arc.c revision 307297
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123/*
124 * ARC operation:
125 *
126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
127 * This structure can point either to a block that is still in the cache or to
128 * one that is only accessible in an L2 ARC device, or it can provide
129 * information about a block that was recently evicted. If a block is
130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
131 * information to retrieve it from the L2ARC device. This information is
132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
133 * that is in this state cannot access the data directly.
134 *
135 * Blocks that are actively being referenced or have not been evicted
136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
137 * the arc_buf_hdr_t that will point to the data block in memory. A block can
138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and
140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata).
141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC
142 * consumer, and always contains uncompressed data. The ARC will provide
143 * references to this data and will keep it cached until it is no longer in
144 * use. Typically, the arc will try to cache only the L1ARC's physical data
145 * block and will aggressively evict any arc_buf_t that is no longer referenced.
146 * The amount of memory consumed by the arc_buf_t's can be seen via the
147 * "overhead_size" kstat.
148 *
149 *
150 *                arc_buf_hdr_t
151 *                +-----------+
152 *                |           |
153 *                |           |
154 *                |           |
155 *                +-----------+
156 * l2arc_buf_hdr_t|           |
157 *                |           |
158 *                +-----------+
159 * l1arc_buf_hdr_t|           |
160 *                |           |                 arc_buf_t
161 *                |    b_buf  +------------>+---------+      arc_buf_t
162 *                |           |             |b_next   +---->+---------+
163 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
164 *                +-----------+ |           |         |     +---------+
165 *                              |           |b_data   +-+   |         |
166 *                              |           +---------+ |   |b_data   +-+
167 *                              +->+------+             |   +---------+ |
168 *                   (potentially) |      |             |               |
169 *                     compressed  |      |             |               |
170 *                        data     +------+             |               v
171 *                                                      +->+------+     +------+
172 *                                            uncompressed |      |     |      |
173 *                                                data     |      |     |      |
174 *                                                         +------+     +------+
175 *
176 * The L1ARC's data pointer, however, may or may not be uncompressed. The
177 * ARC has the ability to store the physical data (b_pdata) associated with
178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk
179 * physical block, it will match its on-disk compression characteristics.
180 * If the block on-disk is compressed, then the physical data block
181 * in the cache will also be compressed and vice-versa. This behavior
182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
183 * compressed ARC functionality is disabled, the b_pdata will point to an
184 * uncompressed version of the on-disk data.
185 *
186 * When a consumer reads a block, the ARC must first look to see if the
187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t,
188 * then an additional arc_buf_t is allocated and the uncompressed data is
189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not
190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses
191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's
192 * b_pdata is not compressed, then the block is shared with the newly
193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t
194 * in the arc buffer chain. Sharing the block reduces the memory overhead
195 * required when the hdr is caching uncompressed blocks or the compressed
196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'.
197 *
198 * The diagram below shows an example of an uncompressed ARC hdr that is
199 * sharing its data with an arc_buf_t:
200 *
201 *                arc_buf_hdr_t
202 *                +-----------+
203 *                |           |
204 *                |           |
205 *                |           |
206 *                +-----------+
207 * l2arc_buf_hdr_t|           |
208 *                |           |
209 *                +-----------+
210 * l1arc_buf_hdr_t|           |
211 *                |           |                 arc_buf_t    (shared)
212 *                |    b_buf  +------------>+---------+      arc_buf_t
213 *                |           |             |b_next   +---->+---------+
214 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
215 *                +-----------+ |           |         |     +---------+
216 *                              |           |b_data   +-+   |         |
217 *                              |           +---------+ |   |b_data   +-+
218 *                              +->+------+             |   +---------+ |
219 *                                 |      |             |               |
220 *                   uncompressed  |      |             |               |
221 *                        data     +------+             |               |
222 *                                    ^                 +->+------+     |
223 *                                    |       uncompressed |      |     |
224 *                                    |           data     |      |     |
225 *                                    |                    +------+     |
226 *                                    +---------------------------------+
227 *
228 * Writing to the arc requires that the ARC first discard the b_pdata
229 * since the physical block is about to be rewritten. The new data contents
230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline
231 * performs the write, it may compress the data before writing it to disk.
232 * The ARC will be called with the transformed data and will bcopy the
233 * transformed on-disk block into a newly allocated b_pdata.
234 *
235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The
236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means
237 * that when compressed arc is enabled that the L2ARC blocks are identical
238 * to the on-disk block in the main data pool. This provides a significant
239 * advantage since the ARC can leverage the bp's checksum when reading from the
240 * L2ARC to determine if the contents are valid. However, if the compressed
241 * arc is disabled, then the L2ARC's block must be transformed to look
242 * like the physical block in the main data pool before comparing the
243 * checksum and determining its validity.
244 */
245
246#include <sys/spa.h>
247#include <sys/zio.h>
248#include <sys/spa_impl.h>
249#include <sys/zio_compress.h>
250#include <sys/zio_checksum.h>
251#include <sys/zfs_context.h>
252#include <sys/arc.h>
253#include <sys/refcount.h>
254#include <sys/vdev.h>
255#include <sys/vdev_impl.h>
256#include <sys/dsl_pool.h>
257#include <sys/multilist.h>
258#ifdef _KERNEL
259#include <sys/dnlc.h>
260#include <sys/racct.h>
261#endif
262#include <sys/callb.h>
263#include <sys/kstat.h>
264#include <sys/trim_map.h>
265#include <zfs_fletcher.h>
266#include <sys/sdt.h>
267
268#include <machine/vmparam.h>
269
270#ifdef illumos
271#ifndef _KERNEL
272/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
273boolean_t arc_watch = B_FALSE;
274int arc_procfd;
275#endif
276#endif /* illumos */
277
278static kmutex_t		arc_reclaim_lock;
279static kcondvar_t	arc_reclaim_thread_cv;
280static boolean_t	arc_reclaim_thread_exit;
281static kcondvar_t	arc_reclaim_waiters_cv;
282
283static kmutex_t		arc_dnlc_evicts_lock;
284static kcondvar_t	arc_dnlc_evicts_cv;
285static boolean_t	arc_dnlc_evicts_thread_exit;
286
287uint_t arc_reduce_dnlc_percent = 3;
288
289/*
290 * The number of headers to evict in arc_evict_state_impl() before
291 * dropping the sublist lock and evicting from another sublist. A lower
292 * value means we're more likely to evict the "correct" header (i.e. the
293 * oldest header in the arc state), but comes with higher overhead
294 * (i.e. more invocations of arc_evict_state_impl()).
295 */
296int zfs_arc_evict_batch_limit = 10;
297
298/*
299 * The number of sublists used for each of the arc state lists. If this
300 * is not set to a suitable value by the user, it will be configured to
301 * the number of CPUs on the system in arc_init().
302 */
303int zfs_arc_num_sublists_per_state = 0;
304
305/* number of seconds before growing cache again */
306static int		arc_grow_retry = 60;
307
308/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
309int		zfs_arc_overflow_shift = 8;
310
311/* shift of arc_c for calculating both min and max arc_p */
312static int		arc_p_min_shift = 4;
313
314/* log2(fraction of arc to reclaim) */
315static int		arc_shrink_shift = 7;
316
317/*
318 * log2(fraction of ARC which must be free to allow growing).
319 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
320 * when reading a new block into the ARC, we will evict an equal-sized block
321 * from the ARC.
322 *
323 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
324 * we will still not allow it to grow.
325 */
326int			arc_no_grow_shift = 5;
327
328
329/*
330 * minimum lifespan of a prefetch block in clock ticks
331 * (initialized in arc_init())
332 */
333static int		arc_min_prefetch_lifespan;
334
335/*
336 * If this percent of memory is free, don't throttle.
337 */
338int arc_lotsfree_percent = 10;
339
340static int arc_dead;
341extern boolean_t zfs_prefetch_disable;
342
343/*
344 * The arc has filled available memory and has now warmed up.
345 */
346static boolean_t arc_warm;
347
348/*
349 * These tunables are for performance analysis.
350 */
351uint64_t zfs_arc_max;
352uint64_t zfs_arc_min;
353uint64_t zfs_arc_meta_limit = 0;
354uint64_t zfs_arc_meta_min = 0;
355int zfs_arc_grow_retry = 0;
356int zfs_arc_shrink_shift = 0;
357int zfs_arc_p_min_shift = 0;
358uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
359u_int zfs_arc_free_target = 0;
360
361/* Absolute min for arc min / max is 16MB. */
362static uint64_t arc_abs_min = 16 << 20;
363
364boolean_t zfs_compressed_arc_enabled = B_TRUE;
365
366static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
367static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
368static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
369static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
370
371#if defined(__FreeBSD__) && defined(_KERNEL)
372static void
373arc_free_target_init(void *unused __unused)
374{
375
376	zfs_arc_free_target = vm_pageout_wakeup_thresh;
377}
378SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
379    arc_free_target_init, NULL);
380
381TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
382TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
383TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
384SYSCTL_DECL(_vfs_zfs);
385SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
386    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
387SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
388    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
389SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
390    &zfs_arc_average_blocksize, 0,
391    "ARC average blocksize");
392SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
393    &arc_shrink_shift, 0,
394    "log2(fraction of arc to reclaim)");
395SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
396    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
397
398/*
399 * We don't have a tunable for arc_free_target due to the dependency on
400 * pagedaemon initialisation.
401 */
402SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
403    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
404    sysctl_vfs_zfs_arc_free_target, "IU",
405    "Desired number of free pages below which ARC triggers reclaim");
406
407static int
408sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
409{
410	u_int val;
411	int err;
412
413	val = zfs_arc_free_target;
414	err = sysctl_handle_int(oidp, &val, 0, req);
415	if (err != 0 || req->newptr == NULL)
416		return (err);
417
418	if (val < minfree)
419		return (EINVAL);
420	if (val > vm_cnt.v_page_count)
421		return (EINVAL);
422
423	zfs_arc_free_target = val;
424
425	return (0);
426}
427
428/*
429 * Must be declared here, before the definition of corresponding kstat
430 * macro which uses the same names will confuse the compiler.
431 */
432SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
433    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
434    sysctl_vfs_zfs_arc_meta_limit, "QU",
435    "ARC metadata limit");
436#endif
437
438/*
439 * Note that buffers can be in one of 6 states:
440 *	ARC_anon	- anonymous (discussed below)
441 *	ARC_mru		- recently used, currently cached
442 *	ARC_mru_ghost	- recentely used, no longer in cache
443 *	ARC_mfu		- frequently used, currently cached
444 *	ARC_mfu_ghost	- frequently used, no longer in cache
445 *	ARC_l2c_only	- exists in L2ARC but not other states
446 * When there are no active references to the buffer, they are
447 * are linked onto a list in one of these arc states.  These are
448 * the only buffers that can be evicted or deleted.  Within each
449 * state there are multiple lists, one for meta-data and one for
450 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
451 * etc.) is tracked separately so that it can be managed more
452 * explicitly: favored over data, limited explicitly.
453 *
454 * Anonymous buffers are buffers that are not associated with
455 * a DVA.  These are buffers that hold dirty block copies
456 * before they are written to stable storage.  By definition,
457 * they are "ref'd" and are considered part of arc_mru
458 * that cannot be freed.  Generally, they will aquire a DVA
459 * as they are written and migrate onto the arc_mru list.
460 *
461 * The ARC_l2c_only state is for buffers that are in the second
462 * level ARC but no longer in any of the ARC_m* lists.  The second
463 * level ARC itself may also contain buffers that are in any of
464 * the ARC_m* states - meaning that a buffer can exist in two
465 * places.  The reason for the ARC_l2c_only state is to keep the
466 * buffer header in the hash table, so that reads that hit the
467 * second level ARC benefit from these fast lookups.
468 */
469
470typedef struct arc_state {
471	/*
472	 * list of evictable buffers
473	 */
474	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
475	/*
476	 * total amount of evictable data in this state
477	 */
478	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
479	/*
480	 * total amount of data in this state; this includes: evictable,
481	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
482	 */
483	refcount_t arcs_size;
484} arc_state_t;
485
486/* The 6 states: */
487static arc_state_t ARC_anon;
488static arc_state_t ARC_mru;
489static arc_state_t ARC_mru_ghost;
490static arc_state_t ARC_mfu;
491static arc_state_t ARC_mfu_ghost;
492static arc_state_t ARC_l2c_only;
493
494typedef struct arc_stats {
495	kstat_named_t arcstat_hits;
496	kstat_named_t arcstat_misses;
497	kstat_named_t arcstat_demand_data_hits;
498	kstat_named_t arcstat_demand_data_misses;
499	kstat_named_t arcstat_demand_metadata_hits;
500	kstat_named_t arcstat_demand_metadata_misses;
501	kstat_named_t arcstat_prefetch_data_hits;
502	kstat_named_t arcstat_prefetch_data_misses;
503	kstat_named_t arcstat_prefetch_metadata_hits;
504	kstat_named_t arcstat_prefetch_metadata_misses;
505	kstat_named_t arcstat_mru_hits;
506	kstat_named_t arcstat_mru_ghost_hits;
507	kstat_named_t arcstat_mfu_hits;
508	kstat_named_t arcstat_mfu_ghost_hits;
509	kstat_named_t arcstat_allocated;
510	kstat_named_t arcstat_deleted;
511	/*
512	 * Number of buffers that could not be evicted because the hash lock
513	 * was held by another thread.  The lock may not necessarily be held
514	 * by something using the same buffer, since hash locks are shared
515	 * by multiple buffers.
516	 */
517	kstat_named_t arcstat_mutex_miss;
518	/*
519	 * Number of buffers skipped because they have I/O in progress, are
520	 * indrect prefetch buffers that have not lived long enough, or are
521	 * not from the spa we're trying to evict from.
522	 */
523	kstat_named_t arcstat_evict_skip;
524	/*
525	 * Number of times arc_evict_state() was unable to evict enough
526	 * buffers to reach it's target amount.
527	 */
528	kstat_named_t arcstat_evict_not_enough;
529	kstat_named_t arcstat_evict_l2_cached;
530	kstat_named_t arcstat_evict_l2_eligible;
531	kstat_named_t arcstat_evict_l2_ineligible;
532	kstat_named_t arcstat_evict_l2_skip;
533	kstat_named_t arcstat_hash_elements;
534	kstat_named_t arcstat_hash_elements_max;
535	kstat_named_t arcstat_hash_collisions;
536	kstat_named_t arcstat_hash_chains;
537	kstat_named_t arcstat_hash_chain_max;
538	kstat_named_t arcstat_p;
539	kstat_named_t arcstat_c;
540	kstat_named_t arcstat_c_min;
541	kstat_named_t arcstat_c_max;
542	kstat_named_t arcstat_size;
543	/*
544	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata.
545	 * Note that the compressed bytes may match the uncompressed bytes
546	 * if the block is either not compressed or compressed arc is disabled.
547	 */
548	kstat_named_t arcstat_compressed_size;
549	/*
550	 * Uncompressed size of the data stored in b_pdata. If compressed
551	 * arc is disabled then this value will be identical to the stat
552	 * above.
553	 */
554	kstat_named_t arcstat_uncompressed_size;
555	/*
556	 * Number of bytes stored in all the arc_buf_t's. This is classified
557	 * as "overhead" since this data is typically short-lived and will
558	 * be evicted from the arc when it becomes unreferenced unless the
559	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
560	 * values have been set (see comment in dbuf.c for more information).
561	 */
562	kstat_named_t arcstat_overhead_size;
563	/*
564	 * Number of bytes consumed by internal ARC structures necessary
565	 * for tracking purposes; these structures are not actually
566	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
567	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
568	 * caches), and arc_buf_t structures (allocated via arc_buf_t
569	 * cache).
570	 */
571	kstat_named_t arcstat_hdr_size;
572	/*
573	 * Number of bytes consumed by ARC buffers of type equal to
574	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
575	 * on disk user data (e.g. plain file contents).
576	 */
577	kstat_named_t arcstat_data_size;
578	/*
579	 * Number of bytes consumed by ARC buffers of type equal to
580	 * ARC_BUFC_METADATA. This is generally consumed by buffers
581	 * backing on disk data that is used for internal ZFS
582	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
583	 */
584	kstat_named_t arcstat_metadata_size;
585	/*
586	 * Number of bytes consumed by various buffers and structures
587	 * not actually backed with ARC buffers. This includes bonus
588	 * buffers (allocated directly via zio_buf_* functions),
589	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
590	 * cache), and dnode_t structures (allocated via dnode_t cache).
591	 */
592	kstat_named_t arcstat_other_size;
593	/*
594	 * Total number of bytes consumed by ARC buffers residing in the
595	 * arc_anon state. This includes *all* buffers in the arc_anon
596	 * state; e.g. data, metadata, evictable, and unevictable buffers
597	 * are all included in this value.
598	 */
599	kstat_named_t arcstat_anon_size;
600	/*
601	 * Number of bytes consumed by ARC buffers that meet the
602	 * following criteria: backing buffers of type ARC_BUFC_DATA,
603	 * residing in the arc_anon state, and are eligible for eviction
604	 * (e.g. have no outstanding holds on the buffer).
605	 */
606	kstat_named_t arcstat_anon_evictable_data;
607	/*
608	 * Number of bytes consumed by ARC buffers that meet the
609	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
610	 * residing in the arc_anon state, and are eligible for eviction
611	 * (e.g. have no outstanding holds on the buffer).
612	 */
613	kstat_named_t arcstat_anon_evictable_metadata;
614	/*
615	 * Total number of bytes consumed by ARC buffers residing in the
616	 * arc_mru state. This includes *all* buffers in the arc_mru
617	 * state; e.g. data, metadata, evictable, and unevictable buffers
618	 * are all included in this value.
619	 */
620	kstat_named_t arcstat_mru_size;
621	/*
622	 * Number of bytes consumed by ARC buffers that meet the
623	 * following criteria: backing buffers of type ARC_BUFC_DATA,
624	 * residing in the arc_mru state, and are eligible for eviction
625	 * (e.g. have no outstanding holds on the buffer).
626	 */
627	kstat_named_t arcstat_mru_evictable_data;
628	/*
629	 * Number of bytes consumed by ARC buffers that meet the
630	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
631	 * residing in the arc_mru state, and are eligible for eviction
632	 * (e.g. have no outstanding holds on the buffer).
633	 */
634	kstat_named_t arcstat_mru_evictable_metadata;
635	/*
636	 * Total number of bytes that *would have been* consumed by ARC
637	 * buffers in the arc_mru_ghost state. The key thing to note
638	 * here, is the fact that this size doesn't actually indicate
639	 * RAM consumption. The ghost lists only consist of headers and
640	 * don't actually have ARC buffers linked off of these headers.
641	 * Thus, *if* the headers had associated ARC buffers, these
642	 * buffers *would have* consumed this number of bytes.
643	 */
644	kstat_named_t arcstat_mru_ghost_size;
645	/*
646	 * Number of bytes that *would have been* consumed by ARC
647	 * buffers that are eligible for eviction, of type
648	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
649	 */
650	kstat_named_t arcstat_mru_ghost_evictable_data;
651	/*
652	 * Number of bytes that *would have been* consumed by ARC
653	 * buffers that are eligible for eviction, of type
654	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
655	 */
656	kstat_named_t arcstat_mru_ghost_evictable_metadata;
657	/*
658	 * Total number of bytes consumed by ARC buffers residing in the
659	 * arc_mfu state. This includes *all* buffers in the arc_mfu
660	 * state; e.g. data, metadata, evictable, and unevictable buffers
661	 * are all included in this value.
662	 */
663	kstat_named_t arcstat_mfu_size;
664	/*
665	 * Number of bytes consumed by ARC buffers that are eligible for
666	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
667	 * state.
668	 */
669	kstat_named_t arcstat_mfu_evictable_data;
670	/*
671	 * Number of bytes consumed by ARC buffers that are eligible for
672	 * eviction, of type ARC_BUFC_METADATA, and reside in the
673	 * arc_mfu state.
674	 */
675	kstat_named_t arcstat_mfu_evictable_metadata;
676	/*
677	 * Total number of bytes that *would have been* consumed by ARC
678	 * buffers in the arc_mfu_ghost state. See the comment above
679	 * arcstat_mru_ghost_size for more details.
680	 */
681	kstat_named_t arcstat_mfu_ghost_size;
682	/*
683	 * Number of bytes that *would have been* consumed by ARC
684	 * buffers that are eligible for eviction, of type
685	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
686	 */
687	kstat_named_t arcstat_mfu_ghost_evictable_data;
688	/*
689	 * Number of bytes that *would have been* consumed by ARC
690	 * buffers that are eligible for eviction, of type
691	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
692	 */
693	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
694	kstat_named_t arcstat_l2_hits;
695	kstat_named_t arcstat_l2_misses;
696	kstat_named_t arcstat_l2_feeds;
697	kstat_named_t arcstat_l2_rw_clash;
698	kstat_named_t arcstat_l2_read_bytes;
699	kstat_named_t arcstat_l2_write_bytes;
700	kstat_named_t arcstat_l2_writes_sent;
701	kstat_named_t arcstat_l2_writes_done;
702	kstat_named_t arcstat_l2_writes_error;
703	kstat_named_t arcstat_l2_writes_lock_retry;
704	kstat_named_t arcstat_l2_evict_lock_retry;
705	kstat_named_t arcstat_l2_evict_reading;
706	kstat_named_t arcstat_l2_evict_l1cached;
707	kstat_named_t arcstat_l2_free_on_write;
708	kstat_named_t arcstat_l2_abort_lowmem;
709	kstat_named_t arcstat_l2_cksum_bad;
710	kstat_named_t arcstat_l2_io_error;
711	kstat_named_t arcstat_l2_size;
712	kstat_named_t arcstat_l2_asize;
713	kstat_named_t arcstat_l2_hdr_size;
714	kstat_named_t arcstat_l2_padding_needed;
715	kstat_named_t arcstat_l2_write_trylock_fail;
716	kstat_named_t arcstat_l2_write_passed_headroom;
717	kstat_named_t arcstat_l2_write_spa_mismatch;
718	kstat_named_t arcstat_l2_write_in_l2;
719	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
720	kstat_named_t arcstat_l2_write_not_cacheable;
721	kstat_named_t arcstat_l2_write_full;
722	kstat_named_t arcstat_l2_write_buffer_iter;
723	kstat_named_t arcstat_l2_write_pios;
724	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
725	kstat_named_t arcstat_l2_write_buffer_list_iter;
726	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
727	kstat_named_t arcstat_memory_throttle_count;
728	kstat_named_t arcstat_meta_used;
729	kstat_named_t arcstat_meta_limit;
730	kstat_named_t arcstat_meta_max;
731	kstat_named_t arcstat_meta_min;
732	kstat_named_t arcstat_sync_wait_for_async;
733	kstat_named_t arcstat_demand_hit_predictive_prefetch;
734} arc_stats_t;
735
736static arc_stats_t arc_stats = {
737	{ "hits",			KSTAT_DATA_UINT64 },
738	{ "misses",			KSTAT_DATA_UINT64 },
739	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
740	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
741	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
742	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
743	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
744	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
745	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
746	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
747	{ "mru_hits",			KSTAT_DATA_UINT64 },
748	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
749	{ "mfu_hits",			KSTAT_DATA_UINT64 },
750	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
751	{ "allocated",			KSTAT_DATA_UINT64 },
752	{ "deleted",			KSTAT_DATA_UINT64 },
753	{ "mutex_miss",			KSTAT_DATA_UINT64 },
754	{ "evict_skip",			KSTAT_DATA_UINT64 },
755	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
756	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
757	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
758	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
759	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
760	{ "hash_elements",		KSTAT_DATA_UINT64 },
761	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
762	{ "hash_collisions",		KSTAT_DATA_UINT64 },
763	{ "hash_chains",		KSTAT_DATA_UINT64 },
764	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
765	{ "p",				KSTAT_DATA_UINT64 },
766	{ "c",				KSTAT_DATA_UINT64 },
767	{ "c_min",			KSTAT_DATA_UINT64 },
768	{ "c_max",			KSTAT_DATA_UINT64 },
769	{ "size",			KSTAT_DATA_UINT64 },
770	{ "compressed_size",		KSTAT_DATA_UINT64 },
771	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
772	{ "overhead_size",		KSTAT_DATA_UINT64 },
773	{ "hdr_size",			KSTAT_DATA_UINT64 },
774	{ "data_size",			KSTAT_DATA_UINT64 },
775	{ "metadata_size",		KSTAT_DATA_UINT64 },
776	{ "other_size",			KSTAT_DATA_UINT64 },
777	{ "anon_size",			KSTAT_DATA_UINT64 },
778	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
779	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
780	{ "mru_size",			KSTAT_DATA_UINT64 },
781	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
782	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
783	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
784	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
785	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
786	{ "mfu_size",			KSTAT_DATA_UINT64 },
787	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
788	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
789	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
790	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
791	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
792	{ "l2_hits",			KSTAT_DATA_UINT64 },
793	{ "l2_misses",			KSTAT_DATA_UINT64 },
794	{ "l2_feeds",			KSTAT_DATA_UINT64 },
795	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
796	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
797	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
798	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
799	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
800	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
801	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
802	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
803	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
804	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
805	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
806	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
807	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
808	{ "l2_io_error",		KSTAT_DATA_UINT64 },
809	{ "l2_size",			KSTAT_DATA_UINT64 },
810	{ "l2_asize",			KSTAT_DATA_UINT64 },
811	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
812	{ "l2_padding_needed",		KSTAT_DATA_UINT64 },
813	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
814	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
815	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
816	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
817	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
818	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
819	{ "l2_write_full",		KSTAT_DATA_UINT64 },
820	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
821	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
822	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
823	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
824	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
825	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
826	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
827	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
828	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
829	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
830	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
831	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
832};
833
834#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
835
836#define	ARCSTAT_INCR(stat, val) \
837	atomic_add_64(&arc_stats.stat.value.ui64, (val))
838
839#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
840#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
841
842#define	ARCSTAT_MAX(stat, val) {					\
843	uint64_t m;							\
844	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
845	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
846		continue;						\
847}
848
849#define	ARCSTAT_MAXSTAT(stat) \
850	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
851
852/*
853 * We define a macro to allow ARC hits/misses to be easily broken down by
854 * two separate conditions, giving a total of four different subtypes for
855 * each of hits and misses (so eight statistics total).
856 */
857#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
858	if (cond1) {							\
859		if (cond2) {						\
860			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
861		} else {						\
862			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
863		}							\
864	} else {							\
865		if (cond2) {						\
866			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
867		} else {						\
868			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
869		}							\
870	}
871
872kstat_t			*arc_ksp;
873static arc_state_t	*arc_anon;
874static arc_state_t	*arc_mru;
875static arc_state_t	*arc_mru_ghost;
876static arc_state_t	*arc_mfu;
877static arc_state_t	*arc_mfu_ghost;
878static arc_state_t	*arc_l2c_only;
879
880/*
881 * There are several ARC variables that are critical to export as kstats --
882 * but we don't want to have to grovel around in the kstat whenever we wish to
883 * manipulate them.  For these variables, we therefore define them to be in
884 * terms of the statistic variable.  This assures that we are not introducing
885 * the possibility of inconsistency by having shadow copies of the variables,
886 * while still allowing the code to be readable.
887 */
888#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
889#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
890#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
891#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
892#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
893#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
894#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
895#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
896#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
897
898/* compressed size of entire arc */
899#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
900/* uncompressed size of entire arc */
901#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
902/* number of bytes in the arc from arc_buf_t's */
903#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
904
905static int		arc_no_grow;	/* Don't try to grow cache size */
906static uint64_t		arc_tempreserve;
907static uint64_t		arc_loaned_bytes;
908
909typedef struct arc_callback arc_callback_t;
910
911struct arc_callback {
912	void			*acb_private;
913	arc_done_func_t		*acb_done;
914	arc_buf_t		*acb_buf;
915	zio_t			*acb_zio_dummy;
916	arc_callback_t		*acb_next;
917};
918
919typedef struct arc_write_callback arc_write_callback_t;
920
921struct arc_write_callback {
922	void		*awcb_private;
923	arc_done_func_t	*awcb_ready;
924	arc_done_func_t	*awcb_children_ready;
925	arc_done_func_t	*awcb_physdone;
926	arc_done_func_t	*awcb_done;
927	arc_buf_t	*awcb_buf;
928};
929
930/*
931 * ARC buffers are separated into multiple structs as a memory saving measure:
932 *   - Common fields struct, always defined, and embedded within it:
933 *       - L2-only fields, always allocated but undefined when not in L2ARC
934 *       - L1-only fields, only allocated when in L1ARC
935 *
936 *           Buffer in L1                     Buffer only in L2
937 *    +------------------------+          +------------------------+
938 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
939 *    |                        |          |                        |
940 *    |                        |          |                        |
941 *    |                        |          |                        |
942 *    +------------------------+          +------------------------+
943 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
944 *    | (undefined if L1-only) |          |                        |
945 *    +------------------------+          +------------------------+
946 *    | l1arc_buf_hdr_t        |
947 *    |                        |
948 *    |                        |
949 *    |                        |
950 *    |                        |
951 *    +------------------------+
952 *
953 * Because it's possible for the L2ARC to become extremely large, we can wind
954 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
955 * is minimized by only allocating the fields necessary for an L1-cached buffer
956 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
957 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
958 * words in pointers. arc_hdr_realloc() is used to switch a header between
959 * these two allocation states.
