arc.c revision 314873
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123/*
124 * ARC operation:
125 *
126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
127 * This structure can point either to a block that is still in the cache or to
128 * one that is only accessible in an L2 ARC device, or it can provide
129 * information about a block that was recently evicted. If a block is
130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
131 * information to retrieve it from the L2ARC device. This information is
132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
133 * that is in this state cannot access the data directly.
134 *
135 * Blocks that are actively being referenced or have not been evicted
136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
137 * the arc_buf_hdr_t that will point to the data block in memory. A block can
138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and
140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata).
141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC
142 * consumer, and always contains uncompressed data. The ARC will provide
143 * references to this data and will keep it cached until it is no longer in
144 * use. Typically, the arc will try to cache only the L1ARC's physical data
145 * block and will aggressively evict any arc_buf_t that is no longer referenced.
146 * The amount of memory consumed by the arc_buf_t's can be seen via the
147 * "overhead_size" kstat.
148 *
149 *
150 *                arc_buf_hdr_t
151 *                +-----------+
152 *                |           |
153 *                |           |
154 *                |           |
155 *                +-----------+
156 * l2arc_buf_hdr_t|           |
157 *                |           |
158 *                +-----------+
159 * l1arc_buf_hdr_t|           |
160 *                |           |                 arc_buf_t
161 *                |    b_buf  +------------>+---------+      arc_buf_t
162 *                |           |             |b_next   +---->+---------+
163 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
164 *                +-----------+ |           |         |     +---------+
165 *                              |           |b_data   +-+   |         |
166 *                              |           +---------+ |   |b_data   +-+
167 *                              +->+------+             |   +---------+ |
168 *                   (potentially) |      |             |               |
169 *                     compressed  |      |             |               |
170 *                        data     +------+             |               v
171 *                                                      +->+------+     +------+
172 *                                            uncompressed |      |     |      |
173 *                                                data     |      |     |      |
174 *                                                         +------+     +------+
175 *
176 * The L1ARC's data pointer, however, may or may not be uncompressed. The
177 * ARC has the ability to store the physical data (b_pdata) associated with
178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk
179 * physical block, it will match its on-disk compression characteristics.
180 * If the block on-disk is compressed, then the physical data block
181 * in the cache will also be compressed and vice-versa. This behavior
182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
183 * compressed ARC functionality is disabled, the b_pdata will point to an
184 * uncompressed version of the on-disk data.
185 *
186 * When a consumer reads a block, the ARC must first look to see if the
187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t,
188 * then an additional arc_buf_t is allocated and the uncompressed data is
189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not
190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses
191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's
192 * b_pdata is not compressed, then the block is shared with the newly
193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t
194 * in the arc buffer chain. Sharing the block reduces the memory overhead
195 * required when the hdr is caching uncompressed blocks or the compressed
196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'.
197 *
198 * The diagram below shows an example of an uncompressed ARC hdr that is
199 * sharing its data with an arc_buf_t:
200 *
201 *                arc_buf_hdr_t
202 *                +-----------+
203 *                |           |
204 *                |           |
205 *                |           |
206 *                +-----------+
207 * l2arc_buf_hdr_t|           |
208 *                |           |
209 *                +-----------+
210 * l1arc_buf_hdr_t|           |
211 *                |           |                 arc_buf_t    (shared)
212 *                |    b_buf  +------------>+---------+      arc_buf_t
213 *                |           |             |b_next   +---->+---------+
214 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
215 *                +-----------+ |           |         |     +---------+
216 *                              |           |b_data   +-+   |         |
217 *                              |           +---------+ |   |b_data   +-+
218 *                              +->+------+             |   +---------+ |
219 *                                 |      |             |               |
220 *                   uncompressed  |      |             |               |
221 *                        data     +------+             |               |
222 *                                    ^                 +->+------+     |
223 *                                    |       uncompressed |      |     |
224 *                                    |           data     |      |     |
225 *                                    |                    +------+     |
226 *                                    +---------------------------------+
227 *
228 * Writing to the arc requires that the ARC first discard the b_pdata
229 * since the physical block is about to be rewritten. The new data contents
230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline
231 * performs the write, it may compress the data before writing it to disk.
232 * The ARC will be called with the transformed data and will bcopy the
233 * transformed on-disk block into a newly allocated b_pdata.
234 *
235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The
236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means
237 * that when compressed arc is enabled that the L2ARC blocks are identical
238 * to the on-disk block in the main data pool. This provides a significant
239 * advantage since the ARC can leverage the bp's checksum when reading from the
240 * L2ARC to determine if the contents are valid. However, if the compressed
241 * arc is disabled, then the L2ARC's block must be transformed to look
242 * like the physical block in the main data pool before comparing the
243 * checksum and determining its validity.
244 */
245
246#include <sys/spa.h>
247#include <sys/zio.h>
248#include <sys/spa_impl.h>
249#include <sys/zio_compress.h>
250#include <sys/zio_checksum.h>
251#include <sys/zfs_context.h>
252#include <sys/arc.h>
253#include <sys/refcount.h>
254#include <sys/vdev.h>
255#include <sys/vdev_impl.h>
256#include <sys/dsl_pool.h>
257#include <sys/multilist.h>
258#ifdef _KERNEL
259#include <sys/dnlc.h>
260#include <sys/racct.h>
261#endif
262#include <sys/callb.h>
263#include <sys/kstat.h>
264#include <sys/trim_map.h>
265#include <zfs_fletcher.h>
266#include <sys/sdt.h>
267
268#include <machine/vmparam.h>
269
270#ifdef illumos
271#ifndef _KERNEL
272/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
273boolean_t arc_watch = B_FALSE;
274int arc_procfd;
275#endif
276#endif /* illumos */
277
278static kmutex_t		arc_reclaim_lock;
279static kcondvar_t	arc_reclaim_thread_cv;
280static boolean_t	arc_reclaim_thread_exit;
281static kcondvar_t	arc_reclaim_waiters_cv;
282
283static kmutex_t		arc_dnlc_evicts_lock;
284static kcondvar_t	arc_dnlc_evicts_cv;
285static boolean_t	arc_dnlc_evicts_thread_exit;
286
287uint_t arc_reduce_dnlc_percent = 3;
288
289/*
290 * The number of headers to evict in arc_evict_state_impl() before
291 * dropping the sublist lock and evicting from another sublist. A lower
292 * value means we're more likely to evict the "correct" header (i.e. the
293 * oldest header in the arc state), but comes with higher overhead
294 * (i.e. more invocations of arc_evict_state_impl()).
295 */
296int zfs_arc_evict_batch_limit = 10;
297
298/*
299 * The number of sublists used for each of the arc state lists. If this
300 * is not set to a suitable value by the user, it will be configured to
301 * the number of CPUs on the system in arc_init().
302 */
303int zfs_arc_num_sublists_per_state = 0;
304
305/* number of seconds before growing cache again */
306static int		arc_grow_retry = 60;
307
308/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
309int		zfs_arc_overflow_shift = 8;
310
311/* shift of arc_c for calculating both min and max arc_p */
312static int		arc_p_min_shift = 4;
313
314/* log2(fraction of arc to reclaim) */
315static int		arc_shrink_shift = 7;
316
317/*
318 * log2(fraction of ARC which must be free to allow growing).
319 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
320 * when reading a new block into the ARC, we will evict an equal-sized block
321 * from the ARC.
322 *
323 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
324 * we will still not allow it to grow.
325 */
326int			arc_no_grow_shift = 5;
327
328
329/*
330 * minimum lifespan of a prefetch block in clock ticks
331 * (initialized in arc_init())
332 */
333static int		arc_min_prefetch_lifespan;
334
335/*
336 * If this percent of memory is free, don't throttle.
337 */
338int arc_lotsfree_percent = 10;
339
340static int arc_dead;
341extern boolean_t zfs_prefetch_disable;
342
343/*
344 * The arc has filled available memory and has now warmed up.
345 */
346static boolean_t arc_warm;
347
348/*
349 * These tunables are for performance analysis.
350 */
351uint64_t zfs_arc_max;
352uint64_t zfs_arc_min;
353uint64_t zfs_arc_meta_limit = 0;
354uint64_t zfs_arc_meta_min = 0;
355int zfs_arc_grow_retry = 0;
356int zfs_arc_shrink_shift = 0;
357int zfs_arc_p_min_shift = 0;
358uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
359u_int zfs_arc_free_target = 0;
360
361/* Absolute min for arc min / max is 16MB. */
362static uint64_t arc_abs_min = 16 << 20;
363
364boolean_t zfs_compressed_arc_enabled = B_TRUE;
365
366static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
367static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
368static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
369static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
370
371#if defined(__FreeBSD__) && defined(_KERNEL)
372static void
373arc_free_target_init(void *unused __unused)
374{
375
376	zfs_arc_free_target = vm_pageout_wakeup_thresh;
377}
378SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
379    arc_free_target_init, NULL);
380
381TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
382TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
383TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
384SYSCTL_DECL(_vfs_zfs);
385SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
386    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
387SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
388    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
389SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
390    &zfs_arc_average_blocksize, 0,
391    "ARC average blocksize");
392SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
393    &arc_shrink_shift, 0,
394    "log2(fraction of arc to reclaim)");
395SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
396    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
397
398/*
399 * We don't have a tunable for arc_free_target due to the dependency on
400 * pagedaemon initialisation.
401 */
402SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
403    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
404    sysctl_vfs_zfs_arc_free_target, "IU",
405    "Desired number of free pages below which ARC triggers reclaim");
406
407static int
408sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
409{
410	u_int val;
411	int err;
412
413	val = zfs_arc_free_target;
414	err = sysctl_handle_int(oidp, &val, 0, req);
415	if (err != 0 || req->newptr == NULL)
416		return (err);
417
418	if (val < minfree)
419		return (EINVAL);
420	if (val > vm_cnt.v_page_count)
421		return (EINVAL);
422
423	zfs_arc_free_target = val;
424
425	return (0);
426}
427
428/*
429 * Must be declared here, before the definition of corresponding kstat
430 * macro which uses the same names will confuse the compiler.
431 */
432SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
433    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
434    sysctl_vfs_zfs_arc_meta_limit, "QU",
435    "ARC metadata limit");
436#endif
437
438/*
439 * Note that buffers can be in one of 6 states:
440 *	ARC_anon	- anonymous (discussed below)
441 *	ARC_mru		- recently used, currently cached
442 *	ARC_mru_ghost	- recentely used, no longer in cache
443 *	ARC_mfu		- frequently used, currently cached
444 *	ARC_mfu_ghost	- frequently used, no longer in cache
445 *	ARC_l2c_only	- exists in L2ARC but not other states
446 * When there are no active references to the buffer, they are
447 * are linked onto a list in one of these arc states.  These are
448 * the only buffers that can be evicted or deleted.  Within each
449 * state there are multiple lists, one for meta-data and one for
450 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
451 * etc.) is tracked separately so that it can be managed more
452 * explicitly: favored over data, limited explicitly.
453 *
454 * Anonymous buffers are buffers that are not associated with
455 * a DVA.  These are buffers that hold dirty block copies
456 * before they are written to stable storage.  By definition,
457 * they are "ref'd" and are considered part of arc_mru
458 * that cannot be freed.  Generally, they will aquire a DVA
459 * as they are written and migrate onto the arc_mru list.
460 *
461 * The ARC_l2c_only state is for buffers that are in the second
462 * level ARC but no longer in any of the ARC_m* lists.  The second
463 * level ARC itself may also contain buffers that are in any of
464 * the ARC_m* states - meaning that a buffer can exist in two
465 * places.  The reason for the ARC_l2c_only state is to keep the
466 * buffer header in the hash table, so that reads that hit the
467 * second level ARC benefit from these fast lookups.
468 */
469
470typedef struct arc_state {
471	/*
472	 * list of evictable buffers
473	 */
474	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
475	/*
476	 * total amount of evictable data in this state
477	 */
478	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
479	/*
480	 * total amount of data in this state; this includes: evictable,
481	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
482	 */
483	refcount_t arcs_size;
484} arc_state_t;
485
486/* The 6 states: */
487static arc_state_t ARC_anon;
488static arc_state_t ARC_mru;
489static arc_state_t ARC_mru_ghost;
490static arc_state_t ARC_mfu;
491static arc_state_t ARC_mfu_ghost;
492static arc_state_t ARC_l2c_only;
493
494typedef struct arc_stats {
495	kstat_named_t arcstat_hits;
496	kstat_named_t arcstat_misses;
497	kstat_named_t arcstat_demand_data_hits;
498	kstat_named_t arcstat_demand_data_misses;
499	kstat_named_t arcstat_demand_metadata_hits;
500	kstat_named_t arcstat_demand_metadata_misses;
501	kstat_named_t arcstat_prefetch_data_hits;
502	kstat_named_t arcstat_prefetch_data_misses;
503	kstat_named_t arcstat_prefetch_metadata_hits;
504	kstat_named_t arcstat_prefetch_metadata_misses;
505	kstat_named_t arcstat_mru_hits;
506	kstat_named_t arcstat_mru_ghost_hits;
507	kstat_named_t arcstat_mfu_hits;
508	kstat_named_t arcstat_mfu_ghost_hits;
509	kstat_named_t arcstat_allocated;
510	kstat_named_t arcstat_deleted;
511	/*
512	 * Number of buffers that could not be evicted because the hash lock
513	 * was held by another thread.  The lock may not necessarily be held
514	 * by something using the same buffer, since hash locks are shared
515	 * by multiple buffers.
516	 */
517	kstat_named_t arcstat_mutex_miss;
518	/*
519	 * Number of buffers skipped because they have I/O in progress, are
520	 * indrect prefetch buffers that have not lived long enough, or are
521	 * not from the spa we're trying to evict from.
522	 */
523	kstat_named_t arcstat_evict_skip;
524	/*
525	 * Number of times arc_evict_state() was unable to evict enough
526	 * buffers to reach it's target amount.
527	 */
528	kstat_named_t arcstat_evict_not_enough;
529	kstat_named_t arcstat_evict_l2_cached;
530	kstat_named_t arcstat_evict_l2_eligible;
531	kstat_named_t arcstat_evict_l2_ineligible;
532	kstat_named_t arcstat_evict_l2_skip;
533	kstat_named_t arcstat_hash_elements;
534	kstat_named_t arcstat_hash_elements_max;
535	kstat_named_t arcstat_hash_collisions;
536	kstat_named_t arcstat_hash_chains;
537	kstat_named_t arcstat_hash_chain_max;
538	kstat_named_t arcstat_p;
539	kstat_named_t arcstat_c;
540	kstat_named_t arcstat_c_min;
541	kstat_named_t arcstat_c_max;
542	kstat_named_t arcstat_size;
543	/*
544	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata.
545	 * Note that the compressed bytes may match the uncompressed bytes
546	 * if the block is either not compressed or compressed arc is disabled.
547	 */
548	kstat_named_t arcstat_compressed_size;
549	/*
550	 * Uncompressed size of the data stored in b_pdata. If compressed
551	 * arc is disabled then this value will be identical to the stat
552	 * above.
553	 */
554	kstat_named_t arcstat_uncompressed_size;
555	/*
556	 * Number of bytes stored in all the arc_buf_t's. This is classified
557	 * as "overhead" since this data is typically short-lived and will
558	 * be evicted from the arc when it becomes unreferenced unless the
559	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
560	 * values have been set (see comment in dbuf.c for more information).
561	 */
562	kstat_named_t arcstat_overhead_size;
563	/*
564	 * Number of bytes consumed by internal ARC structures necessary
565	 * for tracking purposes; these structures are not actually
566	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
567	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
568	 * caches), and arc_buf_t structures (allocated via arc_buf_t
569	 * cache).
570	 */
571	kstat_named_t arcstat_hdr_size;
572	/*
573	 * Number of bytes consumed by ARC buffers of type equal to
574	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
575	 * on disk user data (e.g. plain file contents).
576	 */
577	kstat_named_t arcstat_data_size;
578	/*
579	 * Number of bytes consumed by ARC buffers of type equal to
580	 * ARC_BUFC_METADATA. This is generally consumed by buffers
581	 * backing on disk data that is used for internal ZFS
582	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
583	 */
584	kstat_named_t arcstat_metadata_size;
585	/*
586	 * Number of bytes consumed by various buffers and structures
587	 * not actually backed with ARC buffers. This includes bonus
588	 * buffers (allocated directly via zio_buf_* functions),
589	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
590	 * cache), and dnode_t structures (allocated via dnode_t cache).
591	 */
592	kstat_named_t arcstat_other_size;
593	/*
594	 * Total number of bytes consumed by ARC buffers residing in the
595	 * arc_anon state. This includes *all* buffers in the arc_anon
596	 * state; e.g. data, metadata, evictable, and unevictable buffers
597	 * are all included in this value.
598	 */
599	kstat_named_t arcstat_anon_size;
600	/*
601	 * Number of bytes consumed by ARC buffers that meet the
602	 * following criteria: backing buffers of type ARC_BUFC_DATA,
603	 * residing in the arc_anon state, and are eligible for eviction
604	 * (e.g. have no outstanding holds on the buffer).
605	 */
606	kstat_named_t arcstat_anon_evictable_data;
607	/*
608	 * Number of bytes consumed by ARC buffers that meet the
609	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
610	 * residing in the arc_anon state, and are eligible for eviction
611	 * (e.g. have no outstanding holds on the buffer).
612	 */
613	kstat_named_t arcstat_anon_evictable_metadata;
614	/*
615	 * Total number of bytes consumed by ARC buffers residing in the
616	 * arc_mru state. This includes *all* buffers in the arc_mru
617	 * state; e.g. data, metadata, evictable, and unevictable buffers
618	 * are all included in this value.
619	 */
620	kstat_named_t arcstat_mru_size;
621	/*
622	 * Number of bytes consumed by ARC buffers that meet the
623	 * following criteria: backing buffers of type ARC_BUFC_DATA,
624	 * residing in the arc_mru state, and are eligible for eviction
625	 * (e.g. have no outstanding holds on the buffer).
626	 */
627	kstat_named_t arcstat_mru_evictable_data;
628	/*
629	 * Number of bytes consumed by ARC buffers that meet the
630	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
631	 * residing in the arc_mru state, and are eligible for eviction
632	 * (e.g. have no outstanding holds on the buffer).
633	 */
634	kstat_named_t arcstat_mru_evictable_metadata;
635	/*
636	 * Total number of bytes that *would have been* consumed by ARC
637	 * buffers in the arc_mru_ghost state. The key thing to note
638	 * here, is the fact that this size doesn't actually indicate
639	 * RAM consumption. The ghost lists only consist of headers and
640	 * don't actually have ARC buffers linked off of these headers.
641	 * Thus, *if* the headers had associated ARC buffers, these
642	 * buffers *would have* consumed this number of bytes.
643	 */
644	kstat_named_t arcstat_mru_ghost_size;
645	/*
646	 * Number of bytes that *would have been* consumed by ARC
647	 * buffers that are eligible for eviction, of type
648	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
649	 */
650	kstat_named_t arcstat_mru_ghost_evictable_data;
651	/*
652	 * Number of bytes that *would have been* consumed by ARC
653	 * buffers that are eligible for eviction, of type
654	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
655	 */
656	kstat_named_t arcstat_mru_ghost_evictable_metadata;
657	/*
658	 * Total number of bytes consumed by ARC buffers residing in the
659	 * arc_mfu state. This includes *all* buffers in the arc_mfu
660	 * state; e.g. data, metadata, evictable, and unevictable buffers
661	 * are all included in this value.
662	 */
663	kstat_named_t arcstat_mfu_size;
664	/*
665	 * Number of bytes consumed by ARC buffers that are eligible for
666	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
667	 * state.
668	 */
669	kstat_named_t arcstat_mfu_evictable_data;
670	/*
671	 * Number of bytes consumed by ARC buffers that are eligible for
672	 * eviction, of type ARC_BUFC_METADATA, and reside in the
673	 * arc_mfu state.
674	 */
675	kstat_named_t arcstat_mfu_evictable_metadata;
676	/*
677	 * Total number of bytes that *would have been* consumed by ARC
678	 * buffers in the arc_mfu_ghost state. See the comment above
679	 * arcstat_mru_ghost_size for more details.
680	 */
681	kstat_named_t arcstat_mfu_ghost_size;
682	/*
683	 * Number of bytes that *would have been* consumed by ARC
684	 * buffers that are eligible for eviction, of type
685	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
686	 */
687	kstat_named_t arcstat_mfu_ghost_evictable_data;
688	/*
689	 * Number of bytes that *would have been* consumed by ARC
690	 * buffers that are eligible for eviction, of type
691	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
692	 */
693	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
694	kstat_named_t arcstat_l2_hits;
695	kstat_named_t arcstat_l2_misses;
696	kstat_named_t arcstat_l2_feeds;
697	kstat_named_t arcstat_l2_rw_clash;
698	kstat_named_t arcstat_l2_read_bytes;
699	kstat_named_t arcstat_l2_write_bytes;
700	kstat_named_t arcstat_l2_writes_sent;
701	kstat_named_t arcstat_l2_writes_done;
702	kstat_named_t arcstat_l2_writes_error;
703	kstat_named_t arcstat_l2_writes_lock_retry;
704	kstat_named_t arcstat_l2_evict_lock_retry;
705	kstat_named_t arcstat_l2_evict_reading;
706	kstat_named_t arcstat_l2_evict_l1cached;
707	kstat_named_t arcstat_l2_free_on_write;
708	kstat_named_t arcstat_l2_abort_lowmem;
709	kstat_named_t arcstat_l2_cksum_bad;
710	kstat_named_t arcstat_l2_io_error;
711	kstat_named_t arcstat_l2_size;
712	kstat_named_t arcstat_l2_asize;
713	kstat_named_t arcstat_l2_hdr_size;
714	kstat_named_t arcstat_l2_write_trylock_fail;
715	kstat_named_t arcstat_l2_write_passed_headroom;
716	kstat_named_t arcstat_l2_write_spa_mismatch;
717	kstat_named_t arcstat_l2_write_in_l2;
718	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
719	kstat_named_t arcstat_l2_write_not_cacheable;
720	kstat_named_t arcstat_l2_write_full;
721	kstat_named_t arcstat_l2_write_buffer_iter;
722	kstat_named_t arcstat_l2_write_pios;
723	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
724	kstat_named_t arcstat_l2_write_buffer_list_iter;
725	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
726	kstat_named_t arcstat_memory_throttle_count;
727	kstat_named_t arcstat_meta_used;
728	kstat_named_t arcstat_meta_limit;
729	kstat_named_t arcstat_meta_max;
730	kstat_named_t arcstat_meta_min;
731	kstat_named_t arcstat_sync_wait_for_async;
732	kstat_named_t arcstat_demand_hit_predictive_prefetch;
733} arc_stats_t;
734
735static arc_stats_t arc_stats = {
736	{ "hits",			KSTAT_DATA_UINT64 },
737	{ "misses",			KSTAT_DATA_UINT64 },
738	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
739	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
740	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
741	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
742	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
743	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
744	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
745	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
746	{ "mru_hits",			KSTAT_DATA_UINT64 },
747	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
748	{ "mfu_hits",			KSTAT_DATA_UINT64 },
749	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
750	{ "allocated",			KSTAT_DATA_UINT64 },
751	{ "deleted",			KSTAT_DATA_UINT64 },
752	{ "mutex_miss",			KSTAT_DATA_UINT64 },
753	{ "evict_skip",			KSTAT_DATA_UINT64 },
754	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
755	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
756	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
757	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
758	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
759	{ "hash_elements",		KSTAT_DATA_UINT64 },
760	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
761	{ "hash_collisions",		KSTAT_DATA_UINT64 },
762	{ "hash_chains",		KSTAT_DATA_UINT64 },
763	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
764	{ "p",				KSTAT_DATA_UINT64 },
765	{ "c",				KSTAT_DATA_UINT64 },
766	{ "c_min",			KSTAT_DATA_UINT64 },
767	{ "c_max",			KSTAT_DATA_UINT64 },
768	{ "size",			KSTAT_DATA_UINT64 },
769	{ "compressed_size",		KSTAT_DATA_UINT64 },
770	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
771	{ "overhead_size",		KSTAT_DATA_UINT64 },
772	{ "hdr_size",			KSTAT_DATA_UINT64 },
773	{ "data_size",			KSTAT_DATA_UINT64 },
774	{ "metadata_size",		KSTAT_DATA_UINT64 },
775	{ "other_size",			KSTAT_DATA_UINT64 },
776	{ "anon_size",			KSTAT_DATA_UINT64 },
777	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
778	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
779	{ "mru_size",			KSTAT_DATA_UINT64 },
780	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
781	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
782	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
783	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
784	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
785	{ "mfu_size",			KSTAT_DATA_UINT64 },
786	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
787	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
788	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
789	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
790	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
791	{ "l2_hits",			KSTAT_DATA_UINT64 },
792	{ "l2_misses",			KSTAT_DATA_UINT64 },
793	{ "l2_feeds",			KSTAT_DATA_UINT64 },
794	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
795	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
796	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
797	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
798	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
799	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
800	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
801	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
802	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
803	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
804	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
805	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
806	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
807	{ "l2_io_error",		KSTAT_DATA_UINT64 },
808	{ "l2_size",			KSTAT_DATA_UINT64 },
809	{ "l2_asize",			KSTAT_DATA_UINT64 },
810	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
811	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
812	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
813	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
814	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
815	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
816	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
817	{ "l2_write_full",		KSTAT_DATA_UINT64 },
818	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
819	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
820	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
821	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
822	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
823	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
824	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
825	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
826	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
827	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
828	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
829	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
830};
831
832#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
833
834#define	ARCSTAT_INCR(stat, val) \
835	atomic_add_64(&arc_stats.stat.value.ui64, (val))
836
837#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
838#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
839
840#define	ARCSTAT_MAX(stat, val) {					\
841	uint64_t m;							\
842	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
843	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
844		continue;						\
845}
846
847#define	ARCSTAT_MAXSTAT(stat) \
848	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
849
850/*
851 * We define a macro to allow ARC hits/misses to be easily broken down by
852 * two separate conditions, giving a total of four different subtypes for
853 * each of hits and misses (so eight statistics total).
854 */
855#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
856	if (cond1) {							\
857		if (cond2) {						\
858			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
859		} else {						\
860			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
861		}							\
862	} else {							\
863		if (cond2) {						\
864			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
865		} else {						\
866			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
867		}							\
868	}
869
870kstat_t			*arc_ksp;
871static arc_state_t	*arc_anon;
872static arc_state_t	*arc_mru;
873static arc_state_t	*arc_mru_ghost;
874static arc_state_t	*arc_mfu;
875static arc_state_t	*arc_mfu_ghost;
876static arc_state_t	*arc_l2c_only;
877
878/*
879 * There are several ARC variables that are critical to export as kstats --
880 * but we don't want to have to grovel around in the kstat whenever we wish to
881 * manipulate them.  For these variables, we therefore define them to be in
882 * terms of the statistic variable.  This assures that we are not introducing
883 * the possibility of inconsistency by having shadow copies of the variables,
884 * while still allowing the code to be readable.
885 */
886#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
887#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
888#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
889#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
890#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
891#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
892#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
893#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
894#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
895
896/* compressed size of entire arc */
897#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
898/* uncompressed size of entire arc */
899#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
900/* number of bytes in the arc from arc_buf_t's */
901#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
902
903static int		arc_no_grow;	/* Don't try to grow cache size */
904static uint64_t		arc_tempreserve;
905static uint64_t		arc_loaned_bytes;
906
907typedef struct arc_callback arc_callback_t;
908
909struct arc_callback {
910	void			*acb_private;
911	arc_done_func_t		*acb_done;
912	arc_buf_t		*acb_buf;
913	zio_t			*acb_zio_dummy;
914	arc_callback_t		*acb_next;
915};
916
917typedef struct arc_write_callback arc_write_callback_t;
918
919struct arc_write_callback {
920	void		*awcb_private;
921	arc_done_func_t	*awcb_ready;
922	arc_done_func_t	*awcb_children_ready;
923	arc_done_func_t	*awcb_physdone;
924	arc_done_func_t	*awcb_done;
925	arc_buf_t	*awcb_buf;
926};
927
928/*
929 * ARC buffers are separated into multiple structs as a memory saving measure:
930 *   - Common fields struct, always defined, and embedded within it:
931 *       - L2-only fields, always allocated but undefined when not in L2ARC
932 *       - L1-only fields, only allocated when in L1ARC
933 *
934 *           Buffer in L1                     Buffer only in L2
935 *    +------------------------+          +------------------------+
936 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
937 *    |                        |          |                        |
938 *    |                        |          |                        |
939 *    |                        |          |                        |
940 *    +------------------------+          +------------------------+
941 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
942 *    | (undefined if L1-only) |          |                        |
943 *    +------------------------+          +------------------------+
944 *    | l1arc_buf_hdr_t        |
945 *    |                        |
946 *    |                        |
947 *    |                        |
948 *    |                        |
949 *    +------------------------+
950 *
951 * Because it's possible for the L2ARC to become extremely large, we can wind
952 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
953 * is minimized by only allocating the fields necessary for an L1-cached buffer
954 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
955 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
956 * words in pointers. arc_hdr_realloc() is used to switch a header between
957 * these two allocation states.
