arc.c revision 323667
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Note that the majority of the performance stats are manipulated
103 * with atomic operations.
104 *
105 * The L2ARC uses the l2ad_mtx on each vdev for the following:
106 *
107 *	- L2ARC buflist creation
108 *	- L2ARC buflist eviction
109 *	- L2ARC write completion, which walks L2ARC buflists
110 *	- ARC header destruction, as it removes from L2ARC buflists
111 *	- ARC header release, as it removes from L2ARC buflists
112 */
113
114/*
115 * ARC operation:
116 *
117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118 * This structure can point either to a block that is still in the cache or to
119 * one that is only accessible in an L2 ARC device, or it can provide
120 * information about a block that was recently evicted. If a block is
121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122 * information to retrieve it from the L2ARC device. This information is
123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124 * that is in this state cannot access the data directly.
125 *
126 * Blocks that are actively being referenced or have not been evicted
127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128 * the arc_buf_hdr_t that will point to the data block in memory. A block can
129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132 *
133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134 * ability to store the physical data (b_pabd) associated with the DVA of the
135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136 * it will match its on-disk compression characteristics. This behavior can be
137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138 * compressed ARC functionality is disabled, the b_pabd will point to an
139 * uncompressed version of the on-disk data.
140 *
141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144 * consumer. The ARC will provide references to this data and will keep it
145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146 * data block and will evict any arc_buf_t that is no longer referenced. The
147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148 * "overhead_size" kstat.
149 *
150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151 * compressed form. The typical case is that consumers will want uncompressed
152 * data, and when that happens a new data buffer is allocated where the data is
153 * decompressed for them to use. Currently the only consumer who wants
154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156 * with the arc_buf_hdr_t.
157 *
158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159 * first one is owned by a compressed send consumer (and therefore references
160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161 * used by any other consumer (and has its own uncompressed copy of the data
162 * buffer).
163 *
164 *   arc_buf_hdr_t
165 *   +-----------+
166 *   | fields    |
167 *   | common to |
168 *   | L1- and   |
169 *   | L2ARC     |
170 *   +-----------+
171 *   | l2arc_buf_hdr_t
172 *   |           |
173 *   +-----------+
174 *   | l1arc_buf_hdr_t
175 *   |           |              arc_buf_t
176 *   | b_buf     +------------>+-----------+      arc_buf_t
177 *   | b_pabd    +-+           |b_next     +---->+-----------+
178 *   +-----------+ |           |-----------|     |b_next     +-->NULL
179 *                 |           |b_comp = T |     +-----------+
180 *                 |           |b_data     +-+   |b_comp = F |
181 *                 |           +-----------+ |   |b_data     +-+
182 *                 +->+------+               |   +-----------+ |
183 *        compressed  |      |               |                 |
184 *           data     |      |<--------------+                 | uncompressed
185 *                    +------+          compressed,            |     data
186 *                                        shared               +-->+------+
187 *                                         data                    |      |
188 *                                                                 |      |
189 *                                                                 +------+
190 *
191 * When a consumer reads a block, the ARC must first look to see if the
192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193 * arc_buf_t and either copies uncompressed data into a new data buffer from an
194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196 * hdr is compressed and the desired compression characteristics of the
197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200 * be anywhere in the hdr's list.
201 *
202 * The diagram below shows an example of an uncompressed ARC hdr that is
203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204 * the last element in the buf list):
205 *
206 *                arc_buf_hdr_t
207 *                +-----------+
208 *                |           |
209 *                |           |
210 *                |           |
211 *                +-----------+
212 * l2arc_buf_hdr_t|           |
213 *                |           |
214 *                +-----------+
215 * l1arc_buf_hdr_t|           |
216 *                |           |                 arc_buf_t    (shared)
217 *                |    b_buf  +------------>+---------+      arc_buf_t
218 *                |           |             |b_next   +---->+---------+
219 *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220 *                +-----------+ |           |         |     +---------+
221 *                              |           |b_data   +-+   |         |
222 *                              |           +---------+ |   |b_data   +-+
223 *                              +->+------+             |   +---------+ |
224 *                                 |      |             |               |
225 *                   uncompressed  |      |             |               |
226 *                        data     +------+             |               |
227 *                                    ^                 +->+------+     |
228 *                                    |       uncompressed |      |     |
229 *                                    |           data     |      |     |
230 *                                    |                    +------+     |
231 *                                    +---------------------------------+
232 *
233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234 * since the physical block is about to be rewritten. The new data contents
235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236 * it may compress the data before writing it to disk. The ARC will be called
237 * with the transformed data and will bcopy the transformed on-disk block into
238 * a newly allocated b_pabd. Writes are always done into buffers which have
239 * either been loaned (and hence are new and don't have other readers) or
240 * buffers which have been released (and hence have their own hdr, if there
241 * were originally other readers of the buf's original hdr). This ensures that
242 * the ARC only needs to update a single buf and its hdr after a write occurs.
243 *
244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246 * that when compressed ARC is enabled that the L2ARC blocks are identical
247 * to the on-disk block in the main data pool. This provides a significant
248 * advantage since the ARC can leverage the bp's checksum when reading from the
249 * L2ARC to determine if the contents are valid. However, if the compressed
250 * ARC is disabled, then the L2ARC's block must be transformed to look
251 * like the physical block in the main data pool before comparing the
252 * checksum and determining its validity.
253 */
254
255#include <sys/spa.h>
256#include <sys/zio.h>
257#include <sys/spa_impl.h>
258#include <sys/zio_compress.h>
259#include <sys/zio_checksum.h>
260#include <sys/zfs_context.h>
261#include <sys/arc.h>
262#include <sys/refcount.h>
263#include <sys/vdev.h>
264#include <sys/vdev_impl.h>
265#include <sys/dsl_pool.h>
266#include <sys/zio_checksum.h>
267#include <sys/multilist.h>
268#include <sys/abd.h>
269#ifdef _KERNEL
270#include <sys/dnlc.h>
271#include <sys/racct.h>
272#endif
273#include <sys/callb.h>
274#include <sys/kstat.h>
275#include <sys/trim_map.h>
276#include <zfs_fletcher.h>
277#include <sys/sdt.h>
278
279#include <machine/vmparam.h>
280
281#ifdef illumos
282#ifndef _KERNEL
283/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
284boolean_t arc_watch = B_FALSE;
285int arc_procfd;
286#endif
287#endif /* illumos */
288
289static kmutex_t		arc_reclaim_lock;
290static kcondvar_t	arc_reclaim_thread_cv;
291static boolean_t	arc_reclaim_thread_exit;
292static kcondvar_t	arc_reclaim_waiters_cv;
293
294static kmutex_t		arc_dnlc_evicts_lock;
295static kcondvar_t	arc_dnlc_evicts_cv;
296static boolean_t	arc_dnlc_evicts_thread_exit;
297
298uint_t arc_reduce_dnlc_percent = 3;
299
300/*
301 * The number of headers to evict in arc_evict_state_impl() before
302 * dropping the sublist lock and evicting from another sublist. A lower
303 * value means we're more likely to evict the "correct" header (i.e. the
304 * oldest header in the arc state), but comes with higher overhead
305 * (i.e. more invocations of arc_evict_state_impl()).
306 */
307int zfs_arc_evict_batch_limit = 10;
308
309/* number of seconds before growing cache again */
310static int		arc_grow_retry = 60;
311
312/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
313int		zfs_arc_overflow_shift = 8;
314
315/* shift of arc_c for calculating both min and max arc_p */
316static int		arc_p_min_shift = 4;
317
318/* log2(fraction of arc to reclaim) */
319static int		arc_shrink_shift = 7;
320
321/*
322 * log2(fraction of ARC which must be free to allow growing).
323 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
324 * when reading a new block into the ARC, we will evict an equal-sized block
325 * from the ARC.
326 *
327 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
328 * we will still not allow it to grow.
329 */
330int			arc_no_grow_shift = 5;
331
332
333/*
334 * minimum lifespan of a prefetch block in clock ticks
335 * (initialized in arc_init())
336 */
337static int		arc_min_prefetch_lifespan;
338
339/*
340 * If this percent of memory is free, don't throttle.
341 */
342int arc_lotsfree_percent = 10;
343
344static int arc_dead;
345extern boolean_t zfs_prefetch_disable;
346
347/*
348 * The arc has filled available memory and has now warmed up.
349 */
350static boolean_t arc_warm;
351
352/*
353 * These tunables are for performance analysis.
354 */
355uint64_t zfs_arc_max;
356uint64_t zfs_arc_min;
357uint64_t zfs_arc_meta_limit = 0;
358uint64_t zfs_arc_meta_min = 0;
359int zfs_arc_grow_retry = 0;
360int zfs_arc_shrink_shift = 0;
361int zfs_arc_no_grow_shift = 0;
362int zfs_arc_p_min_shift = 0;
363uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
364u_int zfs_arc_free_target = 0;
365
366/* Absolute min for arc min / max is 16MB. */
367static uint64_t arc_abs_min = 16 << 20;
368
369boolean_t zfs_compressed_arc_enabled = B_TRUE;
370
371static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
372static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
373static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
374static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
375static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
376
377#if defined(__FreeBSD__) && defined(_KERNEL)
378static void
379arc_free_target_init(void *unused __unused)
380{
381
382	zfs_arc_free_target = vm_pageout_wakeup_thresh;
383}
384SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
385    arc_free_target_init, NULL);
386
387TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
388TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
389TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
390TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
391TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
392SYSCTL_DECL(_vfs_zfs);
393SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
394    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
395SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
396    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
397SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
398    0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
399    "log2(fraction of ARC which must be free to allow growing)");
400SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
401    &zfs_arc_average_blocksize, 0,
402    "ARC average blocksize");
403SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
404    &arc_shrink_shift, 0,
405    "log2(fraction of arc to reclaim)");
406SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
407    &arc_grow_retry, 0,
408    "Wait in seconds before considering growing ARC");
409SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
410    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
411
412/*
413 * We don't have a tunable for arc_free_target due to the dependency on
414 * pagedaemon initialisation.
415 */
416SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
417    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
418    sysctl_vfs_zfs_arc_free_target, "IU",
419    "Desired number of free pages below which ARC triggers reclaim");
420
421static int
422sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
423{
424	u_int val;
425	int err;
426
427	val = zfs_arc_free_target;
428	err = sysctl_handle_int(oidp, &val, 0, req);
429	if (err != 0 || req->newptr == NULL)
430		return (err);
431
432	if (val < minfree)
433		return (EINVAL);
434	if (val > vm_cnt.v_page_count)
435		return (EINVAL);
436
437	zfs_arc_free_target = val;
438
439	return (0);
440}
441
442/*
443 * Must be declared here, before the definition of corresponding kstat
444 * macro which uses the same names will confuse the compiler.
445 */
446SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
447    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
448    sysctl_vfs_zfs_arc_meta_limit, "QU",
449    "ARC metadata limit");
450#endif
451
452/*
453 * Note that buffers can be in one of 6 states:
454 *	ARC_anon	- anonymous (discussed below)
455 *	ARC_mru		- recently used, currently cached
456 *	ARC_mru_ghost	- recentely used, no longer in cache
457 *	ARC_mfu		- frequently used, currently cached
458 *	ARC_mfu_ghost	- frequently used, no longer in cache
459 *	ARC_l2c_only	- exists in L2ARC but not other states
460 * When there are no active references to the buffer, they are
461 * are linked onto a list in one of these arc states.  These are
462 * the only buffers that can be evicted or deleted.  Within each
463 * state there are multiple lists, one for meta-data and one for
464 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
465 * etc.) is tracked separately so that it can be managed more
466 * explicitly: favored over data, limited explicitly.
467 *
468 * Anonymous buffers are buffers that are not associated with
469 * a DVA.  These are buffers that hold dirty block copies
470 * before they are written to stable storage.  By definition,
471 * they are "ref'd" and are considered part of arc_mru
472 * that cannot be freed.  Generally, they will aquire a DVA
473 * as they are written and migrate onto the arc_mru list.
474 *
475 * The ARC_l2c_only state is for buffers that are in the second
476 * level ARC but no longer in any of the ARC_m* lists.  The second
477 * level ARC itself may also contain buffers that are in any of
478 * the ARC_m* states - meaning that a buffer can exist in two
479 * places.  The reason for the ARC_l2c_only state is to keep the
480 * buffer header in the hash table, so that reads that hit the
481 * second level ARC benefit from these fast lookups.
482 */
483
484typedef struct arc_state {
485	/*
486	 * list of evictable buffers
487	 */
488	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
489	/*
490	 * total amount of evictable data in this state
491	 */
492	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
493	/*
494	 * total amount of data in this state; this includes: evictable,
495	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
496	 */
497	refcount_t arcs_size;
498} arc_state_t;
499
500/* The 6 states: */
501static arc_state_t ARC_anon;
502static arc_state_t ARC_mru;
503static arc_state_t ARC_mru_ghost;
504static arc_state_t ARC_mfu;
505static arc_state_t ARC_mfu_ghost;
506static arc_state_t ARC_l2c_only;
507
508typedef struct arc_stats {
509	kstat_named_t arcstat_hits;
510	kstat_named_t arcstat_misses;
511	kstat_named_t arcstat_demand_data_hits;
512	kstat_named_t arcstat_demand_data_misses;
513	kstat_named_t arcstat_demand_metadata_hits;
514	kstat_named_t arcstat_demand_metadata_misses;
515	kstat_named_t arcstat_prefetch_data_hits;
516	kstat_named_t arcstat_prefetch_data_misses;
517	kstat_named_t arcstat_prefetch_metadata_hits;
518	kstat_named_t arcstat_prefetch_metadata_misses;
519	kstat_named_t arcstat_mru_hits;
520	kstat_named_t arcstat_mru_ghost_hits;
521	kstat_named_t arcstat_mfu_hits;
522	kstat_named_t arcstat_mfu_ghost_hits;
523	kstat_named_t arcstat_allocated;
524	kstat_named_t arcstat_deleted;
525	/*
526	 * Number of buffers that could not be evicted because the hash lock
527	 * was held by another thread.  The lock may not necessarily be held
528	 * by something using the same buffer, since hash locks are shared
529	 * by multiple buffers.
530	 */
531	kstat_named_t arcstat_mutex_miss;
532	/*
533	 * Number of buffers skipped because they have I/O in progress, are
534	 * indrect prefetch buffers that have not lived long enough, or are
535	 * not from the spa we're trying to evict from.
536	 */
537	kstat_named_t arcstat_evict_skip;
538	/*
539	 * Number of times arc_evict_state() was unable to evict enough
540	 * buffers to reach it's target amount.
541	 */
542	kstat_named_t arcstat_evict_not_enough;
543	kstat_named_t arcstat_evict_l2_cached;
544	kstat_named_t arcstat_evict_l2_eligible;
545	kstat_named_t arcstat_evict_l2_ineligible;
546	kstat_named_t arcstat_evict_l2_skip;
547	kstat_named_t arcstat_hash_elements;
548	kstat_named_t arcstat_hash_elements_max;
549	kstat_named_t arcstat_hash_collisions;
550	kstat_named_t arcstat_hash_chains;
551	kstat_named_t arcstat_hash_chain_max;
552	kstat_named_t arcstat_p;
553	kstat_named_t arcstat_c;
554	kstat_named_t arcstat_c_min;
555	kstat_named_t arcstat_c_max;
556	kstat_named_t arcstat_size;
557	/*
558	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
559	 * Note that the compressed bytes may match the uncompressed bytes
560	 * if the block is either not compressed or compressed arc is disabled.
561	 */
562	kstat_named_t arcstat_compressed_size;
563	/*
564	 * Uncompressed size of the data stored in b_pabd. If compressed
565	 * arc is disabled then this value will be identical to the stat
566	 * above.
567	 */
568	kstat_named_t arcstat_uncompressed_size;
569	/*
570	 * Number of bytes stored in all the arc_buf_t's. This is classified
571	 * as "overhead" since this data is typically short-lived and will
572	 * be evicted from the arc when it becomes unreferenced unless the
573	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
574	 * values have been set (see comment in dbuf.c for more information).
575	 */
576	kstat_named_t arcstat_overhead_size;
577	/*
578	 * Number of bytes consumed by internal ARC structures necessary
579	 * for tracking purposes; these structures are not actually
580	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
581	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
582	 * caches), and arc_buf_t structures (allocated via arc_buf_t
583	 * cache).
584	 */
585	kstat_named_t arcstat_hdr_size;
586	/*
587	 * Number of bytes consumed by ARC buffers of type equal to
588	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
589	 * on disk user data (e.g. plain file contents).
590	 */
591	kstat_named_t arcstat_data_size;
592	/*
593	 * Number of bytes consumed by ARC buffers of type equal to
594	 * ARC_BUFC_METADATA. This is generally consumed by buffers
595	 * backing on disk data that is used for internal ZFS
596	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
597	 */
598	kstat_named_t arcstat_metadata_size;
599	/*
600	 * Number of bytes consumed by various buffers and structures
601	 * not actually backed with ARC buffers. This includes bonus
602	 * buffers (allocated directly via zio_buf_* functions),
603	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
604	 * cache), and dnode_t structures (allocated via dnode_t cache).
605	 */
606	kstat_named_t arcstat_other_size;
607	/*
608	 * Total number of bytes consumed by ARC buffers residing in the
609	 * arc_anon state. This includes *all* buffers in the arc_anon
610	 * state; e.g. data, metadata, evictable, and unevictable buffers
611	 * are all included in this value.
612	 */
613	kstat_named_t arcstat_anon_size;
614	/*
615	 * Number of bytes consumed by ARC buffers that meet the
616	 * following criteria: backing buffers of type ARC_BUFC_DATA,
617	 * residing in the arc_anon state, and are eligible for eviction
618	 * (e.g. have no outstanding holds on the buffer).
619	 */
620	kstat_named_t arcstat_anon_evictable_data;
621	/*
622	 * Number of bytes consumed by ARC buffers that meet the
623	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
624	 * residing in the arc_anon state, and are eligible for eviction
625	 * (e.g. have no outstanding holds on the buffer).
626	 */
627	kstat_named_t arcstat_anon_evictable_metadata;
628	/*
629	 * Total number of bytes consumed by ARC buffers residing in the
630	 * arc_mru state. This includes *all* buffers in the arc_mru
631	 * state; e.g. data, metadata, evictable, and unevictable buffers
632	 * are all included in this value.
633	 */
634	kstat_named_t arcstat_mru_size;
635	/*
636	 * Number of bytes consumed by ARC buffers that meet the
637	 * following criteria: backing buffers of type ARC_BUFC_DATA,
638	 * residing in the arc_mru state, and are eligible for eviction
639	 * (e.g. have no outstanding holds on the buffer).
640	 */
641	kstat_named_t arcstat_mru_evictable_data;
642	/*
643	 * Number of bytes consumed by ARC buffers that meet the
644	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
645	 * residing in the arc_mru state, and are eligible for eviction
646	 * (e.g. have no outstanding holds on the buffer).
647	 */
648	kstat_named_t arcstat_mru_evictable_metadata;
649	/*
650	 * Total number of bytes that *would have been* consumed by ARC
651	 * buffers in the arc_mru_ghost state. The key thing to note
652	 * here, is the fact that this size doesn't actually indicate
653	 * RAM consumption. The ghost lists only consist of headers and
654	 * don't actually have ARC buffers linked off of these headers.
655	 * Thus, *if* the headers had associated ARC buffers, these
656	 * buffers *would have* consumed this number of bytes.
657	 */
658	kstat_named_t arcstat_mru_ghost_size;
659	/*
660	 * Number of bytes that *would have been* consumed by ARC
661	 * buffers that are eligible for eviction, of type
662	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
663	 */
664	kstat_named_t arcstat_mru_ghost_evictable_data;
665	/*
666	 * Number of bytes that *would have been* consumed by ARC
667	 * buffers that are eligible for eviction, of type
668	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
669	 */
670	kstat_named_t arcstat_mru_ghost_evictable_metadata;
671	/*
672	 * Total number of bytes consumed by ARC buffers residing in the
673	 * arc_mfu state. This includes *all* buffers in the arc_mfu
674	 * state; e.g. data, metadata, evictable, and unevictable buffers
675	 * are all included in this value.
676	 */
677	kstat_named_t arcstat_mfu_size;
678	/*
679	 * Number of bytes consumed by ARC buffers that are eligible for
680	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
681	 * state.
682	 */
683	kstat_named_t arcstat_mfu_evictable_data;
684	/*
685	 * Number of bytes consumed by ARC buffers that are eligible for
686	 * eviction, of type ARC_BUFC_METADATA, and reside in the
687	 * arc_mfu state.
688	 */
689	kstat_named_t arcstat_mfu_evictable_metadata;
690	/*
691	 * Total number of bytes that *would have been* consumed by ARC
692	 * buffers in the arc_mfu_ghost state. See the comment above
693	 * arcstat_mru_ghost_size for more details.
694	 */
695	kstat_named_t arcstat_mfu_ghost_size;
696	/*
697	 * Number of bytes that *would have been* consumed by ARC
698	 * buffers that are eligible for eviction, of type
699	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
700	 */
701	kstat_named_t arcstat_mfu_ghost_evictable_data;
702	/*
703	 * Number of bytes that *would have been* consumed by ARC
704	 * buffers that are eligible for eviction, of type
705	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
706	 */
707	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
708	kstat_named_t arcstat_l2_hits;
709	kstat_named_t arcstat_l2_misses;
710	kstat_named_t arcstat_l2_feeds;
711	kstat_named_t arcstat_l2_rw_clash;
712	kstat_named_t arcstat_l2_read_bytes;
713	kstat_named_t arcstat_l2_write_bytes;
714	kstat_named_t arcstat_l2_writes_sent;
715	kstat_named_t arcstat_l2_writes_done;
716	kstat_named_t arcstat_l2_writes_error;
717	kstat_named_t arcstat_l2_writes_lock_retry;
718	kstat_named_t arcstat_l2_evict_lock_retry;
719	kstat_named_t arcstat_l2_evict_reading;
720	kstat_named_t arcstat_l2_evict_l1cached;
721	kstat_named_t arcstat_l2_free_on_write;
722	kstat_named_t arcstat_l2_abort_lowmem;
723	kstat_named_t arcstat_l2_cksum_bad;
724	kstat_named_t arcstat_l2_io_error;
725	kstat_named_t arcstat_l2_size;
726	kstat_named_t arcstat_l2_asize;
727	kstat_named_t arcstat_l2_hdr_size;
728	kstat_named_t arcstat_l2_write_trylock_fail;
729	kstat_named_t arcstat_l2_write_passed_headroom;
730	kstat_named_t arcstat_l2_write_spa_mismatch;
731	kstat_named_t arcstat_l2_write_in_l2;
732	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
733	kstat_named_t arcstat_l2_write_not_cacheable;
734	kstat_named_t arcstat_l2_write_full;
735	kstat_named_t arcstat_l2_write_buffer_iter;
736	kstat_named_t arcstat_l2_write_pios;
737	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
738	kstat_named_t arcstat_l2_write_buffer_list_iter;
739	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
740	kstat_named_t arcstat_memory_throttle_count;
741	kstat_named_t arcstat_meta_used;
742	kstat_named_t arcstat_meta_limit;
743	kstat_named_t arcstat_meta_max;
744	kstat_named_t arcstat_meta_min;
745	kstat_named_t arcstat_sync_wait_for_async;
746	kstat_named_t arcstat_demand_hit_predictive_prefetch;
747} arc_stats_t;
748
749static arc_stats_t arc_stats = {
750	{ "hits",			KSTAT_DATA_UINT64 },
751	{ "misses",			KSTAT_DATA_UINT64 },
752	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
753	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
754	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
755	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
756	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
757	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
758	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
759	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
760	{ "mru_hits",			KSTAT_DATA_UINT64 },
761	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
762	{ "mfu_hits",			KSTAT_DATA_UINT64 },
763	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
764	{ "allocated",			KSTAT_DATA_UINT64 },
765	{ "deleted",			KSTAT_DATA_UINT64 },
766	{ "mutex_miss",			KSTAT_DATA_UINT64 },
767	{ "evict_skip",			KSTAT_DATA_UINT64 },
768	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
769	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
770	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
771	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
772	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
773	{ "hash_elements",		KSTAT_DATA_UINT64 },
774	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
775	{ "hash_collisions",		KSTAT_DATA_UINT64 },
776	{ "hash_chains",		KSTAT_DATA_UINT64 },
777	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
778	{ "p",				KSTAT_DATA_UINT64 },
779	{ "c",				KSTAT_DATA_UINT64 },
780	{ "c_min",			KSTAT_DATA_UINT64 },
781	{ "c_max",			KSTAT_DATA_UINT64 },
782	{ "size",			KSTAT_DATA_UINT64 },
783	{ "compressed_size",		KSTAT_DATA_UINT64 },
784	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
785	{ "overhead_size",		KSTAT_DATA_UINT64 },
786	{ "hdr_size",			KSTAT_DATA_UINT64 },
787	{ "data_size",			KSTAT_DATA_UINT64 },
788	{ "metadata_size",		KSTAT_DATA_UINT64 },
789	{ "other_size",			KSTAT_DATA_UINT64 },
790	{ "anon_size",			KSTAT_DATA_UINT64 },
791	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
792	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
793	{ "mru_size",			KSTAT_DATA_UINT64 },
794	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
795	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
796	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
797	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
798	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
799	{ "mfu_size",			KSTAT_DATA_UINT64 },
800	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
801	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
802	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
803	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
804	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
805	{ "l2_hits",			KSTAT_DATA_UINT64 },
806	{ "l2_misses",			KSTAT_DATA_UINT64 },
807	{ "l2_feeds",			KSTAT_DATA_UINT64 },
808	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
809	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
810	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
811	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
812	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
813	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
814	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
815	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
816	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
817	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
818	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
819	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
820	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
821	{ "l2_io_error",		KSTAT_DATA_UINT64 },
822	{ "l2_size",			KSTAT_DATA_UINT64 },
823	{ "l2_asize",			KSTAT_DATA_UINT64 },
824	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
825	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
826	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
827	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
828	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
829	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
830	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
831	{ "l2_write_full",		KSTAT_DATA_UINT64 },
832	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
833	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
834	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
835	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
836	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
837	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
838	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
839	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
840	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
841	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
842	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
843	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
844};
845
846#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
847
848#define	ARCSTAT_INCR(stat, val) \
849	atomic_add_64(&arc_stats.stat.value.ui64, (val))
850
851#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
852#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
853
854#define	ARCSTAT_MAX(stat, val) {					\
855	uint64_t m;							\
856	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
857	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
858		continue;						\
859}
860
861#define	ARCSTAT_MAXSTAT(stat) \
862	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
863
864/*
865 * We define a macro to allow ARC hits/misses to be easily broken down by
866 * two separate conditions, giving a total of four different subtypes for
867 * each of hits and misses (so eight statistics total).
868 */
869#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
870	if (cond1) {							\
871		if (cond2) {						\
872			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
873		} else {						\
874			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
875		}							\
876	} else {							\
877		if (cond2) {						\
878			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
879		} else {						\
880			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
881		}							\
882	}
883
884kstat_t			*arc_ksp;
885static arc_state_t	*arc_anon;
886static arc_state_t	*arc_mru;
887static arc_state_t	*arc_mru_ghost;
888static arc_state_t	*arc_mfu;
889static arc_state_t	*arc_mfu_ghost;
890static arc_state_t	*arc_l2c_only;
891
892/*
893 * There are several ARC variables that are critical to export as kstats --
894 * but we don't want to have to grovel around in the kstat whenever we wish to
895 * manipulate them.  For these variables, we therefore define them to be in
896 * terms of the statistic variable.  This assures that we are not introducing
897 * the possibility of inconsistency by having shadow copies of the variables,
898 * while still allowing the code to be readable.
899 */
900#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
901#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
902#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
903#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
904#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
905#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
906#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
907#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
908#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
909
910/* compressed size of entire arc */
911#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
912/* uncompressed size of entire arc */
913#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
914/* number of bytes in the arc from arc_buf_t's */
915#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
916
917static int		arc_no_grow;	/* Don't try to grow cache size */
918static uint64_t		arc_tempreserve;
919static uint64_t		arc_loaned_bytes;
920
921typedef struct arc_callback arc_callback_t;
922
923struct arc_callback {
924	void			*acb_private;
925	arc_done_func_t		*acb_done;
926	arc_buf_t		*acb_buf;
927	boolean_t		acb_compressed;
928	zio_t			*acb_zio_dummy;
929	arc_callback_t		*acb_next;
930};
931
932typedef struct arc_write_callback arc_write_callback_t;
933
934struct arc_write_callback {
935	void		*awcb_private;
936	arc_done_func_t	*awcb_ready;
937	arc_done_func_t	*awcb_children_ready;
938	arc_done_func_t	*awcb_physdone;
939	arc_done_func_t	*awcb_done;
940	arc_buf_t	*awcb_buf;
941};
942
943/*
944 * ARC buffers are separated into multiple structs as a memory saving measure:
945 *   - Common fields struct, always defined, and embedded within it:
946 *       - L2-only fields, always allocated but undefined when not in L2ARC
947 *       - L1-only fields, only allocated when in L1ARC
948 *
949 *           Buffer in L1                     Buffer only in L2
950 *    +------------------------+          +------------------------+
951 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
952 *    |                        |          |                        |
953 *    |                        |          |                        |
954 *    |                        |          |                        |
955 *    +------------------------+          +------------------------+
956 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
957 *    | (undefined if L1-only) |          |                        |
958 *    +------------------------+          +------------------------+
959 *    | l1arc_buf_hdr_t        |
960 *    |                        |
961 *    |                        |
962 *    |                        |
963 *    |                        |
964 *    +------------------------+
965 *
966 * Because it's possible for the L2ARC to become extremely large, we can wind
967 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
968 * is minimized by only allocating the fields necessary for an L1-cached buffer
969 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
970 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
971 * words in pointers. arc_hdr_realloc() is used to switch a header between
972 * these two allocation states.
