uint64_t bytes;
4058	int64_t target;
4059	uint64_t asize = aggsum_value(&arc_size);
4060	uint64_t ameta = aggsum_value(&arc_meta_used);
4061
4062	/*
4063	 * If we're over arc_meta_limit, we want to correct that before
4064	 * potentially evicting data buffers below.
4065	 */
4066	total_evicted += arc_adjust_meta(ameta);
4067
4068	/*
4069	 * Adjust MRU size
4070	 *
4071	 * If we're over the target cache size, we want to evict enough
4072	 * from the list to get back to our target size. We don't want
4073	 * to evict too much from the MRU, such that it drops below
4074	 * arc_p. So, if we're over our target cache size more than
4075	 * the MRU is over arc_p, we'll evict enough to get back to
4076	 * arc_p here, and then evict more from the MFU below.
4077	 */
4078	target = MIN((int64_t)(asize - arc_c),
4079	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
4080	    refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4081
4082	/*
4083	 * If we're below arc_meta_min, always prefer to evict data.
4084	 * Otherwise, try to satisfy the requested number of bytes to
4085	 * evict from the type which contains older buffers; in an
4086	 * effort to keep newer buffers in the cache regardless of their
4087	 * type. If we cannot satisfy the number of bytes from this
4088	 * type, spill over into the next type.
4089	 */
4090	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4091	    ameta > arc_meta_min) {
4092		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4093		total_evicted += bytes;
4094
4095		/*
4096		 * If we couldn't evict our target number of bytes from
4097		 * metadata, we try to get the rest from data.
4098		 */
4099		target -= bytes;
4100
4101		total_evicted +=
4102		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4103	} else {
4104		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4105		total_evicted += bytes;
4106
4107		/*
4108		 * If we couldn't evict our target number of bytes from
4109		 * data, we try to get the rest from metadata.
4110		 */
4111		target -= bytes;
4112
4113		total_evicted +=
4114		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4115	}
4116
4117	/*
4118	 * Adjust MFU size
4119	 *
4120	 * Now that we've tried to evict enough from the MRU to get its
4121	 * size back to arc_p, if we're still above the target cache
4122	 * size, we evict the rest from the MFU.
4123	 */
4124	target = asize - arc_c;
4125
4126	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4127	    ameta > arc_meta_min) {
4128		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4129		total_evicted += bytes;
4130
4131		/*
4132		 * If we couldn't evict our target number of bytes from
4133		 * metadata, we try to get the rest from data.
4134		 */
4135		target -= bytes;
4136
4137		total_evicted +=
4138		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4139	} else {
4140		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4141		total_evicted += bytes;
4142
4143		/*
4144		 * If we couldn't evict our target number of bytes from
4145		 * data, we try to get the rest from data.
4146		 */
4147		target -= bytes;
4148
4149		total_evicted +=
4150		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4151	}
4152
4153	/*
4154	 * Adjust ghost lists
4155	 *
4156	 * In addition to the above, the ARC also defines target values
4157	 * for the ghost lists. The sum of the mru list and mru ghost
4158	 * list should never exceed the target size of the cache, and
4159	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4160	 * ghost list should never exceed twice the target size of the
4161	 * cache. The following logic enforces these limits on the ghost
4162	 * caches, and evicts from them as needed.
4163	 */
4164	target = refcount_count(&arc_mru->arcs_size) +
4165	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4166
4167	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4168	total_evicted += bytes;
4169
4170	target -= bytes;
4171
4172	total_evicted +=
4173	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4174
4175	/*
4176	 * We assume the sum of the mru list and mfu list is less than
4177	 * or equal to arc_c (we enforced this above), which means we
4178	 * can use the simpler of the two equations below:
4179	 *
4180	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4181	 *		    mru ghost + mfu ghost <= arc_c
4182	 */
4183	target = refcount_count(&arc_mru_ghost->arcs_size) +
4184	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4185
4186	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4187	total_evicted += bytes;
4188
4189	target -= bytes;
4190
4191	total_evicted +=
4192	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4193
4194	return (total_evicted);
4195}
4196
4197void
4198arc_flush(spa_t *spa, boolean_t retry)
4199{
4200	uint64_t guid = 0;
4201
4202	/*
4203	 * If retry is B_TRUE, a spa must not be specified since we have
4204	 * no good way to determine if all of a spa's buffers have been
4205	 * evicted from an arc state.
4206	 */
4207	ASSERT(!retry || spa == 0);
4208
4209	if (spa != NULL)
4210		guid = spa_load_guid(spa);
4211
4212	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4213	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4214
4215	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4216	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4217
4218	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4219	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4220
4221	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4222	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4223}
4224
4225void
4226arc_shrink(int64_t to_free)
4227{
4228	uint64_t asize = aggsum_value(&arc_size);
4229	if (arc_c > arc_c_min) {
4230		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
4231			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
4232		if (arc_c > arc_c_min + to_free)
4233			atomic_add_64(&arc_c, -to_free);
4234		else
4235			arc_c = arc_c_min;
4236
4237		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4238		if (asize < arc_c)
4239			arc_c = MAX(asize, arc_c_min);
4240		if (arc_p > arc_c)
4241			arc_p = (arc_c >> 1);
4242
4243		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
4244			arc_p);
4245
4246		ASSERT(arc_c >= arc_c_min);
4247		ASSERT((int64_t)arc_p >= 0);
4248	}
4249
4250	if (asize > arc_c) {
4251		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, asize,
4252			uint64_t, arc_c);
4253		(void) arc_adjust();
4254	}
4255}
4256
4257typedef enum free_memory_reason_t {
4258	FMR_UNKNOWN,
4259	FMR_NEEDFREE,
4260	FMR_LOTSFREE,
4261	FMR_SWAPFS_MINFREE,
4262	FMR_PAGES_PP_MAXIMUM,
4263	FMR_HEAP_ARENA,
4264	FMR_ZIO_ARENA,
4265	FMR_ZIO_FRAG,
4266} free_memory_reason_t;
4267
4268int64_t last_free_memory;
4269free_memory_reason_t last_free_reason;
4270
4271/*
4272 * Additional reserve of pages for pp_reserve.
4273 */
4274int64_t arc_pages_pp_reserve = 64;
4275
4276/*
4277 * Additional reserve of pages for swapfs.
4278 */
4279int64_t arc_swapfs_reserve = 64;
4280
4281/*
4282 * Return the amount of memory that can be consumed before reclaim will be
4283 * needed.  Positive if there is sufficient free memory, negative indicates
4284 * the amount of memory that needs to be freed up.
4285 */
4286static int64_t
4287arc_available_memory(void)
4288{
4289	int64_t lowest = INT64_MAX;
4290	int64_t n;
4291	free_memory_reason_t r = FMR_UNKNOWN;
4292
4293#ifdef _KERNEL
4294#ifdef __FreeBSD__
4295	/*
4296	 * Cooperate with pagedaemon when it's time for it to scan
4297	 * and reclaim some pages.
4298	 */
4299	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
4300	if (n < lowest) {
4301		lowest = n;
4302		r = FMR_LOTSFREE;
4303	}
4304
4305#else
4306	if (needfree > 0) {
4307		n = PAGESIZE * (-needfree);
4308		if (n < lowest) {
4309			lowest = n;
4310			r = FMR_NEEDFREE;
4311		}
4312	}
4313
4314	/*
4315	 * check that we're out of range of the pageout scanner.  It starts to
4316	 * schedule paging if freemem is less than lotsfree and needfree.
4317	 * lotsfree is the high-water mark for pageout, and needfree is the
4318	 * number of needed free pages.  We add extra pages here to make sure
4319	 * the scanner doesn't start up while we're freeing memory.
4320	 */
4321	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4322	if (n < lowest) {
4323		lowest = n;
4324		r = FMR_LOTSFREE;
4325	}
4326
4327	/*
4328	 * check to make sure that swapfs has enough space so that anon
4329	 * reservations can still succeed. anon_resvmem() checks that the
4330	 * availrmem is greater than swapfs_minfree, and the number of reserved
4331	 * swap pages.  We also add a bit of extra here just to prevent
4332	 * circumstances from getting really dire.
4333	 */
4334	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4335	    desfree - arc_swapfs_reserve);
4336	if (n < lowest) {
4337		lowest = n;
4338		r = FMR_SWAPFS_MINFREE;
4339	}
4340
4341
4342	/*
4343	 * Check that we have enough availrmem that memory locking (e.g., via
4344	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4345	 * stores the number of pages that cannot be locked; when availrmem
4346	 * drops below pages_pp_maximum, page locking mechanisms such as
4347	 * page_pp_lock() will fail.)
4348	 */
4349	n = PAGESIZE * (availrmem - pages_pp_maximum -
4350	    arc_pages_pp_reserve);
4351	if (n < lowest) {
4352		lowest = n;
4353		r = FMR_PAGES_PP_MAXIMUM;
4354	}
4355
4356#endif	/* __FreeBSD__ */
4357#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4358	/*
4359	 * If we're on an i386 platform, it's possible that we'll exhaust the
4360	 * kernel heap space before we ever run out of available physical
4361	 * memory.  Most checks of the size of the heap_area compare against
4362	 * tune.t_minarmem, which is the minimum available real memory that we
4363	 * can have in the system.  However, this is generally fixed at 25 pages
4364	 * which is so low that it's useless.  In this comparison, we seek to
4365	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4366	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4367	 * free)
4368	 */
4369	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4370	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4371	if (n < lowest) {
4372		lowest = n;
4373		r = FMR_HEAP_ARENA;
4374	}
4375#define	zio_arena	NULL
4376#else
4377#define	zio_arena	heap_arena
4378#endif
4379
4380	/*
4381	 * If zio data pages are being allocated out of a separate heap segment,
4382	 * then enforce that the size of available vmem for this arena remains
4383	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4384	 *
4385	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4386	 * memory (in the zio_arena) free, which can avoid memory
4387	 * fragmentation issues.
4388	 */
4389	if (zio_arena != NULL) {
4390		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4391		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4392		    arc_zio_arena_free_shift);
4393		if (n < lowest) {
4394			lowest = n;
4395			r = FMR_ZIO_ARENA;
4396		}
4397	}
4398
4399	/*
4400	 * Above limits know nothing about real level of KVA fragmentation.
4401	 * Start aggressive reclamation if too little sequential KVA left.
4402	 */
4403	if (lowest > 0) {
4404		n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ?
4405		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
4406		    INT64_MAX;
4407		if (n < lowest) {
4408			lowest = n;
4409			r = FMR_ZIO_FRAG;
4410		}
4411	}
4412
4413#else	/* _KERNEL */
4414	/* Every 100 calls, free a small amount */
4415	if (spa_get_random(100) == 0)
4416		lowest = -1024;
4417#endif	/* _KERNEL */
4418
4419	last_free_memory = lowest;
4420	last_free_reason = r;
4421	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
4422	return (lowest);
4423}
4424
4425
4426/*
4427 * Determine if the system is under memory pressure and is asking
4428 * to reclaim memory. A return value of B_TRUE indicates that the system
4429 * is under memory pressure and that the arc should adjust accordingly.
4430 */
4431static boolean_t
4432arc_reclaim_needed(void)
4433{
4434	return (arc_available_memory() < 0);
4435}
4436
4437extern kmem_cache_t	*zio_buf_cache[];
4438extern kmem_cache_t	*zio_data_buf_cache[];
4439extern kmem_cache_t	*range_seg_cache;
4440extern kmem_cache_t	*abd_chunk_cache;
4441
4442static __noinline void
4443arc_kmem_reap_now(void)
4444{
4445	size_t			i;
4446	kmem_cache_t		*prev_cache = NULL;
4447	kmem_cache_t		*prev_data_cache = NULL;
4448
4449	DTRACE_PROBE(arc__kmem_reap_start);
4450#ifdef _KERNEL
4451	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4452		/*
4453		 * We are exceeding our meta-data cache limit.
4454		 * Purge some DNLC entries to release holds on meta-data.
4455		 */
4456		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4457	}
4458#if defined(__i386)
4459	/*
4460	 * Reclaim unused memory from all kmem caches.
4461	 */
4462	kmem_reap();
4463#endif
4464#endif
4465
4466	/*
4467	 * If a kmem reap is already active, don't schedule more.  We must
4468	 * check for this because kmem_cache_reap_soon() won't actually
4469	 * block on the cache being reaped (this is to prevent callers from
4470	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4471	 * on a system with many, many full magazines, can take minutes).
4472	 */
4473	if (kmem_cache_reap_active())
4474		return;
4475
4476	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4477		if (zio_buf_cache[i] != prev_cache) {
4478			prev_cache = zio_buf_cache[i];
4479			kmem_cache_reap_soon(zio_buf_cache[i]);
4480		}
4481		if (zio_data_buf_cache[i] != prev_data_cache) {
4482			prev_data_cache = zio_data_buf_cache[i];
4483			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4484		}
4485	}
4486	kmem_cache_reap_soon(abd_chunk_cache);
4487	kmem_cache_reap_soon(buf_cache);
4488	kmem_cache_reap_soon(hdr_full_cache);
4489	kmem_cache_reap_soon(hdr_l2only_cache);
4490	kmem_cache_reap_soon(range_seg_cache);
4491
4492#ifdef illumos
4493	if (zio_arena != NULL) {
4494		/*
4495		 * Ask the vmem arena to reclaim unused memory from its
4496		 * quantum caches.
4497		 */
4498		vmem_qcache_reap(zio_arena);
4499	}
4500#endif
4501	DTRACE_PROBE(arc__kmem_reap_end);
4502}
4503
4504/*
4505 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4506 * enough data and signal them to proceed. When this happens, the threads in
4507 * arc_get_data_impl() are sleeping while holding the hash lock for their
4508 * particular arc header. Thus, we must be careful to never sleep on a
4509 * hash lock in this thread. This is to prevent the following deadlock:
4510 *
4511 *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4512 *    waiting for the reclaim thread to signal it.
4513 *
4514 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4515 *    fails, and goes to sleep forever.
4516 *
4517 * This possible deadlock is avoided by always acquiring a hash lock
4518 * using mutex_tryenter() from arc_reclaim_thread().
4519 */
4520/* ARGSUSED */
4521static void
4522arc_reclaim_thread(void *unused __unused)
4523{
4524	hrtime_t		growtime = 0;
4525	hrtime_t		kmem_reap_time = 0;
4526	callb_cpr_t		cpr;
4527
4528	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4529
4530	mutex_enter(&arc_reclaim_lock);
4531	while (!arc_reclaim_thread_exit) {
4532		uint64_t evicted = 0;
4533
4534		/*
4535		 * This is necessary in order for the mdb ::arc dcmd to
4536		 * show up to date information. Since the ::arc command
4537		 * does not call the kstat's update function, without
4538		 * this call, the command may show stale stats for the
4539		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4540		 * with this change, the data might be up to 1 second
4541		 * out of date; but that should suffice. The arc_state_t
4542		 * structures can be queried directly if more accurate
4543		 * information is needed.
4544		 */
4545		if (arc_ksp != NULL)
4546			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4547
4548		mutex_exit(&arc_reclaim_lock);
4549
4550		/*
4551		 * We call arc_adjust() before (possibly) calling
4552		 * arc_kmem_reap_now(), so that we can wake up
4553		 * arc_get_data_impl() sooner.
4554		 */
4555		evicted = arc_adjust();
4556
4557		int64_t free_memory = arc_available_memory();
4558		if (free_memory < 0) {
4559			hrtime_t curtime = gethrtime();
4560			arc_no_grow = B_TRUE;
4561			arc_warm = B_TRUE;
4562
4563			/*
4564			 * Wait at least zfs_grow_retry (default 60) seconds
4565			 * before considering growing.
