arc.c revision 286767
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexs, rather they rely on the
86 * hash table mutexs for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexs).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <vm/vm_pageout.h>
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162uint_t arc_reduce_dnlc_percent = 3;
163
164/*
165 * The number of headers to evict in arc_evict_state_impl() before
166 * dropping the sublist lock and evicting from another sublist. A lower
167 * value means we're more likely to evict the "correct" header (i.e. the
168 * oldest header in the arc state), but comes with higher overhead
169 * (i.e. more invocations of arc_evict_state_impl()).
170 */
171int zfs_arc_evict_batch_limit = 10;
172
173/*
174 * The number of sublists used for each of the arc state lists. If this
175 * is not set to a suitable value by the user, it will be configured to
176 * the number of CPUs on the system in arc_init().
177 */
178int zfs_arc_num_sublists_per_state = 0;
179
180/* number of seconds before growing cache again */
181static int		arc_grow_retry = 60;
182
183/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
184int		zfs_arc_overflow_shift = 8;
185
186/* shift of arc_c for calculating both min and max arc_p */
187static int		arc_p_min_shift = 4;
188
189/* log2(fraction of arc to reclaim) */
190static int		arc_shrink_shift = 7;
191
192/*
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
200 */
201int			arc_no_grow_shift = 5;
202
203
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
208static int		arc_min_prefetch_lifespan;
209
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
215static int arc_dead;
216extern int zfs_prefetch_disable;
217
218/*
219 * The arc has filled available memory and has now warmed up.
220 */
221static boolean_t arc_warm;
222
223/*
224 * These tunables are for performance analysis.
225 */
226uint64_t zfs_arc_max;
227uint64_t zfs_arc_min;
228uint64_t zfs_arc_meta_limit = 0;
229uint64_t zfs_arc_meta_min = 0;
230int zfs_arc_grow_retry = 0;
231int zfs_arc_shrink_shift = 0;
232int zfs_arc_p_min_shift = 0;
233int zfs_disable_dup_eviction = 0;
234uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
235u_int zfs_arc_free_target = 0;
236
237static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
238static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
239
240#ifdef _KERNEL
241static void
242arc_free_target_init(void *unused __unused)
243{
244
245	zfs_arc_free_target = vm_pageout_wakeup_thresh;
246}
247SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
248    arc_free_target_init, NULL);
249
250TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
251TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
252TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
253SYSCTL_DECL(_vfs_zfs);
254SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
255    "Maximum ARC size");
256SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
257    "Minimum ARC size");
258SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
259    &zfs_arc_average_blocksize, 0,
260    "ARC average blocksize");
261SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
262    &arc_shrink_shift, 0,
263    "log2(fraction of arc to reclaim)");
264
265/*
266 * We don't have a tunable for arc_free_target due to the dependency on
267 * pagedaemon initialisation.
268 */
269SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
270    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
271    sysctl_vfs_zfs_arc_free_target, "IU",
272    "Desired number of free pages below which ARC triggers reclaim");
273
274static int
275sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
276{
277	u_int val;
278	int err;
279
280	val = zfs_arc_free_target;
281	err = sysctl_handle_int(oidp, &val, 0, req);
282	if (err != 0 || req->newptr == NULL)
283		return (err);
284
285	if (val < minfree)
286		return (EINVAL);
287	if (val > vm_cnt.v_page_count)
288		return (EINVAL);
289
290	zfs_arc_free_target = val;
291
292	return (0);
293}
294
295/*
296 * Must be declared here, before the definition of corresponding kstat
297 * macro which uses the same names will confuse the compiler.
298 */
299SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
300    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
301    sysctl_vfs_zfs_arc_meta_limit, "QU",
302    "ARC metadata limit");
303#endif
304
305/*
306 * Note that buffers can be in one of 6 states:
307 *	ARC_anon	- anonymous (discussed below)
308 *	ARC_mru		- recently used, currently cached
309 *	ARC_mru_ghost	- recentely used, no longer in cache
310 *	ARC_mfu		- frequently used, currently cached
311 *	ARC_mfu_ghost	- frequently used, no longer in cache
312 *	ARC_l2c_only	- exists in L2ARC but not other states
313 * When there are no active references to the buffer, they are
314 * are linked onto a list in one of these arc states.  These are
315 * the only buffers that can be evicted or deleted.  Within each
316 * state there are multiple lists, one for meta-data and one for
317 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
318 * etc.) is tracked separately so that it can be managed more
319 * explicitly: favored over data, limited explicitly.
320 *
321 * Anonymous buffers are buffers that are not associated with
322 * a DVA.  These are buffers that hold dirty block copies
323 * before they are written to stable storage.  By definition,
324 * they are "ref'd" and are considered part of arc_mru
325 * that cannot be freed.  Generally, they will aquire a DVA
326 * as they are written and migrate onto the arc_mru list.
327 *
328 * The ARC_l2c_only state is for buffers that are in the second
329 * level ARC but no longer in any of the ARC_m* lists.  The second
330 * level ARC itself may also contain buffers that are in any of
331 * the ARC_m* states - meaning that a buffer can exist in two
332 * places.  The reason for the ARC_l2c_only state is to keep the
333 * buffer header in the hash table, so that reads that hit the
334 * second level ARC benefit from these fast lookups.