973 */
974typedef struct l1arc_buf_hdr {
975	kmutex_t		b_freeze_lock;
976	zio_cksum_t		*b_freeze_cksum;
977#ifdef ZFS_DEBUG
978	/*
979	 * Used for debugging with kmem_flags - by allocating and freeing
980	 * b_thawed when the buffer is thawed, we get a record of the stack
981	 * trace that thawed it.
982	 */
983	void			*b_thawed;
984#endif
985
986	arc_buf_t		*b_buf;
987	uint32_t		b_bufcnt;
988	/* for waiting on writes to complete */
989	kcondvar_t		b_cv;
990	uint8_t			b_byteswap;
991
992	/* protected by arc state mutex */
993	arc_state_t		*b_state;
994	multilist_node_t	b_arc_node;
995
996	/* updated atomically */
997	clock_t			b_arc_access;
998
999	/* self protecting */
1000	refcount_t		b_refcnt;
1001
1002	arc_callback_t		*b_acb;
1003	abd_t			*b_pabd;
1004} l1arc_buf_hdr_t;
1005
1006typedef struct l2arc_dev l2arc_dev_t;
1007
1008typedef struct l2arc_buf_hdr {
1009	/* protected by arc_buf_hdr mutex */
1010	l2arc_dev_t		*b_dev;		/* L2ARC device */
1011	uint64_t		b_daddr;	/* disk address, offset byte */
1012
1013	list_node_t		b_l2node;
1014} l2arc_buf_hdr_t;
1015
1016struct arc_buf_hdr {
1017	/* protected by hash lock */
1018	dva_t			b_dva;
1019	uint64_t		b_birth;
1020
1021	arc_buf_contents_t	b_type;
1022	arc_buf_hdr_t		*b_hash_next;
1023	arc_flags_t		b_flags;
1024
1025	/*
1026	 * This field stores the size of the data buffer after
1027	 * compression, and is set in the arc's zio completion handlers.
1028	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1029	 *
1030	 * While the block pointers can store up to 32MB in their psize
1031	 * field, we can only store up to 32MB minus 512B. This is due
1032	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1033	 * a field of zeros represents 512B in the bp). We can't use a
1034	 * bias of 1 since we need to reserve a psize of zero, here, to
1035	 * represent holes and embedded blocks.
1036	 *
1037	 * This isn't a problem in practice, since the maximum size of a
1038	 * buffer is limited to 16MB, so we never need to store 32MB in
1039	 * this field. Even in the upstream illumos code base, the
1040	 * maximum size of a buffer is limited to 16MB.
1041	 */
1042	uint16_t		b_psize;
1043
1044	/*
1045	 * This field stores the size of the data buffer before
1046	 * compression, and cannot change once set. It is in units
1047	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1048	 */
1049	uint16_t		b_lsize;	/* immutable */
1050	uint64_t		b_spa;		/* immutable */
1051
1052	/* L2ARC fields. Undefined when not in L2ARC. */
1053	l2arc_buf_hdr_t		b_l2hdr;
1054	/* L1ARC fields. Undefined when in l2arc_only state */
1055	l1arc_buf_hdr_t		b_l1hdr;
1056};
1057
1058#if defined(__FreeBSD__) && defined(_KERNEL)
1059static int
1060sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1061{
1062	uint64_t val;
1063	int err;
1064
1065	val = arc_meta_limit;
1066	err = sysctl_handle_64(oidp, &val, 0, req);
1067	if (err != 0 || req->newptr == NULL)
1068		return (err);
1069
1070        if (val <= 0 || val > arc_c_max)
1071		return (EINVAL);
1072
1073	arc_meta_limit = val;
1074	return (0);
1075}
1076
1077static int
1078sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
1079{
1080	uint32_t val;
1081	int err;
1082
1083	val = arc_no_grow_shift;
1084	err = sysctl_handle_32(oidp, &val, 0, req);
1085	if (err != 0 || req->newptr == NULL)
1086		return (err);
1087
1088        if (val >= arc_shrink_shift)
1089		return (EINVAL);
1090
1091	arc_no_grow_shift = val;
1092	return (0);
1093}
1094
1095static int
1096sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1097{
1098	uint64_t val;
1099	int err;
1100
1101	val = zfs_arc_max;
1102	err = sysctl_handle_64(oidp, &val, 0, req);
1103	if (err != 0 || req->newptr == NULL)
1104		return (err);
1105
1106	if (zfs_arc_max == 0) {
1107		/* Loader tunable so blindly set */
1108		zfs_arc_max = val;
1109		return (0);
1110	}
1111
1112	if (val < arc_abs_min || val > kmem_size())
1113		return (EINVAL);
1114	if (val < arc_c_min)
1115		return (EINVAL);
1116	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1117		return (EINVAL);
1118
1119	arc_c_max = val;
1120
1121	arc_c = arc_c_max;
1122        arc_p = (arc_c >> 1);
1123
1124	if (zfs_arc_meta_limit == 0) {
1125		/* limit meta-data to 1/4 of the arc capacity */
1126		arc_meta_limit = arc_c_max / 4;
1127	}
1128
1129	/* if kmem_flags are set, lets try to use less memory */
1130	if (kmem_debugging())
1131		arc_c = arc_c / 2;
1132
1133	zfs_arc_max = arc_c;
1134
1135	return (0);
1136}
1137
1138static int
1139sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1140{
1141	uint64_t val;
1142	int err;
1143
1144	val = zfs_arc_min;
1145	err = sysctl_handle_64(oidp, &val, 0, req);
1146	if (err != 0 || req->newptr == NULL)
1147		return (err);
1148
1149	if (zfs_arc_min == 0) {
1150		/* Loader tunable so blindly set */
1151		zfs_arc_min = val;
1152		return (0);
1153	}
1154
1155	if (val < arc_abs_min || val > arc_c_max)
1156		return (EINVAL);
1157
1158	arc_c_min = val;
1159
1160	if (zfs_arc_meta_min == 0)
1161                arc_meta_min = arc_c_min / 2;
1162
1163	if (arc_c < arc_c_min)
1164                arc_c = arc_c_min;
1165
1166	zfs_arc_min = arc_c_min;
1167
1168	return (0);
1169}
1170#endif
1171
1172#define	GHOST_STATE(state)	\
1173	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1174	(state) == arc_l2c_only)
1175
1176#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1177#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1178#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1179#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1180#define	HDR_COMPRESSION_ENABLED(hdr)	\
1181	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1182
1183#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1184#define	HDR_L2_READING(hdr)	\
1185	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1186	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1187#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1188#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1189#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1190#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1191
1192#define	HDR_ISTYPE_METADATA(hdr)	\
1193	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1194#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1195
1196#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1197#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1198
1199/* For storing compression mode in b_flags */
1200#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1201
1202#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1203	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1204#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1205	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1206
1207#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1208#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1209#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1210
1211/*
1212 * Other sizes
1213 */
1214
1215#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1216#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1217
1218/*
1219 * Hash table routines
1220 */
1221
1222#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1223
1224struct ht_lock {
1225	kmutex_t	ht_lock;
1226#ifdef _KERNEL
1227	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1228#endif
1229};
1230
1231#define	BUF_LOCKS 256
1232typedef struct buf_hash_table {
1233	uint64_t ht_mask;
1234	arc_buf_hdr_t **ht_table;
1235	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1236} buf_hash_table_t;
1237
1238static buf_hash_table_t buf_hash_table;
1239
1240#define	BUF_HASH_INDEX(spa, dva, birth) \
1241	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1242#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1243#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1244#define	HDR_LOCK(hdr) \
1245	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1246
1247uint64_t zfs_crc64_table[256];
1248
1249/*
1250 * Level 2 ARC
1251 */
1252
1253#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1254#define	L2ARC_HEADROOM		2			/* num of writes */
1255/*
1256 * If we discover during ARC scan any buffers to be compressed, we boost
1257 * our headroom for the next scanning cycle by this percentage multiple.
1258 */
1259#define	L2ARC_HEADROOM_BOOST	200
1260#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1261#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1262
1263#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1264#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1265
1266/* L2ARC Performance Tunables */
1267uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1268uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1269uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1270uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1271uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1272uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1273boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1274boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1275boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1276
1277SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1278    &l2arc_write_max, 0, "max write size");
1279SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1280    &l2arc_write_boost, 0, "extra write during warmup");
1281SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1282    &l2arc_headroom, 0, "number of dev writes");
1283SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1284    &l2arc_feed_secs, 0, "interval seconds");
1285SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1286    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1287
1288SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1289    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1290SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1291    &l2arc_feed_again, 0, "turbo warmup");
1292SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1293    &l2arc_norw, 0, "no reads during writes");
1294
1295SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1296    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1297SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1298    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1299    "size of anonymous state");
1300SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1301    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1302    "size of anonymous state");
1303
1304SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1305    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1306SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1307    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1308    "size of metadata in mru state");
1309SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1310    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1311    "size of data in mru state");
1312
1313SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1314    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1315SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1316    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1317    "size of metadata in mru ghost state");
1318SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1319    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1320    "size of data in mru ghost state");
1321
1322SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1323    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1324SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1325    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1326    "size of metadata in mfu state");
1327SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1328    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1329    "size of data in mfu state");
1330
1331SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1332    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1333SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1334    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1335    "size of metadata in mfu ghost state");
1336SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1337    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1338    "size of data in mfu ghost state");
1339
1340SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1341    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1342
1343/*
1344 * L2ARC Internals
1345 */
1346struct l2arc_dev {
1347	vdev_t			*l2ad_vdev;	/* vdev */
1348	spa_t			*l2ad_spa;	/* spa */
1349	uint64_t		l2ad_hand;	/* next write location */
1350	uint64_t		l2ad_start;	/* first addr on device */
1351	uint64_t		l2ad_end;	/* last addr on device */
1352	boolean_t		l2ad_first;	/* first sweep through */
1353	boolean_t		l2ad_writing;	/* currently writing */
1354	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1355	list_t			l2ad_buflist;	/* buffer list */
1356	list_node_t		l2ad_node;	/* device list node */
1357	refcount_t		l2ad_alloc;	/* allocated bytes */
1358};
1359
1360static list_t L2ARC_dev_list;			/* device list */
1361static list_t *l2arc_dev_list;			/* device list pointer */
1362static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1363static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1364static list_t L2ARC_free_on_write;		/* free after write buf list */
1365static list_t *l2arc_free_on_write;		/* free after write list ptr */
1366static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1367static uint64_t l2arc_ndev;			/* number of devices */
1368
1369typedef struct l2arc_read_callback {
1370	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1371	blkptr_t		l2rcb_bp;		/* original blkptr */
1372	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1373	int			l2rcb_flags;		/* original flags */
1374	abd_t			*l2rcb_abd;		/* temporary buffer */
1375} l2arc_read_callback_t;
1376
1377typedef struct l2arc_write_callback {
1378	l2arc_dev_t	*l2wcb_dev;		/* device info */
1379	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1380} l2arc_write_callback_t;
1381
1382typedef struct l2arc_data_free {
1383	/* protected by l2arc_free_on_write_mtx */
1384	abd_t		*l2df_abd;
1385	size_t		l2df_size;
1386	arc_buf_contents_t l2df_type;
1387	list_node_t	l2df_list_node;
1388} l2arc_data_free_t;
1389
1390static kmutex_t l2arc_feed_thr_lock;
1391static kcondvar_t l2arc_feed_thr_cv;
1392static uint8_t l2arc_thread_exit;
1393
1394static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1395static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1396static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1397static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1398static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1399static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1400static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1401static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1402static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1403static boolean_t arc_is_overflowing();
1404static void arc_buf_watch(arc_buf_t *);
1405
1406static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1407static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1408static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1409static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1410
1411static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1412static void l2arc_read_done(zio_t *);
1413
1414static void
1415l2arc_trim(const arc_buf_hdr_t *hdr)
1416{
1417	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1418
1419	ASSERT(HDR_HAS_L2HDR(hdr));
1420	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1421
1422	if (HDR_GET_PSIZE(hdr) != 0) {
1423		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1424		    HDR_GET_PSIZE(hdr), 0);
1425	}
1426}
1427
1428static uint64_t
1429buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1430{
1431	uint8_t *vdva = (uint8_t *)dva;
1432	uint64_t crc = -1ULL;
1433	int i;
1434
1435	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1436
1437	for (i = 0; i < sizeof (dva_t); i++)
1438		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1439
1440	crc ^= (spa>>8) ^ birth;
1441
1442	return (crc);
1443}
1444
1445#define	HDR_EMPTY(hdr)						\
1446	((hdr)->b_dva.dva_word[0] == 0 &&			\
1447	(hdr)->b_dva.dva_word[1] == 0)
1448
1449#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1450	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1451	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1452	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1453
1454static void
1455buf_discard_identity(arc_buf_hdr_t *hdr)
1456{
1457	hdr->b_dva.dva_word[0] = 0;
1458	hdr->b_dva.dva_word[1] = 0;
1459	hdr->b_birth = 0;
1460}
1461
1462static arc_buf_hdr_t *
1463buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1464{
1465	const dva_t *dva = BP_IDENTITY(bp);
1466	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1467	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1468	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1469	arc_buf_hdr_t *hdr;
1470
1471	mutex_enter(hash_lock);
1472	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1473	    hdr = hdr->b_hash_next) {
1474		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1475			*lockp = hash_lock;
1476			return (hdr);
1477		}
1478	}
1479	mutex_exit(hash_lock);
1480	*lockp = NULL;
1481	return (NULL);
1482}
1483
1484/*
1485 * Insert an entry into the hash table.  If there is already an element
1486 * equal to elem in the hash table, then the already existing element
1487 * will be returned and the new element will not be inserted.
1488 * Otherwise returns NULL.
1489 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1490 */
1491static arc_buf_hdr_t *
1492buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1493{
1494	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1495	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1496	arc_buf_hdr_t *fhdr;
1497	uint32_t i;
1498
1499	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1500	ASSERT(hdr->b_birth != 0);
1501	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1502
1503	if (lockp != NULL) {
1504		*lockp = hash_lock;
1505		mutex_enter(hash_lock);
1506	} else {
1507		ASSERT(MUTEX_HELD(hash_lock));
1508	}
1509
1510	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1511	    fhdr = fhdr->b_hash_next, i++) {
1512		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1513			return (fhdr);
1514	}
1515
1516	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1517	buf_hash_table.ht_table[idx] = hdr;
1518	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1519
1520	/* collect some hash table performance data */
1521	if (i > 0) {
1522		ARCSTAT_BUMP(arcstat_hash_collisions);
1523		if (i == 1)
1524			ARCSTAT_BUMP(arcstat_hash_chains);
1525
1526		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1527	}
1528
1529	ARCSTAT_BUMP(arcstat_hash_elements);
1530	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1531
1532	return (NULL);
1533}
1534
1535static void
1536buf_hash_remove(arc_buf_hdr_t *hdr)
1537{
1538	arc_buf_hdr_t *fhdr, **hdrp;
1539	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1540
1541	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1542	ASSERT(HDR_IN_HASH_TABLE(hdr));
1543
1544	hdrp = &buf_hash_table.ht_table[idx];
1545	while ((fhdr = *hdrp) != hdr) {
1546		ASSERT3P(fhdr, !=, NULL);
1547		hdrp = &fhdr->b_hash_next;
1548	}
1549	*hdrp = hdr->b_hash_next;
1550	hdr->b_hash_next = NULL;
1551	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1552
1553	/* collect some hash table performance data */
1554	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1555
1556	if (buf_hash_table.ht_table[idx] &&
1557	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1558		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1559}
1560
1561/*
1562 * Global data structures and functions for the buf kmem cache.
1563 */
1564static kmem_cache_t *hdr_full_cache;
1565static kmem_cache_t *hdr_l2only_cache;
1566static kmem_cache_t *buf_cache;
1567
1568static void
1569buf_fini(void)
1570{
1571	int i;
1572
1573	kmem_free(buf_hash_table.ht_table,
1574	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1575	for (i = 0; i < BUF_LOCKS; i++)
1576		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1577	kmem_cache_destroy(hdr_full_cache);
1578	kmem_cache_destroy(hdr_l2only_cache);
1579	kmem_cache_destroy(buf_cache);
1580}
1581
1582/*
1583 * Constructor callback - called when the cache is empty
1584 * and a new buf is requested.
1585 */
1586/* ARGSUSED */
1587static int
1588hdr_full_cons(void *vbuf, void *unused, int kmflag)
1589{
1590	arc_buf_hdr_t *hdr = vbuf;
1591
1592	bzero(hdr, HDR_FULL_SIZE);
1593	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1594	refcount_create(&hdr->b_l1hdr.b_refcnt);
1595	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1596	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1597	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1598
1599	return (0);
1600}
1601
1602/* ARGSUSED */
1603static int
1604hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1605{
1606	arc_buf_hdr_t *hdr = vbuf;
1607
1608	bzero(hdr, HDR_L2ONLY_SIZE);
1609	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1610
1611	return (0);
1612}
1613
1614/* ARGSUSED */
1615static int
1616buf_cons(void *vbuf, void *unused, int kmflag)
1617{
1618	arc_buf_t *buf = vbuf;
1619
1620	bzero(buf, sizeof (arc_buf_t));
1621	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1622	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1623
1624	return (0);
1625}
1626
1627/*
1628 * Destructor callback - called when a cached buf is
1629 * no longer required.
1630 */
1631/* ARGSUSED */
1632static void
1633hdr_full_dest(void *vbuf, void *unused)
1634{
1635	arc_buf_hdr_t *hdr = vbuf;
1636
1637	ASSERT(HDR_EMPTY(hdr));
1638	cv_destroy(&hdr->b_l1hdr.b_cv);
1639	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1640	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1641	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1642	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1643}
1644
1645/* ARGSUSED */
1646static void
1647hdr_l2only_dest(void *vbuf, void *unused)
1648{
1649	arc_buf_hdr_t *hdr = vbuf;
1650
1651	ASSERT(HDR_EMPTY(hdr));
1652	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1653}
1654
1655/* ARGSUSED */
1656static void
1657buf_dest(void *vbuf, void *unused)
1658{
1659	arc_buf_t *buf = vbuf;
1660
1661	mutex_destroy(&buf->b_evict_lock);
1662	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1663}
1664
1665/*
1666 * Reclaim callback -- invoked when memory is low.
1667 */
1668/* ARGSUSED */
1669static void
1670hdr_recl(void *unused)
1671{
1672	dprintf("hdr_recl called\n");
1673	/*
1674	 * umem calls the reclaim func when we destroy the buf cache,
1675	 * which is after we do arc_fini().
1676	 */
1677	if (!arc_dead)
1678		cv_signal(&arc_reclaim_thread_cv);
1679}
1680
1681static void
1682buf_init(void)
1683{
1684	uint64_t *ct;
1685	uint64_t hsize = 1ULL << 12;
1686	int i, j;
1687
1688	/*
1689	 * The hash table is big enough to fill all of physical memory
1690	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1691	 * By default, the table will take up
1692	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1693	 */
1694	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1695		hsize <<= 1;
1696retry:
1697	buf_hash_table.ht_mask = hsize - 1;
1698	buf_hash_table.ht_table =
1699	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1700	if (buf_hash_table.ht_table == NULL) {
1701		ASSERT(hsize > (1ULL << 8));
1702		hsize >>= 1;
1703		goto retry;
1704	}
1705
1706	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1707	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1708	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1709	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1710	    NULL, NULL, 0);
1711	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1712	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1713
1714	for (i = 0; i < 256; i++)
1715		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1716			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1717
1718	for (i = 0; i < BUF_LOCKS; i++) {
1719		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1720		    NULL, MUTEX_DEFAULT, NULL);
1721	}
1722}
1723
1724/*
1725 * This is the size that the buf occupies in memory. If the buf is compressed,
1726 * it will correspond to the compressed size. You should use this method of
1727 * getting the buf size unless you explicitly need the logical size.
1728 */
1729int32_t
1730arc_buf_size(arc_buf_t *buf)
1731{
1732	return (ARC_BUF_COMPRESSED(buf) ?
1733	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1734}
1735
1736int32_t
1737arc_buf_lsize(arc_buf_t *buf)
1738{
1739	return (HDR_GET_LSIZE(buf->b_hdr));
1740}
1741
1742enum zio_compress
1743arc_get_compression(arc_buf_t *buf)
1744{
1745	return (ARC_BUF_COMPRESSED(buf) ?
1746	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1747}
1748
1749#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1750
1751static inline boolean_t
1752arc_buf_is_shared(arc_buf_t *buf)
1753{
1754	boolean_t shared = (buf->b_data != NULL &&
1755	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1756	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1757	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1758	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1759	IMPLY(shared, ARC_BUF_SHARED(buf));
1760	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1761
1762	/*
1763	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1764	 * already being shared" requirement prevents us from doing that.
1765	 */
1766
1767	return (shared);
1768}
1769
1770/*
1771 * Free the checksum associated with this header. If there is no checksum, this
1772 * is a no-op.
1773 */
1774static inline void
1775arc_cksum_free(arc_buf_hdr_t *hdr)
1776{
1777	ASSERT(HDR_HAS_L1HDR(hdr));
1778	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1779	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1780		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1781		hdr->b_l1hdr.b_freeze_cksum = NULL;
1782	}
1783	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1784}
1785
1786/*
1787 * Return true iff at least one of the bufs on hdr is not compressed.
1788 */
1789static boolean_t
1790arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1791{
1792	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1793		if (!ARC_BUF_COMPRESSED(b)) {
1794			return (B_TRUE);
1795		}
1796	}
1797	return (B_FALSE);
1798}
1799
1800/*
1801 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1802 * matches the checksum that is stored in the hdr. If there is no checksum,
1803 * or if the buf is compressed, this is a no-op.
1804 */
1805static void
1806arc_cksum_verify(arc_buf_t *buf)
1807{
1808	arc_buf_hdr_t *hdr = buf->b_hdr;
1809	zio_cksum_t zc;
1810
1811	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1812		return;
1813
1814	if (ARC_BUF_COMPRESSED(buf)) {
1815		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1816		    arc_hdr_has_uncompressed_buf(hdr));
1817		return;
1818	}
1819
1820	ASSERT(HDR_HAS_L1HDR(hdr));
1821
1822	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1823	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1824		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1825		return;
1826	}
1827
1828	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1829	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1830		panic("buffer modified while frozen!");
1831	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1832}
1833
1834static boolean_t
1835arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1836{
1837	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1838	boolean_t valid_cksum;
1839
1840	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1841	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1842
1843	/*
1844	 * We rely on the blkptr's checksum to determine if the block
1845	 * is valid or not. When compressed arc is enabled, the l2arc
1846	 * writes the block to the l2arc just as it appears in the pool.
1847	 * This allows us to use the blkptr's checksum to validate the
1848	 * data that we just read off of the l2arc without having to store
1849	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1850	 * arc is disabled, then the data written to the l2arc is always
1851	 * uncompressed and won't match the block as it exists in the main
1852	 * pool. When this is the case, we must first compress it if it is
1853	 * compressed on the main pool before we can validate the checksum.
1854	 */
1855	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1856		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1857		uint64_t lsize = HDR_GET_LSIZE(hdr);
1858		uint64_t csize;
1859
1860		void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1861		csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1862
1863		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1864		if (csize < HDR_GET_PSIZE(hdr)) {
1865			/*
1866			 * Compressed blocks are always a multiple of the
1867			 * smallest ashift in the pool. Ideally, we would
1868			 * like to round up the csize to the next
1869			 * spa_min_ashift but that value may have changed
1870			 * since the block was last written. Instead,
1871			 * we rely on the fact that the hdr's psize
1872			 * was set to the psize of the block when it was
1873			 * last written. We set the csize to that value
1874			 * and zero out any part that should not contain
1875			 * data.
1876			 */
1877			bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1878			csize = HDR_GET_PSIZE(hdr);
1879		}
1880		zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1881	}
1882
1883	/*
1884	 * Block pointers always store the checksum for the logical data.
1885	 * If the block pointer has the gang bit set, then the checksum
1886	 * it represents is for the reconstituted data and not for an
1887	 * individual gang member. The zio pipeline, however, must be able to
1888	 * determine the checksum of each of the gang constituents so it
1889	 * treats the checksum comparison differently than what we need
1890	 * for l2arc blocks. This prevents us from using the
1891	 * zio_checksum_error() interface directly. Instead we must call the
1892	 * zio_checksum_error_impl() so that we can ensure the checksum is
1893	 * generated using the correct checksum algorithm and accounts for the
1894	 * logical I/O size and not just a gang fragment.
1895	 */
1896	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1897	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1898	    zio->io_offset, NULL) == 0);
1899	zio_pop_transforms(zio);
1900	return (valid_cksum);
1901}
1902
1903/*
1904 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1905 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1906 * isn't modified later on. If buf is compressed or there is already a checksum
1907 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1908 */
1909static void
1910arc_cksum_compute(arc_buf_t *buf)
1911{
1912	arc_buf_hdr_t *hdr = buf->b_hdr;
1913
1914	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1915		return;
1916
1917	ASSERT(HDR_HAS_L1HDR(hdr));
1918
1919	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1920	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1921		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1922		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1923		return;
1924	} else if (ARC_BUF_COMPRESSED(buf)) {
1925		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1926		return;
1927	}
1928
1929	ASSERT(!ARC_BUF_COMPRESSED(buf));
1930	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1931	    KM_SLEEP);
1932	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1933	    hdr->b_l1hdr.b_freeze_cksum);
1934	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1935#ifdef illumos
1936	arc_buf_watch(buf);
1937#endif
1938}
1939
1940#ifdef illumos
1941#ifndef _KERNEL
1942typedef struct procctl {
1943	long cmd;
1944	prwatch_t prwatch;
1945} procctl_t;
1946#endif
1947
1948/* ARGSUSED */
1949static void
1950arc_buf_unwatch(arc_buf_t *buf)
1951{
1952#ifndef _KERNEL
1953	if (arc_watch) {
1954		int result;
1955		procctl_t ctl;
1956		ctl.cmd = PCWATCH;
1957		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1958		ctl.prwatch.pr_size = 0;
1959		ctl.prwatch.pr_wflags = 0;
1960		result = write(arc_procfd, &ctl, sizeof (ctl));
1961		ASSERT3U(result, ==, sizeof (ctl));
1962	}
1963#endif
1964}
1965
1966/* ARGSUSED */
1967static void
1968arc_buf_watch(arc_buf_t *buf)
1969{
1970#ifndef _KERNEL
1971	if (arc_watch) {
1972		int result;
1973		procctl_t ctl;
1974		ctl.cmd = PCWATCH;
1975		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1976		ctl.prwatch.pr_size = arc_buf_size(buf);
1977		ctl.prwatch.pr_wflags = WA_WRITE;
1978		result = write(arc_procfd, &ctl, sizeof (ctl));
1979		ASSERT3U(result, ==, sizeof (ctl));
1980	}
1981#endif
1982}
1983#endif /* illumos */
1984
1985static arc_buf_contents_t
1986arc_buf_type(arc_buf_hdr_t *hdr)
1987{
1988	arc_buf_contents_t type;
1989	if (HDR_ISTYPE_METADATA(hdr)) {
1990		type = ARC_BUFC_METADATA;
1991	} else {
1992		type = ARC_BUFC_DATA;
1993	}
1994	VERIFY3U(hdr->b_type, ==, type);
1995	return (type);
1996}
1997
1998boolean_t
1999arc_is_metadata(arc_buf_t *buf)
2000{
2001	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
2002}
2003
2004static uint32_t
2005arc_bufc_to_flags(arc_buf_contents_t type)
2006{
2007	switch (type) {
2008	case ARC_BUFC_DATA:
2009		/* metadata field is 0 if buffer contains normal data */
2010		return (0);
2011	case ARC_BUFC_METADATA:
2012		return (ARC_FLAG_BUFC_METADATA);
2013	default:
2014		break;
2015	}
2016	panic("undefined ARC buffer type!");
2017	return ((uint32_t)-1);
2018}
2019
2020void
2021arc_buf_thaw(arc_buf_t *buf)
2022{
2023	arc_buf_hdr_t *hdr = buf->b_hdr;
2024
2025	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2026	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2027
2028	arc_cksum_verify(buf);
2029
2030	/*
2031	 * Compressed buffers do not manipulate the b_freeze_cksum or
2032	 * allocate b_thawed.
2033	 */
2034	if (ARC_BUF_COMPRESSED(buf)) {
2035		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2036		    arc_hdr_has_uncompressed_buf(hdr));
2037		return;
2038	}
2039
2040	ASSERT(HDR_HAS_L1HDR(hdr));
2041	arc_cksum_free(hdr);
2042
2043	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
2044#ifdef ZFS_DEBUG
2045	if (zfs_flags & ZFS_DEBUG_MODIFY) {
2046		if (hdr->b_l1hdr.b_thawed != NULL)
2047			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2048		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
2049	}
2050#endif
2051
2052	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2053
2054#ifdef illumos
2055	arc_buf_unwatch(buf);
2056#endif
2057}
2058
2059void
2060arc_buf_freeze(arc_buf_t *buf)
2061{
2062	arc_buf_hdr_t *hdr = buf->b_hdr;
2063	kmutex_t *hash_lock;
2064
2065	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2066		return;
2067
2068	if (ARC_BUF_COMPRESSED(buf)) {
2069		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2070		    arc_hdr_has_uncompressed_buf(hdr));
2071		return;
2072	}
2073
2074	hash_lock = HDR_LOCK(hdr);
2075	mutex_enter(hash_lock);
2076
2077	ASSERT(HDR_HAS_L1HDR(hdr));
2078	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
2079	    hdr->b_l1hdr.b_state == arc_anon);
2080	arc_cksum_compute(buf);
2081	mutex_exit(hash_lock);
2082}
2083
2084/*
2085 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2086 * the following functions should be used to ensure that the flags are
2087 * updated in a thread-safe way. When manipulating the flags either
2088 * the hash_lock must be held or the hdr must be undiscoverable. This
2089 * ensures that we're not racing with any other threads when updating
2090 * the flags.