4566			 */
4567			growtime = curtime + SEC2NSEC(arc_grow_retry);
4568
4569			/*
4570			 * Wait at least arc_kmem_cache_reap_retry_ms
4571			 * between arc_kmem_reap_now() calls. Without
4572			 * this check it is possible to end up in a
4573			 * situation where we spend lots of time
4574			 * reaping caches, while we're near arc_c_min.
4575			 */
4576			if (curtime >= kmem_reap_time) {
4577				arc_kmem_reap_now();
4578				kmem_reap_time = gethrtime() +
4579				    MSEC2NSEC(arc_kmem_cache_reap_retry_ms);
4580			}
4581
4582			/*
4583			 * If we are still low on memory, shrink the ARC
4584			 * so that we have arc_shrink_min free space.
4585			 */
4586			free_memory = arc_available_memory();
4587
4588			int64_t to_free =
4589			    (arc_c >> arc_shrink_shift) - free_memory;
4590			if (to_free > 0) {
4591#ifdef _KERNEL
4592#ifdef illumos
4593				to_free = MAX(to_free, ptob(needfree));
4594#endif
4595#endif
4596				arc_shrink(to_free);
4597			}
4598		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4599			arc_no_grow = B_TRUE;
4600		} else if (gethrtime() >= growtime) {
4601			arc_no_grow = B_FALSE;
4602		}
4603
4604		mutex_enter(&arc_reclaim_lock);
4605
4606		/*
4607		 * If evicted is zero, we couldn't evict anything via
4608		 * arc_adjust(). This could be due to hash lock
4609		 * collisions, but more likely due to the majority of
4610		 * arc buffers being unevictable. Therefore, even if
4611		 * arc_size is above arc_c, another pass is unlikely to
4612		 * be helpful and could potentially cause us to enter an
4613		 * infinite loop.
4614		 */
4615		if (aggsum_compare(&arc_size, arc_c) <= 0|| evicted == 0) {
4616			/*
4617			 * We're either no longer overflowing, or we
4618			 * can't evict anything more, so we should wake
4619			 * up any threads before we go to sleep.
4620			 */
4621			cv_broadcast(&arc_reclaim_waiters_cv);
4622
4623			/*
4624			 * Block until signaled, or after one second (we
4625			 * might need to perform arc_kmem_reap_now()
4626			 * even if we aren't being signalled)
4627			 */
4628			CALLB_CPR_SAFE_BEGIN(&cpr);
4629			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4630			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4631			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4632		}
4633	}
4634
4635	arc_reclaim_thread_exit = B_FALSE;
4636	cv_broadcast(&arc_reclaim_thread_cv);
4637	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4638	thread_exit();
4639}
4640
4641static u_int arc_dnlc_evicts_arg;
4642extern struct vfsops zfs_vfsops;
4643
4644static void
4645arc_dnlc_evicts_thread(void *dummy __unused)
4646{
4647	callb_cpr_t cpr;
4648	u_int percent;
4649
4650	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
4651
4652	mutex_enter(&arc_dnlc_evicts_lock);
4653	while (!arc_dnlc_evicts_thread_exit) {
4654		CALLB_CPR_SAFE_BEGIN(&cpr);
4655		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
4656		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
4657		if (arc_dnlc_evicts_arg != 0) {
4658			percent = arc_dnlc_evicts_arg;
4659			mutex_exit(&arc_dnlc_evicts_lock);
4660#ifdef _KERNEL
4661			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
4662#endif
4663			mutex_enter(&arc_dnlc_evicts_lock);
4664			/*
4665			 * Clear our token only after vnlru_free()
4666			 * pass is done, to avoid false queueing of
4667			 * the requests.
4668			 */
4669			arc_dnlc_evicts_arg = 0;
4670		}
4671	}
4672	arc_dnlc_evicts_thread_exit = FALSE;
4673	cv_broadcast(&arc_dnlc_evicts_cv);
4674	CALLB_CPR_EXIT(&cpr);
4675	thread_exit();
4676}
4677
4678void
4679dnlc_reduce_cache(void *arg)
4680{
4681	u_int percent;
4682
4683	percent = (u_int)(uintptr_t)arg;
4684	mutex_enter(&arc_dnlc_evicts_lock);
4685	if (arc_dnlc_evicts_arg == 0) {
4686		arc_dnlc_evicts_arg = percent;
4687		cv_broadcast(&arc_dnlc_evicts_cv);
4688	}
4689	mutex_exit(&arc_dnlc_evicts_lock);
4690}
4691
4692/*
4693 * Adapt arc info given the number of bytes we are trying to add and
4694 * the state that we are comming from.  This function is only called
4695 * when we are adding new content to the cache.
4696 */
4697static void
4698arc_adapt(int bytes, arc_state_t *state)
4699{
4700	int mult;
4701	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4702	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4703	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4704
4705	if (state == arc_l2c_only)
4706		return;
4707
4708	ASSERT(bytes > 0);
4709	/*
4710	 * Adapt the target size of the MRU list:
4711	 *	- if we just hit in the MRU ghost list, then increase
4712	 *	  the target size of the MRU list.
4713	 *	- if we just hit in the MFU ghost list, then increase
4714	 *	  the target size of the MFU list by decreasing the
4715	 *	  target size of the MRU list.
4716	 */
4717	if (state == arc_mru_ghost) {
4718		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4719		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4720
4721		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4722	} else if (state == arc_mfu_ghost) {
4723		uint64_t delta;
4724
4725		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4726		mult = MIN(mult, 10);
4727
4728		delta = MIN(bytes * mult, arc_p);
4729		arc_p = MAX(arc_p_min, arc_p - delta);
4730	}
4731	ASSERT((int64_t)arc_p >= 0);
4732
4733	if (arc_reclaim_needed()) {
4734		cv_signal(&arc_reclaim_thread_cv);
4735		return;
4736	}
4737
4738	if (arc_no_grow)
4739		return;
4740
4741	if (arc_c >= arc_c_max)
4742		return;
4743
4744	/*
4745	 * If we're within (2 * maxblocksize) bytes of the target
4746	 * cache size, increment the target cache size
4747	 */
4748	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4749	    0) {
4750		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4751		atomic_add_64(&arc_c, (int64_t)bytes);
4752		if (arc_c > arc_c_max)
4753			arc_c = arc_c_max;
4754		else if (state == arc_anon)
4755			atomic_add_64(&arc_p, (int64_t)bytes);
4756		if (arc_p > arc_c)
4757			arc_p = arc_c;
4758	}
4759	ASSERT((int64_t)arc_p >= 0);
4760}
4761
4762/*
4763 * Check if arc_size has grown past our upper threshold, determined by
4764 * zfs_arc_overflow_shift.
4765 */
4766static boolean_t
4767arc_is_overflowing(void)
4768{
4769	/* Always allow at least one block of overflow */
4770	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4771	    arc_c >> zfs_arc_overflow_shift);
4772
4773	/*
4774	 * We just compare the lower bound here for performance reasons. Our
4775	 * primary goals are to make sure that the arc never grows without
4776	 * bound, and that it can reach its maximum size. This check
4777	 * accomplishes both goals. The maximum amount we could run over by is
4778	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4779	 * in the ARC. In practice, that's in the tens of MB, which is low
4780	 * enough to be safe.
4781	 */
4782	return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4783}
4784
4785static abd_t *
4786arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4787{
4788	arc_buf_contents_t type = arc_buf_type(hdr);
4789
4790	arc_get_data_impl(hdr, size, tag);
4791	if (type == ARC_BUFC_METADATA) {
4792		return (abd_alloc(size, B_TRUE));
4793	} else {
4794		ASSERT(type == ARC_BUFC_DATA);
4795		return (abd_alloc(size, B_FALSE));
4796	}
4797}
4798
4799static void *
4800arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4801{
4802	arc_buf_contents_t type = arc_buf_type(hdr);
4803
4804	arc_get_data_impl(hdr, size, tag);
4805	if (type == ARC_BUFC_METADATA) {
4806		return (zio_buf_alloc(size));
4807	} else {
4808		ASSERT(type == ARC_BUFC_DATA);
4809		return (zio_data_buf_alloc(size));
4810	}
4811}
4812
4813/*
4814 * Allocate a block and return it to the caller. If we are hitting the
4815 * hard limit for the cache size, we must sleep, waiting for the eviction
4816 * thread to catch up. If we're past the target size but below the hard
4817 * limit, we'll only signal the reclaim thread and continue on.
4818 */
4819static void
4820arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4821{
4822	arc_state_t *state = hdr->b_l1hdr.b_state;
4823	arc_buf_contents_t type = arc_buf_type(hdr);
4824
4825	arc_adapt(size, state);
4826
4827	/*
4828	 * If arc_size is currently overflowing, and has grown past our
4829	 * upper limit, we must be adding data faster than the evict
4830	 * thread can evict. Thus, to ensure we don't compound the
4831	 * problem by adding more data and forcing arc_size to grow even
4832	 * further past it's target size, we halt and wait for the
4833	 * eviction thread to catch up.
4834	 *
4835	 * It's also possible that the reclaim thread is unable to evict
4836	 * enough buffers to get arc_size below the overflow limit (e.g.
4837	 * due to buffers being un-evictable, or hash lock collisions).
4838	 * In this case, we want to proceed regardless if we're
4839	 * overflowing; thus we don't use a while loop here.
4840	 */
4841	if (arc_is_overflowing()) {
4842		mutex_enter(&arc_reclaim_lock);
4843
4844		/*
4845		 * Now that we've acquired the lock, we may no longer be
4846		 * over the overflow limit, lets check.
4847		 *
4848		 * We're ignoring the case of spurious wake ups. If that
4849		 * were to happen, it'd let this thread consume an ARC
4850		 * buffer before it should have (i.e. before we're under
4851		 * the overflow limit and were signalled by the reclaim
4852		 * thread). As long as that is a rare occurrence, it
4853		 * shouldn't cause any harm.
4854		 */
4855		if (arc_is_overflowing()) {
4856			cv_signal(&arc_reclaim_thread_cv);
4857			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4858		}
4859
4860		mutex_exit(&arc_reclaim_lock);
4861	}
4862
4863	VERIFY3U(hdr->b_type, ==, type);
4864	if (type == ARC_BUFC_METADATA) {
4865		arc_space_consume(size, ARC_SPACE_META);
4866	} else {
4867		arc_space_consume(size, ARC_SPACE_DATA);
4868	}
4869
4870	/*
4871	 * Update the state size.  Note that ghost states have a
4872	 * "ghost size" and so don't need to be updated.
4873	 */
4874	if (!GHOST_STATE(state)) {
4875
4876		(void) refcount_add_many(&state->arcs_size, size, tag);
4877
4878		/*
4879		 * If this is reached via arc_read, the link is
4880		 * protected by the hash lock. If reached via
4881		 * arc_buf_alloc, the header should not be accessed by
4882		 * any other thread. And, if reached via arc_read_done,
4883		 * the hash lock will protect it if it's found in the
4884		 * hash table; otherwise no other thread should be
4885		 * trying to [add|remove]_reference it.
4886		 */
4887		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4888			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4889			(void) refcount_add_many(&state->arcs_esize[type],
4890			    size, tag);
4891		}
4892
4893		/*
4894		 * If we are growing the cache, and we are adding anonymous
4895		 * data, and we have outgrown arc_p, update arc_p
4896		 */
4897		if (aggsum_compare(&arc_size, arc_c) < 0 &&
4898		    hdr->b_l1hdr.b_state == arc_anon &&
4899		    (refcount_count(&arc_anon->arcs_size) +
4900		    refcount_count(&arc_mru->arcs_size) > arc_p))
4901			arc_p = MIN(arc_c, arc_p + size);
4902	}
4903	ARCSTAT_BUMP(arcstat_allocated);
4904}
4905
4906static void
4907arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4908{
4909	arc_free_data_impl(hdr, size, tag);
4910	abd_free(abd);
4911}
4912
4913static void
4914arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4915{
4916	arc_buf_contents_t type = arc_buf_type(hdr);
4917
4918	arc_free_data_impl(hdr, size, tag);
4919	if (type == ARC_BUFC_METADATA) {
4920		zio_buf_free(buf, size);
4921	} else {
4922		ASSERT(type == ARC_BUFC_DATA);
4923		zio_data_buf_free(buf, size);
4924	}
4925}
4926
4927/*
4928 * Free the arc data buffer.
4929 */
4930static void
4931arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4932{
4933	arc_state_t *state = hdr->b_l1hdr.b_state;
4934	arc_buf_contents_t type = arc_buf_type(hdr);
4935
4936	/* protected by hash lock, if in the hash table */
4937	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4938		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4939		ASSERT(state != arc_anon && state != arc_l2c_only);
4940
4941		(void) refcount_remove_many(&state->arcs_esize[type],
4942		    size, tag);
4943	}
4944	(void) refcount_remove_many(&state->arcs_size, size, tag);
4945
4946	VERIFY3U(hdr->b_type, ==, type);
4947	if (type == ARC_BUFC_METADATA) {
4948		arc_space_return(size, ARC_SPACE_META);
4949	} else {
4950		ASSERT(type == ARC_BUFC_DATA);
4951		arc_space_return(size, ARC_SPACE_DATA);
4952	}
4953}
4954
4955/*
4956 * This routine is called whenever a buffer is accessed.
4957 * NOTE: the hash lock is dropped in this function.
4958 */
4959static void
4960arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4961{
4962	clock_t now;
4963
4964	ASSERT(MUTEX_HELD(hash_lock));
4965	ASSERT(HDR_HAS_L1HDR(hdr));
4966
4967	if (hdr->b_l1hdr.b_state == arc_anon) {
4968		/*
4969		 * This buffer is not in the cache, and does not
4970		 * appear in our "ghost" list.  Add the new buffer
4971		 * to the MRU state.
4972		 */
4973
4974		ASSERT0(hdr->b_l1hdr.b_arc_access);
4975		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4976		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4977		arc_change_state(arc_mru, hdr, hash_lock);
4978
4979	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4980		now = ddi_get_lbolt();
4981
4982		/*
4983		 * If this buffer is here because of a prefetch, then either:
4984		 * - clear the flag if this is a "referencing" read
4985		 *   (any subsequent access will bump this into the MFU state).
4986		 * or
4987		 * - move the buffer to the head of the list if this is
4988		 *   another prefetch (to make it less likely to be evicted).
4989		 */
4990		if (HDR_PREFETCH(hdr)) {
4991			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4992				/* link protected by hash lock */
4993				ASSERT(multilist_link_active(
4994				    &hdr->b_l1hdr.b_arc_node));
4995			} else {
4996				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4997				ARCSTAT_BUMP(arcstat_mru_hits);
4998			}
4999			hdr->b_l1hdr.b_arc_access = now;
5000			return;
5001		}
5002
5003		/*
5004		 * This buffer has been "accessed" only once so far,
5005		 * but it is still in the cache. Move it to the MFU
5006		 * state.
5007		 */
5008		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5009			/*
5010			 * More than 125ms have passed since we
5011			 * instantiated this buffer.  Move it to the
5012			 * most frequently used state.
5013			 */
5014			hdr->b_l1hdr.b_arc_access = now;
5015			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5016			arc_change_state(arc_mfu, hdr, hash_lock);
5017		}
5018		ARCSTAT_BUMP(arcstat_mru_hits);
5019	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5020		arc_state_t	*new_state;
5021		/*
5022		 * This buffer has been "accessed" recently, but
5023		 * was evicted from the cache.  Move it to the
5024		 * MFU state.
5025		 */
5026
5027		if (HDR_PREFETCH(hdr)) {
5028			new_state = arc_mru;
5029			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
5030				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
5031			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5032		} else {
5033			new_state = arc_mfu;
5034			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5035		}
5036
5037		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5038		arc_change_state(new_state, hdr, hash_lock);
5039
5040		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5041	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5042		/*
5043		 * This buffer has been accessed more than once and is
5044		 * still in the cache.  Keep it in the MFU state.