335 */
336
337typedef struct arc_state {
338	/*
339	 * list of evictable buffers
340	 */
341	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
342	/*
343	 * total amount of evictable data in this state
344	 */
345	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
346	/*
347	 * total amount of data in this state; this includes: evictable,
348	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
349	 */
350	refcount_t arcs_size;
351} arc_state_t;
352
353/* The 6 states: */
354static arc_state_t ARC_anon;
355static arc_state_t ARC_mru;
356static arc_state_t ARC_mru_ghost;
357static arc_state_t ARC_mfu;
358static arc_state_t ARC_mfu_ghost;
359static arc_state_t ARC_l2c_only;
360
361typedef struct arc_stats {
362	kstat_named_t arcstat_hits;
363	kstat_named_t arcstat_misses;
364	kstat_named_t arcstat_demand_data_hits;
365	kstat_named_t arcstat_demand_data_misses;
366	kstat_named_t arcstat_demand_metadata_hits;
367	kstat_named_t arcstat_demand_metadata_misses;
368	kstat_named_t arcstat_prefetch_data_hits;
369	kstat_named_t arcstat_prefetch_data_misses;
370	kstat_named_t arcstat_prefetch_metadata_hits;
371	kstat_named_t arcstat_prefetch_metadata_misses;
372	kstat_named_t arcstat_mru_hits;
373	kstat_named_t arcstat_mru_ghost_hits;
374	kstat_named_t arcstat_mfu_hits;
375	kstat_named_t arcstat_mfu_ghost_hits;
376	kstat_named_t arcstat_allocated;
377	kstat_named_t arcstat_deleted;
378	/*
379	 * Number of buffers that could not be evicted because the hash lock
380	 * was held by another thread.  The lock may not necessarily be held
381	 * by something using the same buffer, since hash locks are shared
382	 * by multiple buffers.
383	 */
384	kstat_named_t arcstat_mutex_miss;
385	/*
386	 * Number of buffers skipped because they have I/O in progress, are
387	 * indrect prefetch buffers that have not lived long enough, or are
388	 * not from the spa we're trying to evict from.
389	 */
390	kstat_named_t arcstat_evict_skip;
391	/*
392	 * Number of times arc_evict_state() was unable to evict enough
393	 * buffers to reach it's target amount.
394	 */
395	kstat_named_t arcstat_evict_not_enough;
396	kstat_named_t arcstat_evict_l2_cached;
397	kstat_named_t arcstat_evict_l2_eligible;
398	kstat_named_t arcstat_evict_l2_ineligible;
399	kstat_named_t arcstat_evict_l2_skip;
400	kstat_named_t arcstat_hash_elements;
401	kstat_named_t arcstat_hash_elements_max;
402	kstat_named_t arcstat_hash_collisions;
403	kstat_named_t arcstat_hash_chains;
404	kstat_named_t arcstat_hash_chain_max;
405	kstat_named_t arcstat_p;
406	kstat_named_t arcstat_c;
407	kstat_named_t arcstat_c_min;
408	kstat_named_t arcstat_c_max;
409	kstat_named_t arcstat_size;
410	/*
411	 * Number of bytes consumed by internal ARC structures necessary
412	 * for tracking purposes; these structures are not actually
413	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
414	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
415	 * caches), and arc_buf_t structures (allocated via arc_buf_t
416	 * cache).
417	 */
418	kstat_named_t arcstat_hdr_size;
419	/*
420	 * Number of bytes consumed by ARC buffers of type equal to
421	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
422	 * on disk user data (e.g. plain file contents).
423	 */
424	kstat_named_t arcstat_data_size;
425	/*
426	 * Number of bytes consumed by ARC buffers of type equal to
427	 * ARC_BUFC_METADATA. This is generally consumed by buffers
428	 * backing on disk data that is used for internal ZFS
429	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
430	 */
431	kstat_named_t arcstat_metadata_size;
432	/*
433	 * Number of bytes consumed by various buffers and structures
434	 * not actually backed with ARC buffers. This includes bonus
435	 * buffers (allocated directly via zio_buf_* functions),
436	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
437	 * cache), and dnode_t structures (allocated via dnode_t cache).
438	 */
439	kstat_named_t arcstat_other_size;
440	/*
441	 * Total number of bytes consumed by ARC buffers residing in the
442	 * arc_anon state. This includes *all* buffers in the arc_anon
443	 * state; e.g. data, metadata, evictable, and unevictable buffers
444	 * are all included in this value.
445	 */
446	kstat_named_t arcstat_anon_size;
447	/*
448	 * Number of bytes consumed by ARC buffers that meet the
449	 * following criteria: backing buffers of type ARC_BUFC_DATA,
450	 * residing in the arc_anon state, and are eligible for eviction
451	 * (e.g. have no outstanding holds on the buffer).
452	 */
453	kstat_named_t arcstat_anon_evictable_data;
454	/*
455	 * Number of bytes consumed by ARC buffers that meet the
456	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
457	 * residing in the arc_anon state, and are eligible for eviction
458	 * (e.g. have no outstanding holds on the buffer).
459	 */
460	kstat_named_t arcstat_anon_evictable_metadata;
461	/*
462	 * Total number of bytes consumed by ARC buffers residing in the
463	 * arc_mru state. This includes *all* buffers in the arc_mru
464	 * state; e.g. data, metadata, evictable, and unevictable buffers
465	 * are all included in this value.
466	 */
467	kstat_named_t arcstat_mru_size;
468	/*
469	 * Number of bytes consumed by ARC buffers that meet the
470	 * following criteria: backing buffers of type ARC_BUFC_DATA,
471	 * residing in the arc_mru state, and are eligible for eviction
472	 * (e.g. have no outstanding holds on the buffer).