2091 */
2092static inline void
2093arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2094{
2095	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2096	hdr->b_flags |= flags;
2097}
2098
2099static inline void
2100arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2101{
2102	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2103	hdr->b_flags &= ~flags;
2104}
2105
2106/*
2107 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2108 * done in a special way since we have to clear and set bits
2109 * at the same time. Consumers that wish to set the compression bits
2110 * must use this function to ensure that the flags are updated in
2111 * thread-safe manner.
2112 */
2113static void
2114arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2115{
2116	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2117
2118	/*
2119	 * Holes and embedded blocks will always have a psize = 0 so
2120	 * we ignore the compression of the blkptr and set the
2121	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2122	 * Holes and embedded blocks remain anonymous so we don't
2123	 * want to uncompress them. Mark them as uncompressed.
2124	 */
2125	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2126		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2127		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
2128		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2129		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2130	} else {
2131		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2132		HDR_SET_COMPRESS(hdr, cmp);
2133		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2134		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2135	}
2136}
2137
2138/*
2139 * Looks for another buf on the same hdr which has the data decompressed, copies
2140 * from it, and returns true. If no such buf exists, returns false.
2141 */
2142static boolean_t
2143arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2144{
2145	arc_buf_hdr_t *hdr = buf->b_hdr;
2146	boolean_t copied = B_FALSE;
2147
2148	ASSERT(HDR_HAS_L1HDR(hdr));
2149	ASSERT3P(buf->b_data, !=, NULL);
2150	ASSERT(!ARC_BUF_COMPRESSED(buf));
2151
2152	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2153	    from = from->b_next) {
2154		/* can't use our own data buffer */
2155		if (from == buf) {
2156			continue;
2157		}
2158
2159		if (!ARC_BUF_COMPRESSED(from)) {
2160			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2161			copied = B_TRUE;
2162			break;
2163		}
2164	}
2165
2166	/*
2167	 * There were no decompressed bufs, so there should not be a
2168	 * checksum on the hdr either.
2169	 */
2170	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2171
2172	return (copied);
2173}
2174
2175/*
2176 * Given a buf that has a data buffer attached to it, this function will
2177 * efficiently fill the buf with data of the specified compression setting from
2178 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2179 * are already sharing a data buf, no copy is performed.
2180 *
2181 * If the buf is marked as compressed but uncompressed data was requested, this
2182 * will allocate a new data buffer for the buf, remove that flag, and fill the
2183 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2184 * uncompressed data, and (since we haven't added support for it yet) if you
2185 * want compressed data your buf must already be marked as compressed and have
2186 * the correct-sized data buffer.
2187 */
2188static int
2189arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
2190{
2191	arc_buf_hdr_t *hdr = buf->b_hdr;
2192	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2193	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2194
2195	ASSERT3P(buf->b_data, !=, NULL);
2196	IMPLY(compressed, hdr_compressed);
2197	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2198
2199	if (hdr_compressed == compressed) {
2200		if (!arc_buf_is_shared(buf)) {
2201			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2202			    arc_buf_size(buf));
2203		}
2204	} else {
2205		ASSERT(hdr_compressed);
2206		ASSERT(!compressed);
2207		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2208
2209		/*
2210		 * If the buf is sharing its data with the hdr, unlink it and
2211		 * allocate a new data buffer for the buf.
2212		 */
2213		if (arc_buf_is_shared(buf)) {
2214			ASSERT(ARC_BUF_COMPRESSED(buf));
2215
2216			/* We need to give the buf it's own b_data */
2217			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2218			buf->b_data =
2219			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2220			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2221
2222			/* Previously overhead was 0; just add new overhead */
2223			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2224		} else if (ARC_BUF_COMPRESSED(buf)) {
2225			/* We need to reallocate the buf's b_data */
2226			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2227			    buf);
2228			buf->b_data =
2229			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2230
2231			/* We increased the size of b_data; update overhead */
2232			ARCSTAT_INCR(arcstat_overhead_size,
2233			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2234		}
2235
2236		/*
2237		 * Regardless of the buf's previous compression settings, it
2238		 * should not be compressed at the end of this function.
2239		 */
2240		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2241
2242		/*
2243		 * Try copying the data from another buf which already has a
2244		 * decompressed version. If that's not possible, it's time to
2245		 * bite the bullet and decompress the data from the hdr.
2246		 */
2247		if (arc_buf_try_copy_decompressed_data(buf)) {
2248			/* Skip byteswapping and checksumming (already done) */
2249			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2250			return (0);
2251		} else {
2252			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2253			    hdr->b_l1hdr.b_pabd, buf->b_data,
2254			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2255
2256			/*
2257			 * Absent hardware errors or software bugs, this should
2258			 * be impossible, but log it anyway so we can debug it.
2259			 */
2260			if (error != 0) {
2261				zfs_dbgmsg(
2262				    "hdr %p, compress %d, psize %d, lsize %d",
2263				    hdr, HDR_GET_COMPRESS(hdr),
2264				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2265				return (SET_ERROR(EIO));
2266			}
2267		}
2268	}
2269
2270	/* Byteswap the buf's data if necessary */
2271	if (bswap != DMU_BSWAP_NUMFUNCS) {
2272		ASSERT(!HDR_SHARED_DATA(hdr));
2273		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2274		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2275	}
2276
2277	/* Compute the hdr's checksum if necessary */
2278	arc_cksum_compute(buf);
2279
2280	return (0);
2281}
2282
2283int
2284arc_decompress(arc_buf_t *buf)
2285{
2286	return (arc_buf_fill(buf, B_FALSE));
2287}
2288
2289/*
2290 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2291 */
2292static uint64_t
2293arc_hdr_size(arc_buf_hdr_t *hdr)
2294{
2295	uint64_t size;
2296
2297	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2298	    HDR_GET_PSIZE(hdr) > 0) {
2299		size = HDR_GET_PSIZE(hdr);
2300	} else {
2301		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2302		size = HDR_GET_LSIZE(hdr);
2303	}
2304	return (size);
2305}
2306
2307/*
2308 * Increment the amount of evictable space in the arc_state_t's refcount.
2309 * We account for the space used by the hdr and the arc buf individually
2310 * so that we can add and remove them from the refcount individually.
2311 */
2312static void
2313arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2314{
2315	arc_buf_contents_t type = arc_buf_type(hdr);
2316
2317	ASSERT(HDR_HAS_L1HDR(hdr));
2318
2319	if (GHOST_STATE(state)) {
2320		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2321		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2322		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2323		(void) refcount_add_many(&state->arcs_esize[type],
2324		    HDR_GET_LSIZE(hdr), hdr);
2325		return;
2326	}
2327
2328	ASSERT(!GHOST_STATE(state));
2329	if (hdr->b_l1hdr.b_pabd != NULL) {
2330		(void) refcount_add_many(&state->arcs_esize[type],
2331		    arc_hdr_size(hdr), hdr);
2332	}
2333	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2334	    buf = buf->b_next) {
2335		if (arc_buf_is_shared(buf))
2336			continue;
2337		(void) refcount_add_many(&state->arcs_esize[type],
2338		    arc_buf_size(buf), buf);
2339	}
2340}
2341
2342/*
2343 * Decrement the amount of evictable space in the arc_state_t's refcount.
2344 * We account for the space used by the hdr and the arc buf individually
2345 * so that we can add and remove them from the refcount individually.
2346 */
2347static void
2348arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2349{
2350	arc_buf_contents_t type = arc_buf_type(hdr);
2351
2352	ASSERT(HDR_HAS_L1HDR(hdr));
2353
2354	if (GHOST_STATE(state)) {
2355		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2356		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2357		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2358		(void) refcount_remove_many(&state->arcs_esize[type],
2359		    HDR_GET_LSIZE(hdr), hdr);
2360		return;
2361	}
2362
2363	ASSERT(!GHOST_STATE(state));
2364	if (hdr->b_l1hdr.b_pabd != NULL) {
2365		(void) refcount_remove_many(&state->arcs_esize[type],
2366		    arc_hdr_size(hdr), hdr);
2367	}
2368	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2369	    buf = buf->b_next) {
2370		if (arc_buf_is_shared(buf))
2371			continue;
2372		(void) refcount_remove_many(&state->arcs_esize[type],
2373		    arc_buf_size(buf), buf);
2374	}
2375}
2376
2377/*
2378 * Add a reference to this hdr indicating that someone is actively
2379 * referencing that memory. When the refcount transitions from 0 to 1,
2380 * we remove it from the respective arc_state_t list to indicate that
2381 * it is not evictable.
2382 */
2383static void
2384add_reference(arc_buf_hdr_t *hdr, void *tag)
2385{
2386	ASSERT(HDR_HAS_L1HDR(hdr));
2387	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2388		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2389		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2390		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2391	}
2392
2393	arc_state_t *state = hdr->b_l1hdr.b_state;
2394
2395	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2396	    (state != arc_anon)) {
2397		/* We don't use the L2-only state list. */
2398		if (state != arc_l2c_only) {
2399			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2400			    hdr);
2401			arc_evictable_space_decrement(hdr, state);
2402		}
2403		/* remove the prefetch flag if we get a reference */
2404		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2405	}
2406}
2407
2408/*
2409 * Remove a reference from this hdr. When the reference transitions from
2410 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2411 * list making it eligible for eviction.
2412 */
2413static int
2414remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2415{
2416	int cnt;
2417	arc_state_t *state = hdr->b_l1hdr.b_state;
2418
2419	ASSERT(HDR_HAS_L1HDR(hdr));
2420	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2421	ASSERT(!GHOST_STATE(state));
2422
2423	/*
2424	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2425	 * check to prevent usage of the arc_l2c_only list.
2426	 */
2427	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2428	    (state != arc_anon)) {
2429		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2430		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2431		arc_evictable_space_increment(hdr, state);
2432	}
2433	return (cnt);
2434}
2435
2436/*
2437 * Move the supplied buffer to the indicated state. The hash lock
2438 * for the buffer must be held by the caller.
2439 */
2440static void
2441arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2442    kmutex_t *hash_lock)
2443{
2444	arc_state_t *old_state;
2445	int64_t refcnt;
2446	uint32_t bufcnt;
2447	boolean_t update_old, update_new;
2448	arc_buf_contents_t buftype = arc_buf_type(hdr);
2449
2450	/*
2451	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2452	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2453	 * L1 hdr doesn't always exist when we change state to arc_anon before
2454	 * destroying a header, in which case reallocating to add the L1 hdr is
2455	 * pointless.
2456	 */
2457	if (HDR_HAS_L1HDR(hdr)) {
2458		old_state = hdr->b_l1hdr.b_state;
2459		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2460		bufcnt = hdr->b_l1hdr.b_bufcnt;
2461		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2462	} else {
2463		old_state = arc_l2c_only;
2464		refcnt = 0;
2465		bufcnt = 0;
2466		update_old = B_FALSE;
2467	}
2468	update_new = update_old;
2469
2470	ASSERT(MUTEX_HELD(hash_lock));
2471	ASSERT3P(new_state, !=, old_state);
2472	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2473	ASSERT(old_state != arc_anon || bufcnt <= 1);
2474
2475	/*
2476	 * If this buffer is evictable, transfer it from the
2477	 * old state list to the new state list.
2478	 */
2479	if (refcnt == 0) {
2480		if (old_state != arc_anon && old_state != arc_l2c_only) {
2481			ASSERT(HDR_HAS_L1HDR(hdr));
2482			multilist_remove(old_state->arcs_list[buftype], hdr);
2483
2484			if (GHOST_STATE(old_state)) {
2485				ASSERT0(bufcnt);
2486				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2487				update_old = B_TRUE;
2488			}
2489			arc_evictable_space_decrement(hdr, old_state);
2490		}
2491		if (new_state != arc_anon && new_state != arc_l2c_only) {
2492
2493			/*
2494			 * An L1 header always exists here, since if we're
2495			 * moving to some L1-cached state (i.e. not l2c_only or
2496			 * anonymous), we realloc the header to add an L1hdr
2497			 * beforehand.
2498			 */
2499			ASSERT(HDR_HAS_L1HDR(hdr));
2500			multilist_insert(new_state->arcs_list[buftype], hdr);
2501
2502			if (GHOST_STATE(new_state)) {
2503				ASSERT0(bufcnt);
2504				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2505				update_new = B_TRUE;
2506			}
2507			arc_evictable_space_increment(hdr, new_state);
2508		}
2509	}
2510
2511	ASSERT(!HDR_EMPTY(hdr));
2512	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2513		buf_hash_remove(hdr);
2514
2515	/* adjust state sizes (ignore arc_l2c_only) */
2516
2517	if (update_new && new_state != arc_l2c_only) {
2518		ASSERT(HDR_HAS_L1HDR(hdr));
2519		if (GHOST_STATE(new_state)) {
2520			ASSERT0(bufcnt);
2521
2522			/*
2523			 * When moving a header to a ghost state, we first
2524			 * remove all arc buffers. Thus, we'll have a
2525			 * bufcnt of zero, and no arc buffer to use for
2526			 * the reference. As a result, we use the arc
2527			 * header pointer for the reference.
2528			 */
2529			(void) refcount_add_many(&new_state->arcs_size,
2530			    HDR_GET_LSIZE(hdr), hdr);
2531			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2532		} else {
2533			uint32_t buffers = 0;
2534
2535			/*
2536			 * Each individual buffer holds a unique reference,
2537			 * thus we must remove each of these references one
2538			 * at a time.
2539			 */
2540			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2541			    buf = buf->b_next) {
2542				ASSERT3U(bufcnt, !=, 0);
2543				buffers++;
2544
2545				/*
2546				 * When the arc_buf_t is sharing the data
2547				 * block with the hdr, the owner of the
2548				 * reference belongs to the hdr. Only
2549				 * add to the refcount if the arc_buf_t is
2550				 * not shared.
2551				 */
2552				if (arc_buf_is_shared(buf))
2553					continue;
2554
2555				(void) refcount_add_many(&new_state->arcs_size,
2556				    arc_buf_size(buf), buf);
2557			}
2558			ASSERT3U(bufcnt, ==, buffers);
2559
2560			if (hdr->b_l1hdr.b_pabd != NULL) {
2561				(void) refcount_add_many(&new_state->arcs_size,
2562				    arc_hdr_size(hdr), hdr);
2563			} else {
2564				ASSERT(GHOST_STATE(old_state));
2565			}
2566		}
2567	}
2568
2569	if (update_old && old_state != arc_l2c_only) {
2570		ASSERT(HDR_HAS_L1HDR(hdr));
2571		if (GHOST_STATE(old_state)) {
2572			ASSERT0(bufcnt);
2573			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2574
2575			/*
2576			 * When moving a header off of a ghost state,
2577			 * the header will not contain any arc buffers.
2578			 * We use the arc header pointer for the reference
2579			 * which is exactly what we did when we put the
2580			 * header on the ghost state.
2581			 */
2582
2583			(void) refcount_remove_many(&old_state->arcs_size,
2584			    HDR_GET_LSIZE(hdr), hdr);
2585		} else {
2586			uint32_t buffers = 0;
2587
2588			/*
2589			 * Each individual buffer holds a unique reference,
2590			 * thus we must remove each of these references one
2591			 * at a time.
2592			 */
2593			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2594			    buf = buf->b_next) {
2595				ASSERT3U(bufcnt, !=, 0);
2596				buffers++;
2597
2598				/*
2599				 * When the arc_buf_t is sharing the data
2600				 * block with the hdr, the owner of the
2601				 * reference belongs to the hdr. Only
2602				 * add to the refcount if the arc_buf_t is
2603				 * not shared.
2604				 */
2605				if (arc_buf_is_shared(buf))
2606					continue;
2607
2608				(void) refcount_remove_many(
2609				    &old_state->arcs_size, arc_buf_size(buf),
2610				    buf);
2611			}
2612			ASSERT3U(bufcnt, ==, buffers);
2613			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2614			(void) refcount_remove_many(
2615			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2616		}
2617	}
2618
2619	if (HDR_HAS_L1HDR(hdr))
2620		hdr->b_l1hdr.b_state = new_state;
2621
2622	/*
2623	 * L2 headers should never be on the L2 state list since they don't
2624	 * have L1 headers allocated.
2625	 */
2626	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2627	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2628}
2629
2630void
2631arc_space_consume(uint64_t space, arc_space_type_t type)
2632{
2633	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2634
2635	switch (type) {
2636	case ARC_SPACE_DATA:
2637		ARCSTAT_INCR(arcstat_data_size, space);
2638		break;
2639	case ARC_SPACE_META:
2640		ARCSTAT_INCR(arcstat_metadata_size, space);
2641		break;
2642	case ARC_SPACE_OTHER:
2643		ARCSTAT_INCR(arcstat_other_size, space);
2644		break;
2645	case ARC_SPACE_HDRS:
2646		ARCSTAT_INCR(arcstat_hdr_size, space);
2647		break;
2648	case ARC_SPACE_L2HDRS:
2649		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2650		break;
2651	}
2652
2653	if (type != ARC_SPACE_DATA)
2654		ARCSTAT_INCR(arcstat_meta_used, space);
2655
2656	atomic_add_64(&arc_size, space);
2657}
2658
2659void
2660arc_space_return(uint64_t space, arc_space_type_t type)
2661{
2662	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2663
2664	switch (type) {
2665	case ARC_SPACE_DATA:
2666		ARCSTAT_INCR(arcstat_data_size, -space);
2667		break;
2668	case ARC_SPACE_META:
2669		ARCSTAT_INCR(arcstat_metadata_size, -space);
2670		break;
2671	case ARC_SPACE_OTHER:
2672		ARCSTAT_INCR(arcstat_other_size, -space);
2673		break;
2674	case ARC_SPACE_HDRS:
2675		ARCSTAT_INCR(arcstat_hdr_size, -space);
2676		break;
2677	case ARC_SPACE_L2HDRS:
2678		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2679		break;
2680	}
2681
2682	if (type != ARC_SPACE_DATA) {
2683		ASSERT(arc_meta_used >= space);
2684		if (arc_meta_max < arc_meta_used)
2685			arc_meta_max = arc_meta_used;
2686		ARCSTAT_INCR(arcstat_meta_used, -space);
2687	}
2688
2689	ASSERT(arc_size >= space);
2690	atomic_add_64(&arc_size, -space);
2691}
2692
2693/*
2694 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2695 * with the hdr's b_pabd.
2696 */
2697static boolean_t
2698arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2699{
2700	/*
2701	 * The criteria for sharing a hdr's data are:
2702	 * 1. the hdr's compression matches the buf's compression
2703	 * 2. the hdr doesn't need to be byteswapped
2704	 * 3. the hdr isn't already being shared
2705	 * 4. the buf is either compressed or it is the last buf in the hdr list
2706	 *
2707	 * Criterion #4 maintains the invariant that shared uncompressed
2708	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2709	 * might ask, "if a compressed buf is allocated first, won't that be the
2710	 * last thing in the list?", but in that case it's impossible to create
2711	 * a shared uncompressed buf anyway (because the hdr must be compressed
2712	 * to have the compressed buf). You might also think that #3 is
2713	 * sufficient to make this guarantee, however it's possible
2714	 * (specifically in the rare L2ARC write race mentioned in
2715	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2716	 * is sharable, but wasn't at the time of its allocation. Rather than
2717	 * allow a new shared uncompressed buf to be created and then shuffle
2718	 * the list around to make it the last element, this simply disallows
2719	 * sharing if the new buf isn't the first to be added.
2720	 */
2721	ASSERT3P(buf->b_hdr, ==, hdr);
2722	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2723	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2724	return (buf_compressed == hdr_compressed &&
2725	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2726	    !HDR_SHARED_DATA(hdr) &&
2727	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2728}
2729
2730/*
2731 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2732 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2733 * copy was made successfully, or an error code otherwise.
2734 */
2735static int
2736arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2737    boolean_t fill, arc_buf_t **ret)
2738{
2739	arc_buf_t *buf;
2740
2741	ASSERT(HDR_HAS_L1HDR(hdr));
2742	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2743	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2744	    hdr->b_type == ARC_BUFC_METADATA);
2745	ASSERT3P(ret, !=, NULL);
2746	ASSERT3P(*ret, ==, NULL);
2747
2748	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2749	buf->b_hdr = hdr;
2750	buf->b_data = NULL;
2751	buf->b_next = hdr->b_l1hdr.b_buf;
2752	buf->b_flags = 0;
2753
2754	add_reference(hdr, tag);
2755
2756	/*
2757	 * We're about to change the hdr's b_flags. We must either
2758	 * hold the hash_lock or be undiscoverable.
2759	 */
2760	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2761
2762	/*
2763	 * Only honor requests for compressed bufs if the hdr is actually
2764	 * compressed.
2765	 */
2766	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2767		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2768
2769	/*
2770	 * If the hdr's data can be shared then we share the data buffer and
2771	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2772	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2773	 * buffer to store the buf's data.
2774	 *
2775	 * There are two additional restrictions here because we're sharing
2776	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2777	 * actively involved in an L2ARC write, because if this buf is used by
2778	 * an arc_write() then the hdr's data buffer will be released when the
2779	 * write completes, even though the L2ARC write might still be using it.
2780	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2781	 * need to be ABD-aware.
2782	 */
2783	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2784	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2785
2786	/* Set up b_data and sharing */
2787	if (can_share) {
2788		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2789		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2790		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2791	} else {
2792		buf->b_data =
2793		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2794		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2795	}
2796	VERIFY3P(buf->b_data, !=, NULL);
2797
2798	hdr->b_l1hdr.b_buf = buf;
2799	hdr->b_l1hdr.b_bufcnt += 1;
2800
2801	/*
2802	 * If the user wants the data from the hdr, we need to either copy or
2803	 * decompress the data.
2804	 */
2805	if (fill) {
2806		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2807	}
2808
2809	return (0);
2810}
2811
2812static char *arc_onloan_tag = "onloan";
2813
2814static inline void
2815arc_loaned_bytes_update(int64_t delta)
2816{
2817	atomic_add_64(&arc_loaned_bytes, delta);
2818
2819	/* assert that it did not wrap around */
2820	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2821}
2822
2823/*
2824 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2825 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2826 * buffers must be returned to the arc before they can be used by the DMU or
2827 * freed.
2828 */
2829arc_buf_t *
2830arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2831{
2832	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2833	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2834
2835	arc_loaned_bytes_update(size);
2836
2837	return (buf);
2838}
2839
2840arc_buf_t *
2841arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2842    enum zio_compress compression_type)
2843{
2844	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2845	    psize, lsize, compression_type);
2846
2847	arc_loaned_bytes_update(psize);
2848
2849	return (buf);
2850}
2851
2852
2853/*
2854 * Return a loaned arc buffer to the arc.
2855 */
2856void
2857arc_return_buf(arc_buf_t *buf, void *tag)
2858{
2859	arc_buf_hdr_t *hdr = buf->b_hdr;
2860
2861	ASSERT3P(buf->b_data, !=, NULL);
2862	ASSERT(HDR_HAS_L1HDR(hdr));
2863	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2864	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2865
2866	arc_loaned_bytes_update(-arc_buf_size(buf));
2867}
2868
2869/* Detach an arc_buf from a dbuf (tag) */
2870void
2871arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2872{
2873	arc_buf_hdr_t *hdr = buf->b_hdr;
2874
2875	ASSERT3P(buf->b_data, !=, NULL);
2876	ASSERT(HDR_HAS_L1HDR(hdr));
2877	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2878	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2879
2880	arc_loaned_bytes_update(arc_buf_size(buf));
2881}
2882
2883static void
2884l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2885{
2886	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2887
2888	df->l2df_abd = abd;
2889	df->l2df_size = size;
2890	df->l2df_type = type;
2891	mutex_enter(&l2arc_free_on_write_mtx);
2892	list_insert_head(l2arc_free_on_write, df);
2893	mutex_exit(&l2arc_free_on_write_mtx);
2894}
2895
2896static void
2897arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2898{
2899	arc_state_t *state = hdr->b_l1hdr.b_state;
2900	arc_buf_contents_t type = arc_buf_type(hdr);
2901	uint64_t size = arc_hdr_size(hdr);
2902
2903	/* protected by hash lock, if in the hash table */
2904	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2905		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2906		ASSERT(state != arc_anon && state != arc_l2c_only);
2907
2908		(void) refcount_remove_many(&state->arcs_esize[type],
2909		    size, hdr);
2910	}
2911	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2912	if (type == ARC_BUFC_METADATA) {
2913		arc_space_return(size, ARC_SPACE_META);
2914	} else {
2915		ASSERT(type == ARC_BUFC_DATA);
2916		arc_space_return(size, ARC_SPACE_DATA);
2917	}
2918
2919	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2920}
2921
2922/*
2923 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2924 * data buffer, we transfer the refcount ownership to the hdr and update
2925 * the appropriate kstats.
2926 */
2927static void
2928arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2929{
2930	arc_state_t *state = hdr->b_l1hdr.b_state;
2931
2932	ASSERT(arc_can_share(hdr, buf));
2933	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2934	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2935
2936	/*
2937	 * Start sharing the data buffer. We transfer the
2938	 * refcount ownership to the hdr since it always owns
2939	 * the refcount whenever an arc_buf_t is shared.
2940	 */
2941	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2942	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2943	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2944	    HDR_ISTYPE_METADATA(hdr));
2945	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2946	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2947
2948	/*
2949	 * Since we've transferred ownership to the hdr we need
2950	 * to increment its compressed and uncompressed kstats and
2951	 * decrement the overhead size.
2952	 */
2953	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2954	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2955	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2956}
2957
2958static void
2959arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2960{
2961	arc_state_t *state = hdr->b_l1hdr.b_state;
2962
2963	ASSERT(arc_buf_is_shared(buf));
2964	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2965	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2966
2967	/*
2968	 * We are no longer sharing this buffer so we need
2969	 * to transfer its ownership to the rightful owner.
2970	 */
2971	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2972	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2973	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2974	abd_put(hdr->b_l1hdr.b_pabd);
2975	hdr->b_l1hdr.b_pabd = NULL;
2976	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2977
2978	/*
2979	 * Since the buffer is no longer shared between
2980	 * the arc buf and the hdr, count it as overhead.
2981	 */
2982	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2983	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2984	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2985}
2986
2987/*
2988 * Remove an arc_buf_t from the hdr's buf list and return the last
2989 * arc_buf_t on the list. If no buffers remain on the list then return
2990 * NULL.
2991 */
2992static arc_buf_t *
2993arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2994{
2995	ASSERT(HDR_HAS_L1HDR(hdr));
2996	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2997
2998	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2999	arc_buf_t *lastbuf = NULL;
3000
3001	/*
3002	 * Remove the buf from the hdr list and locate the last
3003	 * remaining buffer on the list.
3004	 */
3005	while (*bufp != NULL) {
3006		if (*bufp == buf)
3007			*bufp = buf->b_next;
3008
3009		/*
3010		 * If we've removed a buffer in the middle of
3011		 * the list then update the lastbuf and update
3012		 * bufp.
3013		 */
3014		if (*bufp != NULL) {
3015			lastbuf = *bufp;
3016			bufp = &(*bufp)->b_next;
3017		}
3018	}
3019	buf->b_next = NULL;
3020	ASSERT3P(lastbuf, !=, buf);
3021	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3022	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3023	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3024
3025	return (lastbuf);
3026}
3027
3028/*
3029 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3030 * list and free it.
3031 */
3032static void
3033arc_buf_destroy_impl(arc_buf_t *buf)
3034{
3035	arc_buf_hdr_t *hdr = buf->b_hdr;
3036
3037	/*
3038	 * Free up the data associated with the buf but only if we're not
3039	 * sharing this with the hdr. If we are sharing it with the hdr, the
3040	 * hdr is responsible for doing the free.
3041	 */
3042	if (buf->b_data != NULL) {
3043		/*
3044		 * We're about to change the hdr's b_flags. We must either
3045		 * hold the hash_lock or be undiscoverable.
3046		 */
3047		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3048
3049		arc_cksum_verify(buf);
3050#ifdef illumos
3051		arc_buf_unwatch(buf);
3052#endif
3053
3054		if (arc_buf_is_shared(buf)) {
3055			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3056		} else {
3057			uint64_t size = arc_buf_size(buf);
3058			arc_free_data_buf(hdr, buf->b_data, size, buf);
3059			ARCSTAT_INCR(arcstat_overhead_size, -size);
3060		}
3061		buf->b_data = NULL;
3062
3063		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3064		hdr->b_l1hdr.b_bufcnt -= 1;
3065	}
3066
3067	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3068
3069	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3070		/*
3071		 * If the current arc_buf_t is sharing its data buffer with the
3072		 * hdr, then reassign the hdr's b_pabd to share it with the new
3073		 * buffer at the end of the list. The shared buffer is always
3074		 * the last one on the hdr's buffer list.
3075		 *
3076		 * There is an equivalent case for compressed bufs, but since
3077		 * they aren't guaranteed to be the last buf in the list and
3078		 * that is an exceedingly rare case, we just allow that space be
3079		 * wasted temporarily.
3080		 */
3081		if (lastbuf != NULL) {
3082			/* Only one buf can be shared at once */
3083			VERIFY(!arc_buf_is_shared(lastbuf));
3084			/* hdr is uncompressed so can't have compressed buf */
3085			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3086
3087			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3088			arc_hdr_free_pabd(hdr);
3089
3090			/*
3091			 * We must setup a new shared block between the
3092			 * last buffer and the hdr. The data would have
3093			 * been allocated by the arc buf so we need to transfer
3094			 * ownership to the hdr since it's now being shared.
3095			 */
3096			arc_share_buf(hdr, lastbuf);
3097		}
3098	} else if (HDR_SHARED_DATA(hdr)) {
3099		/*
3100		 * Uncompressed shared buffers are always at the end
3101		 * of the list. Compressed buffers don't have the
3102		 * same requirements. This makes it hard to
3103		 * simply assert that the lastbuf is shared so
3104		 * we rely on the hdr's compression flags to determine
3105		 * if we have a compressed, shared buffer.