5045		 *
5046		 * NOTE: an add_reference() that occurred when we did
5047		 * the arc_read() will have kicked this off the list.
5048		 * If it was a prefetch, we will explicitly move it to
5049		 * the head of the list now.
5050		 */
5051		if ((HDR_PREFETCH(hdr)) != 0) {
5052			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5053			/* link protected by hash_lock */
5054			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5055		}
5056		ARCSTAT_BUMP(arcstat_mfu_hits);
5057		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5058	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5059		arc_state_t	*new_state = arc_mfu;
5060		/*
5061		 * This buffer has been accessed more than once but has
5062		 * been evicted from the cache.  Move it back to the
5063		 * MFU state.
5064		 */
5065
5066		if (HDR_PREFETCH(hdr)) {
5067			/*
5068			 * This is a prefetch access...
5069			 * move this block back to the MRU state.
5070			 */
5071			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
5072			new_state = arc_mru;
5073		}
5074
5075		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5076		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5077		arc_change_state(new_state, hdr, hash_lock);
5078
5079		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5080	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5081		/*
5082		 * This buffer is on the 2nd Level ARC.
5083		 */
5084
5085		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5086		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5087		arc_change_state(arc_mfu, hdr, hash_lock);
5088	} else {
5089		ASSERT(!"invalid arc state");
5090	}
5091}
5092
5093/*
5094 * This routine is called by dbuf_hold() to update the arc_access() state
5095 * which otherwise would be skipped for entries in the dbuf cache.
5096 */
5097void
5098arc_buf_access(arc_buf_t *buf)
5099{
5100	mutex_enter(&buf->b_evict_lock);
5101	arc_buf_hdr_t *hdr = buf->b_hdr;
5102
5103	/*
5104	 * Avoid taking the hash_lock when possible as an optimization.
5105	 * The header must be checked again under the hash_lock in order
5106	 * to handle the case where it is concurrently being released.
5107	 */
5108	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5109		mutex_exit(&buf->b_evict_lock);
5110		ARCSTAT_BUMP(arcstat_access_skip);
5111		return;
5112	}
5113
5114	kmutex_t *hash_lock = HDR_LOCK(hdr);
5115	mutex_enter(hash_lock);
5116
5117	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5118		mutex_exit(hash_lock);
5119		mutex_exit(&buf->b_evict_lock);
5120		ARCSTAT_BUMP(arcstat_access_skip);
5121		return;
5122	}
5123
5124	mutex_exit(&buf->b_evict_lock);
5125
5126	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5127	    hdr->b_l1hdr.b_state == arc_mfu);
5128
5129	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5130	arc_access(hdr, hash_lock);
5131	mutex_exit(hash_lock);
5132
5133	ARCSTAT_BUMP(arcstat_hits);
5134	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5135	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5136}
5137
5138/* a generic arc_done_func_t which you can use */
5139/* ARGSUSED */
5140void
5141arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
5142{
5143	if (zio == NULL || zio->io_error == 0)
5144		bcopy(buf->b_data, arg, arc_buf_size(buf));
5145	arc_buf_destroy(buf, arg);
5146}
5147
5148/* a generic arc_done_func_t */
5149void
5150arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
5151{
5152	arc_buf_t **bufp = arg;
5153	if (zio && zio->io_error) {
5154		arc_buf_destroy(buf, arg);
5155		*bufp = NULL;
5156	} else {
5157		*bufp = buf;
5158		ASSERT(buf->b_data);
5159	}
5160}
5161
5162static void
5163arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5164{
5165	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5166		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5167		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5168	} else {
5169		if (HDR_COMPRESSION_ENABLED(hdr)) {
5170			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5171			    BP_GET_COMPRESS(bp));
5172		}
5173		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5174		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5175	}
5176}
5177
5178static void
5179arc_read_done(zio_t *zio)
5180{
5181	arc_buf_hdr_t	*hdr = zio->io_private;
5182	kmutex_t	*hash_lock = NULL;
5183	arc_callback_t	*callback_list;
5184	arc_callback_t	*acb;
5185	boolean_t	freeable = B_FALSE;
5186	boolean_t	no_zio_error = (zio->io_error == 0);
5187
5188	/*
5189	 * The hdr was inserted into hash-table and removed from lists
5190	 * prior to starting I/O.  We should find this header, since
5191	 * it's in the hash table, and it should be legit since it's
5192	 * not possible to evict it during the I/O.  The only possible
5193	 * reason for it not to be found is if we were freed during the
5194	 * read.
5195	 */
5196	if (HDR_IN_HASH_TABLE(hdr)) {
5197		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5198		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5199		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5200		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5201		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5202
5203		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5204		    &hash_lock);
5205
5206		ASSERT((found == hdr &&
5207		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5208		    (found == hdr && HDR_L2_READING(hdr)));
5209		ASSERT3P(hash_lock, !=, NULL);
5210	}
5211
5212	if (no_zio_error) {
5213		/* byteswap if necessary */
5214		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5215			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5216				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5217			} else {
5218				hdr->b_l1hdr.b_byteswap =
5219				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5220			}
5221		} else {
5222			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5223		}
5224	}
5225
5226	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5227	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5228		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5229
5230	callback_list = hdr->b_l1hdr.b_acb;
5231	ASSERT3P(callback_list, !=, NULL);
5232
5233	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5234		/*
5235		 * Only call arc_access on anonymous buffers.  This is because
5236		 * if we've issued an I/O for an evicted buffer, we've already
5237		 * called arc_access (to prevent any simultaneous readers from
5238		 * getting confused).
5239		 */
5240		arc_access(hdr, hash_lock);
5241	}
5242
5243	/*
5244	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5245	 * make a buf containing the data according to the parameters which were
5246	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5247	 * aren't needlessly decompressing the data multiple times.
5248	 */
5249	int callback_cnt = 0;
5250	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5251		if (!acb->acb_done)
5252			continue;
5253
5254		/* This is a demand read since prefetches don't use callbacks */
5255		callback_cnt++;
5256
5257		int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5258		    acb->acb_compressed, no_zio_error, &acb->acb_buf);
5259		if (no_zio_error) {
5260			zio->io_error = error;
5261		}
5262	}
5263	hdr->b_l1hdr.b_acb = NULL;
5264	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5265	if (callback_cnt == 0) {
5266		ASSERT(HDR_PREFETCH(hdr));
5267		ASSERT0(hdr->b_l1hdr.b_bufcnt);
5268		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5269	}
5270
5271	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5272	    callback_list != NULL);
5273
5274	if (no_zio_error) {
5275		arc_hdr_verify(hdr, zio->io_bp);
5276	} else {
5277		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5278		if (hdr->b_l1hdr.b_state != arc_anon)
5279			arc_change_state(arc_anon, hdr, hash_lock);
5280		if (HDR_IN_HASH_TABLE(hdr))
5281			buf_hash_remove(hdr);
5282		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5283	}
5284
5285	/*
5286	 * Broadcast before we drop the hash_lock to avoid the possibility
5287	 * that the hdr (and hence the cv) might be freed before we get to
5288	 * the cv_broadcast().
5289	 */
5290	cv_broadcast(&hdr->b_l1hdr.b_cv);
5291
5292	if (hash_lock != NULL) {
5293		mutex_exit(hash_lock);
5294	} else {
5295		/*
5296		 * This block was freed while we waited for the read to
5297		 * complete.  It has been removed from the hash table and
5298		 * moved to the anonymous state (so that it won't show up
5299		 * in the cache).
5300		 */
5301		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5302		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5303	}
5304
5305	/* execute each callback and free its structure */
5306	while ((acb = callback_list) != NULL) {
5307		if (acb->acb_done)
5308			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5309
5310		if (acb->acb_zio_dummy != NULL) {
5311			acb->acb_zio_dummy->io_error = zio->io_error;
5312			zio_nowait(acb->acb_zio_dummy);
5313		}
5314
5315		callback_list = acb->acb_next;
5316		kmem_free(acb, sizeof (arc_callback_t));
5317	}
5318
5319	if (freeable)
5320		arc_hdr_destroy(hdr);
5321}
5322
5323/*
5324 * "Read" the block at the specified DVA (in bp) via the
5325 * cache.  If the block is found in the cache, invoke the provided
5326 * callback immediately and return.  Note that the `zio' parameter
5327 * in the callback will be NULL in this case, since no IO was
5328 * required.  If the block is not in the cache pass the read request
5329 * on to the spa with a substitute callback function, so that the
5330 * requested block will be added to the cache.
5331 *
5332 * If a read request arrives for a block that has a read in-progress,
5333 * either wait for the in-progress read to complete (and return the
5334 * results); or, if this is a read with a "done" func, add a record
5335 * to the read to invoke the "done" func when the read completes,
5336 * and return; or just return.
5337 *
5338 * arc_read_done() will invoke all the requested "done" functions
5339 * for readers of this block.
5340 */
5341int
5342arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5343    void *private, zio_priority_t priority, int zio_flags,
5344    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5345{
5346	arc_buf_hdr_t *hdr = NULL;
5347	kmutex_t *hash_lock = NULL;
5348	zio_t *rzio;
5349	uint64_t guid = spa_load_guid(spa);
5350	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5351
5352	ASSERT(!BP_IS_EMBEDDED(bp) ||
5353	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5354
5355top:
5356	if (!BP_IS_EMBEDDED(bp)) {
5357		/*
5358		 * Embedded BP's have no DVA and require no I/O to "read".
5359		 * Create an anonymous arc buf to back it.
5360		 */
5361		hdr = buf_hash_find(guid, bp, &hash_lock);
5362	}
5363
5364	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5365		arc_buf_t *buf = NULL;
5366		*arc_flags |= ARC_FLAG_CACHED;
5367
5368		if (HDR_IO_IN_PROGRESS(hdr)) {
5369
5370			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5371			    priority == ZIO_PRIORITY_SYNC_READ) {
5372				/*
5373				 * This sync read must wait for an
5374				 * in-progress async read (e.g. a predictive
5375				 * prefetch).  Async reads are queued
5376				 * separately at the vdev_queue layer, so
5377				 * this is a form of priority inversion.
5378				 * Ideally, we would "inherit" the demand
5379				 * i/o's priority by moving the i/o from
5380				 * the async queue to the synchronous queue,
5381				 * but there is currently no mechanism to do
5382				 * so.  Track this so that we can evaluate
5383				 * the magnitude of this potential performance
5384				 * problem.
5385				 *
5386				 * Note that if the prefetch i/o is already
5387				 * active (has been issued to the device),
5388				 * the prefetch improved performance, because
5389				 * we issued it sooner than we would have
5390				 * without the prefetch.
5391				 */
5392				DTRACE_PROBE1(arc__sync__wait__for__async,
5393				    arc_buf_hdr_t *, hdr);
5394				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5395			}
5396			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5397				arc_hdr_clear_flags(hdr,
5398				    ARC_FLAG_PREDICTIVE_PREFETCH);
5399			}
5400
5401			if (*arc_flags & ARC_FLAG_WAIT) {
5402				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5403				mutex_exit(hash_lock);
5404				goto top;
5405			}
5406			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5407
5408			if (done) {
5409				arc_callback_t *acb = NULL;
5410
5411				acb = kmem_zalloc(sizeof (arc_callback_t),
5412				    KM_SLEEP);
5413				acb->acb_done = done;
5414				acb->acb_private = private;
5415				acb->acb_compressed = compressed_read;
5416				if (pio != NULL)
5417					acb->acb_zio_dummy = zio_null(pio,
5418					    spa, NULL, NULL, NULL, zio_flags);
5419
5420				ASSERT3P(acb->acb_done, !=, NULL);
5421				acb->acb_next = hdr->b_l1hdr.b_acb;
5422				hdr->b_l1hdr.b_acb = acb;
5423				mutex_exit(hash_lock);
5424				return (0);
5425			}
5426			mutex_exit(hash_lock);
5427			return (0);
5428		}
5429
5430		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5431		    hdr->b_l1hdr.b_state == arc_mfu);
5432
5433		if (done) {
5434			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5435				/*
5436				 * This is a demand read which does not have to
5437				 * wait for i/o because we did a predictive
5438				 * prefetch i/o for it, which has completed.
5439				 */
5440				DTRACE_PROBE1(
5441				    arc__demand__hit__predictive__prefetch,
5442				    arc_buf_hdr_t *, hdr);
5443				ARCSTAT_BUMP(
5444				    arcstat_demand_hit_predictive_prefetch);
5445				arc_hdr_clear_flags(hdr,
5446				    ARC_FLAG_PREDICTIVE_PREFETCH);
5447			}
5448			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5449
5450			/* Get a buf with the desired data in it. */
5451			VERIFY0(arc_buf_alloc_impl(hdr, private,
5452			    compressed_read, B_TRUE, &buf));
5453		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5454		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5455			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5456		}
5457		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5458		arc_access(hdr, hash_lock);
5459		if (*arc_flags & ARC_FLAG_L2CACHE)
5460			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5461		mutex_exit(hash_lock);
5462		ARCSTAT_BUMP(arcstat_hits);
5463		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5464		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5465		    data, metadata, hits);
5466
5467		if (done)
5468			done(NULL, buf, private);
5469	} else {
5470		uint64_t lsize = BP_GET_LSIZE(bp);
5471		uint64_t psize = BP_GET_PSIZE(bp);
5472		arc_callback_t *acb;
5473		vdev_t *vd = NULL;
5474		uint64_t addr = 0;
5475		boolean_t devw = B_FALSE;
5476		uint64_t size;
5477
5478		if (hdr == NULL) {
5479			/* this block is not in the cache */
5480			arc_buf_hdr_t *exists = NULL;
5481			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5482			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5483			    BP_GET_COMPRESS(bp), type);
5484
5485			if (!BP_IS_EMBEDDED(bp)) {
5486				hdr->b_dva = *BP_IDENTITY(bp);
5487				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5488				exists = buf_hash_insert(hdr, &hash_lock);
5489			}
5490			if (exists != NULL) {
5491				/* somebody beat us to the hash insert */
5492				mutex_exit(hash_lock);
5493				buf_discard_identity(hdr);
5494				arc_hdr_destroy(hdr);
5495				goto top; /* restart the IO request */
5496			}
5497		} else {
5498			/*
5499			 * This block is in the ghost cache. If it was L2-only
5500			 * (and thus didn't have an L1 hdr), we realloc the
5501			 * header to add an L1 hdr.
5502			 */
5503			if (!HDR_HAS_L1HDR(hdr)) {
5504				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5505				    hdr_full_cache);
5506			}
5507			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5508			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5509			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5510			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5511			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5512			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5513
5514			/*
5515			 * This is a delicate dance that we play here.
5516			 * This hdr is in the ghost list so we access it
5517			 * to move it out of the ghost list before we
5518			 * initiate the read. If it's a prefetch then
5519			 * it won't have a callback so we'll remove the
5520			 * reference that arc_buf_alloc_impl() created. We
5521			 * do this after we've called arc_access() to
5522			 * avoid hitting an assert in remove_reference().
5523			 */
5524			arc_access(hdr, hash_lock);
5525			arc_hdr_alloc_pabd(hdr);
5526		}
5527		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5528		size = arc_hdr_size(hdr);
5529
5530		/*
5531		 * If compression is enabled on the hdr, then will do
5532		 * RAW I/O and will store the compressed data in the hdr's
5533		 * data block. Otherwise, the hdr's data block will contain
5534		 * the uncompressed data.
5535		 */
5536		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5537			zio_flags |= ZIO_FLAG_RAW;
5538		}
5539
5540		if (*arc_flags & ARC_FLAG_PREFETCH)
5541			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5542		if (*arc_flags & ARC_FLAG_L2CACHE)
5543			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5544		if (BP_GET_LEVEL(bp) > 0)
5545			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5546		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5547			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5548		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5549
5550		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5551		acb->acb_done = done;
5552		acb->acb_private = private;
5553		acb->acb_compressed = compressed_read;
5554
5555		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5556		hdr->b_l1hdr.b_acb = acb;
5557		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5558
5559		if (HDR_HAS_L2HDR(hdr) &&
5560		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5561			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5562			addr = hdr->b_l2hdr.b_daddr;
5563			/*
5564			 * Lock out L2ARC device removal.