958 */
959typedef struct l1arc_buf_hdr {
960	kmutex_t		b_freeze_lock;
961	zio_cksum_t		*b_freeze_cksum;
962#ifdef ZFS_DEBUG
963	/*
964	 * used for debugging wtih kmem_flags - by allocating and freeing
965	 * b_thawed when the buffer is thawed, we get a record of the stack
966	 * trace that thawed it.
967	 */
968	void			*b_thawed;
969#endif
970
971	arc_buf_t		*b_buf;
972	uint32_t		b_bufcnt;
973	/* for waiting on writes to complete */
974	kcondvar_t		b_cv;
975	uint8_t			b_byteswap;
976
977	/* protected by arc state mutex */
978	arc_state_t		*b_state;
979	multilist_node_t	b_arc_node;
980
981	/* updated atomically */
982	clock_t			b_arc_access;
983
984	/* self protecting */
985	refcount_t		b_refcnt;
986
987	arc_callback_t		*b_acb;
988	void			*b_pdata;
989} l1arc_buf_hdr_t;
990
991typedef struct l2arc_dev l2arc_dev_t;
992
993typedef struct l2arc_buf_hdr {
994	/* protected by arc_buf_hdr mutex */
995	l2arc_dev_t		*b_dev;		/* L2ARC device */
996	uint64_t		b_daddr;	/* disk address, offset byte */
997
998	list_node_t		b_l2node;
999} l2arc_buf_hdr_t;
1000
1001struct arc_buf_hdr {
1002	/* protected by hash lock */
1003	dva_t			b_dva;
1004	uint64_t		b_birth;
1005
1006	arc_buf_contents_t	b_type;
1007	arc_buf_hdr_t		*b_hash_next;
1008	arc_flags_t		b_flags;
1009
1010	/*
1011	 * This field stores the size of the data buffer after
1012	 * compression, and is set in the arc's zio completion handlers.
1013	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1014	 *
1015	 * While the block pointers can store up to 32MB in their psize
1016	 * field, we can only store up to 32MB minus 512B. This is due
1017	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1018	 * a field of zeros represents 512B in the bp). We can't use a
1019	 * bias of 1 since we need to reserve a psize of zero, here, to
1020	 * represent holes and embedded blocks.
1021	 *
1022	 * This isn't a problem in practice, since the maximum size of a
1023	 * buffer is limited to 16MB, so we never need to store 32MB in
1024	 * this field. Even in the upstream illumos code base, the
1025	 * maximum size of a buffer is limited to 16MB.
1026	 */
1027	uint16_t		b_psize;
1028
1029	/*
1030	 * This field stores the size of the data buffer before
1031	 * compression, and cannot change once set. It is in units
1032	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1033	 */
1034	uint16_t		b_lsize;	/* immutable */
1035	uint64_t		b_spa;		/* immutable */
1036
1037	/* L2ARC fields. Undefined when not in L2ARC. */
1038	l2arc_buf_hdr_t		b_l2hdr;
1039	/* L1ARC fields. Undefined when in l2arc_only state */
1040	l1arc_buf_hdr_t		b_l1hdr;
1041};
1042
1043#if defined(__FreeBSD__) && defined(_KERNEL)
1044static int
1045sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1046{
1047	uint64_t val;
1048	int err;
1049
1050	val = arc_meta_limit;
1051	err = sysctl_handle_64(oidp, &val, 0, req);
1052	if (err != 0 || req->newptr == NULL)
1053		return (err);
1054
1055        if (val <= 0 || val > arc_c_max)
1056		return (EINVAL);
1057
1058	arc_meta_limit = val;
1059	return (0);
1060}
1061
1062static int
1063sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1064{
1065	uint64_t val;
1066	int err;
1067
1068	val = zfs_arc_max;
1069	err = sysctl_handle_64(oidp, &val, 0, req);
1070	if (err != 0 || req->newptr == NULL)
1071		return (err);
1072
1073	if (zfs_arc_max == 0) {
1074		/* Loader tunable so blindly set */
1075		zfs_arc_max = val;
1076		return (0);
1077	}
1078
1079	if (val < arc_abs_min || val > kmem_size())
1080		return (EINVAL);
1081	if (val < arc_c_min)
1082		return (EINVAL);
1083	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1084		return (EINVAL);
1085
1086	arc_c_max = val;
1087
1088	arc_c = arc_c_max;
1089        arc_p = (arc_c >> 1);
1090
1091	if (zfs_arc_meta_limit == 0) {
1092		/* limit meta-data to 1/4 of the arc capacity */
1093		arc_meta_limit = arc_c_max / 4;
1094	}
1095
1096	/* if kmem_flags are set, lets try to use less memory */
1097	if (kmem_debugging())
1098		arc_c = arc_c / 2;
1099
1100	zfs_arc_max = arc_c;
1101
1102	return (0);
1103}
1104
1105static int
1106sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1107{
1108	uint64_t val;
1109	int err;
1110
1111	val = zfs_arc_min;
1112	err = sysctl_handle_64(oidp, &val, 0, req);
1113	if (err != 0 || req->newptr == NULL)
1114		return (err);
1115
1116	if (zfs_arc_min == 0) {
1117		/* Loader tunable so blindly set */
1118		zfs_arc_min = val;
1119		return (0);
1120	}
1121
1122	if (val < arc_abs_min || val > arc_c_max)
1123		return (EINVAL);
1124
1125	arc_c_min = val;
1126
1127	if (zfs_arc_meta_min == 0)
1128                arc_meta_min = arc_c_min / 2;
1129
1130	if (arc_c < arc_c_min)
1131                arc_c = arc_c_min;
1132
1133	zfs_arc_min = arc_c_min;
1134
1135	return (0);
1136}
1137#endif
1138
1139#define	GHOST_STATE(state)	\
1140	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1141	(state) == arc_l2c_only)
1142
1143#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1144#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1145#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1146#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1147#define	HDR_COMPRESSION_ENABLED(hdr)	\
1148	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1149
1150#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1151#define	HDR_L2_READING(hdr)	\
1152	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1153	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1154#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1155#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1156#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1157#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1158
1159#define	HDR_ISTYPE_METADATA(hdr)	\
1160	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1161#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1162
1163#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1164#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1165
1166/* For storing compression mode in b_flags */
1167#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1168
1169#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1170	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1171#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1172	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1173
1174#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1175
1176/*
1177 * Other sizes
1178 */
1179
1180#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1181#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1182
1183/*
1184 * Hash table routines
1185 */
1186
1187#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1188
1189struct ht_lock {
1190	kmutex_t	ht_lock;
1191#ifdef _KERNEL
1192	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1193#endif
1194};
1195
1196#define	BUF_LOCKS 256
1197typedef struct buf_hash_table {
1198	uint64_t ht_mask;
1199	arc_buf_hdr_t **ht_table;
1200	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1201} buf_hash_table_t;
1202
1203static buf_hash_table_t buf_hash_table;
1204
1205#define	BUF_HASH_INDEX(spa, dva, birth) \
1206	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1207#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1208#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1209#define	HDR_LOCK(hdr) \
1210	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1211
1212uint64_t zfs_crc64_table[256];
1213
1214/*
1215 * Level 2 ARC
1216 */
1217
1218#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1219#define	L2ARC_HEADROOM		2			/* num of writes */
1220/*
1221 * If we discover during ARC scan any buffers to be compressed, we boost
1222 * our headroom for the next scanning cycle by this percentage multiple.
1223 */
1224#define	L2ARC_HEADROOM_BOOST	200
1225#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1226#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1227
1228#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1229#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1230
1231/* L2ARC Performance Tunables */
1232uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1233uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1234uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1235uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1236uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1237uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1238boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1239boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1240boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1241
1242SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1243    &l2arc_write_max, 0, "max write size");
1244SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1245    &l2arc_write_boost, 0, "extra write during warmup");
1246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1247    &l2arc_headroom, 0, "number of dev writes");
1248SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1249    &l2arc_feed_secs, 0, "interval seconds");
1250SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1251    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1252
1253SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1254    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1255SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1256    &l2arc_feed_again, 0, "turbo warmup");
1257SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1258    &l2arc_norw, 0, "no reads during writes");
1259
1260SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1261    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1262SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1263    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1264    "size of anonymous state");
1265SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1266    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1267    "size of anonymous state");
1268
1269SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1270    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1271SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1272    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1273    "size of metadata in mru state");
1274SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1275    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1276    "size of data in mru state");
1277
1278SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1279    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1280SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1281    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1282    "size of metadata in mru ghost state");
1283SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1284    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1285    "size of data in mru ghost state");
1286
1287SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1288    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1289SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1290    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1291    "size of metadata in mfu state");
1292SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1293    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1294    "size of data in mfu state");
1295
1296SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1297    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1298SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1299    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1300    "size of metadata in mfu ghost state");
1301SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1302    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1303    "size of data in mfu ghost state");
1304
1305SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1306    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1307
1308/*
1309 * L2ARC Internals
1310 */
1311struct l2arc_dev {
1312	vdev_t			*l2ad_vdev;	/* vdev */
1313	spa_t			*l2ad_spa;	/* spa */
1314	uint64_t		l2ad_hand;	/* next write location */
1315	uint64_t		l2ad_start;	/* first addr on device */
1316	uint64_t		l2ad_end;	/* last addr on device */
1317	boolean_t		l2ad_first;	/* first sweep through */
1318	boolean_t		l2ad_writing;	/* currently writing */
1319	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1320	list_t			l2ad_buflist;	/* buffer list */
1321	list_node_t		l2ad_node;	/* device list node */
1322	refcount_t		l2ad_alloc;	/* allocated bytes */
1323};
1324
1325static list_t L2ARC_dev_list;			/* device list */
1326static list_t *l2arc_dev_list;			/* device list pointer */
1327static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1328static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1329static list_t L2ARC_free_on_write;		/* free after write buf list */
1330static list_t *l2arc_free_on_write;		/* free after write list ptr */
1331static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1332static uint64_t l2arc_ndev;			/* number of devices */
1333
1334typedef struct l2arc_read_callback {
1335	arc_buf_hdr_t		*l2rcb_hdr;		/* read buffer */
1336	blkptr_t		l2rcb_bp;		/* original blkptr */
1337	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1338	int			l2rcb_flags;		/* original flags */
1339	void			*l2rcb_data;		/* temporary buffer */
1340} l2arc_read_callback_t;
1341
1342typedef struct l2arc_write_callback {
1343	l2arc_dev_t	*l2wcb_dev;		/* device info */
1344	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1345} l2arc_write_callback_t;
1346
1347typedef struct l2arc_data_free {
1348	/* protected by l2arc_free_on_write_mtx */
1349	void		*l2df_data;
1350	size_t		l2df_size;
1351	arc_buf_contents_t l2df_type;
1352	list_node_t	l2df_list_node;
1353} l2arc_data_free_t;
1354
1355static kmutex_t l2arc_feed_thr_lock;
1356static kcondvar_t l2arc_feed_thr_cv;
1357static uint8_t l2arc_thread_exit;
1358
1359static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1360static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1361static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr);
1362static void arc_hdr_alloc_pdata(arc_buf_hdr_t *);
1363static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1364static boolean_t arc_is_overflowing();
1365static void arc_buf_watch(arc_buf_t *);
1366
1367static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1368static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1369static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1370static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1371
1372static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1373static void l2arc_read_done(zio_t *);
1374
1375static void
1376l2arc_trim(const arc_buf_hdr_t *hdr)
1377{
1378	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1379
1380	ASSERT(HDR_HAS_L2HDR(hdr));
1381	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1382
1383	if (HDR_GET_PSIZE(hdr) != 0) {
1384		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1385		    HDR_GET_PSIZE(hdr), 0);
1386	}
1387}
1388
1389static uint64_t
1390buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1391{
1392	uint8_t *vdva = (uint8_t *)dva;
1393	uint64_t crc = -1ULL;
1394	int i;
1395
1396	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1397
1398	for (i = 0; i < sizeof (dva_t); i++)
1399		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1400
1401	crc ^= (spa>>8) ^ birth;
1402
1403	return (crc);
1404}
1405
1406#define	HDR_EMPTY(hdr)						\
1407	((hdr)->b_dva.dva_word[0] == 0 &&			\
1408	(hdr)->b_dva.dva_word[1] == 0)
1409
1410#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1411	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1412	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1413	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1414
1415static void
1416buf_discard_identity(arc_buf_hdr_t *hdr)
1417{
1418	hdr->b_dva.dva_word[0] = 0;
1419	hdr->b_dva.dva_word[1] = 0;
1420	hdr->b_birth = 0;
1421}
1422
1423static arc_buf_hdr_t *
1424buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1425{
1426	const dva_t *dva = BP_IDENTITY(bp);
1427	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1428	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1429	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1430	arc_buf_hdr_t *hdr;
1431
1432	mutex_enter(hash_lock);
1433	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1434	    hdr = hdr->b_hash_next) {
1435		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1436			*lockp = hash_lock;
1437			return (hdr);
1438		}
1439	}
1440	mutex_exit(hash_lock);
1441	*lockp = NULL;
1442	return (NULL);
1443}
1444
1445/*
1446 * Insert an entry into the hash table.  If there is already an element
1447 * equal to elem in the hash table, then the already existing element
1448 * will be returned and the new element will not be inserted.
1449 * Otherwise returns NULL.
1450 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1451 */
1452static arc_buf_hdr_t *
1453buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1454{
1455	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1456	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1457	arc_buf_hdr_t *fhdr;
1458	uint32_t i;
1459
1460	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1461	ASSERT(hdr->b_birth != 0);
1462	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1463
1464	if (lockp != NULL) {
1465		*lockp = hash_lock;
1466		mutex_enter(hash_lock);
1467	} else {
1468		ASSERT(MUTEX_HELD(hash_lock));
1469	}
1470
1471	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1472	    fhdr = fhdr->b_hash_next, i++) {
1473		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1474			return (fhdr);
1475	}
1476
1477	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1478	buf_hash_table.ht_table[idx] = hdr;
1479	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1480
1481	/* collect some hash table performance data */
1482	if (i > 0) {
1483		ARCSTAT_BUMP(arcstat_hash_collisions);
1484		if (i == 1)
1485			ARCSTAT_BUMP(arcstat_hash_chains);
1486
1487		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1488	}
1489
1490	ARCSTAT_BUMP(arcstat_hash_elements);
1491	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1492
1493	return (NULL);
1494}
1495
1496static void
1497buf_hash_remove(arc_buf_hdr_t *hdr)
1498{
1499	arc_buf_hdr_t *fhdr, **hdrp;
1500	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1501
1502	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1503	ASSERT(HDR_IN_HASH_TABLE(hdr));
1504
1505	hdrp = &buf_hash_table.ht_table[idx];
1506	while ((fhdr = *hdrp) != hdr) {
1507		ASSERT3P(fhdr, !=, NULL);
1508		hdrp = &fhdr->b_hash_next;
1509	}
1510	*hdrp = hdr->b_hash_next;
1511	hdr->b_hash_next = NULL;
1512	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1513
1514	/* collect some hash table performance data */
1515	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1516
1517	if (buf_hash_table.ht_table[idx] &&
1518	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1519		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1520}
1521
1522/*
1523 * Global data structures and functions for the buf kmem cache.
1524 */
1525static kmem_cache_t *hdr_full_cache;
1526static kmem_cache_t *hdr_l2only_cache;
1527static kmem_cache_t *buf_cache;
1528
1529static void
1530buf_fini(void)
1531{
1532	int i;
1533
1534	kmem_free(buf_hash_table.ht_table,
1535	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1536	for (i = 0; i < BUF_LOCKS; i++)
1537		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1538	kmem_cache_destroy(hdr_full_cache);
1539	kmem_cache_destroy(hdr_l2only_cache);
1540	kmem_cache_destroy(buf_cache);
1541}
1542
1543/*
1544 * Constructor callback - called when the cache is empty
1545 * and a new buf is requested.
1546 */
1547/* ARGSUSED */
1548static int
1549hdr_full_cons(void *vbuf, void *unused, int kmflag)
1550{
1551	arc_buf_hdr_t *hdr = vbuf;
1552
1553	bzero(hdr, HDR_FULL_SIZE);
1554	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1555	refcount_create(&hdr->b_l1hdr.b_refcnt);
1556	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1557	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1558	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1559
1560	return (0);
1561}
1562
1563/* ARGSUSED */
1564static int
1565hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1566{
1567	arc_buf_hdr_t *hdr = vbuf;
1568
1569	bzero(hdr, HDR_L2ONLY_SIZE);
1570	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1571
1572	return (0);
1573}
1574
1575/* ARGSUSED */
1576static int
1577buf_cons(void *vbuf, void *unused, int kmflag)
1578{
1579	arc_buf_t *buf = vbuf;
1580
1581	bzero(buf, sizeof (arc_buf_t));
1582	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1583	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1584
1585	return (0);
1586}
1587
1588/*
1589 * Destructor callback - called when a cached buf is
1590 * no longer required.
1591 */
1592/* ARGSUSED */
1593static void
1594hdr_full_dest(void *vbuf, void *unused)
1595{
1596	arc_buf_hdr_t *hdr = vbuf;
1597
1598	ASSERT(HDR_EMPTY(hdr));
1599	cv_destroy(&hdr->b_l1hdr.b_cv);
1600	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1601	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1602	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1603	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1604}
1605
1606/* ARGSUSED */
1607static void
1608hdr_l2only_dest(void *vbuf, void *unused)
1609{
1610	arc_buf_hdr_t *hdr = vbuf;
1611
1612	ASSERT(HDR_EMPTY(hdr));
1613	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1614}
1615
1616/* ARGSUSED */
1617static void
1618buf_dest(void *vbuf, void *unused)
1619{
1620	arc_buf_t *buf = vbuf;
1621
1622	mutex_destroy(&buf->b_evict_lock);
1623	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1624}
1625
1626/*
1627 * Reclaim callback -- invoked when memory is low.
1628 */
1629/* ARGSUSED */
1630static void
1631hdr_recl(void *unused)
1632{
1633	dprintf("hdr_recl called\n");
1634	/*
1635	 * umem calls the reclaim func when we destroy the buf cache,
1636	 * which is after we do arc_fini().
1637	 */
1638	if (!arc_dead)
1639		cv_signal(&arc_reclaim_thread_cv);
1640}
1641
1642static void
1643buf_init(void)
1644{
1645	uint64_t *ct;
1646	uint64_t hsize = 1ULL << 12;
1647	int i, j;
1648
1649	/*
1650	 * The hash table is big enough to fill all of physical memory
1651	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1652	 * By default, the table will take up
1653	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1654	 */
1655	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1656		hsize <<= 1;
1657retry:
1658	buf_hash_table.ht_mask = hsize - 1;
1659	buf_hash_table.ht_table =
1660	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1661	if (buf_hash_table.ht_table == NULL) {
1662		ASSERT(hsize > (1ULL << 8));
1663		hsize >>= 1;
1664		goto retry;
1665	}
1666
1667	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1668	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1669	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1670	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1671	    NULL, NULL, 0);
1672	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1673	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1674
1675	for (i = 0; i < 256; i++)
1676		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1677			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1678
1679	for (i = 0; i < BUF_LOCKS; i++) {
1680		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1681		    NULL, MUTEX_DEFAULT, NULL);
1682	}
1683}
1684
1685#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1686
1687static inline boolean_t
1688arc_buf_is_shared(arc_buf_t *buf)
1689{
1690	boolean_t shared = (buf->b_data != NULL &&
1691	    buf->b_data == buf->b_hdr->b_l1hdr.b_pdata);
1692	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1693	return (shared);
1694}
1695
1696static inline void
1697arc_cksum_free(arc_buf_hdr_t *hdr)
1698{
1699	ASSERT(HDR_HAS_L1HDR(hdr));
1700	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1701	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1702		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1703		hdr->b_l1hdr.b_freeze_cksum = NULL;
1704	}
1705	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1706}
1707
1708static void
1709arc_cksum_verify(arc_buf_t *buf)
1710{
1711	arc_buf_hdr_t *hdr = buf->b_hdr;
1712	zio_cksum_t zc;
1713
1714	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1715		return;
1716
1717	ASSERT(HDR_HAS_L1HDR(hdr));
1718
1719	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1720	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1721		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1722		return;
1723	}
1724	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc);
1725	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1726		panic("buffer modified while frozen!");
1727	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1728}
1729
1730static boolean_t
1731arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1732{
1733	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1734	boolean_t valid_cksum;
1735
1736	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1737	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1738
1739	/*
1740	 * We rely on the blkptr's checksum to determine if the block
1741	 * is valid or not. When compressed arc is enabled, the l2arc
1742	 * writes the block to the l2arc just as it appears in the pool.
1743	 * This allows us to use the blkptr's checksum to validate the
1744	 * data that we just read off of the l2arc without having to store
1745	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1746	 * arc is disabled, then the data written to the l2arc is always
1747	 * uncompressed and won't match the block as it exists in the main
1748	 * pool. When this is the case, we must first compress it if it is
1749	 * compressed on the main pool before we can validate the checksum.
1750	 */
1751	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1752		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1753		uint64_t lsize = HDR_GET_LSIZE(hdr);
1754		uint64_t csize;
1755
1756		void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1757		csize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1758		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1759		if (csize < HDR_GET_PSIZE(hdr)) {
1760			/*
1761			 * Compressed blocks are always a multiple of the
1762			 * smallest ashift in the pool. Ideally, we would
1763			 * like to round up the csize to the next
1764			 * spa_min_ashift but that value may have changed
1765			 * since the block was last written. Instead,
1766			 * we rely on the fact that the hdr's psize
1767			 * was set to the psize of the block when it was
1768			 * last written. We set the csize to that value
1769			 * and zero out any part that should not contain
1770			 * data.
1771			 */
1772			bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1773			csize = HDR_GET_PSIZE(hdr);
1774		}
1775		zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1776	}
1777
1778	/*
1779	 * Block pointers always store the checksum for the logical data.
1780	 * If the block pointer has the gang bit set, then the checksum
1781	 * it represents is for the reconstituted data and not for an
1782	 * individual gang member. The zio pipeline, however, must be able to
1783	 * determine the checksum of each of the gang constituents so it
1784	 * treats the checksum comparison differently than what we need
1785	 * for l2arc blocks. This prevents us from using the
1786	 * zio_checksum_error() interface directly. Instead we must call the
1787	 * zio_checksum_error_impl() so that we can ensure the checksum is
1788	 * generated using the correct checksum algorithm and accounts for the
1789	 * logical I/O size and not just a gang fragment.
1790	 */
1791	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1792	    BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size,
1793	    zio->io_offset, NULL) == 0);
1794	zio_pop_transforms(zio);
1795	return (valid_cksum);
1796}
1797
1798static void
1799arc_cksum_compute(arc_buf_t *buf)
1800{
1801	arc_buf_hdr_t *hdr = buf->b_hdr;
1802
1803	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1804		return;
1805
1806	ASSERT(HDR_HAS_L1HDR(hdr));
1807	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1808	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1809		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1810		return;
1811	}
1812	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1813	    KM_SLEEP);
1814	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL,
1815	    hdr->b_l1hdr.b_freeze_cksum);
1816	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1817#ifdef illumos
1818	arc_buf_watch(buf);
1819#endif
1820}
1821
1822#ifdef illumos
1823#ifndef _KERNEL
1824typedef struct procctl {
1825	long cmd;
1826	prwatch_t prwatch;
1827} procctl_t;
1828#endif
1829
1830/* ARGSUSED */
1831static void
1832arc_buf_unwatch(arc_buf_t *buf)
1833{
1834#ifndef _KERNEL
1835	if (arc_watch) {
1836		int result;
1837		procctl_t ctl;
1838		ctl.cmd = PCWATCH;
1839		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1840		ctl.prwatch.pr_size = 0;
1841		ctl.prwatch.pr_wflags = 0;
1842		result = write(arc_procfd, &ctl, sizeof (ctl));
1843		ASSERT3U(result, ==, sizeof (ctl));
1844	}
1845#endif
1846}
1847
1848/* ARGSUSED */
1849static void
1850arc_buf_watch(arc_buf_t *buf)
1851{
1852#ifndef _KERNEL
1853	if (arc_watch) {
1854		int result;
1855		procctl_t ctl;
1856		ctl.cmd = PCWATCH;
1857		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1858		ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr);
1859		ctl.prwatch.pr_wflags = WA_WRITE;
1860		result = write(arc_procfd, &ctl, sizeof (ctl));
1861		ASSERT3U(result, ==, sizeof (ctl));
1862	}
1863#endif
1864}
1865#endif /* illumos */
1866
1867static arc_buf_contents_t
1868arc_buf_type(arc_buf_hdr_t *hdr)
1869{
1870	arc_buf_contents_t type;
1871	if (HDR_ISTYPE_METADATA(hdr)) {
1872		type = ARC_BUFC_METADATA;
1873	} else {
1874		type = ARC_BUFC_DATA;
1875	}
1876	VERIFY3U(hdr->b_type, ==, type);
1877	return (type);
1878}
1879
1880static uint32_t
1881arc_bufc_to_flags(arc_buf_contents_t type)
1882{
1883	switch (type) {
1884	case ARC_BUFC_DATA:
1885		/* metadata field is 0 if buffer contains normal data */
1886		return (0);
1887	case ARC_BUFC_METADATA:
1888		return (ARC_FLAG_BUFC_METADATA);
1889	default:
1890		break;
1891	}
1892	panic("undefined ARC buffer type!");
1893	return ((uint32_t)-1);
1894}
1895
1896void
1897arc_buf_thaw(arc_buf_t *buf)
1898{
1899	arc_buf_hdr_t *hdr = buf->b_hdr;
1900
1901	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1902		if (hdr->b_l1hdr.b_state != arc_anon)
1903			panic("modifying non-anon buffer!");
1904		if (HDR_IO_IN_PROGRESS(hdr))
1905			panic("modifying buffer while i/o in progress!");
1906		arc_cksum_verify(buf);
1907	}
1908
1909	ASSERT(HDR_HAS_L1HDR(hdr));
1910	arc_cksum_free(hdr);
1911
1912	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1913#ifdef ZFS_DEBUG
1914	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1915		if (hdr->b_l1hdr.b_thawed != NULL)
1916			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1917		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1918	}
1919#endif
1920
1921	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1922
1923#ifdef illumos
1924	arc_buf_unwatch(buf);
1925#endif
1926}
1927
1928void
1929arc_buf_freeze(arc_buf_t *buf)
1930{
1931	arc_buf_hdr_t *hdr = buf->b_hdr;
1932	kmutex_t *hash_lock;
1933
1934	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1935		return;
1936
1937	hash_lock = HDR_LOCK(hdr);
1938	mutex_enter(hash_lock);
1939
1940	ASSERT(HDR_HAS_L1HDR(hdr));
1941	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1942	    hdr->b_l1hdr.b_state == arc_anon);
1943	arc_cksum_compute(buf);
1944	mutex_exit(hash_lock);
1945
1946}
1947
1948/*
1949 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1950 * the following functions should be used to ensure that the flags are
1951 * updated in a thread-safe way. When manipulating the flags either
1952 * the hash_lock must be held or the hdr must be undiscoverable. This
1953 * ensures that we're not racing with any other threads when updating
1954 * the flags.
1955 */
1956static inline void
1957arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1958{
1959	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1960	hdr->b_flags |= flags;
1961}
1962
1963static inline void
1964arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1965{
1966	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1967	hdr->b_flags &= ~flags;
1968}
1969
1970/*
1971 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1972 * done in a special way since we have to clear and set bits
1973 * at the same time. Consumers that wish to set the compression bits
1974 * must use this function to ensure that the flags are updated in
1975 * thread-safe manner.
1976 */
1977static void
1978arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1979{
1980	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1981
1982	/*
1983	 * Holes and embedded blocks will always have a psize = 0 so
1984	 * we ignore the compression of the blkptr and set the
1985	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1986	 * Holes and embedded blocks remain anonymous so we don't
1987	 * want to uncompress them. Mark them as uncompressed.