3106		 */
3107		ASSERT3P(lastbuf, !=, NULL);
3108		ASSERT(arc_buf_is_shared(lastbuf) ||
3109		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
3110	}
3111
3112	/*
3113	 * Free the checksum if we're removing the last uncompressed buf from
3114	 * this hdr.
3115	 */
3116	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3117		arc_cksum_free(hdr);
3118	}
3119
3120	/* clean up the buf */
3121	buf->b_hdr = NULL;
3122	kmem_cache_free(buf_cache, buf);
3123}
3124
3125static void
3126arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
3127{
3128	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3129	ASSERT(HDR_HAS_L1HDR(hdr));
3130	ASSERT(!HDR_SHARED_DATA(hdr));
3131
3132	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3133	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
3134	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3135	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3136
3137	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3138	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3139}
3140
3141static void
3142arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
3143{
3144	ASSERT(HDR_HAS_L1HDR(hdr));
3145	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3146
3147	/*
3148	 * If the hdr is currently being written to the l2arc then
3149	 * we defer freeing the data by adding it to the l2arc_free_on_write
3150	 * list. The l2arc will free the data once it's finished
3151	 * writing it to the l2arc device.
3152	 */
3153	if (HDR_L2_WRITING(hdr)) {
3154		arc_hdr_free_on_write(hdr);
3155		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3156	} else {
3157		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3158		    arc_hdr_size(hdr), hdr);
3159	}
3160	hdr->b_l1hdr.b_pabd = NULL;
3161	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3162
3163	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3164	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3165}
3166
3167static arc_buf_hdr_t *
3168arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3169    enum zio_compress compression_type, arc_buf_contents_t type)
3170{
3171	arc_buf_hdr_t *hdr;
3172
3173	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3174
3175	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3176	ASSERT(HDR_EMPTY(hdr));
3177	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3178	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3179	HDR_SET_PSIZE(hdr, psize);
3180	HDR_SET_LSIZE(hdr, lsize);
3181	hdr->b_spa = spa;
3182	hdr->b_type = type;
3183	hdr->b_flags = 0;
3184	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3185	arc_hdr_set_compress(hdr, compression_type);
3186
3187	hdr->b_l1hdr.b_state = arc_anon;
3188	hdr->b_l1hdr.b_arc_access = 0;
3189	hdr->b_l1hdr.b_bufcnt = 0;
3190	hdr->b_l1hdr.b_buf = NULL;
3191
3192	/*
3193	 * Allocate the hdr's buffer. This will contain either
3194	 * the compressed or uncompressed data depending on the block
3195	 * it references and compressed arc enablement.
3196	 */
3197	arc_hdr_alloc_pabd(hdr);
3198	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3199
3200	return (hdr);
3201}
3202
3203/*
3204 * Transition between the two allocation states for the arc_buf_hdr struct.
3205 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3206 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3207 * version is used when a cache buffer is only in the L2ARC in order to reduce
3208 * memory usage.
3209 */
3210static arc_buf_hdr_t *
3211arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3212{
3213	ASSERT(HDR_HAS_L2HDR(hdr));
3214
3215	arc_buf_hdr_t *nhdr;
3216	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3217
3218	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3219	    (old == hdr_l2only_cache && new == hdr_full_cache));
3220
3221	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3222
3223	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3224	buf_hash_remove(hdr);
3225
3226	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3227
3228	if (new == hdr_full_cache) {
3229		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3230		/*
3231		 * arc_access and arc_change_state need to be aware that a
3232		 * header has just come out of L2ARC, so we set its state to
3233		 * l2c_only even though it's about to change.
3234		 */
3235		nhdr->b_l1hdr.b_state = arc_l2c_only;
3236
3237		/* Verify previous threads set to NULL before freeing */
3238		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3239	} else {
3240		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3241		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3242		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3243
3244		/*
3245		 * If we've reached here, We must have been called from
3246		 * arc_evict_hdr(), as such we should have already been
3247		 * removed from any ghost list we were previously on
3248		 * (which protects us from racing with arc_evict_state),
3249		 * thus no locking is needed during this check.
3250		 */
3251		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3252
3253		/*
3254		 * A buffer must not be moved into the arc_l2c_only
3255		 * state if it's not finished being written out to the
3256		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3257		 * might try to be accessed, even though it was removed.
3258		 */
3259		VERIFY(!HDR_L2_WRITING(hdr));
3260		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3261
3262#ifdef ZFS_DEBUG
3263		if (hdr->b_l1hdr.b_thawed != NULL) {
3264			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3265			hdr->b_l1hdr.b_thawed = NULL;
3266		}
3267#endif
3268
3269		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3270	}
3271	/*
3272	 * The header has been reallocated so we need to re-insert it into any
3273	 * lists it was on.
3274	 */
3275	(void) buf_hash_insert(nhdr, NULL);
3276
3277	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3278
3279	mutex_enter(&dev->l2ad_mtx);
3280
3281	/*
3282	 * We must place the realloc'ed header back into the list at
3283	 * the same spot. Otherwise, if it's placed earlier in the list,
3284	 * l2arc_write_buffers() could find it during the function's
3285	 * write phase, and try to write it out to the l2arc.
3286	 */
3287	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3288	list_remove(&dev->l2ad_buflist, hdr);
3289
3290	mutex_exit(&dev->l2ad_mtx);
3291
3292	/*
3293	 * Since we're using the pointer address as the tag when
3294	 * incrementing and decrementing the l2ad_alloc refcount, we
3295	 * must remove the old pointer (that we're about to destroy) and
3296	 * add the new pointer to the refcount. Otherwise we'd remove
3297	 * the wrong pointer address when calling arc_hdr_destroy() later.
3298	 */
3299
3300	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3301	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3302
3303	buf_discard_identity(hdr);
3304	kmem_cache_free(old, hdr);
3305
3306	return (nhdr);
3307}
3308
3309/*
3310 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3311 * The buf is returned thawed since we expect the consumer to modify it.
3312 */
3313arc_buf_t *
3314arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3315{
3316	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3317	    ZIO_COMPRESS_OFF, type);
3318	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3319
3320	arc_buf_t *buf = NULL;
3321	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3322	arc_buf_thaw(buf);
3323
3324	return (buf);
3325}
3326
3327/*
3328 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3329 * for bufs containing metadata.
3330 */
3331arc_buf_t *
3332arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3333    enum zio_compress compression_type)
3334{
3335	ASSERT3U(lsize, >, 0);
3336	ASSERT3U(lsize, >=, psize);
3337	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3338	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3339
3340	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3341	    compression_type, ARC_BUFC_DATA);
3342	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3343
3344	arc_buf_t *buf = NULL;
3345	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3346	arc_buf_thaw(buf);
3347	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3348
3349	if (!arc_buf_is_shared(buf)) {
3350		/*
3351		 * To ensure that the hdr has the correct data in it if we call
3352		 * arc_decompress() on this buf before it's been written to
3353		 * disk, it's easiest if we just set up sharing between the
3354		 * buf and the hdr.
3355		 */
3356		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3357		arc_hdr_free_pabd(hdr);
3358		arc_share_buf(hdr, buf);
3359	}
3360
3361	return (buf);
3362}
3363
3364static void
3365arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3366{
3367	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3368	l2arc_dev_t *dev = l2hdr->b_dev;
3369	uint64_t asize = arc_hdr_size(hdr);
3370
3371	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3372	ASSERT(HDR_HAS_L2HDR(hdr));
3373
3374	list_remove(&dev->l2ad_buflist, hdr);
3375
3376	ARCSTAT_INCR(arcstat_l2_asize, -asize);
3377	ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
3378
3379	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3380
3381	(void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
3382	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3383}
3384
3385static void
3386arc_hdr_destroy(arc_buf_hdr_t *hdr)
3387{
3388	if (HDR_HAS_L1HDR(hdr)) {
3389		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3390		    hdr->b_l1hdr.b_bufcnt > 0);
3391		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3392		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3393	}
3394	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3395	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3396
3397	if (!HDR_EMPTY(hdr))
3398		buf_discard_identity(hdr);
3399
3400	if (HDR_HAS_L2HDR(hdr)) {
3401		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3402		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3403
3404		if (!buflist_held)
3405			mutex_enter(&dev->l2ad_mtx);
3406
3407		/*
3408		 * Even though we checked this conditional above, we
3409		 * need to check this again now that we have the
3410		 * l2ad_mtx. This is because we could be racing with
3411		 * another thread calling l2arc_evict() which might have
3412		 * destroyed this header's L2 portion as we were waiting
3413		 * to acquire the l2ad_mtx. If that happens, we don't
3414		 * want to re-destroy the header's L2 portion.
3415		 */
3416		if (HDR_HAS_L2HDR(hdr)) {
3417			l2arc_trim(hdr);
3418			arc_hdr_l2hdr_destroy(hdr);
3419		}
3420
3421		if (!buflist_held)
3422			mutex_exit(&dev->l2ad_mtx);
3423	}
3424
3425	if (HDR_HAS_L1HDR(hdr)) {
3426		arc_cksum_free(hdr);
3427
3428		while (hdr->b_l1hdr.b_buf != NULL)
3429			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3430
3431#ifdef ZFS_DEBUG
3432		if (hdr->b_l1hdr.b_thawed != NULL) {
3433			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3434			hdr->b_l1hdr.b_thawed = NULL;
3435		}
3436#endif
3437
3438		if (hdr->b_l1hdr.b_pabd != NULL) {
3439			arc_hdr_free_pabd(hdr);
3440		}
3441	}
3442
3443	ASSERT3P(hdr->b_hash_next, ==, NULL);
3444	if (HDR_HAS_L1HDR(hdr)) {
3445		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3446		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3447		kmem_cache_free(hdr_full_cache, hdr);
3448	} else {
3449		kmem_cache_free(hdr_l2only_cache, hdr);
3450	}
3451}
3452
3453void
3454arc_buf_destroy(arc_buf_t *buf, void* tag)
3455{
3456	arc_buf_hdr_t *hdr = buf->b_hdr;
3457	kmutex_t *hash_lock = HDR_LOCK(hdr);
3458
3459	if (hdr->b_l1hdr.b_state == arc_anon) {
3460		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3461		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3462		VERIFY0(remove_reference(hdr, NULL, tag));
3463		arc_hdr_destroy(hdr);
3464		return;
3465	}
3466
3467	mutex_enter(hash_lock);
3468	ASSERT3P(hdr, ==, buf->b_hdr);
3469	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3470	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3471	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3472	ASSERT3P(buf->b_data, !=, NULL);
3473
3474	(void) remove_reference(hdr, hash_lock, tag);
3475	arc_buf_destroy_impl(buf);
3476	mutex_exit(hash_lock);
3477}
3478
3479/*
3480 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3481 * state of the header is dependent on it's state prior to entering this
3482 * function. The following transitions are possible:
3483 *
3484 *    - arc_mru -> arc_mru_ghost
3485 *    - arc_mfu -> arc_mfu_ghost
3486 *    - arc_mru_ghost -> arc_l2c_only
3487 *    - arc_mru_ghost -> deleted
3488 *    - arc_mfu_ghost -> arc_l2c_only
3489 *    - arc_mfu_ghost -> deleted
3490 */
3491static int64_t
3492arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3493{
3494	arc_state_t *evicted_state, *state;
3495	int64_t bytes_evicted = 0;
3496
3497	ASSERT(MUTEX_HELD(hash_lock));
3498	ASSERT(HDR_HAS_L1HDR(hdr));
3499
3500	state = hdr->b_l1hdr.b_state;
3501	if (GHOST_STATE(state)) {
3502		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3503		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3504
3505		/*
3506		 * l2arc_write_buffers() relies on a header's L1 portion
3507		 * (i.e. its b_pabd field) during it's write phase.
3508		 * Thus, we cannot push a header onto the arc_l2c_only
3509		 * state (removing it's L1 piece) until the header is
3510		 * done being written to the l2arc.
3511		 */
3512		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3513			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3514			return (bytes_evicted);
3515		}
3516
3517		ARCSTAT_BUMP(arcstat_deleted);
3518		bytes_evicted += HDR_GET_LSIZE(hdr);
3519
3520		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3521
3522		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3523		if (HDR_HAS_L2HDR(hdr)) {
3524			/*
3525			 * This buffer is cached on the 2nd Level ARC;
3526			 * don't destroy the header.
3527			 */
3528			arc_change_state(arc_l2c_only, hdr, hash_lock);
3529			/*
3530			 * dropping from L1+L2 cached to L2-only,
3531			 * realloc to remove the L1 header.
3532			 */
3533			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3534			    hdr_l2only_cache);
3535		} else {
3536			arc_change_state(arc_anon, hdr, hash_lock);
3537			arc_hdr_destroy(hdr);
3538		}
3539		return (bytes_evicted);
3540	}
3541
3542	ASSERT(state == arc_mru || state == arc_mfu);
3543	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3544
3545	/* prefetch buffers have a minimum lifespan */
3546	if (HDR_IO_IN_PROGRESS(hdr) ||
3547	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3548	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3549	    arc_min_prefetch_lifespan)) {
3550		ARCSTAT_BUMP(arcstat_evict_skip);
3551		return (bytes_evicted);
3552	}
3553
3554	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3555	while (hdr->b_l1hdr.b_buf) {
3556		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3557		if (!mutex_tryenter(&buf->b_evict_lock)) {
3558			ARCSTAT_BUMP(arcstat_mutex_miss);
3559			break;
3560		}
3561		if (buf->b_data != NULL)
3562			bytes_evicted += HDR_GET_LSIZE(hdr);
3563		mutex_exit(&buf->b_evict_lock);
3564		arc_buf_destroy_impl(buf);
3565	}
3566
3567	if (HDR_HAS_L2HDR(hdr)) {
3568		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3569	} else {
3570		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3571			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3572			    HDR_GET_LSIZE(hdr));
3573		} else {
3574			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3575			    HDR_GET_LSIZE(hdr));
3576		}
3577	}
3578
3579	if (hdr->b_l1hdr.b_bufcnt == 0) {
3580		arc_cksum_free(hdr);
3581
3582		bytes_evicted += arc_hdr_size(hdr);
3583
3584		/*
3585		 * If this hdr is being evicted and has a compressed
3586		 * buffer then we discard it here before we change states.
3587		 * This ensures that the accounting is updated correctly
3588		 * in arc_free_data_impl().
3589		 */
3590		arc_hdr_free_pabd(hdr);
3591
3592		arc_change_state(evicted_state, hdr, hash_lock);
3593		ASSERT(HDR_IN_HASH_TABLE(hdr));
3594		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3595		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3596	}
3597
3598	return (bytes_evicted);
3599}
3600
3601static uint64_t
3602arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3603    uint64_t spa, int64_t bytes)
3604{
3605	multilist_sublist_t *mls;
3606	uint64_t bytes_evicted = 0;
3607	arc_buf_hdr_t *hdr;
3608	kmutex_t *hash_lock;
3609	int evict_count = 0;
3610
3611	ASSERT3P(marker, !=, NULL);
3612	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3613
3614	mls = multilist_sublist_lock(ml, idx);
3615
3616	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3617	    hdr = multilist_sublist_prev(mls, marker)) {
3618		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3619		    (evict_count >= zfs_arc_evict_batch_limit))
3620			break;
3621
3622		/*
3623		 * To keep our iteration location, move the marker
3624		 * forward. Since we're not holding hdr's hash lock, we
3625		 * must be very careful and not remove 'hdr' from the
3626		 * sublist. Otherwise, other consumers might mistake the
3627		 * 'hdr' as not being on a sublist when they call the
3628		 * multilist_link_active() function (they all rely on
3629		 * the hash lock protecting concurrent insertions and
3630		 * removals). multilist_sublist_move_forward() was
3631		 * specifically implemented to ensure this is the case
3632		 * (only 'marker' will be removed and re-inserted).
3633		 */
3634		multilist_sublist_move_forward(mls, marker);
3635
3636		/*
3637		 * The only case where the b_spa field should ever be
3638		 * zero, is the marker headers inserted by
3639		 * arc_evict_state(). It's possible for multiple threads
3640		 * to be calling arc_evict_state() concurrently (e.g.
3641		 * dsl_pool_close() and zio_inject_fault()), so we must
3642		 * skip any markers we see from these other threads.
3643		 */
3644		if (hdr->b_spa == 0)
3645			continue;
3646
3647		/* we're only interested in evicting buffers of a certain spa */
3648		if (spa != 0 && hdr->b_spa != spa) {
3649			ARCSTAT_BUMP(arcstat_evict_skip);
3650			continue;
3651		}
3652
3653		hash_lock = HDR_LOCK(hdr);
3654
3655		/*
3656		 * We aren't calling this function from any code path
3657		 * that would already be holding a hash lock, so we're
3658		 * asserting on this assumption to be defensive in case
3659		 * this ever changes. Without this check, it would be
3660		 * possible to incorrectly increment arcstat_mutex_miss
3661		 * below (e.g. if the code changed such that we called
3662		 * this function with a hash lock held).
3663		 */
3664		ASSERT(!MUTEX_HELD(hash_lock));
3665
3666		if (mutex_tryenter(hash_lock)) {
3667			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3668			mutex_exit(hash_lock);
3669
3670			bytes_evicted += evicted;
3671
3672			/*
3673			 * If evicted is zero, arc_evict_hdr() must have
3674			 * decided to skip this header, don't increment
3675			 * evict_count in this case.
3676			 */
3677			if (evicted != 0)
3678				evict_count++;
3679
3680			/*
3681			 * If arc_size isn't overflowing, signal any
3682			 * threads that might happen to be waiting.
3683			 *
3684			 * For each header evicted, we wake up a single
3685			 * thread. If we used cv_broadcast, we could
3686			 * wake up "too many" threads causing arc_size
3687			 * to significantly overflow arc_c; since
3688			 * arc_get_data_impl() doesn't check for overflow
3689			 * when it's woken up (it doesn't because it's
3690			 * possible for the ARC to be overflowing while
3691			 * full of un-evictable buffers, and the
3692			 * function should proceed in this case).
3693			 *
3694			 * If threads are left sleeping, due to not
3695			 * using cv_broadcast, they will be woken up
3696			 * just before arc_reclaim_thread() sleeps.
3697			 */
3698			mutex_enter(&arc_reclaim_lock);
3699			if (!arc_is_overflowing())
3700				cv_signal(&arc_reclaim_waiters_cv);
3701			mutex_exit(&arc_reclaim_lock);
3702		} else {
3703			ARCSTAT_BUMP(arcstat_mutex_miss);
3704		}
3705	}
3706
3707	multilist_sublist_unlock(mls);
3708
3709	return (bytes_evicted);
3710}
3711
3712/*
3713 * Evict buffers from the given arc state, until we've removed the
3714 * specified number of bytes. Move the removed buffers to the
3715 * appropriate evict state.
3716 *
3717 * This function makes a "best effort". It skips over any buffers
3718 * it can't get a hash_lock on, and so, may not catch all candidates.
3719 * It may also return without evicting as much space as requested.
3720 *
3721 * If bytes is specified using the special value ARC_EVICT_ALL, this
3722 * will evict all available (i.e. unlocked and evictable) buffers from
3723 * the given arc state; which is used by arc_flush().
3724 */
3725static uint64_t
3726arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3727    arc_buf_contents_t type)
3728{
3729	uint64_t total_evicted = 0;
3730	multilist_t *ml = state->arcs_list[type];
3731	int num_sublists;
3732	arc_buf_hdr_t **markers;
3733
3734	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3735
3736	num_sublists = multilist_get_num_sublists(ml);
3737
3738	/*
3739	 * If we've tried to evict from each sublist, made some
3740	 * progress, but still have not hit the target number of bytes
3741	 * to evict, we want to keep trying. The markers allow us to
3742	 * pick up where we left off for each individual sublist, rather
3743	 * than starting from the tail each time.
3744	 */
3745	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3746	for (int i = 0; i < num_sublists; i++) {
3747		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3748
3749		/*
3750		 * A b_spa of 0 is used to indicate that this header is
3751		 * a marker. This fact is used in arc_adjust_type() and
3752		 * arc_evict_state_impl().
3753		 */
3754		markers[i]->b_spa = 0;
3755
3756		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3757		multilist_sublist_insert_tail(mls, markers[i]);
3758		multilist_sublist_unlock(mls);
3759	}
3760
3761	/*
3762	 * While we haven't hit our target number of bytes to evict, or
3763	 * we're evicting all available buffers.
3764	 */
3765	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3766		/*
3767		 * Start eviction using a randomly selected sublist,
3768		 * this is to try and evenly balance eviction across all
3769		 * sublists. Always starting at the same sublist
3770		 * (e.g. index 0) would cause evictions to favor certain
3771		 * sublists over others.
3772		 */
3773		int sublist_idx = multilist_get_random_index(ml);
3774		uint64_t scan_evicted = 0;
3775
3776		for (int i = 0; i < num_sublists; i++) {
3777			uint64_t bytes_remaining;
3778			uint64_t bytes_evicted;
3779
3780			if (bytes == ARC_EVICT_ALL)
3781				bytes_remaining = ARC_EVICT_ALL;
3782			else if (total_evicted < bytes)
3783				bytes_remaining = bytes - total_evicted;
3784			else
3785				break;
3786
3787			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3788			    markers[sublist_idx], spa, bytes_remaining);
3789
3790			scan_evicted += bytes_evicted;
3791			total_evicted += bytes_evicted;
3792
3793			/* we've reached the end, wrap to the beginning */
3794			if (++sublist_idx >= num_sublists)
3795				sublist_idx = 0;
3796		}
3797
3798		/*
3799		 * If we didn't evict anything during this scan, we have
3800		 * no reason to believe we'll evict more during another
3801		 * scan, so break the loop.
3802		 */
3803		if (scan_evicted == 0) {
3804			/* This isn't possible, let's make that obvious */
3805			ASSERT3S(bytes, !=, 0);
3806
3807			/*
3808			 * When bytes is ARC_EVICT_ALL, the only way to
3809			 * break the loop is when scan_evicted is zero.
3810			 * In that case, we actually have evicted enough,
3811			 * so we don't want to increment the kstat.
3812			 */
3813			if (bytes != ARC_EVICT_ALL) {
3814				ASSERT3S(total_evicted, <, bytes);
3815				ARCSTAT_BUMP(arcstat_evict_not_enough);
3816			}
3817
3818			break;
3819		}
3820	}
3821
3822	for (int i = 0; i < num_sublists; i++) {
3823		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3824		multilist_sublist_remove(mls, markers[i]);
3825		multilist_sublist_unlock(mls);
3826
3827		kmem_cache_free(hdr_full_cache, markers[i]);
3828	}
3829	kmem_free(markers, sizeof (*markers) * num_sublists);
3830
3831	return (total_evicted);
3832}
3833
3834/*
3835 * Flush all "evictable" data of the given type from the arc state
3836 * specified. This will not evict any "active" buffers (i.e. referenced).
3837 *
3838 * When 'retry' is set to B_FALSE, the function will make a single pass
3839 * over the state and evict any buffers that it can. Since it doesn't
3840 * continually retry the eviction, it might end up leaving some buffers
3841 * in the ARC due to lock misses.
3842 *
3843 * When 'retry' is set to B_TRUE, the function will continually retry the
3844 * eviction until *all* evictable buffers have been removed from the
3845 * state. As a result, if concurrent insertions into the state are
3846 * allowed (e.g. if the ARC isn't shutting down), this function might
3847 * wind up in an infinite loop, continually trying to evict buffers.
3848 */
3849static uint64_t
3850arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3851    boolean_t retry)
3852{
3853	uint64_t evicted = 0;
3854
3855	while (refcount_count(&state->arcs_esize[type]) != 0) {
3856		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3857
3858		if (!retry)
3859			break;
3860	}
3861
3862	return (evicted);
3863}
3864
3865/*
3866 * Evict the specified number of bytes from the state specified,
3867 * restricting eviction to the spa and type given. This function
3868 * prevents us from trying to evict more from a state's list than
3869 * is "evictable", and to skip evicting altogether when passed a
3870 * negative value for "bytes". In contrast, arc_evict_state() will
3871 * evict everything it can, when passed a negative value for "bytes".
3872 */
3873static uint64_t
3874arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3875    arc_buf_contents_t type)
3876{
3877	int64_t delta;
3878
3879	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3880		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3881		return (arc_evict_state(state, spa, delta, type));
3882	}
3883
3884	return (0);
3885}
3886
3887/*
3888 * Evict metadata buffers from the cache, such that arc_meta_used is
3889 * capped by the arc_meta_limit tunable.
3890 */
3891static uint64_t
3892arc_adjust_meta(void)
3893{
3894	uint64_t total_evicted = 0;
3895	int64_t target;
3896
3897	/*
3898	 * If we're over the meta limit, we want to evict enough
3899	 * metadata to get back under the meta limit. We don't want to
3900	 * evict so much that we drop the MRU below arc_p, though. If
3901	 * we're over the meta limit more than we're over arc_p, we
3902	 * evict some from the MRU here, and some from the MFU below.
3903	 */
3904	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3905	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3906	    refcount_count(&arc_mru->arcs_size) - arc_p));
3907
3908	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3909
3910	/*
3911	 * Similar to the above, we want to evict enough bytes to get us
3912	 * below the meta limit, but not so much as to drop us below the
3913	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3914	 */
3915	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3916	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3917
3918	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3919
3920	return (total_evicted);
3921}
3922
3923/*
3924 * Return the type of the oldest buffer in the given arc state
3925 *
3926 * This function will select a random sublist of type ARC_BUFC_DATA and
3927 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3928 * is compared, and the type which contains the "older" buffer will be
3929 * returned.
3930 */
3931static arc_buf_contents_t
3932arc_adjust_type(arc_state_t *state)
3933{
3934	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3935	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3936	int data_idx = multilist_get_random_index(data_ml);
3937	int meta_idx = multilist_get_random_index(meta_ml);
3938	multilist_sublist_t *data_mls;
3939	multilist_sublist_t *meta_mls;
3940	arc_buf_contents_t type;
3941	arc_buf_hdr_t *data_hdr;
3942	arc_buf_hdr_t *meta_hdr;
3943
3944	/*
3945	 * We keep the sublist lock until we're finished, to prevent
3946	 * the headers from being destroyed via arc_evict_state().
3947	 */
3948	data_mls = multilist_sublist_lock(data_ml, data_idx);
3949	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3950
3951	/*
3952	 * These two loops are to ensure we skip any markers that
3953	 * might be at the tail of the lists due to arc_evict_state().
3954	 */
3955
3956	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3957	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3958		if (data_hdr->b_spa != 0)
3959			break;
3960	}
3961
3962	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3963	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3964		if (meta_hdr->b_spa != 0)
3965			break;
3966	}
3967
3968	if (data_hdr == NULL && meta_hdr == NULL) {
3969		type = ARC_BUFC_DATA;
3970	} else if (data_hdr == NULL) {
3971		ASSERT3P(meta_hdr, !=, NULL);
3972		type = ARC_BUFC_METADATA;
3973	} else if (meta_hdr == NULL) {
3974		ASSERT3P(data_hdr, !=, NULL);
3975		type = ARC_BUFC_DATA;
3976	} else {
3977		ASSERT3P(data_hdr, !=, NULL);
3978		ASSERT3P(meta_hdr, !=, NULL);
3979
3980		/* The headers can't be on the sublist without an L1 header */
3981		ASSERT(HDR_HAS_L1HDR(data_hdr));
3982		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3983
3984		if (data_hdr->b_l1hdr.b_arc_access <
3985		    meta_hdr->b_l1hdr.b_arc_access) {
3986			type = ARC_BUFC_DATA;
3987		} else {
3988			type = ARC_BUFC_METADATA;
3989		}
3990	}
3991
3992	multilist_sublist_unlock(meta_mls);
3993	multilist_sublist_unlock(data_mls);
3994
3995	return (type);
3996}
3997
3998/*
3999 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4000 */
4001static uint64_t
4002arc_adjust(void)
4003{
4004	uint64_t total_evicted = 0;
4005	uint64_t bytes;
4006	int64_t target;
4007
4008	/*
4009	 * If we're over arc_meta_limit, we want to correct that before
4010	 * potentially evicting data buffers below.
4011	 */
4012	total_evicted += arc_adjust_meta();
4013
4014	/*
4015	 * Adjust MRU size
4016	 *
4017	 * If we're over the target cache size, we want to evict enough
4018	 * from the list to get back to our target size. We don't want
4019	 * to evict too much from the MRU, such that it drops below
4020	 * arc_p. So, if we're over our target cache size more than
4021	 * the MRU is over arc_p, we'll evict enough to get back to
4022	 * arc_p here, and then evict more from the MFU below.
4023	 */
4024	target = MIN((int64_t)(arc_size - arc_c),
4025	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
4026	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
4027
4028	/*
4029	 * If we're below arc_meta_min, always prefer to evict data.
4030	 * Otherwise, try to satisfy the requested number of bytes to
4031	 * evict from the type which contains older buffers; in an
4032	 * effort to keep newer buffers in the cache regardless of their
4033	 * type. If we cannot satisfy the number of bytes from this
4034	 * type, spill over into the next type.
4035	 */
4036	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4037	    arc_meta_used > arc_meta_min) {
4038		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4039		total_evicted += bytes;
4040
4041		/*
4042		 * If we couldn't evict our target number of bytes from
4043		 * metadata, we try to get the rest from data.
4044		 */
4045		target -= bytes;
4046
4047		total_evicted +=
4048		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4049	} else {
4050		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4051		total_evicted += bytes;
4052
4053		/*
4054		 * If we couldn't evict our target number of bytes from
4055		 * data, we try to get the rest from metadata.
4056		 */
4057		target -= bytes;
4058
4059		total_evicted +=
4060		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4061	}
4062
4063	/*
4064	 * Adjust MFU size
4065	 *
4066	 * Now that we've tried to evict enough from the MRU to get its
4067	 * size back to arc_p, if we're still above the target cache
4068	 * size, we evict the rest from the MFU.
4069	 */
4070	target = arc_size - arc_c;
4071
4072	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4073	    arc_meta_used > arc_meta_min) {
4074		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4075		total_evicted += bytes;
4076
4077		/*
4078		 * If we couldn't evict our target number of bytes from
4079		 * metadata, we try to get the rest from data.