960 */
961typedef struct l1arc_buf_hdr {
962	kmutex_t		b_freeze_lock;
963	zio_cksum_t		*b_freeze_cksum;
964#ifdef ZFS_DEBUG
965	/*
966	 * used for debugging wtih kmem_flags - by allocating and freeing
967	 * b_thawed when the buffer is thawed, we get a record of the stack
968	 * trace that thawed it.
969	 */
970	void			*b_thawed;
971#endif
972
973	arc_buf_t		*b_buf;
974	uint32_t		b_bufcnt;
975	/* for waiting on writes to complete */
976	kcondvar_t		b_cv;
977	uint8_t			b_byteswap;
978
979	/* protected by arc state mutex */
980	arc_state_t		*b_state;
981	multilist_node_t	b_arc_node;
982
983	/* updated atomically */
984	clock_t			b_arc_access;
985
986	/* self protecting */
987	refcount_t		b_refcnt;
988
989	arc_callback_t		*b_acb;
990	void			*b_pdata;
991} l1arc_buf_hdr_t;
992
993typedef struct l2arc_dev l2arc_dev_t;
994
995typedef struct l2arc_buf_hdr {
996	/* protected by arc_buf_hdr mutex */
997	l2arc_dev_t		*b_dev;		/* L2ARC device */
998	uint64_t		b_daddr;	/* disk address, offset byte */
999
1000	list_node_t		b_l2node;
1001} l2arc_buf_hdr_t;
1002
1003struct arc_buf_hdr {
1004	/* protected by hash lock */
1005	dva_t			b_dva;
1006	uint64_t		b_birth;
1007
1008	arc_buf_contents_t	b_type;
1009	arc_buf_hdr_t		*b_hash_next;
1010	arc_flags_t		b_flags;
1011
1012	/*
1013	 * This field stores the size of the data buffer after
1014	 * compression, and is set in the arc's zio completion handlers.
1015	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1016	 *
1017	 * While the block pointers can store up to 32MB in their psize
1018	 * field, we can only store up to 32MB minus 512B. This is due
1019	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1020	 * a field of zeros represents 512B in the bp). We can't use a
1021	 * bias of 1 since we need to reserve a psize of zero, here, to
1022	 * represent holes and embedded blocks.
1023	 *
1024	 * This isn't a problem in practice, since the maximum size of a
1025	 * buffer is limited to 16MB, so we never need to store 32MB in
1026	 * this field. Even in the upstream illumos code base, the
1027	 * maximum size of a buffer is limited to 16MB.
1028	 */
1029	uint16_t		b_psize;
1030
1031	/*
1032	 * This field stores the size of the data buffer before
1033	 * compression, and cannot change once set. It is in units
1034	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1035	 */
1036	uint16_t		b_lsize;	/* immutable */
1037	uint64_t		b_spa;		/* immutable */
1038
1039	/* L2ARC fields. Undefined when not in L2ARC. */
1040	l2arc_buf_hdr_t		b_l2hdr;
1041	/* L1ARC fields. Undefined when in l2arc_only state */
1042	l1arc_buf_hdr_t		b_l1hdr;
1043};
1044
1045#if defined(__FreeBSD__) && defined(_KERNEL)
1046static int
1047sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1048{
1049	uint64_t val;
1050	int err;
1051
1052	val = arc_meta_limit;
1053	err = sysctl_handle_64(oidp, &val, 0, req);
1054	if (err != 0 || req->newptr == NULL)
1055		return (err);
1056
1057        if (val <= 0 || val > arc_c_max)
1058		return (EINVAL);
1059
1060	arc_meta_limit = val;
1061	return (0);
1062}
1063
1064static int
1065sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1066{
1067	uint64_t val;
1068	int err;
1069
1070	val = zfs_arc_max;
1071	err = sysctl_handle_64(oidp, &val, 0, req);
1072	if (err != 0 || req->newptr == NULL)
1073		return (err);
1074
1075	if (zfs_arc_max == 0) {
1076		/* Loader tunable so blindly set */
1077		zfs_arc_max = val;
1078		return (0);
1079	}
1080
1081	if (val < arc_abs_min || val > kmem_size())
1082		return (EINVAL);
1083	if (val < arc_c_min)
1084		return (EINVAL);
1085	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1086		return (EINVAL);
1087
1088	arc_c_max = val;
1089
1090	arc_c = arc_c_max;
1091        arc_p = (arc_c >> 1);
1092
1093	if (zfs_arc_meta_limit == 0) {
1094		/* limit meta-data to 1/4 of the arc capacity */
1095		arc_meta_limit = arc_c_max / 4;
1096	}
1097
1098	/* if kmem_flags are set, lets try to use less memory */
1099	if (kmem_debugging())
1100		arc_c = arc_c / 2;
1101
1102	zfs_arc_max = arc_c;
1103
1104	return (0);
1105}
1106
1107static int
1108sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1109{
1110	uint64_t val;
1111	int err;
1112
1113	val = zfs_arc_min;
1114	err = sysctl_handle_64(oidp, &val, 0, req);
1115	if (err != 0 || req->newptr == NULL)
1116		return (err);
1117
1118	if (zfs_arc_min == 0) {
1119		/* Loader tunable so blindly set */
1120		zfs_arc_min = val;
1121		return (0);
1122	}
1123
1124	if (val < arc_abs_min || val > arc_c_max)
1125		return (EINVAL);
1126
1127	arc_c_min = val;
1128
1129	if (zfs_arc_meta_min == 0)
1130                arc_meta_min = arc_c_min / 2;
1131
1132	if (arc_c < arc_c_min)
1133                arc_c = arc_c_min;
1134
1135	zfs_arc_min = arc_c_min;
1136
1137	return (0);
1138}
1139#endif
1140
1141#define	GHOST_STATE(state)	\
1142	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1143	(state) == arc_l2c_only)
1144
1145#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1146#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1147#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1148#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1149#define	HDR_COMPRESSION_ENABLED(hdr)	\
1150	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1151
1152#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1153#define	HDR_L2_READING(hdr)	\
1154	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1155	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1156#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1157#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1158#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1159#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1160
1161#define	HDR_ISTYPE_METADATA(hdr)	\
1162	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1163#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1164
1165#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1166#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1167
1168/* For storing compression mode in b_flags */
1169#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1170
1171#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1172	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1173#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1174	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1175
1176#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1177
1178/*
1179 * Other sizes
1180 */
1181
1182#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1183#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1184
1185/*
1186 * Hash table routines
1187 */
1188
1189#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1190
1191struct ht_lock {
1192	kmutex_t	ht_lock;
1193#ifdef _KERNEL
1194	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1195#endif
1196};
1197
1198#define	BUF_LOCKS 256
1199typedef struct buf_hash_table {
1200	uint64_t ht_mask;
1201	arc_buf_hdr_t **ht_table;
1202	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1203} buf_hash_table_t;
1204
1205static buf_hash_table_t buf_hash_table;
1206
1207#define	BUF_HASH_INDEX(spa, dva, birth) \
1208	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1209#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1210#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1211#define	HDR_LOCK(hdr) \
1212	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1213
1214uint64_t zfs_crc64_table[256];
1215
1216/*
1217 * Level 2 ARC
1218 */
1219
1220#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1221#define	L2ARC_HEADROOM		2			/* num of writes */
1222/*
1223 * If we discover during ARC scan any buffers to be compressed, we boost
1224 * our headroom for the next scanning cycle by this percentage multiple.
1225 */
1226#define	L2ARC_HEADROOM_BOOST	200
1227#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1228#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1229
1230#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1231#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1232
1233/* L2ARC Performance Tunables */
1234uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1235uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1236uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1237uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1238uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1239uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1240boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1241boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1242boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1243
1244SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1245    &l2arc_write_max, 0, "max write size");
1246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1247    &l2arc_write_boost, 0, "extra write during warmup");
1248SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1249    &l2arc_headroom, 0, "number of dev writes");
1250SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1251    &l2arc_feed_secs, 0, "interval seconds");
1252SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1253    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1254
1255SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1256    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1257SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1258    &l2arc_feed_again, 0, "turbo warmup");
1259SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1260    &l2arc_norw, 0, "no reads during writes");
1261
1262SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1263    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1264SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1265    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1266    "size of anonymous state");
1267SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1268    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1269    "size of anonymous state");
1270
1271SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1272    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1273SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1274    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1275    "size of metadata in mru state");
1276SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1277    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1278    "size of data in mru state");
1279
1280SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1281    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1282SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1283    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1284    "size of metadata in mru ghost state");
1285SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1286    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1287    "size of data in mru ghost state");
1288
1289SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1290    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1291SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1292    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1293    "size of metadata in mfu state");
1294SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1295    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1296    "size of data in mfu state");
1297
1298SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1299    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1300SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1301    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1302    "size of metadata in mfu ghost state");
1303SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1304    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1305    "size of data in mfu ghost state");
1306
1307SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1308    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1309
1310/*
1311 * L2ARC Internals
1312 */
1313struct l2arc_dev {
1314	vdev_t			*l2ad_vdev;	/* vdev */
1315	spa_t			*l2ad_spa;	/* spa */
1316	uint64_t		l2ad_hand;	/* next write location */
1317	uint64_t		l2ad_start;	/* first addr on device */
1318	uint64_t		l2ad_end;	/* last addr on device */
1319	boolean_t		l2ad_first;	/* first sweep through */
1320	boolean_t		l2ad_writing;	/* currently writing */
1321	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1322	list_t			l2ad_buflist;	/* buffer list */
1323	list_node_t		l2ad_node;	/* device list node */
1324	refcount_t		l2ad_alloc;	/* allocated bytes */
1325};
1326
1327static list_t L2ARC_dev_list;			/* device list */
1328static list_t *l2arc_dev_list;			/* device list pointer */
1329static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1330static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1331static list_t L2ARC_free_on_write;		/* free after write buf list */
1332static list_t *l2arc_free_on_write;		/* free after write list ptr */
1333static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1334static uint64_t l2arc_ndev;			/* number of devices */
1335
1336typedef struct l2arc_read_callback {
1337	arc_buf_hdr_t		*l2rcb_hdr;		/* read buffer */
1338	blkptr_t		l2rcb_bp;		/* original blkptr */
1339	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1340	int			l2rcb_flags;		/* original flags */
1341	void			*l2rcb_data;		/* temporary buffer */
1342} l2arc_read_callback_t;
1343
1344typedef struct l2arc_write_callback {
1345	l2arc_dev_t	*l2wcb_dev;		/* device info */
1346	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1347} l2arc_write_callback_t;
1348
1349typedef struct l2arc_data_free {
1350	/* protected by l2arc_free_on_write_mtx */
1351	void		*l2df_data;
1352	size_t		l2df_size;
1353	arc_buf_contents_t l2df_type;
1354	list_node_t	l2df_list_node;
1355} l2arc_data_free_t;
1356
1357static kmutex_t l2arc_feed_thr_lock;
1358static kcondvar_t l2arc_feed_thr_cv;
1359static uint8_t l2arc_thread_exit;
1360
1361static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1362static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1363static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr);
1364static void arc_hdr_alloc_pdata(arc_buf_hdr_t *);
1365static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1366static boolean_t arc_is_overflowing();
1367static void arc_buf_watch(arc_buf_t *);
1368
1369static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1370static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1371static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1372static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1373
1374static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1375static void l2arc_read_done(zio_t *);
1376
1377static void
1378l2arc_trim(const arc_buf_hdr_t *hdr)
1379{
1380	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1381
1382	ASSERT(HDR_HAS_L2HDR(hdr));
1383	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1384
1385	if (HDR_GET_PSIZE(hdr) != 0) {
1386		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1387		    HDR_GET_PSIZE(hdr), 0);
1388	}
1389}
1390
1391static uint64_t
1392buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1393{
1394	uint8_t *vdva = (uint8_t *)dva;
1395	uint64_t crc = -1ULL;
1396	int i;
1397
1398	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1399
1400	for (i = 0; i < sizeof (dva_t); i++)
1401		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1402
1403	crc ^= (spa>>8) ^ birth;
1404
1405	return (crc);
1406}
1407
1408#define	HDR_EMPTY(hdr)						\
1409	((hdr)->b_dva.dva_word[0] == 0 &&			\
1410	(hdr)->b_dva.dva_word[1] == 0)
1411
1412#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1413	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1414	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1415	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1416
1417static void
1418buf_discard_identity(arc_buf_hdr_t *hdr)
1419{
1420	hdr->b_dva.dva_word[0] = 0;
1421	hdr->b_dva.dva_word[1] = 0;
1422	hdr->b_birth = 0;
1423}
1424
1425static arc_buf_hdr_t *
1426buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1427{
1428	const dva_t *dva = BP_IDENTITY(bp);
1429	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1430	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1431	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1432	arc_buf_hdr_t *hdr;
1433
1434	mutex_enter(hash_lock);
1435	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1436	    hdr = hdr->b_hash_next) {
1437		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1438			*lockp = hash_lock;
1439			return (hdr);
1440		}
1441	}
1442	mutex_exit(hash_lock);
1443	*lockp = NULL;
1444	return (NULL);
1445}
1446
1447/*
1448 * Insert an entry into the hash table.  If there is already an element
1449 * equal to elem in the hash table, then the already existing element
1450 * will be returned and the new element will not be inserted.
1451 * Otherwise returns NULL.
1452 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1453 */
1454static arc_buf_hdr_t *
1455buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1456{
1457	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1458	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1459	arc_buf_hdr_t *fhdr;
1460	uint32_t i;
1461
1462	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1463	ASSERT(hdr->b_birth != 0);
1464	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1465
1466	if (lockp != NULL) {
1467		*lockp = hash_lock;
1468		mutex_enter(hash_lock);
1469	} else {
1470		ASSERT(MUTEX_HELD(hash_lock));
1471	}
1472
1473	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1474	    fhdr = fhdr->b_hash_next, i++) {
1475		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1476			return (fhdr);
1477	}
1478
1479	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1480	buf_hash_table.ht_table[idx] = hdr;
1481	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1482
1483	/* collect some hash table performance data */
1484	if (i > 0) {
1485		ARCSTAT_BUMP(arcstat_hash_collisions);
1486		if (i == 1)
1487			ARCSTAT_BUMP(arcstat_hash_chains);
1488
1489		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1490	}
1491
1492	ARCSTAT_BUMP(arcstat_hash_elements);
1493	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1494
1495	return (NULL);
1496}
1497
1498static void
1499buf_hash_remove(arc_buf_hdr_t *hdr)
1500{
1501	arc_buf_hdr_t *fhdr, **hdrp;
1502	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1503
1504	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1505	ASSERT(HDR_IN_HASH_TABLE(hdr));
1506
1507	hdrp = &buf_hash_table.ht_table[idx];
1508	while ((fhdr = *hdrp) != hdr) {
1509		ASSERT3P(fhdr, !=, NULL);
1510		hdrp = &fhdr->b_hash_next;
1511	}
1512	*hdrp = hdr->b_hash_next;
1513	hdr->b_hash_next = NULL;
1514	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1515
1516	/* collect some hash table performance data */
1517	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1518
1519	if (buf_hash_table.ht_table[idx] &&
1520	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1521		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1522}
1523
1524/*
1525 * Global data structures and functions for the buf kmem cache.
1526 */
1527static kmem_cache_t *hdr_full_cache;
1528static kmem_cache_t *hdr_l2only_cache;
1529static kmem_cache_t *buf_cache;
1530
1531static void
1532buf_fini(void)
1533{
1534	int i;
1535
1536	kmem_free(buf_hash_table.ht_table,
1537	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1538	for (i = 0; i < BUF_LOCKS; i++)
1539		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1540	kmem_cache_destroy(hdr_full_cache);
1541	kmem_cache_destroy(hdr_l2only_cache);
1542	kmem_cache_destroy(buf_cache);
1543}
1544
1545/*
1546 * Constructor callback - called when the cache is empty
1547 * and a new buf is requested.
1548 */
1549/* ARGSUSED */
1550static int
1551hdr_full_cons(void *vbuf, void *unused, int kmflag)
1552{
1553	arc_buf_hdr_t *hdr = vbuf;
1554
1555	bzero(hdr, HDR_FULL_SIZE);
1556	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1557	refcount_create(&hdr->b_l1hdr.b_refcnt);
1558	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1559	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1560	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1561
1562	return (0);
1563}
1564
1565/* ARGSUSED */
1566static int
1567hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1568{
1569	arc_buf_hdr_t *hdr = vbuf;
1570
1571	bzero(hdr, HDR_L2ONLY_SIZE);
1572	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1573
1574	return (0);
1575}
1576
1577/* ARGSUSED */
1578static int
1579buf_cons(void *vbuf, void *unused, int kmflag)
1580{
1581	arc_buf_t *buf = vbuf;
1582
1583	bzero(buf, sizeof (arc_buf_t));
1584	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1585	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1586
1587	return (0);
1588}
1589
1590/*
1591 * Destructor callback - called when a cached buf is
1592 * no longer required.
1593 */
1594/* ARGSUSED */
1595static void
1596hdr_full_dest(void *vbuf, void *unused)
1597{
1598	arc_buf_hdr_t *hdr = vbuf;
1599
1600	ASSERT(HDR_EMPTY(hdr));
1601	cv_destroy(&hdr->b_l1hdr.b_cv);
1602	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1603	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1604	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1605	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1606}
1607
1608/* ARGSUSED */
1609static void
1610hdr_l2only_dest(void *vbuf, void *unused)
1611{
1612	arc_buf_hdr_t *hdr = vbuf;
1613
1614	ASSERT(HDR_EMPTY(hdr));
1615	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1616}
1617
1618/* ARGSUSED */
1619static void
1620buf_dest(void *vbuf, void *unused)
1621{
1622	arc_buf_t *buf = vbuf;
1623
1624	mutex_destroy(&buf->b_evict_lock);
1625	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1626}
1627
1628/*
1629 * Reclaim callback -- invoked when memory is low.
1630 */
1631/* ARGSUSED */
1632static void
1633hdr_recl(void *unused)
1634{
1635	dprintf("hdr_recl called\n");
1636	/*
1637	 * umem calls the reclaim func when we destroy the buf cache,
1638	 * which is after we do arc_fini().
1639	 */
1640	if (!arc_dead)
1641		cv_signal(&arc_reclaim_thread_cv);
1642}
1643
1644static void
1645buf_init(void)
1646{
1647	uint64_t *ct;
1648	uint64_t hsize = 1ULL << 12;
1649	int i, j;
1650
1651	/*
1652	 * The hash table is big enough to fill all of physical memory
1653	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1654	 * By default, the table will take up
1655	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1656	 */
1657	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1658		hsize <<= 1;
1659retry:
1660	buf_hash_table.ht_mask = hsize - 1;
1661	buf_hash_table.ht_table =
1662	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1663	if (buf_hash_table.ht_table == NULL) {
1664		ASSERT(hsize > (1ULL << 8));
1665		hsize >>= 1;
1666		goto retry;
1667	}
1668
1669	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1670	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1671	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1672	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1673	    NULL, NULL, 0);
1674	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1675	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1676
1677	for (i = 0; i < 256; i++)
1678		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1679			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1680
1681	for (i = 0; i < BUF_LOCKS; i++) {
1682		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1683		    NULL, MUTEX_DEFAULT, NULL);
1684	}
1685}
1686
1687#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1688
1689static inline boolean_t
1690arc_buf_is_shared(arc_buf_t *buf)
1691{
1692	boolean_t shared = (buf->b_data != NULL &&
1693	    buf->b_data == buf->b_hdr->b_l1hdr.b_pdata);
1694	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1695	return (shared);
1696}
1697
1698static inline void
1699arc_cksum_free(arc_buf_hdr_t *hdr)
1700{
1701	ASSERT(HDR_HAS_L1HDR(hdr));
1702	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1703	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1704		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1705		hdr->b_l1hdr.b_freeze_cksum = NULL;
1706	}
1707	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1708}
1709
1710static void
1711arc_cksum_verify(arc_buf_t *buf)
1712{
1713	arc_buf_hdr_t *hdr = buf->b_hdr;
1714	zio_cksum_t zc;
1715
1716	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1717		return;
1718
1719	ASSERT(HDR_HAS_L1HDR(hdr));
1720
1721	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1722	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1723		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1724		return;
1725	}
1726	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc);
1727	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1728		panic("buffer modified while frozen!");
1729	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1730}
1731
1732static boolean_t
1733arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1734{
1735	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1736	boolean_t valid_cksum;
1737
1738	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1739	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1740
1741	/*
1742	 * We rely on the blkptr's checksum to determine if the block
1743	 * is valid or not. When compressed arc is enabled, the l2arc
1744	 * writes the block to the l2arc just as it appears in the pool.
1745	 * This allows us to use the blkptr's checksum to validate the
1746	 * data that we just read off of the l2arc without having to store
1747	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1748	 * arc is disabled, then the data written to the l2arc is always
1749	 * uncompressed and won't match the block as it exists in the main
1750	 * pool. When this is the case, we must first compress it if it is
1751	 * compressed on the main pool before we can validate the checksum.
1752	 */
1753	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1754		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1755		uint64_t lsize = HDR_GET_LSIZE(hdr);
1756		uint64_t csize;
1757
1758		void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1759		csize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1760		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1761		if (csize < HDR_GET_PSIZE(hdr)) {
1762			/*
1763			 * Compressed blocks are always a multiple of the
1764			 * smallest ashift in the pool. Ideally, we would
1765			 * like to round up the csize to the next
1766			 * spa_min_ashift but that value may have changed
1767			 * since the block was last written. Instead,
1768			 * we rely on the fact that the hdr's psize
1769			 * was set to the psize of the block when it was
1770			 * last written. We set the csize to that value
1771			 * and zero out any part that should not contain
1772			 * data.
1773			 */
1774			bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1775			csize = HDR_GET_PSIZE(hdr);
1776		}
1777		zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1778	}
1779
1780	/*
1781	 * Block pointers always store the checksum for the logical data.
1782	 * If the block pointer has the gang bit set, then the checksum
1783	 * it represents is for the reconstituted data and not for an
1784	 * individual gang member. The zio pipeline, however, must be able to
1785	 * determine the checksum of each of the gang constituents so it
1786	 * treats the checksum comparison differently than what we need
1787	 * for l2arc blocks. This prevents us from using the
1788	 * zio_checksum_error() interface directly. Instead we must call the
1789	 * zio_checksum_error_impl() so that we can ensure the checksum is
1790	 * generated using the correct checksum algorithm and accounts for the
1791	 * logical I/O size and not just a gang fragment.
1792	 */
1793	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1794	    BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size,
1795	    zio->io_offset, NULL) == 0);
1796	zio_pop_transforms(zio);
1797	return (valid_cksum);
1798}
1799
1800static void
1801arc_cksum_compute(arc_buf_t *buf)
1802{
1803	arc_buf_hdr_t *hdr = buf->b_hdr;
1804
1805	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1806		return;
1807
1808	ASSERT(HDR_HAS_L1HDR(hdr));
1809	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1810	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1811		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1812		return;
1813	}
1814	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1815	    KM_SLEEP);
1816	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL,
1817	    hdr->b_l1hdr.b_freeze_cksum);
1818	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1819#ifdef illumos
1820	arc_buf_watch(buf);
1821#endif
1822}
1823
1824#ifdef illumos
1825#ifndef _KERNEL
1826typedef struct procctl {
1827	long cmd;
1828	prwatch_t prwatch;
1829} procctl_t;
1830#endif
1831
1832/* ARGSUSED */
1833static void
1834arc_buf_unwatch(arc_buf_t *buf)
1835{
1836#ifndef _KERNEL
1837	if (arc_watch) {
1838		int result;
1839		procctl_t ctl;
1840		ctl.cmd = PCWATCH;
1841		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1842		ctl.prwatch.pr_size = 0;
1843		ctl.prwatch.pr_wflags = 0;
1844		result = write(arc_procfd, &ctl, sizeof (ctl));
1845		ASSERT3U(result, ==, sizeof (ctl));
1846	}
1847#endif
1848}
1849
1850/* ARGSUSED */
1851static void
1852arc_buf_watch(arc_buf_t *buf)
1853{
1854#ifndef _KERNEL
1855	if (arc_watch) {
1856		int result;
1857		procctl_t ctl;
1858		ctl.cmd = PCWATCH;
1859		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1860		ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr);
1861		ctl.prwatch.pr_wflags = WA_WRITE;
1862		result = write(arc_procfd, &ctl, sizeof (ctl));
1863		ASSERT3U(result, ==, sizeof (ctl));
1864	}
1865#endif
1866}
1867#endif /* illumos */
1868
1869static arc_buf_contents_t
1870arc_buf_type(arc_buf_hdr_t *hdr)
1871{
1872	arc_buf_contents_t type;
1873	if (HDR_ISTYPE_METADATA(hdr)) {
1874		type = ARC_BUFC_METADATA;
1875	} else {
1876		type = ARC_BUFC_DATA;
1877	}
1878	VERIFY3U(hdr->b_type, ==, type);
1879	return (type);
1880}
1881
1882static uint32_t
1883arc_bufc_to_flags(arc_buf_contents_t type)
1884{
1885	switch (type) {
1886	case ARC_BUFC_DATA:
1887		/* metadata field is 0 if buffer contains normal data */
1888		return (0);
1889	case ARC_BUFC_METADATA:
1890		return (ARC_FLAG_BUFC_METADATA);
1891	default:
1892		break;
1893	}
1894	panic("undefined ARC buffer type!");
1895	return ((uint32_t)-1);
1896}
1897
1898void
1899arc_buf_thaw(arc_buf_t *buf)
1900{
1901	arc_buf_hdr_t *hdr = buf->b_hdr;
1902
1903	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1904		if (hdr->b_l1hdr.b_state != arc_anon)
1905			panic("modifying non-anon buffer!");
1906		if (HDR_IO_IN_PROGRESS(hdr))
1907			panic("modifying buffer while i/o in progress!");
1908		arc_cksum_verify(buf);
1909	}
1910
1911	ASSERT(HDR_HAS_L1HDR(hdr));
1912	arc_cksum_free(hdr);
1913
1914	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1915#ifdef ZFS_DEBUG
1916	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1917		if (hdr->b_l1hdr.b_thawed != NULL)
1918			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1919		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1920	}
1921#endif
1922
1923	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1924
1925#ifdef illumos
1926	arc_buf_unwatch(buf);
1927#endif
1928}
1929
1930void
1931arc_buf_freeze(arc_buf_t *buf)
1932{
1933	arc_buf_hdr_t *hdr = buf->b_hdr;
1934	kmutex_t *hash_lock;
1935
1936	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1937		return;
1938
1939	hash_lock = HDR_LOCK(hdr);
1940	mutex_enter(hash_lock);
1941
1942	ASSERT(HDR_HAS_L1HDR(hdr));
1943	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1944	    hdr->b_l1hdr.b_state == arc_anon);
1945	arc_cksum_compute(buf);
1946	mutex_exit(hash_lock);
1947
1948}
1949
1950/*
1951 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1952 * the following functions should be used to ensure that the flags are
1953 * updated in a thread-safe way. When manipulating the flags either
1954 * the hash_lock must be held or the hdr must be undiscoverable. This
1955 * ensures that we're not racing with any other threads when updating
1956 * the flags.
1957 */
1958static inline void
1959arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1960{
1961	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1962	hdr->b_flags |= flags;
1963}
1964
1965static inline void
1966arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1967{
1968	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1969	hdr->b_flags &= ~flags;
1970}
1971
1972/*
1973 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1974 * done in a special way since we have to clear and set bits
1975 * at the same time. Consumers that wish to set the compression bits
1976 * must use this function to ensure that the flags are updated in
1977 * thread-safe manner.
1978 */
1979static void
1980arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1981{
1982	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1983
1984	/*
1985	 * Holes and embedded blocks will always have a psize = 0 so
1986	 * we ignore the compression of the blkptr and set the
1987	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1988	 * Holes and embedded blocks remain anonymous so we don't
1989	 * want to uncompress them. Mark them as uncompressed.