1988	 */
1989	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1990		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1991		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1992		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1993		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1994	} else {
1995		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1996		HDR_SET_COMPRESS(hdr, cmp);
1997		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1998		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1999	}
2000}
2001
2002static int
2003arc_decompress(arc_buf_t *buf)
2004{
2005	arc_buf_hdr_t *hdr = buf->b_hdr;
2006	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2007	int error;
2008
2009	if (arc_buf_is_shared(buf)) {
2010		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2011	} else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2012		/*
2013		 * The arc_buf_hdr_t is either not compressed or is
2014		 * associated with an embedded block or a hole in which
2015		 * case they remain anonymous.
2016		 */
2017		IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 ||
2018		    HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr));
2019		ASSERT(!HDR_SHARED_DATA(hdr));
2020		bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr));
2021	} else {
2022		ASSERT(!HDR_SHARED_DATA(hdr));
2023		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2024		error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2025		    hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr),
2026		    HDR_GET_LSIZE(hdr));
2027		if (error != 0) {
2028			zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d",
2029			    hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr),
2030			    HDR_GET_LSIZE(hdr));
2031			return (SET_ERROR(EIO));
2032		}
2033	}
2034	if (bswap != DMU_BSWAP_NUMFUNCS) {
2035		ASSERT(!HDR_SHARED_DATA(hdr));
2036		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2037		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2038	}
2039	arc_cksum_compute(buf);
2040	return (0);
2041}
2042
2043/*
2044 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t.
2045 */
2046static uint64_t
2047arc_hdr_size(arc_buf_hdr_t *hdr)
2048{
2049	uint64_t size;
2050
2051	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2052	    HDR_GET_PSIZE(hdr) > 0) {
2053		size = HDR_GET_PSIZE(hdr);
2054	} else {
2055		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2056		size = HDR_GET_LSIZE(hdr);
2057	}
2058	return (size);
2059}
2060
2061/*
2062 * Increment the amount of evictable space in the arc_state_t's refcount.
2063 * We account for the space used by the hdr and the arc buf individually
2064 * so that we can add and remove them from the refcount individually.
2065 */
2066static void
2067arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2068{
2069	arc_buf_contents_t type = arc_buf_type(hdr);
2070	uint64_t lsize = HDR_GET_LSIZE(hdr);
2071
2072	ASSERT(HDR_HAS_L1HDR(hdr));
2073
2074	if (GHOST_STATE(state)) {
2075		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2076		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2077		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2078		(void) refcount_add_many(&state->arcs_esize[type], lsize, hdr);
2079		return;
2080	}
2081
2082	ASSERT(!GHOST_STATE(state));
2083	if (hdr->b_l1hdr.b_pdata != NULL) {
2084		(void) refcount_add_many(&state->arcs_esize[type],
2085		    arc_hdr_size(hdr), hdr);
2086	}
2087	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2088	    buf = buf->b_next) {
2089		if (arc_buf_is_shared(buf)) {
2090			ASSERT(ARC_BUF_LAST(buf));
2091			continue;
2092		}
2093		(void) refcount_add_many(&state->arcs_esize[type], lsize, buf);
2094	}
2095}
2096
2097/*
2098 * Decrement the amount of evictable space in the arc_state_t's refcount.
2099 * We account for the space used by the hdr and the arc buf individually
2100 * so that we can add and remove them from the refcount individually.
2101 */
2102static void
2103arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2104{
2105	arc_buf_contents_t type = arc_buf_type(hdr);
2106	uint64_t lsize = HDR_GET_LSIZE(hdr);
2107
2108	ASSERT(HDR_HAS_L1HDR(hdr));
2109
2110	if (GHOST_STATE(state)) {
2111		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2112		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2113		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2114		(void) refcount_remove_many(&state->arcs_esize[type],
2115		    lsize, hdr);
2116		return;
2117	}
2118
2119	ASSERT(!GHOST_STATE(state));
2120	if (hdr->b_l1hdr.b_pdata != NULL) {
2121		(void) refcount_remove_many(&state->arcs_esize[type],
2122		    arc_hdr_size(hdr), hdr);
2123	}
2124	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2125	    buf = buf->b_next) {
2126		if (arc_buf_is_shared(buf)) {
2127			ASSERT(ARC_BUF_LAST(buf));
2128			continue;
2129		}
2130		(void) refcount_remove_many(&state->arcs_esize[type],
2131		    lsize, buf);
2132	}
2133}
2134
2135/*
2136 * Add a reference to this hdr indicating that someone is actively
2137 * referencing that memory. When the refcount transitions from 0 to 1,
2138 * we remove it from the respective arc_state_t list to indicate that
2139 * it is not evictable.
2140 */
2141static void
2142add_reference(arc_buf_hdr_t *hdr, void *tag)
2143{
2144	ASSERT(HDR_HAS_L1HDR(hdr));
2145	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2146		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2147		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2148		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2149	}
2150
2151	arc_state_t *state = hdr->b_l1hdr.b_state;
2152
2153	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2154	    (state != arc_anon)) {
2155		/* We don't use the L2-only state list. */
2156		if (state != arc_l2c_only) {
2157			multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2158			    hdr);
2159			arc_evitable_space_decrement(hdr, state);
2160		}
2161		/* remove the prefetch flag if we get a reference */
2162		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2163	}
2164}
2165
2166/*
2167 * Remove a reference from this hdr. When the reference transitions from
2168 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2169 * list making it eligible for eviction.
2170 */
2171static int
2172remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2173{
2174	int cnt;
2175	arc_state_t *state = hdr->b_l1hdr.b_state;
2176
2177	ASSERT(HDR_HAS_L1HDR(hdr));
2178	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2179	ASSERT(!GHOST_STATE(state));
2180
2181	/*
2182	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2183	 * check to prevent usage of the arc_l2c_only list.
2184	 */
2185	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2186	    (state != arc_anon)) {
2187		multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2188		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2189		arc_evictable_space_increment(hdr, state);
2190	}
2191	return (cnt);
2192}
2193
2194/*
2195 * Move the supplied buffer to the indicated state. The hash lock
2196 * for the buffer must be held by the caller.
2197 */
2198static void
2199arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2200    kmutex_t *hash_lock)
2201{
2202	arc_state_t *old_state;
2203	int64_t refcnt;
2204	uint32_t bufcnt;
2205	boolean_t update_old, update_new;
2206	arc_buf_contents_t buftype = arc_buf_type(hdr);
2207
2208	/*
2209	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2210	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2211	 * L1 hdr doesn't always exist when we change state to arc_anon before
2212	 * destroying a header, in which case reallocating to add the L1 hdr is
2213	 * pointless.
2214	 */
2215	if (HDR_HAS_L1HDR(hdr)) {
2216		old_state = hdr->b_l1hdr.b_state;
2217		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2218		bufcnt = hdr->b_l1hdr.b_bufcnt;
2219		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL);
2220	} else {
2221		old_state = arc_l2c_only;
2222		refcnt = 0;
2223		bufcnt = 0;
2224		update_old = B_FALSE;
2225	}
2226	update_new = update_old;
2227
2228	ASSERT(MUTEX_HELD(hash_lock));
2229	ASSERT3P(new_state, !=, old_state);
2230	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2231	ASSERT(old_state != arc_anon || bufcnt <= 1);
2232
2233	/*
2234	 * If this buffer is evictable, transfer it from the
2235	 * old state list to the new state list.
2236	 */
2237	if (refcnt == 0) {
2238		if (old_state != arc_anon && old_state != arc_l2c_only) {
2239			ASSERT(HDR_HAS_L1HDR(hdr));
2240			multilist_remove(&old_state->arcs_list[buftype], hdr);
2241
2242			if (GHOST_STATE(old_state)) {
2243				ASSERT0(bufcnt);
2244				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2245				update_old = B_TRUE;
2246			}
2247			arc_evitable_space_decrement(hdr, old_state);
2248		}
2249		if (new_state != arc_anon && new_state != arc_l2c_only) {
2250
2251			/*
2252			 * An L1 header always exists here, since if we're
2253			 * moving to some L1-cached state (i.e. not l2c_only or
2254			 * anonymous), we realloc the header to add an L1hdr
2255			 * beforehand.
2256			 */
2257			ASSERT(HDR_HAS_L1HDR(hdr));
2258			multilist_insert(&new_state->arcs_list[buftype], hdr);
2259
2260			if (GHOST_STATE(new_state)) {
2261				ASSERT0(bufcnt);
2262				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2263				update_new = B_TRUE;
2264			}
2265			arc_evictable_space_increment(hdr, new_state);
2266		}
2267	}
2268
2269	ASSERT(!HDR_EMPTY(hdr));
2270	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2271		buf_hash_remove(hdr);
2272
2273	/* adjust state sizes (ignore arc_l2c_only) */
2274
2275	if (update_new && new_state != arc_l2c_only) {
2276		ASSERT(HDR_HAS_L1HDR(hdr));
2277		if (GHOST_STATE(new_state)) {
2278			ASSERT0(bufcnt);
2279
2280			/*
2281			 * When moving a header to a ghost state, we first
2282			 * remove all arc buffers. Thus, we'll have a
2283			 * bufcnt of zero, and no arc buffer to use for
2284			 * the reference. As a result, we use the arc
2285			 * header pointer for the reference.
2286			 */
2287			(void) refcount_add_many(&new_state->arcs_size,
2288			    HDR_GET_LSIZE(hdr), hdr);
2289			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2290		} else {
2291			uint32_t buffers = 0;
2292
2293			/*
2294			 * Each individual buffer holds a unique reference,
2295			 * thus we must remove each of these references one
2296			 * at a time.
2297			 */
2298			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2299			    buf = buf->b_next) {
2300				ASSERT3U(bufcnt, !=, 0);
2301				buffers++;
2302
2303				/*
2304				 * When the arc_buf_t is sharing the data
2305				 * block with the hdr, the owner of the
2306				 * reference belongs to the hdr. Only
2307				 * add to the refcount if the arc_buf_t is
2308				 * not shared.
2309				 */
2310				if (arc_buf_is_shared(buf)) {
2311					ASSERT(ARC_BUF_LAST(buf));
2312					continue;
2313				}
2314
2315				(void) refcount_add_many(&new_state->arcs_size,
2316				    HDR_GET_LSIZE(hdr), buf);
2317			}
2318			ASSERT3U(bufcnt, ==, buffers);
2319
2320			if (hdr->b_l1hdr.b_pdata != NULL) {
2321				(void) refcount_add_many(&new_state->arcs_size,
2322				    arc_hdr_size(hdr), hdr);
2323			} else {
2324				ASSERT(GHOST_STATE(old_state));
2325			}
2326		}
2327	}
2328
2329	if (update_old && old_state != arc_l2c_only) {
2330		ASSERT(HDR_HAS_L1HDR(hdr));
2331		if (GHOST_STATE(old_state)) {
2332			ASSERT0(bufcnt);
2333
2334			/*
2335			 * When moving a header off of a ghost state,
2336			 * the header will not contain any arc buffers.
2337			 * We use the arc header pointer for the reference
2338			 * which is exactly what we did when we put the
2339			 * header on the ghost state.
2340			 */
2341
2342			(void) refcount_remove_many(&old_state->arcs_size,
2343			    HDR_GET_LSIZE(hdr), hdr);
2344			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2345		} else {
2346			uint32_t buffers = 0;
2347
2348			/*
2349			 * Each individual buffer holds a unique reference,
2350			 * thus we must remove each of these references one
2351			 * at a time.
2352			 */
2353			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2354			    buf = buf->b_next) {
2355				ASSERT3P(bufcnt, !=, 0);
2356				buffers++;
2357
2358				/*
2359				 * When the arc_buf_t is sharing the data
2360				 * block with the hdr, the owner of the
2361				 * reference belongs to the hdr. Only
2362				 * add to the refcount if the arc_buf_t is
2363				 * not shared.
2364				 */
2365				if (arc_buf_is_shared(buf)) {
2366					ASSERT(ARC_BUF_LAST(buf));
2367					continue;
2368				}
2369
2370				(void) refcount_remove_many(
2371				    &old_state->arcs_size, HDR_GET_LSIZE(hdr),
2372				    buf);
2373			}
2374			ASSERT3U(bufcnt, ==, buffers);
2375			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2376			(void) refcount_remove_many(
2377			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2378		}
2379	}
2380
2381	if (HDR_HAS_L1HDR(hdr))
2382		hdr->b_l1hdr.b_state = new_state;
2383
2384	/*
2385	 * L2 headers should never be on the L2 state list since they don't
2386	 * have L1 headers allocated.
2387	 */
2388	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2389	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2390}
2391
2392void
2393arc_space_consume(uint64_t space, arc_space_type_t type)
2394{
2395	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2396
2397	switch (type) {
2398	case ARC_SPACE_DATA:
2399		ARCSTAT_INCR(arcstat_data_size, space);
2400		break;
2401	case ARC_SPACE_META:
2402		ARCSTAT_INCR(arcstat_metadata_size, space);
2403		break;
2404	case ARC_SPACE_OTHER:
2405		ARCSTAT_INCR(arcstat_other_size, space);
2406		break;
2407	case ARC_SPACE_HDRS:
2408		ARCSTAT_INCR(arcstat_hdr_size, space);
2409		break;
2410	case ARC_SPACE_L2HDRS:
2411		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2412		break;
2413	}
2414
2415	if (type != ARC_SPACE_DATA)
2416		ARCSTAT_INCR(arcstat_meta_used, space);
2417
2418	atomic_add_64(&arc_size, space);
2419}
2420
2421void
2422arc_space_return(uint64_t space, arc_space_type_t type)
2423{
2424	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2425
2426	switch (type) {
2427	case ARC_SPACE_DATA:
2428		ARCSTAT_INCR(arcstat_data_size, -space);
2429		break;
2430	case ARC_SPACE_META:
2431		ARCSTAT_INCR(arcstat_metadata_size, -space);
2432		break;
2433	case ARC_SPACE_OTHER:
2434		ARCSTAT_INCR(arcstat_other_size, -space);
2435		break;
2436	case ARC_SPACE_HDRS:
2437		ARCSTAT_INCR(arcstat_hdr_size, -space);
2438		break;
2439	case ARC_SPACE_L2HDRS:
2440		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2441		break;
2442	}
2443
2444	if (type != ARC_SPACE_DATA) {
2445		ASSERT(arc_meta_used >= space);
2446		if (arc_meta_max < arc_meta_used)
2447			arc_meta_max = arc_meta_used;
2448		ARCSTAT_INCR(arcstat_meta_used, -space);
2449	}
2450
2451	ASSERT(arc_size >= space);
2452	atomic_add_64(&arc_size, -space);
2453}
2454
2455/*
2456 * Allocate an initial buffer for this hdr, subsequent buffers will
2457 * use arc_buf_clone().
2458 */
2459static arc_buf_t *
2460arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag)
2461{
2462	arc_buf_t *buf;
2463
2464	ASSERT(HDR_HAS_L1HDR(hdr));
2465	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2466	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2467	    hdr->b_type == ARC_BUFC_METADATA);
2468
2469	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2470	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2471	ASSERT0(hdr->b_l1hdr.b_bufcnt);
2472
2473	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2474	buf->b_hdr = hdr;
2475	buf->b_data = NULL;
2476	buf->b_next = NULL;
2477
2478	add_reference(hdr, tag);
2479
2480	/*
2481	 * We're about to change the hdr's b_flags. We must either
2482	 * hold the hash_lock or be undiscoverable.
2483	 */
2484	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2485
2486	/*
2487	 * If the hdr's data can be shared (no byteswapping, hdr is
2488	 * uncompressed, hdr's data is not currently being written to the
2489	 * L2ARC write) then we share the data buffer and set the appropriate
2490	 * bit in the hdr's b_flags to indicate the hdr is sharing it's
2491	 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to
2492	 * store the buf's data.
2493	 */
2494	if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2495	    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) {
2496		buf->b_data = hdr->b_l1hdr.b_pdata;
2497		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2498	} else {
2499		buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2500		ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2501		arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2502	}
2503	VERIFY3P(buf->b_data, !=, NULL);
2504
2505	hdr->b_l1hdr.b_buf = buf;
2506	hdr->b_l1hdr.b_bufcnt += 1;
2507
2508	return (buf);
2509}
2510
2511/*
2512 * Used when allocating additional buffers.
2513 */
2514static arc_buf_t *
2515arc_buf_clone(arc_buf_t *from)
2516{
2517	arc_buf_t *buf;
2518	arc_buf_hdr_t *hdr = from->b_hdr;
2519	uint64_t size = HDR_GET_LSIZE(hdr);
2520
2521	ASSERT(HDR_HAS_L1HDR(hdr));
2522	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2523
2524	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2525	buf->b_hdr = hdr;
2526	buf->b_data = NULL;
2527	buf->b_next = hdr->b_l1hdr.b_buf;
2528	hdr->b_l1hdr.b_buf = buf;
2529	buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2530	bcopy(from->b_data, buf->b_data, size);
2531	hdr->b_l1hdr.b_bufcnt += 1;
2532
2533	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2534	return (buf);
2535}
2536
2537static char *arc_onloan_tag = "onloan";
2538
2539/*
2540 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2541 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2542 * buffers must be returned to the arc before they can be used by the DMU or
2543 * freed.
2544 */
2545arc_buf_t *
2546arc_loan_buf(spa_t *spa, int size)
2547{
2548	arc_buf_t *buf;
2549
2550	buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2551
2552	atomic_add_64(&arc_loaned_bytes, size);
2553	return (buf);
2554}
2555
2556/*
2557 * Return a loaned arc buffer to the arc.
2558 */
2559void
2560arc_return_buf(arc_buf_t *buf, void *tag)
2561{
2562	arc_buf_hdr_t *hdr = buf->b_hdr;
2563
2564	ASSERT3P(buf->b_data, !=, NULL);
2565	ASSERT(HDR_HAS_L1HDR(hdr));
2566	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2567	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2568
2569	atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr));
2570}
2571
2572/* Detach an arc_buf from a dbuf (tag) */
2573void
2574arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2575{
2576	arc_buf_hdr_t *hdr = buf->b_hdr;
2577
2578	ASSERT3P(buf->b_data, !=, NULL);
2579	ASSERT(HDR_HAS_L1HDR(hdr));
2580	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2581	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2582
2583	atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr));
2584}
2585
2586static void
2587l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type)
2588{
2589	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2590
2591	df->l2df_data = data;
2592	df->l2df_size = size;
2593	df->l2df_type = type;
2594	mutex_enter(&l2arc_free_on_write_mtx);
2595	list_insert_head(l2arc_free_on_write, df);
2596	mutex_exit(&l2arc_free_on_write_mtx);
2597}
2598
2599static void
2600arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2601{
2602	arc_state_t *state = hdr->b_l1hdr.b_state;
2603	arc_buf_contents_t type = arc_buf_type(hdr);
2604	uint64_t size = arc_hdr_size(hdr);
2605
2606	/* protected by hash lock, if in the hash table */
2607	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2608		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2609		ASSERT(state != arc_anon && state != arc_l2c_only);
2610
2611		(void) refcount_remove_many(&state->arcs_esize[type],
2612		    size, hdr);
2613	}
2614	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2615
2616	l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type);
2617}
2618
2619/*
2620 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2621 * data buffer, we transfer the refcount ownership to the hdr and update
2622 * the appropriate kstats.
2623 */
2624static void
2625arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2626{
2627	arc_state_t *state = hdr->b_l1hdr.b_state;
2628
2629	ASSERT(!HDR_SHARED_DATA(hdr));
2630	ASSERT(!arc_buf_is_shared(buf));
2631	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2632	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2633
2634	/*
2635	 * Start sharing the data buffer. We transfer the
2636	 * refcount ownership to the hdr since it always owns
2637	 * the refcount whenever an arc_buf_t is shared.
2638	 */
2639	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2640	hdr->b_l1hdr.b_pdata = buf->b_data;
2641	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2642
2643	/*
2644	 * Since we've transferred ownership to the hdr we need
2645	 * to increment its compressed and uncompressed kstats and
2646	 * decrement the overhead size.
2647	 */
2648	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2649	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2650	ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr));
2651}
2652
2653static void
2654arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2655{
2656	arc_state_t *state = hdr->b_l1hdr.b_state;
2657
2658	ASSERT(HDR_SHARED_DATA(hdr));
2659	ASSERT(arc_buf_is_shared(buf));
2660	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2661	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2662
2663	/*
2664	 * We are no longer sharing this buffer so we need
2665	 * to transfer its ownership to the rightful owner.
2666	 */
2667	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2668	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2669	hdr->b_l1hdr.b_pdata = NULL;
2670
2671	/*
2672	 * Since the buffer is no longer shared between
2673	 * the arc buf and the hdr, count it as overhead.
2674	 */
2675	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2676	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2677	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2678}
2679
2680/*
2681 * Free up buf->b_data and if 'remove' is set, then pull the
2682 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2683 */
2684static void
2685arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove)
2686{
2687	arc_buf_t **bufp;
2688	arc_buf_hdr_t *hdr = buf->b_hdr;
2689	uint64_t size = HDR_GET_LSIZE(hdr);
2690	boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf);
2691
2692	/*
2693	 * Free up the data associated with the buf but only
2694	 * if we're not sharing this with the hdr. If we are sharing
2695	 * it with the hdr, then hdr will have performed the allocation
2696	 * so allow it to do the free.
2697	 */
2698	if (buf->b_data != NULL) {
2699		/*
2700		 * We're about to change the hdr's b_flags. We must either
2701		 * hold the hash_lock or be undiscoverable.
2702		 */
2703		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2704
2705		arc_cksum_verify(buf);
2706#ifdef illumos
2707		arc_buf_unwatch(buf);
2708#endif
2709
2710		if (destroyed_buf_is_shared) {
2711			ASSERT(ARC_BUF_LAST(buf));
2712			ASSERT(HDR_SHARED_DATA(hdr));
2713			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2714		} else {
2715			arc_free_data_buf(hdr, buf->b_data, size, buf);
2716			ARCSTAT_INCR(arcstat_overhead_size, -size);
2717		}
2718		buf->b_data = NULL;
2719
2720		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2721		hdr->b_l1hdr.b_bufcnt -= 1;
2722	}
2723
2724	/* only remove the buf if requested */
2725	if (!remove)
2726		return;
2727
2728	/* remove the buf from the hdr list */
2729	arc_buf_t *lastbuf = NULL;
2730	bufp = &hdr->b_l1hdr.b_buf;
2731	while (*bufp != NULL) {
2732		if (*bufp == buf)
2733			*bufp = buf->b_next;
2734
2735		/*
2736		 * If we've removed a buffer in the middle of
2737		 * the list then update the lastbuf and update
2738		 * bufp.
2739		 */
2740		if (*bufp != NULL) {
2741			lastbuf = *bufp;
2742			bufp = &(*bufp)->b_next;
2743		}
2744	}
2745	buf->b_next = NULL;
2746	ASSERT3P(lastbuf, !=, buf);
2747
2748	/*
2749	 * If the current arc_buf_t is sharing its data
2750	 * buffer with the hdr, then reassign the hdr's
2751	 * b_pdata to share it with the new buffer at the end
2752	 * of the list. The shared buffer is always the last one
2753	 * on the hdr's buffer list.
2754	 */
2755	if (destroyed_buf_is_shared && lastbuf != NULL) {
2756		ASSERT(ARC_BUF_LAST(buf));
2757		ASSERT(ARC_BUF_LAST(lastbuf));
2758		VERIFY(!arc_buf_is_shared(lastbuf));
2759
2760		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2761		arc_hdr_free_pdata(hdr);
2762
2763		/*
2764		 * We must setup a new shared block between the
2765		 * last buffer and the hdr. The data would have
2766		 * been allocated by the arc buf so we need to transfer
2767		 * ownership to the hdr since it's now being shared.
2768		 */
2769		arc_share_buf(hdr, lastbuf);
2770	} else if (HDR_SHARED_DATA(hdr)) {
2771		ASSERT(arc_buf_is_shared(lastbuf));
2772	}
2773
2774	if (hdr->b_l1hdr.b_bufcnt == 0)
2775		arc_cksum_free(hdr);
2776
2777	/* clean up the buf */
2778	buf->b_hdr = NULL;
2779	kmem_cache_free(buf_cache, buf);
2780}
2781
2782static void
2783arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr)
2784{
2785	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2786	ASSERT(HDR_HAS_L1HDR(hdr));
2787	ASSERT(!HDR_SHARED_DATA(hdr));
2788
2789	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2790	hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr);
2791	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2792	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2793
2794	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2795	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2796}
2797
2798static void
2799arc_hdr_free_pdata(arc_buf_hdr_t *hdr)
2800{
2801	ASSERT(HDR_HAS_L1HDR(hdr));
2802	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2803
2804	/*
2805	 * If the hdr is currently being written to the l2arc then
2806	 * we defer freeing the data by adding it to the l2arc_free_on_write
2807	 * list. The l2arc will free the data once it's finished
2808	 * writing it to the l2arc device.
2809	 */
2810	if (HDR_L2_WRITING(hdr)) {
2811		arc_hdr_free_on_write(hdr);
2812		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2813	} else {
2814		arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata,
2815		    arc_hdr_size(hdr), hdr);
2816	}
2817	hdr->b_l1hdr.b_pdata = NULL;
2818	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2819
2820	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2821	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2822}
2823
2824static arc_buf_hdr_t *
2825arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2826    enum zio_compress compress, arc_buf_contents_t type)
2827{
2828	arc_buf_hdr_t *hdr;
2829
2830	ASSERT3U(lsize, >, 0);
2831	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2832
2833	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2834	ASSERT(HDR_EMPTY(hdr));
2835	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2836	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2837	HDR_SET_PSIZE(hdr, psize);
2838	HDR_SET_LSIZE(hdr, lsize);
2839	hdr->b_spa = spa;
2840	hdr->b_type = type;
2841	hdr->b_flags = 0;
2842	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2843	arc_hdr_set_compress(hdr, compress);
2844
2845	hdr->b_l1hdr.b_state = arc_anon;
2846	hdr->b_l1hdr.b_arc_access = 0;
2847	hdr->b_l1hdr.b_bufcnt = 0;
2848	hdr->b_l1hdr.b_buf = NULL;
2849
2850	/*
2851	 * Allocate the hdr's buffer. This will contain either
2852	 * the compressed or uncompressed data depending on the block
2853	 * it references and compressed arc enablement.
2854	 */
2855	arc_hdr_alloc_pdata(hdr);
2856	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2857
2858	return (hdr);
2859}
2860
2861/*
2862 * Transition between the two allocation states for the arc_buf_hdr struct.
2863 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2864 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2865 * version is used when a cache buffer is only in the L2ARC in order to reduce
2866 * memory usage.
2867 */
2868static arc_buf_hdr_t *
2869arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2870{
2871	ASSERT(HDR_HAS_L2HDR(hdr));
2872
2873	arc_buf_hdr_t *nhdr;
2874	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2875
2876	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2877	    (old == hdr_l2only_cache && new == hdr_full_cache));
2878
2879	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2880
2881	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2882	buf_hash_remove(hdr);
2883
2884	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2885
2886	if (new == hdr_full_cache) {
2887		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2888		/*
2889		 * arc_access and arc_change_state need to be aware that a
2890		 * header has just come out of L2ARC, so we set its state to
2891		 * l2c_only even though it's about to change.
2892		 */
2893		nhdr->b_l1hdr.b_state = arc_l2c_only;
2894
2895		/* Verify previous threads set to NULL before freeing */
2896		ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL);
2897	} else {
2898		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2899		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2900		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2901
2902		/*
2903		 * If we've reached here, We must have been called from
2904		 * arc_evict_hdr(), as such we should have already been
2905		 * removed from any ghost list we were previously on
2906		 * (which protects us from racing with arc_evict_state),
2907		 * thus no locking is needed during this check.
2908		 */
2909		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2910
2911		/*
2912		 * A buffer must not be moved into the arc_l2c_only
2913		 * state if it's not finished being written out to the
2914		 * l2arc device. Otherwise, the b_l1hdr.b_pdata field
2915		 * might try to be accessed, even though it was removed.
2916		 */
2917		VERIFY(!HDR_L2_WRITING(hdr));
2918		VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2919
2920#ifdef ZFS_DEBUG
2921		if (hdr->b_l1hdr.b_thawed != NULL) {
2922			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2923			hdr->b_l1hdr.b_thawed = NULL;
2924		}
2925#endif
2926
2927		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2928	}
2929	/*
2930	 * The header has been reallocated so we need to re-insert it into any
2931	 * lists it was on.