473	 */
474	kstat_named_t arcstat_mru_evictable_data;
475	/*
476	 * Number of bytes consumed by ARC buffers that meet the
477	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
478	 * residing in the arc_mru state, and are eligible for eviction
479	 * (e.g. have no outstanding holds on the buffer).
480	 */
481	kstat_named_t arcstat_mru_evictable_metadata;
482	/*
483	 * Total number of bytes that *would have been* consumed by ARC
484	 * buffers in the arc_mru_ghost state. The key thing to note
485	 * here, is the fact that this size doesn't actually indicate
486	 * RAM consumption. The ghost lists only consist of headers and
487	 * don't actually have ARC buffers linked off of these headers.
488	 * Thus, *if* the headers had associated ARC buffers, these
489	 * buffers *would have* consumed this number of bytes.
490	 */
491	kstat_named_t arcstat_mru_ghost_size;
492	/*
493	 * Number of bytes that *would have been* consumed by ARC
494	 * buffers that are eligible for eviction, of type
495	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
496	 */
497	kstat_named_t arcstat_mru_ghost_evictable_data;
498	/*
499	 * Number of bytes that *would have been* consumed by ARC
500	 * buffers that are eligible for eviction, of type
501	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
502	 */
503	kstat_named_t arcstat_mru_ghost_evictable_metadata;
504	/*
505	 * Total number of bytes consumed by ARC buffers residing in the
506	 * arc_mfu state. This includes *all* buffers in the arc_mfu
507	 * state; e.g. data, metadata, evictable, and unevictable buffers
508	 * are all included in this value.
509	 */
510	kstat_named_t arcstat_mfu_size;
511	/*
512	 * Number of bytes consumed by ARC buffers that are eligible for
513	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
514	 * state.
515	 */
516	kstat_named_t arcstat_mfu_evictable_data;
517	/*
518	 * Number of bytes consumed by ARC buffers that are eligible for
519	 * eviction, of type ARC_BUFC_METADATA, and reside in the
520	 * arc_mfu state.
521	 */
522	kstat_named_t arcstat_mfu_evictable_metadata;
523	/*
524	 * Total number of bytes that *would have been* consumed by ARC
525	 * buffers in the arc_mfu_ghost state. See the comment above
526	 * arcstat_mru_ghost_size for more details.
527	 */
528	kstat_named_t arcstat_mfu_ghost_size;
529	/*
530	 * Number of bytes that *would have been* consumed by ARC
531	 * buffers that are eligible for eviction, of type
532	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
533	 */
534	kstat_named_t arcstat_mfu_ghost_evictable_data;
535	/*
536	 * Number of bytes that *would have been* consumed by ARC
537	 * buffers that are eligible for eviction, of type
538	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
539	 */
540	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
541	kstat_named_t arcstat_l2_hits;
542	kstat_named_t arcstat_l2_misses;
543	kstat_named_t arcstat_l2_feeds;
544	kstat_named_t arcstat_l2_rw_clash;
545	kstat_named_t arcstat_l2_read_bytes;
546	kstat_named_t arcstat_l2_write_bytes;
547	kstat_named_t arcstat_l2_writes_sent;
548	kstat_named_t arcstat_l2_writes_done;
549	kstat_named_t arcstat_l2_writes_error;
550	kstat_named_t arcstat_l2_writes_lock_retry;
551	kstat_named_t arcstat_l2_evict_lock_retry;
552	kstat_named_t arcstat_l2_evict_reading;
553	kstat_named_t arcstat_l2_evict_l1cached;
554	kstat_named_t arcstat_l2_free_on_write;
555	kstat_named_t arcstat_l2_cdata_free_on_write;
556	kstat_named_t arcstat_l2_abort_lowmem;
557	kstat_named_t arcstat_l2_cksum_bad;
558	kstat_named_t arcstat_l2_io_error;
559	kstat_named_t arcstat_l2_size;
560	kstat_named_t arcstat_l2_asize;
561	kstat_named_t arcstat_l2_hdr_size;
562	kstat_named_t arcstat_l2_compress_successes;
563	kstat_named_t arcstat_l2_compress_zeros;
564	kstat_named_t arcstat_l2_compress_failures;
565	kstat_named_t arcstat_l2_write_trylock_fail;
566	kstat_named_t arcstat_l2_write_passed_headroom;
567	kstat_named_t arcstat_l2_write_spa_mismatch;
568	kstat_named_t arcstat_l2_write_in_l2;
569	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
570	kstat_named_t arcstat_l2_write_not_cacheable;
571	kstat_named_t arcstat_l2_write_full;
572	kstat_named_t arcstat_l2_write_buffer_iter;
573	kstat_named_t arcstat_l2_write_pios;
574	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
575	kstat_named_t arcstat_l2_write_buffer_list_iter;
576	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
577	kstat_named_t arcstat_memory_throttle_count;
578	kstat_named_t arcstat_duplicate_buffers;
579	kstat_named_t arcstat_duplicate_buffers_size;
580	kstat_named_t arcstat_duplicate_reads;
581	kstat_named_t arcstat_meta_used;
582	kstat_named_t arcstat_meta_limit;
583	kstat_named_t arcstat_meta_max;
584	kstat_named_t arcstat_meta_min;
585} arc_stats_t;
586
587static arc_stats_t arc_stats = {
588	{ "hits",			KSTAT_DATA_UINT64 },
589	{ "misses",			KSTAT_DATA_UINT64 },
590	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
591	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
592	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
593	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
594	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
595	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
596	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
597	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
598	{ "mru_hits",			KSTAT_DATA_UINT64 },
599	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
600	{ "mfu_hits",			KSTAT_DATA_UINT64 },
601	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
602	{ "allocated",			KSTAT_DATA_UINT64 },
603	{ "deleted",			KSTAT_DATA_UINT64 },
604	{ "mutex_miss",			KSTAT_DATA_UINT64 },
605	{ "evict_skip",			KSTAT_DATA_UINT64 },
606	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
607	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
608	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
609	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
610	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
611	{ "hash_elements",		KSTAT_DATA_UINT64 },
612	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
613	{ "hash_collisions",		KSTAT_DATA_UINT64 },
614	{ "hash_chains",		KSTAT_DATA_UINT64 },
615	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
616	{ "p",				KSTAT_DATA_UINT64 },
617	{ "c",				KSTAT_DATA_UINT64 },
618	{ "c_min",			KSTAT_DATA_UINT64 },
619	{ "c_max",			KSTAT_DATA_UINT64 },
620	{ "size",			KSTAT_DATA_UINT64 },
621	{ "hdr_size",			KSTAT_DATA_UINT64 },
622	{ "data_size",			KSTAT_DATA_UINT64 },
623	{ "metadata_size",		KSTAT_DATA_UINT64 },
624	{ "other_size",			KSTAT_DATA_UINT64 },
625	{ "anon_size",			KSTAT_DATA_UINT64 },
626	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
627	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
628	{ "mru_size",			KSTAT_DATA_UINT64 },
629	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
630	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
631	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
632	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
633	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
634	{ "mfu_size",			KSTAT_DATA_UINT64 },
635	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
636	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
637	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
638	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