1990	 */
1991	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1992		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1993		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1994		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1995		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1996	} else {
1997		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1998		HDR_SET_COMPRESS(hdr, cmp);
1999		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2000		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2001	}
2002}
2003
2004static int
2005arc_decompress(arc_buf_t *buf)
2006{
2007	arc_buf_hdr_t *hdr = buf->b_hdr;
2008	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2009	int error;
2010
2011	if (arc_buf_is_shared(buf)) {
2012		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2013	} else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2014		/*
2015		 * The arc_buf_hdr_t is either not compressed or is
2016		 * associated with an embedded block or a hole in which
2017		 * case they remain anonymous.
2018		 */
2019		IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 ||
2020		    HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr));
2021		ASSERT(!HDR_SHARED_DATA(hdr));
2022		bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr));
2023	} else {
2024		ASSERT(!HDR_SHARED_DATA(hdr));
2025		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2026		error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2027		    hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr),
2028		    HDR_GET_LSIZE(hdr));
2029		if (error != 0) {
2030			zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d",
2031			    hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr),
2032			    HDR_GET_LSIZE(hdr));
2033			return (SET_ERROR(EIO));
2034		}
2035	}
2036	if (bswap != DMU_BSWAP_NUMFUNCS) {
2037		ASSERT(!HDR_SHARED_DATA(hdr));
2038		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2039		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2040	}
2041	arc_cksum_compute(buf);
2042	return (0);
2043}
2044
2045/*
2046 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t.
2047 */
2048static uint64_t
2049arc_hdr_size(arc_buf_hdr_t *hdr)
2050{
2051	uint64_t size;
2052
2053	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2054	    HDR_GET_PSIZE(hdr) > 0) {
2055		size = HDR_GET_PSIZE(hdr);
2056	} else {
2057		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2058		size = HDR_GET_LSIZE(hdr);
2059	}
2060	return (size);
2061}
2062
2063/*
2064 * Increment the amount of evictable space in the arc_state_t's refcount.
2065 * We account for the space used by the hdr and the arc buf individually
2066 * so that we can add and remove them from the refcount individually.
2067 */
2068static void
2069arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2070{
2071	arc_buf_contents_t type = arc_buf_type(hdr);
2072	uint64_t lsize = HDR_GET_LSIZE(hdr);
2073
2074	ASSERT(HDR_HAS_L1HDR(hdr));
2075
2076	if (GHOST_STATE(state)) {
2077		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2078		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2079		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2080		(void) refcount_add_many(&state->arcs_esize[type], lsize, hdr);
2081		return;
2082	}
2083
2084	ASSERT(!GHOST_STATE(state));
2085	if (hdr->b_l1hdr.b_pdata != NULL) {
2086		(void) refcount_add_many(&state->arcs_esize[type],
2087		    arc_hdr_size(hdr), hdr);
2088	}
2089	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2090	    buf = buf->b_next) {
2091		if (arc_buf_is_shared(buf)) {
2092			ASSERT(ARC_BUF_LAST(buf));
2093			continue;
2094		}
2095		(void) refcount_add_many(&state->arcs_esize[type], lsize, buf);
2096	}
2097}
2098
2099/*
2100 * Decrement the amount of evictable space in the arc_state_t's refcount.
2101 * We account for the space used by the hdr and the arc buf individually
2102 * so that we can add and remove them from the refcount individually.
2103 */
2104static void
2105arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2106{
2107	arc_buf_contents_t type = arc_buf_type(hdr);
2108	uint64_t lsize = HDR_GET_LSIZE(hdr);
2109
2110	ASSERT(HDR_HAS_L1HDR(hdr));
2111
2112	if (GHOST_STATE(state)) {
2113		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2114		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2115		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2116		(void) refcount_remove_many(&state->arcs_esize[type],
2117		    lsize, hdr);
2118		return;
2119	}
2120
2121	ASSERT(!GHOST_STATE(state));
2122	if (hdr->b_l1hdr.b_pdata != NULL) {
2123		(void) refcount_remove_many(&state->arcs_esize[type],
2124		    arc_hdr_size(hdr), hdr);
2125	}
2126	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2127	    buf = buf->b_next) {
2128		if (arc_buf_is_shared(buf)) {
2129			ASSERT(ARC_BUF_LAST(buf));
2130			continue;
2131		}
2132		(void) refcount_remove_many(&state->arcs_esize[type],
2133		    lsize, buf);
2134	}
2135}
2136
2137/*
2138 * Add a reference to this hdr indicating that someone is actively
2139 * referencing that memory. When the refcount transitions from 0 to 1,
2140 * we remove it from the respective arc_state_t list to indicate that
2141 * it is not evictable.
2142 */
2143static void
2144add_reference(arc_buf_hdr_t *hdr, void *tag)
2145{
2146	ASSERT(HDR_HAS_L1HDR(hdr));
2147	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2148		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2149		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2150		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2151	}
2152
2153	arc_state_t *state = hdr->b_l1hdr.b_state;
2154
2155	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2156	    (state != arc_anon)) {
2157		/* We don't use the L2-only state list. */
2158		if (state != arc_l2c_only) {
2159			multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2160			    hdr);
2161			arc_evitable_space_decrement(hdr, state);
2162		}
2163		/* remove the prefetch flag if we get a reference */
2164		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2165	}
2166}
2167
2168/*
2169 * Remove a reference from this hdr. When the reference transitions from
2170 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2171 * list making it eligible for eviction.
2172 */
2173static int
2174remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2175{
2176	int cnt;
2177	arc_state_t *state = hdr->b_l1hdr.b_state;
2178
2179	ASSERT(HDR_HAS_L1HDR(hdr));
2180	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2181	ASSERT(!GHOST_STATE(state));
2182
2183	/*
2184	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2185	 * check to prevent usage of the arc_l2c_only list.
2186	 */
2187	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2188	    (state != arc_anon)) {
2189		multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2190		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2191		arc_evictable_space_increment(hdr, state);
2192	}
2193	return (cnt);
2194}
2195
2196/*
2197 * Move the supplied buffer to the indicated state. The hash lock
2198 * for the buffer must be held by the caller.
2199 */
2200static void
2201arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2202    kmutex_t *hash_lock)
2203{
2204	arc_state_t *old_state;
2205	int64_t refcnt;
2206	uint32_t bufcnt;
2207	boolean_t update_old, update_new;
2208	arc_buf_contents_t buftype = arc_buf_type(hdr);
2209
2210	/*
2211	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2212	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2213	 * L1 hdr doesn't always exist when we change state to arc_anon before
2214	 * destroying a header, in which case reallocating to add the L1 hdr is
2215	 * pointless.
2216	 */
2217	if (HDR_HAS_L1HDR(hdr)) {
2218		old_state = hdr->b_l1hdr.b_state;
2219		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2220		bufcnt = hdr->b_l1hdr.b_bufcnt;
2221		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL);
2222	} else {
2223		old_state = arc_l2c_only;
2224		refcnt = 0;
2225		bufcnt = 0;
2226		update_old = B_FALSE;
2227	}
2228	update_new = update_old;
2229
2230	ASSERT(MUTEX_HELD(hash_lock));
2231	ASSERT3P(new_state, !=, old_state);
2232	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2233	ASSERT(old_state != arc_anon || bufcnt <= 1);
2234
2235	/*
2236	 * If this buffer is evictable, transfer it from the
2237	 * old state list to the new state list.
2238	 */
2239	if (refcnt == 0) {
2240		if (old_state != arc_anon && old_state != arc_l2c_only) {
2241			ASSERT(HDR_HAS_L1HDR(hdr));
2242			multilist_remove(&old_state->arcs_list[buftype], hdr);
2243
2244			if (GHOST_STATE(old_state)) {
2245				ASSERT0(bufcnt);
2246				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2247				update_old = B_TRUE;
2248			}
2249			arc_evitable_space_decrement(hdr, old_state);
2250		}
2251		if (new_state != arc_anon && new_state != arc_l2c_only) {
2252
2253			/*
2254			 * An L1 header always exists here, since if we're
2255			 * moving to some L1-cached state (i.e. not l2c_only or
2256			 * anonymous), we realloc the header to add an L1hdr
2257			 * beforehand.
2258			 */
2259			ASSERT(HDR_HAS_L1HDR(hdr));
2260			multilist_insert(&new_state->arcs_list[buftype], hdr);
2261
2262			if (GHOST_STATE(new_state)) {
2263				ASSERT0(bufcnt);
2264				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2265				update_new = B_TRUE;
2266			}
2267			arc_evictable_space_increment(hdr, new_state);
2268		}
2269	}
2270
2271	ASSERT(!HDR_EMPTY(hdr));
2272	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2273		buf_hash_remove(hdr);
2274
2275	/* adjust state sizes (ignore arc_l2c_only) */
2276
2277	if (update_new && new_state != arc_l2c_only) {
2278		ASSERT(HDR_HAS_L1HDR(hdr));
2279		if (GHOST_STATE(new_state)) {
2280			ASSERT0(bufcnt);
2281
2282			/*
2283			 * When moving a header to a ghost state, we first
2284			 * remove all arc buffers. Thus, we'll have a
2285			 * bufcnt of zero, and no arc buffer to use for
2286			 * the reference. As a result, we use the arc
2287			 * header pointer for the reference.
2288			 */
2289			(void) refcount_add_many(&new_state->arcs_size,
2290			    HDR_GET_LSIZE(hdr), hdr);
2291			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2292		} else {
2293			uint32_t buffers = 0;
2294
2295			/*
2296			 * Each individual buffer holds a unique reference,
2297			 * thus we must remove each of these references one
2298			 * at a time.
2299			 */
2300			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2301			    buf = buf->b_next) {
2302				ASSERT3U(bufcnt, !=, 0);
2303				buffers++;
2304
2305				/*
2306				 * When the arc_buf_t is sharing the data
2307				 * block with the hdr, the owner of the
2308				 * reference belongs to the hdr. Only
2309				 * add to the refcount if the arc_buf_t is
2310				 * not shared.
2311				 */
2312				if (arc_buf_is_shared(buf)) {
2313					ASSERT(ARC_BUF_LAST(buf));
2314					continue;
2315				}
2316
2317				(void) refcount_add_many(&new_state->arcs_size,
2318				    HDR_GET_LSIZE(hdr), buf);
2319			}
2320			ASSERT3U(bufcnt, ==, buffers);
2321
2322			if (hdr->b_l1hdr.b_pdata != NULL) {
2323				(void) refcount_add_many(&new_state->arcs_size,
2324				    arc_hdr_size(hdr), hdr);
2325			} else {
2326				ASSERT(GHOST_STATE(old_state));
2327			}
2328		}
2329	}
2330
2331	if (update_old && old_state != arc_l2c_only) {
2332		ASSERT(HDR_HAS_L1HDR(hdr));
2333		if (GHOST_STATE(old_state)) {
2334			ASSERT0(bufcnt);
2335
2336			/*
2337			 * When moving a header off of a ghost state,
2338			 * the header will not contain any arc buffers.
2339			 * We use the arc header pointer for the reference
2340			 * which is exactly what we did when we put the
2341			 * header on the ghost state.
2342			 */
2343
2344			(void) refcount_remove_many(&old_state->arcs_size,
2345			    HDR_GET_LSIZE(hdr), hdr);
2346			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2347		} else {
2348			uint32_t buffers = 0;
2349
2350			/*
2351			 * Each individual buffer holds a unique reference,
2352			 * thus we must remove each of these references one
2353			 * at a time.
2354			 */
2355			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2356			    buf = buf->b_next) {
2357				ASSERT3P(bufcnt, !=, 0);
2358				buffers++;
2359
2360				/*
2361				 * When the arc_buf_t is sharing the data
2362				 * block with the hdr, the owner of the
2363				 * reference belongs to the hdr. Only
2364				 * add to the refcount if the arc_buf_t is
2365				 * not shared.
2366				 */
2367				if (arc_buf_is_shared(buf)) {
2368					ASSERT(ARC_BUF_LAST(buf));
2369					continue;
2370				}
2371
2372				(void) refcount_remove_many(
2373				    &old_state->arcs_size, HDR_GET_LSIZE(hdr),
2374				    buf);
2375			}
2376			ASSERT3U(bufcnt, ==, buffers);
2377			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2378			(void) refcount_remove_many(
2379			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2380		}
2381	}
2382
2383	if (HDR_HAS_L1HDR(hdr))
2384		hdr->b_l1hdr.b_state = new_state;
2385
2386	/*
2387	 * L2 headers should never be on the L2 state list since they don't
2388	 * have L1 headers allocated.
2389	 */
2390	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2391	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2392}
2393
2394void
2395arc_space_consume(uint64_t space, arc_space_type_t type)
2396{
2397	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2398
2399	switch (type) {
2400	case ARC_SPACE_DATA:
2401		ARCSTAT_INCR(arcstat_data_size, space);
2402		break;
2403	case ARC_SPACE_META:
2404		ARCSTAT_INCR(arcstat_metadata_size, space);
2405		break;
2406	case ARC_SPACE_OTHER:
2407		ARCSTAT_INCR(arcstat_other_size, space);
2408		break;
2409	case ARC_SPACE_HDRS:
2410		ARCSTAT_INCR(arcstat_hdr_size, space);
2411		break;
2412	case ARC_SPACE_L2HDRS:
2413		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2414		break;
2415	}
2416
2417	if (type != ARC_SPACE_DATA)
2418		ARCSTAT_INCR(arcstat_meta_used, space);
2419
2420	atomic_add_64(&arc_size, space);
2421}
2422
2423void
2424arc_space_return(uint64_t space, arc_space_type_t type)
2425{
2426	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2427
2428	switch (type) {
2429	case ARC_SPACE_DATA:
2430		ARCSTAT_INCR(arcstat_data_size, -space);
2431		break;
2432	case ARC_SPACE_META:
2433		ARCSTAT_INCR(arcstat_metadata_size, -space);
2434		break;
2435	case ARC_SPACE_OTHER:
2436		ARCSTAT_INCR(arcstat_other_size, -space);
2437		break;
2438	case ARC_SPACE_HDRS:
2439		ARCSTAT_INCR(arcstat_hdr_size, -space);
2440		break;
2441	case ARC_SPACE_L2HDRS:
2442		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2443		break;
2444	}
2445
2446	if (type != ARC_SPACE_DATA) {
2447		ASSERT(arc_meta_used >= space);
2448		if (arc_meta_max < arc_meta_used)
2449			arc_meta_max = arc_meta_used;
2450		ARCSTAT_INCR(arcstat_meta_used, -space);
2451	}
2452
2453	ASSERT(arc_size >= space);
2454	atomic_add_64(&arc_size, -space);
2455}
2456
2457/*
2458 * Allocate an initial buffer for this hdr, subsequent buffers will
2459 * use arc_buf_clone().
2460 */
2461static arc_buf_t *
2462arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag)
2463{
2464	arc_buf_t *buf;
2465
2466	ASSERT(HDR_HAS_L1HDR(hdr));
2467	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2468	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2469	    hdr->b_type == ARC_BUFC_METADATA);
2470
2471	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2472	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2473	ASSERT0(hdr->b_l1hdr.b_bufcnt);
2474
2475	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2476	buf->b_hdr = hdr;
2477	buf->b_data = NULL;
2478	buf->b_next = NULL;
2479
2480	add_reference(hdr, tag);
2481
2482	/*
2483	 * We're about to change the hdr's b_flags. We must either
2484	 * hold the hash_lock or be undiscoverable.
2485	 */
2486	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2487
2488	/*
2489	 * If the hdr's data can be shared (no byteswapping, hdr is
2490	 * uncompressed, hdr's data is not currently being written to the
2491	 * L2ARC write) then we share the data buffer and set the appropriate
2492	 * bit in the hdr's b_flags to indicate the hdr is sharing it's
2493	 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to
2494	 * store the buf's data.
2495	 */
2496	if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2497	    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) {
2498		buf->b_data = hdr->b_l1hdr.b_pdata;
2499		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2500	} else {
2501		buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2502		ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2503		arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2504	}
2505	VERIFY3P(buf->b_data, !=, NULL);
2506
2507	hdr->b_l1hdr.b_buf = buf;
2508	hdr->b_l1hdr.b_bufcnt += 1;
2509
2510	return (buf);
2511}
2512
2513/*
2514 * Used when allocating additional buffers.
2515 */
2516static arc_buf_t *
2517arc_buf_clone(arc_buf_t *from)
2518{
2519	arc_buf_t *buf;
2520	arc_buf_hdr_t *hdr = from->b_hdr;
2521	uint64_t size = HDR_GET_LSIZE(hdr);
2522
2523	ASSERT(HDR_HAS_L1HDR(hdr));
2524	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2525
2526	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2527	buf->b_hdr = hdr;
2528	buf->b_data = NULL;
2529	buf->b_next = hdr->b_l1hdr.b_buf;
2530	hdr->b_l1hdr.b_buf = buf;
2531	buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2532	bcopy(from->b_data, buf->b_data, size);
2533	hdr->b_l1hdr.b_bufcnt += 1;
2534
2535	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2536	return (buf);
2537}
2538
2539static char *arc_onloan_tag = "onloan";
2540
2541/*
2542 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2543 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2544 * buffers must be returned to the arc before they can be used by the DMU or
2545 * freed.
2546 */
2547arc_buf_t *
2548arc_loan_buf(spa_t *spa, int size)
2549{
2550	arc_buf_t *buf;
2551
2552	buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2553
2554	atomic_add_64(&arc_loaned_bytes, size);
2555	return (buf);
2556}
2557
2558/*
2559 * Return a loaned arc buffer to the arc.
2560 */
2561void
2562arc_return_buf(arc_buf_t *buf, void *tag)
2563{
2564	arc_buf_hdr_t *hdr = buf->b_hdr;
2565
2566	ASSERT3P(buf->b_data, !=, NULL);
2567	ASSERT(HDR_HAS_L1HDR(hdr));
2568	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2569	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2570
2571	atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr));
2572}
2573
2574/* Detach an arc_buf from a dbuf (tag) */
2575void
2576arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2577{
2578	arc_buf_hdr_t *hdr = buf->b_hdr;
2579
2580	ASSERT3P(buf->b_data, !=, NULL);
2581	ASSERT(HDR_HAS_L1HDR(hdr));
2582	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2583	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2584
2585	atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr));
2586}
2587
2588static void
2589l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type)
2590{
2591	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2592
2593	df->l2df_data = data;
2594	df->l2df_size = size;
2595	df->l2df_type = type;
2596	mutex_enter(&l2arc_free_on_write_mtx);
2597	list_insert_head(l2arc_free_on_write, df);
2598	mutex_exit(&l2arc_free_on_write_mtx);
2599}
2600
2601static void
2602arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2603{
2604	arc_state_t *state = hdr->b_l1hdr.b_state;
2605	arc_buf_contents_t type = arc_buf_type(hdr);
2606	uint64_t size = arc_hdr_size(hdr);
2607
2608	/* protected by hash lock, if in the hash table */
2609	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2610		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2611		ASSERT(state != arc_anon && state != arc_l2c_only);
2612
2613		(void) refcount_remove_many(&state->arcs_esize[type],
2614		    size, hdr);
2615	}
2616	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2617
2618	l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type);
2619}
2620
2621/*
2622 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2623 * data buffer, we transfer the refcount ownership to the hdr and update
2624 * the appropriate kstats.
2625 */
2626static void
2627arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2628{
2629	arc_state_t *state = hdr->b_l1hdr.b_state;
2630
2631	ASSERT(!HDR_SHARED_DATA(hdr));
2632	ASSERT(!arc_buf_is_shared(buf));
2633	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2634	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2635
2636	/*
2637	 * Start sharing the data buffer. We transfer the
2638	 * refcount ownership to the hdr since it always owns
2639	 * the refcount whenever an arc_buf_t is shared.
2640	 */
2641	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2642	hdr->b_l1hdr.b_pdata = buf->b_data;
2643	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2644
2645	/*
2646	 * Since we've transferred ownership to the hdr we need
2647	 * to increment its compressed and uncompressed kstats and
2648	 * decrement the overhead size.
2649	 */
2650	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2651	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2652	ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr));
2653}
2654
2655static void
2656arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2657{
2658	arc_state_t *state = hdr->b_l1hdr.b_state;
2659
2660	ASSERT(HDR_SHARED_DATA(hdr));
2661	ASSERT(arc_buf_is_shared(buf));
2662	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2663	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2664
2665	/*
2666	 * We are no longer sharing this buffer so we need
2667	 * to transfer its ownership to the rightful owner.
2668	 */
2669	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2670	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2671	hdr->b_l1hdr.b_pdata = NULL;
2672
2673	/*
2674	 * Since the buffer is no longer shared between
2675	 * the arc buf and the hdr, count it as overhead.
2676	 */
2677	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2678	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2679	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2680}
2681
2682/*
2683 * Free up buf->b_data and if 'remove' is set, then pull the
2684 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2685 */
2686static void
2687arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove)
2688{
2689	arc_buf_t **bufp;
2690	arc_buf_hdr_t *hdr = buf->b_hdr;
2691	uint64_t size = HDR_GET_LSIZE(hdr);
2692	boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf);
2693
2694	/*
2695	 * Free up the data associated with the buf but only
2696	 * if we're not sharing this with the hdr. If we are sharing
2697	 * it with the hdr, then hdr will have performed the allocation
2698	 * so allow it to do the free.
2699	 */
2700	if (buf->b_data != NULL) {
2701		/*
2702		 * We're about to change the hdr's b_flags. We must either
2703		 * hold the hash_lock or be undiscoverable.
2704		 */
2705		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2706
2707		arc_cksum_verify(buf);
2708#ifdef illumos
2709		arc_buf_unwatch(buf);
2710#endif
2711
2712		if (destroyed_buf_is_shared) {
2713			ASSERT(ARC_BUF_LAST(buf));
2714			ASSERT(HDR_SHARED_DATA(hdr));
2715			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2716		} else {
2717			arc_free_data_buf(hdr, buf->b_data, size, buf);
2718			ARCSTAT_INCR(arcstat_overhead_size, -size);
2719		}
2720		buf->b_data = NULL;
2721
2722		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2723		hdr->b_l1hdr.b_bufcnt -= 1;
2724	}
2725
2726	/* only remove the buf if requested */
2727	if (!remove)
2728		return;
2729
2730	/* remove the buf from the hdr list */
2731	arc_buf_t *lastbuf = NULL;
2732	bufp = &hdr->b_l1hdr.b_buf;
2733	while (*bufp != NULL) {
2734		if (*bufp == buf)
2735			*bufp = buf->b_next;
2736
2737		/*
2738		 * If we've removed a buffer in the middle of
2739		 * the list then update the lastbuf and update
2740		 * bufp.
2741		 */
2742		if (*bufp != NULL) {
2743			lastbuf = *bufp;
2744			bufp = &(*bufp)->b_next;
2745		}
2746	}
2747	buf->b_next = NULL;
2748	ASSERT3P(lastbuf, !=, buf);
2749
2750	/*
2751	 * If the current arc_buf_t is sharing its data
2752	 * buffer with the hdr, then reassign the hdr's
2753	 * b_pdata to share it with the new buffer at the end
2754	 * of the list. The shared buffer is always the last one
2755	 * on the hdr's buffer list.
2756	 */
2757	if (destroyed_buf_is_shared && lastbuf != NULL) {
2758		ASSERT(ARC_BUF_LAST(buf));
2759		ASSERT(ARC_BUF_LAST(lastbuf));
2760		VERIFY(!arc_buf_is_shared(lastbuf));
2761
2762		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2763		arc_hdr_free_pdata(hdr);
2764
2765		/*
2766		 * We must setup a new shared block between the
2767		 * last buffer and the hdr. The data would have
2768		 * been allocated by the arc buf so we need to transfer
2769		 * ownership to the hdr since it's now being shared.
2770		 */
2771		arc_share_buf(hdr, lastbuf);
2772	} else if (HDR_SHARED_DATA(hdr)) {
2773		ASSERT(arc_buf_is_shared(lastbuf));
2774	}
2775
2776	if (hdr->b_l1hdr.b_bufcnt == 0)
2777		arc_cksum_free(hdr);
2778
2779	/* clean up the buf */
2780	buf->b_hdr = NULL;
2781	kmem_cache_free(buf_cache, buf);
2782}
2783
2784static void
2785arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr)
2786{
2787	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2788	ASSERT(HDR_HAS_L1HDR(hdr));
2789	ASSERT(!HDR_SHARED_DATA(hdr));
2790
2791	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2792	hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr);
2793	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2794	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2795
2796	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2797	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2798}
2799
2800static void
2801arc_hdr_free_pdata(arc_buf_hdr_t *hdr)
2802{
2803	ASSERT(HDR_HAS_L1HDR(hdr));
2804	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2805
2806	/*
2807	 * If the hdr is currently being written to the l2arc then
2808	 * we defer freeing the data by adding it to the l2arc_free_on_write
2809	 * list. The l2arc will free the data once it's finished
2810	 * writing it to the l2arc device.
2811	 */
2812	if (HDR_L2_WRITING(hdr)) {
2813		arc_hdr_free_on_write(hdr);
2814		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2815	} else {
2816		arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata,
2817		    arc_hdr_size(hdr), hdr);
2818	}
2819	hdr->b_l1hdr.b_pdata = NULL;
2820	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2821
2822	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2823	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2824}
2825
2826static arc_buf_hdr_t *
2827arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2828    enum zio_compress compress, arc_buf_contents_t type)
2829{
2830	arc_buf_hdr_t *hdr;
2831
2832	ASSERT3U(lsize, >, 0);
2833	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2834
2835	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2836	ASSERT(HDR_EMPTY(hdr));
2837	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2838	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2839	HDR_SET_PSIZE(hdr, psize);
2840	HDR_SET_LSIZE(hdr, lsize);
2841	hdr->b_spa = spa;
2842	hdr->b_type = type;
2843	hdr->b_flags = 0;
2844	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2845	arc_hdr_set_compress(hdr, compress);
2846
2847	hdr->b_l1hdr.b_state = arc_anon;
2848	hdr->b_l1hdr.b_arc_access = 0;
2849	hdr->b_l1hdr.b_bufcnt = 0;
2850	hdr->b_l1hdr.b_buf = NULL;
2851
2852	/*
2853	 * Allocate the hdr's buffer. This will contain either
2854	 * the compressed or uncompressed data depending on the block
2855	 * it references and compressed arc enablement.
2856	 */
2857	arc_hdr_alloc_pdata(hdr);
2858	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2859
2860	return (hdr);
2861}
2862
2863/*
2864 * Transition between the two allocation states for the arc_buf_hdr struct.
2865 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2866 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2867 * version is used when a cache buffer is only in the L2ARC in order to reduce
2868 * memory usage.
2869 */
2870static arc_buf_hdr_t *
2871arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2872{
2873	ASSERT(HDR_HAS_L2HDR(hdr));
2874
2875	arc_buf_hdr_t *nhdr;
2876	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2877
2878	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2879	    (old == hdr_l2only_cache && new == hdr_full_cache));
2880
2881	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2882
2883	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2884	buf_hash_remove(hdr);
2885
2886	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2887
2888	if (new == hdr_full_cache) {
2889		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2890		/*
2891		 * arc_access and arc_change_state need to be aware that a
2892		 * header has just come out of L2ARC, so we set its state to
2893		 * l2c_only even though it's about to change.
2894		 */
2895		nhdr->b_l1hdr.b_state = arc_l2c_only;
2896
2897		/* Verify previous threads set to NULL before freeing */
2898		ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL);
2899	} else {
2900		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2901		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2902		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2903
2904		/*
2905		 * If we've reached here, We must have been called from
2906		 * arc_evict_hdr(), as such we should have already been
2907		 * removed from any ghost list we were previously on
2908		 * (which protects us from racing with arc_evict_state),
2909		 * thus no locking is needed during this check.
2910		 */
2911		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2912
2913		/*
2914		 * A buffer must not be moved into the arc_l2c_only
2915		 * state if it's not finished being written out to the
2916		 * l2arc device. Otherwise, the b_l1hdr.b_pdata field
2917		 * might try to be accessed, even though it was removed.
2918		 */
2919		VERIFY(!HDR_L2_WRITING(hdr));
2920		VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2921
2922#ifdef ZFS_DEBUG
2923		if (hdr->b_l1hdr.b_thawed != NULL) {
2924			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2925			hdr->b_l1hdr.b_thawed = NULL;
2926		}
2927#endif
2928
2929		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2930	}
2931	/*
2932	 * The header has been reallocated so we need to re-insert it into any
2933	 * lists it was on.