2932	 */
2933	(void) buf_hash_insert(nhdr, NULL);
2934
2935	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2936
2937	mutex_enter(&dev->l2ad_mtx);
2938
2939	/*
2940	 * We must place the realloc'ed header back into the list at
2941	 * the same spot. Otherwise, if it's placed earlier in the list,
2942	 * l2arc_write_buffers() could find it during the function's
2943	 * write phase, and try to write it out to the l2arc.
2944	 */
2945	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2946	list_remove(&dev->l2ad_buflist, hdr);
2947
2948	mutex_exit(&dev->l2ad_mtx);
2949
2950	/*
2951	 * Since we're using the pointer address as the tag when
2952	 * incrementing and decrementing the l2ad_alloc refcount, we
2953	 * must remove the old pointer (that we're about to destroy) and
2954	 * add the new pointer to the refcount. Otherwise we'd remove
2955	 * the wrong pointer address when calling arc_hdr_destroy() later.
2956	 */
2957
2958	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2959	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2960
2961	buf_discard_identity(hdr);
2962	kmem_cache_free(old, hdr);
2963
2964	return (nhdr);
2965}
2966
2967/*
2968 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2969 * The buf is returned thawed since we expect the consumer to modify it.
2970 */
2971arc_buf_t *
2972arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2973{
2974	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2975	    ZIO_COMPRESS_OFF, type);
2976	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2977	arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag);
2978	arc_buf_thaw(buf);
2979	return (buf);
2980}
2981
2982static void
2983arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2984{
2985	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2986	l2arc_dev_t *dev = l2hdr->b_dev;
2987	uint64_t asize = arc_hdr_size(hdr);
2988
2989	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2990	ASSERT(HDR_HAS_L2HDR(hdr));
2991
2992	list_remove(&dev->l2ad_buflist, hdr);
2993
2994	ARCSTAT_INCR(arcstat_l2_asize, -asize);
2995	ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2996
2997	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
2998
2999	(void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
3000	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3001}
3002
3003static void
3004arc_hdr_destroy(arc_buf_hdr_t *hdr)
3005{
3006	if (HDR_HAS_L1HDR(hdr)) {
3007		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3008		    hdr->b_l1hdr.b_bufcnt > 0);
3009		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3010		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3011	}
3012	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3013	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3014
3015	if (!HDR_EMPTY(hdr))
3016		buf_discard_identity(hdr);
3017
3018	if (HDR_HAS_L2HDR(hdr)) {
3019		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3020		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3021
3022		if (!buflist_held)
3023			mutex_enter(&dev->l2ad_mtx);
3024
3025		/*
3026		 * Even though we checked this conditional above, we
3027		 * need to check this again now that we have the
3028		 * l2ad_mtx. This is because we could be racing with
3029		 * another thread calling l2arc_evict() which might have
3030		 * destroyed this header's L2 portion as we were waiting
3031		 * to acquire the l2ad_mtx. If that happens, we don't
3032		 * want to re-destroy the header's L2 portion.
3033		 */
3034		if (HDR_HAS_L2HDR(hdr)) {
3035			l2arc_trim(hdr);
3036			arc_hdr_l2hdr_destroy(hdr);
3037		}
3038
3039		if (!buflist_held)
3040			mutex_exit(&dev->l2ad_mtx);
3041	}
3042
3043	if (HDR_HAS_L1HDR(hdr)) {
3044		arc_cksum_free(hdr);
3045
3046		while (hdr->b_l1hdr.b_buf != NULL)
3047			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE);
3048
3049#ifdef ZFS_DEBUG
3050		if (hdr->b_l1hdr.b_thawed != NULL) {
3051			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3052			hdr->b_l1hdr.b_thawed = NULL;
3053		}
3054#endif
3055
3056		if (hdr->b_l1hdr.b_pdata != NULL) {
3057			arc_hdr_free_pdata(hdr);
3058		}
3059	}
3060
3061	ASSERT3P(hdr->b_hash_next, ==, NULL);
3062	if (HDR_HAS_L1HDR(hdr)) {
3063		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3064		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3065		kmem_cache_free(hdr_full_cache, hdr);
3066	} else {
3067		kmem_cache_free(hdr_l2only_cache, hdr);
3068	}
3069}
3070
3071void
3072arc_buf_destroy(arc_buf_t *buf, void* tag)
3073{
3074	arc_buf_hdr_t *hdr = buf->b_hdr;
3075	kmutex_t *hash_lock = HDR_LOCK(hdr);
3076
3077	if (hdr->b_l1hdr.b_state == arc_anon) {
3078		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3079		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3080		VERIFY0(remove_reference(hdr, NULL, tag));
3081		arc_hdr_destroy(hdr);
3082		return;
3083	}
3084
3085	mutex_enter(hash_lock);
3086	ASSERT3P(hdr, ==, buf->b_hdr);
3087	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3088	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3089	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3090	ASSERT3P(buf->b_data, !=, NULL);
3091
3092	(void) remove_reference(hdr, hash_lock, tag);
3093	arc_buf_destroy_impl(buf, B_TRUE);
3094	mutex_exit(hash_lock);
3095}
3096
3097int32_t
3098arc_buf_size(arc_buf_t *buf)
3099{
3100	return (HDR_GET_LSIZE(buf->b_hdr));
3101}
3102
3103/*
3104 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3105 * state of the header is dependent on it's state prior to entering this
3106 * function. The following transitions are possible:
3107 *
3108 *    - arc_mru -> arc_mru_ghost
3109 *    - arc_mfu -> arc_mfu_ghost
3110 *    - arc_mru_ghost -> arc_l2c_only
3111 *    - arc_mru_ghost -> deleted
3112 *    - arc_mfu_ghost -> arc_l2c_only
3113 *    - arc_mfu_ghost -> deleted
3114 */
3115static int64_t
3116arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3117{
3118	arc_state_t *evicted_state, *state;
3119	int64_t bytes_evicted = 0;
3120
3121	ASSERT(MUTEX_HELD(hash_lock));
3122	ASSERT(HDR_HAS_L1HDR(hdr));
3123
3124	state = hdr->b_l1hdr.b_state;
3125	if (GHOST_STATE(state)) {
3126		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3127		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3128
3129		/*
3130		 * l2arc_write_buffers() relies on a header's L1 portion
3131		 * (i.e. its b_pdata field) during its write phase.
3132		 * Thus, we cannot push a header onto the arc_l2c_only
3133		 * state (removing it's L1 piece) until the header is
3134		 * done being written to the l2arc.
3135		 */
3136		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3137			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3138			return (bytes_evicted);
3139		}
3140
3141		ARCSTAT_BUMP(arcstat_deleted);
3142		bytes_evicted += HDR_GET_LSIZE(hdr);
3143
3144		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3145
3146		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
3147		if (HDR_HAS_L2HDR(hdr)) {
3148			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3149			/*
3150			 * This buffer is cached on the 2nd Level ARC;
3151			 * don't destroy the header.
3152			 */
3153			arc_change_state(arc_l2c_only, hdr, hash_lock);
3154			/*
3155			 * dropping from L1+L2 cached to L2-only,
3156			 * realloc to remove the L1 header.
3157			 */
3158			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3159			    hdr_l2only_cache);
3160		} else {
3161			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3162			arc_change_state(arc_anon, hdr, hash_lock);
3163			arc_hdr_destroy(hdr);
3164		}
3165		return (bytes_evicted);
3166	}
3167
3168	ASSERT(state == arc_mru || state == arc_mfu);
3169	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3170
3171	/* prefetch buffers have a minimum lifespan */
3172	if (HDR_IO_IN_PROGRESS(hdr) ||
3173	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3174	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3175	    arc_min_prefetch_lifespan)) {
3176		ARCSTAT_BUMP(arcstat_evict_skip);
3177		return (bytes_evicted);
3178	}
3179
3180	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3181	while (hdr->b_l1hdr.b_buf) {
3182		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3183		if (!mutex_tryenter(&buf->b_evict_lock)) {
3184			ARCSTAT_BUMP(arcstat_mutex_miss);
3185			break;
3186		}
3187		if (buf->b_data != NULL)
3188			bytes_evicted += HDR_GET_LSIZE(hdr);
3189		mutex_exit(&buf->b_evict_lock);
3190		arc_buf_destroy_impl(buf, B_TRUE);
3191	}
3192
3193	if (HDR_HAS_L2HDR(hdr)) {
3194		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3195	} else {
3196		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3197			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3198			    HDR_GET_LSIZE(hdr));
3199		} else {
3200			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3201			    HDR_GET_LSIZE(hdr));
3202		}
3203	}
3204
3205	if (hdr->b_l1hdr.b_bufcnt == 0) {
3206		arc_cksum_free(hdr);
3207
3208		bytes_evicted += arc_hdr_size(hdr);
3209
3210		/*
3211		 * If this hdr is being evicted and has a compressed
3212		 * buffer then we discard it here before we change states.
3213		 * This ensures that the accounting is updated correctly
3214		 * in arc_free_data_buf().
3215		 */
3216		arc_hdr_free_pdata(hdr);
3217
3218		arc_change_state(evicted_state, hdr, hash_lock);
3219		ASSERT(HDR_IN_HASH_TABLE(hdr));
3220		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3221		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3222	}
3223
3224	return (bytes_evicted);
3225}
3226
3227static uint64_t
3228arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3229    uint64_t spa, int64_t bytes)
3230{
3231	multilist_sublist_t *mls;
3232	uint64_t bytes_evicted = 0;
3233	arc_buf_hdr_t *hdr;
3234	kmutex_t *hash_lock;
3235	int evict_count = 0;
3236
3237	ASSERT3P(marker, !=, NULL);
3238	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3239
3240	mls = multilist_sublist_lock(ml, idx);
3241
3242	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3243	    hdr = multilist_sublist_prev(mls, marker)) {
3244		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3245		    (evict_count >= zfs_arc_evict_batch_limit))
3246			break;
3247
3248		/*
3249		 * To keep our iteration location, move the marker
3250		 * forward. Since we're not holding hdr's hash lock, we
3251		 * must be very careful and not remove 'hdr' from the
3252		 * sublist. Otherwise, other consumers might mistake the
3253		 * 'hdr' as not being on a sublist when they call the
3254		 * multilist_link_active() function (they all rely on
3255		 * the hash lock protecting concurrent insertions and
3256		 * removals). multilist_sublist_move_forward() was
3257		 * specifically implemented to ensure this is the case
3258		 * (only 'marker' will be removed and re-inserted).
3259		 */
3260		multilist_sublist_move_forward(mls, marker);
3261
3262		/*
3263		 * The only case where the b_spa field should ever be
3264		 * zero, is the marker headers inserted by
3265		 * arc_evict_state(). It's possible for multiple threads
3266		 * to be calling arc_evict_state() concurrently (e.g.
3267		 * dsl_pool_close() and zio_inject_fault()), so we must
3268		 * skip any markers we see from these other threads.
3269		 */
3270		if (hdr->b_spa == 0)
3271			continue;
3272
3273		/* we're only interested in evicting buffers of a certain spa */
3274		if (spa != 0 && hdr->b_spa != spa) {
3275			ARCSTAT_BUMP(arcstat_evict_skip);
3276			continue;
3277		}
3278
3279		hash_lock = HDR_LOCK(hdr);
3280
3281		/*
3282		 * We aren't calling this function from any code path
3283		 * that would already be holding a hash lock, so we're
3284		 * asserting on this assumption to be defensive in case
3285		 * this ever changes. Without this check, it would be
3286		 * possible to incorrectly increment arcstat_mutex_miss
3287		 * below (e.g. if the code changed such that we called
3288		 * this function with a hash lock held).
3289		 */
3290		ASSERT(!MUTEX_HELD(hash_lock));
3291
3292		if (mutex_tryenter(hash_lock)) {
3293			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3294			mutex_exit(hash_lock);
3295
3296			bytes_evicted += evicted;
3297
3298			/*
3299			 * If evicted is zero, arc_evict_hdr() must have
3300			 * decided to skip this header, don't increment
3301			 * evict_count in this case.
3302			 */
3303			if (evicted != 0)
3304				evict_count++;
3305
3306			/*
3307			 * If arc_size isn't overflowing, signal any
3308			 * threads that might happen to be waiting.
3309			 *
3310			 * For each header evicted, we wake up a single
3311			 * thread. If we used cv_broadcast, we could
3312			 * wake up "too many" threads causing arc_size
3313			 * to significantly overflow arc_c; since
3314			 * arc_get_data_buf() doesn't check for overflow
3315			 * when it's woken up (it doesn't because it's
3316			 * possible for the ARC to be overflowing while
3317			 * full of un-evictable buffers, and the
3318			 * function should proceed in this case).
3319			 *
3320			 * If threads are left sleeping, due to not
3321			 * using cv_broadcast, they will be woken up
3322			 * just before arc_reclaim_thread() sleeps.
3323			 */
3324			mutex_enter(&arc_reclaim_lock);
3325			if (!arc_is_overflowing())
3326				cv_signal(&arc_reclaim_waiters_cv);
3327			mutex_exit(&arc_reclaim_lock);
3328		} else {
3329			ARCSTAT_BUMP(arcstat_mutex_miss);
3330		}
3331	}
3332
3333	multilist_sublist_unlock(mls);
3334
3335	return (bytes_evicted);
3336}
3337
3338/*
3339 * Evict buffers from the given arc state, until we've removed the
3340 * specified number of bytes. Move the removed buffers to the
3341 * appropriate evict state.
3342 *
3343 * This function makes a "best effort". It skips over any buffers
3344 * it can't get a hash_lock on, and so, may not catch all candidates.
3345 * It may also return without evicting as much space as requested.
3346 *
3347 * If bytes is specified using the special value ARC_EVICT_ALL, this
3348 * will evict all available (i.e. unlocked and evictable) buffers from
3349 * the given arc state; which is used by arc_flush().
3350 */
3351static uint64_t
3352arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3353    arc_buf_contents_t type)
3354{
3355	uint64_t total_evicted = 0;
3356	multilist_t *ml = &state->arcs_list[type];
3357	int num_sublists;
3358	arc_buf_hdr_t **markers;
3359
3360	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3361
3362	num_sublists = multilist_get_num_sublists(ml);
3363
3364	/*
3365	 * If we've tried to evict from each sublist, made some
3366	 * progress, but still have not hit the target number of bytes
3367	 * to evict, we want to keep trying. The markers allow us to
3368	 * pick up where we left off for each individual sublist, rather
3369	 * than starting from the tail each time.
3370	 */
3371	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3372	for (int i = 0; i < num_sublists; i++) {
3373		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3374
3375		/*
3376		 * A b_spa of 0 is used to indicate that this header is
3377		 * a marker. This fact is used in arc_adjust_type() and
3378		 * arc_evict_state_impl().
3379		 */
3380		markers[i]->b_spa = 0;
3381
3382		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3383		multilist_sublist_insert_tail(mls, markers[i]);
3384		multilist_sublist_unlock(mls);
3385	}
3386
3387	/*
3388	 * While we haven't hit our target number of bytes to evict, or
3389	 * we're evicting all available buffers.
3390	 */
3391	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3392		/*
3393		 * Start eviction using a randomly selected sublist,
3394		 * this is to try and evenly balance eviction across all
3395		 * sublists. Always starting at the same sublist
3396		 * (e.g. index 0) would cause evictions to favor certain
3397		 * sublists over others.
3398		 */
3399		int sublist_idx = multilist_get_random_index(ml);
3400		uint64_t scan_evicted = 0;
3401
3402		for (int i = 0; i < num_sublists; i++) {
3403			uint64_t bytes_remaining;
3404			uint64_t bytes_evicted;
3405
3406			if (bytes == ARC_EVICT_ALL)
3407				bytes_remaining = ARC_EVICT_ALL;
3408			else if (total_evicted < bytes)
3409				bytes_remaining = bytes - total_evicted;
3410			else
3411				break;
3412
3413			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3414			    markers[sublist_idx], spa, bytes_remaining);
3415
3416			scan_evicted += bytes_evicted;
3417			total_evicted += bytes_evicted;
3418
3419			/* we've reached the end, wrap to the beginning */
3420			if (++sublist_idx >= num_sublists)
3421				sublist_idx = 0;
3422		}
3423
3424		/*
3425		 * If we didn't evict anything during this scan, we have
3426		 * no reason to believe we'll evict more during another
3427		 * scan, so break the loop.
3428		 */
3429		if (scan_evicted == 0) {
3430			/* This isn't possible, let's make that obvious */
3431			ASSERT3S(bytes, !=, 0);
3432
3433			/*
3434			 * When bytes is ARC_EVICT_ALL, the only way to
3435			 * break the loop is when scan_evicted is zero.
3436			 * In that case, we actually have evicted enough,
3437			 * so we don't want to increment the kstat.
3438			 */
3439			if (bytes != ARC_EVICT_ALL) {
3440				ASSERT3S(total_evicted, <, bytes);
3441				ARCSTAT_BUMP(arcstat_evict_not_enough);
3442			}
3443
3444			break;
3445		}
3446	}
3447
3448	for (int i = 0; i < num_sublists; i++) {
3449		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3450		multilist_sublist_remove(mls, markers[i]);
3451		multilist_sublist_unlock(mls);
3452
3453		kmem_cache_free(hdr_full_cache, markers[i]);
3454	}
3455	kmem_free(markers, sizeof (*markers) * num_sublists);
3456
3457	return (total_evicted);
3458}
3459
3460/*
3461 * Flush all "evictable" data of the given type from the arc state
3462 * specified. This will not evict any "active" buffers (i.e. referenced).
3463 *
3464 * When 'retry' is set to B_FALSE, the function will make a single pass
3465 * over the state and evict any buffers that it can. Since it doesn't
3466 * continually retry the eviction, it might end up leaving some buffers
3467 * in the ARC due to lock misses.
3468 *
3469 * When 'retry' is set to B_TRUE, the function will continually retry the
3470 * eviction until *all* evictable buffers have been removed from the
3471 * state. As a result, if concurrent insertions into the state are
3472 * allowed (e.g. if the ARC isn't shutting down), this function might
3473 * wind up in an infinite loop, continually trying to evict buffers.
3474 */
3475static uint64_t
3476arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3477    boolean_t retry)
3478{
3479	uint64_t evicted = 0;
3480
3481	while (refcount_count(&state->arcs_esize[type]) != 0) {
3482		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3483
3484		if (!retry)
3485			break;
3486	}
3487
3488	return (evicted);
3489}
3490
3491/*
3492 * Evict the specified number of bytes from the state specified,
3493 * restricting eviction to the spa and type given. This function
3494 * prevents us from trying to evict more from a state's list than
3495 * is "evictable", and to skip evicting altogether when passed a
3496 * negative value for "bytes". In contrast, arc_evict_state() will
3497 * evict everything it can, when passed a negative value for "bytes".
3498 */
3499static uint64_t
3500arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3501    arc_buf_contents_t type)
3502{
3503	int64_t delta;
3504
3505	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3506		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3507		return (arc_evict_state(state, spa, delta, type));
3508	}
3509
3510	return (0);
3511}
3512
3513/*
3514 * Evict metadata buffers from the cache, such that arc_meta_used is
3515 * capped by the arc_meta_limit tunable.
3516 */
3517static uint64_t
3518arc_adjust_meta(void)
3519{
3520	uint64_t total_evicted = 0;
3521	int64_t target;
3522
3523	/*
3524	 * If we're over the meta limit, we want to evict enough
3525	 * metadata to get back under the meta limit. We don't want to
3526	 * evict so much that we drop the MRU below arc_p, though. If
3527	 * we're over the meta limit more than we're over arc_p, we
3528	 * evict some from the MRU here, and some from the MFU below.
3529	 */
3530	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3531	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3532	    refcount_count(&arc_mru->arcs_size) - arc_p));
3533
3534	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3535
3536	/*
3537	 * Similar to the above, we want to evict enough bytes to get us
3538	 * below the meta limit, but not so much as to drop us below the
3539	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3540	 */
3541	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3542	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3543
3544	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3545
3546	return (total_evicted);
3547}
3548
3549/*
3550 * Return the type of the oldest buffer in the given arc state
3551 *
3552 * This function will select a random sublist of type ARC_BUFC_DATA and
3553 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3554 * is compared, and the type which contains the "older" buffer will be
3555 * returned.
3556 */
3557static arc_buf_contents_t
3558arc_adjust_type(arc_state_t *state)
3559{
3560	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3561	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3562	int data_idx = multilist_get_random_index(data_ml);
3563	int meta_idx = multilist_get_random_index(meta_ml);
3564	multilist_sublist_t *data_mls;
3565	multilist_sublist_t *meta_mls;
3566	arc_buf_contents_t type;
3567	arc_buf_hdr_t *data_hdr;
3568	arc_buf_hdr_t *meta_hdr;
3569
3570	/*
3571	 * We keep the sublist lock until we're finished, to prevent
3572	 * the headers from being destroyed via arc_evict_state().
3573	 */
3574	data_mls = multilist_sublist_lock(data_ml, data_idx);
3575	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3576
3577	/*
3578	 * These two loops are to ensure we skip any markers that
3579	 * might be at the tail of the lists due to arc_evict_state().
3580	 */
3581
3582	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3583	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3584		if (data_hdr->b_spa != 0)
3585			break;
3586	}
3587
3588	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3589	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3590		if (meta_hdr->b_spa != 0)
3591			break;
3592	}
3593
3594	if (data_hdr == NULL && meta_hdr == NULL) {
3595		type = ARC_BUFC_DATA;
3596	} else if (data_hdr == NULL) {
3597		ASSERT3P(meta_hdr, !=, NULL);
3598		type = ARC_BUFC_METADATA;
3599	} else if (meta_hdr == NULL) {
3600		ASSERT3P(data_hdr, !=, NULL);
3601		type = ARC_BUFC_DATA;
3602	} else {
3603		ASSERT3P(data_hdr, !=, NULL);
3604		ASSERT3P(meta_hdr, !=, NULL);
3605
3606		/* The headers can't be on the sublist without an L1 header */
3607		ASSERT(HDR_HAS_L1HDR(data_hdr));
3608		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3609
3610		if (data_hdr->b_l1hdr.b_arc_access <
3611		    meta_hdr->b_l1hdr.b_arc_access) {
3612			type = ARC_BUFC_DATA;
3613		} else {
3614			type = ARC_BUFC_METADATA;
3615		}
3616	}
3617
3618	multilist_sublist_unlock(meta_mls);
3619	multilist_sublist_unlock(data_mls);
3620
3621	return (type);
3622}
3623
3624/*
3625 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3626 */
3627static uint64_t
3628arc_adjust(void)
3629{
3630	uint64_t total_evicted = 0;
3631	uint64_t bytes;
3632	int64_t target;
3633
3634	/*
3635	 * If we're over arc_meta_limit, we want to correct that before
3636	 * potentially evicting data buffers below.
3637	 */
3638	total_evicted += arc_adjust_meta();
3639
3640	/*
3641	 * Adjust MRU size
3642	 *
3643	 * If we're over the target cache size, we want to evict enough
3644	 * from the list to get back to our target size. We don't want
3645	 * to evict too much from the MRU, such that it drops below
3646	 * arc_p. So, if we're over our target cache size more than
3647	 * the MRU is over arc_p, we'll evict enough to get back to
3648	 * arc_p here, and then evict more from the MFU below.
3649	 */
3650	target = MIN((int64_t)(arc_size - arc_c),
3651	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3652	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3653
3654	/*
3655	 * If we're below arc_meta_min, always prefer to evict data.
3656	 * Otherwise, try to satisfy the requested number of bytes to
3657	 * evict from the type which contains older buffers; in an
3658	 * effort to keep newer buffers in the cache regardless of their
3659	 * type. If we cannot satisfy the number of bytes from this
3660	 * type, spill over into the next type.
3661	 */
3662	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3663	    arc_meta_used > arc_meta_min) {
3664		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3665		total_evicted += bytes;
3666
3667		/*
3668		 * If we couldn't evict our target number of bytes from
3669		 * metadata, we try to get the rest from data.
3670		 */
3671		target -= bytes;
3672
3673		total_evicted +=
3674		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3675	} else {
3676		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3677		total_evicted += bytes;
3678
3679		/*
3680		 * If we couldn't evict our target number of bytes from
3681		 * data, we try to get the rest from metadata.
3682		 */
3683		target -= bytes;
3684
3685		total_evicted +=
3686		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3687	}
3688
3689	/*
3690	 * Adjust MFU size
3691	 *
3692	 * Now that we've tried to evict enough from the MRU to get its
3693	 * size back to arc_p, if we're still above the target cache
3694	 * size, we evict the rest from the MFU.
3695	 */
3696	target = arc_size - arc_c;
3697
3698	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3699	    arc_meta_used > arc_meta_min) {
3700		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3701		total_evicted += bytes;
3702
3703		/*
3704		 * If we couldn't evict our target number of bytes from
3705		 * metadata, we try to get the rest from data.
3706		 */
3707		target -= bytes;
3708
3709		total_evicted +=
3710		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3711	} else {
3712		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3713		total_evicted += bytes;
3714
3715		/*
3716		 * If we couldn't evict our target number of bytes from
3717		 * data, we try to get the rest from data.
3718		 */
3719		target -= bytes;
3720
3721		total_evicted +=
3722		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3723	}
3724
3725	/*
3726	 * Adjust ghost lists
3727	 *
3728	 * In addition to the above, the ARC also defines target values
3729	 * for the ghost lists. The sum of the mru list and mru ghost
3730	 * list should never exceed the target size of the cache, and
3731	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3732	 * ghost list should never exceed twice the target size of the
3733	 * cache. The following logic enforces these limits on the ghost
3734	 * caches, and evicts from them as needed.
3735	 */
3736	target = refcount_count(&arc_mru->arcs_size) +
3737	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3738
3739	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3740	total_evicted += bytes;
3741
3742	target -= bytes;
3743
3744	total_evicted +=
3745	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3746
3747	/*
3748	 * We assume the sum of the mru list and mfu list is less than
3749	 * or equal to arc_c (we enforced this above), which means we
3750	 * can use the simpler of the two equations below:
3751	 *
3752	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3753	 *		    mru ghost + mfu ghost <= arc_c
3754	 */
3755	target = refcount_count(&arc_mru_ghost->arcs_size) +
3756	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3757
3758	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3759	total_evicted += bytes;
3760
3761	target -= bytes;
3762
3763	total_evicted +=
3764	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3765
3766	return (total_evicted);
3767}
3768
3769void
3770arc_flush(spa_t *spa, boolean_t retry)
3771{
3772	uint64_t guid = 0;
3773
3774	/*
3775	 * If retry is B_TRUE, a spa must not be specified since we have
3776	 * no good way to determine if all of a spa's buffers have been
3777	 * evicted from an arc state.
3778	 */
3779	ASSERT(!retry || spa == 0);
3780
3781	if (spa != NULL)
3782		guid = spa_load_guid(spa);
3783
3784	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3785	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3786
3787	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3788	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3789
3790	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3791	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3792
3793	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3794	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3795}
3796
3797void
3798arc_shrink(int64_t to_free)
3799{
3800	if (arc_c > arc_c_min) {
3801		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3802			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3803		if (arc_c > arc_c_min + to_free)
3804			atomic_add_64(&arc_c, -to_free);
3805		else
3806			arc_c = arc_c_min;
3807
3808		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3809		if (arc_c > arc_size)
3810			arc_c = MAX(arc_size, arc_c_min);
3811		if (arc_p > arc_c)
3812			arc_p = (arc_c >> 1);
3813
3814		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3815			arc_p);
3816
3817		ASSERT(arc_c >= arc_c_min);
3818		ASSERT((int64_t)arc_p >= 0);
3819	}
3820
3821	if (arc_size > arc_c) {
3822		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3823			uint64_t, arc_c);
3824		(void) arc_adjust();
3825	}
3826}
3827
3828static long needfree = 0;
3829
3830typedef enum free_memory_reason_t {
3831	FMR_UNKNOWN,
3832	FMR_NEEDFREE,
3833	FMR_LOTSFREE,
3834	FMR_SWAPFS_MINFREE,
3835	FMR_PAGES_PP_MAXIMUM,
3836	FMR_HEAP_ARENA,
3837	FMR_ZIO_ARENA,
3838	FMR_ZIO_FRAG,
3839} free_memory_reason_t;
3840
3841int64_t last_free_memory;
3842free_memory_reason_t last_free_reason;
3843
3844/*
3845 * Additional reserve of pages for pp_reserve.
3846 */
3847int64_t arc_pages_pp_reserve = 64;
3848
3849/*
3850 * Additional reserve of pages for swapfs.