4080		 */
4081		target -= bytes;
4082
4083		total_evicted +=
4084		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4085	} else {
4086		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4087		total_evicted += bytes;
4088
4089		/*
4090		 * If we couldn't evict our target number of bytes from
4091		 * data, we try to get the rest from data.
4092		 */
4093		target -= bytes;
4094
4095		total_evicted +=
4096		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4097	}
4098
4099	/*
4100	 * Adjust ghost lists
4101	 *
4102	 * In addition to the above, the ARC also defines target values
4103	 * for the ghost lists. The sum of the mru list and mru ghost
4104	 * list should never exceed the target size of the cache, and
4105	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4106	 * ghost list should never exceed twice the target size of the
4107	 * cache. The following logic enforces these limits on the ghost
4108	 * caches, and evicts from them as needed.
4109	 */
4110	target = refcount_count(&arc_mru->arcs_size) +
4111	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4112
4113	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4114	total_evicted += bytes;
4115
4116	target -= bytes;
4117
4118	total_evicted +=
4119	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4120
4121	/*
4122	 * We assume the sum of the mru list and mfu list is less than
4123	 * or equal to arc_c (we enforced this above), which means we
4124	 * can use the simpler of the two equations below:
4125	 *
4126	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4127	 *		    mru ghost + mfu ghost <= arc_c
4128	 */
4129	target = refcount_count(&arc_mru_ghost->arcs_size) +
4130	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4131
4132	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4133	total_evicted += bytes;
4134
4135	target -= bytes;
4136
4137	total_evicted +=
4138	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4139
4140	return (total_evicted);
4141}
4142
4143void
4144arc_flush(spa_t *spa, boolean_t retry)
4145{
4146	uint64_t guid = 0;
4147
4148	/*
4149	 * If retry is B_TRUE, a spa must not be specified since we have
4150	 * no good way to determine if all of a spa's buffers have been
4151	 * evicted from an arc state.
4152	 */
4153	ASSERT(!retry || spa == 0);
4154
4155	if (spa != NULL)
4156		guid = spa_load_guid(spa);
4157
4158	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4159	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4160
4161	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4162	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4163
4164	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4165	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4166
4167	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4168	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4169}
4170
4171void
4172arc_shrink(int64_t to_free)
4173{
4174	if (arc_c > arc_c_min) {
4175		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
4176			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
4177		if (arc_c > arc_c_min + to_free)
4178			atomic_add_64(&arc_c, -to_free);
4179		else
4180			arc_c = arc_c_min;
4181
4182		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4183		if (arc_c > arc_size)
4184			arc_c = MAX(arc_size, arc_c_min);
4185		if (arc_p > arc_c)
4186			arc_p = (arc_c >> 1);
4187
4188		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
4189			arc_p);
4190
4191		ASSERT(arc_c >= arc_c_min);
4192		ASSERT((int64_t)arc_p >= 0);
4193	}
4194
4195	if (arc_size > arc_c) {
4196		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
4197			uint64_t, arc_c);
4198		(void) arc_adjust();
4199	}
4200}
4201
4202static long needfree = 0;
4203
4204typedef enum free_memory_reason_t {
4205	FMR_UNKNOWN,
4206	FMR_NEEDFREE,
4207	FMR_LOTSFREE,
4208	FMR_SWAPFS_MINFREE,
4209	FMR_PAGES_PP_MAXIMUM,
4210	FMR_HEAP_ARENA,
4211	FMR_ZIO_ARENA,
4212	FMR_ZIO_FRAG,
4213} free_memory_reason_t;
4214
4215int64_t last_free_memory;
4216free_memory_reason_t last_free_reason;
4217
4218/*
4219 * Additional reserve of pages for pp_reserve.
4220 */
4221int64_t arc_pages_pp_reserve = 64;
4222
4223/*
4224 * Additional reserve of pages for swapfs.
4225 */
4226int64_t arc_swapfs_reserve = 64;
4227
4228/*
4229 * Return the amount of memory that can be consumed before reclaim will be
4230 * needed.  Positive if there is sufficient free memory, negative indicates
4231 * the amount of memory that needs to be freed up.
4232 */
4233static int64_t
4234arc_available_memory(void)
4235{
4236	int64_t lowest = INT64_MAX;
4237	int64_t n;
4238	free_memory_reason_t r = FMR_UNKNOWN;
4239
4240#ifdef _KERNEL
4241	if (needfree > 0) {
4242		n = PAGESIZE * (-needfree);
4243		if (n < lowest) {
4244			lowest = n;
4245			r = FMR_NEEDFREE;
4246		}
4247	}
4248
4249	/*
4250	 * Cooperate with pagedaemon when it's time for it to scan
4251	 * and reclaim some pages.
4252	 */
4253	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
4254	if (n < lowest) {
4255		lowest = n;
4256		r = FMR_LOTSFREE;
4257	}
4258
4259#ifdef illumos
4260	/*
4261	 * check that we're out of range of the pageout scanner.  It starts to
4262	 * schedule paging if freemem is less than lotsfree and needfree.
4263	 * lotsfree is the high-water mark for pageout, and needfree is the
4264	 * number of needed free pages.  We add extra pages here to make sure
4265	 * the scanner doesn't start up while we're freeing memory.
4266	 */
4267	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4268	if (n < lowest) {
4269		lowest = n;
4270		r = FMR_LOTSFREE;
4271	}
4272
4273	/*
4274	 * check to make sure that swapfs has enough space so that anon
4275	 * reservations can still succeed. anon_resvmem() checks that the
4276	 * availrmem is greater than swapfs_minfree, and the number of reserved
4277	 * swap pages.  We also add a bit of extra here just to prevent
4278	 * circumstances from getting really dire.
4279	 */
4280	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4281	    desfree - arc_swapfs_reserve);
4282	if (n < lowest) {
4283		lowest = n;
4284		r = FMR_SWAPFS_MINFREE;
4285	}
4286
4287
4288	/*
4289	 * Check that we have enough availrmem that memory locking (e.g., via
4290	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4291	 * stores the number of pages that cannot be locked; when availrmem
4292	 * drops below pages_pp_maximum, page locking mechanisms such as
4293	 * page_pp_lock() will fail.)
4294	 */
4295	n = PAGESIZE * (availrmem - pages_pp_maximum -
4296	    arc_pages_pp_reserve);
4297	if (n < lowest) {
4298		lowest = n;
4299		r = FMR_PAGES_PP_MAXIMUM;
4300	}
4301
4302#endif	/* illumos */
4303#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4304	/*
4305	 * If we're on an i386 platform, it's possible that we'll exhaust the
4306	 * kernel heap space before we ever run out of available physical
4307	 * memory.  Most checks of the size of the heap_area compare against
4308	 * tune.t_minarmem, which is the minimum available real memory that we
4309	 * can have in the system.  However, this is generally fixed at 25 pages
4310	 * which is so low that it's useless.  In this comparison, we seek to
4311	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4312	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4313	 * free)
4314	 */
4315	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4316	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4317	if (n < lowest) {
4318		lowest = n;
4319		r = FMR_HEAP_ARENA;
4320	}
4321#define	zio_arena	NULL
4322#else
4323#define	zio_arena	heap_arena
4324#endif
4325
4326	/*
4327	 * If zio data pages are being allocated out of a separate heap segment,
4328	 * then enforce that the size of available vmem for this arena remains
4329	 * above about 1/16th free.
4330	 *
4331	 * Note: The 1/16th arena free requirement was put in place
4332	 * to aggressively evict memory from the arc in order to avoid
4333	 * memory fragmentation issues.
4334	 */
4335	if (zio_arena != NULL) {
4336		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4337		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
4338		if (n < lowest) {
4339			lowest = n;
4340			r = FMR_ZIO_ARENA;
4341		}
4342	}
4343
4344	/*
4345	 * Above limits know nothing about real level of KVA fragmentation.
4346	 * Start aggressive reclamation if too little sequential KVA left.
4347	 */
4348	if (lowest > 0) {
4349		n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ?
4350		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
4351		    INT64_MAX;
4352		if (n < lowest) {
4353			lowest = n;
4354			r = FMR_ZIO_FRAG;
4355		}
4356	}
4357
4358#else	/* _KERNEL */
4359	/* Every 100 calls, free a small amount */
4360	if (spa_get_random(100) == 0)
4361		lowest = -1024;
4362#endif	/* _KERNEL */
4363
4364	last_free_memory = lowest;
4365	last_free_reason = r;
4366	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
4367	return (lowest);
4368}
4369
4370
4371/*
4372 * Determine if the system is under memory pressure and is asking
4373 * to reclaim memory. A return value of B_TRUE indicates that the system
4374 * is under memory pressure and that the arc should adjust accordingly.
4375 */
4376static boolean_t
4377arc_reclaim_needed(void)
4378{
4379	return (arc_available_memory() < 0);
4380}
4381
4382extern kmem_cache_t	*zio_buf_cache[];
4383extern kmem_cache_t	*zio_data_buf_cache[];
4384extern kmem_cache_t	*range_seg_cache;
4385extern kmem_cache_t	*abd_chunk_cache;
4386
4387static __noinline void
4388arc_kmem_reap_now(void)
4389{
4390	size_t			i;
4391	kmem_cache_t		*prev_cache = NULL;
4392	kmem_cache_t		*prev_data_cache = NULL;
4393
4394	DTRACE_PROBE(arc__kmem_reap_start);
4395#ifdef _KERNEL
4396	if (arc_meta_used >= arc_meta_limit) {
4397		/*
4398		 * We are exceeding our meta-data cache limit.
4399		 * Purge some DNLC entries to release holds on meta-data.
4400		 */
4401		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4402	}
4403#if defined(__i386)
4404	/*
4405	 * Reclaim unused memory from all kmem caches.
4406	 */
4407	kmem_reap();
4408#endif
4409#endif
4410
4411	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4412		if (zio_buf_cache[i] != prev_cache) {
4413			prev_cache = zio_buf_cache[i];
4414			kmem_cache_reap_now(zio_buf_cache[i]);
4415		}
4416		if (zio_data_buf_cache[i] != prev_data_cache) {
4417			prev_data_cache = zio_data_buf_cache[i];
4418			kmem_cache_reap_now(zio_data_buf_cache[i]);
4419		}
4420	}
4421	kmem_cache_reap_now(abd_chunk_cache);
4422	kmem_cache_reap_now(buf_cache);
4423	kmem_cache_reap_now(hdr_full_cache);
4424	kmem_cache_reap_now(hdr_l2only_cache);
4425	kmem_cache_reap_now(range_seg_cache);
4426
4427#ifdef illumos
4428	if (zio_arena != NULL) {
4429		/*
4430		 * Ask the vmem arena to reclaim unused memory from its
4431		 * quantum caches.
4432		 */
4433		vmem_qcache_reap(zio_arena);
4434	}
4435#endif
4436	DTRACE_PROBE(arc__kmem_reap_end);
4437}
4438
4439/*
4440 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4441 * enough data and signal them to proceed. When this happens, the threads in
4442 * arc_get_data_impl() are sleeping while holding the hash lock for their
4443 * particular arc header. Thus, we must be careful to never sleep on a
4444 * hash lock in this thread. This is to prevent the following deadlock:
4445 *
4446 *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4447 *    waiting for the reclaim thread to signal it.
4448 *
4449 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4450 *    fails, and goes to sleep forever.
4451 *
4452 * This possible deadlock is avoided by always acquiring a hash lock
4453 * using mutex_tryenter() from arc_reclaim_thread().
4454 */
4455static void
4456arc_reclaim_thread(void *dummy __unused)
4457{
4458	hrtime_t		growtime = 0;
4459	callb_cpr_t		cpr;
4460
4461	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4462
4463	mutex_enter(&arc_reclaim_lock);
4464	while (!arc_reclaim_thread_exit) {
4465		uint64_t evicted = 0;
4466
4467		/*
4468		 * This is necessary in order for the mdb ::arc dcmd to
4469		 * show up to date information. Since the ::arc command
4470		 * does not call the kstat's update function, without
4471		 * this call, the command may show stale stats for the
4472		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4473		 * with this change, the data might be up to 1 second
4474		 * out of date; but that should suffice. The arc_state_t
4475		 * structures can be queried directly if more accurate
4476		 * information is needed.
4477		 */
4478		if (arc_ksp != NULL)
4479			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4480
4481		mutex_exit(&arc_reclaim_lock);
4482
4483		/*
4484		 * We call arc_adjust() before (possibly) calling
4485		 * arc_kmem_reap_now(), so that we can wake up
4486		 * arc_get_data_impl() sooner.
4487		 */
4488		evicted = arc_adjust();
4489
4490		int64_t free_memory = arc_available_memory();
4491		if (free_memory < 0) {
4492
4493			arc_no_grow = B_TRUE;
4494			arc_warm = B_TRUE;
4495
4496			/*
4497			 * Wait at least zfs_grow_retry (default 60) seconds
4498			 * before considering growing.
4499			 */
4500			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4501
4502			arc_kmem_reap_now();
4503
4504			/*
4505			 * If we are still low on memory, shrink the ARC
4506			 * so that we have arc_shrink_min free space.
4507			 */
4508			free_memory = arc_available_memory();
4509
4510			int64_t to_free =
4511			    (arc_c >> arc_shrink_shift) - free_memory;
4512			if (to_free > 0) {
4513#ifdef _KERNEL
4514				to_free = MAX(to_free, ptob(needfree));
4515#endif
4516				arc_shrink(to_free);
4517			}
4518		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4519			arc_no_grow = B_TRUE;
4520		} else if (gethrtime() >= growtime) {
4521			arc_no_grow = B_FALSE;
4522		}
4523
4524		mutex_enter(&arc_reclaim_lock);
4525
4526		/*
4527		 * If evicted is zero, we couldn't evict anything via
4528		 * arc_adjust(). This could be due to hash lock
4529		 * collisions, but more likely due to the majority of
4530		 * arc buffers being unevictable. Therefore, even if
4531		 * arc_size is above arc_c, another pass is unlikely to
4532		 * be helpful and could potentially cause us to enter an
4533		 * infinite loop.
4534		 */
4535		if (arc_size <= arc_c || evicted == 0) {
4536#ifdef _KERNEL
4537			needfree = 0;
4538#endif
4539			/*
4540			 * We're either no longer overflowing, or we
4541			 * can't evict anything more, so we should wake
4542			 * up any threads before we go to sleep.
4543			 */
4544			cv_broadcast(&arc_reclaim_waiters_cv);
4545
4546			/*
4547			 * Block until signaled, or after one second (we
4548			 * might need to perform arc_kmem_reap_now()
4549			 * even if we aren't being signalled)
4550			 */
4551			CALLB_CPR_SAFE_BEGIN(&cpr);
4552			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4553			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4554			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4555		}
4556	}
4557
4558	arc_reclaim_thread_exit = B_FALSE;
4559	cv_broadcast(&arc_reclaim_thread_cv);
4560	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4561	thread_exit();
4562}
4563
4564static u_int arc_dnlc_evicts_arg;
4565extern struct vfsops zfs_vfsops;
4566
4567static void
4568arc_dnlc_evicts_thread(void *dummy __unused)
4569{
4570	callb_cpr_t cpr;
4571	u_int percent;
4572
4573	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
4574
4575	mutex_enter(&arc_dnlc_evicts_lock);
4576	while (!arc_dnlc_evicts_thread_exit) {
4577		CALLB_CPR_SAFE_BEGIN(&cpr);
4578		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
4579		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
4580		if (arc_dnlc_evicts_arg != 0) {
4581			percent = arc_dnlc_evicts_arg;
4582			mutex_exit(&arc_dnlc_evicts_lock);
4583#ifdef _KERNEL
4584			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
4585#endif
4586			mutex_enter(&arc_dnlc_evicts_lock);
4587			/*
4588			 * Clear our token only after vnlru_free()
4589			 * pass is done, to avoid false queueing of
4590			 * the requests.
4591			 */
4592			arc_dnlc_evicts_arg = 0;
4593		}
4594	}
4595	arc_dnlc_evicts_thread_exit = FALSE;
4596	cv_broadcast(&arc_dnlc_evicts_cv);
4597	CALLB_CPR_EXIT(&cpr);
4598	thread_exit();
4599}
4600
4601void
4602dnlc_reduce_cache(void *arg)
4603{
4604	u_int percent;
4605
4606	percent = (u_int)(uintptr_t)arg;
4607	mutex_enter(&arc_dnlc_evicts_lock);
4608	if (arc_dnlc_evicts_arg == 0) {
4609		arc_dnlc_evicts_arg = percent;
4610		cv_broadcast(&arc_dnlc_evicts_cv);
4611	}
4612	mutex_exit(&arc_dnlc_evicts_lock);
4613}
4614
4615/*
4616 * Adapt arc info given the number of bytes we are trying to add and
4617 * the state that we are comming from.  This function is only called
4618 * when we are adding new content to the cache.
4619 */
4620static void
4621arc_adapt(int bytes, arc_state_t *state)
4622{
4623	int mult;
4624	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4625	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4626	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4627
4628	if (state == arc_l2c_only)
4629		return;
4630
4631	ASSERT(bytes > 0);
4632	/*
4633	 * Adapt the target size of the MRU list:
4634	 *	- if we just hit in the MRU ghost list, then increase
4635	 *	  the target size of the MRU list.
4636	 *	- if we just hit in the MFU ghost list, then increase
4637	 *	  the target size of the MFU list by decreasing the
4638	 *	  target size of the MRU list.
4639	 */
4640	if (state == arc_mru_ghost) {
4641		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4642		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4643
4644		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4645	} else if (state == arc_mfu_ghost) {
4646		uint64_t delta;
4647
4648		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4649		mult = MIN(mult, 10);
4650
4651		delta = MIN(bytes * mult, arc_p);
4652		arc_p = MAX(arc_p_min, arc_p - delta);
4653	}
4654	ASSERT((int64_t)arc_p >= 0);
4655
4656	if (arc_reclaim_needed()) {
4657		cv_signal(&arc_reclaim_thread_cv);
4658		return;
4659	}
4660
4661	if (arc_no_grow)
4662		return;
4663
4664	if (arc_c >= arc_c_max)
4665		return;
4666
4667	/*
4668	 * If we're within (2 * maxblocksize) bytes of the target
4669	 * cache size, increment the target cache size
4670	 */
4671	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4672		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4673		atomic_add_64(&arc_c, (int64_t)bytes);
4674		if (arc_c > arc_c_max)
4675			arc_c = arc_c_max;
4676		else if (state == arc_anon)
4677			atomic_add_64(&arc_p, (int64_t)bytes);
4678		if (arc_p > arc_c)
4679			arc_p = arc_c;
4680	}
4681	ASSERT((int64_t)arc_p >= 0);
4682}
4683
4684/*
4685 * Check if arc_size has grown past our upper threshold, determined by
4686 * zfs_arc_overflow_shift.
4687 */
4688static boolean_t
4689arc_is_overflowing(void)
4690{
4691	/* Always allow at least one block of overflow */
4692	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4693	    arc_c >> zfs_arc_overflow_shift);
4694
4695	return (arc_size >= arc_c + overflow);
4696}
4697
4698static abd_t *
4699arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4700{
4701	arc_buf_contents_t type = arc_buf_type(hdr);
4702
4703	arc_get_data_impl(hdr, size, tag);
4704	if (type == ARC_BUFC_METADATA) {
4705		return (abd_alloc(size, B_TRUE));
4706	} else {
4707		ASSERT(type == ARC_BUFC_DATA);
4708		return (abd_alloc(size, B_FALSE));
4709	}
4710}
4711
4712static void *
4713arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4714{
4715	arc_buf_contents_t type = arc_buf_type(hdr);
4716
4717	arc_get_data_impl(hdr, size, tag);
4718	if (type == ARC_BUFC_METADATA) {
4719		return (zio_buf_alloc(size));
4720	} else {
4721		ASSERT(type == ARC_BUFC_DATA);
4722		return (zio_data_buf_alloc(size));
4723	}
4724}
4725
4726/*
4727 * Allocate a block and return it to the caller. If we are hitting the
4728 * hard limit for the cache size, we must sleep, waiting for the eviction
4729 * thread to catch up. If we're past the target size but below the hard
4730 * limit, we'll only signal the reclaim thread and continue on.
4731 */
4732static void
4733arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4734{
4735	arc_state_t *state = hdr->b_l1hdr.b_state;
4736	arc_buf_contents_t type = arc_buf_type(hdr);
4737
4738	arc_adapt(size, state);
4739
4740	/*
4741	 * If arc_size is currently overflowing, and has grown past our
4742	 * upper limit, we must be adding data faster than the evict
4743	 * thread can evict. Thus, to ensure we don't compound the
4744	 * problem by adding more data and forcing arc_size to grow even
4745	 * further past it's target size, we halt and wait for the
4746	 * eviction thread to catch up.
4747	 *
4748	 * It's also possible that the reclaim thread is unable to evict
4749	 * enough buffers to get arc_size below the overflow limit (e.g.
4750	 * due to buffers being un-evictable, or hash lock collisions).
4751	 * In this case, we want to proceed regardless if we're
4752	 * overflowing; thus we don't use a while loop here.
4753	 */
4754	if (arc_is_overflowing()) {
4755		mutex_enter(&arc_reclaim_lock);
4756
4757		/*
4758		 * Now that we've acquired the lock, we may no longer be
4759		 * over the overflow limit, lets check.
4760		 *
4761		 * We're ignoring the case of spurious wake ups. If that
4762		 * were to happen, it'd let this thread consume an ARC
4763		 * buffer before it should have (i.e. before we're under
4764		 * the overflow limit and were signalled by the reclaim
4765		 * thread). As long as that is a rare occurrence, it
4766		 * shouldn't cause any harm.
4767		 */
4768		if (arc_is_overflowing()) {
4769			cv_signal(&arc_reclaim_thread_cv);
4770			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4771		}
4772
4773		mutex_exit(&arc_reclaim_lock);
4774	}
4775
4776	VERIFY3U(hdr->b_type, ==, type);
4777	if (type == ARC_BUFC_METADATA) {
4778		arc_space_consume(size, ARC_SPACE_META);
4779	} else {
4780		arc_space_consume(size, ARC_SPACE_DATA);
4781	}
4782
4783	/*
4784	 * Update the state size.  Note that ghost states have a
4785	 * "ghost size" and so don't need to be updated.
4786	 */
4787	if (!GHOST_STATE(state)) {
4788
4789		(void) refcount_add_many(&state->arcs_size, size, tag);
4790
4791		/*
4792		 * If this is reached via arc_read, the link is
4793		 * protected by the hash lock. If reached via
4794		 * arc_buf_alloc, the header should not be accessed by
4795		 * any other thread. And, if reached via arc_read_done,
4796		 * the hash lock will protect it if it's found in the
4797		 * hash table; otherwise no other thread should be
4798		 * trying to [add|remove]_reference it.
4799		 */
4800		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4801			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4802			(void) refcount_add_many(&state->arcs_esize[type],
4803			    size, tag);
4804		}
4805
4806		/*
4807		 * If we are growing the cache, and we are adding anonymous
4808		 * data, and we have outgrown arc_p, update arc_p
4809		 */
4810		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4811		    (refcount_count(&arc_anon->arcs_size) +
4812		    refcount_count(&arc_mru->arcs_size) > arc_p))
4813			arc_p = MIN(arc_c, arc_p + size);
4814	}
4815	ARCSTAT_BUMP(arcstat_allocated);
4816}
4817
4818static void
4819arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4820{
4821	arc_free_data_impl(hdr, size, tag);
4822	abd_free(abd);
4823}
4824
4825static void
4826arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4827{
4828	arc_buf_contents_t type = arc_buf_type(hdr);
4829
4830	arc_free_data_impl(hdr, size, tag);
4831	if (type == ARC_BUFC_METADATA) {
4832		zio_buf_free(buf, size);
4833	} else {
4834		ASSERT(type == ARC_BUFC_DATA);
4835		zio_data_buf_free(buf, size);
4836	}
4837}
4838
4839/*
4840 * Free the arc data buffer.
4841 */
4842static void
4843arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4844{
4845	arc_state_t *state = hdr->b_l1hdr.b_state;
4846	arc_buf_contents_t type = arc_buf_type(hdr);
4847
4848	/* protected by hash lock, if in the hash table */
4849	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4850		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4851		ASSERT(state != arc_anon && state != arc_l2c_only);
4852
4853		(void) refcount_remove_many(&state->arcs_esize[type],
4854		    size, tag);
4855	}
4856	(void) refcount_remove_many(&state->arcs_size, size, tag);
4857
4858	VERIFY3U(hdr->b_type, ==, type);
4859	if (type == ARC_BUFC_METADATA) {
4860		arc_space_return(size, ARC_SPACE_META);
4861	} else {
4862		ASSERT(type == ARC_BUFC_DATA);
4863		arc_space_return(size, ARC_SPACE_DATA);
4864	}
4865}
4866
4867/*
4868 * This routine is called whenever a buffer is accessed.
4869 * NOTE: the hash lock is dropped in this function.
4870 */
4871static void
4872arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4873{
4874	clock_t now;
4875
4876	ASSERT(MUTEX_HELD(hash_lock));
4877	ASSERT(HDR_HAS_L1HDR(hdr));
4878
4879	if (hdr->b_l1hdr.b_state == arc_anon) {
4880		/*
4881		 * This buffer is not in the cache, and does not
4882		 * appear in our "ghost" list.  Add the new buffer
4883		 * to the MRU state.
4884		 */
4885
4886		ASSERT0(hdr->b_l1hdr.b_arc_access);
4887		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4888		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4889		arc_change_state(arc_mru, hdr, hash_lock);
4890
4891	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4892		now = ddi_get_lbolt();
4893
4894		/*
4895		 * If this buffer is here because of a prefetch, then either:
4896		 * - clear the flag if this is a "referencing" read
4897		 *   (any subsequent access will bump this into the MFU state).
4898		 * or
4899		 * - move the buffer to the head of the list if this is
4900		 *   another prefetch (to make it less likely to be evicted).
4901		 */
4902		if (HDR_PREFETCH(hdr)) {
4903			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4904				/* link protected by hash lock */
4905				ASSERT(multilist_link_active(
4906				    &hdr->b_l1hdr.b_arc_node));
4907			} else {
4908				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4909				ARCSTAT_BUMP(arcstat_mru_hits);
4910			}
4911			hdr->b_l1hdr.b_arc_access = now;
4912			return;
4913		}
4914
4915		/*
4916		 * This buffer has been "accessed" only once so far,
4917		 * but it is still in the cache. Move it to the MFU
4918		 * state.
4919		 */
4920		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4921			/*
4922			 * More than 125ms have passed since we
4923			 * instantiated this buffer.  Move it to the
4924			 * most frequently used state.
4925			 */
4926			hdr->b_l1hdr.b_arc_access = now;
4927			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4928			arc_change_state(arc_mfu, hdr, hash_lock);
4929		}
4930		ARCSTAT_BUMP(arcstat_mru_hits);
4931	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4932		arc_state_t	*new_state;
4933		/*
4934		 * This buffer has been "accessed" recently, but
4935		 * was evicted from the cache.  Move it to the
4936		 * MFU state.
4937		 */
4938
4939		if (HDR_PREFETCH(hdr)) {
4940			new_state = arc_mru;
4941			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4942				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4943			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4944		} else {
4945			new_state = arc_mfu;
4946			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4947		}
4948
4949		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4950		arc_change_state(new_state, hdr, hash_lock);
4951
4952		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4953	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4954		/*
4955		 * This buffer has been accessed more than once and is
4956		 * still in the cache.  Keep it in the MFU state.
4957		 *
4958		 * NOTE: an add_reference() that occurred when we did
4959		 * the arc_read() will have kicked this off the list.
4960		 * If it was a prefetch, we will explicitly move it to
4961		 * the head of the list now.
4962		 */
4963		if ((HDR_PREFETCH(hdr)) != 0) {
4964			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4965			/* link protected by hash_lock */
4966			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4967		}
4968		ARCSTAT_BUMP(arcstat_mfu_hits);
4969		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4970	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4971		arc_state_t	*new_state = arc_mfu;
4972		/*
4973		 * This buffer has been accessed more than once but has
4974		 * been evicted from the cache.  Move it back to the
4975		 * MFU state.
4976		 */
4977
4978		if (HDR_PREFETCH(hdr)) {
4979			/*
4980			 * This is a prefetch access...
4981			 * move this block back to the MRU state.
4982			 */
4983			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4984			new_state = arc_mru;
4985		}
4986
4987		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4988		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4989		arc_change_state(new_state, hdr, hash_lock);
4990
4991		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4992	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4993		/*
4994		 * This buffer is on the 2nd Level ARC.
4995		 */
4996
4997		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4998		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4999		arc_change_state(arc_mfu, hdr, hash_lock);
5000	} else {
5001		ASSERT(!"invalid arc state");
5002	}
5003}
5004
5005/* a generic arc_done_func_t which you can use */
5006/* ARGSUSED */
5007void
5008arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
5009{
5010	if (zio == NULL || zio->io_error == 0)
5011		bcopy(buf->b_data, arg, arc_buf_size(buf));
5012	arc_buf_destroy(buf, arg);
5013}
5014
5015/* a generic arc_done_func_t */
5016void
5017arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
5018{
5019	arc_buf_t **bufp = arg;
5020	if (zio && zio->io_error) {
5021		arc_buf_destroy(buf, arg);
5022		*bufp = NULL;
5023	} else {
5024		*bufp = buf;
5025		ASSERT(buf->b_data);
5026	}
5027}
5028
5029static void
5030arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5031{
5032	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5033		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5034		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5035	} else {
5036		if (HDR_COMPRESSION_ENABLED(hdr)) {
5037			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5038			    BP_GET_COMPRESS(bp));
5039		}
5040		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5041		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5042	}
5043}
5044
5045static void
5046arc_read_done(zio_t *zio)
5047{
5048	arc_buf_hdr_t	*hdr = zio->io_private;
5049	kmutex_t	*hash_lock = NULL;
5050	arc_callback_t	*callback_list;
5051	arc_callback_t	*acb;
5052	boolean_t	freeable = B_FALSE;
5053	boolean_t	no_zio_error = (zio->io_error == 0);
5054
5055	/*
5056	 * The hdr was inserted into hash-table and removed from lists
5057	 * prior to starting I/O.  We should find this header, since
5058	 * it's in the hash table, and it should be legit since it's
5059	 * not possible to evict it during the I/O.  The only possible
5060	 * reason for it not to be found is if we were freed during the
5061	 * read.