2934	 */
2935	(void) buf_hash_insert(nhdr, NULL);
2936
2937	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2938
2939	mutex_enter(&dev->l2ad_mtx);
2940
2941	/*
2942	 * We must place the realloc'ed header back into the list at
2943	 * the same spot. Otherwise, if it's placed earlier in the list,
2944	 * l2arc_write_buffers() could find it during the function's
2945	 * write phase, and try to write it out to the l2arc.
2946	 */
2947	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2948	list_remove(&dev->l2ad_buflist, hdr);
2949
2950	mutex_exit(&dev->l2ad_mtx);
2951
2952	/*
2953	 * Since we're using the pointer address as the tag when
2954	 * incrementing and decrementing the l2ad_alloc refcount, we
2955	 * must remove the old pointer (that we're about to destroy) and
2956	 * add the new pointer to the refcount. Otherwise we'd remove
2957	 * the wrong pointer address when calling arc_hdr_destroy() later.
2958	 */
2959
2960	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2961	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2962
2963	buf_discard_identity(hdr);
2964	kmem_cache_free(old, hdr);
2965
2966	return (nhdr);
2967}
2968
2969/*
2970 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2971 * The buf is returned thawed since we expect the consumer to modify it.
2972 */
2973arc_buf_t *
2974arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2975{
2976	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2977	    ZIO_COMPRESS_OFF, type);
2978	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2979	arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag);
2980	arc_buf_thaw(buf);
2981	return (buf);
2982}
2983
2984static void
2985arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2986{
2987	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2988	l2arc_dev_t *dev = l2hdr->b_dev;
2989	uint64_t asize = arc_hdr_size(hdr);
2990
2991	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2992	ASSERT(HDR_HAS_L2HDR(hdr));
2993
2994	list_remove(&dev->l2ad_buflist, hdr);
2995
2996	ARCSTAT_INCR(arcstat_l2_asize, -asize);
2997	ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2998
2999	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3000
3001	(void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
3002	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3003}
3004
3005static void
3006arc_hdr_destroy(arc_buf_hdr_t *hdr)
3007{
3008	if (HDR_HAS_L1HDR(hdr)) {
3009		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3010		    hdr->b_l1hdr.b_bufcnt > 0);
3011		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3012		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3013	}
3014	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3015	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3016
3017	if (!HDR_EMPTY(hdr))
3018		buf_discard_identity(hdr);
3019
3020	if (HDR_HAS_L2HDR(hdr)) {
3021		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3022		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3023
3024		if (!buflist_held)
3025			mutex_enter(&dev->l2ad_mtx);
3026
3027		/*
3028		 * Even though we checked this conditional above, we
3029		 * need to check this again now that we have the
3030		 * l2ad_mtx. This is because we could be racing with
3031		 * another thread calling l2arc_evict() which might have
3032		 * destroyed this header's L2 portion as we were waiting
3033		 * to acquire the l2ad_mtx. If that happens, we don't
3034		 * want to re-destroy the header's L2 portion.
3035		 */
3036		if (HDR_HAS_L2HDR(hdr)) {
3037			l2arc_trim(hdr);
3038			arc_hdr_l2hdr_destroy(hdr);
3039		}
3040
3041		if (!buflist_held)
3042			mutex_exit(&dev->l2ad_mtx);
3043	}
3044
3045	if (HDR_HAS_L1HDR(hdr)) {
3046		arc_cksum_free(hdr);
3047
3048		while (hdr->b_l1hdr.b_buf != NULL)
3049			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE);
3050
3051#ifdef ZFS_DEBUG
3052		if (hdr->b_l1hdr.b_thawed != NULL) {
3053			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3054			hdr->b_l1hdr.b_thawed = NULL;
3055		}
3056#endif
3057
3058		if (hdr->b_l1hdr.b_pdata != NULL) {
3059			arc_hdr_free_pdata(hdr);
3060		}
3061	}
3062
3063	ASSERT3P(hdr->b_hash_next, ==, NULL);
3064	if (HDR_HAS_L1HDR(hdr)) {
3065		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3066		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3067		kmem_cache_free(hdr_full_cache, hdr);
3068	} else {
3069		kmem_cache_free(hdr_l2only_cache, hdr);
3070	}
3071}
3072
3073void
3074arc_buf_destroy(arc_buf_t *buf, void* tag)
3075{
3076	arc_buf_hdr_t *hdr = buf->b_hdr;
3077	kmutex_t *hash_lock = HDR_LOCK(hdr);
3078
3079	if (hdr->b_l1hdr.b_state == arc_anon) {
3080		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3081		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3082		VERIFY0(remove_reference(hdr, NULL, tag));
3083		arc_hdr_destroy(hdr);
3084		return;
3085	}
3086
3087	mutex_enter(hash_lock);
3088	ASSERT3P(hdr, ==, buf->b_hdr);
3089	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3090	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3091	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3092	ASSERT3P(buf->b_data, !=, NULL);
3093
3094	(void) remove_reference(hdr, hash_lock, tag);
3095	arc_buf_destroy_impl(buf, B_TRUE);
3096	mutex_exit(hash_lock);
3097}
3098
3099int32_t
3100arc_buf_size(arc_buf_t *buf)
3101{
3102	return (HDR_GET_LSIZE(buf->b_hdr));
3103}
3104
3105/*
3106 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3107 * state of the header is dependent on it's state prior to entering this
3108 * function. The following transitions are possible:
3109 *
3110 *    - arc_mru -> arc_mru_ghost
3111 *    - arc_mfu -> arc_mfu_ghost
3112 *    - arc_mru_ghost -> arc_l2c_only
3113 *    - arc_mru_ghost -> deleted
3114 *    - arc_mfu_ghost -> arc_l2c_only
3115 *    - arc_mfu_ghost -> deleted
3116 */
3117static int64_t
3118arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3119{
3120	arc_state_t *evicted_state, *state;
3121	int64_t bytes_evicted = 0;
3122
3123	ASSERT(MUTEX_HELD(hash_lock));
3124	ASSERT(HDR_HAS_L1HDR(hdr));
3125
3126	state = hdr->b_l1hdr.b_state;
3127	if (GHOST_STATE(state)) {
3128		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3129		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3130
3131		/*
3132		 * l2arc_write_buffers() relies on a header's L1 portion
3133		 * (i.e. its b_pdata field) during its write phase.
3134		 * Thus, we cannot push a header onto the arc_l2c_only
3135		 * state (removing it's L1 piece) until the header is
3136		 * done being written to the l2arc.
3137		 */
3138		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3139			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3140			return (bytes_evicted);
3141		}
3142
3143		ARCSTAT_BUMP(arcstat_deleted);
3144		bytes_evicted += HDR_GET_LSIZE(hdr);
3145
3146		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3147
3148		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
3149		if (HDR_HAS_L2HDR(hdr)) {
3150			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3151			/*
3152			 * This buffer is cached on the 2nd Level ARC;
3153			 * don't destroy the header.
3154			 */
3155			arc_change_state(arc_l2c_only, hdr, hash_lock);
3156			/*
3157			 * dropping from L1+L2 cached to L2-only,
3158			 * realloc to remove the L1 header.
3159			 */
3160			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3161			    hdr_l2only_cache);
3162		} else {
3163			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3164			arc_change_state(arc_anon, hdr, hash_lock);
3165			arc_hdr_destroy(hdr);
3166		}
3167		return (bytes_evicted);
3168	}
3169
3170	ASSERT(state == arc_mru || state == arc_mfu);
3171	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3172
3173	/* prefetch buffers have a minimum lifespan */
3174	if (HDR_IO_IN_PROGRESS(hdr) ||
3175	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3176	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3177	    arc_min_prefetch_lifespan)) {
3178		ARCSTAT_BUMP(arcstat_evict_skip);
3179		return (bytes_evicted);
3180	}
3181
3182	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3183	while (hdr->b_l1hdr.b_buf) {
3184		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3185		if (!mutex_tryenter(&buf->b_evict_lock)) {
3186			ARCSTAT_BUMP(arcstat_mutex_miss);
3187			break;
3188		}
3189		if (buf->b_data != NULL)
3190			bytes_evicted += HDR_GET_LSIZE(hdr);
3191		mutex_exit(&buf->b_evict_lock);
3192		arc_buf_destroy_impl(buf, B_TRUE);
3193	}
3194
3195	if (HDR_HAS_L2HDR(hdr)) {
3196		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3197	} else {
3198		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3199			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3200			    HDR_GET_LSIZE(hdr));
3201		} else {
3202			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3203			    HDR_GET_LSIZE(hdr));
3204		}
3205	}
3206
3207	if (hdr->b_l1hdr.b_bufcnt == 0) {
3208		arc_cksum_free(hdr);
3209
3210		bytes_evicted += arc_hdr_size(hdr);
3211
3212		/*
3213		 * If this hdr is being evicted and has a compressed
3214		 * buffer then we discard it here before we change states.
3215		 * This ensures that the accounting is updated correctly
3216		 * in arc_free_data_buf().
3217		 */
3218		arc_hdr_free_pdata(hdr);
3219
3220		arc_change_state(evicted_state, hdr, hash_lock);
3221		ASSERT(HDR_IN_HASH_TABLE(hdr));
3222		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3223		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3224	}
3225
3226	return (bytes_evicted);
3227}
3228
3229static uint64_t
3230arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3231    uint64_t spa, int64_t bytes)
3232{
3233	multilist_sublist_t *mls;
3234	uint64_t bytes_evicted = 0;
3235	arc_buf_hdr_t *hdr;
3236	kmutex_t *hash_lock;
3237	int evict_count = 0;
3238
3239	ASSERT3P(marker, !=, NULL);
3240	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3241
3242	mls = multilist_sublist_lock(ml, idx);
3243
3244	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3245	    hdr = multilist_sublist_prev(mls, marker)) {
3246		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3247		    (evict_count >= zfs_arc_evict_batch_limit))
3248			break;
3249
3250		/*
3251		 * To keep our iteration location, move the marker
3252		 * forward. Since we're not holding hdr's hash lock, we
3253		 * must be very careful and not remove 'hdr' from the
3254		 * sublist. Otherwise, other consumers might mistake the
3255		 * 'hdr' as not being on a sublist when they call the
3256		 * multilist_link_active() function (they all rely on
3257		 * the hash lock protecting concurrent insertions and
3258		 * removals). multilist_sublist_move_forward() was
3259		 * specifically implemented to ensure this is the case
3260		 * (only 'marker' will be removed and re-inserted).
3261		 */
3262		multilist_sublist_move_forward(mls, marker);
3263
3264		/*
3265		 * The only case where the b_spa field should ever be
3266		 * zero, is the marker headers inserted by
3267		 * arc_evict_state(). It's possible for multiple threads
3268		 * to be calling arc_evict_state() concurrently (e.g.
3269		 * dsl_pool_close() and zio_inject_fault()), so we must
3270		 * skip any markers we see from these other threads.
3271		 */
3272		if (hdr->b_spa == 0)
3273			continue;
3274
3275		/* we're only interested in evicting buffers of a certain spa */
3276		if (spa != 0 && hdr->b_spa != spa) {
3277			ARCSTAT_BUMP(arcstat_evict_skip);
3278			continue;
3279		}
3280
3281		hash_lock = HDR_LOCK(hdr);
3282
3283		/*
3284		 * We aren't calling this function from any code path
3285		 * that would already be holding a hash lock, so we're
3286		 * asserting on this assumption to be defensive in case
3287		 * this ever changes. Without this check, it would be
3288		 * possible to incorrectly increment arcstat_mutex_miss
3289		 * below (e.g. if the code changed such that we called
3290		 * this function with a hash lock held).
3291		 */
3292		ASSERT(!MUTEX_HELD(hash_lock));
3293
3294		if (mutex_tryenter(hash_lock)) {
3295			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3296			mutex_exit(hash_lock);
3297
3298			bytes_evicted += evicted;
3299
3300			/*
3301			 * If evicted is zero, arc_evict_hdr() must have
3302			 * decided to skip this header, don't increment
3303			 * evict_count in this case.
3304			 */
3305			if (evicted != 0)
3306				evict_count++;
3307
3308			/*
3309			 * If arc_size isn't overflowing, signal any
3310			 * threads that might happen to be waiting.
3311			 *
3312			 * For each header evicted, we wake up a single
3313			 * thread. If we used cv_broadcast, we could
3314			 * wake up "too many" threads causing arc_size
3315			 * to significantly overflow arc_c; since
3316			 * arc_get_data_buf() doesn't check for overflow
3317			 * when it's woken up (it doesn't because it's
3318			 * possible for the ARC to be overflowing while
3319			 * full of un-evictable buffers, and the
3320			 * function should proceed in this case).
3321			 *
3322			 * If threads are left sleeping, due to not
3323			 * using cv_broadcast, they will be woken up
3324			 * just before arc_reclaim_thread() sleeps.
3325			 */
3326			mutex_enter(&arc_reclaim_lock);
3327			if (!arc_is_overflowing())
3328				cv_signal(&arc_reclaim_waiters_cv);
3329			mutex_exit(&arc_reclaim_lock);
3330		} else {
3331			ARCSTAT_BUMP(arcstat_mutex_miss);
3332		}
3333	}
3334
3335	multilist_sublist_unlock(mls);
3336
3337	return (bytes_evicted);
3338}
3339
3340/*
3341 * Evict buffers from the given arc state, until we've removed the
3342 * specified number of bytes. Move the removed buffers to the
3343 * appropriate evict state.
3344 *
3345 * This function makes a "best effort". It skips over any buffers
3346 * it can't get a hash_lock on, and so, may not catch all candidates.
3347 * It may also return without evicting as much space as requested.
3348 *
3349 * If bytes is specified using the special value ARC_EVICT_ALL, this
3350 * will evict all available (i.e. unlocked and evictable) buffers from
3351 * the given arc state; which is used by arc_flush().
3352 */
3353static uint64_t
3354arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3355    arc_buf_contents_t type)
3356{
3357	uint64_t total_evicted = 0;
3358	multilist_t *ml = &state->arcs_list[type];
3359	int num_sublists;
3360	arc_buf_hdr_t **markers;
3361
3362	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3363
3364	num_sublists = multilist_get_num_sublists(ml);
3365
3366	/*
3367	 * If we've tried to evict from each sublist, made some
3368	 * progress, but still have not hit the target number of bytes
3369	 * to evict, we want to keep trying. The markers allow us to
3370	 * pick up where we left off for each individual sublist, rather
3371	 * than starting from the tail each time.
3372	 */
3373	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3374	for (int i = 0; i < num_sublists; i++) {
3375		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3376
3377		/*
3378		 * A b_spa of 0 is used to indicate that this header is
3379		 * a marker. This fact is used in arc_adjust_type() and
3380		 * arc_evict_state_impl().
3381		 */
3382		markers[i]->b_spa = 0;
3383
3384		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3385		multilist_sublist_insert_tail(mls, markers[i]);
3386		multilist_sublist_unlock(mls);
3387	}
3388
3389	/*
3390	 * While we haven't hit our target number of bytes to evict, or
3391	 * we're evicting all available buffers.
3392	 */
3393	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3394		/*
3395		 * Start eviction using a randomly selected sublist,
3396		 * this is to try and evenly balance eviction across all
3397		 * sublists. Always starting at the same sublist
3398		 * (e.g. index 0) would cause evictions to favor certain
3399		 * sublists over others.
3400		 */
3401		int sublist_idx = multilist_get_random_index(ml);
3402		uint64_t scan_evicted = 0;
3403
3404		for (int i = 0; i < num_sublists; i++) {
3405			uint64_t bytes_remaining;
3406			uint64_t bytes_evicted;
3407
3408			if (bytes == ARC_EVICT_ALL)
3409				bytes_remaining = ARC_EVICT_ALL;
3410			else if (total_evicted < bytes)
3411				bytes_remaining = bytes - total_evicted;
3412			else
3413				break;
3414
3415			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3416			    markers[sublist_idx], spa, bytes_remaining);
3417
3418			scan_evicted += bytes_evicted;
3419			total_evicted += bytes_evicted;
3420
3421			/* we've reached the end, wrap to the beginning */
3422			if (++sublist_idx >= num_sublists)
3423				sublist_idx = 0;
3424		}
3425
3426		/*
3427		 * If we didn't evict anything during this scan, we have
3428		 * no reason to believe we'll evict more during another
3429		 * scan, so break the loop.
3430		 */
3431		if (scan_evicted == 0) {
3432			/* This isn't possible, let's make that obvious */
3433			ASSERT3S(bytes, !=, 0);
3434
3435			/*
3436			 * When bytes is ARC_EVICT_ALL, the only way to
3437			 * break the loop is when scan_evicted is zero.
3438			 * In that case, we actually have evicted enough,
3439			 * so we don't want to increment the kstat.
3440			 */
3441			if (bytes != ARC_EVICT_ALL) {
3442				ASSERT3S(total_evicted, <, bytes);
3443				ARCSTAT_BUMP(arcstat_evict_not_enough);
3444			}
3445
3446			break;
3447		}
3448	}
3449
3450	for (int i = 0; i < num_sublists; i++) {
3451		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3452		multilist_sublist_remove(mls, markers[i]);
3453		multilist_sublist_unlock(mls);
3454
3455		kmem_cache_free(hdr_full_cache, markers[i]);
3456	}
3457	kmem_free(markers, sizeof (*markers) * num_sublists);
3458
3459	return (total_evicted);
3460}
3461
3462/*
3463 * Flush all "evictable" data of the given type from the arc state
3464 * specified. This will not evict any "active" buffers (i.e. referenced).
3465 *
3466 * When 'retry' is set to B_FALSE, the function will make a single pass
3467 * over the state and evict any buffers that it can. Since it doesn't
3468 * continually retry the eviction, it might end up leaving some buffers
3469 * in the ARC due to lock misses.
3470 *
3471 * When 'retry' is set to B_TRUE, the function will continually retry the
3472 * eviction until *all* evictable buffers have been removed from the
3473 * state. As a result, if concurrent insertions into the state are
3474 * allowed (e.g. if the ARC isn't shutting down), this function might
3475 * wind up in an infinite loop, continually trying to evict buffers.
3476 */
3477static uint64_t
3478arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3479    boolean_t retry)
3480{
3481	uint64_t evicted = 0;
3482
3483	while (refcount_count(&state->arcs_esize[type]) != 0) {
3484		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3485
3486		if (!retry)
3487			break;
3488	}
3489
3490	return (evicted);
3491}
3492
3493/*
3494 * Evict the specified number of bytes from the state specified,
3495 * restricting eviction to the spa and type given. This function
3496 * prevents us from trying to evict more from a state's list than
3497 * is "evictable", and to skip evicting altogether when passed a
3498 * negative value for "bytes". In contrast, arc_evict_state() will
3499 * evict everything it can, when passed a negative value for "bytes".
3500 */
3501static uint64_t
3502arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3503    arc_buf_contents_t type)
3504{
3505	int64_t delta;
3506
3507	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3508		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3509		return (arc_evict_state(state, spa, delta, type));
3510	}
3511
3512	return (0);
3513}
3514
3515/*
3516 * Evict metadata buffers from the cache, such that arc_meta_used is
3517 * capped by the arc_meta_limit tunable.
3518 */
3519static uint64_t
3520arc_adjust_meta(void)
3521{
3522	uint64_t total_evicted = 0;
3523	int64_t target;
3524
3525	/*
3526	 * If we're over the meta limit, we want to evict enough
3527	 * metadata to get back under the meta limit. We don't want to
3528	 * evict so much that we drop the MRU below arc_p, though. If
3529	 * we're over the meta limit more than we're over arc_p, we
3530	 * evict some from the MRU here, and some from the MFU below.
3531	 */
3532	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3533	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3534	    refcount_count(&arc_mru->arcs_size) - arc_p));
3535
3536	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3537
3538	/*
3539	 * Similar to the above, we want to evict enough bytes to get us
3540	 * below the meta limit, but not so much as to drop us below the
3541	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3542	 */
3543	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3544	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3545
3546	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3547
3548	return (total_evicted);
3549}
3550
3551/*
3552 * Return the type of the oldest buffer in the given arc state
3553 *
3554 * This function will select a random sublist of type ARC_BUFC_DATA and
3555 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3556 * is compared, and the type which contains the "older" buffer will be
3557 * returned.
3558 */
3559static arc_buf_contents_t
3560arc_adjust_type(arc_state_t *state)
3561{
3562	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3563	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3564	int data_idx = multilist_get_random_index(data_ml);
3565	int meta_idx = multilist_get_random_index(meta_ml);
3566	multilist_sublist_t *data_mls;
3567	multilist_sublist_t *meta_mls;
3568	arc_buf_contents_t type;
3569	arc_buf_hdr_t *data_hdr;
3570	arc_buf_hdr_t *meta_hdr;
3571
3572	/*
3573	 * We keep the sublist lock until we're finished, to prevent
3574	 * the headers from being destroyed via arc_evict_state().
3575	 */
3576	data_mls = multilist_sublist_lock(data_ml, data_idx);
3577	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3578
3579	/*
3580	 * These two loops are to ensure we skip any markers that
3581	 * might be at the tail of the lists due to arc_evict_state().
3582	 */
3583
3584	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3585	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3586		if (data_hdr->b_spa != 0)
3587			break;
3588	}
3589
3590	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3591	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3592		if (meta_hdr->b_spa != 0)
3593			break;
3594	}
3595
3596	if (data_hdr == NULL && meta_hdr == NULL) {
3597		type = ARC_BUFC_DATA;
3598	} else if (data_hdr == NULL) {
3599		ASSERT3P(meta_hdr, !=, NULL);
3600		type = ARC_BUFC_METADATA;
3601	} else if (meta_hdr == NULL) {
3602		ASSERT3P(data_hdr, !=, NULL);
3603		type = ARC_BUFC_DATA;
3604	} else {
3605		ASSERT3P(data_hdr, !=, NULL);
3606		ASSERT3P(meta_hdr, !=, NULL);
3607
3608		/* The headers can't be on the sublist without an L1 header */
3609		ASSERT(HDR_HAS_L1HDR(data_hdr));
3610		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3611
3612		if (data_hdr->b_l1hdr.b_arc_access <
3613		    meta_hdr->b_l1hdr.b_arc_access) {
3614			type = ARC_BUFC_DATA;
3615		} else {
3616			type = ARC_BUFC_METADATA;
3617		}
3618	}
3619
3620	multilist_sublist_unlock(meta_mls);
3621	multilist_sublist_unlock(data_mls);
3622
3623	return (type);
3624}
3625
3626/*
3627 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3628 */
3629static uint64_t
3630arc_adjust(void)
3631{
3632	uint64_t total_evicted = 0;
3633	uint64_t bytes;
3634	int64_t target;
3635
3636	/*
3637	 * If we're over arc_meta_limit, we want to correct that before
3638	 * potentially evicting data buffers below.
3639	 */
3640	total_evicted += arc_adjust_meta();
3641
3642	/*
3643	 * Adjust MRU size
3644	 *
3645	 * If we're over the target cache size, we want to evict enough
3646	 * from the list to get back to our target size. We don't want
3647	 * to evict too much from the MRU, such that it drops below
3648	 * arc_p. So, if we're over our target cache size more than
3649	 * the MRU is over arc_p, we'll evict enough to get back to
3650	 * arc_p here, and then evict more from the MFU below.
3651	 */
3652	target = MIN((int64_t)(arc_size - arc_c),
3653	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3654	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3655
3656	/*
3657	 * If we're below arc_meta_min, always prefer to evict data.
3658	 * Otherwise, try to satisfy the requested number of bytes to
3659	 * evict from the type which contains older buffers; in an
3660	 * effort to keep newer buffers in the cache regardless of their
3661	 * type. If we cannot satisfy the number of bytes from this
3662	 * type, spill over into the next type.
3663	 */
3664	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3665	    arc_meta_used > arc_meta_min) {
3666		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3667		total_evicted += bytes;
3668
3669		/*
3670		 * If we couldn't evict our target number of bytes from
3671		 * metadata, we try to get the rest from data.
3672		 */
3673		target -= bytes;
3674
3675		total_evicted +=
3676		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3677	} else {
3678		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3679		total_evicted += bytes;
3680
3681		/*
3682		 * If we couldn't evict our target number of bytes from
3683		 * data, we try to get the rest from metadata.
3684		 */
3685		target -= bytes;
3686
3687		total_evicted +=
3688		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3689	}
3690
3691	/*
3692	 * Adjust MFU size
3693	 *
3694	 * Now that we've tried to evict enough from the MRU to get its
3695	 * size back to arc_p, if we're still above the target cache
3696	 * size, we evict the rest from the MFU.
3697	 */
3698	target = arc_size - arc_c;
3699
3700	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3701	    arc_meta_used > arc_meta_min) {
3702		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3703		total_evicted += bytes;
3704
3705		/*
3706		 * If we couldn't evict our target number of bytes from
3707		 * metadata, we try to get the rest from data.
3708		 */
3709		target -= bytes;
3710
3711		total_evicted +=
3712		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3713	} else {
3714		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3715		total_evicted += bytes;
3716
3717		/*
3718		 * If we couldn't evict our target number of bytes from
3719		 * data, we try to get the rest from data.
3720		 */
3721		target -= bytes;
3722
3723		total_evicted +=
3724		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3725	}
3726
3727	/*
3728	 * Adjust ghost lists
3729	 *
3730	 * In addition to the above, the ARC also defines target values
3731	 * for the ghost lists. The sum of the mru list and mru ghost
3732	 * list should never exceed the target size of the cache, and
3733	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3734	 * ghost list should never exceed twice the target size of the
3735	 * cache. The following logic enforces these limits on the ghost
3736	 * caches, and evicts from them as needed.
3737	 */
3738	target = refcount_count(&arc_mru->arcs_size) +
3739	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3740
3741	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3742	total_evicted += bytes;
3743
3744	target -= bytes;
3745
3746	total_evicted +=
3747	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3748
3749	/*
3750	 * We assume the sum of the mru list and mfu list is less than
3751	 * or equal to arc_c (we enforced this above), which means we
3752	 * can use the simpler of the two equations below:
3753	 *
3754	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3755	 *		    mru ghost + mfu ghost <= arc_c
3756	 */
3757	target = refcount_count(&arc_mru_ghost->arcs_size) +
3758	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3759
3760	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3761	total_evicted += bytes;
3762
3763	target -= bytes;
3764
3765	total_evicted +=
3766	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3767
3768	return (total_evicted);
3769}
3770
3771void
3772arc_flush(spa_t *spa, boolean_t retry)
3773{
3774	uint64_t guid = 0;
3775
3776	/*
3777	 * If retry is B_TRUE, a spa must not be specified since we have
3778	 * no good way to determine if all of a spa's buffers have been
3779	 * evicted from an arc state.
3780	 */
3781	ASSERT(!retry || spa == 0);
3782
3783	if (spa != NULL)
3784		guid = spa_load_guid(spa);
3785
3786	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3787	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3788
3789	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3790	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3791
3792	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3793	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3794
3795	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3796	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3797}
3798
3799void
3800arc_shrink(int64_t to_free)
3801{
3802	if (arc_c > arc_c_min) {
3803		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3804			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3805		if (arc_c > arc_c_min + to_free)
3806			atomic_add_64(&arc_c, -to_free);
3807		else
3808			arc_c = arc_c_min;
3809
3810		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3811		if (arc_c > arc_size)
3812			arc_c = MAX(arc_size, arc_c_min);
3813		if (arc_p > arc_c)
3814			arc_p = (arc_c >> 1);
3815
3816		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3817			arc_p);
3818
3819		ASSERT(arc_c >= arc_c_min);
3820		ASSERT((int64_t)arc_p >= 0);
3821	}
3822
3823	if (arc_size > arc_c) {
3824		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3825			uint64_t, arc_c);
3826		(void) arc_adjust();
3827	}
3828}
3829
3830static long needfree = 0;
3831
3832typedef enum free_memory_reason_t {
3833	FMR_UNKNOWN,
3834	FMR_NEEDFREE,
3835	FMR_LOTSFREE,
3836	FMR_SWAPFS_MINFREE,
3837	FMR_PAGES_PP_MAXIMUM,
3838	FMR_HEAP_ARENA,
3839	FMR_ZIO_ARENA,
3840	FMR_ZIO_FRAG,
3841} free_memory_reason_t;
3842
3843int64_t last_free_memory;
3844free_memory_reason_t last_free_reason;
3845
3846/*
3847 * Additional reserve of pages for pp_reserve.