3851 */
3852int64_t arc_swapfs_reserve = 64;
3853
3854/*
3855 * Return the amount of memory that can be consumed before reclaim will be
3856 * needed.  Positive if there is sufficient free memory, negative indicates
3857 * the amount of memory that needs to be freed up.
3858 */
3859static int64_t
3860arc_available_memory(void)
3861{
3862	int64_t lowest = INT64_MAX;
3863	int64_t n;
3864	free_memory_reason_t r = FMR_UNKNOWN;
3865
3866#ifdef _KERNEL
3867	if (needfree > 0) {
3868		n = PAGESIZE * (-needfree);
3869		if (n < lowest) {
3870			lowest = n;
3871			r = FMR_NEEDFREE;
3872		}
3873	}
3874
3875	/*
3876	 * Cooperate with pagedaemon when it's time for it to scan
3877	 * and reclaim some pages.
3878	 */
3879	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3880	if (n < lowest) {
3881		lowest = n;
3882		r = FMR_LOTSFREE;
3883	}
3884
3885#ifdef illumos
3886	/*
3887	 * check that we're out of range of the pageout scanner.  It starts to
3888	 * schedule paging if freemem is less than lotsfree and needfree.
3889	 * lotsfree is the high-water mark for pageout, and needfree is the
3890	 * number of needed free pages.  We add extra pages here to make sure
3891	 * the scanner doesn't start up while we're freeing memory.
3892	 */
3893	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3894	if (n < lowest) {
3895		lowest = n;
3896		r = FMR_LOTSFREE;
3897	}
3898
3899	/*
3900	 * check to make sure that swapfs has enough space so that anon
3901	 * reservations can still succeed. anon_resvmem() checks that the
3902	 * availrmem is greater than swapfs_minfree, and the number of reserved
3903	 * swap pages.  We also add a bit of extra here just to prevent
3904	 * circumstances from getting really dire.
3905	 */
3906	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3907	    desfree - arc_swapfs_reserve);
3908	if (n < lowest) {
3909		lowest = n;
3910		r = FMR_SWAPFS_MINFREE;
3911	}
3912
3913
3914	/*
3915	 * Check that we have enough availrmem that memory locking (e.g., via
3916	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3917	 * stores the number of pages that cannot be locked; when availrmem
3918	 * drops below pages_pp_maximum, page locking mechanisms such as
3919	 * page_pp_lock() will fail.)
3920	 */
3921	n = PAGESIZE * (availrmem - pages_pp_maximum -
3922	    arc_pages_pp_reserve);
3923	if (n < lowest) {
3924		lowest = n;
3925		r = FMR_PAGES_PP_MAXIMUM;
3926	}
3927
3928#endif	/* illumos */
3929#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3930	/*
3931	 * If we're on an i386 platform, it's possible that we'll exhaust the
3932	 * kernel heap space before we ever run out of available physical
3933	 * memory.  Most checks of the size of the heap_area compare against
3934	 * tune.t_minarmem, which is the minimum available real memory that we
3935	 * can have in the system.  However, this is generally fixed at 25 pages
3936	 * which is so low that it's useless.  In this comparison, we seek to
3937	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3938	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3939	 * free)
3940	 */
3941	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3942	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3943	if (n < lowest) {
3944		lowest = n;
3945		r = FMR_HEAP_ARENA;
3946	}
3947#define	zio_arena	NULL
3948#else
3949#define	zio_arena	heap_arena
3950#endif
3951
3952	/*
3953	 * If zio data pages are being allocated out of a separate heap segment,
3954	 * then enforce that the size of available vmem for this arena remains
3955	 * above about 1/16th free.
3956	 *
3957	 * Note: The 1/16th arena free requirement was put in place
3958	 * to aggressively evict memory from the arc in order to avoid
3959	 * memory fragmentation issues.
3960	 */
3961	if (zio_arena != NULL) {
3962		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3963		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3964		if (n < lowest) {
3965			lowest = n;
3966			r = FMR_ZIO_ARENA;
3967		}
3968	}
3969
3970	/*
3971	 * Above limits know nothing about real level of KVA fragmentation.
3972	 * Start aggressive reclamation if too little sequential KVA left.
3973	 */
3974	if (lowest > 0) {
3975		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3976		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3977		    INT64_MAX;
3978		if (n < lowest) {
3979			lowest = n;
3980			r = FMR_ZIO_FRAG;
3981		}
3982	}
3983
3984#else	/* _KERNEL */
3985	/* Every 100 calls, free a small amount */
3986	if (spa_get_random(100) == 0)
3987		lowest = -1024;
3988#endif	/* _KERNEL */
3989
3990	last_free_memory = lowest;
3991	last_free_reason = r;
3992	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3993	return (lowest);
3994}
3995
3996
3997/*
3998 * Determine if the system is under memory pressure and is asking
3999 * to reclaim memory. A return value of B_TRUE indicates that the system
4000 * is under memory pressure and that the arc should adjust accordingly.
4001 */
4002static boolean_t
4003arc_reclaim_needed(void)
4004{
4005	return (arc_available_memory() < 0);
4006}
4007
4008extern kmem_cache_t	*zio_buf_cache[];
4009extern kmem_cache_t	*zio_data_buf_cache[];
4010extern kmem_cache_t	*range_seg_cache;
4011
4012static __noinline void
4013arc_kmem_reap_now(void)
4014{
4015	size_t			i;
4016	kmem_cache_t		*prev_cache = NULL;
4017	kmem_cache_t		*prev_data_cache = NULL;
4018
4019	DTRACE_PROBE(arc__kmem_reap_start);
4020#ifdef _KERNEL
4021	if (arc_meta_used >= arc_meta_limit) {
4022		/*
4023		 * We are exceeding our meta-data cache limit.
4024		 * Purge some DNLC entries to release holds on meta-data.
4025		 */
4026		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4027	}
4028#if defined(__i386)
4029	/*
4030	 * Reclaim unused memory from all kmem caches.
4031	 */
4032	kmem_reap();
4033#endif
4034#endif
4035
4036	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4037		if (zio_buf_cache[i] != prev_cache) {
4038			prev_cache = zio_buf_cache[i];
4039			kmem_cache_reap_now(zio_buf_cache[i]);
4040		}
4041		if (zio_data_buf_cache[i] != prev_data_cache) {
4042			prev_data_cache = zio_data_buf_cache[i];
4043			kmem_cache_reap_now(zio_data_buf_cache[i]);
4044		}
4045	}
4046	kmem_cache_reap_now(buf_cache);
4047	kmem_cache_reap_now(hdr_full_cache);
4048	kmem_cache_reap_now(hdr_l2only_cache);
4049	kmem_cache_reap_now(range_seg_cache);
4050
4051#ifdef illumos
4052	if (zio_arena != NULL) {
4053		/*
4054		 * Ask the vmem arena to reclaim unused memory from its
4055		 * quantum caches.
4056		 */
4057		vmem_qcache_reap(zio_arena);
4058	}
4059#endif
4060	DTRACE_PROBE(arc__kmem_reap_end);
4061}
4062
4063/*
4064 * Threads can block in arc_get_data_buf() waiting for this thread to evict
4065 * enough data and signal them to proceed. When this happens, the threads in
4066 * arc_get_data_buf() are sleeping while holding the hash lock for their
4067 * particular arc header. Thus, we must be careful to never sleep on a
4068 * hash lock in this thread. This is to prevent the following deadlock:
4069 *
4070 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
4071 *    waiting for the reclaim thread to signal it.
4072 *
4073 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4074 *    fails, and goes to sleep forever.
4075 *
4076 * This possible deadlock is avoided by always acquiring a hash lock
4077 * using mutex_tryenter() from arc_reclaim_thread().
4078 */
4079static void
4080arc_reclaim_thread(void *dummy __unused)
4081{
4082	hrtime_t		growtime = 0;
4083	callb_cpr_t		cpr;
4084
4085	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4086
4087	mutex_enter(&arc_reclaim_lock);
4088	while (!arc_reclaim_thread_exit) {
4089		uint64_t evicted = 0;
4090
4091		/*
4092		 * This is necessary in order for the mdb ::arc dcmd to
4093		 * show up to date information. Since the ::arc command
4094		 * does not call the kstat's update function, without
4095		 * this call, the command may show stale stats for the
4096		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4097		 * with this change, the data might be up to 1 second
4098		 * out of date; but that should suffice. The arc_state_t
4099		 * structures can be queried directly if more accurate
4100		 * information is needed.
4101		 */
4102		if (arc_ksp != NULL)
4103			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4104
4105		mutex_exit(&arc_reclaim_lock);
4106
4107		/*
4108		 * We call arc_adjust() before (possibly) calling
4109		 * arc_kmem_reap_now(), so that we can wake up
4110		 * arc_get_data_buf() sooner.
4111		 */
4112		evicted = arc_adjust();
4113
4114		int64_t free_memory = arc_available_memory();
4115		if (free_memory < 0) {
4116
4117			arc_no_grow = B_TRUE;
4118			arc_warm = B_TRUE;
4119
4120			/*
4121			 * Wait at least zfs_grow_retry (default 60) seconds
4122			 * before considering growing.
4123			 */
4124			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4125
4126			arc_kmem_reap_now();
4127
4128			/*
4129			 * If we are still low on memory, shrink the ARC
4130			 * so that we have arc_shrink_min free space.
4131			 */
4132			free_memory = arc_available_memory();
4133
4134			int64_t to_free =
4135			    (arc_c >> arc_shrink_shift) - free_memory;
4136			if (to_free > 0) {
4137#ifdef _KERNEL
4138				to_free = MAX(to_free, ptob(needfree));
4139#endif
4140				arc_shrink(to_free);
4141			}
4142		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4143			arc_no_grow = B_TRUE;
4144		} else if (gethrtime() >= growtime) {
4145			arc_no_grow = B_FALSE;
4146		}
4147
4148		mutex_enter(&arc_reclaim_lock);
4149
4150		/*
4151		 * If evicted is zero, we couldn't evict anything via
4152		 * arc_adjust(). This could be due to hash lock
4153		 * collisions, but more likely due to the majority of
4154		 * arc buffers being unevictable. Therefore, even if
4155		 * arc_size is above arc_c, another pass is unlikely to
4156		 * be helpful and could potentially cause us to enter an
4157		 * infinite loop.
4158		 */
4159		if (arc_size <= arc_c || evicted == 0) {
4160#ifdef _KERNEL
4161			needfree = 0;
4162#endif
4163			/*
4164			 * We're either no longer overflowing, or we
4165			 * can't evict anything more, so we should wake
4166			 * up any threads before we go to sleep.
4167			 */
4168			cv_broadcast(&arc_reclaim_waiters_cv);
4169
4170			/*
4171			 * Block until signaled, or after one second (we
4172			 * might need to perform arc_kmem_reap_now()
4173			 * even if we aren't being signalled)
4174			 */
4175			CALLB_CPR_SAFE_BEGIN(&cpr);
4176			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4177			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4178			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4179		}
4180	}
4181
4182	arc_reclaim_thread_exit = B_FALSE;
4183	cv_broadcast(&arc_reclaim_thread_cv);
4184	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4185	thread_exit();
4186}
4187
4188static u_int arc_dnlc_evicts_arg;
4189extern struct vfsops zfs_vfsops;
4190
4191static void
4192arc_dnlc_evicts_thread(void *dummy __unused)
4193{
4194	callb_cpr_t cpr;
4195	u_int percent;
4196
4197	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
4198
4199	mutex_enter(&arc_dnlc_evicts_lock);
4200	while (!arc_dnlc_evicts_thread_exit) {
4201		CALLB_CPR_SAFE_BEGIN(&cpr);
4202		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
4203		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
4204		if (arc_dnlc_evicts_arg != 0) {
4205			percent = arc_dnlc_evicts_arg;
4206			mutex_exit(&arc_dnlc_evicts_lock);
4207#ifdef _KERNEL
4208			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
4209#endif
4210			mutex_enter(&arc_dnlc_evicts_lock);
4211			/*
4212			 * Clear our token only after vnlru_free()
4213			 * pass is done, to avoid false queueing of
4214			 * the requests.
4215			 */
4216			arc_dnlc_evicts_arg = 0;
4217		}
4218	}
4219	arc_dnlc_evicts_thread_exit = FALSE;
4220	cv_broadcast(&arc_dnlc_evicts_cv);
4221	CALLB_CPR_EXIT(&cpr);
4222	thread_exit();
4223}
4224
4225void
4226dnlc_reduce_cache(void *arg)
4227{
4228	u_int percent;
4229
4230	percent = (u_int)(uintptr_t)arg;
4231	mutex_enter(&arc_dnlc_evicts_lock);
4232	if (arc_dnlc_evicts_arg == 0) {
4233		arc_dnlc_evicts_arg = percent;
4234		cv_broadcast(&arc_dnlc_evicts_cv);
4235	}
4236	mutex_exit(&arc_dnlc_evicts_lock);
4237}
4238
4239/*
4240 * Adapt arc info given the number of bytes we are trying to add and
4241 * the state that we are comming from.  This function is only called
4242 * when we are adding new content to the cache.
4243 */
4244static void
4245arc_adapt(int bytes, arc_state_t *state)
4246{
4247	int mult;
4248	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4249	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4250	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4251
4252	if (state == arc_l2c_only)
4253		return;
4254
4255	ASSERT(bytes > 0);
4256	/*
4257	 * Adapt the target size of the MRU list:
4258	 *	- if we just hit in the MRU ghost list, then increase
4259	 *	  the target size of the MRU list.
4260	 *	- if we just hit in the MFU ghost list, then increase
4261	 *	  the target size of the MFU list by decreasing the
4262	 *	  target size of the MRU list.
4263	 */
4264	if (state == arc_mru_ghost) {
4265		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4266		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4267
4268		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4269	} else if (state == arc_mfu_ghost) {
4270		uint64_t delta;
4271
4272		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4273		mult = MIN(mult, 10);
4274
4275		delta = MIN(bytes * mult, arc_p);
4276		arc_p = MAX(arc_p_min, arc_p - delta);
4277	}
4278	ASSERT((int64_t)arc_p >= 0);
4279
4280	if (arc_reclaim_needed()) {
4281		cv_signal(&arc_reclaim_thread_cv);
4282		return;
4283	}
4284
4285	if (arc_no_grow)
4286		return;
4287
4288	if (arc_c >= arc_c_max)
4289		return;
4290
4291	/*
4292	 * If we're within (2 * maxblocksize) bytes of the target
4293	 * cache size, increment the target cache size
4294	 */
4295	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4296		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4297		atomic_add_64(&arc_c, (int64_t)bytes);
4298		if (arc_c > arc_c_max)
4299			arc_c = arc_c_max;
4300		else if (state == arc_anon)
4301			atomic_add_64(&arc_p, (int64_t)bytes);
4302		if (arc_p > arc_c)
4303			arc_p = arc_c;
4304	}
4305	ASSERT((int64_t)arc_p >= 0);
4306}
4307
4308/*
4309 * Check if arc_size has grown past our upper threshold, determined by
4310 * zfs_arc_overflow_shift.
4311 */
4312static boolean_t
4313arc_is_overflowing(void)
4314{
4315	/* Always allow at least one block of overflow */
4316	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4317	    arc_c >> zfs_arc_overflow_shift);
4318
4319	return (arc_size >= arc_c + overflow);
4320}
4321
4322/*
4323 * Allocate a block and return it to the caller. If we are hitting the
4324 * hard limit for the cache size, we must sleep, waiting for the eviction
4325 * thread to catch up. If we're past the target size but below the hard
4326 * limit, we'll only signal the reclaim thread and continue on.
4327 */
4328static void *
4329arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4330{
4331	void *datap = NULL;
4332	arc_state_t		*state = hdr->b_l1hdr.b_state;
4333	arc_buf_contents_t	type = arc_buf_type(hdr);
4334
4335	arc_adapt(size, state);
4336
4337	/*
4338	 * If arc_size is currently overflowing, and has grown past our
4339	 * upper limit, we must be adding data faster than the evict
4340	 * thread can evict. Thus, to ensure we don't compound the
4341	 * problem by adding more data and forcing arc_size to grow even
4342	 * further past it's target size, we halt and wait for the
4343	 * eviction thread to catch up.
4344	 *
4345	 * It's also possible that the reclaim thread is unable to evict
4346	 * enough buffers to get arc_size below the overflow limit (e.g.
4347	 * due to buffers being un-evictable, or hash lock collisions).
4348	 * In this case, we want to proceed regardless if we're
4349	 * overflowing; thus we don't use a while loop here.
4350	 */
4351	if (arc_is_overflowing()) {
4352		mutex_enter(&arc_reclaim_lock);
4353
4354		/*
4355		 * Now that we've acquired the lock, we may no longer be
4356		 * over the overflow limit, lets check.
4357		 *
4358		 * We're ignoring the case of spurious wake ups. If that
4359		 * were to happen, it'd let this thread consume an ARC
4360		 * buffer before it should have (i.e. before we're under
4361		 * the overflow limit and were signalled by the reclaim
4362		 * thread). As long as that is a rare occurrence, it
4363		 * shouldn't cause any harm.
4364		 */
4365		if (arc_is_overflowing()) {
4366			cv_signal(&arc_reclaim_thread_cv);
4367			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4368		}
4369
4370		mutex_exit(&arc_reclaim_lock);
4371	}
4372
4373	VERIFY3U(hdr->b_type, ==, type);
4374	if (type == ARC_BUFC_METADATA) {
4375		datap = zio_buf_alloc(size);
4376		arc_space_consume(size, ARC_SPACE_META);
4377	} else {
4378		ASSERT(type == ARC_BUFC_DATA);
4379		datap = zio_data_buf_alloc(size);
4380		arc_space_consume(size, ARC_SPACE_DATA);
4381	}
4382
4383	/*
4384	 * Update the state size.  Note that ghost states have a
4385	 * "ghost size" and so don't need to be updated.
4386	 */
4387	if (!GHOST_STATE(state)) {
4388
4389		(void) refcount_add_many(&state->arcs_size, size, tag);
4390
4391		/*
4392		 * If this is reached via arc_read, the link is
4393		 * protected by the hash lock. If reached via
4394		 * arc_buf_alloc, the header should not be accessed by
4395		 * any other thread. And, if reached via arc_read_done,
4396		 * the hash lock will protect it if it's found in the
4397		 * hash table; otherwise no other thread should be
4398		 * trying to [add|remove]_reference it.
4399		 */
4400		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4401			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4402			(void) refcount_add_many(&state->arcs_esize[type],
4403			    size, tag);
4404		}
4405
4406		/*
4407		 * If we are growing the cache, and we are adding anonymous
4408		 * data, and we have outgrown arc_p, update arc_p
4409		 */
4410		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4411		    (refcount_count(&arc_anon->arcs_size) +
4412		    refcount_count(&arc_mru->arcs_size) > arc_p))
4413			arc_p = MIN(arc_c, arc_p + size);
4414	}
4415	ARCSTAT_BUMP(arcstat_allocated);
4416	return (datap);
4417}
4418
4419/*
4420 * Free the arc data buffer.
4421 */
4422static void
4423arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag)
4424{
4425	arc_state_t *state = hdr->b_l1hdr.b_state;
4426	arc_buf_contents_t type = arc_buf_type(hdr);
4427
4428	/* protected by hash lock, if in the hash table */
4429	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4430		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4431		ASSERT(state != arc_anon && state != arc_l2c_only);
4432
4433		(void) refcount_remove_many(&state->arcs_esize[type],
4434		    size, tag);
4435	}
4436	(void) refcount_remove_many(&state->arcs_size, size, tag);
4437
4438	VERIFY3U(hdr->b_type, ==, type);
4439	if (type == ARC_BUFC_METADATA) {
4440		zio_buf_free(data, size);
4441		arc_space_return(size, ARC_SPACE_META);
4442	} else {
4443		ASSERT(type == ARC_BUFC_DATA);
4444		zio_data_buf_free(data, size);
4445		arc_space_return(size, ARC_SPACE_DATA);
4446	}
4447}
4448
4449/*
4450 * This routine is called whenever a buffer is accessed.
4451 * NOTE: the hash lock is dropped in this function.
4452 */
4453static void
4454arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4455{
4456	clock_t now;
4457
4458	ASSERT(MUTEX_HELD(hash_lock));
4459	ASSERT(HDR_HAS_L1HDR(hdr));
4460
4461	if (hdr->b_l1hdr.b_state == arc_anon) {
4462		/*
4463		 * This buffer is not in the cache, and does not
4464		 * appear in our "ghost" list.  Add the new buffer
4465		 * to the MRU state.
4466		 */
4467
4468		ASSERT0(hdr->b_l1hdr.b_arc_access);
4469		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4470		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4471		arc_change_state(arc_mru, hdr, hash_lock);
4472
4473	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4474		now = ddi_get_lbolt();
4475
4476		/*
4477		 * If this buffer is here because of a prefetch, then either:
4478		 * - clear the flag if this is a "referencing" read
4479		 *   (any subsequent access will bump this into the MFU state).
4480		 * or
4481		 * - move the buffer to the head of the list if this is
4482		 *   another prefetch (to make it less likely to be evicted).
4483		 */
4484		if (HDR_PREFETCH(hdr)) {
4485			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4486				/* link protected by hash lock */
4487				ASSERT(multilist_link_active(
4488				    &hdr->b_l1hdr.b_arc_node));
4489			} else {
4490				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4491				ARCSTAT_BUMP(arcstat_mru_hits);
4492			}
4493			hdr->b_l1hdr.b_arc_access = now;
4494			return;
4495		}
4496
4497		/*
4498		 * This buffer has been "accessed" only once so far,
4499		 * but it is still in the cache. Move it to the MFU
4500		 * state.
4501		 */
4502		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4503			/*
4504			 * More than 125ms have passed since we
4505			 * instantiated this buffer.  Move it to the
4506			 * most frequently used state.
4507			 */
4508			hdr->b_l1hdr.b_arc_access = now;
4509			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4510			arc_change_state(arc_mfu, hdr, hash_lock);
4511		}
4512		ARCSTAT_BUMP(arcstat_mru_hits);
4513	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4514		arc_state_t	*new_state;
4515		/*
4516		 * This buffer has been "accessed" recently, but
4517		 * was evicted from the cache.  Move it to the
4518		 * MFU state.
4519		 */
4520
4521		if (HDR_PREFETCH(hdr)) {
4522			new_state = arc_mru;
4523			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4524				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4525			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4526		} else {
4527			new_state = arc_mfu;
4528			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4529		}
4530
4531		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4532		arc_change_state(new_state, hdr, hash_lock);
4533
4534		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4535	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4536		/*
4537		 * This buffer has been accessed more than once and is
4538		 * still in the cache.  Keep it in the MFU state.
4539		 *
4540		 * NOTE: an add_reference() that occurred when we did
4541		 * the arc_read() will have kicked this off the list.
4542		 * If it was a prefetch, we will explicitly move it to
4543		 * the head of the list now.
4544		 */
4545		if ((HDR_PREFETCH(hdr)) != 0) {
4546			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4547			/* link protected by hash_lock */
4548			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4549		}
4550		ARCSTAT_BUMP(arcstat_mfu_hits);
4551		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4552	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4553		arc_state_t	*new_state = arc_mfu;
4554		/*
4555		 * This buffer has been accessed more than once but has
4556		 * been evicted from the cache.  Move it back to the
4557		 * MFU state.
4558		 */
4559
4560		if (HDR_PREFETCH(hdr)) {
4561			/*
4562			 * This is a prefetch access...
4563			 * move this block back to the MRU state.
4564			 */
4565			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4566			new_state = arc_mru;
4567		}
4568
4569		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4570		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4571		arc_change_state(new_state, hdr, hash_lock);
4572
4573		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4574	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4575		/*
4576		 * This buffer is on the 2nd Level ARC.
4577		 */
4578
4579		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4580		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4581		arc_change_state(arc_mfu, hdr, hash_lock);
4582	} else {
4583		ASSERT(!"invalid arc state");
4584	}
4585}
4586
4587/* a generic arc_done_func_t which you can use */
4588/* ARGSUSED */
4589void
4590arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4591{
4592	if (zio == NULL || zio->io_error == 0)
4593		bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr));
4594	arc_buf_destroy(buf, arg);
4595}
4596
4597/* a generic arc_done_func_t */
4598void
4599arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4600{
4601	arc_buf_t **bufp = arg;
4602	if (zio && zio->io_error) {
4603		arc_buf_destroy(buf, arg);
4604		*bufp = NULL;
4605	} else {
4606		*bufp = buf;
4607		ASSERT(buf->b_data);
4608	}
4609}
4610
4611static void
4612arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4613{
4614	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4615		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4616		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4617	} else {
4618		if (HDR_COMPRESSION_ENABLED(hdr)) {
4619			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4620			    BP_GET_COMPRESS(bp));
4621		}
4622		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4623		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4624	}
4625}
4626
4627static void
4628arc_read_done(zio_t *zio)
4629{
4630	arc_buf_hdr_t	*hdr = zio->io_private;
4631	arc_buf_t	*abuf = NULL;	/* buffer we're assigning to callback */
4632	kmutex_t	*hash_lock = NULL;
4633	arc_callback_t	*callback_list, *acb;
4634	int		freeable = B_FALSE;
4635
4636	/*
4637	 * The hdr was inserted into hash-table and removed from lists
4638	 * prior to starting I/O.  We should find this header, since
4639	 * it's in the hash table, and it should be legit since it's
4640	 * not possible to evict it during the I/O.  The only possible
4641	 * reason for it not to be found is if we were freed during the
4642	 * read.
4643	 */
4644	if (HDR_IN_HASH_TABLE(hdr)) {
4645		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4646		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4647		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4648		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4649		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4650
4651		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4652		    &hash_lock);
4653
4654		ASSERT((found == hdr &&
4655		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4656		    (found == hdr && HDR_L2_READING(hdr)));
4657		ASSERT3P(hash_lock, !=, NULL);
4658	}
4659
4660	if (zio->io_error == 0) {
4661		/* byteswap if necessary */
4662		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4663			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4664				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4665			} else {
4666				hdr->b_l1hdr.b_byteswap =
4667				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4668			}
4669		} else {
4670			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4671		}
4672	}
4673
4674	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4675	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4676		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4677
4678	callback_list = hdr->b_l1hdr.b_acb;
4679	ASSERT3P(callback_list, !=, NULL);
4680
4681	if (hash_lock && zio->io_error == 0 &&
4682	    hdr->b_l1hdr.b_state == arc_anon) {
4683		/*
4684		 * Only call arc_access on anonymous buffers.  This is because
4685		 * if we've issued an I/O for an evicted buffer, we've already
4686		 * called arc_access (to prevent any simultaneous readers from
4687		 * getting confused).
4688		 */
4689		arc_access(hdr, hash_lock);
4690	}
4691
4692	/* create copies of the data buffer for the callers */
4693	for (acb = callback_list; acb; acb = acb->acb_next) {
4694		if (acb->acb_done != NULL) {
4695			/*
4696			 * If we're here, then this must be a demand read
4697			 * since prefetch requests don't have callbacks.
4698			 * If a read request has a callback (i.e. acb_done is
4699			 * not NULL), then we decompress the data for the
4700			 * first request and clone the rest. This avoids
4701			 * having to waste cpu resources decompressing data
4702			 * that nobody is explicitly waiting to read.
4703			 */
4704			if (abuf == NULL) {
4705				acb->acb_buf = arc_buf_alloc_impl(hdr,
4706				    acb->acb_private);
4707				if (zio->io_error == 0) {
4708					zio->io_error =
4709					    arc_decompress(acb->acb_buf);
4710				}
4711				abuf = acb->acb_buf;
4712			} else {
4713				add_reference(hdr, acb->acb_private);
4714				acb->acb_buf = arc_buf_clone(abuf);
4715			}
4716		}
4717	}
4718	hdr->b_l1hdr.b_acb = NULL;
4719	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4720	if (abuf == NULL) {
4721		/*
4722		 * This buffer didn't have a callback so it must
4723		 * be a prefetch.
4724		 */
4725		ASSERT(HDR_PREFETCH(hdr));
4726		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4727		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4728	}
4729
4730	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4731	    callback_list != NULL);
4732
4733	if (zio->io_error == 0) {
4734		arc_hdr_verify(hdr, zio->io_bp);
4735	} else {
4736		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4737		if (hdr->b_l1hdr.b_state != arc_anon)
4738			arc_change_state(arc_anon, hdr, hash_lock);
4739		if (HDR_IN_HASH_TABLE(hdr))
4740			buf_hash_remove(hdr);
4741		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4742	}
4743
4744	/*
4745	 * Broadcast before we drop the hash_lock to avoid the possibility
4746	 * that the hdr (and hence the cv) might be freed before we get to
4747	 * the cv_broadcast().