5062	 */
5063	if (HDR_IN_HASH_TABLE(hdr)) {
5064		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5065		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5066		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5067		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5068		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5069
5070		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5071		    &hash_lock);
5072
5073		ASSERT((found == hdr &&
5074		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5075		    (found == hdr && HDR_L2_READING(hdr)));
5076		ASSERT3P(hash_lock, !=, NULL);
5077	}
5078
5079	if (no_zio_error) {
5080		/* byteswap if necessary */
5081		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5082			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5083				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5084			} else {
5085				hdr->b_l1hdr.b_byteswap =
5086				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5087			}
5088		} else {
5089			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5090		}
5091	}
5092
5093	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5094	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5095		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5096
5097	callback_list = hdr->b_l1hdr.b_acb;
5098	ASSERT3P(callback_list, !=, NULL);
5099
5100	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5101		/*
5102		 * Only call arc_access on anonymous buffers.  This is because
5103		 * if we've issued an I/O for an evicted buffer, we've already
5104		 * called arc_access (to prevent any simultaneous readers from
5105		 * getting confused).
5106		 */
5107		arc_access(hdr, hash_lock);
5108	}
5109
5110	/*
5111	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5112	 * make a buf containing the data according to the parameters which were
5113	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5114	 * aren't needlessly decompressing the data multiple times.
5115	 */
5116	int callback_cnt = 0;
5117	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5118		if (!acb->acb_done)
5119			continue;
5120
5121		/* This is a demand read since prefetches don't use callbacks */
5122		callback_cnt++;
5123
5124		int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5125		    acb->acb_compressed, no_zio_error, &acb->acb_buf);
5126		if (no_zio_error) {
5127			zio->io_error = error;
5128		}
5129	}
5130	hdr->b_l1hdr.b_acb = NULL;
5131	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5132	if (callback_cnt == 0) {
5133		ASSERT(HDR_PREFETCH(hdr));
5134		ASSERT0(hdr->b_l1hdr.b_bufcnt);
5135		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5136	}
5137
5138	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5139	    callback_list != NULL);
5140
5141	if (no_zio_error) {
5142		arc_hdr_verify(hdr, zio->io_bp);
5143	} else {
5144		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5145		if (hdr->b_l1hdr.b_state != arc_anon)
5146			arc_change_state(arc_anon, hdr, hash_lock);
5147		if (HDR_IN_HASH_TABLE(hdr))
5148			buf_hash_remove(hdr);
5149		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5150	}
5151
5152	/*
5153	 * Broadcast before we drop the hash_lock to avoid the possibility
5154	 * that the hdr (and hence the cv) might be freed before we get to
5155	 * the cv_broadcast().
5156	 */
5157	cv_broadcast(&hdr->b_l1hdr.b_cv);
5158
5159	if (hash_lock != NULL) {
5160		mutex_exit(hash_lock);
5161	} else {
5162		/*
5163		 * This block was freed while we waited for the read to
5164		 * complete.  It has been removed from the hash table and
5165		 * moved to the anonymous state (so that it won't show up
5166		 * in the cache).
5167		 */
5168		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5169		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5170	}
5171
5172	/* execute each callback and free its structure */
5173	while ((acb = callback_list) != NULL) {
5174		if (acb->acb_done)
5175			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5176
5177		if (acb->acb_zio_dummy != NULL) {
5178			acb->acb_zio_dummy->io_error = zio->io_error;
5179			zio_nowait(acb->acb_zio_dummy);
5180		}
5181
5182		callback_list = acb->acb_next;
5183		kmem_free(acb, sizeof (arc_callback_t));
5184	}
5185
5186	if (freeable)
5187		arc_hdr_destroy(hdr);
5188}
5189
5190/*
5191 * "Read" the block at the specified DVA (in bp) via the
5192 * cache.  If the block is found in the cache, invoke the provided
5193 * callback immediately and return.  Note that the `zio' parameter
5194 * in the callback will be NULL in this case, since no IO was
5195 * required.  If the block is not in the cache pass the read request
5196 * on to the spa with a substitute callback function, so that the
5197 * requested block will be added to the cache.
5198 *
5199 * If a read request arrives for a block that has a read in-progress,
5200 * either wait for the in-progress read to complete (and return the
5201 * results); or, if this is a read with a "done" func, add a record
5202 * to the read to invoke the "done" func when the read completes,
5203 * and return; or just return.
5204 *
5205 * arc_read_done() will invoke all the requested "done" functions
5206 * for readers of this block.
5207 */
5208int
5209arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5210    void *private, zio_priority_t priority, int zio_flags,
5211    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5212{
5213	arc_buf_hdr_t *hdr = NULL;
5214	kmutex_t *hash_lock = NULL;
5215	zio_t *rzio;
5216	uint64_t guid = spa_load_guid(spa);
5217	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5218
5219	ASSERT(!BP_IS_EMBEDDED(bp) ||
5220	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5221
5222top:
5223	if (!BP_IS_EMBEDDED(bp)) {
5224		/*
5225		 * Embedded BP's have no DVA and require no I/O to "read".
5226		 * Create an anonymous arc buf to back it.
5227		 */
5228		hdr = buf_hash_find(guid, bp, &hash_lock);
5229	}
5230
5231	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5232		arc_buf_t *buf = NULL;
5233		*arc_flags |= ARC_FLAG_CACHED;
5234
5235		if (HDR_IO_IN_PROGRESS(hdr)) {
5236
5237			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5238			    priority == ZIO_PRIORITY_SYNC_READ) {
5239				/*
5240				 * This sync read must wait for an
5241				 * in-progress async read (e.g. a predictive
5242				 * prefetch).  Async reads are queued
5243				 * separately at the vdev_queue layer, so
5244				 * this is a form of priority inversion.
5245				 * Ideally, we would "inherit" the demand
5246				 * i/o's priority by moving the i/o from
5247				 * the async queue to the synchronous queue,
5248				 * but there is currently no mechanism to do
5249				 * so.  Track this so that we can evaluate
5250				 * the magnitude of this potential performance
5251				 * problem.
5252				 *
5253				 * Note that if the prefetch i/o is already
5254				 * active (has been issued to the device),
5255				 * the prefetch improved performance, because
5256				 * we issued it sooner than we would have
5257				 * without the prefetch.
5258				 */
5259				DTRACE_PROBE1(arc__sync__wait__for__async,
5260				    arc_buf_hdr_t *, hdr);
5261				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5262			}
5263			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5264				arc_hdr_clear_flags(hdr,
5265				    ARC_FLAG_PREDICTIVE_PREFETCH);
5266			}
5267
5268			if (*arc_flags & ARC_FLAG_WAIT) {
5269				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5270				mutex_exit(hash_lock);
5271				goto top;
5272			}
5273			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5274
5275			if (done) {
5276				arc_callback_t *acb = NULL;
5277
5278				acb = kmem_zalloc(sizeof (arc_callback_t),
5279				    KM_SLEEP);
5280				acb->acb_done = done;
5281				acb->acb_private = private;
5282				acb->acb_compressed = compressed_read;
5283				if (pio != NULL)
5284					acb->acb_zio_dummy = zio_null(pio,
5285					    spa, NULL, NULL, NULL, zio_flags);
5286
5287				ASSERT3P(acb->acb_done, !=, NULL);
5288				acb->acb_next = hdr->b_l1hdr.b_acb;
5289				hdr->b_l1hdr.b_acb = acb;
5290				mutex_exit(hash_lock);
5291				return (0);
5292			}
5293			mutex_exit(hash_lock);
5294			return (0);
5295		}
5296
5297		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5298		    hdr->b_l1hdr.b_state == arc_mfu);
5299
5300		if (done) {
5301			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5302				/*
5303				 * This is a demand read which does not have to
5304				 * wait for i/o because we did a predictive
5305				 * prefetch i/o for it, which has completed.
5306				 */
5307				DTRACE_PROBE1(
5308				    arc__demand__hit__predictive__prefetch,
5309				    arc_buf_hdr_t *, hdr);
5310				ARCSTAT_BUMP(
5311				    arcstat_demand_hit_predictive_prefetch);
5312				arc_hdr_clear_flags(hdr,
5313				    ARC_FLAG_PREDICTIVE_PREFETCH);
5314			}
5315			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5316
5317			/* Get a buf with the desired data in it. */
5318			VERIFY0(arc_buf_alloc_impl(hdr, private,
5319			    compressed_read, B_TRUE, &buf));
5320		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5321		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5322			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5323		}
5324		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5325		arc_access(hdr, hash_lock);
5326		if (*arc_flags & ARC_FLAG_L2CACHE)
5327			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5328		mutex_exit(hash_lock);
5329		ARCSTAT_BUMP(arcstat_hits);
5330		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5331		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5332		    data, metadata, hits);
5333
5334		if (done)
5335			done(NULL, buf, private);
5336	} else {
5337		uint64_t lsize = BP_GET_LSIZE(bp);
5338		uint64_t psize = BP_GET_PSIZE(bp);
5339		arc_callback_t *acb;
5340		vdev_t *vd = NULL;
5341		uint64_t addr = 0;
5342		boolean_t devw = B_FALSE;
5343		uint64_t size;
5344
5345		if (hdr == NULL) {
5346			/* this block is not in the cache */
5347			arc_buf_hdr_t *exists = NULL;
5348			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5349			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5350			    BP_GET_COMPRESS(bp), type);
5351
5352			if (!BP_IS_EMBEDDED(bp)) {
5353				hdr->b_dva = *BP_IDENTITY(bp);
5354				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5355				exists = buf_hash_insert(hdr, &hash_lock);
5356			}
5357			if (exists != NULL) {
5358				/* somebody beat us to the hash insert */
5359				mutex_exit(hash_lock);
5360				buf_discard_identity(hdr);
5361				arc_hdr_destroy(hdr);
5362				goto top; /* restart the IO request */
5363			}
5364		} else {
5365			/*
5366			 * This block is in the ghost cache. If it was L2-only
5367			 * (and thus didn't have an L1 hdr), we realloc the
5368			 * header to add an L1 hdr.
5369			 */
5370			if (!HDR_HAS_L1HDR(hdr)) {
5371				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5372				    hdr_full_cache);
5373			}
5374			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5375			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5376			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5377			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5378			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5379			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5380
5381			/*
5382			 * This is a delicate dance that we play here.
5383			 * This hdr is in the ghost list so we access it
5384			 * to move it out of the ghost list before we
5385			 * initiate the read. If it's a prefetch then
5386			 * it won't have a callback so we'll remove the
5387			 * reference that arc_buf_alloc_impl() created. We
5388			 * do this after we've called arc_access() to
5389			 * avoid hitting an assert in remove_reference().
5390			 */
5391			arc_access(hdr, hash_lock);
5392			arc_hdr_alloc_pabd(hdr);
5393		}
5394		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5395		size = arc_hdr_size(hdr);
5396
5397		/*
5398		 * If compression is enabled on the hdr, then will do
5399		 * RAW I/O and will store the compressed data in the hdr's
5400		 * data block. Otherwise, the hdr's data block will contain
5401		 * the uncompressed data.
5402		 */
5403		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5404			zio_flags |= ZIO_FLAG_RAW;
5405		}
5406
5407		if (*arc_flags & ARC_FLAG_PREFETCH)
5408			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5409		if (*arc_flags & ARC_FLAG_L2CACHE)
5410			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5411		if (BP_GET_LEVEL(bp) > 0)
5412			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5413		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5414			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5415		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5416
5417		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5418		acb->acb_done = done;
5419		acb->acb_private = private;
5420		acb->acb_compressed = compressed_read;
5421
5422		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5423		hdr->b_l1hdr.b_acb = acb;
5424		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5425
5426		if (HDR_HAS_L2HDR(hdr) &&
5427		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5428			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5429			addr = hdr->b_l2hdr.b_daddr;
5430			/*
5431			 * Lock out device removal.
5432			 */
5433			if (vdev_is_dead(vd) ||
5434			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5435				vd = NULL;
5436		}
5437
5438		if (priority == ZIO_PRIORITY_ASYNC_READ)
5439			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5440		else
5441			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5442
5443		if (hash_lock != NULL)
5444			mutex_exit(hash_lock);
5445
5446		/*
5447		 * At this point, we have a level 1 cache miss.  Try again in
5448		 * L2ARC if possible.
5449		 */
5450		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5451
5452		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5453		    uint64_t, lsize, zbookmark_phys_t *, zb);
5454		ARCSTAT_BUMP(arcstat_misses);
5455		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5456		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5457		    data, metadata, misses);
5458#ifdef _KERNEL
5459#ifdef RACCT
5460		if (racct_enable) {
5461			PROC_LOCK(curproc);
5462			racct_add_force(curproc, RACCT_READBPS, size);
5463			racct_add_force(curproc, RACCT_READIOPS, 1);
5464			PROC_UNLOCK(curproc);
5465		}
5466#endif /* RACCT */
5467		curthread->td_ru.ru_inblock++;
5468#endif
5469
5470		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5471			/*
5472			 * Read from the L2ARC if the following are true:
5473			 * 1. The L2ARC vdev was previously cached.
5474			 * 2. This buffer still has L2ARC metadata.
5475			 * 3. This buffer isn't currently writing to the L2ARC.
5476			 * 4. The L2ARC entry wasn't evicted, which may
5477			 *    also have invalidated the vdev.
5478			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5479			 */
5480			if (HDR_HAS_L2HDR(hdr) &&
5481			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5482			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5483				l2arc_read_callback_t *cb;
5484				abd_t *abd;
5485				uint64_t asize;
5486
5487				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5488				ARCSTAT_BUMP(arcstat_l2_hits);
5489
5490				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5491				    KM_SLEEP);
5492				cb->l2rcb_hdr = hdr;
5493				cb->l2rcb_bp = *bp;
5494				cb->l2rcb_zb = *zb;
5495				cb->l2rcb_flags = zio_flags;
5496
5497				asize = vdev_psize_to_asize(vd, size);
5498				if (asize != size) {
5499					abd = abd_alloc_for_io(asize,
5500					    HDR_ISTYPE_METADATA(hdr));
5501					cb->l2rcb_abd = abd;
5502				} else {
5503					abd = hdr->b_l1hdr.b_pabd;
5504				}
5505
5506				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5507				    addr + asize <= vd->vdev_psize -
5508				    VDEV_LABEL_END_SIZE);
5509
5510				/*
5511				 * l2arc read.  The SCL_L2ARC lock will be
5512				 * released by l2arc_read_done().
5513				 * Issue a null zio if the underlying buffer
5514				 * was squashed to zero size by compression.
5515				 */
5516				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5517				    ZIO_COMPRESS_EMPTY);
5518				rzio = zio_read_phys(pio, vd, addr,
5519				    asize, abd,
5520				    ZIO_CHECKSUM_OFF,
5521				    l2arc_read_done, cb, priority,
5522				    zio_flags | ZIO_FLAG_DONT_CACHE |
5523				    ZIO_FLAG_CANFAIL |
5524				    ZIO_FLAG_DONT_PROPAGATE |
5525				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5526				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5527				    zio_t *, rzio);
5528				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5529
5530				if (*arc_flags & ARC_FLAG_NOWAIT) {
5531					zio_nowait(rzio);
5532					return (0);
5533				}
5534
5535				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5536				if (zio_wait(rzio) == 0)
5537					return (0);
5538
5539				/* l2arc read error; goto zio_read() */
5540			} else {
5541				DTRACE_PROBE1(l2arc__miss,
5542				    arc_buf_hdr_t *, hdr);
5543				ARCSTAT_BUMP(arcstat_l2_misses);
5544				if (HDR_L2_WRITING(hdr))
5545					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5546				spa_config_exit(spa, SCL_L2ARC, vd);
5547			}
5548		} else {
5549			if (vd != NULL)
5550				spa_config_exit(spa, SCL_L2ARC, vd);
5551			if (l2arc_ndev != 0) {
5552				DTRACE_PROBE1(l2arc__miss,
5553				    arc_buf_hdr_t *, hdr);
5554				ARCSTAT_BUMP(arcstat_l2_misses);
5555			}
5556		}
5557
5558		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5559		    arc_read_done, hdr, priority, zio_flags, zb);
5560
5561		if (*arc_flags & ARC_FLAG_WAIT)
5562			return (zio_wait(rzio));
5563
5564		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5565		zio_nowait(rzio);
5566	}
5567	return (0);
5568}
5569
5570/*
5571 * Notify the arc that a block was freed, and thus will never be used again.
5572 */
5573void
5574arc_freed(spa_t *spa, const blkptr_t *bp)
5575{
5576	arc_buf_hdr_t *hdr;
5577	kmutex_t *hash_lock;
5578	uint64_t guid = spa_load_guid(spa);
5579
5580	ASSERT(!BP_IS_EMBEDDED(bp));
5581
5582	hdr = buf_hash_find(guid, bp, &hash_lock);
5583	if (hdr == NULL)
5584		return;
5585
5586	/*
5587	 * We might be trying to free a block that is still doing I/O
5588	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5589	 * dmu_sync-ed block). If this block is being prefetched, then it
5590	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5591	 * until the I/O completes. A block may also have a reference if it is
5592	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5593	 * have written the new block to its final resting place on disk but
5594	 * without the dedup flag set. This would have left the hdr in the MRU
5595	 * state and discoverable. When the txg finally syncs it detects that
5596	 * the block was overridden in open context and issues an override I/O.
5597	 * Since this is a dedup block, the override I/O will determine if the
5598	 * block is already in the DDT. If so, then it will replace the io_bp
5599	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5600	 * reaches the done callback, dbuf_write_override_done, it will
5601	 * check to see if the io_bp and io_bp_override are identical.
5602	 * If they are not, then it indicates that the bp was replaced with
5603	 * the bp in the DDT and the override bp is freed. This allows
5604	 * us to arrive here with a reference on a block that is being
5605	 * freed. So if we have an I/O in progress, or a reference to
5606	 * this hdr, then we don't destroy the hdr.
5607	 */
5608	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5609	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5610		arc_change_state(arc_anon, hdr, hash_lock);
5611		arc_hdr_destroy(hdr);
5612		mutex_exit(hash_lock);
5613	} else {
5614		mutex_exit(hash_lock);
5615	}
5616
5617}
5618
5619/*
5620 * Release this buffer from the cache, making it an anonymous buffer.  This
5621 * must be done after a read and prior to modifying the buffer contents.
5622 * If the buffer has more than one reference, we must make
5623 * a new hdr for the buffer.
5624 */
5625void
5626arc_release(arc_buf_t *buf, void *tag)
5627{
5628	arc_buf_hdr_t *hdr = buf->b_hdr;
5629
5630	/*
5631	 * It would be nice to assert that if it's DMU metadata (level >
5632	 * 0 || it's the dnode file), then it must be syncing context.
5633	 * But we don't know that information at this level.
5634	 */
5635
5636	mutex_enter(&buf->b_evict_lock);
5637
5638	ASSERT(HDR_HAS_L1HDR(hdr));
5639
5640	/*
5641	 * We don't grab the hash lock prior to this check, because if
5642	 * the buffer's header is in the arc_anon state, it won't be
5643	 * linked into the hash table.
5644	 */
5645	if (hdr->b_l1hdr.b_state == arc_anon) {
5646		mutex_exit(&buf->b_evict_lock);
5647		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5648		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5649		ASSERT(!HDR_HAS_L2HDR(hdr));
5650		ASSERT(HDR_EMPTY(hdr));
5651		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5652		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5653		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5654
5655		hdr->b_l1hdr.b_arc_access = 0;
5656
5657		/*
5658		 * If the buf is being overridden then it may already
5659		 * have a hdr that is not empty.
5660		 */
5661		buf_discard_identity(hdr);
5662		arc_buf_thaw(buf);
5663
5664		return;
5665	}
5666
5667	kmutex_t *hash_lock = HDR_LOCK(hdr);
5668	mutex_enter(hash_lock);
5669
5670	/*
5671	 * This assignment is only valid as long as the hash_lock is
5672	 * held, we must be careful not to reference state or the
5673	 * b_state field after dropping the lock.
5674	 */
5675	arc_state_t *state = hdr->b_l1hdr.b_state;
5676	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5677	ASSERT3P(state, !=, arc_anon);
5678
5679	/* this buffer is not on any list */
5680	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5681
5682	if (HDR_HAS_L2HDR(hdr)) {
5683		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5684
5685		/*
5686		 * We have to recheck this conditional again now that
5687		 * we're holding the l2ad_mtx to prevent a race with
5688		 * another thread which might be concurrently calling
5689		 * l2arc_evict(). In that case, l2arc_evict() might have
5690		 * destroyed the header's L2 portion as we were waiting
5691		 * to acquire the l2ad_mtx.
5692		 */
5693		if (HDR_HAS_L2HDR(hdr)) {
5694			l2arc_trim(hdr);
5695			arc_hdr_l2hdr_destroy(hdr);
5696		}
5697
5698		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5699	}
5700
5701	/*
5702	 * Do we have more than one buf?
5703	 */
5704	if (hdr->b_l1hdr.b_bufcnt > 1) {
5705		arc_buf_hdr_t *nhdr;
5706		uint64_t spa = hdr->b_spa;
5707		uint64_t psize = HDR_GET_PSIZE(hdr);
5708		uint64_t lsize = HDR_GET_LSIZE(hdr);
5709		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5710		arc_buf_contents_t type = arc_buf_type(hdr);
5711		VERIFY3U(hdr->b_type, ==, type);
5712
5713		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5714		(void) remove_reference(hdr, hash_lock, tag);
5715
5716		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5717			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5718			ASSERT(ARC_BUF_LAST(buf));
5719		}
5720
5721		/*
5722		 * Pull the data off of this hdr and attach it to
5723		 * a new anonymous hdr. Also find the last buffer
5724		 * in the hdr's buffer list.
5725		 */
5726		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5727		ASSERT3P(lastbuf, !=, NULL);
5728
5729		/*
5730		 * If the current arc_buf_t and the hdr are sharing their data
5731		 * buffer, then we must stop sharing that block.
5732		 */
5733		if (arc_buf_is_shared(buf)) {
5734			VERIFY(!arc_buf_is_shared(lastbuf));
5735
5736			/*
5737			 * First, sever the block sharing relationship between
5738			 * buf and the arc_buf_hdr_t.
5739			 */
5740			arc_unshare_buf(hdr, buf);
5741
5742			/*
5743			 * Now we need to recreate the hdr's b_pabd. Since we
5744			 * have lastbuf handy, we try to share with it, but if
5745			 * we can't then we allocate a new b_pabd and copy the
5746			 * data from buf into it.
5747			 */
5748			if (arc_can_share(hdr, lastbuf)) {
5749				arc_share_buf(hdr, lastbuf);
5750			} else {
5751				arc_hdr_alloc_pabd(hdr);
5752				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5753				    buf->b_data, psize);
5754			}
5755			VERIFY3P(lastbuf->b_data, !=, NULL);
5756		} else if (HDR_SHARED_DATA(hdr)) {
5757			/*
5758			 * Uncompressed shared buffers are always at the end
5759			 * of the list. Compressed buffers don't have the
5760			 * same requirements. This makes it hard to
5761			 * simply assert that the lastbuf is shared so
5762			 * we rely on the hdr's compression flags to determine
5763			 * if we have a compressed, shared buffer.
5764			 */
5765			ASSERT(arc_buf_is_shared(lastbuf) ||
5766			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5767			ASSERT(!ARC_BUF_SHARED(buf));
5768		}
5769		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5770		ASSERT3P(state, !=, arc_l2c_only);
5771
5772		(void) refcount_remove_many(&state->arcs_size,
5773		    arc_buf_size(buf), buf);
5774
5775		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5776			ASSERT3P(state, !=, arc_l2c_only);
5777			(void) refcount_remove_many(&state->arcs_esize[type],
5778			    arc_buf_size(buf), buf);
5779		}
5780
5781		hdr->b_l1hdr.b_bufcnt -= 1;
5782		arc_cksum_verify(buf);
5783#ifdef illumos
5784		arc_buf_unwatch(buf);
5785#endif
5786
5787		mutex_exit(hash_lock);
5788
5789		/*
5790		 * Allocate a new hdr. The new hdr will contain a b_pabd
5791		 * buffer which will be freed in arc_write().
5792		 */
5793		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5794		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5795		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5796		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5797		VERIFY3U(nhdr->b_type, ==, type);
5798		ASSERT(!HDR_SHARED_DATA(nhdr));
5799
5800		nhdr->b_l1hdr.b_buf = buf;
5801		nhdr->b_l1hdr.b_bufcnt = 1;
5802		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5803		buf->b_hdr = nhdr;
5804
5805		mutex_exit(&buf->b_evict_lock);
5806		(void) refcount_add_many(&arc_anon->arcs_size,
5807		    arc_buf_size(buf), buf);
5808	} else {
5809		mutex_exit(&buf->b_evict_lock);
5810		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5811		/* protected by hash lock, or hdr is on arc_anon */
5812		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5813		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5814		arc_change_state(arc_anon, hdr, hash_lock);
5815		hdr->b_l1hdr.b_arc_access = 0;
5816		mutex_exit(hash_lock);
5817
5818		buf_discard_identity(hdr);
5819		arc_buf_thaw(buf);
5820	}
5821}
5822
5823int
5824arc_released(arc_buf_t *buf)
5825{
5826	int released;
5827
5828	mutex_enter(&buf->b_evict_lock);
5829	released = (buf->b_data != NULL &&
5830	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5831	mutex_exit(&buf->b_evict_lock);
5832	return (released);
5833}
5834
5835#ifdef ZFS_DEBUG
5836int
5837arc_referenced(arc_buf_t *buf)
5838{
5839	int referenced;
5840
5841	mutex_enter(&buf->b_evict_lock);
5842	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5843	mutex_exit(&buf->b_evict_lock);
5844	return (referenced);
5845}
5846#endif
5847
5848static void
5849arc_write_ready(zio_t *zio)
5850{
5851	arc_write_callback_t *callback = zio->io_private;
5852	arc_buf_t *buf = callback->awcb_buf;
5853	arc_buf_hdr_t *hdr = buf->b_hdr;
5854	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5855
5856	ASSERT(HDR_HAS_L1HDR(hdr));
5857	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5858	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5859
5860	/*
5861	 * If we're reexecuting this zio because the pool suspended, then
5862	 * cleanup any state that was previously set the first time the
5863	 * callback was invoked.
5864	 */
5865	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5866		arc_cksum_free(hdr);
5867#ifdef illumos
5868		arc_buf_unwatch(buf);
5869#endif
5870		if (hdr->b_l1hdr.b_pabd != NULL) {
5871			if (arc_buf_is_shared(buf)) {
5872				arc_unshare_buf(hdr, buf);
5873			} else {
5874				arc_hdr_free_pabd(hdr);
5875			}
5876		}
5877	}
5878	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5879	ASSERT(!HDR_SHARED_DATA(hdr));
5880	ASSERT(!arc_buf_is_shared(buf));
5881
5882	callback->awcb_ready(zio, buf, callback->awcb_private);
5883
5884	if (HDR_IO_IN_PROGRESS(hdr))
5885		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5886
5887	arc_cksum_compute(buf);
5888	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5889
5890	enum zio_compress compress;
5891	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5892		compress = ZIO_COMPRESS_OFF;
5893	} else {
5894		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5895		compress = BP_GET_COMPRESS(zio->io_bp);
5896	}
5897	HDR_SET_PSIZE(hdr, psize);
5898	arc_hdr_set_compress(hdr, compress);
5899
5900
5901	/*
5902	 * Fill the hdr with data. If the hdr is compressed, the data we want
5903	 * is available from the zio, otherwise we can take it from the buf.
5904	 *
5905	 * We might be able to share the buf's data with the hdr here. However,
5906	 * doing so would cause the ARC to be full of linear ABDs if we write a
5907	 * lot of shareable data. As a compromise, we check whether scattered
5908	 * ABDs are allowed, and assume that if they are then the user wants
5909	 * the ARC to be primarily filled with them regardless of the data being
5910	 * written. Therefore, if they're allowed then we allocate one and copy
5911	 * the data into it; otherwise, we share the data directly if we can.
5912	 */
5913	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5914		arc_hdr_alloc_pabd(hdr);
5915
5916		/*
5917		 * Ideally, we would always copy the io_abd into b_pabd, but the
5918		 * user may have disabled compressed ARC, thus we must check the
5919		 * hdr's compression setting rather than the io_bp's.
5920		 */
5921		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5922			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5923			    ZIO_COMPRESS_OFF);
5924			ASSERT3U(psize, >, 0);
5925
5926			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5927		} else {
5928			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5929
5930			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5931			    arc_buf_size(buf));
5932		}
5933	} else {
5934		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5935		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5936		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5937
5938		arc_share_buf(hdr, buf);
5939	}
5940
5941	arc_hdr_verify(hdr, zio->io_bp);
5942}
5943
5944static void
5945arc_write_children_ready(zio_t *zio)
5946{
5947	arc_write_callback_t *callback = zio->io_private;
5948	arc_buf_t *buf = callback->awcb_buf;
5949
5950	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5951}
5952
5953/*
5954 * The SPA calls this callback for each physical write that happens on behalf
5955 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5956 */
5957static void
5958arc_write_physdone(zio_t *zio)
5959{
5960	arc_write_callback_t *cb = zio->io_private;
5961	if (cb->awcb_physdone != NULL)
5962		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5963}
5964
5965static void
5966arc_write_done(zio_t *zio)
5967{
5968	arc_write_callback_t *callback = zio->io_private;
5969	arc_buf_t *buf = callback->awcb_buf;
5970	arc_buf_hdr_t *hdr = buf->b_hdr;
5971
5972	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5973
5974	if (zio->io_error == 0) {
5975		arc_hdr_verify(hdr, zio->io_bp);
5976
5977		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5978			buf_discard_identity(hdr);
5979		} else {
5980			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5981			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5982		}
5983	} else {
5984		ASSERT(HDR_EMPTY(hdr));
5985	}
5986
5987	/*
5988	 * If the block to be written was all-zero or compressed enough to be
5989	 * embedded in the BP, no write was performed so there will be no
5990	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5991	 * (and uncached).