639	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
640	{ "l2_hits",			KSTAT_DATA_UINT64 },
641	{ "l2_misses",			KSTAT_DATA_UINT64 },
642	{ "l2_feeds",			KSTAT_DATA_UINT64 },
643	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
644	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
645	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
646	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
647	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
648	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
649	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
650	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
651	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
652	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
653	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
654	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
655	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
656	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
657	{ "l2_io_error",		KSTAT_DATA_UINT64 },
658	{ "l2_size",			KSTAT_DATA_UINT64 },
659	{ "l2_asize",			KSTAT_DATA_UINT64 },
660	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
661	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
662	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
663	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
664	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
665	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
666	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
667	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
668	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
669	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
670	{ "l2_write_full",		KSTAT_DATA_UINT64 },
671	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
672	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
673	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
674	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
675	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
676	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
677	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
678	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
679	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
680	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
681	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
682	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
683	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
684};
685
686#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
687
688#define	ARCSTAT_INCR(stat, val) \
689	atomic_add_64(&arc_stats.stat.value.ui64, (val))
690
691#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
692#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
693
694#define	ARCSTAT_MAX(stat, val) {					\
695	uint64_t m;							\
696	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
697	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
698		continue;						\
699}
700
701#define	ARCSTAT_MAXSTAT(stat) \
702	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
703
704/*
705 * We define a macro to allow ARC hits/misses to be easily broken down by
706 * two separate conditions, giving a total of four different subtypes for
707 * each of hits and misses (so eight statistics total).
708 */
709#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
710	if (cond1) {							\
711		if (cond2) {						\
712			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
713		} else {						\
714			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
715		}							\
716	} else {							\
717		if (cond2) {						\
718			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
719		} else {						\
720			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
721		}							\
722	}
723
724kstat_t			*arc_ksp;
725static arc_state_t	*arc_anon;
726static arc_state_t	*arc_mru;
727static arc_state_t	*arc_mru_ghost;
728static arc_state_t	*arc_mfu;
729static arc_state_t	*arc_mfu_ghost;
730static arc_state_t	*arc_l2c_only;
731
732/*
733 * There are several ARC variables that are critical to export as kstats --
734 * but we don't want to have to grovel around in the kstat whenever we wish to
735 * manipulate them.  For these variables, we therefore define them to be in
736 * terms of the statistic variable.  This assures that we are not introducing
737 * the possibility of inconsistency by having shadow copies of the variables,
738 * while still allowing the code to be readable.
739 */
740#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
741#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
742#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
743#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
744#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
745#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
746#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
747#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
748#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
749
750#define	L2ARC_IS_VALID_COMPRESS(_c_) \
751	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
752
753static int		arc_no_grow;	/* Don't try to grow cache size */
754static uint64_t		arc_tempreserve;
755static uint64_t		arc_loaned_bytes;
756
757typedef struct arc_callback arc_callback_t;
758
759struct arc_callback {
760	void			*acb_private;
761	arc_done_func_t		*acb_done;
762	arc_buf_t		*acb_buf;
763	zio_t			*acb_zio_dummy;
764	arc_callback_t		*acb_next;
765};
766
767typedef struct arc_write_callback arc_write_callback_t;
768
769struct arc_write_callback {
770	void		*awcb_private;
771	arc_done_func_t	*awcb_ready;
772	arc_done_func_t	*awcb_physdone;
773	arc_done_func_t	*awcb_done;
774	arc_buf_t	*awcb_buf;
775};
776
777/*
778 * ARC buffers are separated into multiple structs as a memory saving measure:
779 *   - Common fields struct, always defined, and embedded within it:
780 *       - L2-only fields, always allocated but undefined when not in L2ARC
781 *       - L1-only fields, only allocated when in L1ARC
782 *
783 *           Buffer in L1                     Buffer only in L2
784 *    +------------------------+          +------------------------+
785 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
786 *    |                        |          |                        |
787 *    |                        |          |                        |
788 *    |                        |          |                        |
789 *    +------------------------+          +------------------------+
790 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
791 *    | (undefined if L1-only) |          |                        |
792 *    +------------------------+          +------------------------+
793 *    | l1arc_buf_hdr_t        |
794 *    |                        |
795 *    |                        |
796 *    |                        |
797 *    |                        |
798 *    +------------------------+
799 *
800 * Because it's possible for the L2ARC to become extremely large, we can wind
801 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
802 * is minimized by only allocating the fields necessary for an L1-cached buffer
803 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
804 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
805 * words in pointers. arc_hdr_realloc() is used to switch a header between
806 * these two allocation states.