3848 */
3849int64_t arc_pages_pp_reserve = 64;
3850
3851/*
3852 * Additional reserve of pages for swapfs.
3853 */
3854int64_t arc_swapfs_reserve = 64;
3855
3856/*
3857 * Return the amount of memory that can be consumed before reclaim will be
3858 * needed.  Positive if there is sufficient free memory, negative indicates
3859 * the amount of memory that needs to be freed up.
3860 */
3861static int64_t
3862arc_available_memory(void)
3863{
3864	int64_t lowest = INT64_MAX;
3865	int64_t n;
3866	free_memory_reason_t r = FMR_UNKNOWN;
3867
3868#ifdef _KERNEL
3869	if (needfree > 0) {
3870		n = PAGESIZE * (-needfree);
3871		if (n < lowest) {
3872			lowest = n;
3873			r = FMR_NEEDFREE;
3874		}
3875	}
3876
3877	/*
3878	 * Cooperate with pagedaemon when it's time for it to scan
3879	 * and reclaim some pages.
3880	 */
3881	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3882	if (n < lowest) {
3883		lowest = n;
3884		r = FMR_LOTSFREE;
3885	}
3886
3887#ifdef illumos
3888	/*
3889	 * check that we're out of range of the pageout scanner.  It starts to
3890	 * schedule paging if freemem is less than lotsfree and needfree.
3891	 * lotsfree is the high-water mark for pageout, and needfree is the
3892	 * number of needed free pages.  We add extra pages here to make sure
3893	 * the scanner doesn't start up while we're freeing memory.
3894	 */
3895	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3896	if (n < lowest) {
3897		lowest = n;
3898		r = FMR_LOTSFREE;
3899	}
3900
3901	/*
3902	 * check to make sure that swapfs has enough space so that anon
3903	 * reservations can still succeed. anon_resvmem() checks that the
3904	 * availrmem is greater than swapfs_minfree, and the number of reserved
3905	 * swap pages.  We also add a bit of extra here just to prevent
3906	 * circumstances from getting really dire.
3907	 */
3908	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3909	    desfree - arc_swapfs_reserve);
3910	if (n < lowest) {
3911		lowest = n;
3912		r = FMR_SWAPFS_MINFREE;
3913	}
3914
3915
3916	/*
3917	 * Check that we have enough availrmem that memory locking (e.g., via
3918	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3919	 * stores the number of pages that cannot be locked; when availrmem
3920	 * drops below pages_pp_maximum, page locking mechanisms such as
3921	 * page_pp_lock() will fail.)
3922	 */
3923	n = PAGESIZE * (availrmem - pages_pp_maximum -
3924	    arc_pages_pp_reserve);
3925	if (n < lowest) {
3926		lowest = n;
3927		r = FMR_PAGES_PP_MAXIMUM;
3928	}
3929
3930#endif	/* illumos */
3931#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3932	/*
3933	 * If we're on an i386 platform, it's possible that we'll exhaust the
3934	 * kernel heap space before we ever run out of available physical
3935	 * memory.  Most checks of the size of the heap_area compare against
3936	 * tune.t_minarmem, which is the minimum available real memory that we
3937	 * can have in the system.  However, this is generally fixed at 25 pages
3938	 * which is so low that it's useless.  In this comparison, we seek to
3939	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3940	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3941	 * free)
3942	 */
3943	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3944	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3945	if (n < lowest) {
3946		lowest = n;
3947		r = FMR_HEAP_ARENA;
3948	}
3949#define	zio_arena	NULL
3950#else
3951#define	zio_arena	heap_arena
3952#endif
3953
3954	/*
3955	 * If zio data pages are being allocated out of a separate heap segment,
3956	 * then enforce that the size of available vmem for this arena remains
3957	 * above about 1/16th free.
3958	 *
3959	 * Note: The 1/16th arena free requirement was put in place
3960	 * to aggressively evict memory from the arc in order to avoid
3961	 * memory fragmentation issues.
3962	 */
3963	if (zio_arena != NULL) {
3964		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3965		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3966		if (n < lowest) {
3967			lowest = n;
3968			r = FMR_ZIO_ARENA;
3969		}
3970	}
3971
3972	/*
3973	 * Above limits know nothing about real level of KVA fragmentation.
3974	 * Start aggressive reclamation if too little sequential KVA left.
3975	 */
3976	if (lowest > 0) {
3977		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3978		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3979		    INT64_MAX;
3980		if (n < lowest) {
3981			lowest = n;
3982			r = FMR_ZIO_FRAG;
3983		}
3984	}
3985
3986#else	/* _KERNEL */
3987	/* Every 100 calls, free a small amount */
3988	if (spa_get_random(100) == 0)
3989		lowest = -1024;
3990#endif	/* _KERNEL */
3991
3992	last_free_memory = lowest;
3993	last_free_reason = r;
3994	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3995	return (lowest);
3996}
3997
3998
3999/*
4000 * Determine if the system is under memory pressure and is asking
4001 * to reclaim memory. A return value of B_TRUE indicates that the system
4002 * is under memory pressure and that the arc should adjust accordingly.
4003 */
4004static boolean_t
4005arc_reclaim_needed(void)
4006{
4007	return (arc_available_memory() < 0);
4008}
4009
4010extern kmem_cache_t	*zio_buf_cache[];
4011extern kmem_cache_t	*zio_data_buf_cache[];
4012extern kmem_cache_t	*range_seg_cache;
4013
4014static __noinline void
4015arc_kmem_reap_now(void)
4016{
4017	size_t			i;
4018	kmem_cache_t		*prev_cache = NULL;
4019	kmem_cache_t		*prev_data_cache = NULL;
4020
4021	DTRACE_PROBE(arc__kmem_reap_start);
4022#ifdef _KERNEL
4023	if (arc_meta_used >= arc_meta_limit) {
4024		/*
4025		 * We are exceeding our meta-data cache limit.
4026		 * Purge some DNLC entries to release holds on meta-data.
4027		 */
4028		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4029	}
4030#if defined(__i386)
4031	/*
4032	 * Reclaim unused memory from all kmem caches.
4033	 */
4034	kmem_reap();
4035#endif
4036#endif
4037
4038	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4039		if (zio_buf_cache[i] != prev_cache) {
4040			prev_cache = zio_buf_cache[i];
4041			kmem_cache_reap_now(zio_buf_cache[i]);
4042		}
4043		if (zio_data_buf_cache[i] != prev_data_cache) {
4044			prev_data_cache = zio_data_buf_cache[i];
4045			kmem_cache_reap_now(zio_data_buf_cache[i]);
4046		}
4047	}
4048	kmem_cache_reap_now(buf_cache);
4049	kmem_cache_reap_now(hdr_full_cache);
4050	kmem_cache_reap_now(hdr_l2only_cache);
4051	kmem_cache_reap_now(range_seg_cache);
4052
4053#ifdef illumos
4054	if (zio_arena != NULL) {
4055		/*
4056		 * Ask the vmem arena to reclaim unused memory from its
4057		 * quantum caches.
4058		 */
4059		vmem_qcache_reap(zio_arena);
4060	}
4061#endif
4062	DTRACE_PROBE(arc__kmem_reap_end);
4063}
4064
4065/*
4066 * Threads can block in arc_get_data_buf() waiting for this thread to evict
4067 * enough data and signal them to proceed. When this happens, the threads in
4068 * arc_get_data_buf() are sleeping while holding the hash lock for their
4069 * particular arc header. Thus, we must be careful to never sleep on a
4070 * hash lock in this thread. This is to prevent the following deadlock:
4071 *
4072 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
4073 *    waiting for the reclaim thread to signal it.
4074 *
4075 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4076 *    fails, and goes to sleep forever.
4077 *
4078 * This possible deadlock is avoided by always acquiring a hash lock
4079 * using mutex_tryenter() from arc_reclaim_thread().
4080 */
4081static void
4082arc_reclaim_thread(void *dummy __unused)
4083{
4084	hrtime_t		growtime = 0;
4085	callb_cpr_t		cpr;
4086
4087	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4088
4089	mutex_enter(&arc_reclaim_lock);
4090	while (!arc_reclaim_thread_exit) {
4091		int64_t free_memory = arc_available_memory();
4092		uint64_t evicted = 0;
4093
4094		/*
4095		 * This is necessary in order for the mdb ::arc dcmd to
4096		 * show up to date information. Since the ::arc command
4097		 * does not call the kstat's update function, without
4098		 * this call, the command may show stale stats for the
4099		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4100		 * with this change, the data might be up to 1 second
4101		 * out of date; but that should suffice. The arc_state_t
4102		 * structures can be queried directly if more accurate
4103		 * information is needed.
4104		 */
4105		if (arc_ksp != NULL)
4106			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4107
4108		mutex_exit(&arc_reclaim_lock);
4109
4110		if (free_memory < 0) {
4111
4112			arc_no_grow = B_TRUE;
4113			arc_warm = B_TRUE;
4114
4115			/*
4116			 * Wait at least zfs_grow_retry (default 60) seconds
4117			 * before considering growing.
4118			 */
4119			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4120
4121			arc_kmem_reap_now();
4122
4123			/*
4124			 * If we are still low on memory, shrink the ARC
4125			 * so that we have arc_shrink_min free space.
4126			 */
4127			free_memory = arc_available_memory();
4128
4129			int64_t to_free =
4130			    (arc_c >> arc_shrink_shift) - free_memory;
4131			if (to_free > 0) {
4132#ifdef _KERNEL
4133				to_free = MAX(to_free, ptob(needfree));
4134#endif
4135				arc_shrink(to_free);
4136			}
4137		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4138			arc_no_grow = B_TRUE;
4139		} else if (gethrtime() >= growtime) {
4140			arc_no_grow = B_FALSE;
4141		}
4142
4143		evicted = arc_adjust();
4144
4145		mutex_enter(&arc_reclaim_lock);
4146
4147		/*
4148		 * If evicted is zero, we couldn't evict anything via
4149		 * arc_adjust(). This could be due to hash lock
4150		 * collisions, but more likely due to the majority of
4151		 * arc buffers being unevictable. Therefore, even if
4152		 * arc_size is above arc_c, another pass is unlikely to
4153		 * be helpful and could potentially cause us to enter an
4154		 * infinite loop.
4155		 */
4156		if (arc_size <= arc_c || evicted == 0) {
4157#ifdef _KERNEL
4158			needfree = 0;
4159#endif
4160			/*
4161			 * We're either no longer overflowing, or we
4162			 * can't evict anything more, so we should wake
4163			 * up any threads before we go to sleep.
4164			 */
4165			cv_broadcast(&arc_reclaim_waiters_cv);
4166
4167			/*
4168			 * Block until signaled, or after one second (we
4169			 * might need to perform arc_kmem_reap_now()
4170			 * even if we aren't being signalled)
4171			 */
4172			CALLB_CPR_SAFE_BEGIN(&cpr);
4173			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4174			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4175			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4176		}
4177	}
4178
4179	arc_reclaim_thread_exit = B_FALSE;
4180	cv_broadcast(&arc_reclaim_thread_cv);
4181	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4182	thread_exit();
4183}
4184
4185static u_int arc_dnlc_evicts_arg;
4186extern struct vfsops zfs_vfsops;
4187
4188static void
4189arc_dnlc_evicts_thread(void *dummy __unused)
4190{
4191	callb_cpr_t cpr;
4192	u_int percent;
4193
4194	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
4195
4196	mutex_enter(&arc_dnlc_evicts_lock);
4197	while (!arc_dnlc_evicts_thread_exit) {
4198		CALLB_CPR_SAFE_BEGIN(&cpr);
4199		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
4200		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
4201		if (arc_dnlc_evicts_arg != 0) {
4202			percent = arc_dnlc_evicts_arg;
4203			mutex_exit(&arc_dnlc_evicts_lock);
4204#ifdef _KERNEL
4205			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
4206#endif
4207			mutex_enter(&arc_dnlc_evicts_lock);
4208			/*
4209			 * Clear our token only after vnlru_free()
4210			 * pass is done, to avoid false queueing of
4211			 * the requests.
4212			 */
4213			arc_dnlc_evicts_arg = 0;
4214		}
4215	}
4216	arc_dnlc_evicts_thread_exit = FALSE;
4217	cv_broadcast(&arc_dnlc_evicts_cv);
4218	CALLB_CPR_EXIT(&cpr);
4219	thread_exit();
4220}
4221
4222void
4223dnlc_reduce_cache(void *arg)
4224{
4225	u_int percent;
4226
4227	percent = (u_int)(uintptr_t)arg;
4228	mutex_enter(&arc_dnlc_evicts_lock);
4229	if (arc_dnlc_evicts_arg == 0) {
4230		arc_dnlc_evicts_arg = percent;
4231		cv_broadcast(&arc_dnlc_evicts_cv);
4232	}
4233	mutex_exit(&arc_dnlc_evicts_lock);
4234}
4235
4236/*
4237 * Adapt arc info given the number of bytes we are trying to add and
4238 * the state that we are comming from.  This function is only called
4239 * when we are adding new content to the cache.
4240 */
4241static void
4242arc_adapt(int bytes, arc_state_t *state)
4243{
4244	int mult;
4245	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4246	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4247	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4248
4249	if (state == arc_l2c_only)
4250		return;
4251
4252	ASSERT(bytes > 0);
4253	/*
4254	 * Adapt the target size of the MRU list:
4255	 *	- if we just hit in the MRU ghost list, then increase
4256	 *	  the target size of the MRU list.
4257	 *	- if we just hit in the MFU ghost list, then increase
4258	 *	  the target size of the MFU list by decreasing the
4259	 *	  target size of the MRU list.
4260	 */
4261	if (state == arc_mru_ghost) {
4262		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4263		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4264
4265		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4266	} else if (state == arc_mfu_ghost) {
4267		uint64_t delta;
4268
4269		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4270		mult = MIN(mult, 10);
4271
4272		delta = MIN(bytes * mult, arc_p);
4273		arc_p = MAX(arc_p_min, arc_p - delta);
4274	}
4275	ASSERT((int64_t)arc_p >= 0);
4276
4277	if (arc_reclaim_needed()) {
4278		cv_signal(&arc_reclaim_thread_cv);
4279		return;
4280	}
4281
4282	if (arc_no_grow)
4283		return;
4284
4285	if (arc_c >= arc_c_max)
4286		return;
4287
4288	/*
4289	 * If we're within (2 * maxblocksize) bytes of the target
4290	 * cache size, increment the target cache size
4291	 */
4292	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4293		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4294		atomic_add_64(&arc_c, (int64_t)bytes);
4295		if (arc_c > arc_c_max)
4296			arc_c = arc_c_max;
4297		else if (state == arc_anon)
4298			atomic_add_64(&arc_p, (int64_t)bytes);
4299		if (arc_p > arc_c)
4300			arc_p = arc_c;
4301	}
4302	ASSERT((int64_t)arc_p >= 0);
4303}
4304
4305/*
4306 * Check if arc_size has grown past our upper threshold, determined by
4307 * zfs_arc_overflow_shift.
4308 */
4309static boolean_t
4310arc_is_overflowing(void)
4311{
4312	/* Always allow at least one block of overflow */
4313	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4314	    arc_c >> zfs_arc_overflow_shift);
4315
4316	return (arc_size >= arc_c + overflow);
4317}
4318
4319/*
4320 * Allocate a block and return it to the caller. If we are hitting the
4321 * hard limit for the cache size, we must sleep, waiting for the eviction
4322 * thread to catch up. If we're past the target size but below the hard
4323 * limit, we'll only signal the reclaim thread and continue on.
4324 */
4325static void *
4326arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4327{
4328	void *datap = NULL;
4329	arc_state_t		*state = hdr->b_l1hdr.b_state;
4330	arc_buf_contents_t	type = arc_buf_type(hdr);
4331
4332	arc_adapt(size, state);
4333
4334	/*
4335	 * If arc_size is currently overflowing, and has grown past our
4336	 * upper limit, we must be adding data faster than the evict
4337	 * thread can evict. Thus, to ensure we don't compound the
4338	 * problem by adding more data and forcing arc_size to grow even
4339	 * further past it's target size, we halt and wait for the
4340	 * eviction thread to catch up.
4341	 *
4342	 * It's also possible that the reclaim thread is unable to evict
4343	 * enough buffers to get arc_size below the overflow limit (e.g.
4344	 * due to buffers being un-evictable, or hash lock collisions).
4345	 * In this case, we want to proceed regardless if we're
4346	 * overflowing; thus we don't use a while loop here.
4347	 */
4348	if (arc_is_overflowing()) {
4349		mutex_enter(&arc_reclaim_lock);
4350
4351		/*
4352		 * Now that we've acquired the lock, we may no longer be
4353		 * over the overflow limit, lets check.
4354		 *
4355		 * We're ignoring the case of spurious wake ups. If that
4356		 * were to happen, it'd let this thread consume an ARC
4357		 * buffer before it should have (i.e. before we're under
4358		 * the overflow limit and were signalled by the reclaim
4359		 * thread). As long as that is a rare occurrence, it
4360		 * shouldn't cause any harm.
4361		 */
4362		if (arc_is_overflowing()) {
4363			cv_signal(&arc_reclaim_thread_cv);
4364			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4365		}
4366
4367		mutex_exit(&arc_reclaim_lock);
4368	}
4369
4370	VERIFY3U(hdr->b_type, ==, type);
4371	if (type == ARC_BUFC_METADATA) {
4372		datap = zio_buf_alloc(size);
4373		arc_space_consume(size, ARC_SPACE_META);
4374	} else {
4375		ASSERT(type == ARC_BUFC_DATA);
4376		datap = zio_data_buf_alloc(size);
4377		arc_space_consume(size, ARC_SPACE_DATA);
4378	}
4379
4380	/*
4381	 * Update the state size.  Note that ghost states have a
4382	 * "ghost size" and so don't need to be updated.
4383	 */
4384	if (!GHOST_STATE(state)) {
4385
4386		(void) refcount_add_many(&state->arcs_size, size, tag);
4387
4388		/*
4389		 * If this is reached via arc_read, the link is
4390		 * protected by the hash lock. If reached via
4391		 * arc_buf_alloc, the header should not be accessed by
4392		 * any other thread. And, if reached via arc_read_done,
4393		 * the hash lock will protect it if it's found in the
4394		 * hash table; otherwise no other thread should be
4395		 * trying to [add|remove]_reference it.
4396		 */
4397		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4398			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4399			(void) refcount_add_many(&state->arcs_esize[type],
4400			    size, tag);
4401		}
4402
4403		/*
4404		 * If we are growing the cache, and we are adding anonymous
4405		 * data, and we have outgrown arc_p, update arc_p
4406		 */
4407		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4408		    (refcount_count(&arc_anon->arcs_size) +
4409		    refcount_count(&arc_mru->arcs_size) > arc_p))
4410			arc_p = MIN(arc_c, arc_p + size);
4411	}
4412	ARCSTAT_BUMP(arcstat_allocated);
4413	return (datap);
4414}
4415
4416/*
4417 * Free the arc data buffer.
4418 */
4419static void
4420arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag)
4421{
4422	arc_state_t *state = hdr->b_l1hdr.b_state;
4423	arc_buf_contents_t type = arc_buf_type(hdr);
4424
4425	/* protected by hash lock, if in the hash table */
4426	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4427		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4428		ASSERT(state != arc_anon && state != arc_l2c_only);
4429
4430		(void) refcount_remove_many(&state->arcs_esize[type],
4431		    size, tag);
4432	}
4433	(void) refcount_remove_many(&state->arcs_size, size, tag);
4434
4435	VERIFY3U(hdr->b_type, ==, type);
4436	if (type == ARC_BUFC_METADATA) {
4437		zio_buf_free(data, size);
4438		arc_space_return(size, ARC_SPACE_META);
4439	} else {
4440		ASSERT(type == ARC_BUFC_DATA);
4441		zio_data_buf_free(data, size);
4442		arc_space_return(size, ARC_SPACE_DATA);
4443	}
4444}
4445
4446/*
4447 * This routine is called whenever a buffer is accessed.
4448 * NOTE: the hash lock is dropped in this function.
4449 */
4450static void
4451arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4452{
4453	clock_t now;
4454
4455	ASSERT(MUTEX_HELD(hash_lock));
4456	ASSERT(HDR_HAS_L1HDR(hdr));
4457
4458	if (hdr->b_l1hdr.b_state == arc_anon) {
4459		/*
4460		 * This buffer is not in the cache, and does not
4461		 * appear in our "ghost" list.  Add the new buffer
4462		 * to the MRU state.
4463		 */
4464
4465		ASSERT0(hdr->b_l1hdr.b_arc_access);
4466		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4467		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4468		arc_change_state(arc_mru, hdr, hash_lock);
4469
4470	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4471		now = ddi_get_lbolt();
4472
4473		/*
4474		 * If this buffer is here because of a prefetch, then either:
4475		 * - clear the flag if this is a "referencing" read
4476		 *   (any subsequent access will bump this into the MFU state).
4477		 * or
4478		 * - move the buffer to the head of the list if this is
4479		 *   another prefetch (to make it less likely to be evicted).
4480		 */
4481		if (HDR_PREFETCH(hdr)) {
4482			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4483				/* link protected by hash lock */
4484				ASSERT(multilist_link_active(
4485				    &hdr->b_l1hdr.b_arc_node));
4486			} else {
4487				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4488				ARCSTAT_BUMP(arcstat_mru_hits);
4489			}
4490			hdr->b_l1hdr.b_arc_access = now;
4491			return;
4492		}
4493
4494		/*
4495		 * This buffer has been "accessed" only once so far,
4496		 * but it is still in the cache. Move it to the MFU
4497		 * state.
4498		 */
4499		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4500			/*
4501			 * More than 125ms have passed since we
4502			 * instantiated this buffer.  Move it to the
4503			 * most frequently used state.
4504			 */
4505			hdr->b_l1hdr.b_arc_access = now;
4506			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4507			arc_change_state(arc_mfu, hdr, hash_lock);
4508		}
4509		ARCSTAT_BUMP(arcstat_mru_hits);
4510	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4511		arc_state_t	*new_state;
4512		/*
4513		 * This buffer has been "accessed" recently, but
4514		 * was evicted from the cache.  Move it to the
4515		 * MFU state.
4516		 */
4517
4518		if (HDR_PREFETCH(hdr)) {
4519			new_state = arc_mru;
4520			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4521				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4522			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4523		} else {
4524			new_state = arc_mfu;
4525			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4526		}
4527
4528		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4529		arc_change_state(new_state, hdr, hash_lock);
4530
4531		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4532	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4533		/*
4534		 * This buffer has been accessed more than once and is
4535		 * still in the cache.  Keep it in the MFU state.
4536		 *
4537		 * NOTE: an add_reference() that occurred when we did
4538		 * the arc_read() will have kicked this off the list.
4539		 * If it was a prefetch, we will explicitly move it to
4540		 * the head of the list now.
4541		 */
4542		if ((HDR_PREFETCH(hdr)) != 0) {
4543			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4544			/* link protected by hash_lock */
4545			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4546		}
4547		ARCSTAT_BUMP(arcstat_mfu_hits);
4548		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4549	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4550		arc_state_t	*new_state = arc_mfu;
4551		/*
4552		 * This buffer has been accessed more than once but has
4553		 * been evicted from the cache.  Move it back to the
4554		 * MFU state.
4555		 */
4556
4557		if (HDR_PREFETCH(hdr)) {
4558			/*
4559			 * This is a prefetch access...
4560			 * move this block back to the MRU state.
4561			 */
4562			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4563			new_state = arc_mru;
4564		}
4565
4566		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4567		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4568		arc_change_state(new_state, hdr, hash_lock);
4569
4570		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4571	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4572		/*
4573		 * This buffer is on the 2nd Level ARC.
4574		 */
4575
4576		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4577		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4578		arc_change_state(arc_mfu, hdr, hash_lock);
4579	} else {
4580		ASSERT(!"invalid arc state");
4581	}
4582}
4583
4584/* a generic arc_done_func_t which you can use */
4585/* ARGSUSED */
4586void
4587arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4588{
4589	if (zio == NULL || zio->io_error == 0)
4590		bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr));
4591	arc_buf_destroy(buf, arg);
4592}
4593
4594/* a generic arc_done_func_t */
4595void
4596arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4597{
4598	arc_buf_t **bufp = arg;
4599	if (zio && zio->io_error) {
4600		arc_buf_destroy(buf, arg);
4601		*bufp = NULL;
4602	} else {
4603		*bufp = buf;
4604		ASSERT(buf->b_data);
4605	}
4606}
4607
4608static void
4609arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4610{
4611	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4612		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4613		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4614	} else {
4615		if (HDR_COMPRESSION_ENABLED(hdr)) {
4616			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4617			    BP_GET_COMPRESS(bp));
4618		}
4619		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4620		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4621	}
4622}
4623
4624static void
4625arc_read_done(zio_t *zio)
4626{
4627	arc_buf_hdr_t	*hdr = zio->io_private;
4628	arc_buf_t	*abuf = NULL;	/* buffer we're assigning to callback */
4629	kmutex_t	*hash_lock = NULL;
4630	arc_callback_t	*callback_list, *acb;
4631	int		freeable = B_FALSE;
4632
4633	/*
4634	 * The hdr was inserted into hash-table and removed from lists
4635	 * prior to starting I/O.  We should find this header, since
4636	 * it's in the hash table, and it should be legit since it's
4637	 * not possible to evict it during the I/O.  The only possible
4638	 * reason for it not to be found is if we were freed during the
4639	 * read.
4640	 */
4641	if (HDR_IN_HASH_TABLE(hdr)) {
4642		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4643		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4644		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4645		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4646		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4647
4648		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4649		    &hash_lock);
4650
4651		ASSERT((found == hdr &&
4652		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4653		    (found == hdr && HDR_L2_READING(hdr)));
4654		ASSERT3P(hash_lock, !=, NULL);
4655	}
4656
4657	if (zio->io_error == 0) {
4658		/* byteswap if necessary */
4659		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4660			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4661				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4662			} else {
4663				hdr->b_l1hdr.b_byteswap =
4664				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4665			}
4666		} else {
4667			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4668		}
4669	}
4670
4671	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4672	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4673		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4674
4675	callback_list = hdr->b_l1hdr.b_acb;
4676	ASSERT3P(callback_list, !=, NULL);
4677
4678	if (hash_lock && zio->io_error == 0 &&
4679	    hdr->b_l1hdr.b_state == arc_anon) {
4680		/*
4681		 * Only call arc_access on anonymous buffers.  This is because
4682		 * if we've issued an I/O for an evicted buffer, we've already
4683		 * called arc_access (to prevent any simultaneous readers from
4684		 * getting confused).
4685		 */
4686		arc_access(hdr, hash_lock);
4687	}
4688
4689	/* create copies of the data buffer for the callers */
4690	for (acb = callback_list; acb; acb = acb->acb_next) {
4691		if (acb->acb_done != NULL) {
4692			/*
4693			 * If we're here, then this must be a demand read
4694			 * since prefetch requests don't have callbacks.
4695			 * If a read request has a callback (i.e. acb_done is
4696			 * not NULL), then we decompress the data for the
4697			 * first request and clone the rest. This avoids
4698			 * having to waste cpu resources decompressing data
4699			 * that nobody is explicitly waiting to read.
4700			 */
4701			if (abuf == NULL) {
4702				acb->acb_buf = arc_buf_alloc_impl(hdr,
4703				    acb->acb_private);
4704				if (zio->io_error == 0) {
4705					zio->io_error =
4706					    arc_decompress(acb->acb_buf);
4707				}
4708				abuf = acb->acb_buf;
4709			} else {
4710				add_reference(hdr, acb->acb_private);
4711				acb->acb_buf = arc_buf_clone(abuf);
4712			}
4713		}
4714	}
4715	hdr->b_l1hdr.b_acb = NULL;
4716	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4717	if (abuf == NULL) {
4718		/*
4719		 * This buffer didn't have a callback so it must
4720		 * be a prefetch.
4721		 */
4722		ASSERT(HDR_PREFETCH(hdr));
4723		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4724		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4725	}
4726
4727	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4728	    callback_list != NULL);
4729
4730	if (zio->io_error == 0) {
4731		arc_hdr_verify(hdr, zio->io_bp);
4732	} else {
4733		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4734		if (hdr->b_l1hdr.b_state != arc_anon)
4735			arc_change_state(arc_anon, hdr, hash_lock);
4736		if (HDR_IN_HASH_TABLE(hdr))
4737			buf_hash_remove(hdr);
4738		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4739	}
4740
4741	/*
4742	 * Broadcast before we drop the hash_lock to avoid the possibility
4743	 * that the hdr (and hence the cv) might be freed before we get to
4744	 * the cv_broadcast().