5565			 */
5566			if (vdev_is_dead(vd) ||
5567			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5568				vd = NULL;
5569		}
5570
5571		if (priority == ZIO_PRIORITY_ASYNC_READ)
5572			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5573		else
5574			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5575
5576		if (hash_lock != NULL)
5577			mutex_exit(hash_lock);
5578
5579		/*
5580		 * At this point, we have a level 1 cache miss.  Try again in
5581		 * L2ARC if possible.
5582		 */
5583		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5584
5585		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5586		    uint64_t, lsize, zbookmark_phys_t *, zb);
5587		ARCSTAT_BUMP(arcstat_misses);
5588		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5589		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5590		    data, metadata, misses);
5591#ifdef _KERNEL
5592#ifdef RACCT
5593		if (racct_enable) {
5594			PROC_LOCK(curproc);
5595			racct_add_force(curproc, RACCT_READBPS, size);
5596			racct_add_force(curproc, RACCT_READIOPS, 1);
5597			PROC_UNLOCK(curproc);
5598		}
5599#endif /* RACCT */
5600		curthread->td_ru.ru_inblock++;
5601#endif
5602
5603		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5604			/*
5605			 * Read from the L2ARC if the following are true:
5606			 * 1. The L2ARC vdev was previously cached.
5607			 * 2. This buffer still has L2ARC metadata.
5608			 * 3. This buffer isn't currently writing to the L2ARC.
5609			 * 4. The L2ARC entry wasn't evicted, which may
5610			 *    also have invalidated the vdev.
5611			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5612			 */
5613			if (HDR_HAS_L2HDR(hdr) &&
5614			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5615			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5616				l2arc_read_callback_t *cb;
5617				abd_t *abd;
5618				uint64_t asize;
5619
5620				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5621				ARCSTAT_BUMP(arcstat_l2_hits);
5622
5623				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5624				    KM_SLEEP);
5625				cb->l2rcb_hdr = hdr;
5626				cb->l2rcb_bp = *bp;
5627				cb->l2rcb_zb = *zb;
5628				cb->l2rcb_flags = zio_flags;
5629
5630				asize = vdev_psize_to_asize(vd, size);
5631				if (asize != size) {
5632					abd = abd_alloc_for_io(asize,
5633					    HDR_ISTYPE_METADATA(hdr));
5634					cb->l2rcb_abd = abd;
5635				} else {
5636					abd = hdr->b_l1hdr.b_pabd;
5637				}
5638
5639				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5640				    addr + asize <= vd->vdev_psize -
5641				    VDEV_LABEL_END_SIZE);
5642
5643				/*
5644				 * l2arc read.  The SCL_L2ARC lock will be
5645				 * released by l2arc_read_done().
5646				 * Issue a null zio if the underlying buffer
5647				 * was squashed to zero size by compression.
5648				 */
5649				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5650				    ZIO_COMPRESS_EMPTY);
5651				rzio = zio_read_phys(pio, vd, addr,
5652				    asize, abd,
5653				    ZIO_CHECKSUM_OFF,
5654				    l2arc_read_done, cb, priority,
5655				    zio_flags | ZIO_FLAG_DONT_CACHE |
5656				    ZIO_FLAG_CANFAIL |
5657				    ZIO_FLAG_DONT_PROPAGATE |
5658				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5659				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5660				    zio_t *, rzio);
5661				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5662
5663				if (*arc_flags & ARC_FLAG_NOWAIT) {
5664					zio_nowait(rzio);
5665					return (0);
5666				}
5667
5668				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5669				if (zio_wait(rzio) == 0)
5670					return (0);
5671
5672				/* l2arc read error; goto zio_read() */
5673			} else {
5674				DTRACE_PROBE1(l2arc__miss,
5675				    arc_buf_hdr_t *, hdr);
5676				ARCSTAT_BUMP(arcstat_l2_misses);
5677				if (HDR_L2_WRITING(hdr))
5678					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5679				spa_config_exit(spa, SCL_L2ARC, vd);
5680			}
5681		} else {
5682			if (vd != NULL)
5683				spa_config_exit(spa, SCL_L2ARC, vd);
5684			if (l2arc_ndev != 0) {
5685				DTRACE_PROBE1(l2arc__miss,
5686				    arc_buf_hdr_t *, hdr);
5687				ARCSTAT_BUMP(arcstat_l2_misses);
5688			}
5689		}
5690
5691		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5692		    arc_read_done, hdr, priority, zio_flags, zb);
5693
5694		if (*arc_flags & ARC_FLAG_WAIT)
5695			return (zio_wait(rzio));
5696
5697		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5698		zio_nowait(rzio);
5699	}
5700	return (0);
5701}
5702
5703/*
5704 * Notify the arc that a block was freed, and thus will never be used again.
5705 */
5706void
5707arc_freed(spa_t *spa, const blkptr_t *bp)
5708{
5709	arc_buf_hdr_t *hdr;
5710	kmutex_t *hash_lock;
5711	uint64_t guid = spa_load_guid(spa);
5712
5713	ASSERT(!BP_IS_EMBEDDED(bp));
5714
5715	hdr = buf_hash_find(guid, bp, &hash_lock);
5716	if (hdr == NULL)
5717		return;
5718
5719	/*
5720	 * We might be trying to free a block that is still doing I/O
5721	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5722	 * dmu_sync-ed block). If this block is being prefetched, then it
5723	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5724	 * until the I/O completes. A block may also have a reference if it is
5725	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5726	 * have written the new block to its final resting place on disk but
5727	 * without the dedup flag set. This would have left the hdr in the MRU
5728	 * state and discoverable. When the txg finally syncs it detects that
5729	 * the block was overridden in open context and issues an override I/O.
5730	 * Since this is a dedup block, the override I/O will determine if the
5731	 * block is already in the DDT. If so, then it will replace the io_bp
5732	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5733	 * reaches the done callback, dbuf_write_override_done, it will
5734	 * check to see if the io_bp and io_bp_override are identical.
5735	 * If they are not, then it indicates that the bp was replaced with
5736	 * the bp in the DDT and the override bp is freed. This allows
5737	 * us to arrive here with a reference on a block that is being
5738	 * freed. So if we have an I/O in progress, or a reference to
5739	 * this hdr, then we don't destroy the hdr.
5740	 */
5741	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5742	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5743		arc_change_state(arc_anon, hdr, hash_lock);
5744		arc_hdr_destroy(hdr);
5745		mutex_exit(hash_lock);
5746	} else {
5747		mutex_exit(hash_lock);
5748	}
5749
5750}
5751
5752/*
5753 * Release this buffer from the cache, making it an anonymous buffer.  This
5754 * must be done after a read and prior to modifying the buffer contents.
5755 * If the buffer has more than one reference, we must make
5756 * a new hdr for the buffer.
5757 */
5758void
5759arc_release(arc_buf_t *buf, void *tag)
5760{
5761	arc_buf_hdr_t *hdr = buf->b_hdr;
5762
5763	/*
5764	 * It would be nice to assert that if it's DMU metadata (level >
5765	 * 0 || it's the dnode file), then it must be syncing context.
5766	 * But we don't know that information at this level.
5767	 */
5768
5769	mutex_enter(&buf->b_evict_lock);
5770
5771	ASSERT(HDR_HAS_L1HDR(hdr));
5772
5773	/*
5774	 * We don't grab the hash lock prior to this check, because if
5775	 * the buffer's header is in the arc_anon state, it won't be
5776	 * linked into the hash table.
5777	 */
5778	if (hdr->b_l1hdr.b_state == arc_anon) {
5779		mutex_exit(&buf->b_evict_lock);
5780		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5781		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5782		ASSERT(!HDR_HAS_L2HDR(hdr));
5783		ASSERT(HDR_EMPTY(hdr));
5784		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5785		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5786		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5787
5788		hdr->b_l1hdr.b_arc_access = 0;
5789
5790		/*
5791		 * If the buf is being overridden then it may already
5792		 * have a hdr that is not empty.
5793		 */
5794		buf_discard_identity(hdr);
5795		arc_buf_thaw(buf);
5796
5797		return;
5798	}
5799
5800	kmutex_t *hash_lock = HDR_LOCK(hdr);
5801	mutex_enter(hash_lock);
5802
5803	/*
5804	 * This assignment is only valid as long as the hash_lock is
5805	 * held, we must be careful not to reference state or the
5806	 * b_state field after dropping the lock.
5807	 */
5808	arc_state_t *state = hdr->b_l1hdr.b_state;
5809	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5810	ASSERT3P(state, !=, arc_anon);
5811
5812	/* this buffer is not on any list */
5813	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5814
5815	if (HDR_HAS_L2HDR(hdr)) {
5816		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5817
5818		/*
5819		 * We have to recheck this conditional again now that
5820		 * we're holding the l2ad_mtx to prevent a race with
5821		 * another thread which might be concurrently calling
5822		 * l2arc_evict(). In that case, l2arc_evict() might have
5823		 * destroyed the header's L2 portion as we were waiting
5824		 * to acquire the l2ad_mtx.
5825		 */
5826		if (HDR_HAS_L2HDR(hdr)) {
5827			l2arc_trim(hdr);
5828			arc_hdr_l2hdr_destroy(hdr);
5829		}
5830
5831		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5832	}
5833
5834	/*
5835	 * Do we have more than one buf?
5836	 */
5837	if (hdr->b_l1hdr.b_bufcnt > 1) {
5838		arc_buf_hdr_t *nhdr;
5839		uint64_t spa = hdr->b_spa;
5840		uint64_t psize = HDR_GET_PSIZE(hdr);
5841		uint64_t lsize = HDR_GET_LSIZE(hdr);
5842		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5843		arc_buf_contents_t type = arc_buf_type(hdr);
5844		VERIFY3U(hdr->b_type, ==, type);
5845
5846		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5847		(void) remove_reference(hdr, hash_lock, tag);
5848
5849		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5850			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5851			ASSERT(ARC_BUF_LAST(buf));
5852		}
5853
5854		/*
5855		 * Pull the data off of this hdr and attach it to
5856		 * a new anonymous hdr. Also find the last buffer
5857		 * in the hdr's buffer list.
5858		 */
5859		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5860		ASSERT3P(lastbuf, !=, NULL);
5861
5862		/*
5863		 * If the current arc_buf_t and the hdr are sharing their data
5864		 * buffer, then we must stop sharing that block.
5865		 */
5866		if (arc_buf_is_shared(buf)) {
5867			VERIFY(!arc_buf_is_shared(lastbuf));
5868
5869			/*
5870			 * First, sever the block sharing relationship between
5871			 * buf and the arc_buf_hdr_t.
5872			 */
5873			arc_unshare_buf(hdr, buf);
5874
5875			/*
5876			 * Now we need to recreate the hdr's b_pabd. Since we
5877			 * have lastbuf handy, we try to share with it, but if
5878			 * we can't then we allocate a new b_pabd and copy the
5879			 * data from buf into it.
5880			 */
5881			if (arc_can_share(hdr, lastbuf)) {
5882				arc_share_buf(hdr, lastbuf);
5883			} else {
5884				arc_hdr_alloc_pabd(hdr);
5885				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5886				    buf->b_data, psize);
5887			}
5888			VERIFY3P(lastbuf->b_data, !=, NULL);
5889		} else if (HDR_SHARED_DATA(hdr)) {
5890			/*
5891			 * Uncompressed shared buffers are always at the end
5892			 * of the list. Compressed buffers don't have the
5893			 * same requirements. This makes it hard to
5894			 * simply assert that the lastbuf is shared so
5895			 * we rely on the hdr's compression flags to determine
5896			 * if we have a compressed, shared buffer.
5897			 */
5898			ASSERT(arc_buf_is_shared(lastbuf) ||
5899			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5900			ASSERT(!ARC_BUF_SHARED(buf));
5901		}
5902		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5903		ASSERT3P(state, !=, arc_l2c_only);
5904
5905		(void) refcount_remove_many(&state->arcs_size,
5906		    arc_buf_size(buf), buf);
5907
5908		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5909			ASSERT3P(state, !=, arc_l2c_only);
5910			(void) refcount_remove_many(&state->arcs_esize[type],
5911			    arc_buf_size(buf), buf);
5912		}
5913
5914		hdr->b_l1hdr.b_bufcnt -= 1;
5915		arc_cksum_verify(buf);
5916#ifdef illumos
5917		arc_buf_unwatch(buf);
5918#endif
5919
5920		mutex_exit(hash_lock);
5921
5922		/*
5923		 * Allocate a new hdr. The new hdr will contain a b_pabd
5924		 * buffer which will be freed in arc_write().
5925		 */
5926		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5927		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5928		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5929		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5930		VERIFY3U(nhdr->b_type, ==, type);
5931		ASSERT(!HDR_SHARED_DATA(nhdr));
5932
5933		nhdr->b_l1hdr.b_buf = buf;
5934		nhdr->b_l1hdr.b_bufcnt = 1;
5935		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5936		buf->b_hdr = nhdr;
5937
5938		mutex_exit(&buf->b_evict_lock);
5939		(void) refcount_add_many(&arc_anon->arcs_size,
5940		    arc_buf_size(buf), buf);
5941	} else {
5942		mutex_exit(&buf->b_evict_lock);
5943		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5944		/* protected by hash lock, or hdr is on arc_anon */
5945		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5946		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5947		arc_change_state(arc_anon, hdr, hash_lock);
5948		hdr->b_l1hdr.b_arc_access = 0;
5949		mutex_exit(hash_lock);
5950
5951		buf_discard_identity(hdr);
5952		arc_buf_thaw(buf);
5953	}
5954}
5955
5956int
5957arc_released(arc_buf_t *buf)
5958{
5959	int released;
5960
5961	mutex_enter(&buf->b_evict_lock);
5962	released = (buf->b_data != NULL &&
5963	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5964	mutex_exit(&buf->b_evict_lock);
5965	return (released);
5966}
5967
5968#ifdef ZFS_DEBUG
5969int
5970arc_referenced(arc_buf_t *buf)
5971{
5972	int referenced;
5973
5974	mutex_enter(&buf->b_evict_lock);
5975	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5976	mutex_exit(&buf->b_evict_lock);
5977	return (referenced);
5978}
5979#endif
5980
5981static void
5982arc_write_ready(zio_t *zio)
5983{
5984	arc_write_callback_t *callback = zio->io_private;
5985	arc_buf_t *buf = callback->awcb_buf;
5986	arc_buf_hdr_t *hdr = buf->b_hdr;
5987	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5988
5989	ASSERT(HDR_HAS_L1HDR(hdr));
5990	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5991	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5992
5993	/*
5994	 * If we're reexecuting this zio because the pool suspended, then
5995	 * cleanup any state that was previously set the first time the
5996	 * callback was invoked.
5997	 */
5998	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5999		arc_cksum_free(hdr);
6000#ifdef illumos
6001		arc_buf_unwatch(buf);
6002#endif
6003		if (hdr->b_l1hdr.b_pabd != NULL) {
6004			if (arc_buf_is_shared(buf)) {
6005				arc_unshare_buf(hdr, buf);
6006			} else {
6007				arc_hdr_free_pabd(hdr);
6008			}
6009		}
6010	}
6011	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6012	ASSERT(!HDR_SHARED_DATA(hdr));
6013	ASSERT(!arc_buf_is_shared(buf));
6014
6015	callback->awcb_ready(zio, buf, callback->awcb_private);
6016
6017	if (HDR_IO_IN_PROGRESS(hdr))
6018		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6019
6020	arc_cksum_compute(buf);
6021	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6022
6023	enum zio_compress compress;
6024	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6025		compress = ZIO_COMPRESS_OFF;
6026	} else {
6027		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
6028		compress = BP_GET_COMPRESS(zio->io_bp);
6029	}
6030	HDR_SET_PSIZE(hdr, psize);
6031	arc_hdr_set_compress(hdr, compress);
6032
6033
6034	/*
6035	 * Fill the hdr with data. If the hdr is compressed, the data we want
6036	 * is available from the zio, otherwise we can take it from the buf.