5992	 */
5993	if (!HDR_EMPTY(hdr)) {
5994		arc_buf_hdr_t *exists;
5995		kmutex_t *hash_lock;
5996
5997		ASSERT3U(zio->io_error, ==, 0);
5998
5999		arc_cksum_verify(buf);
6000
6001		exists = buf_hash_insert(hdr, &hash_lock);
6002		if (exists != NULL) {
6003			/*
6004			 * This can only happen if we overwrite for
6005			 * sync-to-convergence, because we remove
6006			 * buffers from the hash table when we arc_free().
6007			 */
6008			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6009				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6010					panic("bad overwrite, hdr=%p exists=%p",
6011					    (void *)hdr, (void *)exists);
6012				ASSERT(refcount_is_zero(
6013				    &exists->b_l1hdr.b_refcnt));
6014				arc_change_state(arc_anon, exists, hash_lock);
6015				mutex_exit(hash_lock);
6016				arc_hdr_destroy(exists);
6017				exists = buf_hash_insert(hdr, &hash_lock);
6018				ASSERT3P(exists, ==, NULL);
6019			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6020				/* nopwrite */
6021				ASSERT(zio->io_prop.zp_nopwrite);
6022				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6023					panic("bad nopwrite, hdr=%p exists=%p",
6024					    (void *)hdr, (void *)exists);
6025			} else {
6026				/* Dedup */
6027				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6028				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6029				ASSERT(BP_GET_DEDUP(zio->io_bp));
6030				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6031			}
6032		}
6033		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6034		/* if it's not anon, we are doing a scrub */
6035		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6036			arc_access(hdr, hash_lock);
6037		mutex_exit(hash_lock);
6038	} else {
6039		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6040	}
6041
6042	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6043	callback->awcb_done(zio, buf, callback->awcb_private);
6044
6045	abd_put(zio->io_abd);
6046	kmem_free(callback, sizeof (arc_write_callback_t));
6047}
6048
6049zio_t *
6050arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6051    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
6052    arc_done_func_t *children_ready, arc_done_func_t *physdone,
6053    arc_done_func_t *done, void *private, zio_priority_t priority,
6054    int zio_flags, const zbookmark_phys_t *zb)
6055{
6056	arc_buf_hdr_t *hdr = buf->b_hdr;
6057	arc_write_callback_t *callback;
6058	zio_t *zio;
6059	zio_prop_t localprop = *zp;
6060
6061	ASSERT3P(ready, !=, NULL);
6062	ASSERT3P(done, !=, NULL);
6063	ASSERT(!HDR_IO_ERROR(hdr));
6064	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6065	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6066	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6067	if (l2arc)
6068		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6069	if (ARC_BUF_COMPRESSED(buf)) {
6070		/*
6071		 * We're writing a pre-compressed buffer.  Make the
6072		 * compression algorithm requested by the zio_prop_t match
6073		 * the pre-compressed buffer's compression algorithm.
6074		 */
6075		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6076
6077		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6078		zio_flags |= ZIO_FLAG_RAW;
6079	}
6080	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6081	callback->awcb_ready = ready;
6082	callback->awcb_children_ready = children_ready;
6083	callback->awcb_physdone = physdone;
6084	callback->awcb_done = done;
6085	callback->awcb_private = private;
6086	callback->awcb_buf = buf;
6087
6088	/*
6089	 * The hdr's b_pabd is now stale, free it now. A new data block
6090	 * will be allocated when the zio pipeline calls arc_write_ready().
6091	 */
6092	if (hdr->b_l1hdr.b_pabd != NULL) {
6093		/*
6094		 * If the buf is currently sharing the data block with
6095		 * the hdr then we need to break that relationship here.
6096		 * The hdr will remain with a NULL data pointer and the
6097		 * buf will take sole ownership of the block.
6098		 */
6099		if (arc_buf_is_shared(buf)) {
6100			arc_unshare_buf(hdr, buf);
6101		} else {
6102			arc_hdr_free_pabd(hdr);
6103		}
6104		VERIFY3P(buf->b_data, !=, NULL);
6105		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6106	}
6107	ASSERT(!arc_buf_is_shared(buf));
6108	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6109
6110	zio = zio_write(pio, spa, txg, bp,
6111	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6112	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6113	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6114	    arc_write_physdone, arc_write_done, callback,
6115	    priority, zio_flags, zb);
6116
6117	return (zio);
6118}
6119
6120static int
6121arc_memory_throttle(uint64_t reserve, uint64_t txg)
6122{
6123#ifdef _KERNEL
6124	uint64_t available_memory = ptob(freemem);
6125	static uint64_t page_load = 0;
6126	static uint64_t last_txg = 0;
6127
6128#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
6129	available_memory =
6130	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
6131#endif
6132
6133	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
6134		return (0);
6135
6136	if (txg > last_txg) {
6137		last_txg = txg;
6138		page_load = 0;
6139	}
6140	/*
6141	 * If we are in pageout, we know that memory is already tight,
6142	 * the arc is already going to be evicting, so we just want to
6143	 * continue to let page writes occur as quickly as possible.
6144	 */
6145	if (curproc == pageproc) {
6146		if (page_load > MAX(ptob(minfree), available_memory) / 4)
6147			return (SET_ERROR(ERESTART));
6148		/* Note: reserve is inflated, so we deflate */
6149		page_load += reserve / 8;
6150		return (0);
6151	} else if (page_load > 0 && arc_reclaim_needed()) {
6152		/* memory is low, delay before restarting */
6153		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6154		return (SET_ERROR(EAGAIN));
6155	}
6156	page_load = 0;
6157#endif
6158	return (0);
6159}
6160
6161void
6162arc_tempreserve_clear(uint64_t reserve)
6163{
6164	atomic_add_64(&arc_tempreserve, -reserve);
6165	ASSERT((int64_t)arc_tempreserve >= 0);
6166}
6167
6168int
6169arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6170{
6171	int error;
6172	uint64_t anon_size;
6173
6174	if (reserve > arc_c/4 && !arc_no_grow) {
6175		arc_c = MIN(arc_c_max, reserve * 4);
6176		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
6177	}
6178	if (reserve > arc_c)
6179		return (SET_ERROR(ENOMEM));
6180
6181	/*
6182	 * Don't count loaned bufs as in flight dirty data to prevent long
6183	 * network delays from blocking transactions that are ready to be
6184	 * assigned to a txg.
6185	 */
6186
6187	/* assert that it has not wrapped around */
6188	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6189
6190	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6191	    arc_loaned_bytes), 0);
6192
6193	/*
6194	 * Writes will, almost always, require additional memory allocations
6195	 * in order to compress/encrypt/etc the data.  We therefore need to
6196	 * make sure that there is sufficient available memory for this.
6197	 */
6198	error = arc_memory_throttle(reserve, txg);
6199	if (error != 0)
6200		return (error);
6201
6202	/*
6203	 * Throttle writes when the amount of dirty data in the cache
6204	 * gets too large.  We try to keep the cache less than half full
6205	 * of dirty blocks so that our sync times don't grow too large.
6206	 * Note: if two requests come in concurrently, we might let them
6207	 * both succeed, when one of them should fail.  Not a huge deal.
6208	 */
6209
6210	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6211	    anon_size > arc_c / 4) {
6212		uint64_t meta_esize =
6213		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6214		uint64_t data_esize =
6215		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6216		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6217		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6218		    arc_tempreserve >> 10, meta_esize >> 10,
6219		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6220		return (SET_ERROR(ERESTART));
6221	}
6222	atomic_add_64(&arc_tempreserve, reserve);
6223	return (0);
6224}
6225
6226static void
6227arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6228    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6229{
6230	size->value.ui64 = refcount_count(&state->arcs_size);
6231	evict_data->value.ui64 =
6232	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6233	evict_metadata->value.ui64 =
6234	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6235}
6236
6237static int
6238arc_kstat_update(kstat_t *ksp, int rw)
6239{
6240	arc_stats_t *as = ksp->ks_data;
6241
6242	if (rw == KSTAT_WRITE) {
6243		return (EACCES);
6244	} else {
6245		arc_kstat_update_state(arc_anon,
6246		    &as->arcstat_anon_size,
6247		    &as->arcstat_anon_evictable_data,
6248		    &as->arcstat_anon_evictable_metadata);
6249		arc_kstat_update_state(arc_mru,
6250		    &as->arcstat_mru_size,
6251		    &as->arcstat_mru_evictable_data,
6252		    &as->arcstat_mru_evictable_metadata);
6253		arc_kstat_update_state(arc_mru_ghost,
6254		    &as->arcstat_mru_ghost_size,
6255		    &as->arcstat_mru_ghost_evictable_data,
6256		    &as->arcstat_mru_ghost_evictable_metadata);
6257		arc_kstat_update_state(arc_mfu,
6258		    &as->arcstat_mfu_size,
6259		    &as->arcstat_mfu_evictable_data,
6260		    &as->arcstat_mfu_evictable_metadata);
6261		arc_kstat_update_state(arc_mfu_ghost,
6262		    &as->arcstat_mfu_ghost_size,
6263		    &as->arcstat_mfu_ghost_evictable_data,
6264		    &as->arcstat_mfu_ghost_evictable_metadata);
6265	}
6266
6267	return (0);
6268}
6269
6270/*
6271 * This function *must* return indices evenly distributed between all
6272 * sublists of the multilist. This is needed due to how the ARC eviction
6273 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6274 * distributed between all sublists and uses this assumption when
6275 * deciding which sublist to evict from and how much to evict from it.
6276 */
6277unsigned int
6278arc_state_multilist_index_func(multilist_t *ml, void *obj)
6279{
6280	arc_buf_hdr_t *hdr = obj;
6281
6282	/*
6283	 * We rely on b_dva to generate evenly distributed index
6284	 * numbers using buf_hash below. So, as an added precaution,
6285	 * let's make sure we never add empty buffers to the arc lists.
6286	 */
6287	ASSERT(!HDR_EMPTY(hdr));
6288
6289	/*
6290	 * The assumption here, is the hash value for a given
6291	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6292	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6293	 * Thus, we don't need to store the header's sublist index
6294	 * on insertion, as this index can be recalculated on removal.
6295	 *
6296	 * Also, the low order bits of the hash value are thought to be
6297	 * distributed evenly. Otherwise, in the case that the multilist
6298	 * has a power of two number of sublists, each sublists' usage
6299	 * would not be evenly distributed.
6300	 */
6301	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6302	    multilist_get_num_sublists(ml));
6303}
6304
6305#ifdef _KERNEL
6306static eventhandler_tag arc_event_lowmem = NULL;
6307
6308static void
6309arc_lowmem(void *arg __unused, int howto __unused)
6310{
6311
6312	mutex_enter(&arc_reclaim_lock);
6313	/* XXX: Memory deficit should be passed as argument. */
6314	needfree = btoc(arc_c >> arc_shrink_shift);
6315	DTRACE_PROBE(arc__needfree);
6316	cv_signal(&arc_reclaim_thread_cv);
6317
6318	/*
6319	 * It is unsafe to block here in arbitrary threads, because we can come
6320	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
6321	 * with ARC reclaim thread.
6322	 */
6323	if (curproc == pageproc)
6324		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
6325	mutex_exit(&arc_reclaim_lock);
6326}
6327#endif
6328
6329static void
6330arc_state_init(void)
6331{
6332	arc_anon = &ARC_anon;
6333	arc_mru = &ARC_mru;
6334	arc_mru_ghost = &ARC_mru_ghost;
6335	arc_mfu = &ARC_mfu;
6336	arc_mfu_ghost = &ARC_mfu_ghost;
6337	arc_l2c_only = &ARC_l2c_only;
6338
6339	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6340	    multilist_create(sizeof (arc_buf_hdr_t),
6341	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6342	    arc_state_multilist_index_func);
6343	arc_mru->arcs_list[ARC_BUFC_DATA] =
6344	    multilist_create(sizeof (arc_buf_hdr_t),
6345	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6346	    arc_state_multilist_index_func);
6347	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6348	    multilist_create(sizeof (arc_buf_hdr_t),
6349	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6350	    arc_state_multilist_index_func);
6351	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6352	    multilist_create(sizeof (arc_buf_hdr_t),
6353	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6354	    arc_state_multilist_index_func);
6355	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6356	    multilist_create(sizeof (arc_buf_hdr_t),
6357	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6358	    arc_state_multilist_index_func);
6359	arc_mfu->arcs_list[ARC_BUFC_DATA] =
6360	    multilist_create(sizeof (arc_buf_hdr_t),
6361	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6362	    arc_state_multilist_index_func);
6363	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6364	    multilist_create(sizeof (arc_buf_hdr_t),
6365	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6366	    arc_state_multilist_index_func);
6367	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6368	    multilist_create(sizeof (arc_buf_hdr_t),
6369	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6370	    arc_state_multilist_index_func);
6371	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6372	    multilist_create(sizeof (arc_buf_hdr_t),
6373	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6374	    arc_state_multilist_index_func);
6375	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6376	    multilist_create(sizeof (arc_buf_hdr_t),
6377	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6378	    arc_state_multilist_index_func);
6379
6380	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6381	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6382	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6383	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6384	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6385	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6386	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6387	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6388	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6389	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6390	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6391	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6392
6393	refcount_create(&arc_anon->arcs_size);
6394	refcount_create(&arc_mru->arcs_size);
6395	refcount_create(&arc_mru_ghost->arcs_size);
6396	refcount_create(&arc_mfu->arcs_size);
6397	refcount_create(&arc_mfu_ghost->arcs_size);
6398	refcount_create(&arc_l2c_only->arcs_size);
6399}
6400
6401static void
6402arc_state_fini(void)
6403{
6404	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6405	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6406	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6407	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6408	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6409	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6410	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6411	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6412	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6413	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6414	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6415	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6416
6417	refcount_destroy(&arc_anon->arcs_size);
6418	refcount_destroy(&arc_mru->arcs_size);
6419	refcount_destroy(&arc_mru_ghost->arcs_size);
6420	refcount_destroy(&arc_mfu->arcs_size);
6421	refcount_destroy(&arc_mfu_ghost->arcs_size);
6422	refcount_destroy(&arc_l2c_only->arcs_size);
6423
6424	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6425	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6426	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6427	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6428	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6429	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6430	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6431	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6432}
6433
6434uint64_t
6435arc_max_bytes(void)
6436{
6437	return (arc_c_max);
6438}
6439
6440void
6441arc_init(void)
6442{
6443	int i, prefetch_tunable_set = 0;
6444
6445	/*
6446	 * allmem is "all memory that we could possibly use".
6447	 */
6448#ifdef illumos
6449#ifdef _KERNEL
6450	uint64_t allmem = ptob(physmem - swapfs_minfree);
6451#else
6452	uint64_t allmem = (physmem * PAGESIZE) / 2;
6453#endif
6454#else
6455	uint64_t allmem = kmem_size();
6456#endif
6457
6458
6459	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6460	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6461	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6462
6463	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
6464	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
6465
6466	/* Convert seconds to clock ticks */
6467	arc_min_prefetch_lifespan = 1 * hz;
6468
6469	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
6470	arc_c_min = MAX(allmem / 32, arc_abs_min);
6471	/* set max to 5/8 of all memory, or all but 1GB, whichever is more */
6472	if (allmem >= 1 << 30)
6473		arc_c_max = allmem - (1 << 30);
6474	else
6475		arc_c_max = arc_c_min;
6476	arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
6477
6478	/*
6479	 * In userland, there's only the memory pressure that we artificially
6480	 * create (see arc_available_memory()).  Don't let arc_c get too
6481	 * small, because it can cause transactions to be larger than
6482	 * arc_c, causing arc_tempreserve_space() to fail.
6483	 */
6484#ifndef _KERNEL
6485	arc_c_min = arc_c_max / 2;
6486#endif
6487
6488#ifdef _KERNEL
6489	/*
6490	 * Allow the tunables to override our calculations if they are
6491	 * reasonable.
6492	 */
6493	if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
6494		arc_c_max = zfs_arc_max;
6495		arc_c_min = MIN(arc_c_min, arc_c_max);
6496	}
6497	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6498		arc_c_min = zfs_arc_min;
6499#endif
6500
6501	arc_c = arc_c_max;
6502	arc_p = (arc_c >> 1);
6503	arc_size = 0;
6504
6505	/* limit meta-data to 1/4 of the arc capacity */
6506	arc_meta_limit = arc_c_max / 4;
6507
6508#ifdef _KERNEL
6509	/*
6510	 * Metadata is stored in the kernel's heap.  Don't let us
6511	 * use more than half the heap for the ARC.
6512	 */
6513	arc_meta_limit = MIN(arc_meta_limit,
6514	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6515#endif
6516
6517	/* Allow the tunable to override if it is reasonable */
6518	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6519		arc_meta_limit = zfs_arc_meta_limit;
6520
6521	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6522		arc_c_min = arc_meta_limit / 2;
6523
6524	if (zfs_arc_meta_min > 0) {
6525		arc_meta_min = zfs_arc_meta_min;
6526	} else {
6527		arc_meta_min = arc_c_min / 2;
6528	}
6529
6530	if (zfs_arc_grow_retry > 0)
6531		arc_grow_retry = zfs_arc_grow_retry;
6532
6533	if (zfs_arc_shrink_shift > 0)
6534		arc_shrink_shift = zfs_arc_shrink_shift;
6535
6536	if (zfs_arc_no_grow_shift > 0)
6537		arc_no_grow_shift = zfs_arc_no_grow_shift;
6538	/*
6539	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6540	 */
6541	if (arc_no_grow_shift >= arc_shrink_shift)
6542		arc_no_grow_shift = arc_shrink_shift - 1;
6543
6544	if (zfs_arc_p_min_shift > 0)
6545		arc_p_min_shift = zfs_arc_p_min_shift;
6546
6547	/* if kmem_flags are set, lets try to use less memory */
6548	if (kmem_debugging())
6549		arc_c = arc_c / 2;
6550	if (arc_c < arc_c_min)
6551		arc_c = arc_c_min;
6552
6553	zfs_arc_min = arc_c_min;
6554	zfs_arc_max = arc_c_max;
6555
6556	arc_state_init();
6557	buf_init();
6558
6559	arc_reclaim_thread_exit = B_FALSE;
6560	arc_dnlc_evicts_thread_exit = FALSE;
6561
6562	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6563	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6564
6565	if (arc_ksp != NULL) {
6566		arc_ksp->ks_data = &arc_stats;
6567		arc_ksp->ks_update = arc_kstat_update;
6568		kstat_install(arc_ksp);
6569	}
6570
6571	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6572	    TS_RUN, minclsyspri);
6573
6574#ifdef _KERNEL
6575	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6576	    EVENTHANDLER_PRI_FIRST);
6577#endif
6578
6579	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
6580	    TS_RUN, minclsyspri);
6581
6582	arc_dead = B_FALSE;
6583	arc_warm = B_FALSE;
6584
6585	/*
6586	 * Calculate maximum amount of dirty data per pool.
6587	 *
6588	 * If it has been set by /etc/system, take that.
6589	 * Otherwise, use a percentage of physical memory defined by
6590	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6591	 * zfs_dirty_data_max_max (default 4GB).
6592	 */
6593	if (zfs_dirty_data_max == 0) {
6594		zfs_dirty_data_max = ptob(physmem) *
6595		    zfs_dirty_data_max_percent / 100;
6596		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6597		    zfs_dirty_data_max_max);
6598	}
6599
6600#ifdef _KERNEL
6601	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6602		prefetch_tunable_set = 1;
6603
6604#ifdef __i386__
6605	if (prefetch_tunable_set == 0) {
6606		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6607		    "-- to enable,\n");
6608		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6609		    "to /boot/loader.conf.\n");
6610		zfs_prefetch_disable = 1;
6611	}
6612#else
6613	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6614	    prefetch_tunable_set == 0) {
6615		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6616		    "than 4GB of RAM is present;\n"
6617		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6618		    "to /boot/loader.conf.\n");
6619		zfs_prefetch_disable = 1;
6620	}
6621#endif
6622	/* Warn about ZFS memory and address space requirements. */
6623	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6624		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6625		    "expect unstable behavior.\n");
6626	}
6627	if (allmem < 512 * (1 << 20)) {
6628		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6629		    "expect unstable behavior.\n");
6630		printf("             Consider tuning vm.kmem_size and "
6631		    "vm.kmem_size_max\n");
6632		printf("             in /boot/loader.conf.\n");
6633	}
6634#endif
6635}
6636
6637void
6638arc_fini(void)
6639{
6640	mutex_enter(&arc_reclaim_lock);
6641	arc_reclaim_thread_exit = B_TRUE;
6642	/*
6643	 * The reclaim thread will set arc_reclaim_thread_exit back to
6644	 * B_FALSE when it is finished exiting; we're waiting for that.
6645	 */
6646	while (arc_reclaim_thread_exit) {
6647		cv_signal(&arc_reclaim_thread_cv);
6648		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6649	}
6650	mutex_exit(&arc_reclaim_lock);
6651
6652	/* Use B_TRUE to ensure *all* buffers are evicted */
6653	arc_flush(NULL, B_TRUE);
6654
6655	mutex_enter(&arc_dnlc_evicts_lock);
6656	arc_dnlc_evicts_thread_exit = TRUE;
6657	/*
6658	 * The user evicts thread will set arc_user_evicts_thread_exit
6659	 * to FALSE when it is finished exiting; we're waiting for that.
6660	 */
6661	while (arc_dnlc_evicts_thread_exit) {
6662		cv_signal(&arc_dnlc_evicts_cv);
6663		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
6664	}
6665	mutex_exit(&arc_dnlc_evicts_lock);
6666
6667	arc_dead = B_TRUE;
6668
6669	if (arc_ksp != NULL) {
6670		kstat_delete(arc_ksp);
6671		arc_ksp = NULL;
6672	}
6673
6674	mutex_destroy(&arc_reclaim_lock);
6675	cv_destroy(&arc_reclaim_thread_cv);
6676	cv_destroy(&arc_reclaim_waiters_cv);
6677
6678	mutex_destroy(&arc_dnlc_evicts_lock);
6679	cv_destroy(&arc_dnlc_evicts_cv);
6680
6681	arc_state_fini();
6682	buf_fini();
6683
6684	ASSERT0(arc_loaned_bytes);
6685
6686#ifdef _KERNEL
6687	if (arc_event_lowmem != NULL)
6688		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6689#endif
6690}
6691
6692/*
6693 * Level 2 ARC
6694 *
6695 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6696 * It uses dedicated storage devices to hold cached data, which are populated
6697 * using large infrequent writes.  The main role of this cache is to boost
6698 * the performance of random read workloads.  The intended L2ARC devices
6699 * include short-stroked disks, solid state disks, and other media with
6700 * substantially faster read latency than disk.
6701 *
6702 *                 +-----------------------+
6703 *                 |         ARC           |
6704 *                 +-----------------------+
6705 *                    |         ^     ^
6706 *                    |         |     |
6707 *      l2arc_feed_thread()    arc_read()
6708 *                    |         |     |
6709 *                    |  l2arc read   |
6710 *                    V         |     |
6711 *               +---------------+    |
6712 *               |     L2ARC     |    |
6713 *               +---------------+    |
6714 *                   |    ^           |
6715 *          l2arc_write() |           |
6716 *                   |    |           |
6717 *                   V    |           |
6718 *                 +-------+      +-------+
6719 *                 | vdev  |      | vdev  |
6720 *                 | cache |      | cache |
6721 *                 +-------+      +-------+
6722 *                 +=========+     .-----.
6723 *                 :  L2ARC  :    |-_____-|
6724 *                 : devices :    | Disks |
6725 *                 +=========+    `-_____-'
6726 *
6727 * Read requests are satisfied from the following sources, in order:
6728 *
6729 *	1) ARC
6730 *	2) vdev cache of L2ARC devices
6731 *	3) L2ARC devices
6732 *	4) vdev cache of disks
6733 *	5) disks
6734 *
6735 * Some L2ARC device types exhibit extremely slow write performance.
6736 * To accommodate for this there are some significant differences between
6737 * the L2ARC and traditional cache design:
6738 *
6739 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6740 * the ARC behave as usual, freeing buffers and placing headers on ghost
6741 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6742 * this would add inflated write latencies for all ARC memory pressure.
6743 *
6744 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6745 * It does this by periodically scanning buffers from the eviction-end of
6746 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6747 * not already there. It scans until a headroom of buffers is satisfied,
6748 * which itself is a buffer for ARC eviction. If a compressible buffer is
6749 * found during scanning and selected for writing to an L2ARC device, we
6750 * temporarily boost scanning headroom during the next scan cycle to make
6751 * sure we adapt to compression effects (which might significantly reduce
6752 * the data volume we write to L2ARC). The thread that does this is
6753 * l2arc_feed_thread(), illustrated below; example sizes are included to
6754 * provide a better sense of ratio than this diagram:
6755 *
6756 *	       head -->                        tail
6757 *	        +---------------------+----------+
6758 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6759 *	        +---------------------+----------+   |   o L2ARC eligible
6760 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6761 *	        +---------------------+----------+   |
6762 *	             15.9 Gbytes      ^ 32 Mbytes    |
6763 *	                           headroom          |
6764 *	                                      l2arc_feed_thread()
6765 *	                                             |
6766 *	                 l2arc write hand <--[oooo]--'
6767 *	                         |           8 Mbyte
6768 *	                         |          write max
6769 *	                         V
6770 *		  +==============================+
6771 *	L2ARC dev |####|#|###|###|    |####| ... |
6772 *	          +==============================+
6773 *	                     32 Gbytes
6774 *
6775 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6776 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6777 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6778 * safe to say that this is an uncommon case, since buffers at the end of
6779 * the ARC lists have moved there due to inactivity.
6780 *
6781 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6782 * then the L2ARC simply misses copying some buffers.  This serves as a
6783 * pressure valve to prevent heavy read workloads from both stalling the ARC
6784 * with waits and clogging the L2ARC with writes.  This also helps prevent
6785 * the potential for the L2ARC to churn if it attempts to cache content too
6786 * quickly, such as during backups of the entire pool.
6787 *
6788 * 5. After system boot and before the ARC has filled main memory, there are
6789 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6790 * lists can remain mostly static.  Instead of searching from tail of these
6791 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6792 * for eligible buffers, greatly increasing its chance of finding them.
6793 *
6794 * The L2ARC device write speed is also boosted during this time so that
6795 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6796 * there are no L2ARC reads, and no fear of degrading read performance
6797 * through increased writes.
6798 *
6799 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6800 * the vdev queue can aggregate them into larger and fewer writes.  Each
6801 * device is written to in a rotor fashion, sweeping writes through
6802 * available space then repeating.
6803 *
6804 * 7. The L2ARC does not store dirty content.  It never needs to flush
6805 * write buffers back to disk based storage.
6806 *
6807 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6808 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6809 *
6810 * The performance of the L2ARC can be tweaked by a number of tunables, which
6811 * may be necessary for different workloads:
6812 *
6813 *	l2arc_write_max		max write bytes per interval
6814 *	l2arc_write_boost	extra write bytes during device warmup
6815 *	l2arc_noprefetch	skip caching prefetched buffers
6816 *	l2arc_headroom		number of max device writes to precache
6817 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6818 *				scanning, we multiply headroom by this
6819 *				percentage factor for the next scan cycle,
6820 *				since more compressed buffers are likely to
6821 *				be present
6822 *	l2arc_feed_secs		seconds between L2ARC writing
6823 *
6824 * Tunables may be removed or added as future performance improvements are
6825 * integrated, and also may become zpool properties.
6826 *
6827 * There are three key functions that control how the L2ARC warms up:
6828 *
6829 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6830 *	l2arc_write_size()	calculate how much to write
6831 *	l2arc_write_interval()	calculate sleep delay between writes
6832 *
6833 * These three functions determine what to write, how much, and how quickly
6834 * to send writes.
6835 */
6836
6837static boolean_t
6838l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6839{
6840	/*
6841	 * A buffer is *not* eligible for the L2ARC if it:
6842	 * 1. belongs to a different spa.
6843	 * 2. is already cached on the L2ARC.
6844	 * 3. has an I/O in progress (it may be an incomplete read).
6845	 * 4. is flagged not eligible (zfs property).
6846	 */
6847	if (hdr->b_spa != spa_guid) {
6848		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6849		return (B_FALSE);
6850	}
6851	if (HDR_HAS_L2HDR(hdr)) {
6852		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6853		return (B_FALSE);
6854	}
6855	if (HDR_IO_IN_PROGRESS(hdr)) {
6856		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6857		return (B_FALSE);
6858	}
6859	if (!HDR_L2CACHE(hdr)) {
6860		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6861		return (B_FALSE);
6862	}
6863
6864	return (B_TRUE);
6865}
6866
6867static uint64_t
6868l2arc_write_size(void)
6869{
6870	uint64_t size;
6871
6872	/*
6873	 * Make sure our globals have meaningful values in case the user
6874	 * altered them.
6875	 */
6876	size = l2arc_write_max;
6877	if (size == 0) {
6878		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6879		    "be greater than zero, resetting it to the default (%d)",
6880		    L2ARC_WRITE_SIZE);
6881		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6882	}
6883
6884	if (arc_warm == B_FALSE)
6885		size += l2arc_write_boost;
6886
6887	return (size);
6888
6889}
6890
6891static clock_t
6892l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6893{
6894	clock_t interval, next, now;
6895
6896	/*
6897	 * If the ARC lists are busy, increase our write rate; if the
6898	 * lists are stale, idle back.  This is achieved by checking
6899	 * how much we previously wrote - if it was more than half of
6900	 * what we wanted, schedule the next write much sooner.