4745	 */
4746	cv_broadcast(&hdr->b_l1hdr.b_cv);
4747
4748	if (hash_lock != NULL) {
4749		mutex_exit(hash_lock);
4750	} else {
4751		/*
4752		 * This block was freed while we waited for the read to
4753		 * complete.  It has been removed from the hash table and
4754		 * moved to the anonymous state (so that it won't show up
4755		 * in the cache).
4756		 */
4757		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4758		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4759	}
4760
4761	/* execute each callback and free its structure */
4762	while ((acb = callback_list) != NULL) {
4763		if (acb->acb_done)
4764			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4765
4766		if (acb->acb_zio_dummy != NULL) {
4767			acb->acb_zio_dummy->io_error = zio->io_error;
4768			zio_nowait(acb->acb_zio_dummy);
4769		}
4770
4771		callback_list = acb->acb_next;
4772		kmem_free(acb, sizeof (arc_callback_t));
4773	}
4774
4775	if (freeable)
4776		arc_hdr_destroy(hdr);
4777}
4778
4779/*
4780 * "Read" the block at the specified DVA (in bp) via the
4781 * cache.  If the block is found in the cache, invoke the provided
4782 * callback immediately and return.  Note that the `zio' parameter
4783 * in the callback will be NULL in this case, since no IO was
4784 * required.  If the block is not in the cache pass the read request
4785 * on to the spa with a substitute callback function, so that the
4786 * requested block will be added to the cache.
4787 *
4788 * If a read request arrives for a block that has a read in-progress,
4789 * either wait for the in-progress read to complete (and return the
4790 * results); or, if this is a read with a "done" func, add a record
4791 * to the read to invoke the "done" func when the read completes,
4792 * and return; or just return.
4793 *
4794 * arc_read_done() will invoke all the requested "done" functions
4795 * for readers of this block.
4796 */
4797int
4798arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4799    void *private, zio_priority_t priority, int zio_flags,
4800    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4801{
4802	arc_buf_hdr_t *hdr = NULL;
4803	kmutex_t *hash_lock = NULL;
4804	zio_t *rzio;
4805	uint64_t guid = spa_load_guid(spa);
4806
4807	ASSERT(!BP_IS_EMBEDDED(bp) ||
4808	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4809
4810top:
4811	if (!BP_IS_EMBEDDED(bp)) {
4812		/*
4813		 * Embedded BP's have no DVA and require no I/O to "read".
4814		 * Create an anonymous arc buf to back it.
4815		 */
4816		hdr = buf_hash_find(guid, bp, &hash_lock);
4817	}
4818
4819	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) {
4820		arc_buf_t *buf = NULL;
4821		*arc_flags |= ARC_FLAG_CACHED;
4822
4823		if (HDR_IO_IN_PROGRESS(hdr)) {
4824
4825			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4826			    priority == ZIO_PRIORITY_SYNC_READ) {
4827				/*
4828				 * This sync read must wait for an
4829				 * in-progress async read (e.g. a predictive
4830				 * prefetch).  Async reads are queued
4831				 * separately at the vdev_queue layer, so
4832				 * this is a form of priority inversion.
4833				 * Ideally, we would "inherit" the demand
4834				 * i/o's priority by moving the i/o from
4835				 * the async queue to the synchronous queue,
4836				 * but there is currently no mechanism to do
4837				 * so.  Track this so that we can evaluate
4838				 * the magnitude of this potential performance
4839				 * problem.
4840				 *
4841				 * Note that if the prefetch i/o is already
4842				 * active (has been issued to the device),
4843				 * the prefetch improved performance, because
4844				 * we issued it sooner than we would have
4845				 * without the prefetch.
4846				 */
4847				DTRACE_PROBE1(arc__sync__wait__for__async,
4848				    arc_buf_hdr_t *, hdr);
4849				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4850			}
4851			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4852				arc_hdr_clear_flags(hdr,
4853				    ARC_FLAG_PREDICTIVE_PREFETCH);
4854			}
4855
4856			if (*arc_flags & ARC_FLAG_WAIT) {
4857				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4858				mutex_exit(hash_lock);
4859				goto top;
4860			}
4861			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4862
4863			if (done) {
4864				arc_callback_t *acb = NULL;
4865
4866				acb = kmem_zalloc(sizeof (arc_callback_t),
4867				    KM_SLEEP);
4868				acb->acb_done = done;
4869				acb->acb_private = private;
4870				if (pio != NULL)
4871					acb->acb_zio_dummy = zio_null(pio,
4872					    spa, NULL, NULL, NULL, zio_flags);
4873
4874				ASSERT3P(acb->acb_done, !=, NULL);
4875				acb->acb_next = hdr->b_l1hdr.b_acb;
4876				hdr->b_l1hdr.b_acb = acb;
4877				mutex_exit(hash_lock);
4878				return (0);
4879			}
4880			mutex_exit(hash_lock);
4881			return (0);
4882		}
4883
4884		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4885		    hdr->b_l1hdr.b_state == arc_mfu);
4886
4887		if (done) {
4888			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4889				/*
4890				 * This is a demand read which does not have to
4891				 * wait for i/o because we did a predictive
4892				 * prefetch i/o for it, which has completed.
4893				 */
4894				DTRACE_PROBE1(
4895				    arc__demand__hit__predictive__prefetch,
4896				    arc_buf_hdr_t *, hdr);
4897				ARCSTAT_BUMP(
4898				    arcstat_demand_hit_predictive_prefetch);
4899				arc_hdr_clear_flags(hdr,
4900				    ARC_FLAG_PREDICTIVE_PREFETCH);
4901			}
4902			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4903
4904			/*
4905			 * If this block is already in use, create a new
4906			 * copy of the data so that we will be guaranteed
4907			 * that arc_release() will always succeed.
4908			 */
4909			buf = hdr->b_l1hdr.b_buf;
4910			if (buf == NULL) {
4911				ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4912				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4913				buf = arc_buf_alloc_impl(hdr, private);
4914				VERIFY0(arc_decompress(buf));
4915			} else {
4916				add_reference(hdr, private);
4917				buf = arc_buf_clone(buf);
4918			}
4919			ASSERT3P(buf->b_data, !=, NULL);
4920
4921		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4922		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4923			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4924		}
4925		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4926		arc_access(hdr, hash_lock);
4927		if (*arc_flags & ARC_FLAG_L2CACHE)
4928			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4929		mutex_exit(hash_lock);
4930		ARCSTAT_BUMP(arcstat_hits);
4931		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4932		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4933		    data, metadata, hits);
4934
4935		if (done)
4936			done(NULL, buf, private);
4937	} else {
4938		uint64_t lsize = BP_GET_LSIZE(bp);
4939		uint64_t psize = BP_GET_PSIZE(bp);
4940		arc_callback_t *acb;
4941		vdev_t *vd = NULL;
4942		uint64_t addr = 0;
4943		boolean_t devw = B_FALSE;
4944		uint64_t size;
4945
4946		if (hdr == NULL) {
4947			/* this block is not in the cache */
4948			arc_buf_hdr_t *exists = NULL;
4949			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4950			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4951			    BP_GET_COMPRESS(bp), type);
4952
4953			if (!BP_IS_EMBEDDED(bp)) {
4954				hdr->b_dva = *BP_IDENTITY(bp);
4955				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4956				exists = buf_hash_insert(hdr, &hash_lock);
4957			}
4958			if (exists != NULL) {
4959				/* somebody beat us to the hash insert */
4960				mutex_exit(hash_lock);
4961				buf_discard_identity(hdr);
4962				arc_hdr_destroy(hdr);
4963				goto top; /* restart the IO request */
4964			}
4965		} else {
4966			/*
4967			 * This block is in the ghost cache. If it was L2-only
4968			 * (and thus didn't have an L1 hdr), we realloc the
4969			 * header to add an L1 hdr.
4970			 */
4971			if (!HDR_HAS_L1HDR(hdr)) {
4972				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4973				    hdr_full_cache);
4974			}
4975			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
4976			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4977			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4978			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4979			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4980
4981			/*
4982			 * This is a delicate dance that we play here.
4983			 * This hdr is in the ghost list so we access it
4984			 * to move it out of the ghost list before we
4985			 * initiate the read. If it's a prefetch then
4986			 * it won't have a callback so we'll remove the
4987			 * reference that arc_buf_alloc_impl() created. We
4988			 * do this after we've called arc_access() to
4989			 * avoid hitting an assert in remove_reference().
4990			 */
4991			arc_access(hdr, hash_lock);
4992			arc_hdr_alloc_pdata(hdr);
4993		}
4994		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4995		size = arc_hdr_size(hdr);
4996
4997		/*
4998		 * If compression is enabled on the hdr, then will do
4999		 * RAW I/O and will store the compressed data in the hdr's
5000		 * data block. Otherwise, the hdr's data block will contain
5001		 * the uncompressed data.
5002		 */
5003		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5004			zio_flags |= ZIO_FLAG_RAW;
5005		}
5006
5007		if (*arc_flags & ARC_FLAG_PREFETCH)
5008			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5009		if (*arc_flags & ARC_FLAG_L2CACHE)
5010			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5011		if (BP_GET_LEVEL(bp) > 0)
5012			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5013		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5014			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5015		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5016
5017		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5018		acb->acb_done = done;
5019		acb->acb_private = private;
5020
5021		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5022		hdr->b_l1hdr.b_acb = acb;
5023		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5024
5025		if (HDR_HAS_L2HDR(hdr) &&
5026		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5027			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5028			addr = hdr->b_l2hdr.b_daddr;
5029			/*
5030			 * Lock out device removal.
5031			 */
5032			if (vdev_is_dead(vd) ||
5033			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5034				vd = NULL;
5035		}
5036
5037		if (priority == ZIO_PRIORITY_ASYNC_READ)
5038			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5039		else
5040			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5041
5042		if (hash_lock != NULL)
5043			mutex_exit(hash_lock);
5044
5045		/*
5046		 * At this point, we have a level 1 cache miss.  Try again in
5047		 * L2ARC if possible.
5048		 */
5049		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5050
5051		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5052		    uint64_t, lsize, zbookmark_phys_t *, zb);
5053		ARCSTAT_BUMP(arcstat_misses);
5054		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5055		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5056		    data, metadata, misses);
5057#ifdef _KERNEL
5058#ifdef RACCT
5059		if (racct_enable) {
5060			PROC_LOCK(curproc);
5061			racct_add_force(curproc, RACCT_READBPS, size);
5062			racct_add_force(curproc, RACCT_READIOPS, 1);
5063			PROC_UNLOCK(curproc);
5064		}
5065#endif /* RACCT */
5066		curthread->td_ru.ru_inblock++;
5067#endif
5068
5069		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5070			/*
5071			 * Read from the L2ARC if the following are true:
5072			 * 1. The L2ARC vdev was previously cached.
5073			 * 2. This buffer still has L2ARC metadata.
5074			 * 3. This buffer isn't currently writing to the L2ARC.
5075			 * 4. The L2ARC entry wasn't evicted, which may
5076			 *    also have invalidated the vdev.
5077			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5078			 */
5079			if (HDR_HAS_L2HDR(hdr) &&
5080			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5081			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5082				l2arc_read_callback_t *cb;
5083				void* b_data;
5084
5085				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5086				ARCSTAT_BUMP(arcstat_l2_hits);
5087
5088				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5089				    KM_SLEEP);
5090				cb->l2rcb_hdr = hdr;
5091				cb->l2rcb_bp = *bp;
5092				cb->l2rcb_zb = *zb;
5093				cb->l2rcb_flags = zio_flags;
5094				uint64_t asize = vdev_psize_to_asize(vd, size);
5095				if (asize != size) {
5096					b_data = zio_data_buf_alloc(asize);
5097					cb->l2rcb_data = b_data;
5098				} else {
5099					b_data = hdr->b_l1hdr.b_pdata;
5100				}
5101
5102				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5103				    addr + asize < vd->vdev_psize -
5104				    VDEV_LABEL_END_SIZE);
5105
5106				/*
5107				 * l2arc read.  The SCL_L2ARC lock will be
5108				 * released by l2arc_read_done().
5109				 * Issue a null zio if the underlying buffer
5110				 * was squashed to zero size by compression.
5111				 */
5112				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5113				    ZIO_COMPRESS_EMPTY);
5114				rzio = zio_read_phys(pio, vd, addr,
5115				    asize, b_data,
5116				    ZIO_CHECKSUM_OFF,
5117				    l2arc_read_done, cb, priority,
5118				    zio_flags | ZIO_FLAG_DONT_CACHE |
5119				    ZIO_FLAG_CANFAIL |
5120				    ZIO_FLAG_DONT_PROPAGATE |
5121				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5122				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5123				    zio_t *, rzio);
5124				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5125
5126				if (*arc_flags & ARC_FLAG_NOWAIT) {
5127					zio_nowait(rzio);
5128					return (0);
5129				}
5130
5131				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5132				if (zio_wait(rzio) == 0)
5133					return (0);
5134
5135				/* l2arc read error; goto zio_read() */
5136			} else {
5137				DTRACE_PROBE1(l2arc__miss,
5138				    arc_buf_hdr_t *, hdr);
5139				ARCSTAT_BUMP(arcstat_l2_misses);
5140				if (HDR_L2_WRITING(hdr))
5141					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5142				spa_config_exit(spa, SCL_L2ARC, vd);
5143			}
5144		} else {
5145			if (vd != NULL)
5146				spa_config_exit(spa, SCL_L2ARC, vd);
5147			if (l2arc_ndev != 0) {
5148				DTRACE_PROBE1(l2arc__miss,
5149				    arc_buf_hdr_t *, hdr);
5150				ARCSTAT_BUMP(arcstat_l2_misses);
5151			}
5152		}
5153
5154		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size,
5155		    arc_read_done, hdr, priority, zio_flags, zb);
5156
5157		if (*arc_flags & ARC_FLAG_WAIT)
5158			return (zio_wait(rzio));
5159
5160		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5161		zio_nowait(rzio);
5162	}
5163	return (0);
5164}
5165
5166/*
5167 * Notify the arc that a block was freed, and thus will never be used again.
5168 */
5169void
5170arc_freed(spa_t *spa, const blkptr_t *bp)
5171{
5172	arc_buf_hdr_t *hdr;
5173	kmutex_t *hash_lock;
5174	uint64_t guid = spa_load_guid(spa);
5175
5176	ASSERT(!BP_IS_EMBEDDED(bp));
5177
5178	hdr = buf_hash_find(guid, bp, &hash_lock);
5179	if (hdr == NULL)
5180		return;
5181
5182	/*
5183	 * We might be trying to free a block that is still doing I/O
5184	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5185	 * dmu_sync-ed block). If this block is being prefetched, then it
5186	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5187	 * until the I/O completes. A block may also have a reference if it is
5188	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5189	 * have written the new block to its final resting place on disk but
5190	 * without the dedup flag set. This would have left the hdr in the MRU
5191	 * state and discoverable. When the txg finally syncs it detects that
5192	 * the block was overridden in open context and issues an override I/O.
5193	 * Since this is a dedup block, the override I/O will determine if the
5194	 * block is already in the DDT. If so, then it will replace the io_bp
5195	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5196	 * reaches the done callback, dbuf_write_override_done, it will
5197	 * check to see if the io_bp and io_bp_override are identical.
5198	 * If they are not, then it indicates that the bp was replaced with
5199	 * the bp in the DDT and the override bp is freed. This allows
5200	 * us to arrive here with a reference on a block that is being
5201	 * freed. So if we have an I/O in progress, or a reference to
5202	 * this hdr, then we don't destroy the hdr.
5203	 */
5204	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5205	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5206		arc_change_state(arc_anon, hdr, hash_lock);
5207		arc_hdr_destroy(hdr);
5208		mutex_exit(hash_lock);
5209	} else {
5210		mutex_exit(hash_lock);
5211	}
5212
5213}
5214
5215/*
5216 * Release this buffer from the cache, making it an anonymous buffer.  This
5217 * must be done after a read and prior to modifying the buffer contents.
5218 * If the buffer has more than one reference, we must make
5219 * a new hdr for the buffer.
5220 */
5221void
5222arc_release(arc_buf_t *buf, void *tag)
5223{
5224	arc_buf_hdr_t *hdr = buf->b_hdr;
5225
5226	/*
5227	 * It would be nice to assert that if it's DMU metadata (level >
5228	 * 0 || it's the dnode file), then it must be syncing context.
5229	 * But we don't know that information at this level.
5230	 */
5231
5232	mutex_enter(&buf->b_evict_lock);
5233
5234	ASSERT(HDR_HAS_L1HDR(hdr));
5235
5236	/*
5237	 * We don't grab the hash lock prior to this check, because if
5238	 * the buffer's header is in the arc_anon state, it won't be
5239	 * linked into the hash table.
5240	 */
5241	if (hdr->b_l1hdr.b_state == arc_anon) {
5242		mutex_exit(&buf->b_evict_lock);
5243		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5244		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5245		ASSERT(!HDR_HAS_L2HDR(hdr));
5246		ASSERT(HDR_EMPTY(hdr));
5247		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5248		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5249		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5250
5251		hdr->b_l1hdr.b_arc_access = 0;
5252
5253		/*
5254		 * If the buf is being overridden then it may already
5255		 * have a hdr that is not empty.
5256		 */
5257		buf_discard_identity(hdr);
5258		arc_buf_thaw(buf);
5259
5260		return;
5261	}
5262
5263	kmutex_t *hash_lock = HDR_LOCK(hdr);
5264	mutex_enter(hash_lock);
5265
5266	/*
5267	 * This assignment is only valid as long as the hash_lock is
5268	 * held, we must be careful not to reference state or the
5269	 * b_state field after dropping the lock.
5270	 */
5271	arc_state_t *state = hdr->b_l1hdr.b_state;
5272	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5273	ASSERT3P(state, !=, arc_anon);
5274
5275	/* this buffer is not on any list */
5276	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
5277
5278	if (HDR_HAS_L2HDR(hdr)) {
5279		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5280
5281		/*
5282		 * We have to recheck this conditional again now that
5283		 * we're holding the l2ad_mtx to prevent a race with
5284		 * another thread which might be concurrently calling
5285		 * l2arc_evict(). In that case, l2arc_evict() might have
5286		 * destroyed the header's L2 portion as we were waiting
5287		 * to acquire the l2ad_mtx.
5288		 */
5289		if (HDR_HAS_L2HDR(hdr)) {
5290			l2arc_trim(hdr);
5291			arc_hdr_l2hdr_destroy(hdr);
5292		}
5293
5294		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5295	}
5296
5297	/*
5298	 * Do we have more than one buf?
5299	 */
5300	if (hdr->b_l1hdr.b_bufcnt > 1) {
5301		arc_buf_hdr_t *nhdr;
5302		arc_buf_t **bufp;
5303		uint64_t spa = hdr->b_spa;
5304		uint64_t psize = HDR_GET_PSIZE(hdr);
5305		uint64_t lsize = HDR_GET_LSIZE(hdr);
5306		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5307		arc_buf_contents_t type = arc_buf_type(hdr);
5308		VERIFY3U(hdr->b_type, ==, type);
5309
5310		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5311		(void) remove_reference(hdr, hash_lock, tag);
5312
5313		if (arc_buf_is_shared(buf)) {
5314			ASSERT(HDR_SHARED_DATA(hdr));
5315			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5316			ASSERT(ARC_BUF_LAST(buf));
5317		}
5318
5319		/*
5320		 * Pull the data off of this hdr and attach it to
5321		 * a new anonymous hdr. Also find the last buffer
5322		 * in the hdr's buffer list.
5323		 */
5324		arc_buf_t *lastbuf = NULL;
5325		bufp = &hdr->b_l1hdr.b_buf;
5326		while (*bufp != NULL) {
5327			if (*bufp == buf) {
5328				*bufp = buf->b_next;
5329			}
5330
5331			/*
5332			 * If we've removed a buffer in the middle of
5333			 * the list then update the lastbuf and update
5334			 * bufp.
5335			 */
5336			if (*bufp != NULL) {
5337				lastbuf = *bufp;
5338				bufp = &(*bufp)->b_next;
5339			}
5340		}
5341		buf->b_next = NULL;
5342		ASSERT3P(lastbuf, !=, buf);
5343		ASSERT3P(lastbuf, !=, NULL);
5344
5345		/*
5346		 * If the current arc_buf_t and the hdr are sharing their data
5347		 * buffer, then we must stop sharing that block, transfer
5348		 * ownership and setup sharing with a new arc_buf_t at the end
5349		 * of the hdr's b_buf list.
5350		 */
5351		if (arc_buf_is_shared(buf)) {
5352			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5353			ASSERT(ARC_BUF_LAST(lastbuf));
5354			VERIFY(!arc_buf_is_shared(lastbuf));
5355
5356			/*
5357			 * First, sever the block sharing relationship between
5358			 * buf and the arc_buf_hdr_t. Then, setup a new
5359			 * block sharing relationship with the last buffer
5360			 * on the arc_buf_t list.
5361			 */
5362			arc_unshare_buf(hdr, buf);
5363			arc_share_buf(hdr, lastbuf);
5364			VERIFY3P(lastbuf->b_data, !=, NULL);
5365		} else if (HDR_SHARED_DATA(hdr)) {
5366			ASSERT(arc_buf_is_shared(lastbuf));
5367		}
5368		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5369		ASSERT3P(state, !=, arc_l2c_only);
5370
5371		(void) refcount_remove_many(&state->arcs_size,
5372		    HDR_GET_LSIZE(hdr), buf);
5373
5374		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5375			ASSERT3P(state, !=, arc_l2c_only);
5376			(void) refcount_remove_many(&state->arcs_esize[type],
5377			    HDR_GET_LSIZE(hdr), buf);
5378		}
5379
5380		hdr->b_l1hdr.b_bufcnt -= 1;
5381		arc_cksum_verify(buf);
5382#ifdef illumos
5383		arc_buf_unwatch(buf);
5384#endif
5385
5386		mutex_exit(hash_lock);
5387
5388		/*
5389		 * Allocate a new hdr. The new hdr will contain a b_pdata
5390		 * buffer which will be freed in arc_write().
5391		 */
5392		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5393		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5394		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5395		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5396		VERIFY3U(nhdr->b_type, ==, type);
5397		ASSERT(!HDR_SHARED_DATA(nhdr));
5398
5399		nhdr->b_l1hdr.b_buf = buf;
5400		nhdr->b_l1hdr.b_bufcnt = 1;
5401		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5402		buf->b_hdr = nhdr;
5403
5404		mutex_exit(&buf->b_evict_lock);
5405		(void) refcount_add_many(&arc_anon->arcs_size,
5406		    HDR_GET_LSIZE(nhdr), buf);
5407	} else {
5408		mutex_exit(&buf->b_evict_lock);
5409		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5410		/* protected by hash lock, or hdr is on arc_anon */
5411		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5412		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5413		arc_change_state(arc_anon, hdr, hash_lock);
5414		hdr->b_l1hdr.b_arc_access = 0;
5415		mutex_exit(hash_lock);
5416
5417		buf_discard_identity(hdr);
5418		arc_buf_thaw(buf);
5419	}
5420}
5421
5422int
5423arc_released(arc_buf_t *buf)
5424{
5425	int released;
5426
5427	mutex_enter(&buf->b_evict_lock);
5428	released = (buf->b_data != NULL &&
5429	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5430	mutex_exit(&buf->b_evict_lock);
5431	return (released);
5432}
5433
5434#ifdef ZFS_DEBUG
5435int
5436arc_referenced(arc_buf_t *buf)
5437{
5438	int referenced;
5439
5440	mutex_enter(&buf->b_evict_lock);
5441	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5442	mutex_exit(&buf->b_evict_lock);
5443	return (referenced);
5444}
5445#endif
5446
5447static void
5448arc_write_ready(zio_t *zio)
5449{
5450	arc_write_callback_t *callback = zio->io_private;
5451	arc_buf_t *buf = callback->awcb_buf;
5452	arc_buf_hdr_t *hdr = buf->b_hdr;
5453	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5454
5455	ASSERT(HDR_HAS_L1HDR(hdr));
5456	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5457	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5458
5459	/*
5460	 * If we're reexecuting this zio because the pool suspended, then
5461	 * cleanup any state that was previously set the first time the
5462	 * callback as invoked.
5463	 */
5464	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5465		arc_cksum_free(hdr);
5466#ifdef illumos
5467		arc_buf_unwatch(buf);
5468#endif
5469		if (hdr->b_l1hdr.b_pdata != NULL) {
5470			if (arc_buf_is_shared(buf)) {
5471				ASSERT(HDR_SHARED_DATA(hdr));
5472
5473				arc_unshare_buf(hdr, buf);
5474			} else {
5475				arc_hdr_free_pdata(hdr);
5476			}
5477		}
5478	}
5479	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5480	ASSERT(!HDR_SHARED_DATA(hdr));
5481	ASSERT(!arc_buf_is_shared(buf));
5482
5483	callback->awcb_ready(zio, buf, callback->awcb_private);
5484
5485	if (HDR_IO_IN_PROGRESS(hdr))
5486		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5487
5488	arc_cksum_compute(buf);
5489	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5490
5491	enum zio_compress compress;
5492	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5493		compress = ZIO_COMPRESS_OFF;
5494	} else {
5495		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5496		compress = BP_GET_COMPRESS(zio->io_bp);
5497	}
5498	HDR_SET_PSIZE(hdr, psize);
5499	arc_hdr_set_compress(hdr, compress);
5500
5501	/*
5502	 * If the hdr is compressed, then copy the compressed
5503	 * zio contents into arc_buf_hdr_t. Otherwise, copy the original
5504	 * data buf into the hdr. Ideally, we would like to always copy the
5505	 * io_data into b_pdata but the user may have disabled compressed
5506	 * arc thus the on-disk block may or may not match what we maintain
5507	 * in the hdr's b_pdata field.
5508	 */
5509	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5510		ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF);
5511		ASSERT3U(psize, >, 0);
5512		arc_hdr_alloc_pdata(hdr);
5513		bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize);
5514	} else {
5515		ASSERT3P(buf->b_data, ==, zio->io_orig_data);
5516		ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr));
5517		ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS);
5518		ASSERT(!HDR_SHARED_DATA(hdr));
5519		ASSERT(!arc_buf_is_shared(buf));
5520		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5521		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5522
5523		/*
5524		 * This hdr is not compressed so we're able to share
5525		 * the arc_buf_t data buffer with the hdr.
5526		 */
5527		arc_share_buf(hdr, buf);
5528		VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata,
5529		    HDR_GET_LSIZE(hdr)));
5530	}
5531	arc_hdr_verify(hdr, zio->io_bp);
5532}
5533
5534static void
5535arc_write_children_ready(zio_t *zio)
5536{
5537	arc_write_callback_t *callback = zio->io_private;
5538	arc_buf_t *buf = callback->awcb_buf;
5539
5540	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5541}
5542
5543/*
5544 * The SPA calls this callback for each physical write that happens on behalf
5545 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5546 */
5547static void
5548arc_write_physdone(zio_t *zio)
5549{
5550	arc_write_callback_t *cb = zio->io_private;
5551	if (cb->awcb_physdone != NULL)
5552		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5553}
5554
5555static void
5556arc_write_done(zio_t *zio)
5557{
5558	arc_write_callback_t *callback = zio->io_private;
5559	arc_buf_t *buf = callback->awcb_buf;
5560	arc_buf_hdr_t *hdr = buf->b_hdr;
5561
5562	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5563
5564	if (zio->io_error == 0) {
5565		arc_hdr_verify(hdr, zio->io_bp);
5566
5567		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5568			buf_discard_identity(hdr);
5569		} else {
5570			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5571			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5572		}
5573	} else {
5574		ASSERT(HDR_EMPTY(hdr));
5575	}
5576
5577	/*
5578	 * If the block to be written was all-zero or compressed enough to be
5579	 * embedded in the BP, no write was performed so there will be no
5580	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5581	 * (and uncached).
5582	 */
5583	if (!HDR_EMPTY(hdr)) {
5584		arc_buf_hdr_t *exists;
5585		kmutex_t *hash_lock;
5586
5587		ASSERT(zio->io_error == 0);
5588
5589		arc_cksum_verify(buf);
5590
5591		exists = buf_hash_insert(hdr, &hash_lock);
5592		if (exists != NULL) {
5593			/*
5594			 * This can only happen if we overwrite for
5595			 * sync-to-convergence, because we remove
5596			 * buffers from the hash table when we arc_free().