807 */
808typedef struct l1arc_buf_hdr {
809	kmutex_t		b_freeze_lock;
810#ifdef ZFS_DEBUG
811	/*
812	 * used for debugging wtih kmem_flags - by allocating and freeing
813	 * b_thawed when the buffer is thawed, we get a record of the stack
814	 * trace that thawed it.
815	 */
816	void			*b_thawed;
817#endif
818
819	arc_buf_t		*b_buf;
820	uint32_t		b_datacnt;
821	/* for waiting on writes to complete */
822	kcondvar_t		b_cv;
823
824	/* protected by arc state mutex */
825	arc_state_t		*b_state;
826	multilist_node_t	b_arc_node;
827
828	/* updated atomically */
829	clock_t			b_arc_access;
830
831	/* self protecting */
832	refcount_t		b_refcnt;
833
834	arc_callback_t		*b_acb;
835	/* temporary buffer holder for in-flight compressed data */
836	void			*b_tmp_cdata;
837} l1arc_buf_hdr_t;
838
839typedef struct l2arc_dev l2arc_dev_t;
840
841typedef struct l2arc_buf_hdr {
842	/* protected by arc_buf_hdr mutex */
843	l2arc_dev_t		*b_dev;		/* L2ARC device */
844	uint64_t		b_daddr;	/* disk address, offset byte */
845	/* real alloc'd buffer size depending on b_compress applied */
846	int32_t			b_asize;
847
848	list_node_t		b_l2node;
849} l2arc_buf_hdr_t;
850
851struct arc_buf_hdr {
852	/* protected by hash lock */
853	dva_t			b_dva;
854	uint64_t		b_birth;
855	/*
856	 * Even though this checksum is only set/verified when a buffer is in
857	 * the L1 cache, it needs to be in the set of common fields because it
858	 * must be preserved from the time before a buffer is written out to
859	 * L2ARC until after it is read back in.
860	 */
861	zio_cksum_t		*b_freeze_cksum;
862
863	arc_buf_hdr_t		*b_hash_next;
864	arc_flags_t		b_flags;
865
866	/* immutable */
867	int32_t			b_size;
868	uint64_t		b_spa;
869
870	/* L2ARC fields. Undefined when not in L2ARC. */
871	l2arc_buf_hdr_t		b_l2hdr;
872	/* L1ARC fields. Undefined when in l2arc_only state */
873	l1arc_buf_hdr_t		b_l1hdr;
874};
875
876#ifdef _KERNEL
877static int
878sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
879{
880	uint64_t val;
881	int err;
882
883	val = arc_meta_limit;
884	err = sysctl_handle_64(oidp, &val, 0, req);
885	if (err != 0 || req->newptr == NULL)
886		return (err);
887
888        if (val <= 0 || val > arc_c_max)
889		return (EINVAL);
890
891	arc_meta_limit = val;
892	return (0);
893}
894#endif
895
896static arc_buf_t *arc_eviction_list;
897static arc_buf_hdr_t arc_eviction_hdr;
898
899#define	GHOST_STATE(state)	\
900	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
901	(state) == arc_l2c_only)
902
903#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
904#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
905#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
906#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
907#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
908#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
909
910#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
911#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
912#define	HDR_L2_READING(hdr)	\
913	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
914	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
915#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
916#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
917#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
918
919#define	HDR_ISTYPE_METADATA(hdr)	\
920	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
921#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
922
923#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
924#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
925
926/* For storing compression mode in b_flags */
927#define	HDR_COMPRESS_OFFSET	24
928#define	HDR_COMPRESS_NBITS	7
929
930#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET(hdr->b_flags, \
931	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
932#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
933	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
934
935/*
936 * Other sizes
937 */
938
939#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
940#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
941
942/*
943 * Hash table routines
944 */
945
946#define	HT_LOCK_PAD	CACHE_LINE_SIZE
947
948struct ht_lock {
949	kmutex_t	ht_lock;
950#ifdef _KERNEL
951	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
952#endif
953};
954
955#define	BUF_LOCKS 256
956typedef struct buf_hash_table {
957	uint64_t ht_mask;
958	arc_buf_hdr_t **ht_table;
959	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
960} buf_hash_table_t;
961
962static buf_hash_table_t buf_hash_table;
963
964#define	BUF_HASH_INDEX(spa, dva, birth) \
965	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
966#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
967#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
968#define	HDR_LOCK(hdr) \
969	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
970
971uint64_t zfs_crc64_table[256];
972
973/*
974 * Level 2 ARC
975 */
976
977#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
978#define	L2ARC_HEADROOM		2			/* num of writes */
979/*
980 * If we discover during ARC scan any buffers to be compressed, we boost
981 * our headroom for the next scanning cycle by this percentage multiple.