6037	 *
6038	 * We might be able to share the buf's data with the hdr here. However,
6039	 * doing so would cause the ARC to be full of linear ABDs if we write a
6040	 * lot of shareable data. As a compromise, we check whether scattered
6041	 * ABDs are allowed, and assume that if they are then the user wants
6042	 * the ARC to be primarily filled with them regardless of the data being
6043	 * written. Therefore, if they're allowed then we allocate one and copy
6044	 * the data into it; otherwise, we share the data directly if we can.
6045	 */
6046	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6047		arc_hdr_alloc_pabd(hdr);
6048
6049		/*
6050		 * Ideally, we would always copy the io_abd into b_pabd, but the
6051		 * user may have disabled compressed ARC, thus we must check the
6052		 * hdr's compression setting rather than the io_bp's.
6053		 */
6054		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
6055			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
6056			    ZIO_COMPRESS_OFF);
6057			ASSERT3U(psize, >, 0);
6058
6059			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6060		} else {
6061			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6062
6063			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6064			    arc_buf_size(buf));
6065		}
6066	} else {
6067		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6068		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6069		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6070
6071		arc_share_buf(hdr, buf);
6072	}
6073
6074	arc_hdr_verify(hdr, zio->io_bp);
6075}
6076
6077static void
6078arc_write_children_ready(zio_t *zio)
6079{
6080	arc_write_callback_t *callback = zio->io_private;
6081	arc_buf_t *buf = callback->awcb_buf;
6082
6083	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6084}
6085
6086/*
6087 * The SPA calls this callback for each physical write that happens on behalf
6088 * of a logical write.  See the comment in dbuf_write_physdone() for details.
6089 */
6090static void
6091arc_write_physdone(zio_t *zio)
6092{
6093	arc_write_callback_t *cb = zio->io_private;
6094	if (cb->awcb_physdone != NULL)
6095		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6096}
6097
6098static void
6099arc_write_done(zio_t *zio)
6100{
6101	arc_write_callback_t *callback = zio->io_private;
6102	arc_buf_t *buf = callback->awcb_buf;
6103	arc_buf_hdr_t *hdr = buf->b_hdr;
6104
6105	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6106
6107	if (zio->io_error == 0) {
6108		arc_hdr_verify(hdr, zio->io_bp);
6109
6110		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6111			buf_discard_identity(hdr);
6112		} else {
6113			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6114			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6115		}
6116	} else {
6117		ASSERT(HDR_EMPTY(hdr));
6118	}
6119
6120	/*
6121	 * If the block to be written was all-zero or compressed enough to be
6122	 * embedded in the BP, no write was performed so there will be no
6123	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6124	 * (and uncached).
6125	 */
6126	if (!HDR_EMPTY(hdr)) {
6127		arc_buf_hdr_t *exists;
6128		kmutex_t *hash_lock;
6129
6130		ASSERT3U(zio->io_error, ==, 0);
6131
6132		arc_cksum_verify(buf);
6133
6134		exists = buf_hash_insert(hdr, &hash_lock);
6135		if (exists != NULL) {
6136			/*
6137			 * This can only happen if we overwrite for
6138			 * sync-to-convergence, because we remove
6139			 * buffers from the hash table when we arc_free().
6140			 */
6141			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6142				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6143					panic("bad overwrite, hdr=%p exists=%p",
6144					    (void *)hdr, (void *)exists);
6145				ASSERT(refcount_is_zero(
6146				    &exists->b_l1hdr.b_refcnt));
6147				arc_change_state(arc_anon, exists, hash_lock);
6148				mutex_exit(hash_lock);
6149				arc_hdr_destroy(exists);
6150				exists = buf_hash_insert(hdr, &hash_lock);
6151				ASSERT3P(exists, ==, NULL);
6152			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6153				/* nopwrite */
6154				ASSERT(zio->io_prop.zp_nopwrite);
6155				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6156					panic("bad nopwrite, hdr=%p exists=%p",
6157					    (void *)hdr, (void *)exists);
6158			} else {
6159				/* Dedup */
6160				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6161				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6162				ASSERT(BP_GET_DEDUP(zio->io_bp));
6163				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6164			}
6165		}
6166		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6167		/* if it's not anon, we are doing a scrub */
6168		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6169			arc_access(hdr, hash_lock);
6170		mutex_exit(hash_lock);
6171	} else {
6172		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6173	}
6174
6175	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6176	callback->awcb_done(zio, buf, callback->awcb_private);
6177
6178	abd_put(zio->io_abd);
6179	kmem_free(callback, sizeof (arc_write_callback_t));
6180}
6181
6182zio_t *
6183arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6184    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
6185    arc_done_func_t *children_ready, arc_done_func_t *physdone,
6186    arc_done_func_t *done, void *private, zio_priority_t priority,
6187    int zio_flags, const zbookmark_phys_t *zb)
6188{
6189	arc_buf_hdr_t *hdr = buf->b_hdr;
6190	arc_write_callback_t *callback;
6191	zio_t *zio;
6192	zio_prop_t localprop = *zp;
6193
6194	ASSERT3P(ready, !=, NULL);
6195	ASSERT3P(done, !=, NULL);
6196	ASSERT(!HDR_IO_ERROR(hdr));
6197	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6198	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6199	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6200	if (l2arc)
6201		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6202	if (ARC_BUF_COMPRESSED(buf)) {
6203		/*
6204		 * We're writing a pre-compressed buffer.  Make the
6205		 * compression algorithm requested by the zio_prop_t match
6206		 * the pre-compressed buffer's compression algorithm.
6207		 */
6208		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6209
6210		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6211		zio_flags |= ZIO_FLAG_RAW;
6212	}
6213	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6214	callback->awcb_ready = ready;
6215	callback->awcb_children_ready = children_ready;
6216	callback->awcb_physdone = physdone;
6217	callback->awcb_done = done;
6218	callback->awcb_private = private;
6219	callback->awcb_buf = buf;
6220
6221	/*
6222	 * The hdr's b_pabd is now stale, free it now. A new data block
6223	 * will be allocated when the zio pipeline calls arc_write_ready().
6224	 */
6225	if (hdr->b_l1hdr.b_pabd != NULL) {
6226		/*
6227		 * If the buf is currently sharing the data block with
6228		 * the hdr then we need to break that relationship here.
6229		 * The hdr will remain with a NULL data pointer and the
6230		 * buf will take sole ownership of the block.
6231		 */
6232		if (arc_buf_is_shared(buf)) {
6233			arc_unshare_buf(hdr, buf);
6234		} else {
6235			arc_hdr_free_pabd(hdr);
6236		}
6237		VERIFY3P(buf->b_data, !=, NULL);
6238		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6239	}
6240	ASSERT(!arc_buf_is_shared(buf));
6241	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6242
6243	zio = zio_write(pio, spa, txg, bp,
6244	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6245	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6246	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6247	    arc_write_physdone, arc_write_done, callback,
6248	    priority, zio_flags, zb);
6249
6250	return (zio);
6251}
6252
6253static int
6254arc_memory_throttle(uint64_t reserve, uint64_t txg)
6255{
6256#ifdef _KERNEL
6257	uint64_t available_memory = ptob(freemem);
6258	static uint64_t page_load = 0;
6259	static uint64_t last_txg = 0;
6260
6261#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
6262	available_memory =
6263	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
6264#endif
6265
6266	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
6267		return (0);
6268
6269	if (txg > last_txg) {
6270		last_txg = txg;
6271		page_load = 0;
6272	}
6273	/*
6274	 * If we are in pageout, we know that memory is already tight,
6275	 * the arc is already going to be evicting, so we just want to
6276	 * continue to let page writes occur as quickly as possible.
6277	 */
6278	if (curproc == pageproc) {
6279		if (page_load > MAX(ptob(minfree), available_memory) / 4)
6280			return (SET_ERROR(ERESTART));
6281		/* Note: reserve is inflated, so we deflate */
6282		page_load += reserve / 8;
6283		return (0);
6284	} else if (page_load > 0 && arc_reclaim_needed()) {
6285		/* memory is low, delay before restarting */
6286		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6287		return (SET_ERROR(EAGAIN));
6288	}
6289	page_load = 0;
6290#endif
6291	return (0);
6292}
6293
6294void
6295arc_tempreserve_clear(uint64_t reserve)
6296{
6297	atomic_add_64(&arc_tempreserve, -reserve);
6298	ASSERT((int64_t)arc_tempreserve >= 0);
6299}
6300
6301int
6302arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6303{
6304	int error;
6305	uint64_t anon_size;
6306
6307	if (reserve > arc_c/4 && !arc_no_grow) {
6308		arc_c = MIN(arc_c_max, reserve * 4);
6309		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
6310	}
6311	if (reserve > arc_c)
6312		return (SET_ERROR(ENOMEM));
6313
6314	/*
6315	 * Don't count loaned bufs as in flight dirty data to prevent long
6316	 * network delays from blocking transactions that are ready to be
6317	 * assigned to a txg.
6318	 */
6319
6320	/* assert that it has not wrapped around */
6321	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6322
6323	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6324	    arc_loaned_bytes), 0);
6325
6326	/*
6327	 * Writes will, almost always, require additional memory allocations
6328	 * in order to compress/encrypt/etc the data.  We therefore need to
6329	 * make sure that there is sufficient available memory for this.
6330	 */
6331	error = arc_memory_throttle(reserve, txg);
6332	if (error != 0)
6333		return (error);
6334
6335	/*
6336	 * Throttle writes when the amount of dirty data in the cache
6337	 * gets too large.  We try to keep the cache less than half full
6338	 * of dirty blocks so that our sync times don't grow too large.
6339	 * Note: if two requests come in concurrently, we might let them
6340	 * both succeed, when one of them should fail.  Not a huge deal.
6341	 */
6342
6343	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6344	    anon_size > arc_c / 4) {
6345		uint64_t meta_esize =
6346		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6347		uint64_t data_esize =
6348		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6349		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6350		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6351		    arc_tempreserve >> 10, meta_esize >> 10,
6352		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6353		return (SET_ERROR(ERESTART));
6354	}
6355	atomic_add_64(&arc_tempreserve, reserve);
6356	return (0);
6357}
6358
6359static void
6360arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6361    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6362{
6363	size->value.ui64 = refcount_count(&state->arcs_size);
6364	evict_data->value.ui64 =
6365	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6366	evict_metadata->value.ui64 =
6367	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6368}
6369
6370static int
6371arc_kstat_update(kstat_t *ksp, int rw)
6372{
6373	arc_stats_t *as = ksp->ks_data;
6374
6375	if (rw == KSTAT_WRITE) {
6376		return (EACCES);
6377	} else {
6378		arc_kstat_update_state(arc_anon,
6379		    &as->arcstat_anon_size,
6380		    &as->arcstat_anon_evictable_data,
6381		    &as->arcstat_anon_evictable_metadata);
6382		arc_kstat_update_state(arc_mru,
6383		    &as->arcstat_mru_size,
6384		    &as->arcstat_mru_evictable_data,
6385		    &as->arcstat_mru_evictable_metadata);
6386		arc_kstat_update_state(arc_mru_ghost,
6387		    &as->arcstat_mru_ghost_size,
6388		    &as->arcstat_mru_ghost_evictable_data,
6389		    &as->arcstat_mru_ghost_evictable_metadata);
6390		arc_kstat_update_state(arc_mfu,
6391		    &as->arcstat_mfu_size,
6392		    &as->arcstat_mfu_evictable_data,
6393		    &as->arcstat_mfu_evictable_metadata);
6394		arc_kstat_update_state(arc_mfu_ghost,
6395		    &as->arcstat_mfu_ghost_size,
6396		    &as->arcstat_mfu_ghost_evictable_data,
6397		    &as->arcstat_mfu_ghost_evictable_metadata);
6398
6399		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6400		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6401		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6402		ARCSTAT(arcstat_metadata_size) =
6403		    aggsum_value(&astat_metadata_size);
6404		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6405		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6406		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6407	}
6408
6409	return (0);
6410}
6411
6412/*
6413 * This function *must* return indices evenly distributed between all
6414 * sublists of the multilist. This is needed due to how the ARC eviction
6415 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6416 * distributed between all sublists and uses this assumption when
6417 * deciding which sublist to evict from and how much to evict from it.
6418 */
6419unsigned int
6420arc_state_multilist_index_func(multilist_t *ml, void *obj)
6421{
6422	arc_buf_hdr_t *hdr = obj;
6423
6424	/*
6425	 * We rely on b_dva to generate evenly distributed index
6426	 * numbers using buf_hash below. So, as an added precaution,
6427	 * let's make sure we never add empty buffers to the arc lists.
6428	 */
6429	ASSERT(!HDR_EMPTY(hdr));
6430
6431	/*
6432	 * The assumption here, is the hash value for a given
6433	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6434	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6435	 * Thus, we don't need to store the header's sublist index
6436	 * on insertion, as this index can be recalculated on removal.
6437	 *
6438	 * Also, the low order bits of the hash value are thought to be
6439	 * distributed evenly. Otherwise, in the case that the multilist
6440	 * has a power of two number of sublists, each sublists' usage
6441	 * would not be evenly distributed.
6442	 */
6443	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6444	    multilist_get_num_sublists(ml));
6445}
6446
6447#ifdef _KERNEL
6448static eventhandler_tag arc_event_lowmem = NULL;
6449
6450static void
6451arc_lowmem(void *arg __unused, int howto __unused)
6452{
6453
6454	mutex_enter(&arc_reclaim_lock);
6455	DTRACE_PROBE1(arc__needfree, int64_t, ((int64_t)freemem - zfs_arc_free_target) * PAGESIZE);
6456	cv_signal(&arc_reclaim_thread_cv);
6457
6458	/*
6459	 * It is unsafe to block here in arbitrary threads, because we can come
6460	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
6461	 * with ARC reclaim thread.