4748	 */
4749	cv_broadcast(&hdr->b_l1hdr.b_cv);
4750
4751	if (hash_lock != NULL) {
4752		mutex_exit(hash_lock);
4753	} else {
4754		/*
4755		 * This block was freed while we waited for the read to
4756		 * complete.  It has been removed from the hash table and
4757		 * moved to the anonymous state (so that it won't show up
4758		 * in the cache).
4759		 */
4760		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4761		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4762	}
4763
4764	/* execute each callback and free its structure */
4765	while ((acb = callback_list) != NULL) {
4766		if (acb->acb_done)
4767			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4768
4769		if (acb->acb_zio_dummy != NULL) {
4770			acb->acb_zio_dummy->io_error = zio->io_error;
4771			zio_nowait(acb->acb_zio_dummy);
4772		}
4773
4774		callback_list = acb->acb_next;
4775		kmem_free(acb, sizeof (arc_callback_t));
4776	}
4777
4778	if (freeable)
4779		arc_hdr_destroy(hdr);
4780}
4781
4782/*
4783 * "Read" the block at the specified DVA (in bp) via the
4784 * cache.  If the block is found in the cache, invoke the provided
4785 * callback immediately and return.  Note that the `zio' parameter
4786 * in the callback will be NULL in this case, since no IO was
4787 * required.  If the block is not in the cache pass the read request
4788 * on to the spa with a substitute callback function, so that the
4789 * requested block will be added to the cache.
4790 *
4791 * If a read request arrives for a block that has a read in-progress,
4792 * either wait for the in-progress read to complete (and return the
4793 * results); or, if this is a read with a "done" func, add a record
4794 * to the read to invoke the "done" func when the read completes,
4795 * and return; or just return.
4796 *
4797 * arc_read_done() will invoke all the requested "done" functions
4798 * for readers of this block.
4799 */
4800int
4801arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4802    void *private, zio_priority_t priority, int zio_flags,
4803    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4804{
4805	arc_buf_hdr_t *hdr = NULL;
4806	kmutex_t *hash_lock = NULL;
4807	zio_t *rzio;
4808	uint64_t guid = spa_load_guid(spa);
4809
4810	ASSERT(!BP_IS_EMBEDDED(bp) ||
4811	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4812
4813top:
4814	if (!BP_IS_EMBEDDED(bp)) {
4815		/*
4816		 * Embedded BP's have no DVA and require no I/O to "read".
4817		 * Create an anonymous arc buf to back it.
4818		 */
4819		hdr = buf_hash_find(guid, bp, &hash_lock);
4820	}
4821
4822	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) {
4823		arc_buf_t *buf = NULL;
4824		*arc_flags |= ARC_FLAG_CACHED;
4825
4826		if (HDR_IO_IN_PROGRESS(hdr)) {
4827
4828			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4829			    priority == ZIO_PRIORITY_SYNC_READ) {
4830				/*
4831				 * This sync read must wait for an
4832				 * in-progress async read (e.g. a predictive
4833				 * prefetch).  Async reads are queued
4834				 * separately at the vdev_queue layer, so
4835				 * this is a form of priority inversion.
4836				 * Ideally, we would "inherit" the demand
4837				 * i/o's priority by moving the i/o from
4838				 * the async queue to the synchronous queue,
4839				 * but there is currently no mechanism to do
4840				 * so.  Track this so that we can evaluate
4841				 * the magnitude of this potential performance
4842				 * problem.
4843				 *
4844				 * Note that if the prefetch i/o is already
4845				 * active (has been issued to the device),
4846				 * the prefetch improved performance, because
4847				 * we issued it sooner than we would have
4848				 * without the prefetch.
4849				 */
4850				DTRACE_PROBE1(arc__sync__wait__for__async,
4851				    arc_buf_hdr_t *, hdr);
4852				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4853			}
4854			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4855				arc_hdr_clear_flags(hdr,
4856				    ARC_FLAG_PREDICTIVE_PREFETCH);
4857			}
4858
4859			if (*arc_flags & ARC_FLAG_WAIT) {
4860				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4861				mutex_exit(hash_lock);
4862				goto top;
4863			}
4864			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4865
4866			if (done) {
4867				arc_callback_t *acb = NULL;
4868
4869				acb = kmem_zalloc(sizeof (arc_callback_t),
4870				    KM_SLEEP);
4871				acb->acb_done = done;
4872				acb->acb_private = private;
4873				if (pio != NULL)
4874					acb->acb_zio_dummy = zio_null(pio,
4875					    spa, NULL, NULL, NULL, zio_flags);
4876
4877				ASSERT3P(acb->acb_done, !=, NULL);
4878				acb->acb_next = hdr->b_l1hdr.b_acb;
4879				hdr->b_l1hdr.b_acb = acb;
4880				mutex_exit(hash_lock);
4881				return (0);
4882			}
4883			mutex_exit(hash_lock);
4884			return (0);
4885		}
4886
4887		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4888		    hdr->b_l1hdr.b_state == arc_mfu);
4889
4890		if (done) {
4891			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4892				/*
4893				 * This is a demand read which does not have to
4894				 * wait for i/o because we did a predictive
4895				 * prefetch i/o for it, which has completed.
4896				 */
4897				DTRACE_PROBE1(
4898				    arc__demand__hit__predictive__prefetch,
4899				    arc_buf_hdr_t *, hdr);
4900				ARCSTAT_BUMP(
4901				    arcstat_demand_hit_predictive_prefetch);
4902				arc_hdr_clear_flags(hdr,
4903				    ARC_FLAG_PREDICTIVE_PREFETCH);
4904			}
4905			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4906
4907			/*
4908			 * If this block is already in use, create a new
4909			 * copy of the data so that we will be guaranteed
4910			 * that arc_release() will always succeed.
4911			 */
4912			buf = hdr->b_l1hdr.b_buf;
4913			if (buf == NULL) {
4914				ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4915				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4916				buf = arc_buf_alloc_impl(hdr, private);
4917				VERIFY0(arc_decompress(buf));
4918			} else {
4919				add_reference(hdr, private);
4920				buf = arc_buf_clone(buf);
4921			}
4922			ASSERT3P(buf->b_data, !=, NULL);
4923
4924		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4925		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4926			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4927		}
4928		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4929		arc_access(hdr, hash_lock);
4930		if (*arc_flags & ARC_FLAG_L2CACHE)
4931			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4932		mutex_exit(hash_lock);
4933		ARCSTAT_BUMP(arcstat_hits);
4934		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4935		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4936		    data, metadata, hits);
4937
4938		if (done)
4939			done(NULL, buf, private);
4940	} else {
4941		uint64_t lsize = BP_GET_LSIZE(bp);
4942		uint64_t psize = BP_GET_PSIZE(bp);
4943		arc_callback_t *acb;
4944		vdev_t *vd = NULL;
4945		uint64_t addr = 0;
4946		boolean_t devw = B_FALSE;
4947		uint64_t size;
4948
4949		if (hdr == NULL) {
4950			/* this block is not in the cache */
4951			arc_buf_hdr_t *exists = NULL;
4952			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4953			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4954			    BP_GET_COMPRESS(bp), type);
4955
4956			if (!BP_IS_EMBEDDED(bp)) {
4957				hdr->b_dva = *BP_IDENTITY(bp);
4958				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4959				exists = buf_hash_insert(hdr, &hash_lock);
4960			}
4961			if (exists != NULL) {
4962				/* somebody beat us to the hash insert */
4963				mutex_exit(hash_lock);
4964				buf_discard_identity(hdr);
4965				arc_hdr_destroy(hdr);
4966				goto top; /* restart the IO request */
4967			}
4968		} else {
4969			/*
4970			 * This block is in the ghost cache. If it was L2-only
4971			 * (and thus didn't have an L1 hdr), we realloc the
4972			 * header to add an L1 hdr.
4973			 */
4974			if (!HDR_HAS_L1HDR(hdr)) {
4975				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4976				    hdr_full_cache);
4977			}
4978			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
4979			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4980			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4981			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4982			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4983
4984			/*
4985			 * This is a delicate dance that we play here.
4986			 * This hdr is in the ghost list so we access it
4987			 * to move it out of the ghost list before we
4988			 * initiate the read. If it's a prefetch then
4989			 * it won't have a callback so we'll remove the
4990			 * reference that arc_buf_alloc_impl() created. We
4991			 * do this after we've called arc_access() to
4992			 * avoid hitting an assert in remove_reference().
4993			 */
4994			arc_access(hdr, hash_lock);
4995			arc_hdr_alloc_pdata(hdr);
4996		}
4997		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4998		size = arc_hdr_size(hdr);
4999
5000		/*
5001		 * If compression is enabled on the hdr, then will do
5002		 * RAW I/O and will store the compressed data in the hdr's
5003		 * data block. Otherwise, the hdr's data block will contain
5004		 * the uncompressed data.
5005		 */
5006		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5007			zio_flags |= ZIO_FLAG_RAW;
5008		}
5009
5010		if (*arc_flags & ARC_FLAG_PREFETCH)
5011			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5012		if (*arc_flags & ARC_FLAG_L2CACHE)
5013			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5014		if (BP_GET_LEVEL(bp) > 0)
5015			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5016		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5017			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5018		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5019
5020		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5021		acb->acb_done = done;
5022		acb->acb_private = private;
5023
5024		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5025		hdr->b_l1hdr.b_acb = acb;
5026		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5027
5028		if (HDR_HAS_L2HDR(hdr) &&
5029		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5030			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5031			addr = hdr->b_l2hdr.b_daddr;
5032			/*
5033			 * Lock out device removal.
5034			 */
5035			if (vdev_is_dead(vd) ||
5036			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5037				vd = NULL;
5038		}
5039
5040		if (priority == ZIO_PRIORITY_ASYNC_READ)
5041			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5042		else
5043			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5044
5045		if (hash_lock != NULL)
5046			mutex_exit(hash_lock);
5047
5048		/*
5049		 * At this point, we have a level 1 cache miss.  Try again in
5050		 * L2ARC if possible.
5051		 */
5052		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5053
5054		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5055		    uint64_t, lsize, zbookmark_phys_t *, zb);
5056		ARCSTAT_BUMP(arcstat_misses);
5057		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5058		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5059		    data, metadata, misses);
5060#ifdef _KERNEL
5061#ifdef RACCT
5062		if (racct_enable) {
5063			PROC_LOCK(curproc);
5064			racct_add_force(curproc, RACCT_READBPS, size);
5065			racct_add_force(curproc, RACCT_READIOPS, 1);
5066			PROC_UNLOCK(curproc);
5067		}
5068#endif /* RACCT */
5069		curthread->td_ru.ru_inblock++;
5070#endif
5071
5072		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5073			/*
5074			 * Read from the L2ARC if the following are true:
5075			 * 1. The L2ARC vdev was previously cached.
5076			 * 2. This buffer still has L2ARC metadata.
5077			 * 3. This buffer isn't currently writing to the L2ARC.
5078			 * 4. The L2ARC entry wasn't evicted, which may
5079			 *    also have invalidated the vdev.
5080			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5081			 */
5082			if (HDR_HAS_L2HDR(hdr) &&
5083			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5084			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5085				l2arc_read_callback_t *cb;
5086				void* b_data;
5087
5088				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5089				ARCSTAT_BUMP(arcstat_l2_hits);
5090
5091				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5092				    KM_SLEEP);
5093				cb->l2rcb_hdr = hdr;
5094				cb->l2rcb_bp = *bp;
5095				cb->l2rcb_zb = *zb;
5096				cb->l2rcb_flags = zio_flags;
5097				uint64_t asize = vdev_psize_to_asize(vd, size);
5098				if (asize != size) {
5099					b_data = zio_data_buf_alloc(asize);
5100					cb->l2rcb_data = b_data;
5101				} else {
5102					b_data = hdr->b_l1hdr.b_pdata;
5103				}
5104
5105				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5106				    addr + asize < vd->vdev_psize -
5107				    VDEV_LABEL_END_SIZE);
5108
5109				/*
5110				 * l2arc read.  The SCL_L2ARC lock will be
5111				 * released by l2arc_read_done().
5112				 * Issue a null zio if the underlying buffer
5113				 * was squashed to zero size by compression.
5114				 */
5115				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5116				    ZIO_COMPRESS_EMPTY);
5117				rzio = zio_read_phys(pio, vd, addr,
5118				    asize, b_data,
5119				    ZIO_CHECKSUM_OFF,
5120				    l2arc_read_done, cb, priority,
5121				    zio_flags | ZIO_FLAG_DONT_CACHE |
5122				    ZIO_FLAG_CANFAIL |
5123				    ZIO_FLAG_DONT_PROPAGATE |
5124				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5125				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5126				    zio_t *, rzio);
5127				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5128
5129				if (*arc_flags & ARC_FLAG_NOWAIT) {
5130					zio_nowait(rzio);
5131					return (0);
5132				}
5133
5134				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5135				if (zio_wait(rzio) == 0)
5136					return (0);
5137
5138				/* l2arc read error; goto zio_read() */
5139			} else {
5140				DTRACE_PROBE1(l2arc__miss,
5141				    arc_buf_hdr_t *, hdr);
5142				ARCSTAT_BUMP(arcstat_l2_misses);
5143				if (HDR_L2_WRITING(hdr))
5144					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5145				spa_config_exit(spa, SCL_L2ARC, vd);
5146			}
5147		} else {
5148			if (vd != NULL)
5149				spa_config_exit(spa, SCL_L2ARC, vd);
5150			if (l2arc_ndev != 0) {
5151				DTRACE_PROBE1(l2arc__miss,
5152				    arc_buf_hdr_t *, hdr);
5153				ARCSTAT_BUMP(arcstat_l2_misses);
5154			}
5155		}
5156
5157		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size,
5158		    arc_read_done, hdr, priority, zio_flags, zb);
5159
5160		if (*arc_flags & ARC_FLAG_WAIT)
5161			return (zio_wait(rzio));
5162
5163		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5164		zio_nowait(rzio);
5165	}
5166	return (0);
5167}
5168
5169/*
5170 * Notify the arc that a block was freed, and thus will never be used again.
5171 */
5172void
5173arc_freed(spa_t *spa, const blkptr_t *bp)
5174{
5175	arc_buf_hdr_t *hdr;
5176	kmutex_t *hash_lock;
5177	uint64_t guid = spa_load_guid(spa);
5178
5179	ASSERT(!BP_IS_EMBEDDED(bp));
5180
5181	hdr = buf_hash_find(guid, bp, &hash_lock);
5182	if (hdr == NULL)
5183		return;
5184
5185	/*
5186	 * We might be trying to free a block that is still doing I/O
5187	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5188	 * dmu_sync-ed block). If this block is being prefetched, then it
5189	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5190	 * until the I/O completes. A block may also have a reference if it is
5191	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5192	 * have written the new block to its final resting place on disk but
5193	 * without the dedup flag set. This would have left the hdr in the MRU
5194	 * state and discoverable. When the txg finally syncs it detects that
5195	 * the block was overridden in open context and issues an override I/O.
5196	 * Since this is a dedup block, the override I/O will determine if the
5197	 * block is already in the DDT. If so, then it will replace the io_bp
5198	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5199	 * reaches the done callback, dbuf_write_override_done, it will
5200	 * check to see if the io_bp and io_bp_override are identical.
5201	 * If they are not, then it indicates that the bp was replaced with
5202	 * the bp in the DDT and the override bp is freed. This allows
5203	 * us to arrive here with a reference on a block that is being
5204	 * freed. So if we have an I/O in progress, or a reference to
5205	 * this hdr, then we don't destroy the hdr.
5206	 */
5207	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5208	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5209		arc_change_state(arc_anon, hdr, hash_lock);
5210		arc_hdr_destroy(hdr);
5211		mutex_exit(hash_lock);
5212	} else {
5213		mutex_exit(hash_lock);
5214	}
5215
5216}
5217
5218/*
5219 * Release this buffer from the cache, making it an anonymous buffer.  This
5220 * must be done after a read and prior to modifying the buffer contents.
5221 * If the buffer has more than one reference, we must make
5222 * a new hdr for the buffer.
5223 */
5224void
5225arc_release(arc_buf_t *buf, void *tag)
5226{
5227	arc_buf_hdr_t *hdr = buf->b_hdr;
5228
5229	/*
5230	 * It would be nice to assert that if it's DMU metadata (level >
5231	 * 0 || it's the dnode file), then it must be syncing context.
5232	 * But we don't know that information at this level.
5233	 */
5234
5235	mutex_enter(&buf->b_evict_lock);
5236
5237	ASSERT(HDR_HAS_L1HDR(hdr));
5238
5239	/*
5240	 * We don't grab the hash lock prior to this check, because if
5241	 * the buffer's header is in the arc_anon state, it won't be
5242	 * linked into the hash table.
5243	 */
5244	if (hdr->b_l1hdr.b_state == arc_anon) {
5245		mutex_exit(&buf->b_evict_lock);
5246		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5247		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5248		ASSERT(!HDR_HAS_L2HDR(hdr));
5249		ASSERT(HDR_EMPTY(hdr));
5250		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5251		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5252		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5253
5254		hdr->b_l1hdr.b_arc_access = 0;
5255
5256		/*
5257		 * If the buf is being overridden then it may already
5258		 * have a hdr that is not empty.
5259		 */
5260		buf_discard_identity(hdr);
5261		arc_buf_thaw(buf);
5262
5263		return;
5264	}
5265
5266	kmutex_t *hash_lock = HDR_LOCK(hdr);
5267	mutex_enter(hash_lock);
5268
5269	/*
5270	 * This assignment is only valid as long as the hash_lock is
5271	 * held, we must be careful not to reference state or the
5272	 * b_state field after dropping the lock.
5273	 */
5274	arc_state_t *state = hdr->b_l1hdr.b_state;
5275	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5276	ASSERT3P(state, !=, arc_anon);
5277
5278	/* this buffer is not on any list */
5279	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
5280
5281	if (HDR_HAS_L2HDR(hdr)) {
5282		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5283
5284		/*
5285		 * We have to recheck this conditional again now that
5286		 * we're holding the l2ad_mtx to prevent a race with
5287		 * another thread which might be concurrently calling
5288		 * l2arc_evict(). In that case, l2arc_evict() might have
5289		 * destroyed the header's L2 portion as we were waiting
5290		 * to acquire the l2ad_mtx.
5291		 */
5292		if (HDR_HAS_L2HDR(hdr)) {
5293			l2arc_trim(hdr);
5294			arc_hdr_l2hdr_destroy(hdr);
5295		}
5296
5297		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5298	}
5299
5300	/*
5301	 * Do we have more than one buf?
5302	 */
5303	if (hdr->b_l1hdr.b_bufcnt > 1) {
5304		arc_buf_hdr_t *nhdr;
5305		arc_buf_t **bufp;
5306		uint64_t spa = hdr->b_spa;
5307		uint64_t psize = HDR_GET_PSIZE(hdr);
5308		uint64_t lsize = HDR_GET_LSIZE(hdr);
5309		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5310		arc_buf_contents_t type = arc_buf_type(hdr);
5311		VERIFY3U(hdr->b_type, ==, type);
5312
5313		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5314		(void) remove_reference(hdr, hash_lock, tag);
5315
5316		if (arc_buf_is_shared(buf)) {
5317			ASSERT(HDR_SHARED_DATA(hdr));
5318			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5319			ASSERT(ARC_BUF_LAST(buf));
5320		}
5321
5322		/*
5323		 * Pull the data off of this hdr and attach it to
5324		 * a new anonymous hdr. Also find the last buffer
5325		 * in the hdr's buffer list.
5326		 */
5327		arc_buf_t *lastbuf = NULL;
5328		bufp = &hdr->b_l1hdr.b_buf;
5329		while (*bufp != NULL) {
5330			if (*bufp == buf) {
5331				*bufp = buf->b_next;
5332			}
5333
5334			/*
5335			 * If we've removed a buffer in the middle of
5336			 * the list then update the lastbuf and update
5337			 * bufp.
5338			 */
5339			if (*bufp != NULL) {
5340				lastbuf = *bufp;
5341				bufp = &(*bufp)->b_next;
5342			}
5343		}
5344		buf->b_next = NULL;
5345		ASSERT3P(lastbuf, !=, buf);
5346		ASSERT3P(lastbuf, !=, NULL);
5347
5348		/*
5349		 * If the current arc_buf_t and the hdr are sharing their data
5350		 * buffer, then we must stop sharing that block, transfer
5351		 * ownership and setup sharing with a new arc_buf_t at the end
5352		 * of the hdr's b_buf list.
5353		 */
5354		if (arc_buf_is_shared(buf)) {
5355			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5356			ASSERT(ARC_BUF_LAST(lastbuf));
5357			VERIFY(!arc_buf_is_shared(lastbuf));
5358
5359			/*
5360			 * First, sever the block sharing relationship between
5361			 * buf and the arc_buf_hdr_t. Then, setup a new
5362			 * block sharing relationship with the last buffer
5363			 * on the arc_buf_t list.
5364			 */
5365			arc_unshare_buf(hdr, buf);
5366			arc_share_buf(hdr, lastbuf);
5367			VERIFY3P(lastbuf->b_data, !=, NULL);
5368		} else if (HDR_SHARED_DATA(hdr)) {
5369			ASSERT(arc_buf_is_shared(lastbuf));
5370		}
5371		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5372		ASSERT3P(state, !=, arc_l2c_only);
5373
5374		(void) refcount_remove_many(&state->arcs_size,
5375		    HDR_GET_LSIZE(hdr), buf);
5376
5377		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5378			ASSERT3P(state, !=, arc_l2c_only);
5379			(void) refcount_remove_many(&state->arcs_esize[type],
5380			    HDR_GET_LSIZE(hdr), buf);
5381		}
5382
5383		hdr->b_l1hdr.b_bufcnt -= 1;
5384		arc_cksum_verify(buf);
5385#ifdef illumos
5386		arc_buf_unwatch(buf);
5387#endif
5388
5389		mutex_exit(hash_lock);
5390
5391		/*
5392		 * Allocate a new hdr. The new hdr will contain a b_pdata
5393		 * buffer which will be freed in arc_write().
5394		 */
5395		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5396		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5397		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5398		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5399		VERIFY3U(nhdr->b_type, ==, type);
5400		ASSERT(!HDR_SHARED_DATA(nhdr));
5401
5402		nhdr->b_l1hdr.b_buf = buf;
5403		nhdr->b_l1hdr.b_bufcnt = 1;
5404		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5405		buf->b_hdr = nhdr;
5406
5407		mutex_exit(&buf->b_evict_lock);
5408		(void) refcount_add_many(&arc_anon->arcs_size,
5409		    HDR_GET_LSIZE(nhdr), buf);
5410	} else {
5411		mutex_exit(&buf->b_evict_lock);
5412		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5413		/* protected by hash lock, or hdr is on arc_anon */
5414		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5415		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5416		arc_change_state(arc_anon, hdr, hash_lock);
5417		hdr->b_l1hdr.b_arc_access = 0;
5418		mutex_exit(hash_lock);
5419
5420		buf_discard_identity(hdr);
5421		arc_buf_thaw(buf);
5422	}
5423}
5424
5425int
5426arc_released(arc_buf_t *buf)
5427{
5428	int released;
5429
5430	mutex_enter(&buf->b_evict_lock);
5431	released = (buf->b_data != NULL &&
5432	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5433	mutex_exit(&buf->b_evict_lock);
5434	return (released);
5435}
5436
5437#ifdef ZFS_DEBUG
5438int
5439arc_referenced(arc_buf_t *buf)
5440{
5441	int referenced;
5442
5443	mutex_enter(&buf->b_evict_lock);
5444	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5445	mutex_exit(&buf->b_evict_lock);
5446	return (referenced);
5447}
5448#endif
5449
5450static void
5451arc_write_ready(zio_t *zio)
5452{
5453	arc_write_callback_t *callback = zio->io_private;
5454	arc_buf_t *buf = callback->awcb_buf;
5455	arc_buf_hdr_t *hdr = buf->b_hdr;
5456	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5457
5458	ASSERT(HDR_HAS_L1HDR(hdr));
5459	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5460	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5461
5462	/*
5463	 * If we're reexecuting this zio because the pool suspended, then
5464	 * cleanup any state that was previously set the first time the
5465	 * callback as invoked.
5466	 */
5467	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5468		arc_cksum_free(hdr);
5469#ifdef illumos
5470		arc_buf_unwatch(buf);
5471#endif
5472		if (hdr->b_l1hdr.b_pdata != NULL) {
5473			if (arc_buf_is_shared(buf)) {
5474				ASSERT(HDR_SHARED_DATA(hdr));
5475
5476				arc_unshare_buf(hdr, buf);
5477			} else {
5478				arc_hdr_free_pdata(hdr);
5479			}
5480		}
5481	}
5482	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5483	ASSERT(!HDR_SHARED_DATA(hdr));
5484	ASSERT(!arc_buf_is_shared(buf));
5485
5486	callback->awcb_ready(zio, buf, callback->awcb_private);
5487
5488	if (HDR_IO_IN_PROGRESS(hdr))
5489		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5490
5491	arc_cksum_compute(buf);
5492	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5493
5494	enum zio_compress compress;
5495	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5496		compress = ZIO_COMPRESS_OFF;
5497	} else {
5498		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5499		compress = BP_GET_COMPRESS(zio->io_bp);
5500	}
5501	HDR_SET_PSIZE(hdr, psize);
5502	arc_hdr_set_compress(hdr, compress);
5503
5504	/*
5505	 * If the hdr is compressed, then copy the compressed
5506	 * zio contents into arc_buf_hdr_t. Otherwise, copy the original
5507	 * data buf into the hdr. Ideally, we would like to always copy the
5508	 * io_data into b_pdata but the user may have disabled compressed
5509	 * arc thus the on-disk block may or may not match what we maintain
5510	 * in the hdr's b_pdata field.
5511	 */
5512	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5513		ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF);
5514		ASSERT3U(psize, >, 0);
5515		arc_hdr_alloc_pdata(hdr);
5516		bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize);
5517	} else {
5518		ASSERT3P(buf->b_data, ==, zio->io_orig_data);
5519		ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr));
5520		ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS);
5521		ASSERT(!HDR_SHARED_DATA(hdr));
5522		ASSERT(!arc_buf_is_shared(buf));
5523		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5524		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5525
5526		/*
5527		 * This hdr is not compressed so we're able to share
5528		 * the arc_buf_t data buffer with the hdr.
5529		 */
5530		arc_share_buf(hdr, buf);
5531		VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata,
5532		    HDR_GET_LSIZE(hdr)));
5533	}
5534	arc_hdr_verify(hdr, zio->io_bp);
5535}
5536
5537static void
5538arc_write_children_ready(zio_t *zio)
5539{
5540	arc_write_callback_t *callback = zio->io_private;
5541	arc_buf_t *buf = callback->awcb_buf;
5542
5543	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5544}
5545
5546/*
5547 * The SPA calls this callback for each physical write that happens on behalf
5548 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5549 */
5550static void
5551arc_write_physdone(zio_t *zio)
5552{
5553	arc_write_callback_t *cb = zio->io_private;
5554	if (cb->awcb_physdone != NULL)
5555		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5556}
5557
5558static void
5559arc_write_done(zio_t *zio)
5560{
5561	arc_write_callback_t *callback = zio->io_private;
5562	arc_buf_t *buf = callback->awcb_buf;
5563	arc_buf_hdr_t *hdr = buf->b_hdr;
5564
5565	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5566
5567	if (zio->io_error == 0) {
5568		arc_hdr_verify(hdr, zio->io_bp);
5569
5570		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5571			buf_discard_identity(hdr);
5572		} else {
5573			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5574			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5575		}
5576	} else {
5577		ASSERT(HDR_EMPTY(hdr));
5578	}
5579
5580	/*
5581	 * If the block to be written was all-zero or compressed enough to be
5582	 * embedded in the BP, no write was performed so there will be no
5583	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5584	 * (and uncached).
5585	 */
5586	if (!HDR_EMPTY(hdr)) {
5587		arc_buf_hdr_t *exists;
5588		kmutex_t *hash_lock;
5589
5590		ASSERT(zio->io_error == 0);
5591
5592		arc_cksum_verify(buf);
5593
5594		exists = buf_hash_insert(hdr, &hash_lock);
5595		if (exists != NULL) {
5596			/*
5597			 * This can only happen if we overwrite for
5598			 * sync-to-convergence, because we remove
5599			 * buffers from the hash table when we arc_free().