6901	 */
6902	if (l2arc_feed_again && wrote > (wanted / 2))
6903		interval = (hz * l2arc_feed_min_ms) / 1000;
6904	else
6905		interval = hz * l2arc_feed_secs;
6906
6907	now = ddi_get_lbolt();
6908	next = MAX(now, MIN(now + interval, began + interval));
6909
6910	return (next);
6911}
6912
6913/*
6914 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6915 * If a device is returned, this also returns holding the spa config lock.
6916 */
6917static l2arc_dev_t *
6918l2arc_dev_get_next(void)
6919{
6920	l2arc_dev_t *first, *next = NULL;
6921
6922	/*
6923	 * Lock out the removal of spas (spa_namespace_lock), then removal
6924	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6925	 * both locks will be dropped and a spa config lock held instead.
6926	 */
6927	mutex_enter(&spa_namespace_lock);
6928	mutex_enter(&l2arc_dev_mtx);
6929
6930	/* if there are no vdevs, there is nothing to do */
6931	if (l2arc_ndev == 0)
6932		goto out;
6933
6934	first = NULL;
6935	next = l2arc_dev_last;
6936	do {
6937		/* loop around the list looking for a non-faulted vdev */
6938		if (next == NULL) {
6939			next = list_head(l2arc_dev_list);
6940		} else {
6941			next = list_next(l2arc_dev_list, next);
6942			if (next == NULL)
6943				next = list_head(l2arc_dev_list);
6944		}
6945
6946		/* if we have come back to the start, bail out */
6947		if (first == NULL)
6948			first = next;
6949		else if (next == first)
6950			break;
6951
6952	} while (vdev_is_dead(next->l2ad_vdev));
6953
6954	/* if we were unable to find any usable vdevs, return NULL */
6955	if (vdev_is_dead(next->l2ad_vdev))
6956		next = NULL;
6957
6958	l2arc_dev_last = next;
6959
6960out:
6961	mutex_exit(&l2arc_dev_mtx);
6962
6963	/*
6964	 * Grab the config lock to prevent the 'next' device from being
6965	 * removed while we are writing to it.
6966	 */
6967	if (next != NULL)
6968		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6969	mutex_exit(&spa_namespace_lock);
6970
6971	return (next);
6972}
6973
6974/*
6975 * Free buffers that were tagged for destruction.
6976 */
6977static void
6978l2arc_do_free_on_write()
6979{
6980	list_t *buflist;
6981	l2arc_data_free_t *df, *df_prev;
6982
6983	mutex_enter(&l2arc_free_on_write_mtx);
6984	buflist = l2arc_free_on_write;
6985
6986	for (df = list_tail(buflist); df; df = df_prev) {
6987		df_prev = list_prev(buflist, df);
6988		ASSERT3P(df->l2df_abd, !=, NULL);
6989		abd_free(df->l2df_abd);
6990		list_remove(buflist, df);
6991		kmem_free(df, sizeof (l2arc_data_free_t));
6992	}
6993
6994	mutex_exit(&l2arc_free_on_write_mtx);
6995}
6996
6997/*
6998 * A write to a cache device has completed.  Update all headers to allow
6999 * reads from these buffers to begin.
7000 */
7001static void
7002l2arc_write_done(zio_t *zio)
7003{
7004	l2arc_write_callback_t *cb;
7005	l2arc_dev_t *dev;
7006	list_t *buflist;
7007	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7008	kmutex_t *hash_lock;
7009	int64_t bytes_dropped = 0;
7010
7011	cb = zio->io_private;
7012	ASSERT3P(cb, !=, NULL);
7013	dev = cb->l2wcb_dev;
7014	ASSERT3P(dev, !=, NULL);
7015	head = cb->l2wcb_head;
7016	ASSERT3P(head, !=, NULL);
7017	buflist = &dev->l2ad_buflist;
7018	ASSERT3P(buflist, !=, NULL);
7019	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7020	    l2arc_write_callback_t *, cb);
7021
7022	if (zio->io_error != 0)
7023		ARCSTAT_BUMP(arcstat_l2_writes_error);
7024
7025	/*
7026	 * All writes completed, or an error was hit.
7027	 */
7028top:
7029	mutex_enter(&dev->l2ad_mtx);
7030	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7031		hdr_prev = list_prev(buflist, hdr);
7032
7033		hash_lock = HDR_LOCK(hdr);
7034
7035		/*
7036		 * We cannot use mutex_enter or else we can deadlock
7037		 * with l2arc_write_buffers (due to swapping the order
7038		 * the hash lock and l2ad_mtx are taken).
7039		 */
7040		if (!mutex_tryenter(hash_lock)) {
7041			/*
7042			 * Missed the hash lock. We must retry so we
7043			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7044			 */
7045			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7046
7047			/*
7048			 * We don't want to rescan the headers we've
7049			 * already marked as having been written out, so
7050			 * we reinsert the head node so we can pick up
7051			 * where we left off.
7052			 */
7053			list_remove(buflist, head);
7054			list_insert_after(buflist, hdr, head);
7055
7056			mutex_exit(&dev->l2ad_mtx);
7057
7058			/*
7059			 * We wait for the hash lock to become available
7060			 * to try and prevent busy waiting, and increase
7061			 * the chance we'll be able to acquire the lock
7062			 * the next time around.
7063			 */
7064			mutex_enter(hash_lock);
7065			mutex_exit(hash_lock);
7066			goto top;
7067		}
7068
7069		/*
7070		 * We could not have been moved into the arc_l2c_only
7071		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7072		 * bit being set. Let's just ensure that's being enforced.
7073		 */
7074		ASSERT(HDR_HAS_L1HDR(hdr));
7075
7076		if (zio->io_error != 0) {
7077			/*
7078			 * Error - drop L2ARC entry.
7079			 */
7080			list_remove(buflist, hdr);
7081			l2arc_trim(hdr);
7082			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7083
7084			ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
7085			ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
7086
7087			bytes_dropped += arc_hdr_size(hdr);
7088			(void) refcount_remove_many(&dev->l2ad_alloc,
7089			    arc_hdr_size(hdr), hdr);
7090		}
7091
7092		/*
7093		 * Allow ARC to begin reads and ghost list evictions to
7094		 * this L2ARC entry.
7095		 */
7096		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7097
7098		mutex_exit(hash_lock);
7099	}
7100
7101	atomic_inc_64(&l2arc_writes_done);
7102	list_remove(buflist, head);
7103	ASSERT(!HDR_HAS_L1HDR(head));
7104	kmem_cache_free(hdr_l2only_cache, head);
7105	mutex_exit(&dev->l2ad_mtx);
7106
7107	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7108
7109	l2arc_do_free_on_write();
7110
7111	kmem_free(cb, sizeof (l2arc_write_callback_t));
7112}
7113
7114/*
7115 * A read to a cache device completed.  Validate buffer contents before
7116 * handing over to the regular ARC routines.
7117 */
7118static void
7119l2arc_read_done(zio_t *zio)
7120{
7121	l2arc_read_callback_t *cb;
7122	arc_buf_hdr_t *hdr;
7123	kmutex_t *hash_lock;
7124	boolean_t valid_cksum;
7125
7126	ASSERT3P(zio->io_vd, !=, NULL);
7127	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7128
7129	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7130
7131	cb = zio->io_private;
7132	ASSERT3P(cb, !=, NULL);
7133	hdr = cb->l2rcb_hdr;
7134	ASSERT3P(hdr, !=, NULL);
7135
7136	hash_lock = HDR_LOCK(hdr);
7137	mutex_enter(hash_lock);
7138	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7139
7140	/*
7141	 * If the data was read into a temporary buffer,
7142	 * move it and free the buffer.
7143	 */
7144	if (cb->l2rcb_abd != NULL) {
7145		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7146		if (zio->io_error == 0) {
7147			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7148			    arc_hdr_size(hdr));
7149		}
7150
7151		/*
7152		 * The following must be done regardless of whether
7153		 * there was an error:
7154		 * - free the temporary buffer
7155		 * - point zio to the real ARC buffer
7156		 * - set zio size accordingly
7157		 * These are required because zio is either re-used for
7158		 * an I/O of the block in the case of the error
7159		 * or the zio is passed to arc_read_done() and it
7160		 * needs real data.
7161		 */
7162		abd_free(cb->l2rcb_abd);
7163		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7164		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7165	}
7166
7167	ASSERT3P(zio->io_abd, !=, NULL);
7168
7169	/*
7170	 * Check this survived the L2ARC journey.
7171	 */
7172	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7173	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
7174	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
7175
7176	valid_cksum = arc_cksum_is_equal(hdr, zio);
7177	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7178		mutex_exit(hash_lock);
7179		zio->io_private = hdr;
7180		arc_read_done(zio);
7181	} else {
7182		mutex_exit(hash_lock);
7183		/*
7184		 * Buffer didn't survive caching.  Increment stats and
7185		 * reissue to the original storage device.
7186		 */
7187		if (zio->io_error != 0) {
7188			ARCSTAT_BUMP(arcstat_l2_io_error);
7189		} else {
7190			zio->io_error = SET_ERROR(EIO);
7191		}
7192		if (!valid_cksum)
7193			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7194
7195		/*
7196		 * If there's no waiter, issue an async i/o to the primary
7197		 * storage now.  If there *is* a waiter, the caller must
7198		 * issue the i/o in a context where it's OK to block.
7199		 */
7200		if (zio->io_waiter == NULL) {
7201			zio_t *pio = zio_unique_parent(zio);
7202
7203			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7204
7205			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7206			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7207			    hdr, zio->io_priority, cb->l2rcb_flags,
7208			    &cb->l2rcb_zb));
7209		}
7210	}
7211
7212	kmem_free(cb, sizeof (l2arc_read_callback_t));
7213}
7214
7215/*
7216 * This is the list priority from which the L2ARC will search for pages to
7217 * cache.  This is used within loops (0..3) to cycle through lists in the
7218 * desired order.  This order can have a significant effect on cache
7219 * performance.
7220 *
7221 * Currently the metadata lists are hit first, MFU then MRU, followed by
7222 * the data lists.  This function returns a locked list, and also returns
7223 * the lock pointer.
7224 */
7225static multilist_sublist_t *
7226l2arc_sublist_lock(int list_num)
7227{
7228	multilist_t *ml = NULL;
7229	unsigned int idx;
7230
7231	ASSERT(list_num >= 0 && list_num <= 3);
7232
7233	switch (list_num) {
7234	case 0:
7235		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7236		break;
7237	case 1:
7238		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7239		break;
7240	case 2:
7241		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7242		break;
7243	case 3:
7244		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7245		break;
7246	}
7247
7248	/*
7249	 * Return a randomly-selected sublist. This is acceptable
7250	 * because the caller feeds only a little bit of data for each
7251	 * call (8MB). Subsequent calls will result in different
7252	 * sublists being selected.
7253	 */
7254	idx = multilist_get_random_index(ml);
7255	return (multilist_sublist_lock(ml, idx));
7256}
7257
7258/*
7259 * Evict buffers from the device write hand to the distance specified in
7260 * bytes.  This distance may span populated buffers, it may span nothing.
7261 * This is clearing a region on the L2ARC device ready for writing.
7262 * If the 'all' boolean is set, every buffer is evicted.
7263 */
7264static void
7265l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7266{
7267	list_t *buflist;
7268	arc_buf_hdr_t *hdr, *hdr_prev;
7269	kmutex_t *hash_lock;
7270	uint64_t taddr;
7271
7272	buflist = &dev->l2ad_buflist;
7273
7274	if (!all && dev->l2ad_first) {
7275		/*
7276		 * This is the first sweep through the device.  There is
7277		 * nothing to evict.
7278		 */
7279		return;
7280	}
7281
7282	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7283		/*
7284		 * When nearing the end of the device, evict to the end
7285		 * before the device write hand jumps to the start.
7286		 */
7287		taddr = dev->l2ad_end;
7288	} else {
7289		taddr = dev->l2ad_hand + distance;
7290	}
7291	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7292	    uint64_t, taddr, boolean_t, all);
7293
7294top:
7295	mutex_enter(&dev->l2ad_mtx);
7296	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7297		hdr_prev = list_prev(buflist, hdr);
7298
7299		hash_lock = HDR_LOCK(hdr);
7300
7301		/*
7302		 * We cannot use mutex_enter or else we can deadlock
7303		 * with l2arc_write_buffers (due to swapping the order
7304		 * the hash lock and l2ad_mtx are taken).
7305		 */
7306		if (!mutex_tryenter(hash_lock)) {
7307			/*
7308			 * Missed the hash lock.  Retry.
7309			 */
7310			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7311			mutex_exit(&dev->l2ad_mtx);
7312			mutex_enter(hash_lock);
7313			mutex_exit(hash_lock);
7314			goto top;
7315		}
7316
7317		if (HDR_L2_WRITE_HEAD(hdr)) {
7318			/*
7319			 * We hit a write head node.  Leave it for
7320			 * l2arc_write_done().
7321			 */
7322			list_remove(buflist, hdr);
7323			mutex_exit(hash_lock);
7324			continue;
7325		}
7326
7327		if (!all && HDR_HAS_L2HDR(hdr) &&
7328		    (hdr->b_l2hdr.b_daddr >= taddr ||
7329		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7330			/*
7331			 * We've evicted to the target address,
7332			 * or the end of the device.
7333			 */
7334			mutex_exit(hash_lock);
7335			break;
7336		}
7337
7338		ASSERT(HDR_HAS_L2HDR(hdr));
7339		if (!HDR_HAS_L1HDR(hdr)) {
7340			ASSERT(!HDR_L2_READING(hdr));
7341			/*
7342			 * This doesn't exist in the ARC.  Destroy.
7343			 * arc_hdr_destroy() will call list_remove()
7344			 * and decrement arcstat_l2_size.
7345			 */
7346			arc_change_state(arc_anon, hdr, hash_lock);
7347			arc_hdr_destroy(hdr);
7348		} else {
7349			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7350			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7351			/*
7352			 * Invalidate issued or about to be issued
7353			 * reads, since we may be about to write
7354			 * over this location.
7355			 */
7356			if (HDR_L2_READING(hdr)) {
7357				ARCSTAT_BUMP(arcstat_l2_evict_reading);
7358				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7359			}
7360
7361			/* Ensure this header has finished being written */
7362			ASSERT(!HDR_L2_WRITING(hdr));
7363
7364			arc_hdr_l2hdr_destroy(hdr);
7365		}
7366		mutex_exit(hash_lock);
7367	}
7368	mutex_exit(&dev->l2ad_mtx);
7369}
7370
7371/*
7372 * Find and write ARC buffers to the L2ARC device.
7373 *
7374 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7375 * for reading until they have completed writing.
7376 * The headroom_boost is an in-out parameter used to maintain headroom boost
7377 * state between calls to this function.
7378 *
7379 * Returns the number of bytes actually written (which may be smaller than
7380 * the delta by which the device hand has changed due to alignment).
7381 */
7382static uint64_t
7383l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7384{
7385	arc_buf_hdr_t *hdr, *hdr_prev, *head;
7386	uint64_t write_asize, write_psize, write_sz, headroom;
7387	boolean_t full;
7388	l2arc_write_callback_t *cb;
7389	zio_t *pio, *wzio;
7390	uint64_t guid = spa_load_guid(spa);
7391	int try;
7392
7393	ASSERT3P(dev->l2ad_vdev, !=, NULL);
7394
7395	pio = NULL;
7396	write_sz = write_asize = write_psize = 0;
7397	full = B_FALSE;
7398	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7399	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7400
7401	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
7402	/*
7403	 * Copy buffers for L2ARC writing.
7404	 */
7405	for (try = 0; try <= 3; try++) {
7406		multilist_sublist_t *mls = l2arc_sublist_lock(try);
7407		uint64_t passed_sz = 0;
7408
7409		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
7410
7411		/*
7412		 * L2ARC fast warmup.
7413		 *
7414		 * Until the ARC is warm and starts to evict, read from the
7415		 * head of the ARC lists rather than the tail.
7416		 */
7417		if (arc_warm == B_FALSE)
7418			hdr = multilist_sublist_head(mls);
7419		else
7420			hdr = multilist_sublist_tail(mls);
7421		if (hdr == NULL)
7422			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
7423
7424		headroom = target_sz * l2arc_headroom;
7425		if (zfs_compressed_arc_enabled)
7426			headroom = (headroom * l2arc_headroom_boost) / 100;
7427
7428		for (; hdr; hdr = hdr_prev) {
7429			kmutex_t *hash_lock;
7430
7431			if (arc_warm == B_FALSE)
7432				hdr_prev = multilist_sublist_next(mls, hdr);
7433			else
7434				hdr_prev = multilist_sublist_prev(mls, hdr);
7435			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
7436			    HDR_GET_LSIZE(hdr));
7437
7438			hash_lock = HDR_LOCK(hdr);
7439			if (!mutex_tryenter(hash_lock)) {
7440				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
7441				/*
7442				 * Skip this buffer rather than waiting.
7443				 */
7444				continue;
7445			}
7446
7447			passed_sz += HDR_GET_LSIZE(hdr);
7448			if (passed_sz > headroom) {
7449				/*
7450				 * Searched too far.
7451				 */
7452				mutex_exit(hash_lock);
7453				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
7454				break;
7455			}
7456
7457			if (!l2arc_write_eligible(guid, hdr)) {
7458				mutex_exit(hash_lock);
7459				continue;
7460			}
7461
7462			/*
7463			 * We rely on the L1 portion of the header below, so
7464			 * it's invalid for this header to have been evicted out
7465			 * of the ghost cache, prior to being written out. The
7466			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7467			 */
7468			ASSERT(HDR_HAS_L1HDR(hdr));
7469
7470			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7471			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7472			ASSERT3U(arc_hdr_size(hdr), >, 0);
7473			uint64_t size = arc_hdr_size(hdr);
7474			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7475			    size);
7476
7477			if ((write_psize + asize) > target_sz) {
7478				full = B_TRUE;
7479				mutex_exit(hash_lock);
7480				ARCSTAT_BUMP(arcstat_l2_write_full);
7481				break;
7482			}
7483
7484			if (pio == NULL) {
7485				/*
7486				 * Insert a dummy header on the buflist so
7487				 * l2arc_write_done() can find where the
7488				 * write buffers begin without searching.
7489				 */
7490				mutex_enter(&dev->l2ad_mtx);
7491				list_insert_head(&dev->l2ad_buflist, head);
7492				mutex_exit(&dev->l2ad_mtx);
7493
7494				cb = kmem_alloc(
7495				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7496				cb->l2wcb_dev = dev;
7497				cb->l2wcb_head = head;
7498				pio = zio_root(spa, l2arc_write_done, cb,
7499				    ZIO_FLAG_CANFAIL);
7500				ARCSTAT_BUMP(arcstat_l2_write_pios);
7501			}
7502
7503			hdr->b_l2hdr.b_dev = dev;
7504			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7505			arc_hdr_set_flags(hdr,
7506			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7507
7508			mutex_enter(&dev->l2ad_mtx);
7509			list_insert_head(&dev->l2ad_buflist, hdr);
7510			mutex_exit(&dev->l2ad_mtx);
7511
7512			(void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7513
7514			/*
7515			 * Normally the L2ARC can use the hdr's data, but if
7516			 * we're sharing data between the hdr and one of its
7517			 * bufs, L2ARC needs its own copy of the data so that
7518			 * the ZIO below can't race with the buf consumer.
7519			 * Another case where we need to create a copy of the
7520			 * data is when the buffer size is not device-aligned
7521			 * and we need to pad the block to make it such.
7522			 * That also keeps the clock hand suitably aligned.
7523			 *
7524			 * To ensure that the copy will be available for the
7525			 * lifetime of the ZIO and be cleaned up afterwards, we
7526			 * add it to the l2arc_free_on_write queue.
7527			 */
7528			abd_t *to_write;
7529			if (!HDR_SHARED_DATA(hdr) && size == asize) {
7530				to_write = hdr->b_l1hdr.b_pabd;
7531			} else {
7532				to_write = abd_alloc_for_io(asize,
7533				    HDR_ISTYPE_METADATA(hdr));
7534				abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
7535				if (asize != size) {
7536					abd_zero_off(to_write, size,
7537					    asize - size);
7538				}
7539				l2arc_free_abd_on_write(to_write, asize,
7540				    arc_buf_type(hdr));
7541			}
7542			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7543			    hdr->b_l2hdr.b_daddr, asize, to_write,
7544			    ZIO_CHECKSUM_OFF, NULL, hdr,
7545			    ZIO_PRIORITY_ASYNC_WRITE,
7546			    ZIO_FLAG_CANFAIL, B_FALSE);
7547
7548			write_sz += HDR_GET_LSIZE(hdr);
7549			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7550			    zio_t *, wzio);
7551
7552			write_asize += size;
7553			write_psize += asize;
7554			dev->l2ad_hand += asize;
7555
7556			mutex_exit(hash_lock);
7557
7558			(void) zio_nowait(wzio);
7559		}
7560
7561		multilist_sublist_unlock(mls);
7562
7563		if (full == B_TRUE)
7564			break;
7565	}
7566
7567	/* No buffers selected for writing? */
7568	if (pio == NULL) {
7569		ASSERT0(write_sz);
7570		ASSERT(!HDR_HAS_L1HDR(head));
7571		kmem_cache_free(hdr_l2only_cache, head);
7572		return (0);
7573	}
7574
7575	ASSERT3U(write_psize, <=, target_sz);
7576	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7577	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7578	ARCSTAT_INCR(arcstat_l2_size, write_sz);
7579	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7580	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7581
7582	/*
7583	 * Bump device hand to the device start if it is approaching the end.
7584	 * l2arc_evict() will already have evicted ahead for this case.
7585	 */
7586	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7587		dev->l2ad_hand = dev->l2ad_start;
7588		dev->l2ad_first = B_FALSE;
7589	}
7590
7591	dev->l2ad_writing = B_TRUE;
7592	(void) zio_wait(pio);
7593	dev->l2ad_writing = B_FALSE;
7594
7595	return (write_asize);
7596}
7597
7598/*
7599 * This thread feeds the L2ARC at regular intervals.  This is the beating
7600 * heart of the L2ARC.
7601 */
7602static void
7603l2arc_feed_thread(void *dummy __unused)
7604{
7605	callb_cpr_t cpr;
7606	l2arc_dev_t *dev;
7607	spa_t *spa;
7608	uint64_t size, wrote;
7609	clock_t begin, next = ddi_get_lbolt();
7610
7611	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7612
7613	mutex_enter(&l2arc_feed_thr_lock);
7614
7615	while (l2arc_thread_exit == 0) {
7616		CALLB_CPR_SAFE_BEGIN(&cpr);
7617		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7618		    next - ddi_get_lbolt());
7619		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7620		next = ddi_get_lbolt() + hz;
7621
7622		/*
7623		 * Quick check for L2ARC devices.
7624		 */
7625		mutex_enter(&l2arc_dev_mtx);
7626		if (l2arc_ndev == 0) {
7627			mutex_exit(&l2arc_dev_mtx);
7628			continue;
7629		}
7630		mutex_exit(&l2arc_dev_mtx);
7631		begin = ddi_get_lbolt();
7632
7633		/*
7634		 * This selects the next l2arc device to write to, and in
7635		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7636		 * will return NULL if there are now no l2arc devices or if
7637		 * they are all faulted.
7638		 *
7639		 * If a device is returned, its spa's config lock is also
7640		 * held to prevent device removal.  l2arc_dev_get_next()
7641		 * will grab and release l2arc_dev_mtx.
7642		 */
7643		if ((dev = l2arc_dev_get_next()) == NULL)
7644			continue;
7645
7646		spa = dev->l2ad_spa;
7647		ASSERT3P(spa, !=, NULL);
7648
7649		/*
7650		 * If the pool is read-only then force the feed thread to
7651		 * sleep a little longer.
7652		 */
7653		if (!spa_writeable(spa)) {
7654			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7655			spa_config_exit(spa, SCL_L2ARC, dev);
7656			continue;
7657		}
7658
7659		/*
7660		 * Avoid contributing to memory pressure.
7661		 */
7662		if (arc_reclaim_needed()) {
7663			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7664			spa_config_exit(spa, SCL_L2ARC, dev);
7665			continue;
7666		}
7667
7668		ARCSTAT_BUMP(arcstat_l2_feeds);
7669
7670		size = l2arc_write_size();
7671
7672		/*
7673		 * Evict L2ARC buffers that will be overwritten.
7674		 */
7675		l2arc_evict(dev, size, B_FALSE);
7676
7677		/*
7678		 * Write ARC buffers.
7679		 */
7680		wrote = l2arc_write_buffers(spa, dev, size);
7681
7682		/*
7683		 * Calculate interval between writes.
7684		 */
7685		next = l2arc_write_interval(begin, size, wrote);
7686		spa_config_exit(spa, SCL_L2ARC, dev);
7687	}
7688
7689	l2arc_thread_exit = 0;
7690	cv_broadcast(&l2arc_feed_thr_cv);
7691	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7692	thread_exit();
7693}
7694
7695boolean_t
7696l2arc_vdev_present(vdev_t *vd)
7697{
7698	l2arc_dev_t *dev;
7699
7700	mutex_enter(&l2arc_dev_mtx);
7701	for (dev = list_head(l2arc_dev_list); dev != NULL;
7702	    dev = list_next(l2arc_dev_list, dev)) {
7703		if (dev->l2ad_vdev == vd)
7704			break;
7705	}
7706	mutex_exit(&l2arc_dev_mtx);
7707
7708	return (dev != NULL);
7709}
7710
7711/*
7712 * Add a vdev for use by the L2ARC.  By this point the spa has already
7713 * validated the vdev and opened it.
7714 */
7715void
7716l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7717{
7718	l2arc_dev_t *adddev;
7719
7720	ASSERT(!l2arc_vdev_present(vd));
7721
7722	vdev_ashift_optimize(vd);
7723
7724	/*
7725	 * Create a new l2arc device entry.
7726	 */
7727	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7728	adddev->l2ad_spa = spa;
7729	adddev->l2ad_vdev = vd;
7730	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7731	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7732	adddev->l2ad_hand = adddev->l2ad_start;
7733	adddev->l2ad_first = B_TRUE;
7734	adddev->l2ad_writing = B_FALSE;
7735
7736	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7737	/*
7738	 * This is a list of all ARC buffers that are still valid on the
7739	 * device.
7740	 */
7741	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7742	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7743
7744	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7745	refcount_create(&adddev->l2ad_alloc);
7746
7747	/*
7748	 * Add device to global list
7749	 */
7750	mutex_enter(&l2arc_dev_mtx);
7751	list_insert_head(l2arc_dev_list, adddev);
7752	atomic_inc_64(&l2arc_ndev);
7753	mutex_exit(&l2arc_dev_mtx);
7754}
7755
7756/*
7757 * Remove a vdev from the L2ARC.
7758 */
7759void
7760l2arc_remove_vdev(vdev_t *vd)
7761{
7762	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7763
7764	/*
7765	 * Find the device by vdev
7766	 */
7767	mutex_enter(&l2arc_dev_mtx);
7768	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7769		nextdev = list_next(l2arc_dev_list, dev);
7770		if (vd == dev->l2ad_vdev) {
7771			remdev = dev;
7772			break;
7773		}
7774	}
7775	ASSERT3P(remdev, !=, NULL);
7776
7777	/*
7778	 * Remove device from global list
7779	 */
7780	list_remove(l2arc_dev_list, remdev);
7781	l2arc_dev_last = NULL;		/* may have been invalidated */
7782	atomic_dec_64(&l2arc_ndev);
7783	mutex_exit(&l2arc_dev_mtx);
7784
7785	/*
7786	 * Clear all buflists and ARC references.  L2ARC device flush.
7787	 */
7788	l2arc_evict(remdev, 0, B_TRUE);
7789	list_destroy(&remdev->l2ad_buflist);
7790	mutex_destroy(&remdev->l2ad_mtx);
7791	refcount_destroy(&remdev->l2ad_alloc);
7792	kmem_free(remdev, sizeof (l2arc_dev_t));
7793}
7794
7795void
7796l2arc_init(void)
7797{
7798	l2arc_thread_exit = 0;
7799	l2arc_ndev = 0;
7800	l2arc_writes_sent = 0;
7801	l2arc_writes_done = 0;
7802
7803	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7804	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7805	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7806	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7807
7808	l2arc_dev_list = &L2ARC_dev_list;
7809	l2arc_free_on_write = &L2ARC_free_on_write;
7810	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7811	    offsetof(l2arc_dev_t, l2ad_node));
7812	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7813	    offsetof(l2arc_data_free_t, l2df_list_node));
7814}
7815
7816void
7817l2arc_fini(void)
7818{
7819	/*
7820	 * This is called from dmu_fini(), which is called from spa_fini();
7821	 * Because of this, we can assume that all l2arc devices have
7822	 * already been removed when the pools themselves were removed.
7823	 */
7824
7825	l2arc_do_free_on_write();
7826
7827	mutex_destroy(&l2arc_feed_thr_lock);
7828	cv_destroy(&l2arc_feed_thr_cv);
7829	mutex_destroy(&l2arc_dev_mtx);
7830	mutex_destroy(&l2arc_free_on_write_mtx);
7831
7832	list_destroy(l2arc_dev_list);
7833	list_destroy(l2arc_free_on_write);
7834}
7835
7836void
7837l2arc_start(void)
7838{
7839	if (!(spa_mode_global & FWRITE))
7840		return;
7841
7842	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7843	    TS_RUN, minclsyspri);
7844}
7845
7846void
7847l2arc_stop(void)
7848{
7849	if (!(spa_mode_global & FWRITE))
7850		return;
7851
7852	mutex_enter(&l2arc_feed_thr_lock);
7853	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7854	l2arc_thread_exit = 1;
7855	while (l2arc_thread_exit != 0)
7856		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7857	mutex_exit(&l2arc_feed_thr_lock);
7858}
7859