5597			 */
5598			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5599				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5600					panic("bad overwrite, hdr=%p exists=%p",
5601					    (void *)hdr, (void *)exists);
5602				ASSERT(refcount_is_zero(
5603				    &exists->b_l1hdr.b_refcnt));
5604				arc_change_state(arc_anon, exists, hash_lock);
5605				mutex_exit(hash_lock);
5606				arc_hdr_destroy(exists);
5607				exists = buf_hash_insert(hdr, &hash_lock);
5608				ASSERT3P(exists, ==, NULL);
5609			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5610				/* nopwrite */
5611				ASSERT(zio->io_prop.zp_nopwrite);
5612				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5613					panic("bad nopwrite, hdr=%p exists=%p",
5614					    (void *)hdr, (void *)exists);
5615			} else {
5616				/* Dedup */
5617				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5618				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5619				ASSERT(BP_GET_DEDUP(zio->io_bp));
5620				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5621			}
5622		}
5623		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5624		/* if it's not anon, we are doing a scrub */
5625		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5626			arc_access(hdr, hash_lock);
5627		mutex_exit(hash_lock);
5628	} else {
5629		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5630	}
5631
5632	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5633	callback->awcb_done(zio, buf, callback->awcb_private);
5634
5635	kmem_free(callback, sizeof (arc_write_callback_t));
5636}
5637
5638zio_t *
5639arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5640    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5641    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5642    arc_done_func_t *done, void *private, zio_priority_t priority,
5643    int zio_flags, const zbookmark_phys_t *zb)
5644{
5645	arc_buf_hdr_t *hdr = buf->b_hdr;
5646	arc_write_callback_t *callback;
5647	zio_t *zio;
5648
5649	ASSERT3P(ready, !=, NULL);
5650	ASSERT3P(done, !=, NULL);
5651	ASSERT(!HDR_IO_ERROR(hdr));
5652	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5653	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5654	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5655	if (l2arc)
5656		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5657	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5658	callback->awcb_ready = ready;
5659	callback->awcb_children_ready = children_ready;
5660	callback->awcb_physdone = physdone;
5661	callback->awcb_done = done;
5662	callback->awcb_private = private;
5663	callback->awcb_buf = buf;
5664
5665	/*
5666	 * The hdr's b_pdata is now stale, free it now. A new data block
5667	 * will be allocated when the zio pipeline calls arc_write_ready().
5668	 */
5669	if (hdr->b_l1hdr.b_pdata != NULL) {
5670		/*
5671		 * If the buf is currently sharing the data block with
5672		 * the hdr then we need to break that relationship here.
5673		 * The hdr will remain with a NULL data pointer and the
5674		 * buf will take sole ownership of the block.
5675		 */
5676		if (arc_buf_is_shared(buf)) {
5677			ASSERT(ARC_BUF_LAST(buf));
5678			arc_unshare_buf(hdr, buf);
5679		} else {
5680			arc_hdr_free_pdata(hdr);
5681		}
5682		VERIFY3P(buf->b_data, !=, NULL);
5683		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5684	}
5685	ASSERT(!arc_buf_is_shared(buf));
5686	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5687
5688	zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp,
5689	    arc_write_ready,
5690	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5691	    arc_write_physdone, arc_write_done, callback,
5692	    priority, zio_flags, zb);
5693
5694	return (zio);
5695}
5696
5697static int
5698arc_memory_throttle(uint64_t reserve, uint64_t txg)
5699{
5700#ifdef _KERNEL
5701	uint64_t available_memory = ptob(freemem);
5702	static uint64_t page_load = 0;
5703	static uint64_t last_txg = 0;
5704
5705#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5706	available_memory =
5707	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5708#endif
5709
5710	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5711		return (0);
5712
5713	if (txg > last_txg) {
5714		last_txg = txg;
5715		page_load = 0;
5716	}
5717	/*
5718	 * If we are in pageout, we know that memory is already tight,
5719	 * the arc is already going to be evicting, so we just want to
5720	 * continue to let page writes occur as quickly as possible.
5721	 */
5722	if (curproc == pageproc) {
5723		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5724			return (SET_ERROR(ERESTART));
5725		/* Note: reserve is inflated, so we deflate */
5726		page_load += reserve / 8;
5727		return (0);
5728	} else if (page_load > 0 && arc_reclaim_needed()) {
5729		/* memory is low, delay before restarting */
5730		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5731		return (SET_ERROR(EAGAIN));
5732	}
5733	page_load = 0;
5734#endif
5735	return (0);
5736}
5737
5738void
5739arc_tempreserve_clear(uint64_t reserve)
5740{
5741	atomic_add_64(&arc_tempreserve, -reserve);
5742	ASSERT((int64_t)arc_tempreserve >= 0);
5743}
5744
5745int
5746arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5747{
5748	int error;
5749	uint64_t anon_size;
5750
5751	if (reserve > arc_c/4 && !arc_no_grow) {
5752		arc_c = MIN(arc_c_max, reserve * 4);
5753		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5754	}
5755	if (reserve > arc_c)
5756		return (SET_ERROR(ENOMEM));
5757
5758	/*
5759	 * Don't count loaned bufs as in flight dirty data to prevent long
5760	 * network delays from blocking transactions that are ready to be
5761	 * assigned to a txg.
5762	 */
5763	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5764	    arc_loaned_bytes), 0);
5765
5766	/*
5767	 * Writes will, almost always, require additional memory allocations
5768	 * in order to compress/encrypt/etc the data.  We therefore need to
5769	 * make sure that there is sufficient available memory for this.
5770	 */
5771	error = arc_memory_throttle(reserve, txg);
5772	if (error != 0)
5773		return (error);
5774
5775	/*
5776	 * Throttle writes when the amount of dirty data in the cache
5777	 * gets too large.  We try to keep the cache less than half full
5778	 * of dirty blocks so that our sync times don't grow too large.
5779	 * Note: if two requests come in concurrently, we might let them
5780	 * both succeed, when one of them should fail.  Not a huge deal.
5781	 */
5782
5783	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5784	    anon_size > arc_c / 4) {
5785		uint64_t meta_esize =
5786		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5787		uint64_t data_esize =
5788		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5789		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5790		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5791		    arc_tempreserve >> 10, meta_esize >> 10,
5792		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5793		return (SET_ERROR(ERESTART));
5794	}
5795	atomic_add_64(&arc_tempreserve, reserve);
5796	return (0);
5797}
5798
5799static void
5800arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5801    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5802{
5803	size->value.ui64 = refcount_count(&state->arcs_size);
5804	evict_data->value.ui64 =
5805	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5806	evict_metadata->value.ui64 =
5807	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5808}
5809
5810static int
5811arc_kstat_update(kstat_t *ksp, int rw)
5812{
5813	arc_stats_t *as = ksp->ks_data;
5814
5815	if (rw == KSTAT_WRITE) {
5816		return (EACCES);
5817	} else {
5818		arc_kstat_update_state(arc_anon,
5819		    &as->arcstat_anon_size,
5820		    &as->arcstat_anon_evictable_data,
5821		    &as->arcstat_anon_evictable_metadata);
5822		arc_kstat_update_state(arc_mru,
5823		    &as->arcstat_mru_size,
5824		    &as->arcstat_mru_evictable_data,
5825		    &as->arcstat_mru_evictable_metadata);
5826		arc_kstat_update_state(arc_mru_ghost,
5827		    &as->arcstat_mru_ghost_size,
5828		    &as->arcstat_mru_ghost_evictable_data,
5829		    &as->arcstat_mru_ghost_evictable_metadata);
5830		arc_kstat_update_state(arc_mfu,
5831		    &as->arcstat_mfu_size,
5832		    &as->arcstat_mfu_evictable_data,
5833		    &as->arcstat_mfu_evictable_metadata);
5834		arc_kstat_update_state(arc_mfu_ghost,
5835		    &as->arcstat_mfu_ghost_size,
5836		    &as->arcstat_mfu_ghost_evictable_data,
5837		    &as->arcstat_mfu_ghost_evictable_metadata);
5838	}
5839
5840	return (0);
5841}
5842
5843/*
5844 * This function *must* return indices evenly distributed between all
5845 * sublists of the multilist. This is needed due to how the ARC eviction
5846 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5847 * distributed between all sublists and uses this assumption when
5848 * deciding which sublist to evict from and how much to evict from it.
5849 */
5850unsigned int
5851arc_state_multilist_index_func(multilist_t *ml, void *obj)
5852{
5853	arc_buf_hdr_t *hdr = obj;
5854
5855	/*
5856	 * We rely on b_dva to generate evenly distributed index
5857	 * numbers using buf_hash below. So, as an added precaution,
5858	 * let's make sure we never add empty buffers to the arc lists.
5859	 */
5860	ASSERT(!HDR_EMPTY(hdr));
5861
5862	/*
5863	 * The assumption here, is the hash value for a given
5864	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5865	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5866	 * Thus, we don't need to store the header's sublist index
5867	 * on insertion, as this index can be recalculated on removal.
5868	 *
5869	 * Also, the low order bits of the hash value are thought to be
5870	 * distributed evenly. Otherwise, in the case that the multilist
5871	 * has a power of two number of sublists, each sublists' usage
5872	 * would not be evenly distributed.
5873	 */
5874	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5875	    multilist_get_num_sublists(ml));
5876}
5877
5878#ifdef _KERNEL
5879static eventhandler_tag arc_event_lowmem = NULL;
5880
5881static void
5882arc_lowmem(void *arg __unused, int howto __unused)
5883{
5884
5885	mutex_enter(&arc_reclaim_lock);
5886	/* XXX: Memory deficit should be passed as argument. */
5887	needfree = btoc(arc_c >> arc_shrink_shift);
5888	DTRACE_PROBE(arc__needfree);
5889	cv_signal(&arc_reclaim_thread_cv);
5890
5891	/*
5892	 * It is unsafe to block here in arbitrary threads, because we can come
5893	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5894	 * with ARC reclaim thread.
5895	 */
5896	if (curproc == pageproc)
5897		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5898	mutex_exit(&arc_reclaim_lock);
5899}
5900#endif
5901
5902static void
5903arc_state_init(void)
5904{
5905	arc_anon = &ARC_anon;
5906	arc_mru = &ARC_mru;
5907	arc_mru_ghost = &ARC_mru_ghost;
5908	arc_mfu = &ARC_mfu;
5909	arc_mfu_ghost = &ARC_mfu_ghost;
5910	arc_l2c_only = &ARC_l2c_only;
5911
5912	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5913	    sizeof (arc_buf_hdr_t),
5914	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5915	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5916	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5917	    sizeof (arc_buf_hdr_t),
5918	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5919	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5920	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5921	    sizeof (arc_buf_hdr_t),
5922	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5923	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5924	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5925	    sizeof (arc_buf_hdr_t),
5926	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5927	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5928	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5929	    sizeof (arc_buf_hdr_t),
5930	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5931	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5932	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5933	    sizeof (arc_buf_hdr_t),
5934	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5935	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5936	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5937	    sizeof (arc_buf_hdr_t),
5938	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5939	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5940	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5941	    sizeof (arc_buf_hdr_t),
5942	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5943	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5944	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5945	    sizeof (arc_buf_hdr_t),
5946	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5947	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5948	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5949	    sizeof (arc_buf_hdr_t),
5950	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5951	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5952
5953	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5954	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5955	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5956	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5957	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5958	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5959	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5960	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5961	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5962	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5963	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5964	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5965
5966	refcount_create(&arc_anon->arcs_size);
5967	refcount_create(&arc_mru->arcs_size);
5968	refcount_create(&arc_mru_ghost->arcs_size);
5969	refcount_create(&arc_mfu->arcs_size);
5970	refcount_create(&arc_mfu_ghost->arcs_size);
5971	refcount_create(&arc_l2c_only->arcs_size);
5972}
5973
5974static void
5975arc_state_fini(void)
5976{
5977	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5978	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5979	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5980	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5981	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5982	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5983	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5984	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5985	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5986	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5987	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5988	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5989
5990	refcount_destroy(&arc_anon->arcs_size);
5991	refcount_destroy(&arc_mru->arcs_size);
5992	refcount_destroy(&arc_mru_ghost->arcs_size);
5993	refcount_destroy(&arc_mfu->arcs_size);
5994	refcount_destroy(&arc_mfu_ghost->arcs_size);
5995	refcount_destroy(&arc_l2c_only->arcs_size);
5996
5997	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5998	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5999	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6000	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6001	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
6002	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6003	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
6004	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6005}
6006
6007uint64_t
6008arc_max_bytes(void)
6009{
6010	return (arc_c_max);
6011}
6012
6013void
6014arc_init(void)
6015{
6016	int i, prefetch_tunable_set = 0;
6017
6018	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6019	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6020	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6021
6022	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
6023	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
6024
6025	/* Convert seconds to clock ticks */
6026	arc_min_prefetch_lifespan = 1 * hz;
6027
6028	/* Start out with 1/8 of all memory */
6029	arc_c = kmem_size() / 8;
6030
6031#ifdef illumos
6032#ifdef _KERNEL
6033	/*
6034	 * On architectures where the physical memory can be larger
6035	 * than the addressable space (intel in 32-bit mode), we may
6036	 * need to limit the cache to 1/8 of VM size.
6037	 */
6038	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
6039#endif
6040#endif	/* illumos */
6041	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
6042	arc_c_min = MAX(arc_c / 4, arc_abs_min);
6043	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
6044	if (arc_c * 8 >= 1 << 30)
6045		arc_c_max = (arc_c * 8) - (1 << 30);
6046	else
6047		arc_c_max = arc_c_min;
6048	arc_c_max = MAX(arc_c * 5, arc_c_max);
6049
6050	/*
6051	 * In userland, there's only the memory pressure that we artificially
6052	 * create (see arc_available_memory()).  Don't let arc_c get too
6053	 * small, because it can cause transactions to be larger than
6054	 * arc_c, causing arc_tempreserve_space() to fail.
6055	 */
6056#ifndef _KERNEL
6057	arc_c_min = arc_c_max / 2;
6058#endif
6059
6060#ifdef _KERNEL
6061	/*
6062	 * Allow the tunables to override our calculations if they are
6063	 * reasonable.
6064	 */
6065	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) {
6066		arc_c_max = zfs_arc_max;
6067		arc_c_min = MIN(arc_c_min, arc_c_max);
6068	}
6069	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6070		arc_c_min = zfs_arc_min;
6071#endif
6072
6073	arc_c = arc_c_max;
6074	arc_p = (arc_c >> 1);
6075	arc_size = 0;
6076
6077	/* limit meta-data to 1/4 of the arc capacity */
6078	arc_meta_limit = arc_c_max / 4;
6079
6080	/* Allow the tunable to override if it is reasonable */
6081	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6082		arc_meta_limit = zfs_arc_meta_limit;
6083
6084	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6085		arc_c_min = arc_meta_limit / 2;
6086
6087	if (zfs_arc_meta_min > 0) {
6088		arc_meta_min = zfs_arc_meta_min;
6089	} else {
6090		arc_meta_min = arc_c_min / 2;
6091	}
6092
6093	if (zfs_arc_grow_retry > 0)
6094		arc_grow_retry = zfs_arc_grow_retry;
6095
6096	if (zfs_arc_shrink_shift > 0)
6097		arc_shrink_shift = zfs_arc_shrink_shift;
6098
6099	/*
6100	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6101	 */
6102	if (arc_no_grow_shift >= arc_shrink_shift)
6103		arc_no_grow_shift = arc_shrink_shift - 1;
6104
6105	if (zfs_arc_p_min_shift > 0)
6106		arc_p_min_shift = zfs_arc_p_min_shift;
6107
6108	if (zfs_arc_num_sublists_per_state < 1)
6109		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
6110
6111	/* if kmem_flags are set, lets try to use less memory */
6112	if (kmem_debugging())
6113		arc_c = arc_c / 2;
6114	if (arc_c < arc_c_min)
6115		arc_c = arc_c_min;
6116
6117	zfs_arc_min = arc_c_min;
6118	zfs_arc_max = arc_c_max;
6119
6120	arc_state_init();
6121	buf_init();
6122
6123	arc_reclaim_thread_exit = B_FALSE;
6124	arc_dnlc_evicts_thread_exit = FALSE;
6125
6126	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6127	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6128
6129	if (arc_ksp != NULL) {
6130		arc_ksp->ks_data = &arc_stats;
6131		arc_ksp->ks_update = arc_kstat_update;
6132		kstat_install(arc_ksp);
6133	}
6134
6135	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6136	    TS_RUN, minclsyspri);
6137
6138#ifdef _KERNEL
6139	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6140	    EVENTHANDLER_PRI_FIRST);
6141#endif
6142
6143	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
6144	    TS_RUN, minclsyspri);
6145
6146	arc_dead = B_FALSE;
6147	arc_warm = B_FALSE;
6148
6149	/*
6150	 * Calculate maximum amount of dirty data per pool.
6151	 *
6152	 * If it has been set by /etc/system, take that.
6153	 * Otherwise, use a percentage of physical memory defined by
6154	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6155	 * zfs_dirty_data_max_max (default 4GB).
6156	 */
6157	if (zfs_dirty_data_max == 0) {
6158		zfs_dirty_data_max = ptob(physmem) *
6159		    zfs_dirty_data_max_percent / 100;
6160		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6161		    zfs_dirty_data_max_max);
6162	}
6163
6164#ifdef _KERNEL
6165	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6166		prefetch_tunable_set = 1;
6167
6168#ifdef __i386__
6169	if (prefetch_tunable_set == 0) {
6170		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6171		    "-- to enable,\n");
6172		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6173		    "to /boot/loader.conf.\n");
6174		zfs_prefetch_disable = 1;
6175	}
6176#else
6177	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6178	    prefetch_tunable_set == 0) {
6179		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6180		    "than 4GB of RAM is present;\n"
6181		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6182		    "to /boot/loader.conf.\n");
6183		zfs_prefetch_disable = 1;
6184	}
6185#endif
6186	/* Warn about ZFS memory and address space requirements. */
6187	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6188		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6189		    "expect unstable behavior.\n");
6190	}
6191	if (kmem_size() < 512 * (1 << 20)) {
6192		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6193		    "expect unstable behavior.\n");
6194		printf("             Consider tuning vm.kmem_size and "
6195		    "vm.kmem_size_max\n");
6196		printf("             in /boot/loader.conf.\n");
6197	}
6198#endif
6199}
6200
6201void
6202arc_fini(void)
6203{
6204	mutex_enter(&arc_reclaim_lock);
6205	arc_reclaim_thread_exit = B_TRUE;
6206	/*
6207	 * The reclaim thread will set arc_reclaim_thread_exit back to
6208	 * B_FALSE when it is finished exiting; we're waiting for that.
6209	 */
6210	while (arc_reclaim_thread_exit) {
6211		cv_signal(&arc_reclaim_thread_cv);
6212		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6213	}
6214	mutex_exit(&arc_reclaim_lock);
6215
6216	/* Use B_TRUE to ensure *all* buffers are evicted */
6217	arc_flush(NULL, B_TRUE);
6218
6219	mutex_enter(&arc_dnlc_evicts_lock);
6220	arc_dnlc_evicts_thread_exit = TRUE;
6221	/*
6222	 * The user evicts thread will set arc_user_evicts_thread_exit
6223	 * to FALSE when it is finished exiting; we're waiting for that.
6224	 */
6225	while (arc_dnlc_evicts_thread_exit) {
6226		cv_signal(&arc_dnlc_evicts_cv);
6227		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
6228	}
6229	mutex_exit(&arc_dnlc_evicts_lock);
6230
6231	arc_dead = B_TRUE;
6232
6233	if (arc_ksp != NULL) {
6234		kstat_delete(arc_ksp);
6235		arc_ksp = NULL;
6236	}
6237
6238	mutex_destroy(&arc_reclaim_lock);
6239	cv_destroy(&arc_reclaim_thread_cv);
6240	cv_destroy(&arc_reclaim_waiters_cv);
6241
6242	mutex_destroy(&arc_dnlc_evicts_lock);
6243	cv_destroy(&arc_dnlc_evicts_cv);
6244
6245	arc_state_fini();
6246	buf_fini();
6247
6248	ASSERT0(arc_loaned_bytes);
6249
6250#ifdef _KERNEL
6251	if (arc_event_lowmem != NULL)
6252		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6253#endif
6254}
6255
6256/*
6257 * Level 2 ARC
6258 *
6259 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6260 * It uses dedicated storage devices to hold cached data, which are populated
6261 * using large infrequent writes.  The main role of this cache is to boost
6262 * the performance of random read workloads.  The intended L2ARC devices
6263 * include short-stroked disks, solid state disks, and other media with
6264 * substantially faster read latency than disk.
6265 *
6266 *                 +-----------------------+
6267 *                 |         ARC           |
6268 *                 +-----------------------+
6269 *                    |         ^     ^
6270 *                    |         |     |
6271 *      l2arc_feed_thread()    arc_read()
6272 *                    |         |     |
6273 *                    |  l2arc read   |
6274 *                    V         |     |
6275 *               +---------------+    |
6276 *               |     L2ARC     |    |
6277 *               +---------------+    |
6278 *                   |    ^           |
6279 *          l2arc_write() |           |
6280 *                   |    |           |
6281 *                   V    |           |
6282 *                 +-------+      +-------+
6283 *                 | vdev  |      | vdev  |
6284 *                 | cache |      | cache |
6285 *                 +-------+      +-------+
6286 *                 +=========+     .-----.
6287 *                 :  L2ARC  :    |-_____-|
6288 *                 : devices :    | Disks |
6289 *                 +=========+    `-_____-'
6290 *
6291 * Read requests are satisfied from the following sources, in order:
6292 *
6293 *	1) ARC
6294 *	2) vdev cache of L2ARC devices
6295 *	3) L2ARC devices
6296 *	4) vdev cache of disks
6297 *	5) disks
6298 *
6299 * Some L2ARC device types exhibit extremely slow write performance.
6300 * To accommodate for this there are some significant differences between
6301 * the L2ARC and traditional cache design:
6302 *
6303 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6304 * the ARC behave as usual, freeing buffers and placing headers on ghost
6305 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6306 * this would add inflated write latencies for all ARC memory pressure.
6307 *
6308 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6309 * It does this by periodically scanning buffers from the eviction-end of
6310 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6311 * not already there. It scans until a headroom of buffers is satisfied,
6312 * which itself is a buffer for ARC eviction. If a compressible buffer is
6313 * found during scanning and selected for writing to an L2ARC device, we
6314 * temporarily boost scanning headroom during the next scan cycle to make
6315 * sure we adapt to compression effects (which might significantly reduce
6316 * the data volume we write to L2ARC). The thread that does this is
6317 * l2arc_feed_thread(), illustrated below; example sizes are included to
6318 * provide a better sense of ratio than this diagram:
6319 *
6320 *	       head -->                        tail
6321 *	        +---------------------+----------+
6322 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6323 *	        +---------------------+----------+   |   o L2ARC eligible
6324 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6325 *	        +---------------------+----------+   |
6326 *	             15.9 Gbytes      ^ 32 Mbytes    |
6327 *	                           headroom          |
6328 *	                                      l2arc_feed_thread()
6329 *	                                             |
6330 *	                 l2arc write hand <--[oooo]--'
6331 *	                         |           8 Mbyte
6332 *	                         |          write max
6333 *	                         V
6334 *		  +==============================+
6335 *	L2ARC dev |####|#|###|###|    |####| ... |
6336 *	          +==============================+
6337 *	                     32 Gbytes
6338 *
6339 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6340 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6341 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6342 * safe to say that this is an uncommon case, since buffers at the end of
6343 * the ARC lists have moved there due to inactivity.
6344 *
6345 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6346 * then the L2ARC simply misses copying some buffers.  This serves as a
6347 * pressure valve to prevent heavy read workloads from both stalling the ARC
6348 * with waits and clogging the L2ARC with writes.  This also helps prevent
6349 * the potential for the L2ARC to churn if it attempts to cache content too
6350 * quickly, such as during backups of the entire pool.
6351 *
6352 * 5. After system boot and before the ARC has filled main memory, there are
6353 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6354 * lists can remain mostly static.  Instead of searching from tail of these
6355 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6356 * for eligible buffers, greatly increasing its chance of finding them.
6357 *
6358 * The L2ARC device write speed is also boosted during this time so that
6359 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6360 * there are no L2ARC reads, and no fear of degrading read performance
6361 * through increased writes.
6362 *
6363 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6364 * the vdev queue can aggregate them into larger and fewer writes.  Each
6365 * device is written to in a rotor fashion, sweeping writes through
6366 * available space then repeating.
6367 *
6368 * 7. The L2ARC does not store dirty content.  It never needs to flush
6369 * write buffers back to disk based storage.
6370 *
6371 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6372 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6373 *
6374 * The performance of the L2ARC can be tweaked by a number of tunables, which
6375 * may be necessary for different workloads:
6376 *
6377 *	l2arc_write_max		max write bytes per interval
6378 *	l2arc_write_boost	extra write bytes during device warmup
6379 *	l2arc_noprefetch	skip caching prefetched buffers
6380 *	l2arc_headroom		number of max device writes to precache
6381 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6382 *				scanning, we multiply headroom by this
6383 *				percentage factor for the next scan cycle,
6384 *				since more compressed buffers are likely to
6385 *				be present
6386 *	l2arc_feed_secs		seconds between L2ARC writing
6387 *
6388 * Tunables may be removed or added as future performance improvements are
6389 * integrated, and also may become zpool properties.
6390 *
6391 * There are three key functions that control how the L2ARC warms up:
6392 *
6393 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6394 *	l2arc_write_size()	calculate how much to write
6395 *	l2arc_write_interval()	calculate sleep delay between writes
6396 *
6397 * These three functions determine what to write, how much, and how quickly
6398 * to send writes.
6399 */
6400
6401static boolean_t
6402l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6403{
6404	/*
6405	 * A buffer is *not* eligible for the L2ARC if it:
6406	 * 1. belongs to a different spa.
6407	 * 2. is already cached on the L2ARC.
6408	 * 3. has an I/O in progress (it may be an incomplete read).
6409	 * 4. is flagged not eligible (zfs property).
6410	 */
6411	if (hdr->b_spa != spa_guid) {
6412		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6413		return (B_FALSE);
6414	}
6415	if (HDR_HAS_L2HDR(hdr)) {
6416		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6417		return (B_FALSE);
6418	}
6419	if (HDR_IO_IN_PROGRESS(hdr)) {
6420		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6421		return (B_FALSE);
6422	}
6423	if (!HDR_L2CACHE(hdr)) {
6424		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6425		return (B_FALSE);
6426	}
6427
6428	return (B_TRUE);
6429}
6430
6431static uint64_t
6432l2arc_write_size(void)
6433{
6434	uint64_t size;
6435
6436	/*
6437	 * Make sure our globals have meaningful values in case the user
6438	 * altered them.
6439	 */
6440	size = l2arc_write_max;
6441	if (size == 0) {
6442		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6443		    "be greater than zero, resetting it to the default (%d)",
6444		    L2ARC_WRITE_SIZE);
6445		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6446	}
6447
6448	if (arc_warm == B_FALSE)
6449		size += l2arc_write_boost;
6450
6451	return (size);
6452
6453}
6454
6455static clock_t
6456l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6457{
6458	clock_t interval, next, now;
6459
6460	/*
6461	 * If the ARC lists are busy, increase our write rate; if the
6462	 * lists are stale, idle back.  This is achieved by checking
6463	 * how much we previously wrote - if it was more than half of
6464	 * what we wanted, schedule the next write much sooner.
6465	 */
6466	if (l2arc_feed_again && wrote > (wanted / 2))
6467		interval = (hz * l2arc_feed_min_ms) / 1000;
6468	else
6469		interval = hz * l2arc_feed_secs;
6470
6471	now = ddi_get_lbolt();
6472	next = MAX(now, MIN(now + interval, began + interval));
6473
6474	return (next);
6475}
6476
6477/*
6478 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6479 * If a device is returned, this also returns holding the spa config lock.
6480 */
6481static l2arc_dev_t *
6482l2arc_dev_get_next(void)
6483{
6484	l2arc_dev_t *first, *next = NULL;
6485
6486	/*
6487	 * Lock out the removal of spas (spa_namespace_lock), then removal
6488	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6489	 * both locks will be dropped and a spa config lock held instead.