5600			 */
5601			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5602				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5603					panic("bad overwrite, hdr=%p exists=%p",
5604					    (void *)hdr, (void *)exists);
5605				ASSERT(refcount_is_zero(
5606				    &exists->b_l1hdr.b_refcnt));
5607				arc_change_state(arc_anon, exists, hash_lock);
5608				mutex_exit(hash_lock);
5609				arc_hdr_destroy(exists);
5610				exists = buf_hash_insert(hdr, &hash_lock);
5611				ASSERT3P(exists, ==, NULL);
5612			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5613				/* nopwrite */
5614				ASSERT(zio->io_prop.zp_nopwrite);
5615				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5616					panic("bad nopwrite, hdr=%p exists=%p",
5617					    (void *)hdr, (void *)exists);
5618			} else {
5619				/* Dedup */
5620				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5621				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5622				ASSERT(BP_GET_DEDUP(zio->io_bp));
5623				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5624			}
5625		}
5626		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5627		/* if it's not anon, we are doing a scrub */
5628		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5629			arc_access(hdr, hash_lock);
5630		mutex_exit(hash_lock);
5631	} else {
5632		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5633	}
5634
5635	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5636	callback->awcb_done(zio, buf, callback->awcb_private);
5637
5638	kmem_free(callback, sizeof (arc_write_callback_t));
5639}
5640
5641zio_t *
5642arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5643    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5644    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5645    arc_done_func_t *done, void *private, zio_priority_t priority,
5646    int zio_flags, const zbookmark_phys_t *zb)
5647{
5648	arc_buf_hdr_t *hdr = buf->b_hdr;
5649	arc_write_callback_t *callback;
5650	zio_t *zio;
5651
5652	ASSERT3P(ready, !=, NULL);
5653	ASSERT3P(done, !=, NULL);
5654	ASSERT(!HDR_IO_ERROR(hdr));
5655	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5656	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5657	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5658	if (l2arc)
5659		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5660	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5661	callback->awcb_ready = ready;
5662	callback->awcb_children_ready = children_ready;
5663	callback->awcb_physdone = physdone;
5664	callback->awcb_done = done;
5665	callback->awcb_private = private;
5666	callback->awcb_buf = buf;
5667
5668	/*
5669	 * The hdr's b_pdata is now stale, free it now. A new data block
5670	 * will be allocated when the zio pipeline calls arc_write_ready().
5671	 */
5672	if (hdr->b_l1hdr.b_pdata != NULL) {
5673		/*
5674		 * If the buf is currently sharing the data block with
5675		 * the hdr then we need to break that relationship here.
5676		 * The hdr will remain with a NULL data pointer and the
5677		 * buf will take sole ownership of the block.
5678		 */
5679		if (arc_buf_is_shared(buf)) {
5680			ASSERT(ARC_BUF_LAST(buf));
5681			arc_unshare_buf(hdr, buf);
5682		} else {
5683			arc_hdr_free_pdata(hdr);
5684		}
5685		VERIFY3P(buf->b_data, !=, NULL);
5686		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5687	}
5688	ASSERT(!arc_buf_is_shared(buf));
5689	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5690
5691	zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp,
5692	    arc_write_ready,
5693	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5694	    arc_write_physdone, arc_write_done, callback,
5695	    priority, zio_flags, zb);
5696
5697	return (zio);
5698}
5699
5700static int
5701arc_memory_throttle(uint64_t reserve, uint64_t txg)
5702{
5703#ifdef _KERNEL
5704	uint64_t available_memory = ptob(freemem);
5705	static uint64_t page_load = 0;
5706	static uint64_t last_txg = 0;
5707
5708#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5709	available_memory =
5710	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5711#endif
5712
5713	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5714		return (0);
5715
5716	if (txg > last_txg) {
5717		last_txg = txg;
5718		page_load = 0;
5719	}
5720	/*
5721	 * If we are in pageout, we know that memory is already tight,
5722	 * the arc is already going to be evicting, so we just want to
5723	 * continue to let page writes occur as quickly as possible.
5724	 */
5725	if (curproc == pageproc) {
5726		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5727			return (SET_ERROR(ERESTART));
5728		/* Note: reserve is inflated, so we deflate */
5729		page_load += reserve / 8;
5730		return (0);
5731	} else if (page_load > 0 && arc_reclaim_needed()) {
5732		/* memory is low, delay before restarting */
5733		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5734		return (SET_ERROR(EAGAIN));
5735	}
5736	page_load = 0;
5737#endif
5738	return (0);
5739}
5740
5741void
5742arc_tempreserve_clear(uint64_t reserve)
5743{
5744	atomic_add_64(&arc_tempreserve, -reserve);
5745	ASSERT((int64_t)arc_tempreserve >= 0);
5746}
5747
5748int
5749arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5750{
5751	int error;
5752	uint64_t anon_size;
5753
5754	if (reserve > arc_c/4 && !arc_no_grow) {
5755		arc_c = MIN(arc_c_max, reserve * 4);
5756		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5757	}
5758	if (reserve > arc_c)
5759		return (SET_ERROR(ENOMEM));
5760
5761	/*
5762	 * Don't count loaned bufs as in flight dirty data to prevent long
5763	 * network delays from blocking transactions that are ready to be
5764	 * assigned to a txg.
5765	 */
5766	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5767	    arc_loaned_bytes), 0);
5768
5769	/*
5770	 * Writes will, almost always, require additional memory allocations
5771	 * in order to compress/encrypt/etc the data.  We therefore need to
5772	 * make sure that there is sufficient available memory for this.
5773	 */
5774	error = arc_memory_throttle(reserve, txg);
5775	if (error != 0)
5776		return (error);
5777
5778	/*
5779	 * Throttle writes when the amount of dirty data in the cache
5780	 * gets too large.  We try to keep the cache less than half full
5781	 * of dirty blocks so that our sync times don't grow too large.
5782	 * Note: if two requests come in concurrently, we might let them
5783	 * both succeed, when one of them should fail.  Not a huge deal.
5784	 */
5785
5786	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5787	    anon_size > arc_c / 4) {
5788		uint64_t meta_esize =
5789		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5790		uint64_t data_esize =
5791		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5792		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5793		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5794		    arc_tempreserve >> 10, meta_esize >> 10,
5795		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5796		return (SET_ERROR(ERESTART));
5797	}
5798	atomic_add_64(&arc_tempreserve, reserve);
5799	return (0);
5800}
5801
5802static void
5803arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5804    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5805{
5806	size->value.ui64 = refcount_count(&state->arcs_size);
5807	evict_data->value.ui64 =
5808	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5809	evict_metadata->value.ui64 =
5810	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5811}
5812
5813static int
5814arc_kstat_update(kstat_t *ksp, int rw)
5815{
5816	arc_stats_t *as = ksp->ks_data;
5817
5818	if (rw == KSTAT_WRITE) {
5819		return (EACCES);
5820	} else {
5821		arc_kstat_update_state(arc_anon,
5822		    &as->arcstat_anon_size,
5823		    &as->arcstat_anon_evictable_data,
5824		    &as->arcstat_anon_evictable_metadata);
5825		arc_kstat_update_state(arc_mru,
5826		    &as->arcstat_mru_size,
5827		    &as->arcstat_mru_evictable_data,
5828		    &as->arcstat_mru_evictable_metadata);
5829		arc_kstat_update_state(arc_mru_ghost,
5830		    &as->arcstat_mru_ghost_size,
5831		    &as->arcstat_mru_ghost_evictable_data,
5832		    &as->arcstat_mru_ghost_evictable_metadata);
5833		arc_kstat_update_state(arc_mfu,
5834		    &as->arcstat_mfu_size,
5835		    &as->arcstat_mfu_evictable_data,
5836		    &as->arcstat_mfu_evictable_metadata);
5837		arc_kstat_update_state(arc_mfu_ghost,
5838		    &as->arcstat_mfu_ghost_size,
5839		    &as->arcstat_mfu_ghost_evictable_data,
5840		    &as->arcstat_mfu_ghost_evictable_metadata);
5841	}
5842
5843	return (0);
5844}
5845
5846/*
5847 * This function *must* return indices evenly distributed between all
5848 * sublists of the multilist. This is needed due to how the ARC eviction
5849 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5850 * distributed between all sublists and uses this assumption when
5851 * deciding which sublist to evict from and how much to evict from it.
5852 */
5853unsigned int
5854arc_state_multilist_index_func(multilist_t *ml, void *obj)
5855{
5856	arc_buf_hdr_t *hdr = obj;
5857
5858	/*
5859	 * We rely on b_dva to generate evenly distributed index
5860	 * numbers using buf_hash below. So, as an added precaution,
5861	 * let's make sure we never add empty buffers to the arc lists.
5862	 */
5863	ASSERT(!HDR_EMPTY(hdr));
5864
5865	/*
5866	 * The assumption here, is the hash value for a given
5867	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5868	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5869	 * Thus, we don't need to store the header's sublist index
5870	 * on insertion, as this index can be recalculated on removal.
5871	 *
5872	 * Also, the low order bits of the hash value are thought to be
5873	 * distributed evenly. Otherwise, in the case that the multilist
5874	 * has a power of two number of sublists, each sublists' usage
5875	 * would not be evenly distributed.
5876	 */
5877	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5878	    multilist_get_num_sublists(ml));
5879}
5880
5881#ifdef _KERNEL
5882static eventhandler_tag arc_event_lowmem = NULL;
5883
5884static void
5885arc_lowmem(void *arg __unused, int howto __unused)
5886{
5887
5888	mutex_enter(&arc_reclaim_lock);
5889	/* XXX: Memory deficit should be passed as argument. */
5890	needfree = btoc(arc_c >> arc_shrink_shift);
5891	DTRACE_PROBE(arc__needfree);
5892	cv_signal(&arc_reclaim_thread_cv);
5893
5894	/*
5895	 * It is unsafe to block here in arbitrary threads, because we can come
5896	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5897	 * with ARC reclaim thread.
5898	 */
5899	if (curproc == pageproc)
5900		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5901	mutex_exit(&arc_reclaim_lock);
5902}
5903#endif
5904
5905static void
5906arc_state_init(void)
5907{
5908	arc_anon = &ARC_anon;
5909	arc_mru = &ARC_mru;
5910	arc_mru_ghost = &ARC_mru_ghost;
5911	arc_mfu = &ARC_mfu;
5912	arc_mfu_ghost = &ARC_mfu_ghost;
5913	arc_l2c_only = &ARC_l2c_only;
5914
5915	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5916	    sizeof (arc_buf_hdr_t),
5917	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5918	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5919	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5920	    sizeof (arc_buf_hdr_t),
5921	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5922	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5923	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5924	    sizeof (arc_buf_hdr_t),
5925	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5926	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5927	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5928	    sizeof (arc_buf_hdr_t),
5929	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5930	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5931	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5932	    sizeof (arc_buf_hdr_t),
5933	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5934	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5935	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5936	    sizeof (arc_buf_hdr_t),
5937	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5938	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5939	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5940	    sizeof (arc_buf_hdr_t),
5941	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5942	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5943	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5944	    sizeof (arc_buf_hdr_t),
5945	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5946	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5947	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5948	    sizeof (arc_buf_hdr_t),
5949	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5950	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5951	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5952	    sizeof (arc_buf_hdr_t),
5953	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5954	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5955
5956	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5957	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5958	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5959	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5960	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5961	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5962	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5963	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5964	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5965	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5966	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5967	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5968
5969	refcount_create(&arc_anon->arcs_size);
5970	refcount_create(&arc_mru->arcs_size);
5971	refcount_create(&arc_mru_ghost->arcs_size);
5972	refcount_create(&arc_mfu->arcs_size);
5973	refcount_create(&arc_mfu_ghost->arcs_size);
5974	refcount_create(&arc_l2c_only->arcs_size);
5975}
5976
5977static void
5978arc_state_fini(void)
5979{
5980	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5981	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5982	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5983	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5984	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5985	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5986	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5987	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5988	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5989	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5990	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5991	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5992
5993	refcount_destroy(&arc_anon->arcs_size);
5994	refcount_destroy(&arc_mru->arcs_size);
5995	refcount_destroy(&arc_mru_ghost->arcs_size);
5996	refcount_destroy(&arc_mfu->arcs_size);
5997	refcount_destroy(&arc_mfu_ghost->arcs_size);
5998	refcount_destroy(&arc_l2c_only->arcs_size);
5999
6000	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
6001	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6002	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6003	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6004	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
6005	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6006	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
6007	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6008}
6009
6010uint64_t
6011arc_max_bytes(void)
6012{
6013	return (arc_c_max);
6014}
6015
6016void
6017arc_init(void)
6018{
6019	int i, prefetch_tunable_set = 0;
6020
6021	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6022	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6023	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6024
6025	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
6026	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
6027
6028	/* Convert seconds to clock ticks */
6029	arc_min_prefetch_lifespan = 1 * hz;
6030
6031	/* Start out with 1/8 of all memory */
6032	arc_c = kmem_size() / 8;
6033
6034#ifdef illumos
6035#ifdef _KERNEL
6036	/*
6037	 * On architectures where the physical memory can be larger
6038	 * than the addressable space (intel in 32-bit mode), we may
6039	 * need to limit the cache to 1/8 of VM size.
6040	 */
6041	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
6042#endif
6043#endif	/* illumos */
6044	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
6045	arc_c_min = MAX(arc_c / 4, arc_abs_min);
6046	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
6047	if (arc_c * 8 >= 1 << 30)
6048		arc_c_max = (arc_c * 8) - (1 << 30);
6049	else
6050		arc_c_max = arc_c_min;
6051	arc_c_max = MAX(arc_c * 5, arc_c_max);
6052
6053	/*
6054	 * In userland, there's only the memory pressure that we artificially
6055	 * create (see arc_available_memory()).  Don't let arc_c get too
6056	 * small, because it can cause transactions to be larger than
6057	 * arc_c, causing arc_tempreserve_space() to fail.
6058	 */
6059#ifndef _KERNEL
6060	arc_c_min = arc_c_max / 2;
6061#endif
6062
6063#ifdef _KERNEL
6064	/*
6065	 * Allow the tunables to override our calculations if they are
6066	 * reasonable.
6067	 */
6068	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) {
6069		arc_c_max = zfs_arc_max;
6070		arc_c_min = MIN(arc_c_min, arc_c_max);
6071	}
6072	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6073		arc_c_min = zfs_arc_min;
6074#endif
6075
6076	arc_c = arc_c_max;
6077	arc_p = (arc_c >> 1);
6078	arc_size = 0;
6079
6080	/* limit meta-data to 1/4 of the arc capacity */
6081	arc_meta_limit = arc_c_max / 4;
6082
6083	/* Allow the tunable to override if it is reasonable */
6084	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6085		arc_meta_limit = zfs_arc_meta_limit;
6086
6087	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6088		arc_c_min = arc_meta_limit / 2;
6089
6090	if (zfs_arc_meta_min > 0) {
6091		arc_meta_min = zfs_arc_meta_min;
6092	} else {
6093		arc_meta_min = arc_c_min / 2;
6094	}
6095
6096	if (zfs_arc_grow_retry > 0)
6097		arc_grow_retry = zfs_arc_grow_retry;
6098
6099	if (zfs_arc_shrink_shift > 0)
6100		arc_shrink_shift = zfs_arc_shrink_shift;
6101
6102	/*
6103	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6104	 */
6105	if (arc_no_grow_shift >= arc_shrink_shift)
6106		arc_no_grow_shift = arc_shrink_shift - 1;
6107
6108	if (zfs_arc_p_min_shift > 0)
6109		arc_p_min_shift = zfs_arc_p_min_shift;
6110
6111	if (zfs_arc_num_sublists_per_state < 1)
6112		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
6113
6114	/* if kmem_flags are set, lets try to use less memory */
6115	if (kmem_debugging())
6116		arc_c = arc_c / 2;
6117	if (arc_c < arc_c_min)
6118		arc_c = arc_c_min;
6119
6120	zfs_arc_min = arc_c_min;
6121	zfs_arc_max = arc_c_max;
6122
6123	arc_state_init();
6124	buf_init();
6125
6126	arc_reclaim_thread_exit = B_FALSE;
6127	arc_dnlc_evicts_thread_exit = FALSE;
6128
6129	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6130	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6131
6132	if (arc_ksp != NULL) {
6133		arc_ksp->ks_data = &arc_stats;
6134		arc_ksp->ks_update = arc_kstat_update;
6135		kstat_install(arc_ksp);
6136	}
6137
6138	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6139	    TS_RUN, minclsyspri);
6140
6141#ifdef _KERNEL
6142	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6143	    EVENTHANDLER_PRI_FIRST);
6144#endif
6145
6146	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
6147	    TS_RUN, minclsyspri);
6148
6149	arc_dead = B_FALSE;
6150	arc_warm = B_FALSE;
6151
6152	/*
6153	 * Calculate maximum amount of dirty data per pool.
6154	 *
6155	 * If it has been set by /etc/system, take that.
6156	 * Otherwise, use a percentage of physical memory defined by
6157	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6158	 * zfs_dirty_data_max_max (default 4GB).
6159	 */
6160	if (zfs_dirty_data_max == 0) {
6161		zfs_dirty_data_max = ptob(physmem) *
6162		    zfs_dirty_data_max_percent / 100;
6163		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6164		    zfs_dirty_data_max_max);
6165	}
6166
6167#ifdef _KERNEL
6168	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6169		prefetch_tunable_set = 1;
6170
6171#ifdef __i386__
6172	if (prefetch_tunable_set == 0) {
6173		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6174		    "-- to enable,\n");
6175		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6176		    "to /boot/loader.conf.\n");
6177		zfs_prefetch_disable = 1;
6178	}
6179#else
6180	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6181	    prefetch_tunable_set == 0) {
6182		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6183		    "than 4GB of RAM is present;\n"
6184		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6185		    "to /boot/loader.conf.\n");
6186		zfs_prefetch_disable = 1;
6187	}
6188#endif
6189	/* Warn about ZFS memory and address space requirements. */
6190	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6191		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6192		    "expect unstable behavior.\n");
6193	}
6194	if (kmem_size() < 512 * (1 << 20)) {
6195		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6196		    "expect unstable behavior.\n");
6197		printf("             Consider tuning vm.kmem_size and "
6198		    "vm.kmem_size_max\n");
6199		printf("             in /boot/loader.conf.\n");
6200	}
6201#endif
6202}
6203
6204void
6205arc_fini(void)
6206{
6207	mutex_enter(&arc_reclaim_lock);
6208	arc_reclaim_thread_exit = B_TRUE;
6209	/*
6210	 * The reclaim thread will set arc_reclaim_thread_exit back to
6211	 * B_FALSE when it is finished exiting; we're waiting for that.
6212	 */
6213	while (arc_reclaim_thread_exit) {
6214		cv_signal(&arc_reclaim_thread_cv);
6215		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6216	}
6217	mutex_exit(&arc_reclaim_lock);
6218
6219	/* Use B_TRUE to ensure *all* buffers are evicted */
6220	arc_flush(NULL, B_TRUE);
6221
6222	mutex_enter(&arc_dnlc_evicts_lock);
6223	arc_dnlc_evicts_thread_exit = TRUE;
6224	/*
6225	 * The user evicts thread will set arc_user_evicts_thread_exit
6226	 * to FALSE when it is finished exiting; we're waiting for that.
6227	 */
6228	while (arc_dnlc_evicts_thread_exit) {
6229		cv_signal(&arc_dnlc_evicts_cv);
6230		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
6231	}
6232	mutex_exit(&arc_dnlc_evicts_lock);
6233
6234	arc_dead = B_TRUE;
6235
6236	if (arc_ksp != NULL) {
6237		kstat_delete(arc_ksp);
6238		arc_ksp = NULL;
6239	}
6240
6241	mutex_destroy(&arc_reclaim_lock);
6242	cv_destroy(&arc_reclaim_thread_cv);
6243	cv_destroy(&arc_reclaim_waiters_cv);
6244
6245	mutex_destroy(&arc_dnlc_evicts_lock);
6246	cv_destroy(&arc_dnlc_evicts_cv);
6247
6248	arc_state_fini();
6249	buf_fini();
6250
6251	ASSERT0(arc_loaned_bytes);
6252
6253#ifdef _KERNEL
6254	if (arc_event_lowmem != NULL)
6255		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6256#endif
6257}
6258
6259/*
6260 * Level 2 ARC
6261 *
6262 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6263 * It uses dedicated storage devices to hold cached data, which are populated
6264 * using large infrequent writes.  The main role of this cache is to boost
6265 * the performance of random read workloads.  The intended L2ARC devices
6266 * include short-stroked disks, solid state disks, and other media with
6267 * substantially faster read latency than disk.
6268 *
6269 *                 +-----------------------+
6270 *                 |         ARC           |
6271 *                 +-----------------------+
6272 *                    |         ^     ^
6273 *                    |         |     |
6274 *      l2arc_feed_thread()    arc_read()
6275 *                    |         |     |
6276 *                    |  l2arc read   |
6277 *                    V         |     |
6278 *               +---------------+    |
6279 *               |     L2ARC     |    |
6280 *               +---------------+    |
6281 *                   |    ^           |
6282 *          l2arc_write() |           |
6283 *                   |    |           |
6284 *                   V    |           |
6285 *                 +-------+      +-------+
6286 *                 | vdev  |      | vdev  |
6287 *                 | cache |      | cache |
6288 *                 +-------+      +-------+
6289 *                 +=========+     .-----.
6290 *                 :  L2ARC  :    |-_____-|
6291 *                 : devices :    | Disks |
6292 *                 +=========+    `-_____-'
6293 *
6294 * Read requests are satisfied from the following sources, in order:
6295 *
6296 *	1) ARC
6297 *	2) vdev cache of L2ARC devices
6298 *	3) L2ARC devices
6299 *	4) vdev cache of disks
6300 *	5) disks
6301 *
6302 * Some L2ARC device types exhibit extremely slow write performance.
6303 * To accommodate for this there are some significant differences between
6304 * the L2ARC and traditional cache design:
6305 *
6306 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6307 * the ARC behave as usual, freeing buffers and placing headers on ghost
6308 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6309 * this would add inflated write latencies for all ARC memory pressure.
6310 *
6311 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6312 * It does this by periodically scanning buffers from the eviction-end of
6313 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6314 * not already there. It scans until a headroom of buffers is satisfied,
6315 * which itself is a buffer for ARC eviction. If a compressible buffer is
6316 * found during scanning and selected for writing to an L2ARC device, we
6317 * temporarily boost scanning headroom during the next scan cycle to make
6318 * sure we adapt to compression effects (which might significantly reduce
6319 * the data volume we write to L2ARC). The thread that does this is
6320 * l2arc_feed_thread(), illustrated below; example sizes are included to
6321 * provide a better sense of ratio than this diagram:
6322 *
6323 *	       head -->                        tail
6324 *	        +---------------------+----------+
6325 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6326 *	        +---------------------+----------+   |   o L2ARC eligible
6327 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6328 *	        +---------------------+----------+   |
6329 *	             15.9 Gbytes      ^ 32 Mbytes    |
6330 *	                           headroom          |
6331 *	                                      l2arc_feed_thread()
6332 *	                                             |
6333 *	                 l2arc write hand <--[oooo]--'
6334 *	                         |           8 Mbyte
6335 *	                         |          write max
6336 *	                         V
6337 *		  +==============================+
6338 *	L2ARC dev |####|#|###|###|    |####| ... |
6339 *	          +==============================+
6340 *	                     32 Gbytes
6341 *
6342 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6343 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6344 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6345 * safe to say that this is an uncommon case, since buffers at the end of
6346 * the ARC lists have moved there due to inactivity.
6347 *
6348 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6349 * then the L2ARC simply misses copying some buffers.  This serves as a
6350 * pressure valve to prevent heavy read workloads from both stalling the ARC
6351 * with waits and clogging the L2ARC with writes.  This also helps prevent
6352 * the potential for the L2ARC to churn if it attempts to cache content too
6353 * quickly, such as during backups of the entire pool.
6354 *
6355 * 5. After system boot and before the ARC has filled main memory, there are
6356 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6357 * lists can remain mostly static.  Instead of searching from tail of these
6358 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6359 * for eligible buffers, greatly increasing its chance of finding them.
6360 *
6361 * The L2ARC device write speed is also boosted during this time so that
6362 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6363 * there are no L2ARC reads, and no fear of degrading read performance
6364 * through increased writes.
6365 *
6366 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6367 * the vdev queue can aggregate them into larger and fewer writes.  Each
6368 * device is written to in a rotor fashion, sweeping writes through
6369 * available space then repeating.
6370 *
6371 * 7. The L2ARC does not store dirty content.  It never needs to flush
6372 * write buffers back to disk based storage.
6373 *
6374 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6375 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6376 *
6377 * The performance of the L2ARC can be tweaked by a number of tunables, which
6378 * may be necessary for different workloads:
6379 *
6380 *	l2arc_write_max		max write bytes per interval
6381 *	l2arc_write_boost	extra write bytes during device warmup
6382 *	l2arc_noprefetch	skip caching prefetched buffers
6383 *	l2arc_headroom		number of max device writes to precache
6384 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6385 *				scanning, we multiply headroom by this
6386 *				percentage factor for the next scan cycle,
6387 *				since more compressed buffers are likely to
6388 *				be present
6389 *	l2arc_feed_secs		seconds between L2ARC writing
6390 *
6391 * Tunables may be removed or added as future performance improvements are
6392 * integrated, and also may become zpool properties.
6393 *
6394 * There are three key functions that control how the L2ARC warms up:
6395 *
6396 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6397 *	l2arc_write_size()	calculate how much to write
6398 *	l2arc_write_interval()	calculate sleep delay between writes
6399 *
6400 * These three functions determine what to write, how much, and how quickly
6401 * to send writes.
6402 */
6403
6404static boolean_t
6405l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6406{
6407	/*
6408	 * A buffer is *not* eligible for the L2ARC if it:
6409	 * 1. belongs to a different spa.
6410	 * 2. is already cached on the L2ARC.
6411	 * 3. has an I/O in progress (it may be an incomplete read).
6412	 * 4. is flagged not eligible (zfs property).
6413	 */
6414	if (hdr->b_spa != spa_guid) {
6415		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6416		return (B_FALSE);
6417	}
6418	if (HDR_HAS_L2HDR(hdr)) {
6419		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6420		return (B_FALSE);
6421	}
6422	if (HDR_IO_IN_PROGRESS(hdr)) {
6423		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6424		return (B_FALSE);
6425	}
6426	if (!HDR_L2CACHE(hdr)) {
6427		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6428		return (B_FALSE);
6429	}
6430
6431	return (B_TRUE);
6432}
6433
6434static uint64_t
6435l2arc_write_size(void)
6436{
6437	uint64_t size;
6438
6439	/*
6440	 * Make sure our globals have meaningful values in case the user
6441	 * altered them.
6442	 */
6443	size = l2arc_write_max;
6444	if (size == 0) {
6445		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6446		    "be greater than zero, resetting it to the default (%d)",
6447		    L2ARC_WRITE_SIZE);
6448		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6449	}
6450
6451	if (arc_warm == B_FALSE)
6452		size += l2arc_write_boost;
6453
6454	return (size);
6455
6456}
6457
6458static clock_t
6459l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6460{
6461	clock_t interval, next, now;
6462
6463	/*
6464	 * If the ARC lists are busy, increase our write rate; if the
6465	 * lists are stale, idle back.  This is achieved by checking
6466	 * how much we previously wrote - if it was more than half of
6467	 * what we wanted, schedule the next write much sooner.
6468	 */
6469	if (l2arc_feed_again && wrote > (wanted / 2))
6470		interval = (hz * l2arc_feed_min_ms) / 1000;
6471	else
6472		interval = hz * l2arc_feed_secs;
6473
6474	now = ddi_get_lbolt();
6475	next = MAX(now, MIN(now + interval, began + interval));
6476
6477	return (next);
6478}
6479
6480/*
6481 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6482 * If a device is returned, this also returns holding the spa config lock.
6483 */
6484static l2arc_dev_t *
6485l2arc_dev_get_next(void)
6486{
6487	l2arc_dev_t *first, *next = NULL;
6488
6489	/*
6490	 * Lock out the removal of spas (spa_namespace_lock), then removal
6491	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6492	 * both locks will be dropped and a spa config lock held instead.