982 */
983#define	L2ARC_HEADROOM_BOOST	200
984#define	L2ARC_FEED_SECS		1		/* caching interval secs */
985#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
986
987/*
988 * Used to distinguish headers that are being process by
989 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
990 * address. This can happen when the header is added to the l2arc's list
991 * of buffers to write in the first stage of l2arc_write_buffers(), but
992 * has not yet been written out which happens in the second stage of
993 * l2arc_write_buffers().
994 */
995#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
996
997#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
998#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
999
1000/* L2ARC Performance Tunables */
1001uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1002uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1003uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1004uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1005uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1006uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1007boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1008boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1009boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1010
1011SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1012    &l2arc_write_max, 0, "max write size");
1013SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1014    &l2arc_write_boost, 0, "extra write during warmup");
1015SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1016    &l2arc_headroom, 0, "number of dev writes");
1017SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1018    &l2arc_feed_secs, 0, "interval seconds");
1019SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1020    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1021
1022SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1023    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1024SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1025    &l2arc_feed_again, 0, "turbo warmup");
1026SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1027    &l2arc_norw, 0, "no reads during writes");
1028
1029SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1030    &ARC_anon.arcs_size, 0, "size of anonymous state");
1031SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1032    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1033SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1034    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1035
1036SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1037    &ARC_mru.arcs_size, 0, "size of mru state");
1038SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1039    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1040SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1041    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1042
1043SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1044    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
1045SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1046    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1047    "size of metadata in mru ghost state");
1048SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1049    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1050    "size of data in mru ghost state");
1051
1052SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1053    &ARC_mfu.arcs_size, 0, "size of mfu state");
1054SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1055    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1056SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1057    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1058
1059SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1060    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
1061SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1062    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1063    "size of metadata in mfu ghost state");
1064SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1065    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1066    "size of data in mfu ghost state");
1067
1068SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1069    &ARC_l2c_only.arcs_size, 0, "size of mru state");
1070
1071/*
1072 * L2ARC Internals
1073 */
1074struct l2arc_dev {
1075	vdev_t			*l2ad_vdev;	/* vdev */
1076	spa_t			*l2ad_spa;	/* spa */
1077	uint64_t		l2ad_hand;	/* next write location */
1078	uint64_t		l2ad_start;	/* first addr on device */
1079	uint64_t		l2ad_end;	/* last addr on device */
1080	boolean_t		l2ad_first;	/* first sweep through */
1081	boolean_t		l2ad_writing;	/* currently writing */
1082	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1083	list_t			l2ad_buflist;	/* buffer list */
1084	list_node_t		l2ad_node;	/* device list node */
1085	refcount_t		l2ad_alloc;	/* allocated bytes */
1086};
1087
1088static list_t L2ARC_dev_list;			/* device list */
1089static list_t *l2arc_dev_list;			/* device list pointer */
1090static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1091static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1092static list_t L2ARC_free_on_write;		/* free after write buf list */
1093static list_t *l2arc_free_on_write;		/* free after write list ptr */
1094static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1095static uint64_t l2arc_ndev;			/* number of devices */
1096
1097typedef struct l2arc_read_callback {
1098	arc_buf_t		*l2rcb_buf;		/* read buffer */
1099	spa_t			*l2rcb_spa;		/* spa */
1100	blkptr_t		l2rcb_bp;		/* original blkptr */
1101	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1102	int			l2rcb_flags;		/* original flags */
1103	enum zio_compress	l2rcb_compress;		/* applied compress */
1104} l2arc_read_callback_t;
1105
1106typedef struct l2arc_write_callback {
1107	l2arc_dev_t	*l2wcb_dev;		/* device info */
1108	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1109} l2arc_write_callback_t;
1110
1111typedef struct l2arc_data_free {
1112	/* protected by l2arc_free_on_write_mtx */
1113	void		*l2df_data;
1114	size_t		l2df_size;
1115	void		(*l2df_func)(void *, size_t);
1116	list_node_t	l2df_list_node;
1117} l2arc_data_free_t;
1118
1119static kmutex_t l2arc_feed_thr_lock;
1120static kcondvar_t l2arc_feed_thr_cv;
1121static uint8_t l2arc_thread_exit;
1122
1123static void arc_get_data_buf(arc_buf_t *);
1124static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1125static boolean_t arc_is_overflowing();
1126static void arc_buf_watch(arc_buf_t *);
1127
1128static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1129static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1130
1131static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1132static void l2arc_read_done(zio_t *);
1133
1134static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1135static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1136static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1137
1138static uint64_t
1139buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1140{
1141	uint8_t *vdva = (uint8_t *)dva;
1142	uint64_t crc = -1ULL;
1143	int i;
1144
1145	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1146
1147	for (i = 0; i < sizeof (dva_t); i++)
1148		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1149
1150	crc ^= (spa>>8) ^ birth;
1151
1152	return (crc);
1153}
1154
1155#define	BUF_EMPTY(buf)						\
1156	((buf)->b_dva.dva_word[0] == 0 &&			\
1157	(buf)->b_dva.dva_word[1] == 0)
1158
1159#define	BUF_EQUAL(spa, dva, birth, buf)				\
1160	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1161	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1162	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1163
1164static void
1165buf_discard_identity(arc_buf_hdr_t *hdr)
1166{
1167	hdr->b_dva.dva_word[0] = 0;
1168	hdr->b_dva.dva_word[1] = 0;
1169	hdr->b_birth = 0;
1170}
1171
1172static arc_buf_hdr_t *
1173buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1174{
1175	const dva_t *dva = BP_IDENTITY(bp);
1176	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1177	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1178	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1179	arc_buf_hdr_t *hdr;
1180
1181	mutex_enter(hash_lock);
1182	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1183	    hdr = hdr->b_hash_next) {
1184		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1185			*lockp = hash_lock;
1186			return (hdr);
1187		}
1188	}
1189	mutex_exit(hash_lock);
1190	*lockp = NULL;
1191	return (NULL);
1192}
1193
1194/*
1195 * Insert an entry into the hash table.  If there is already an element
1196 * equal to elem in the hash table, then the already existing element
1197 * will be returned and the new element will not be inserted.