6462	 */
6463	if (curproc == pageproc)
6464		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
6465	mutex_exit(&arc_reclaim_lock);
6466}
6467#endif
6468
6469static void
6470arc_state_init(void)
6471{
6472	arc_anon = &ARC_anon;
6473	arc_mru = &ARC_mru;
6474	arc_mru_ghost = &ARC_mru_ghost;
6475	arc_mfu = &ARC_mfu;
6476	arc_mfu_ghost = &ARC_mfu_ghost;
6477	arc_l2c_only = &ARC_l2c_only;
6478
6479	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6480	    multilist_create(sizeof (arc_buf_hdr_t),
6481	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6482	    arc_state_multilist_index_func);
6483	arc_mru->arcs_list[ARC_BUFC_DATA] =
6484	    multilist_create(sizeof (arc_buf_hdr_t),
6485	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6486	    arc_state_multilist_index_func);
6487	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6488	    multilist_create(sizeof (arc_buf_hdr_t),
6489	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6490	    arc_state_multilist_index_func);
6491	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6492	    multilist_create(sizeof (arc_buf_hdr_t),
6493	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6494	    arc_state_multilist_index_func);
6495	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6496	    multilist_create(sizeof (arc_buf_hdr_t),
6497	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6498	    arc_state_multilist_index_func);
6499	arc_mfu->arcs_list[ARC_BUFC_DATA] =
6500	    multilist_create(sizeof (arc_buf_hdr_t),
6501	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6502	    arc_state_multilist_index_func);
6503	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6504	    multilist_create(sizeof (arc_buf_hdr_t),
6505	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6506	    arc_state_multilist_index_func);
6507	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6508	    multilist_create(sizeof (arc_buf_hdr_t),
6509	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6510	    arc_state_multilist_index_func);
6511	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6512	    multilist_create(sizeof (arc_buf_hdr_t),
6513	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6514	    arc_state_multilist_index_func);
6515	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6516	    multilist_create(sizeof (arc_buf_hdr_t),
6517	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6518	    arc_state_multilist_index_func);
6519
6520	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6521	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6522	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6523	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6524	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6525	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6526	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6527	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6528	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6529	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6530	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6531	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6532
6533	refcount_create(&arc_anon->arcs_size);
6534	refcount_create(&arc_mru->arcs_size);
6535	refcount_create(&arc_mru_ghost->arcs_size);
6536	refcount_create(&arc_mfu->arcs_size);
6537	refcount_create(&arc_mfu_ghost->arcs_size);
6538	refcount_create(&arc_l2c_only->arcs_size);
6539
6540	aggsum_init(&arc_meta_used, 0);
6541	aggsum_init(&arc_size, 0);
6542	aggsum_init(&astat_data_size, 0);
6543	aggsum_init(&astat_metadata_size, 0);
6544	aggsum_init(&astat_hdr_size, 0);
6545	aggsum_init(&astat_other_size, 0);
6546	aggsum_init(&astat_l2_hdr_size, 0);
6547}
6548
6549static void
6550arc_state_fini(void)
6551{
6552	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6553	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6554	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6555	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6556	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6557	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6558	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6559	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6560	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6561	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6562	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6563	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6564
6565	refcount_destroy(&arc_anon->arcs_size);
6566	refcount_destroy(&arc_mru->arcs_size);
6567	refcount_destroy(&arc_mru_ghost->arcs_size);
6568	refcount_destroy(&arc_mfu->arcs_size);
6569	refcount_destroy(&arc_mfu_ghost->arcs_size);
6570	refcount_destroy(&arc_l2c_only->arcs_size);
6571
6572	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6573	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6574	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6575	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6576	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6577	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6578	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6579	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6580}
6581
6582uint64_t
6583arc_max_bytes(void)
6584{
6585	return (arc_c_max);
6586}
6587
6588void
6589arc_init(void)
6590{
6591	int i, prefetch_tunable_set = 0;
6592
6593	/*
6594	 * allmem is "all memory that we could possibly use".
6595	 */
6596#ifdef illumos
6597#ifdef _KERNEL
6598	uint64_t allmem = ptob(physmem - swapfs_minfree);
6599#else
6600	uint64_t allmem = (physmem * PAGESIZE) / 2;
6601#endif
6602#else
6603	uint64_t allmem = kmem_size();
6604#endif
6605
6606
6607	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6608	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6609	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6610
6611	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
6612	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
6613
6614	/* Convert seconds to clock ticks */
6615	arc_min_prefetch_lifespan = 1 * hz;
6616
6617	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
6618	arc_c_min = MAX(allmem / 32, arc_abs_min);
6619	/* set max to 5/8 of all memory, or all but 1GB, whichever is more */
6620	if (allmem >= 1 << 30)
6621		arc_c_max = allmem - (1 << 30);
6622	else
6623		arc_c_max = arc_c_min;
6624	arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
6625
6626	/*
6627	 * In userland, there's only the memory pressure that we artificially
6628	 * create (see arc_available_memory()).  Don't let arc_c get too
6629	 * small, because it can cause transactions to be larger than
6630	 * arc_c, causing arc_tempreserve_space() to fail.
6631	 */
6632#ifndef _KERNEL
6633	arc_c_min = arc_c_max / 2;
6634#endif
6635
6636#ifdef _KERNEL
6637	/*
6638	 * Allow the tunables to override our calculations if they are
6639	 * reasonable.
6640	 */
6641	if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
6642		arc_c_max = zfs_arc_max;
6643		arc_c_min = MIN(arc_c_min, arc_c_max);
6644	}
6645	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6646		arc_c_min = zfs_arc_min;
6647#endif
6648
6649	arc_c = arc_c_max;
6650	arc_p = (arc_c >> 1);
6651
6652	/* limit meta-data to 1/4 of the arc capacity */
6653	arc_meta_limit = arc_c_max / 4;
6654
6655#ifdef _KERNEL
6656	/*
6657	 * Metadata is stored in the kernel's heap.  Don't let us
6658	 * use more than half the heap for the ARC.
6659	 */
6660	arc_meta_limit = MIN(arc_meta_limit,
6661	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6662#endif
6663
6664	/* Allow the tunable to override if it is reasonable */
6665	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6666		arc_meta_limit = zfs_arc_meta_limit;
6667
6668	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6669		arc_c_min = arc_meta_limit / 2;
6670
6671	if (zfs_arc_meta_min > 0) {
6672		arc_meta_min = zfs_arc_meta_min;
6673	} else {
6674		arc_meta_min = arc_c_min / 2;
6675	}
6676
6677	if (zfs_arc_grow_retry > 0)
6678		arc_grow_retry = zfs_arc_grow_retry;
6679
6680	if (zfs_arc_shrink_shift > 0)
6681		arc_shrink_shift = zfs_arc_shrink_shift;
6682
6683	if (zfs_arc_no_grow_shift > 0)
6684		arc_no_grow_shift = zfs_arc_no_grow_shift;
6685	/*
6686	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6687	 */
6688	if (arc_no_grow_shift >= arc_shrink_shift)
6689		arc_no_grow_shift = arc_shrink_shift - 1;
6690
6691	if (zfs_arc_p_min_shift > 0)
6692		arc_p_min_shift = zfs_arc_p_min_shift;
6693
6694	/* if kmem_flags are set, lets try to use less memory */
6695	if (kmem_debugging())
6696		arc_c = arc_c / 2;
6697	if (arc_c < arc_c_min)
6698		arc_c = arc_c_min;
6699
6700	zfs_arc_min = arc_c_min;
6701	zfs_arc_max = arc_c_max;
6702
6703	arc_state_init();
6704	buf_init();
6705
6706	arc_reclaim_thread_exit = B_FALSE;
6707	arc_dnlc_evicts_thread_exit = FALSE;
6708
6709	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6710	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6711
6712	if (arc_ksp != NULL) {
6713		arc_ksp->ks_data = &arc_stats;
6714		arc_ksp->ks_update = arc_kstat_update;
6715		kstat_install(arc_ksp);
6716	}
6717
6718	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6719	    TS_RUN, minclsyspri);
6720
6721#ifdef _KERNEL
6722	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6723	    EVENTHANDLER_PRI_FIRST);
6724#endif
6725
6726	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
6727	    TS_RUN, minclsyspri);
6728
6729	arc_dead = B_FALSE;
6730	arc_warm = B_FALSE;
6731
6732	/*
6733	 * Calculate maximum amount of dirty data per pool.
6734	 *
6735	 * If it has been set by /etc/system, take that.
6736	 * Otherwise, use a percentage of physical memory defined by
6737	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6738	 * zfs_dirty_data_max_max (default 4GB).
6739	 */
6740	if (zfs_dirty_data_max == 0) {
6741		zfs_dirty_data_max = ptob(physmem) *
6742		    zfs_dirty_data_max_percent / 100;
6743		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6744		    zfs_dirty_data_max_max);
6745	}
6746
6747#ifdef _KERNEL
6748	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6749		prefetch_tunable_set = 1;
6750
6751#ifdef __i386__
6752	if (prefetch_tunable_set == 0) {
6753		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6754		    "-- to enable,\n");
6755		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6756		    "to /boot/loader.conf.\n");
6757		zfs_prefetch_disable = 1;
6758	}
6759#else
6760	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6761	    prefetch_tunable_set == 0) {
6762		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6763		    "than 4GB of RAM is present;\n"
6764		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6765		    "to /boot/loader.conf.\n");
6766		zfs_prefetch_disable = 1;
6767	}
6768#endif
6769	/* Warn about ZFS memory and address space requirements. */
6770	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6771		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6772		    "expect unstable behavior.\n");
6773	}
6774	if (allmem < 512 * (1 << 20)) {
6775		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6776		    "expect unstable behavior.\n");
6777		printf("             Consider tuning vm.kmem_size and "
6778		    "vm.kmem_size_max\n");
6779		printf("             in /boot/loader.conf.\n");
6780	}
6781#endif
6782}
6783
6784void
6785arc_fini(void)
6786{
6787#ifdef _KERNEL
6788	if (arc_event_lowmem != NULL)
6789		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6790#endif
6791
6792	mutex_enter(&arc_reclaim_lock);
6793	arc_reclaim_thread_exit = B_TRUE;
6794	/*
6795	 * The reclaim thread will set arc_reclaim_thread_exit back to
6796	 * B_FALSE when it is finished exiting; we're waiting for that.
6797	 */
6798	while (arc_reclaim_thread_exit) {
6799		cv_signal(&arc_reclaim_thread_cv);
6800		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6801	}
6802	mutex_exit(&arc_reclaim_lock);
6803
6804	/* Use B_TRUE to ensure *all* buffers are evicted */
6805	arc_flush(NULL, B_TRUE);
6806
6807	mutex_enter(&arc_dnlc_evicts_lock);
6808	arc_dnlc_evicts_thread_exit = TRUE;
6809	/*
6810	 * The user evicts thread will set arc_user_evicts_thread_exit
6811	 * to FALSE when it is finished exiting; we're waiting for that.
6812	 */
6813	while (arc_dnlc_evicts_thread_exit) {
6814		cv_signal(&arc_dnlc_evicts_cv);
6815		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
6816	}
6817	mutex_exit(&arc_dnlc_evicts_lock);
6818
6819	arc_dead = B_TRUE;
6820
6821	if (arc_ksp != NULL) {
6822		kstat_delete(arc_ksp);
6823		arc_ksp = NULL;
6824	}
6825
6826	mutex_destroy(&arc_reclaim_lock);
6827	cv_destroy(&arc_reclaim_thread_cv);
6828	cv_destroy(&arc_reclaim_waiters_cv);
6829
6830	mutex_destroy(&arc_dnlc_evicts_lock);
6831	cv_destroy(&arc_dnlc_evicts_cv);
6832
6833	arc_state_fini();
6834	buf_fini();
6835
6836	ASSERT0(arc_loaned_bytes);
6837}
6838
6839/*
6840 * Level 2 ARC
6841 *
6842 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6843 * It uses dedicated storage devices to hold cached data, which are populated
6844 * using large infrequent writes.  The main role of this cache is to boost
6845 * the performance of random read workloads.  The intended L2ARC devices
6846 * include short-stroked disks, solid state disks, and other media with
6847 * substantially faster read latency than disk.
6848 *
6849 *                 +-----------------------+
6850 *                 |         ARC           |
6851 *                 +-----------------------+
6852 *                    |         ^     ^
6853 *                    |         |     |
6854 *      l2arc_feed_thread()    arc_read()
6855 *                    |         |     |
6856 *                    |  l2arc read   |
6857 *                    V         |     |
6858 *               +---------------+    |
6859 *               |     L2ARC     |    |
6860 *               +---------------+    |
6861 *                   |    ^           |
6862 *          l2arc_write() |           |
6863 *                   |    |           |
6864 *                   V    |           |
6865 *                 +-------+      +-------+
6866 *                 | vdev  |      | vdev  |
6867 *                 | cache |      | cache |
6868 *                 +-------+      +-------+
6869 *                 +=========+     .-----.
6870 *                 :  L2ARC  :    |-_____-|
6871 *                 : devices :    | Disks |
6872 *                 +=========+    `-_____-'
6873 *
6874 * Read requests are satisfied from the following sources, in order:
6875 *
6876 *	1) ARC
6877 *	2) vdev cache of L2ARC devices
6878 *	3) L2ARC devices
6879 *	4) vdev cache of disks
6880 *	5) disks
6881 *
6882 * Some L2ARC device types exhibit extremely slow write performance.
6883 * To accommodate for this there are some significant differences between
6884 * the L2ARC and traditional cache design:
6885 *
6886 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6887 * the ARC behave as usual, freeing buffers and placing headers on ghost
6888 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6889 * this would add inflated write latencies for all ARC memory pressure.
6890 *
6891 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6892 * It does this by periodically scanning buffers from the eviction-end of
6893 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6894 * not already there. It scans until a headroom of buffers is satisfied,
6895 * which itself is a buffer for ARC eviction. If a compressible buffer is
6896 * found during scanning and selected for writing to an L2ARC device, we
6897 * temporarily boost scanning headroom during the next scan cycle to make
6898 * sure we adapt to compression effects (which might significantly reduce
6899 * the data volume we write to L2ARC). The thread that does this is
6900 * l2arc_feed_thread(), illustrated below; example sizes are included to
6901 * provide a better sense of ratio than this diagram:
6902 *
6903 *	       head -->                        tail
6904 *	        +---------------------+----------+
6905 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6906 *	        +---------------------+----------+   |   o L2ARC eligible
6907 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6908 *	        +---------------------+----------+   |
6909 *	             15.9 Gbytes      ^ 32 Mbytes    |
6910 *	                           headroom          |
6911 *	                                      l2arc_feed_thread()
6912 *	                                             |
6913 *	                 l2arc write hand <--[oooo]--'
6914 *	                         |           8 Mbyte
6915 *	                         |          write max
6916 *	                         V
6917 *		  +==============================+
6918 *	L2ARC dev |####|#|###|###|    |####| ... |
6919 *	          +==============================+
6920 *	                     32 Gbytes
6921 *
6922 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6923 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6924 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6925 * safe to say that this is an uncommon case, since buffers at the end of
6926 * the ARC lists have moved there due to inactivity.
6927 *
6928 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6929 * then the L2ARC simply misses copying some buffers.  This serves as a
6930 * pressure valve to prevent heavy read workloads from both stalling the ARC
6931 * with waits and clogging the L2ARC with writes.  This also helps prevent
6932 * the potential for the L2ARC to churn if it attempts to cache content too
6933 * quickly, such as during backups of the entire pool.
6934 *
6935 * 5. After system boot and before the ARC has filled main memory, there are
6936 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6937 * lists can remain mostly static.  Instead of searching from tail of these
6938 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6939 * for eligible buffers, greatly increasing its chance of finding them.
6940 *
6941 * The L2ARC device write speed is also boosted during this time so that
6942 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6943 * there are no L2ARC reads, and no fear of degrading read performance
6944 * through increased writes.
6945 *
6946 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6947 * the vdev queue can aggregate them into larger and fewer writes.  Each
6948 * device is written to in a rotor fashion, sweeping writes through
6949 * available space then repeating.
6950 *
6951 * 7. The L2ARC does not store dirty content.  It never needs to flush
6952 * write buffers back to disk based storage.
6953 *
6954 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6955 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6956 *
6957 * The performance of the L2ARC can be tweaked by a number of tunables, which
6958 * may be necessary for different workloads:
6959 *
6960 *	l2arc_write_max		max write bytes per interval
6961 *	l2arc_write_boost	extra write bytes during device warmup
6962 *	l2arc_noprefetch	skip caching prefetched buffers
6963 *	l2arc_headroom		number of max device writes to precache
6964 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6965 *				scanning, we multiply headroom by this
6966 *				percentage factor for the next scan cycle,
6967 *				since more compressed buffers are likely to
6968 *				be present
6969 *	l2arc_feed_secs		seconds between L2ARC writing
6970 *
6971 * Tunables may be removed or added as future performance improvements are
6972 * integrated, and also may become zpool properties.
6973 *
6974 * There are three key functions that control how the L2ARC warms up:
6975 *
6976 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6977 *	l2arc_write_size()	calculate how much to write
6978 *	l2arc_write_interval()	calculate sleep delay between writes
6979 *
6980 * These three functions determine what to write, how much, and how quickly
6981 * to send writes.