6490	 */
6491	mutex_enter(&spa_namespace_lock);
6492	mutex_enter(&l2arc_dev_mtx);
6493
6494	/* if there are no vdevs, there is nothing to do */
6495	if (l2arc_ndev == 0)
6496		goto out;
6497
6498	first = NULL;
6499	next = l2arc_dev_last;
6500	do {
6501		/* loop around the list looking for a non-faulted vdev */
6502		if (next == NULL) {
6503			next = list_head(l2arc_dev_list);
6504		} else {
6505			next = list_next(l2arc_dev_list, next);
6506			if (next == NULL)
6507				next = list_head(l2arc_dev_list);
6508		}
6509
6510		/* if we have come back to the start, bail out */
6511		if (first == NULL)
6512			first = next;
6513		else if (next == first)
6514			break;
6515
6516	} while (vdev_is_dead(next->l2ad_vdev));
6517
6518	/* if we were unable to find any usable vdevs, return NULL */
6519	if (vdev_is_dead(next->l2ad_vdev))
6520		next = NULL;
6521
6522	l2arc_dev_last = next;
6523
6524out:
6525	mutex_exit(&l2arc_dev_mtx);
6526
6527	/*
6528	 * Grab the config lock to prevent the 'next' device from being
6529	 * removed while we are writing to it.
6530	 */
6531	if (next != NULL)
6532		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6533	mutex_exit(&spa_namespace_lock);
6534
6535	return (next);
6536}
6537
6538/*
6539 * Free buffers that were tagged for destruction.
6540 */
6541static void
6542l2arc_do_free_on_write()
6543{
6544	list_t *buflist;
6545	l2arc_data_free_t *df, *df_prev;
6546
6547	mutex_enter(&l2arc_free_on_write_mtx);
6548	buflist = l2arc_free_on_write;
6549
6550	for (df = list_tail(buflist); df; df = df_prev) {
6551		df_prev = list_prev(buflist, df);
6552		ASSERT3P(df->l2df_data, !=, NULL);
6553		if (df->l2df_type == ARC_BUFC_METADATA) {
6554			zio_buf_free(df->l2df_data, df->l2df_size);
6555		} else {
6556			ASSERT(df->l2df_type == ARC_BUFC_DATA);
6557			zio_data_buf_free(df->l2df_data, df->l2df_size);
6558		}
6559		list_remove(buflist, df);
6560		kmem_free(df, sizeof (l2arc_data_free_t));
6561	}
6562
6563	mutex_exit(&l2arc_free_on_write_mtx);
6564}
6565
6566/*
6567 * A write to a cache device has completed.  Update all headers to allow
6568 * reads from these buffers to begin.
6569 */
6570static void
6571l2arc_write_done(zio_t *zio)
6572{
6573	l2arc_write_callback_t *cb;
6574	l2arc_dev_t *dev;
6575	list_t *buflist;
6576	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6577	kmutex_t *hash_lock;
6578	int64_t bytes_dropped = 0;
6579
6580	cb = zio->io_private;
6581	ASSERT3P(cb, !=, NULL);
6582	dev = cb->l2wcb_dev;
6583	ASSERT3P(dev, !=, NULL);
6584	head = cb->l2wcb_head;
6585	ASSERT3P(head, !=, NULL);
6586	buflist = &dev->l2ad_buflist;
6587	ASSERT3P(buflist, !=, NULL);
6588	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6589	    l2arc_write_callback_t *, cb);
6590
6591	if (zio->io_error != 0)
6592		ARCSTAT_BUMP(arcstat_l2_writes_error);
6593
6594	/*
6595	 * All writes completed, or an error was hit.
6596	 */
6597top:
6598	mutex_enter(&dev->l2ad_mtx);
6599	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6600		hdr_prev = list_prev(buflist, hdr);
6601
6602		hash_lock = HDR_LOCK(hdr);
6603
6604		/*
6605		 * We cannot use mutex_enter or else we can deadlock
6606		 * with l2arc_write_buffers (due to swapping the order
6607		 * the hash lock and l2ad_mtx are taken).
6608		 */
6609		if (!mutex_tryenter(hash_lock)) {
6610			/*
6611			 * Missed the hash lock. We must retry so we
6612			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6613			 */
6614			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6615
6616			/*
6617			 * We don't want to rescan the headers we've
6618			 * already marked as having been written out, so
6619			 * we reinsert the head node so we can pick up
6620			 * where we left off.
6621			 */
6622			list_remove(buflist, head);
6623			list_insert_after(buflist, hdr, head);
6624
6625			mutex_exit(&dev->l2ad_mtx);
6626
6627			/*
6628			 * We wait for the hash lock to become available
6629			 * to try and prevent busy waiting, and increase
6630			 * the chance we'll be able to acquire the lock
6631			 * the next time around.
6632			 */
6633			mutex_enter(hash_lock);
6634			mutex_exit(hash_lock);
6635			goto top;
6636		}
6637
6638		/*
6639		 * We could not have been moved into the arc_l2c_only
6640		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6641		 * bit being set. Let's just ensure that's being enforced.
6642		 */
6643		ASSERT(HDR_HAS_L1HDR(hdr));
6644
6645		if (zio->io_error != 0) {
6646			/*
6647			 * Error - drop L2ARC entry.
6648			 */
6649			list_remove(buflist, hdr);
6650			l2arc_trim(hdr);
6651			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6652
6653			ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6654			ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6655
6656			bytes_dropped += arc_hdr_size(hdr);
6657			(void) refcount_remove_many(&dev->l2ad_alloc,
6658			    arc_hdr_size(hdr), hdr);
6659		}
6660
6661		/*
6662		 * Allow ARC to begin reads and ghost list evictions to
6663		 * this L2ARC entry.
6664		 */
6665		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6666
6667		mutex_exit(hash_lock);
6668	}
6669
6670	atomic_inc_64(&l2arc_writes_done);
6671	list_remove(buflist, head);
6672	ASSERT(!HDR_HAS_L1HDR(head));
6673	kmem_cache_free(hdr_l2only_cache, head);
6674	mutex_exit(&dev->l2ad_mtx);
6675
6676	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6677
6678	l2arc_do_free_on_write();
6679
6680	kmem_free(cb, sizeof (l2arc_write_callback_t));
6681}
6682
6683/*
6684 * A read to a cache device completed.  Validate buffer contents before
6685 * handing over to the regular ARC routines.
6686 */
6687static void
6688l2arc_read_done(zio_t *zio)
6689{
6690	l2arc_read_callback_t *cb;
6691	arc_buf_hdr_t *hdr;
6692	kmutex_t *hash_lock;
6693	boolean_t valid_cksum;
6694
6695	ASSERT3P(zio->io_vd, !=, NULL);
6696	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6697
6698	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6699
6700	cb = zio->io_private;
6701	ASSERT3P(cb, !=, NULL);
6702	hdr = cb->l2rcb_hdr;
6703	ASSERT3P(hdr, !=, NULL);
6704
6705	hash_lock = HDR_LOCK(hdr);
6706	mutex_enter(hash_lock);
6707	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6708
6709	/*
6710	 * If the data was read into a temporary buffer,
6711	 * move it and free the buffer.
6712	 */
6713	if (cb->l2rcb_data != NULL) {
6714		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6715		if (zio->io_error == 0) {
6716			bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata,
6717			    arc_hdr_size(hdr));
6718		}
6719
6720		/*
6721		 * The following must be done regardless of whether
6722		 * there was an error:
6723		 * - free the temporary buffer
6724		 * - point zio to the real ARC buffer
6725		 * - set zio size accordingly
6726		 * These are required because zio is either re-used for
6727		 * an I/O of the block in the case of the error
6728		 * or the zio is passed to arc_read_done() and it
6729		 * needs real data.
6730		 */
6731		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6732		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6733		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata;
6734	}
6735
6736	ASSERT3P(zio->io_data, !=, NULL);
6737
6738	/*
6739	 * Check this survived the L2ARC journey.
6740	 */
6741	ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata);
6742	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6743	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6744
6745	valid_cksum = arc_cksum_is_equal(hdr, zio);
6746	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6747		mutex_exit(hash_lock);
6748		zio->io_private = hdr;
6749		arc_read_done(zio);
6750	} else {
6751		mutex_exit(hash_lock);
6752		/*
6753		 * Buffer didn't survive caching.  Increment stats and
6754		 * reissue to the original storage device.
6755		 */
6756		if (zio->io_error != 0) {
6757			ARCSTAT_BUMP(arcstat_l2_io_error);
6758		} else {
6759			zio->io_error = SET_ERROR(EIO);
6760		}
6761		if (!valid_cksum)
6762			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6763
6764		/*
6765		 * If there's no waiter, issue an async i/o to the primary
6766		 * storage now.  If there *is* a waiter, the caller must
6767		 * issue the i/o in a context where it's OK to block.
6768		 */
6769		if (zio->io_waiter == NULL) {
6770			zio_t *pio = zio_unique_parent(zio);
6771
6772			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6773
6774			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6775			    hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done,
6776			    hdr, zio->io_priority, cb->l2rcb_flags,
6777			    &cb->l2rcb_zb));
6778		}
6779	}
6780
6781	kmem_free(cb, sizeof (l2arc_read_callback_t));
6782}
6783
6784/*
6785 * This is the list priority from which the L2ARC will search for pages to
6786 * cache.  This is used within loops (0..3) to cycle through lists in the
6787 * desired order.  This order can have a significant effect on cache
6788 * performance.
6789 *
6790 * Currently the metadata lists are hit first, MFU then MRU, followed by
6791 * the data lists.  This function returns a locked list, and also returns
6792 * the lock pointer.
6793 */
6794static multilist_sublist_t *
6795l2arc_sublist_lock(int list_num)
6796{
6797	multilist_t *ml = NULL;
6798	unsigned int idx;
6799
6800	ASSERT(list_num >= 0 && list_num <= 3);
6801
6802	switch (list_num) {
6803	case 0:
6804		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6805		break;
6806	case 1:
6807		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6808		break;
6809	case 2:
6810		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6811		break;
6812	case 3:
6813		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6814		break;
6815	}
6816
6817	/*
6818	 * Return a randomly-selected sublist. This is acceptable
6819	 * because the caller feeds only a little bit of data for each
6820	 * call (8MB). Subsequent calls will result in different
6821	 * sublists being selected.
6822	 */
6823	idx = multilist_get_random_index(ml);
6824	return (multilist_sublist_lock(ml, idx));
6825}
6826
6827/*
6828 * Evict buffers from the device write hand to the distance specified in
6829 * bytes.  This distance may span populated buffers, it may span nothing.
6830 * This is clearing a region on the L2ARC device ready for writing.
6831 * If the 'all' boolean is set, every buffer is evicted.
6832 */
6833static void
6834l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6835{
6836	list_t *buflist;
6837	arc_buf_hdr_t *hdr, *hdr_prev;
6838	kmutex_t *hash_lock;
6839	uint64_t taddr;
6840
6841	buflist = &dev->l2ad_buflist;
6842
6843	if (!all && dev->l2ad_first) {
6844		/*
6845		 * This is the first sweep through the device.  There is
6846		 * nothing to evict.
6847		 */
6848		return;
6849	}
6850
6851	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6852		/*
6853		 * When nearing the end of the device, evict to the end
6854		 * before the device write hand jumps to the start.
6855		 */
6856		taddr = dev->l2ad_end;
6857	} else {
6858		taddr = dev->l2ad_hand + distance;
6859	}
6860	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6861	    uint64_t, taddr, boolean_t, all);
6862
6863top:
6864	mutex_enter(&dev->l2ad_mtx);
6865	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6866		hdr_prev = list_prev(buflist, hdr);
6867
6868		hash_lock = HDR_LOCK(hdr);
6869
6870		/*
6871		 * We cannot use mutex_enter or else we can deadlock
6872		 * with l2arc_write_buffers (due to swapping the order
6873		 * the hash lock and l2ad_mtx are taken).
6874		 */
6875		if (!mutex_tryenter(hash_lock)) {
6876			/*
6877			 * Missed the hash lock.  Retry.
6878			 */
6879			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6880			mutex_exit(&dev->l2ad_mtx);
6881			mutex_enter(hash_lock);
6882			mutex_exit(hash_lock);
6883			goto top;
6884		}
6885
6886		if (HDR_L2_WRITE_HEAD(hdr)) {
6887			/*
6888			 * We hit a write head node.  Leave it for
6889			 * l2arc_write_done().
6890			 */
6891			list_remove(buflist, hdr);
6892			mutex_exit(hash_lock);
6893			continue;
6894		}
6895
6896		if (!all && HDR_HAS_L2HDR(hdr) &&
6897		    (hdr->b_l2hdr.b_daddr > taddr ||
6898		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6899			/*
6900			 * We've evicted to the target address,
6901			 * or the end of the device.
6902			 */
6903			mutex_exit(hash_lock);
6904			break;
6905		}
6906
6907		ASSERT(HDR_HAS_L2HDR(hdr));
6908		if (!HDR_HAS_L1HDR(hdr)) {
6909			ASSERT(!HDR_L2_READING(hdr));
6910			/*
6911			 * This doesn't exist in the ARC.  Destroy.
6912			 * arc_hdr_destroy() will call list_remove()
6913			 * and decrement arcstat_l2_size.
6914			 */
6915			arc_change_state(arc_anon, hdr, hash_lock);
6916			arc_hdr_destroy(hdr);
6917		} else {
6918			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6919			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6920			/*
6921			 * Invalidate issued or about to be issued
6922			 * reads, since we may be about to write
6923			 * over this location.
6924			 */
6925			if (HDR_L2_READING(hdr)) {
6926				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6927				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6928			}
6929
6930			/* Ensure this header has finished being written */
6931			ASSERT(!HDR_L2_WRITING(hdr));
6932
6933			arc_hdr_l2hdr_destroy(hdr);
6934		}
6935		mutex_exit(hash_lock);
6936	}
6937	mutex_exit(&dev->l2ad_mtx);
6938}
6939
6940/*
6941 * Find and write ARC buffers to the L2ARC device.
6942 *
6943 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6944 * for reading until they have completed writing.
6945 * The headroom_boost is an in-out parameter used to maintain headroom boost
6946 * state between calls to this function.
6947 *
6948 * Returns the number of bytes actually written (which may be smaller than
6949 * the delta by which the device hand has changed due to alignment).
6950 */
6951static uint64_t
6952l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6953{
6954	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6955	uint64_t write_asize, write_psize, write_sz, headroom;
6956	boolean_t full;
6957	l2arc_write_callback_t *cb;
6958	zio_t *pio, *wzio;
6959	uint64_t guid = spa_load_guid(spa);
6960	int try;
6961
6962	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6963
6964	pio = NULL;
6965	write_sz = write_asize = write_psize = 0;
6966	full = B_FALSE;
6967	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6968	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6969
6970	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6971	/*
6972	 * Copy buffers for L2ARC writing.
6973	 */
6974	for (try = 0; try <= 3; try++) {
6975		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6976		uint64_t passed_sz = 0;
6977
6978		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6979
6980		/*
6981		 * L2ARC fast warmup.
6982		 *
6983		 * Until the ARC is warm and starts to evict, read from the
6984		 * head of the ARC lists rather than the tail.
6985		 */
6986		if (arc_warm == B_FALSE)
6987			hdr = multilist_sublist_head(mls);
6988		else
6989			hdr = multilist_sublist_tail(mls);
6990		if (hdr == NULL)
6991			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6992
6993		headroom = target_sz * l2arc_headroom;
6994		if (zfs_compressed_arc_enabled)
6995			headroom = (headroom * l2arc_headroom_boost) / 100;
6996
6997		for (; hdr; hdr = hdr_prev) {
6998			kmutex_t *hash_lock;
6999
7000			if (arc_warm == B_FALSE)
7001				hdr_prev = multilist_sublist_next(mls, hdr);
7002			else
7003				hdr_prev = multilist_sublist_prev(mls, hdr);
7004			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
7005			    HDR_GET_LSIZE(hdr));
7006
7007			hash_lock = HDR_LOCK(hdr);
7008			if (!mutex_tryenter(hash_lock)) {
7009				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
7010				/*
7011				 * Skip this buffer rather than waiting.
7012				 */
7013				continue;
7014			}
7015
7016			passed_sz += HDR_GET_LSIZE(hdr);
7017			if (passed_sz > headroom) {
7018				/*
7019				 * Searched too far.
7020				 */
7021				mutex_exit(hash_lock);
7022				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
7023				break;
7024			}
7025
7026			if (!l2arc_write_eligible(guid, hdr)) {
7027				mutex_exit(hash_lock);
7028				continue;
7029			}
7030
7031			if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
7032				full = B_TRUE;
7033				mutex_exit(hash_lock);
7034				ARCSTAT_BUMP(arcstat_l2_write_full);
7035				break;
7036			}
7037
7038			if (pio == NULL) {
7039				/*
7040				 * Insert a dummy header on the buflist so
7041				 * l2arc_write_done() can find where the
7042				 * write buffers begin without searching.
7043				 */
7044				mutex_enter(&dev->l2ad_mtx);
7045				list_insert_head(&dev->l2ad_buflist, head);
7046				mutex_exit(&dev->l2ad_mtx);
7047
7048				cb = kmem_alloc(
7049				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7050				cb->l2wcb_dev = dev;
7051				cb->l2wcb_head = head;
7052				pio = zio_root(spa, l2arc_write_done, cb,
7053				    ZIO_FLAG_CANFAIL);
7054				ARCSTAT_BUMP(arcstat_l2_write_pios);
7055			}
7056
7057			hdr->b_l2hdr.b_dev = dev;
7058			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7059			arc_hdr_set_flags(hdr,
7060			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7061
7062			mutex_enter(&dev->l2ad_mtx);
7063			list_insert_head(&dev->l2ad_buflist, hdr);
7064			mutex_exit(&dev->l2ad_mtx);
7065
7066			/*
7067			 * We rely on the L1 portion of the header below, so
7068			 * it's invalid for this header to have been evicted out
7069			 * of the ghost cache, prior to being written out. The
7070			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7071			 */
7072			ASSERT(HDR_HAS_L1HDR(hdr));
7073
7074			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7075			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
7076			ASSERT3U(arc_hdr_size(hdr), >, 0);
7077			uint64_t size = arc_hdr_size(hdr);
7078			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7079			    size);
7080
7081			(void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7082
7083			/*
7084			 * Normally the L2ARC can use the hdr's data, but if
7085			 * we're sharing data between the hdr and one of its
7086			 * bufs, L2ARC needs its own copy of the data so that
7087			 * the ZIO below can't race with the buf consumer. To
7088			 * ensure that this copy will be available for the
7089			 * lifetime of the ZIO and be cleaned up afterwards, we
7090			 * add it to the l2arc_free_on_write queue.
7091			 */
7092			void *to_write;
7093			if (!HDR_SHARED_DATA(hdr) && size == asize) {
7094				to_write = hdr->b_l1hdr.b_pdata;
7095			} else {
7096				arc_buf_contents_t type = arc_buf_type(hdr);
7097				if (type == ARC_BUFC_METADATA) {
7098					to_write = zio_buf_alloc(asize);
7099				} else {
7100					ASSERT3U(type, ==, ARC_BUFC_DATA);
7101					to_write = zio_data_buf_alloc(asize);
7102				}
7103
7104				bcopy(hdr->b_l1hdr.b_pdata, to_write, size);
7105				if (asize != size)
7106					bzero(to_write + size, asize - size);
7107				l2arc_free_data_on_write(to_write, asize, type);
7108			}
7109			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7110			    hdr->b_l2hdr.b_daddr, asize, to_write,
7111			    ZIO_CHECKSUM_OFF, NULL, hdr,
7112			    ZIO_PRIORITY_ASYNC_WRITE,
7113			    ZIO_FLAG_CANFAIL, B_FALSE);
7114
7115			write_sz += HDR_GET_LSIZE(hdr);
7116			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7117			    zio_t *, wzio);
7118
7119			write_asize += size;
7120			write_psize += asize;
7121			dev->l2ad_hand += asize;
7122
7123			mutex_exit(hash_lock);
7124
7125			(void) zio_nowait(wzio);
7126		}
7127
7128		multilist_sublist_unlock(mls);
7129
7130		if (full == B_TRUE)
7131			break;
7132	}
7133
7134	/* No buffers selected for writing? */
7135	if (pio == NULL) {
7136		ASSERT0(write_sz);
7137		ASSERT(!HDR_HAS_L1HDR(head));
7138		kmem_cache_free(hdr_l2only_cache, head);
7139		return (0);
7140	}
7141
7142	ASSERT3U(write_asize, <=, target_sz);
7143	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7144	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7145	ARCSTAT_INCR(arcstat_l2_size, write_sz);
7146	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7147	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7148
7149	/*
7150	 * Bump device hand to the device start if it is approaching the end.
7151	 * l2arc_evict() will already have evicted ahead for this case.
7152	 */
7153	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7154		dev->l2ad_hand = dev->l2ad_start;
7155		dev->l2ad_first = B_FALSE;
7156	}
7157
7158	dev->l2ad_writing = B_TRUE;
7159	(void) zio_wait(pio);
7160	dev->l2ad_writing = B_FALSE;
7161
7162	return (write_asize);
7163}
7164
7165/*
7166 * This thread feeds the L2ARC at regular intervals.  This is the beating
7167 * heart of the L2ARC.
7168 */
7169static void
7170l2arc_feed_thread(void *dummy __unused)
7171{
7172	callb_cpr_t cpr;
7173	l2arc_dev_t *dev;
7174	spa_t *spa;
7175	uint64_t size, wrote;
7176	clock_t begin, next = ddi_get_lbolt();
7177
7178	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7179
7180	mutex_enter(&l2arc_feed_thr_lock);
7181
7182	while (l2arc_thread_exit == 0) {
7183		CALLB_CPR_SAFE_BEGIN(&cpr);
7184		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7185		    next - ddi_get_lbolt());
7186		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7187		next = ddi_get_lbolt() + hz;
7188
7189		/*
7190		 * Quick check for L2ARC devices.
7191		 */
7192		mutex_enter(&l2arc_dev_mtx);
7193		if (l2arc_ndev == 0) {
7194			mutex_exit(&l2arc_dev_mtx);
7195			continue;
7196		}
7197		mutex_exit(&l2arc_dev_mtx);
7198		begin = ddi_get_lbolt();
7199
7200		/*
7201		 * This selects the next l2arc device to write to, and in
7202		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7203		 * will return NULL if there are now no l2arc devices or if
7204		 * they are all faulted.
7205		 *
7206		 * If a device is returned, its spa's config lock is also
7207		 * held to prevent device removal.  l2arc_dev_get_next()
7208		 * will grab and release l2arc_dev_mtx.
7209		 */
7210		if ((dev = l2arc_dev_get_next()) == NULL)
7211			continue;
7212
7213		spa = dev->l2ad_spa;
7214		ASSERT3P(spa, !=, NULL);
7215
7216		/*
7217		 * If the pool is read-only then force the feed thread to
7218		 * sleep a little longer.
7219		 */
7220		if (!spa_writeable(spa)) {
7221			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7222			spa_config_exit(spa, SCL_L2ARC, dev);
7223			continue;
7224		}
7225
7226		/*
7227		 * Avoid contributing to memory pressure.
7228		 */
7229		if (arc_reclaim_needed()) {
7230			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7231			spa_config_exit(spa, SCL_L2ARC, dev);
7232			continue;
7233		}
7234
7235		ARCSTAT_BUMP(arcstat_l2_feeds);
7236
7237		size = l2arc_write_size();
7238
7239		/*
7240		 * Evict L2ARC buffers that will be overwritten.
7241		 */
7242		l2arc_evict(dev, size, B_FALSE);
7243
7244		/*
7245		 * Write ARC buffers.
7246		 */
7247		wrote = l2arc_write_buffers(spa, dev, size);
7248
7249		/*
7250		 * Calculate interval between writes.
7251		 */
7252		next = l2arc_write_interval(begin, size, wrote);
7253		spa_config_exit(spa, SCL_L2ARC, dev);
7254	}
7255
7256	l2arc_thread_exit = 0;
7257	cv_broadcast(&l2arc_feed_thr_cv);
7258	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7259	thread_exit();
7260}
7261
7262boolean_t
7263l2arc_vdev_present(vdev_t *vd)
7264{
7265	l2arc_dev_t *dev;
7266
7267	mutex_enter(&l2arc_dev_mtx);
7268	for (dev = list_head(l2arc_dev_list); dev != NULL;
7269	    dev = list_next(l2arc_dev_list, dev)) {
7270		if (dev->l2ad_vdev == vd)
7271			break;
7272	}
7273	mutex_exit(&l2arc_dev_mtx);
7274
7275	return (dev != NULL);
7276}
7277
7278/*
7279 * Add a vdev for use by the L2ARC.  By this point the spa has already
7280 * validated the vdev and opened it.
7281 */
7282void
7283l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7284{
7285	l2arc_dev_t *adddev;
7286
7287	ASSERT(!l2arc_vdev_present(vd));
7288
7289	vdev_ashift_optimize(vd);
7290
7291	/*
7292	 * Create a new l2arc device entry.
7293	 */
7294	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7295	adddev->l2ad_spa = spa;
7296	adddev->l2ad_vdev = vd;
7297	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7298	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7299	adddev->l2ad_hand = adddev->l2ad_start;
7300	adddev->l2ad_first = B_TRUE;
7301	adddev->l2ad_writing = B_FALSE;
7302
7303	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7304	/*
7305	 * This is a list of all ARC buffers that are still valid on the
7306	 * device.
7307	 */
7308	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7309	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7310
7311	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7312	refcount_create(&adddev->l2ad_alloc);
7313
7314	/*
7315	 * Add device to global list
7316	 */
7317	mutex_enter(&l2arc_dev_mtx);
7318	list_insert_head(l2arc_dev_list, adddev);
7319	atomic_inc_64(&l2arc_ndev);
7320	mutex_exit(&l2arc_dev_mtx);
7321}
7322
7323/*
7324 * Remove a vdev from the L2ARC.
7325 */
7326void
7327l2arc_remove_vdev(vdev_t *vd)
7328{
7329	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7330
7331	/*
7332	 * Find the device by vdev
7333	 */
7334	mutex_enter(&l2arc_dev_mtx);
7335	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7336		nextdev = list_next(l2arc_dev_list, dev);
7337		if (vd == dev->l2ad_vdev) {
7338			remdev = dev;
7339			break;
7340		}
7341	}
7342	ASSERT3P(remdev, !=, NULL);
7343
7344	/*
7345	 * Remove device from global list
7346	 */
7347	list_remove(l2arc_dev_list, remdev);
7348	l2arc_dev_last = NULL;		/* may have been invalidated */
7349	atomic_dec_64(&l2arc_ndev);
7350	mutex_exit(&l2arc_dev_mtx);
7351
7352	/*
7353	 * Clear all buflists and ARC references.  L2ARC device flush.
7354	 */
7355	l2arc_evict(remdev, 0, B_TRUE);
7356	list_destroy(&remdev->l2ad_buflist);
7357	mutex_destroy(&remdev->l2ad_mtx);
7358	refcount_destroy(&remdev->l2ad_alloc);
7359	kmem_free(remdev, sizeof (l2arc_dev_t));
7360}
7361
7362void
7363l2arc_init(void)
7364{
7365	l2arc_thread_exit = 0;
7366	l2arc_ndev = 0;
7367	l2arc_writes_sent = 0;
7368	l2arc_writes_done = 0;
7369
7370	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7371	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7372	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7373	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7374
7375	l2arc_dev_list = &L2ARC_dev_list;
7376	l2arc_free_on_write = &L2ARC_free_on_write;
7377	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7378	    offsetof(l2arc_dev_t, l2ad_node));
7379	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7380	    offsetof(l2arc_data_free_t, l2df_list_node));
7381}
7382
7383void
7384l2arc_fini(void)
7385{
7386	/*
7387	 * This is called from dmu_fini(), which is called from spa_fini();
7388	 * Because of this, we can assume that all l2arc devices have
7389	 * already been removed when the pools themselves were removed.
7390	 */
7391
7392	l2arc_do_free_on_write();
7393
7394	mutex_destroy(&l2arc_feed_thr_lock);
7395	cv_destroy(&l2arc_feed_thr_cv);
7396	mutex_destroy(&l2arc_dev_mtx);
7397	mutex_destroy(&l2arc_free_on_write_mtx);
7398
7399	list_destroy(l2arc_dev_list);
7400	list_destroy(l2arc_free_on_write);
7401}
7402
7403void
7404l2arc_start(void)
7405{
7406	if (!(spa_mode_global & FWRITE))
7407		return;
7408
7409	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7410	    TS_RUN, minclsyspri);
7411}
7412
7413void
7414l2arc_stop(void)
7415{
7416	if (!(spa_mode_global & FWRITE))
7417		return;
7418
7419	mutex_enter(&l2arc_feed_thr_lock);
7420	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7421	l2arc_thread_exit = 1;
7422	while (l2arc_thread_exit != 0)
7423		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7424	mutex_exit(&l2arc_feed_thr_lock);
7425}
7426