1198 * Otherwise returns NULL.
1199 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1200 */
1201static arc_buf_hdr_t *
1202buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1203{
1204	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1205	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1206	arc_buf_hdr_t *fhdr;
1207	uint32_t i;
1208
1209	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1210	ASSERT(hdr->b_birth != 0);
1211	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1212
1213	if (lockp != NULL) {
1214		*lockp = hash_lock;
1215		mutex_enter(hash_lock);
1216	} else {
1217		ASSERT(MUTEX_HELD(hash_lock));
1218	}
1219
1220	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1221	    fhdr = fhdr->b_hash_next, i++) {
1222		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1223			return (fhdr);
1224	}
1225
1226	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1227	buf_hash_table.ht_table[idx] = hdr;
1228	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1229
1230	/* collect some hash table performance data */
1231	if (i > 0) {
1232		ARCSTAT_BUMP(arcstat_hash_collisions);
1233		if (i == 1)
1234			ARCSTAT_BUMP(arcstat_hash_chains);
1235
1236		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1237	}
1238
1239	ARCSTAT_BUMP(arcstat_hash_elements);
1240	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1241
1242	return (NULL);
1243}
1244
1245static void
1246buf_hash_remove(arc_buf_hdr_t *hdr)
1247{
1248	arc_buf_hdr_t *fhdr, **hdrp;
1249	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1250
1251	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1252	ASSERT(HDR_IN_HASH_TABLE(hdr));
1253
1254	hdrp = &buf_hash_table.ht_table[idx];
1255	while ((fhdr = *hdrp) != hdr) {
1256		ASSERT(fhdr != NULL);
1257		hdrp = &fhdr->b_hash_next;
1258	}
1259	*hdrp = hdr->b_hash_next;
1260	hdr->b_hash_next = NULL;
1261	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1262
1263	/* collect some hash table performance data */
1264	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1265
1266	if (buf_hash_table.ht_table[idx] &&
1267	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1268		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1269}
1270
1271/*
1272 * Global data structures and functions for the buf kmem cache.
1273 */
1274static kmem_cache_t *hdr_full_cache;
1275static kmem_cache_t *hdr_l2only_cache;
1276static kmem_cache_t *buf_cache;
1277
1278static void
1279buf_fini(void)
1280{
1281	int i;
1282
1283	kmem_free(buf_hash_table.ht_table,
1284	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1285	for (i = 0; i < BUF_LOCKS; i++)
1286		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1287	kmem_cache_destroy(hdr_full_cache);
1288	kmem_cache_destroy(hdr_l2only_cache);
1289	kmem_cache_destroy(buf_cache);
1290}
1291
1292/*
1293 * Constructor callback - called when the cache is empty
1294 * and a new buf is requested.
1295 */
1296/* ARGSUSED */
1297static int
1298hdr_full_cons(void *vbuf, void *unused, int kmflag)
1299{
1300	arc_buf_hdr_t *hdr = vbuf;
1301
1302	bzero(hdr, HDR_FULL_SIZE);
1303	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1304	refcount_create(&hdr->b_l1hdr.b_refcnt);
1305	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1306	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1307	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1308
1309	return (0);
1310}
1311
1312/* ARGSUSED */
1313static int
1314hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1315{
1316	arc_buf_hdr_t *hdr = vbuf;
1317
1318	bzero(hdr, HDR_L2ONLY_SIZE);
1319	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1320
1321	return (0);
1322}
1323
1324/* ARGSUSED */
1325static int
1326buf_cons(void *vbuf, void *unused, int kmflag)
1327{
1328	arc_buf_t *buf = vbuf;
1329
1330	bzero(buf, sizeof (arc_buf_t));
1331	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1332	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1333
1334	return (0);
1335}
1336
1337/*
1338 * Destructor callback - called when a cached buf is
1339 * no longer required.
1340 */
1341/* ARGSUSED */
1342static void
1343hdr_full_dest(void *vbuf, void *unused)
1344{
1345	arc_buf_hdr_t *hdr = vbuf;
1346
1347	ASSERT(BUF_EMPTY(hdr));
1348	cv_destroy(&hdr->b_l1hdr.b_cv);
1349	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1350	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1351	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1352	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1353}
1354
1355/* ARGSUSED */
1356static void
1357hdr_l2only_dest(void *vbuf, void *unused)
1358{
1359	arc_buf_hdr_t *hdr = vbuf;
1360
1361	ASSERT(BUF_EMPTY(hdr));
1362	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1363}
1364
1365/* ARGSUSED */
1366static void
1367buf_dest(void *vbuf, void *unused)
1368{
1369	arc_buf_t *buf = vbuf;
1370
1371	mutex_destroy(&buf->b_evict_lock);
1372	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1373}
1374
1375/*
1376 * Reclaim callback -- invoked when memory is low.