6493	 */
6494	mutex_enter(&spa_namespace_lock);
6495	mutex_enter(&l2arc_dev_mtx);
6496
6497	/* if there are no vdevs, there is nothing to do */
6498	if (l2arc_ndev == 0)
6499		goto out;
6500
6501	first = NULL;
6502	next = l2arc_dev_last;
6503	do {
6504		/* loop around the list looking for a non-faulted vdev */
6505		if (next == NULL) {
6506			next = list_head(l2arc_dev_list);
6507		} else {
6508			next = list_next(l2arc_dev_list, next);
6509			if (next == NULL)
6510				next = list_head(l2arc_dev_list);
6511		}
6512
6513		/* if we have come back to the start, bail out */
6514		if (first == NULL)
6515			first = next;
6516		else if (next == first)
6517			break;
6518
6519	} while (vdev_is_dead(next->l2ad_vdev));
6520
6521	/* if we were unable to find any usable vdevs, return NULL */
6522	if (vdev_is_dead(next->l2ad_vdev))
6523		next = NULL;
6524
6525	l2arc_dev_last = next;
6526
6527out:
6528	mutex_exit(&l2arc_dev_mtx);
6529
6530	/*
6531	 * Grab the config lock to prevent the 'next' device from being
6532	 * removed while we are writing to it.
6533	 */
6534	if (next != NULL)
6535		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6536	mutex_exit(&spa_namespace_lock);
6537
6538	return (next);
6539}
6540
6541/*
6542 * Free buffers that were tagged for destruction.
6543 */
6544static void
6545l2arc_do_free_on_write()
6546{
6547	list_t *buflist;
6548	l2arc_data_free_t *df, *df_prev;
6549
6550	mutex_enter(&l2arc_free_on_write_mtx);
6551	buflist = l2arc_free_on_write;
6552
6553	for (df = list_tail(buflist); df; df = df_prev) {
6554		df_prev = list_prev(buflist, df);
6555		ASSERT3P(df->l2df_data, !=, NULL);
6556		if (df->l2df_type == ARC_BUFC_METADATA) {
6557			zio_buf_free(df->l2df_data, df->l2df_size);
6558		} else {
6559			ASSERT(df->l2df_type == ARC_BUFC_DATA);
6560			zio_data_buf_free(df->l2df_data, df->l2df_size);
6561		}
6562		list_remove(buflist, df);
6563		kmem_free(df, sizeof (l2arc_data_free_t));
6564	}
6565
6566	mutex_exit(&l2arc_free_on_write_mtx);
6567}
6568
6569/*
6570 * A write to a cache device has completed.  Update all headers to allow
6571 * reads from these buffers to begin.
6572 */
6573static void
6574l2arc_write_done(zio_t *zio)
6575{
6576	l2arc_write_callback_t *cb;
6577	l2arc_dev_t *dev;
6578	list_t *buflist;
6579	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6580	kmutex_t *hash_lock;
6581	int64_t bytes_dropped = 0;
6582
6583	cb = zio->io_private;
6584	ASSERT3P(cb, !=, NULL);
6585	dev = cb->l2wcb_dev;
6586	ASSERT3P(dev, !=, NULL);
6587	head = cb->l2wcb_head;
6588	ASSERT3P(head, !=, NULL);
6589	buflist = &dev->l2ad_buflist;
6590	ASSERT3P(buflist, !=, NULL);
6591	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6592	    l2arc_write_callback_t *, cb);
6593
6594	if (zio->io_error != 0)
6595		ARCSTAT_BUMP(arcstat_l2_writes_error);
6596
6597	/*
6598	 * All writes completed, or an error was hit.
6599	 */
6600top:
6601	mutex_enter(&dev->l2ad_mtx);
6602	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6603		hdr_prev = list_prev(buflist, hdr);
6604
6605		hash_lock = HDR_LOCK(hdr);
6606
6607		/*
6608		 * We cannot use mutex_enter or else we can deadlock
6609		 * with l2arc_write_buffers (due to swapping the order
6610		 * the hash lock and l2ad_mtx are taken).
6611		 */
6612		if (!mutex_tryenter(hash_lock)) {
6613			/*
6614			 * Missed the hash lock. We must retry so we
6615			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6616			 */
6617			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6618
6619			/*
6620			 * We don't want to rescan the headers we've
6621			 * already marked as having been written out, so
6622			 * we reinsert the head node so we can pick up
6623			 * where we left off.
6624			 */
6625			list_remove(buflist, head);
6626			list_insert_after(buflist, hdr, head);
6627
6628			mutex_exit(&dev->l2ad_mtx);
6629
6630			/*
6631			 * We wait for the hash lock to become available
6632			 * to try and prevent busy waiting, and increase
6633			 * the chance we'll be able to acquire the lock
6634			 * the next time around.
6635			 */
6636			mutex_enter(hash_lock);
6637			mutex_exit(hash_lock);
6638			goto top;
6639		}
6640
6641		/*
6642		 * We could not have been moved into the arc_l2c_only
6643		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6644		 * bit being set. Let's just ensure that's being enforced.
6645		 */
6646		ASSERT(HDR_HAS_L1HDR(hdr));
6647
6648		if (zio->io_error != 0) {
6649			/*
6650			 * Error - drop L2ARC entry.
6651			 */
6652			list_remove(buflist, hdr);
6653			l2arc_trim(hdr);
6654			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6655
6656			ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6657			ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6658
6659			bytes_dropped += arc_hdr_size(hdr);
6660			(void) refcount_remove_many(&dev->l2ad_alloc,
6661			    arc_hdr_size(hdr), hdr);
6662		}
6663
6664		/*
6665		 * Allow ARC to begin reads and ghost list evictions to
6666		 * this L2ARC entry.
6667		 */
6668		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6669
6670		mutex_exit(hash_lock);
6671	}
6672
6673	atomic_inc_64(&l2arc_writes_done);
6674	list_remove(buflist, head);
6675	ASSERT(!HDR_HAS_L1HDR(head));
6676	kmem_cache_free(hdr_l2only_cache, head);
6677	mutex_exit(&dev->l2ad_mtx);
6678
6679	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6680
6681	l2arc_do_free_on_write();
6682
6683	kmem_free(cb, sizeof (l2arc_write_callback_t));
6684}
6685
6686/*
6687 * A read to a cache device completed.  Validate buffer contents before
6688 * handing over to the regular ARC routines.
6689 */
6690static void
6691l2arc_read_done(zio_t *zio)
6692{
6693	l2arc_read_callback_t *cb;
6694	arc_buf_hdr_t *hdr;
6695	kmutex_t *hash_lock;
6696	boolean_t valid_cksum;
6697
6698	ASSERT3P(zio->io_vd, !=, NULL);
6699	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6700
6701	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6702
6703	cb = zio->io_private;
6704	ASSERT3P(cb, !=, NULL);
6705	hdr = cb->l2rcb_hdr;
6706	ASSERT3P(hdr, !=, NULL);
6707
6708	hash_lock = HDR_LOCK(hdr);
6709	mutex_enter(hash_lock);
6710	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6711
6712	/*
6713	 * If the data was read into a temporary buffer,
6714	 * move it and free the buffer.
6715	 */
6716	if (cb->l2rcb_data != NULL) {
6717		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6718		if (zio->io_error == 0) {
6719			bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata,
6720			    arc_hdr_size(hdr));
6721		}
6722
6723		/*
6724		 * The following must be done regardless of whether
6725		 * there was an error:
6726		 * - free the temporary buffer
6727		 * - point zio to the real ARC buffer
6728		 * - set zio size accordingly
6729		 * These are required because zio is either re-used for
6730		 * an I/O of the block in the case of the error
6731		 * or the zio is passed to arc_read_done() and it
6732		 * needs real data.
6733		 */
6734		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6735		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6736		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata;
6737	}
6738
6739	ASSERT3P(zio->io_data, !=, NULL);
6740
6741	/*
6742	 * Check this survived the L2ARC journey.
6743	 */
6744	ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata);
6745	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6746	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6747
6748	valid_cksum = arc_cksum_is_equal(hdr, zio);
6749	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6750		mutex_exit(hash_lock);
6751		zio->io_private = hdr;
6752		arc_read_done(zio);
6753	} else {
6754		mutex_exit(hash_lock);
6755		/*
6756		 * Buffer didn't survive caching.  Increment stats and
6757		 * reissue to the original storage device.
6758		 */
6759		if (zio->io_error != 0) {
6760			ARCSTAT_BUMP(arcstat_l2_io_error);
6761		} else {
6762			zio->io_error = SET_ERROR(EIO);
6763		}
6764		if (!valid_cksum)
6765			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6766
6767		/*
6768		 * If there's no waiter, issue an async i/o to the primary
6769		 * storage now.  If there *is* a waiter, the caller must
6770		 * issue the i/o in a context where it's OK to block.
6771		 */
6772		if (zio->io_waiter == NULL) {
6773			zio_t *pio = zio_unique_parent(zio);
6774
6775			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6776
6777			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6778			    hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done,
6779			    hdr, zio->io_priority, cb->l2rcb_flags,
6780			    &cb->l2rcb_zb));
6781		}
6782	}
6783
6784	kmem_free(cb, sizeof (l2arc_read_callback_t));
6785}
6786
6787/*
6788 * This is the list priority from which the L2ARC will search for pages to
6789 * cache.  This is used within loops (0..3) to cycle through lists in the
6790 * desired order.  This order can have a significant effect on cache
6791 * performance.
6792 *
6793 * Currently the metadata lists are hit first, MFU then MRU, followed by
6794 * the data lists.  This function returns a locked list, and also returns
6795 * the lock pointer.
6796 */
6797static multilist_sublist_t *
6798l2arc_sublist_lock(int list_num)
6799{
6800	multilist_t *ml = NULL;
6801	unsigned int idx;
6802
6803	ASSERT(list_num >= 0 && list_num <= 3);
6804
6805	switch (list_num) {
6806	case 0:
6807		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6808		break;
6809	case 1:
6810		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6811		break;
6812	case 2:
6813		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6814		break;
6815	case 3:
6816		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6817		break;
6818	}
6819
6820	/*
6821	 * Return a randomly-selected sublist. This is acceptable
6822	 * because the caller feeds only a little bit of data for each
6823	 * call (8MB). Subsequent calls will result in different
6824	 * sublists being selected.
6825	 */
6826	idx = multilist_get_random_index(ml);
6827	return (multilist_sublist_lock(ml, idx));
6828}
6829
6830/*
6831 * Evict buffers from the device write hand to the distance specified in
6832 * bytes.  This distance may span populated buffers, it may span nothing.
6833 * This is clearing a region on the L2ARC device ready for writing.
6834 * If the 'all' boolean is set, every buffer is evicted.
6835 */
6836static void
6837l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6838{
6839	list_t *buflist;
6840	arc_buf_hdr_t *hdr, *hdr_prev;
6841	kmutex_t *hash_lock;
6842	uint64_t taddr;
6843
6844	buflist = &dev->l2ad_buflist;
6845
6846	if (!all && dev->l2ad_first) {
6847		/*
6848		 * This is the first sweep through the device.  There is
6849		 * nothing to evict.
6850		 */
6851		return;
6852	}
6853
6854	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6855		/*
6856		 * When nearing the end of the device, evict to the end
6857		 * before the device write hand jumps to the start.
6858		 */
6859		taddr = dev->l2ad_end;
6860	} else {
6861		taddr = dev->l2ad_hand + distance;
6862	}
6863	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6864	    uint64_t, taddr, boolean_t, all);
6865
6866top:
6867	mutex_enter(&dev->l2ad_mtx);
6868	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6869		hdr_prev = list_prev(buflist, hdr);
6870
6871		hash_lock = HDR_LOCK(hdr);
6872
6873		/*
6874		 * We cannot use mutex_enter or else we can deadlock
6875		 * with l2arc_write_buffers (due to swapping the order
6876		 * the hash lock and l2ad_mtx are taken).
6877		 */
6878		if (!mutex_tryenter(hash_lock)) {
6879			/*
6880			 * Missed the hash lock.  Retry.
6881			 */
6882			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6883			mutex_exit(&dev->l2ad_mtx);
6884			mutex_enter(hash_lock);
6885			mutex_exit(hash_lock);
6886			goto top;
6887		}
6888
6889		if (HDR_L2_WRITE_HEAD(hdr)) {
6890			/*
6891			 * We hit a write head node.  Leave it for
6892			 * l2arc_write_done().
6893			 */
6894			list_remove(buflist, hdr);
6895			mutex_exit(hash_lock);
6896			continue;
6897		}
6898
6899		if (!all && HDR_HAS_L2HDR(hdr) &&
6900		    (hdr->b_l2hdr.b_daddr > taddr ||
6901		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6902			/*
6903			 * We've evicted to the target address,
6904			 * or the end of the device.
6905			 */
6906			mutex_exit(hash_lock);
6907			break;
6908		}
6909
6910		ASSERT(HDR_HAS_L2HDR(hdr));
6911		if (!HDR_HAS_L1HDR(hdr)) {
6912			ASSERT(!HDR_L2_READING(hdr));
6913			/*
6914			 * This doesn't exist in the ARC.  Destroy.
6915			 * arc_hdr_destroy() will call list_remove()
6916			 * and decrement arcstat_l2_size.
6917			 */
6918			arc_change_state(arc_anon, hdr, hash_lock);
6919			arc_hdr_destroy(hdr);
6920		} else {
6921			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6922			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6923			/*
6924			 * Invalidate issued or about to be issued
6925			 * reads, since we may be about to write
6926			 * over this location.
6927			 */
6928			if (HDR_L2_READING(hdr)) {
6929				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6930				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6931			}
6932
6933			/* Ensure this header has finished being written */
6934			ASSERT(!HDR_L2_WRITING(hdr));
6935
6936			arc_hdr_l2hdr_destroy(hdr);
6937		}
6938		mutex_exit(hash_lock);
6939	}
6940	mutex_exit(&dev->l2ad_mtx);
6941}
6942
6943/*
6944 * Find and write ARC buffers to the L2ARC device.
6945 *
6946 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6947 * for reading until they have completed writing.
6948 * The headroom_boost is an in-out parameter used to maintain headroom boost
6949 * state between calls to this function.
6950 *
6951 * Returns the number of bytes actually written (which may be smaller than
6952 * the delta by which the device hand has changed due to alignment).
6953 */
6954static uint64_t
6955l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6956{
6957	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6958	uint64_t write_asize, write_psize, write_sz, headroom;
6959	boolean_t full;
6960	l2arc_write_callback_t *cb;
6961	zio_t *pio, *wzio;
6962	uint64_t guid = spa_load_guid(spa);
6963	int try;
6964
6965	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6966
6967	pio = NULL;
6968	write_sz = write_asize = write_psize = 0;
6969	full = B_FALSE;
6970	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6971	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6972
6973	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6974	/*
6975	 * Copy buffers for L2ARC writing.
6976	 */
6977	for (try = 0; try <= 3; try++) {
6978		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6979		uint64_t passed_sz = 0;
6980
6981		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6982
6983		/*
6984		 * L2ARC fast warmup.
6985		 *
6986		 * Until the ARC is warm and starts to evict, read from the
6987		 * head of the ARC lists rather than the tail.
6988		 */
6989		if (arc_warm == B_FALSE)
6990			hdr = multilist_sublist_head(mls);
6991		else
6992			hdr = multilist_sublist_tail(mls);
6993		if (hdr == NULL)
6994			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6995
6996		headroom = target_sz * l2arc_headroom;
6997		if (zfs_compressed_arc_enabled)
6998			headroom = (headroom * l2arc_headroom_boost) / 100;
6999
7000		for (; hdr; hdr = hdr_prev) {
7001			kmutex_t *hash_lock;
7002
7003			if (arc_warm == B_FALSE)
7004				hdr_prev = multilist_sublist_next(mls, hdr);
7005			else
7006				hdr_prev = multilist_sublist_prev(mls, hdr);
7007			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
7008			    HDR_GET_LSIZE(hdr));
7009
7010			hash_lock = HDR_LOCK(hdr);
7011			if (!mutex_tryenter(hash_lock)) {
7012				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
7013				/*
7014				 * Skip this buffer rather than waiting.
7015				 */
7016				continue;
7017			}
7018
7019			passed_sz += HDR_GET_LSIZE(hdr);
7020			if (passed_sz > headroom) {
7021				/*
7022				 * Searched too far.
7023				 */
7024				mutex_exit(hash_lock);
7025				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
7026				break;
7027			}
7028
7029			if (!l2arc_write_eligible(guid, hdr)) {
7030				mutex_exit(hash_lock);
7031				continue;
7032			}
7033
7034			if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
7035				full = B_TRUE;
7036				mutex_exit(hash_lock);
7037				ARCSTAT_BUMP(arcstat_l2_write_full);
7038				break;
7039			}
7040
7041			if (pio == NULL) {
7042				/*
7043				 * Insert a dummy header on the buflist so
7044				 * l2arc_write_done() can find where the
7045				 * write buffers begin without searching.
7046				 */
7047				mutex_enter(&dev->l2ad_mtx);
7048				list_insert_head(&dev->l2ad_buflist, head);
7049				mutex_exit(&dev->l2ad_mtx);
7050
7051				cb = kmem_alloc(
7052				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7053				cb->l2wcb_dev = dev;
7054				cb->l2wcb_head = head;
7055				pio = zio_root(spa, l2arc_write_done, cb,
7056				    ZIO_FLAG_CANFAIL);
7057				ARCSTAT_BUMP(arcstat_l2_write_pios);
7058			}
7059
7060			hdr->b_l2hdr.b_dev = dev;
7061			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7062			arc_hdr_set_flags(hdr,
7063			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7064
7065			mutex_enter(&dev->l2ad_mtx);
7066			list_insert_head(&dev->l2ad_buflist, hdr);
7067			mutex_exit(&dev->l2ad_mtx);
7068
7069			/*
7070			 * We rely on the L1 portion of the header below, so
7071			 * it's invalid for this header to have been evicted out
7072			 * of the ghost cache, prior to being written out. The
7073			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7074			 */
7075			ASSERT(HDR_HAS_L1HDR(hdr));
7076
7077			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7078			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
7079			ASSERT3U(arc_hdr_size(hdr), >, 0);
7080			uint64_t size = arc_hdr_size(hdr);
7081			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7082			    size);
7083
7084			(void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7085
7086			/*
7087			 * Normally the L2ARC can use the hdr's data, but if
7088			 * we're sharing data between the hdr and one of its
7089			 * bufs, L2ARC needs its own copy of the data so that
7090			 * the ZIO below can't race with the buf consumer. To
7091			 * ensure that this copy will be available for the
7092			 * lifetime of the ZIO and be cleaned up afterwards, we
7093			 * add it to the l2arc_free_on_write queue.
7094			 */
7095			void *to_write;
7096			if (!HDR_SHARED_DATA(hdr) && size == asize) {
7097				to_write = hdr->b_l1hdr.b_pdata;
7098			} else {
7099				arc_buf_contents_t type = arc_buf_type(hdr);
7100				if (type == ARC_BUFC_METADATA) {
7101					to_write = zio_buf_alloc(asize);
7102				} else {
7103					ASSERT3U(type, ==, ARC_BUFC_DATA);
7104					to_write = zio_data_buf_alloc(asize);
7105				}
7106
7107				bcopy(hdr->b_l1hdr.b_pdata, to_write, size);
7108				if (asize != size)
7109					bzero(to_write + size, asize - size);
7110				l2arc_free_data_on_write(to_write, asize, type);
7111			}
7112			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7113			    hdr->b_l2hdr.b_daddr, asize, to_write,
7114			    ZIO_CHECKSUM_OFF, NULL, hdr,
7115			    ZIO_PRIORITY_ASYNC_WRITE,
7116			    ZIO_FLAG_CANFAIL, B_FALSE);
7117
7118			write_sz += HDR_GET_LSIZE(hdr);
7119			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7120			    zio_t *, wzio);
7121
7122			write_asize += size;
7123			write_psize += asize;
7124			dev->l2ad_hand += asize;
7125
7126			mutex_exit(hash_lock);
7127
7128			(void) zio_nowait(wzio);
7129		}
7130
7131		multilist_sublist_unlock(mls);
7132
7133		if (full == B_TRUE)
7134			break;
7135	}
7136
7137	/* No buffers selected for writing? */
7138	if (pio == NULL) {
7139		ASSERT0(write_sz);
7140		ASSERT(!HDR_HAS_L1HDR(head));
7141		kmem_cache_free(hdr_l2only_cache, head);
7142		return (0);
7143	}
7144
7145	ASSERT3U(write_asize, <=, target_sz);
7146	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7147	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7148	ARCSTAT_INCR(arcstat_l2_size, write_sz);
7149	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7150	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7151
7152	/*
7153	 * Bump device hand to the device start if it is approaching the end.
7154	 * l2arc_evict() will already have evicted ahead for this case.
7155	 */
7156	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7157		dev->l2ad_hand = dev->l2ad_start;
7158		dev->l2ad_first = B_FALSE;
7159	}
7160
7161	dev->l2ad_writing = B_TRUE;
7162	(void) zio_wait(pio);
7163	dev->l2ad_writing = B_FALSE;
7164
7165	return (write_asize);
7166}
7167
7168/*
7169 * This thread feeds the L2ARC at regular intervals.  This is the beating
7170 * heart of the L2ARC.
7171 */
7172static void
7173l2arc_feed_thread(void *dummy __unused)
7174{
7175	callb_cpr_t cpr;
7176	l2arc_dev_t *dev;
7177	spa_t *spa;
7178	uint64_t size, wrote;
7179	clock_t begin, next = ddi_get_lbolt();
7180
7181	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7182
7183	mutex_enter(&l2arc_feed_thr_lock);
7184
7185	while (l2arc_thread_exit == 0) {
7186		CALLB_CPR_SAFE_BEGIN(&cpr);
7187		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7188		    next - ddi_get_lbolt());
7189		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7190		next = ddi_get_lbolt() + hz;
7191
7192		/*
7193		 * Quick check for L2ARC devices.
7194		 */
7195		mutex_enter(&l2arc_dev_mtx);
7196		if (l2arc_ndev == 0) {
7197			mutex_exit(&l2arc_dev_mtx);
7198			continue;
7199		}
7200		mutex_exit(&l2arc_dev_mtx);
7201		begin = ddi_get_lbolt();
7202
7203		/*
7204		 * This selects the next l2arc device to write to, and in
7205		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7206		 * will return NULL if there are now no l2arc devices or if
7207		 * they are all faulted.
7208		 *
7209		 * If a device is returned, its spa's config lock is also
7210		 * held to prevent device removal.  l2arc_dev_get_next()
7211		 * will grab and release l2arc_dev_mtx.
7212		 */
7213		if ((dev = l2arc_dev_get_next()) == NULL)
7214			continue;
7215
7216		spa = dev->l2ad_spa;
7217		ASSERT3P(spa, !=, NULL);
7218
7219		/*
7220		 * If the pool is read-only then force the feed thread to
7221		 * sleep a little longer.
7222		 */
7223		if (!spa_writeable(spa)) {
7224			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7225			spa_config_exit(spa, SCL_L2ARC, dev);
7226			continue;
7227		}
7228
7229		/*
7230		 * Avoid contributing to memory pressure.
7231		 */
7232		if (arc_reclaim_needed()) {
7233			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7234			spa_config_exit(spa, SCL_L2ARC, dev);
7235			continue;
7236		}
7237
7238		ARCSTAT_BUMP(arcstat_l2_feeds);
7239
7240		size = l2arc_write_size();
7241
7242		/*
7243		 * Evict L2ARC buffers that will be overwritten.
7244		 */
7245		l2arc_evict(dev, size, B_FALSE);
7246
7247		/*
7248		 * Write ARC buffers.
7249		 */
7250		wrote = l2arc_write_buffers(spa, dev, size);
7251
7252		/*
7253		 * Calculate interval between writes.
7254		 */
7255		next = l2arc_write_interval(begin, size, wrote);
7256		spa_config_exit(spa, SCL_L2ARC, dev);
7257	}
7258
7259	l2arc_thread_exit = 0;
7260	cv_broadcast(&l2arc_feed_thr_cv);
7261	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7262	thread_exit();
7263}
7264
7265boolean_t
7266l2arc_vdev_present(vdev_t *vd)
7267{
7268	l2arc_dev_t *dev;
7269
7270	mutex_enter(&l2arc_dev_mtx);
7271	for (dev = list_head(l2arc_dev_list); dev != NULL;
7272	    dev = list_next(l2arc_dev_list, dev)) {
7273		if (dev->l2ad_vdev == vd)
7274			break;
7275	}
7276	mutex_exit(&l2arc_dev_mtx);
7277
7278	return (dev != NULL);
7279}
7280
7281/*
7282 * Add a vdev for use by the L2ARC.  By this point the spa has already
7283 * validated the vdev and opened it.
7284 */
7285void
7286l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7287{
7288	l2arc_dev_t *adddev;
7289
7290	ASSERT(!l2arc_vdev_present(vd));
7291
7292	vdev_ashift_optimize(vd);
7293
7294	/*
7295	 * Create a new l2arc device entry.
7296	 */
7297	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7298	adddev->l2ad_spa = spa;
7299	adddev->l2ad_vdev = vd;
7300	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7301	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7302	adddev->l2ad_hand = adddev->l2ad_start;
7303	adddev->l2ad_first = B_TRUE;
7304	adddev->l2ad_writing = B_FALSE;
7305
7306	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7307	/*
7308	 * This is a list of all ARC buffers that are still valid on the
7309	 * device.
7310	 */
7311	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7312	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7313
7314	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7315	refcount_create(&adddev->l2ad_alloc);
7316
7317	/*
7318	 * Add device to global list
7319	 */
7320	mutex_enter(&l2arc_dev_mtx);
7321	list_insert_head(l2arc_dev_list, adddev);
7322	atomic_inc_64(&l2arc_ndev);
7323	mutex_exit(&l2arc_dev_mtx);
7324}
7325
7326/*
7327 * Remove a vdev from the L2ARC.
7328 */
7329void
7330l2arc_remove_vdev(vdev_t *vd)
7331{
7332	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7333
7334	/*
7335	 * Find the device by vdev
7336	 */
7337	mutex_enter(&l2arc_dev_mtx);
7338	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7339		nextdev = list_next(l2arc_dev_list, dev);
7340		if (vd == dev->l2ad_vdev) {
7341			remdev = dev;
7342			break;
7343		}
7344	}
7345	ASSERT3P(remdev, !=, NULL);
7346
7347	/*
7348	 * Remove device from global list
7349	 */
7350	list_remove(l2arc_dev_list, remdev);
7351	l2arc_dev_last = NULL;		/* may have been invalidated */
7352	atomic_dec_64(&l2arc_ndev);
7353	mutex_exit(&l2arc_dev_mtx);
7354
7355	/*
7356	 * Clear all buflists and ARC references.  L2ARC device flush.
7357	 */
7358	l2arc_evict(remdev, 0, B_TRUE);
7359	list_destroy(&remdev->l2ad_buflist);
7360	mutex_destroy(&remdev->l2ad_mtx);
7361	refcount_destroy(&remdev->l2ad_alloc);
7362	kmem_free(remdev, sizeof (l2arc_dev_t));
7363}
7364
7365void
7366l2arc_init(void)
7367{
7368	l2arc_thread_exit = 0;
7369	l2arc_ndev = 0;
7370	l2arc_writes_sent = 0;
7371	l2arc_writes_done = 0;
7372
7373	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7374	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7375	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7376	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7377
7378	l2arc_dev_list = &L2ARC_dev_list;
7379	l2arc_free_on_write = &L2ARC_free_on_write;
7380	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7381	    offsetof(l2arc_dev_t, l2ad_node));
7382	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7383	    offsetof(l2arc_data_free_t, l2df_list_node));
7384}
7385
7386void
7387l2arc_fini(void)
7388{
7389	/*
7390	 * This is called from dmu_fini(), which is called from spa_fini();
7391	 * Because of this, we can assume that all l2arc devices have
7392	 * already been removed when the pools themselves were removed.
7393	 */
7394
7395	l2arc_do_free_on_write();
7396
7397	mutex_destroy(&l2arc_feed_thr_lock);
7398	cv_destroy(&l2arc_feed_thr_cv);
7399	mutex_destroy(&l2arc_dev_mtx);
7400	mutex_destroy(&l2arc_free_on_write_mtx);
7401
7402	list_destroy(l2arc_dev_list);
7403	list_destroy(l2arc_free_on_write);
7404}
7405
7406void
7407l2arc_start(void)
7408{
7409	if (!(spa_mode_global & FWRITE))
7410		return;
7411
7412	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7413	    TS_RUN, minclsyspri);
7414}
7415
7416void
7417l2arc_stop(void)
7418{
7419	if (!(spa_mode_global & FWRITE))
7420		return;
7421
7422	mutex_enter(&l2arc_feed_thr_lock);
7423	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7424	l2arc_thread_exit = 1;
7425	while (l2arc_thread_exit != 0)
7426		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7427	mutex_exit(&l2arc_feed_thr_lock);
7428}
7429