6982 */
6983
6984static boolean_t
6985l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6986{
6987	/*
6988	 * A buffer is *not* eligible for the L2ARC if it:
6989	 * 1. belongs to a different spa.
6990	 * 2. is already cached on the L2ARC.
6991	 * 3. has an I/O in progress (it may be an incomplete read).
6992	 * 4. is flagged not eligible (zfs property).
6993	 */
6994	if (hdr->b_spa != spa_guid) {
6995		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6996		return (B_FALSE);
6997	}
6998	if (HDR_HAS_L2HDR(hdr)) {
6999		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
7000		return (B_FALSE);
7001	}
7002	if (HDR_IO_IN_PROGRESS(hdr)) {
7003		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
7004		return (B_FALSE);
7005	}
7006	if (!HDR_L2CACHE(hdr)) {
7007		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
7008		return (B_FALSE);
7009	}
7010
7011	return (B_TRUE);
7012}
7013
7014static uint64_t
7015l2arc_write_size(void)
7016{
7017	uint64_t size;
7018
7019	/*
7020	 * Make sure our globals have meaningful values in case the user
7021	 * altered them.
7022	 */
7023	size = l2arc_write_max;
7024	if (size == 0) {
7025		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7026		    "be greater than zero, resetting it to the default (%d)",
7027		    L2ARC_WRITE_SIZE);
7028		size = l2arc_write_max = L2ARC_WRITE_SIZE;
7029	}
7030
7031	if (arc_warm == B_FALSE)
7032		size += l2arc_write_boost;
7033
7034	return (size);
7035
7036}
7037
7038static clock_t
7039l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7040{
7041	clock_t interval, next, now;
7042
7043	/*
7044	 * If the ARC lists are busy, increase our write rate; if the
7045	 * lists are stale, idle back.  This is achieved by checking
7046	 * how much we previously wrote - if it was more than half of
7047	 * what we wanted, schedule the next write much sooner.
7048	 */
7049	if (l2arc_feed_again && wrote > (wanted / 2))
7050		interval = (hz * l2arc_feed_min_ms) / 1000;
7051	else
7052		interval = hz * l2arc_feed_secs;
7053
7054	now = ddi_get_lbolt();
7055	next = MAX(now, MIN(now + interval, began + interval));
7056
7057	return (next);
7058}
7059
7060/*
7061 * Cycle through L2ARC devices.  This is how L2ARC load balances.
7062 * If a device is returned, this also returns holding the spa config lock.
7063 */
7064static l2arc_dev_t *
7065l2arc_dev_get_next(void)
7066{
7067	l2arc_dev_t *first, *next = NULL;
7068
7069	/*
7070	 * Lock out the removal of spas (spa_namespace_lock), then removal
7071	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7072	 * both locks will be dropped and a spa config lock held instead.
7073	 */
7074	mutex_enter(&spa_namespace_lock);
7075	mutex_enter(&l2arc_dev_mtx);
7076
7077	/* if there are no vdevs, there is nothing to do */
7078	if (l2arc_ndev == 0)
7079		goto out;
7080
7081	first = NULL;
7082	next = l2arc_dev_last;
7083	do {
7084		/* loop around the list looking for a non-faulted vdev */
7085		if (next == NULL) {
7086			next = list_head(l2arc_dev_list);
7087		} else {
7088			next = list_next(l2arc_dev_list, next);
7089			if (next == NULL)
7090				next = list_head(l2arc_dev_list);
7091		}
7092
7093		/* if we have come back to the start, bail out */
7094		if (first == NULL)
7095			first = next;
7096		else if (next == first)
7097			break;
7098
7099	} while (vdev_is_dead(next->l2ad_vdev));
7100
7101	/* if we were unable to find any usable vdevs, return NULL */
7102	if (vdev_is_dead(next->l2ad_vdev))
7103		next = NULL;
7104
7105	l2arc_dev_last = next;
7106
7107out:
7108	mutex_exit(&l2arc_dev_mtx);
7109
7110	/*
7111	 * Grab the config lock to prevent the 'next' device from being
7112	 * removed while we are writing to it.
7113	 */
7114	if (next != NULL)
7115		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7116	mutex_exit(&spa_namespace_lock);
7117
7118	return (next);
7119}
7120
7121/*
7122 * Free buffers that were tagged for destruction.
7123 */
7124static void
7125l2arc_do_free_on_write()
7126{
7127	list_t *buflist;
7128	l2arc_data_free_t *df, *df_prev;
7129
7130	mutex_enter(&l2arc_free_on_write_mtx);
7131	buflist = l2arc_free_on_write;
7132
7133	for (df = list_tail(buflist); df; df = df_prev) {
7134		df_prev = list_prev(buflist, df);
7135		ASSERT3P(df->l2df_abd, !=, NULL);
7136		abd_free(df->l2df_abd);
7137		list_remove(buflist, df);
7138		kmem_free(df, sizeof (l2arc_data_free_t));
7139	}
7140
7141	mutex_exit(&l2arc_free_on_write_mtx);
7142}
7143
7144/*
7145 * A write to a cache device has completed.  Update all headers to allow
7146 * reads from these buffers to begin.
7147 */
7148static void
7149l2arc_write_done(zio_t *zio)
7150{
7151	l2arc_write_callback_t *cb;
7152	l2arc_dev_t *dev;
7153	list_t *buflist;
7154	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7155	kmutex_t *hash_lock;
7156	int64_t bytes_dropped = 0;
7157
7158	cb = zio->io_private;
7159	ASSERT3P(cb, !=, NULL);
7160	dev = cb->l2wcb_dev;
7161	ASSERT3P(dev, !=, NULL);
7162	head = cb->l2wcb_head;
7163	ASSERT3P(head, !=, NULL);
7164	buflist = &dev->l2ad_buflist;
7165	ASSERT3P(buflist, !=, NULL);
7166	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7167	    l2arc_write_callback_t *, cb);
7168
7169	if (zio->io_error != 0)
7170		ARCSTAT_BUMP(arcstat_l2_writes_error);
7171
7172	/*
7173	 * All writes completed, or an error was hit.
7174	 */
7175top:
7176	mutex_enter(&dev->l2ad_mtx);
7177	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7178		hdr_prev = list_prev(buflist, hdr);
7179
7180		hash_lock = HDR_LOCK(hdr);
7181
7182		/*
7183		 * We cannot use mutex_enter or else we can deadlock
7184		 * with l2arc_write_buffers (due to swapping the order
7185		 * the hash lock and l2ad_mtx are taken).
7186		 */
7187		if (!mutex_tryenter(hash_lock)) {
7188			/*
7189			 * Missed the hash lock. We must retry so we
7190			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7191			 */
7192			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7193
7194			/*
7195			 * We don't want to rescan the headers we've
7196			 * already marked as having been written out, so
7197			 * we reinsert the head node so we can pick up
7198			 * where we left off.
7199			 */
7200			list_remove(buflist, head);
7201			list_insert_after(buflist, hdr, head);
7202
7203			mutex_exit(&dev->l2ad_mtx);
7204
7205			/*
7206			 * We wait for the hash lock to become available
7207			 * to try and prevent busy waiting, and increase
7208			 * the chance we'll be able to acquire the lock
7209			 * the next time around.
7210			 */
7211			mutex_enter(hash_lock);
7212			mutex_exit(hash_lock);
7213			goto top;
7214		}
7215
7216		/*
7217		 * We could not have been moved into the arc_l2c_only
7218		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7219		 * bit being set. Let's just ensure that's being enforced.
7220		 */
7221		ASSERT(HDR_HAS_L1HDR(hdr));
7222
7223		if (zio->io_error != 0) {
7224			/*
7225			 * Error - drop L2ARC entry.
7226			 */
7227			list_remove(buflist, hdr);
7228			l2arc_trim(hdr);
7229			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7230
7231			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7232			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7233
7234			bytes_dropped += arc_hdr_size(hdr);
7235			(void) refcount_remove_many(&dev->l2ad_alloc,
7236			    arc_hdr_size(hdr), hdr);
7237		}
7238
7239		/*
7240		 * Allow ARC to begin reads and ghost list evictions to
7241		 * this L2ARC entry.
7242		 */
7243		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7244
7245		mutex_exit(hash_lock);
7246	}
7247
7248	atomic_inc_64(&l2arc_writes_done);
7249	list_remove(buflist, head);
7250	ASSERT(!HDR_HAS_L1HDR(head));
7251	kmem_cache_free(hdr_l2only_cache, head);
7252	mutex_exit(&dev->l2ad_mtx);
7253
7254	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7255
7256	l2arc_do_free_on_write();
7257
7258	kmem_free(cb, sizeof (l2arc_write_callback_t));
7259}
7260
7261/*
7262 * A read to a cache device completed.  Validate buffer contents before
7263 * handing over to the regular ARC routines.
7264 */
7265static void
7266l2arc_read_done(zio_t *zio)
7267{
7268	l2arc_read_callback_t *cb;
7269	arc_buf_hdr_t *hdr;
7270	kmutex_t *hash_lock;
7271	boolean_t valid_cksum;
7272
7273	ASSERT3P(zio->io_vd, !=, NULL);
7274	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7275
7276	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7277
7278	cb = zio->io_private;
7279	ASSERT3P(cb, !=, NULL);
7280	hdr = cb->l2rcb_hdr;
7281	ASSERT3P(hdr, !=, NULL);
7282
7283	hash_lock = HDR_LOCK(hdr);
7284	mutex_enter(hash_lock);
7285	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7286
7287	/*
7288	 * If the data was read into a temporary buffer,
7289	 * move it and free the buffer.
7290	 */
7291	if (cb->l2rcb_abd != NULL) {
7292		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7293		if (zio->io_error == 0) {
7294			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7295			    arc_hdr_size(hdr));
7296		}
7297
7298		/*
7299		 * The following must be done regardless of whether
7300		 * there was an error:
7301		 * - free the temporary buffer
7302		 * - point zio to the real ARC buffer
7303		 * - set zio size accordingly
7304		 * These are required because zio is either re-used for
7305		 * an I/O of the block in the case of the error
7306		 * or the zio is passed to arc_read_done() and it
7307		 * needs real data.
7308		 */
7309		abd_free(cb->l2rcb_abd);
7310		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7311		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7312	}
7313
7314	ASSERT3P(zio->io_abd, !=, NULL);
7315
7316	/*
7317	 * Check this survived the L2ARC journey.
7318	 */
7319	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7320	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
7321	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
7322
7323	valid_cksum = arc_cksum_is_equal(hdr, zio);
7324	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7325		mutex_exit(hash_lock);
7326		zio->io_private = hdr;
7327		arc_read_done(zio);
7328	} else {
7329		mutex_exit(hash_lock);
7330		/*
7331		 * Buffer didn't survive caching.  Increment stats and
7332		 * reissue to the original storage device.
7333		 */
7334		if (zio->io_error != 0) {
7335			ARCSTAT_BUMP(arcstat_l2_io_error);
7336		} else {
7337			zio->io_error = SET_ERROR(EIO);
7338		}
7339		if (!valid_cksum)
7340			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7341
7342		/*
7343		 * If there's no waiter, issue an async i/o to the primary
7344		 * storage now.  If there *is* a waiter, the caller must
7345		 * issue the i/o in a context where it's OK to block.
7346		 */
7347		if (zio->io_waiter == NULL) {
7348			zio_t *pio = zio_unique_parent(zio);
7349
7350			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7351
7352			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7353			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7354			    hdr, zio->io_priority, cb->l2rcb_flags,
7355			    &cb->l2rcb_zb));
7356		}
7357	}
7358
7359	kmem_free(cb, sizeof (l2arc_read_callback_t));
7360}
7361
7362/*
7363 * This is the list priority from which the L2ARC will search for pages to
7364 * cache.  This is used within loops (0..3) to cycle through lists in the
7365 * desired order.  This order can have a significant effect on cache
7366 * performance.
7367 *
7368 * Currently the metadata lists are hit first, MFU then MRU, followed by
7369 * the data lists.  This function returns a locked list, and also returns
7370 * the lock pointer.
7371 */
7372static multilist_sublist_t *
7373l2arc_sublist_lock(int list_num)
7374{
7375	multilist_t *ml = NULL;
7376	unsigned int idx;
7377
7378	ASSERT(list_num >= 0 && list_num <= 3);
7379
7380	switch (list_num) {
7381	case 0:
7382		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7383		break;
7384	case 1:
7385		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7386		break;
7387	case 2:
7388		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7389		break;
7390	case 3:
7391		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7392		break;
7393	}
7394
7395	/*
7396	 * Return a randomly-selected sublist. This is acceptable
7397	 * because the caller feeds only a little bit of data for each
7398	 * call (8MB). Subsequent calls will result in different
7399	 * sublists being selected.
7400	 */
7401	idx = multilist_get_random_index(ml);
7402	return (multilist_sublist_lock(ml, idx));
7403}
7404
7405/*
7406 * Evict buffers from the device write hand to the distance specified in
7407 * bytes.  This distance may span populated buffers, it may span nothing.
7408 * This is clearing a region on the L2ARC device ready for writing.
7409 * If the 'all' boolean is set, every buffer is evicted.
7410 */
7411static void
7412l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7413{
7414	list_t *buflist;
7415	arc_buf_hdr_t *hdr, *hdr_prev;
7416	kmutex_t *hash_lock;
7417	uint64_t taddr;
7418
7419	buflist = &dev->l2ad_buflist;
7420
7421	if (!all && dev->l2ad_first) {
7422		/*
7423		 * This is the first sweep through the device.  There is
7424		 * nothing to evict.
7425		 */
7426		return;
7427	}
7428
7429	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7430		/*
7431		 * When nearing the end of the device, evict to the end
7432		 * before the device write hand jumps to the start.
7433		 */
7434		taddr = dev->l2ad_end;
7435	} else {
7436		taddr = dev->l2ad_hand + distance;
7437	}
7438	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7439	    uint64_t, taddr, boolean_t, all);
7440
7441top:
7442	mutex_enter(&dev->l2ad_mtx);
7443	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7444		hdr_prev = list_prev(buflist, hdr);
7445
7446		hash_lock = HDR_LOCK(hdr);
7447
7448		/*
7449		 * We cannot use mutex_enter or else we can deadlock
7450		 * with l2arc_write_buffers (due to swapping the order
7451		 * the hash lock and l2ad_mtx are taken).
7452		 */
7453		if (!mutex_tryenter(hash_lock)) {
7454			/*
7455			 * Missed the hash lock.  Retry.
7456			 */
7457			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7458			mutex_exit(&dev->l2ad_mtx);
7459			mutex_enter(hash_lock);
7460			mutex_exit(hash_lock);
7461			goto top;
7462		}
7463
7464		/*
7465		 * A header can't be on this list if it doesn't have L2 header.
7466		 */
7467		ASSERT(HDR_HAS_L2HDR(hdr));
7468
7469		/* Ensure this header has finished being written. */
7470		ASSERT(!HDR_L2_WRITING(hdr));
7471		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
7472
7473		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
7474		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7475			/*
7476			 * We've evicted to the target address,
7477			 * or the end of the device.
7478			 */
7479			mutex_exit(hash_lock);
7480			break;
7481		}
7482
7483		if (!HDR_HAS_L1HDR(hdr)) {
7484			ASSERT(!HDR_L2_READING(hdr));
7485			/*
7486			 * This doesn't exist in the ARC.  Destroy.
7487			 * arc_hdr_destroy() will call list_remove()
7488			 * and decrement arcstat_l2_lsize.
7489			 */
7490			arc_change_state(arc_anon, hdr, hash_lock);
7491			arc_hdr_destroy(hdr);
7492		} else {
7493			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7494			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7495			/*
7496			 * Invalidate issued or about to be issued
7497			 * reads, since we may be about to write
7498			 * over this location.
7499			 */
7500			if (HDR_L2_READING(hdr)) {
7501				ARCSTAT_BUMP(arcstat_l2_evict_reading);
7502				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7503			}
7504
7505			arc_hdr_l2hdr_destroy(hdr);
7506		}
7507		mutex_exit(hash_lock);
7508	}
7509	mutex_exit(&dev->l2ad_mtx);
7510}
7511
7512/*
7513 * Find and write ARC buffers to the L2ARC device.
7514 *
7515 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7516 * for reading until they have completed writing.
7517 * The headroom_boost is an in-out parameter used to maintain headroom boost
7518 * state between calls to this function.
7519 *
7520 * Returns the number of bytes actually written (which may be smaller than
7521 * the delta by which the device hand has changed due to alignment).
7522 */
7523static uint64_t
7524l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7525{
7526	arc_buf_hdr_t *hdr, *hdr_prev, *head;
7527	uint64_t write_asize, write_psize, write_lsize, headroom;
7528	boolean_t full;
7529	l2arc_write_callback_t *cb;
7530	zio_t *pio, *wzio;
7531	uint64_t guid = spa_load_guid(spa);
7532	int try;
7533
7534	ASSERT3P(dev->l2ad_vdev, !=, NULL);
7535
7536	pio = NULL;
7537	write_lsize = write_asize = write_psize = 0;
7538	full = B_FALSE;
7539	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7540	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7541
7542	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
7543	/*
7544	 * Copy buffers for L2ARC writing.
7545	 */
7546	for (try = 0; try <= 3; try++) {
7547		multilist_sublist_t *mls = l2arc_sublist_lock(try);
7548		uint64_t passed_sz = 0;
7549
7550		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
7551
7552		/*
7553		 * L2ARC fast warmup.
7554		 *
7555		 * Until the ARC is warm and starts to evict, read from the
7556		 * head of the ARC lists rather than the tail.
7557		 */
7558		if (arc_warm == B_FALSE)
7559			hdr = multilist_sublist_head(mls);
7560		else
7561			hdr = multilist_sublist_tail(mls);
7562		if (hdr == NULL)
7563			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
7564
7565		headroom = target_sz * l2arc_headroom;
7566		if (zfs_compressed_arc_enabled)
7567			headroom = (headroom * l2arc_headroom_boost) / 100;
7568
7569		for (; hdr; hdr = hdr_prev) {
7570			kmutex_t *hash_lock;
7571
7572			if (arc_warm == B_FALSE)
7573				hdr_prev = multilist_sublist_next(mls, hdr);
7574			else
7575				hdr_prev = multilist_sublist_prev(mls, hdr);
7576			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
7577			    HDR_GET_LSIZE(hdr));
7578
7579			hash_lock = HDR_LOCK(hdr);
7580			if (!mutex_tryenter(hash_lock)) {
7581				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
7582				/*
7583				 * Skip this buffer rather than waiting.
7584				 */
7585				continue;
7586			}
7587
7588			passed_sz += HDR_GET_LSIZE(hdr);
7589			if (passed_sz > headroom) {
7590				/*
7591				 * Searched too far.
7592				 */
7593				mutex_exit(hash_lock);
7594				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
7595				break;
7596			}
7597
7598			if (!l2arc_write_eligible(guid, hdr)) {
7599				mutex_exit(hash_lock);
7600				continue;
7601			}
7602
7603			/*
7604			 * We rely on the L1 portion of the header below, so
7605			 * it's invalid for this header to have been evicted out
7606			 * of the ghost cache, prior to being written out. The
7607			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7608			 */
7609			ASSERT(HDR_HAS_L1HDR(hdr));
7610
7611			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7612			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7613			ASSERT3U(arc_hdr_size(hdr), >, 0);
7614			uint64_t psize = arc_hdr_size(hdr);
7615			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7616			    psize);
7617
7618			if ((write_asize + asize) > target_sz) {
7619				full = B_TRUE;
7620				mutex_exit(hash_lock);
7621				ARCSTAT_BUMP(arcstat_l2_write_full);
7622				break;
7623			}
7624
7625			if (pio == NULL) {
7626				/*
7627				 * Insert a dummy header on the buflist so
7628				 * l2arc_write_done() can find where the
7629				 * write buffers begin without searching.
7630				 */
7631				mutex_enter(&dev->l2ad_mtx);
7632				list_insert_head(&dev->l2ad_buflist, head);
7633				mutex_exit(&dev->l2ad_mtx);
7634
7635				cb = kmem_alloc(
7636				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7637				cb->l2wcb_dev = dev;
7638				cb->l2wcb_head = head;
7639				pio = zio_root(spa, l2arc_write_done, cb,
7640				    ZIO_FLAG_CANFAIL);
7641				ARCSTAT_BUMP(arcstat_l2_write_pios);
7642			}
7643
7644			hdr->b_l2hdr.b_dev = dev;
7645			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7646			arc_hdr_set_flags(hdr,
7647			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7648
7649			mutex_enter(&dev->l2ad_mtx);
7650			list_insert_head(&dev->l2ad_buflist, hdr);
7651			mutex_exit(&dev->l2ad_mtx);
7652
7653			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7654
7655			/*
7656			 * Normally the L2ARC can use the hdr's data, but if
7657			 * we're sharing data between the hdr and one of its
7658			 * bufs, L2ARC needs its own copy of the data so that
7659			 * the ZIO below can't race with the buf consumer.
7660			 * Another case where we need to create a copy of the
7661			 * data is when the buffer size is not device-aligned
7662			 * and we need to pad the block to make it such.
7663			 * That also keeps the clock hand suitably aligned.
7664			 *
7665			 * To ensure that the copy will be available for the
7666			 * lifetime of the ZIO and be cleaned up afterwards, we
7667			 * add it to the l2arc_free_on_write queue.
7668			 */
7669			abd_t *to_write;
7670			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7671				to_write = hdr->b_l1hdr.b_pabd;
7672			} else {
7673				to_write = abd_alloc_for_io(asize,
7674				    HDR_ISTYPE_METADATA(hdr));
7675				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7676				if (asize != psize) {
7677					abd_zero_off(to_write, psize,
7678					    asize - psize);
7679				}
7680				l2arc_free_abd_on_write(to_write, asize,
7681				    arc_buf_type(hdr));
7682			}
7683			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7684			    hdr->b_l2hdr.b_daddr, asize, to_write,
7685			    ZIO_CHECKSUM_OFF, NULL, hdr,
7686			    ZIO_PRIORITY_ASYNC_WRITE,
7687			    ZIO_FLAG_CANFAIL, B_FALSE);
7688
7689			write_lsize += HDR_GET_LSIZE(hdr);
7690			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7691			    zio_t *, wzio);
7692
7693			write_psize += psize;
7694			write_asize += asize;
7695			dev->l2ad_hand += asize;
7696
7697			mutex_exit(hash_lock);
7698
7699			(void) zio_nowait(wzio);
7700		}
7701
7702		multilist_sublist_unlock(mls);
7703
7704		if (full == B_TRUE)
7705			break;
7706	}
7707
7708	/* No buffers selected for writing? */
7709	if (pio == NULL) {
7710		ASSERT0(write_lsize);
7711		ASSERT(!HDR_HAS_L1HDR(head));
7712		kmem_cache_free(hdr_l2only_cache, head);
7713		return (0);
7714	}
7715
7716	ASSERT3U(write_psize, <=, target_sz);
7717	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7718	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7719	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7720	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7721	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7722
7723	/*
7724	 * Bump device hand to the device start if it is approaching the end.
7725	 * l2arc_evict() will already have evicted ahead for this case.
7726	 */
7727	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7728		dev->l2ad_hand = dev->l2ad_start;
7729		dev->l2ad_first = B_FALSE;
7730	}
7731
7732	dev->l2ad_writing = B_TRUE;
7733	(void) zio_wait(pio);
7734	dev->l2ad_writing = B_FALSE;
7735
7736	return (write_asize);
7737}
7738
7739/*
7740 * This thread feeds the L2ARC at regular intervals.  This is the beating
7741 * heart of the L2ARC.
7742 */
7743/* ARGSUSED */
7744static void
7745l2arc_feed_thread(void *unused __unused)
7746{
7747	callb_cpr_t cpr;
7748	l2arc_dev_t *dev;
7749	spa_t *spa;
7750	uint64_t size, wrote;
7751	clock_t begin, next = ddi_get_lbolt();
7752
7753	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7754
7755	mutex_enter(&l2arc_feed_thr_lock);
7756
7757	while (l2arc_thread_exit == 0) {
7758		CALLB_CPR_SAFE_BEGIN(&cpr);
7759		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7760		    next - ddi_get_lbolt());
7761		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7762		next = ddi_get_lbolt() + hz;
7763
7764		/*
7765		 * Quick check for L2ARC devices.
7766		 */
7767		mutex_enter(&l2arc_dev_mtx);
7768		if (l2arc_ndev == 0) {
7769			mutex_exit(&l2arc_dev_mtx);
7770			continue;
7771		}
7772		mutex_exit(&l2arc_dev_mtx);
7773		begin = ddi_get_lbolt();
7774
7775		/*
7776		 * This selects the next l2arc device to write to, and in
7777		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7778		 * will return NULL if there are now no l2arc devices or if
7779		 * they are all faulted.
7780		 *
7781		 * If a device is returned, its spa's config lock is also
7782		 * held to prevent device removal.  l2arc_dev_get_next()
7783		 * will grab and release l2arc_dev_mtx.
7784		 */
7785		if ((dev = l2arc_dev_get_next()) == NULL)
7786			continue;
7787
7788		spa = dev->l2ad_spa;
7789		ASSERT3P(spa, !=, NULL);
7790
7791		/*
7792		 * If the pool is read-only then force the feed thread to
7793		 * sleep a little longer.
7794		 */
7795		if (!spa_writeable(spa)) {
7796			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7797			spa_config_exit(spa, SCL_L2ARC, dev);
7798			continue;
7799		}
7800
7801		/*
7802		 * Avoid contributing to memory pressure.
7803		 */
7804		if (arc_reclaim_needed()) {
7805			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7806			spa_config_exit(spa, SCL_L2ARC, dev);
7807			continue;
7808		}
7809
7810		ARCSTAT_BUMP(arcstat_l2_feeds);
7811
7812		size = l2arc_write_size();
7813
7814		/*
7815		 * Evict L2ARC buffers that will be overwritten.
7816		 */
7817		l2arc_evict(dev, size, B_FALSE);
7818
7819		/*
7820		 * Write ARC buffers.
7821		 */
7822		wrote = l2arc_write_buffers(spa, dev, size);
7823
7824		/*
7825		 * Calculate interval between writes.
7826		 */
7827		next = l2arc_write_interval(begin, size, wrote);
7828		spa_config_exit(spa, SCL_L2ARC, dev);
7829	}
7830
7831	l2arc_thread_exit = 0;
7832	cv_broadcast(&l2arc_feed_thr_cv);
7833	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7834	thread_exit();
7835}
7836
7837boolean_t
7838l2arc_vdev_present(vdev_t *vd)
7839{
7840	l2arc_dev_t *dev;
7841
7842	mutex_enter(&l2arc_dev_mtx);
7843	for (dev = list_head(l2arc_dev_list); dev != NULL;
7844	    dev = list_next(l2arc_dev_list, dev)) {
7845		if (dev->l2ad_vdev == vd)
7846			break;
7847	}
7848	mutex_exit(&l2arc_dev_mtx);
7849
7850	return (dev != NULL);
7851}
7852
7853/*
7854 * Add a vdev for use by the L2ARC.  By this point the spa has already
7855 * validated the vdev and opened it.
7856 */
7857void
7858l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7859{
7860	l2arc_dev_t *adddev;
7861
7862	ASSERT(!l2arc_vdev_present(vd));
7863
7864	vdev_ashift_optimize(vd);
7865
7866	/*
7867	 * Create a new l2arc device entry.
7868	 */
7869	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7870	adddev->l2ad_spa = spa;
7871	adddev->l2ad_vdev = vd;
7872	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7873	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7874	adddev->l2ad_hand = adddev->l2ad_start;
7875	adddev->l2ad_first = B_TRUE;
7876	adddev->l2ad_writing = B_FALSE;
7877
7878	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7879	/*
7880	 * This is a list of all ARC buffers that are still valid on the
7881	 * device.
7882	 */
7883	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7884	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7885
7886	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7887	refcount_create(&adddev->l2ad_alloc);
7888
7889	/*
7890	 * Add device to global list
7891	 */
7892	mutex_enter(&l2arc_dev_mtx);
7893	list_insert_head(l2arc_dev_list, adddev);
7894	atomic_inc_64(&l2arc_ndev);
7895	mutex_exit(&l2arc_dev_mtx);
7896}
7897
7898/*
7899 * Remove a vdev from the L2ARC.
7900 */
7901void
7902l2arc_remove_vdev(vdev_t *vd)
7903{
7904	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7905
7906	/*
7907	 * Find the device by vdev
7908	 */
7909	mutex_enter(&l2arc_dev_mtx);
7910	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7911		nextdev = list_next(l2arc_dev_list, dev);
7912		if (vd == dev->l2ad_vdev) {
7913			remdev = dev;
7914			break;
7915		}
7916	}
7917	ASSERT3P(remdev, !=, NULL);
7918
7919	/*
7920	 * Remove device from global list
7921	 */
7922	list_remove(l2arc_dev_list, remdev);
7923	l2arc_dev_last = NULL;		/* may have been invalidated */
7924	atomic_dec_64(&l2arc_ndev);
7925	mutex_exit(&l2arc_dev_mtx);
7926
7927	/*
7928	 * Clear all buflists and ARC references.  L2ARC device flush.
7929	 */
7930	l2arc_evict(remdev, 0, B_TRUE);
7931	list_destroy(&remdev->l2ad_buflist);
7932	mutex_destroy(&remdev->l2ad_mtx);
7933	refcount_destroy(&remdev->l2ad_alloc);
7934	kmem_free(remdev, sizeof (l2arc_dev_t));
7935}
7936
7937void
7938l2arc_init(void)
7939{
7940	l2arc_thread_exit = 0;
7941	l2arc_ndev = 0;
7942	l2arc_writes_sent = 0;
7943	l2arc_writes_done = 0;
7944
7945	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7946	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7947	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7948	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7949
7950	l2arc_dev_list = &L2ARC_dev_list;
7951	l2arc_free_on_write = &L2ARC_free_on_write;
7952	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7953	    offsetof(l2arc_dev_t, l2ad_node));
7954	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7955	    offsetof(l2arc_data_free_t, l2df_list_node));
7956}
7957
7958void
7959l2arc_fini(void)
7960{
7961	/*
7962	 * This is called from dmu_fini(), which is called from spa_fini();
7963	 * Because of this, we can assume that all l2arc devices have
7964	 * already been removed when the pools themselves were removed.
7965	 */
7966
7967	l2arc_do_free_on_write();
7968
7969	mutex_destroy(&l2arc_feed_thr_lock);
7970	cv_destroy(&l2arc_feed_thr_cv);
7971	mutex_destroy(&l2arc_dev_mtx);
7972	mutex_destroy(&l2arc_free_on_write_mtx);
7973
7974	list_destroy(l2arc_dev_list);
7975	list_destroy(l2arc_free_on_write);
7976}
7977
7978void
7979l2arc_start(void)
7980{
7981	if (!(spa_mode_global & FWRITE))
7982		return;
7983
7984	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7985	    TS_RUN, minclsyspri);
7986}
7987
7988void
7989l2arc_stop(void)
7990{
7991	if (!(spa_mode_global & FWRITE))
7992		return;
7993
7994	mutex_enter(&l2arc_feed_thr_lock);
7995	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7996	l2arc_thread_exit = 1;
7997	while (l2arc_thread_exit != 0)
7998		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7999	mutex_exit(&l2arc_feed_thr_lock);
8000}
8001