1377 */
1378/* ARGSUSED */
1379static void
1380hdr_recl(void *unused)
1381{
1382	dprintf("hdr_recl called\n");
1383	/*
1384	 * umem calls the reclaim func when we destroy the buf cache,
1385	 * which is after we do arc_fini().
1386	 */
1387	if (!arc_dead)
1388		cv_signal(&arc_reclaim_thread_cv);
1389}
1390
1391static void
1392buf_init(void)
1393{
1394	uint64_t *ct;
1395	uint64_t hsize = 1ULL << 12;
1396	int i, j;
1397
1398	/*
1399	 * The hash table is big enough to fill all of physical memory
1400	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1401	 * By default, the table will take up
1402	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1403	 */
1404	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1405		hsize <<= 1;
1406retry:
1407	buf_hash_table.ht_mask = hsize - 1;
1408	buf_hash_table.ht_table =
1409	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1410	if (buf_hash_table.ht_table == NULL) {
1411		ASSERT(hsize > (1ULL << 8));
1412		hsize >>= 1;
1413		goto retry;
1414	}
1415
1416	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1417	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1418	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1419	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1420	    NULL, NULL, 0);
1421	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1422	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1423
1424	for (i = 0; i < 256; i++)
1425		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1426			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1427
1428	for (i = 0; i < BUF_LOCKS; i++) {
1429		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1430		    NULL, MUTEX_DEFAULT, NULL);
1431	}
1432}
1433
1434/*
1435 * Transition between the two allocation states for the arc_buf_hdr struct.
1436 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1437 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1438 * version is used when a cache buffer is only in the L2ARC in order to reduce
1439 * memory usage.
1440 */
1441static arc_buf_hdr_t *
1442arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1443{
1444	ASSERT(HDR_HAS_L2HDR(hdr));
1445
1446	arc_buf_hdr_t *nhdr;
1447	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1448
1449	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1450	    (old == hdr_l2only_cache && new == hdr_full_cache));
1451
1452	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1453
1454	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1455	buf_hash_remove(hdr);
1456
1457	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1458
1459	if (new == hdr_full_cache) {
1460		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1461		/*
1462		 * arc_access and arc_change_state need to be aware that a
1463		 * header has just come out of L2ARC, so we set its state to
1464		 * l2c_only even though it's about to change.
1465		 */
1466		nhdr->b_l1hdr.b_state = arc_l2c_only;
1467
1468		/* Verify previous threads set to NULL before freeing */
1469		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1470	} else {
1471		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1472		ASSERT0(hdr->b_l1hdr.b_datacnt);
1473
1474		/*
1475		 * If we've reached here, We must have been called from
1476		 * arc_evict_hdr(), as such we should have already been
1477		 * removed from any ghost list we were previously on
1478		 * (which protects us from racing with arc_evict_state),
1479		 * thus no locking is needed during this check.
1480		 */
1481		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1482
1483		/*
1484		 * A buffer must not be moved into the arc_l2c_only
1485		 * state if it's not finished being written out to the
1486		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1487		 * might try to be accessed, even though it was removed.
1488		 */
1489		VERIFY(!HDR_L2_WRITING(hdr));
1490		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1491
1492		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1493	}
1494	/*
1495	 * The header has been reallocated so we need to re-insert it into any
1496	 * lists it was on.
1497	 */
1498	(void) buf_hash_insert(nhdr, NULL);
1499
1500	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1501
1502	mutex_enter(&dev->l2ad_mtx);
1503
1504	/*
1505	 * We must place the realloc'ed header back into the list at
1506	 * the same spot. Otherwise, if it's placed earlier in the list,
1507	 * l2arc_write_buffers() could find it during the function's
1508	 * write phase, and try to write it out to the l2arc.
1509	 */
1510	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1511	list_remove(&dev->l2ad_buflist, hdr);
1512
1513	mutex_exit(&dev->l2ad_mtx);
1514
1515	/*
1516	 * Since we're using the pointer address as the tag when
1517	 * incrementing and decrementing the l2ad_alloc refcount, we
1518	 * must remove the old pointer (that we're about to destroy) and
1519	 * add the new pointer to the refcount. Otherwise we'd remove
1520	 * the wrong pointer address when calling arc_hdr_destroy() later.
1521	 */
1522
1523	(void) refcount_remove_many(&dev->l2ad_alloc,
1524	    hdr->b_l2hdr.b_asize, hdr);
1525
1526	(void) refcount_add_many(&dev->l2ad_alloc,
1527	    nhdr->b_l2hdr.b_asize, nhdr);
1528
1529	buf_discard_identity(hdr);
1530	hdr->b_freeze_cksum = NULL;
1531	kmem_cache_free(old, hdr);
1532
1533	return (nhdr);
1534}
1535
1536
1537#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1538
1539static void
1540arc_cksum_verify(arc_buf_t *buf)
1541{
1542	zio_cksum_t zc;
1543
1544	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1545		return;
1546
1547	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1548	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1549		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1550		return;
1551	}
1552	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1553	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1554		panic("buffer modified while frozen!");
1555	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1556}
1557
1558static int
1559arc_cksum_equal(arc_buf_t *buf)
1560{
1561	zio_cksum_t zc;
1562	int equal;
1563
1564	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1565	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1566	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1567	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1568
1569	return (equal);
1570}
1571
1572static void
1573arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1574{
1575	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1576		return;
1577
1578	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1579	if (buf->b_hdr->b_freeze_cksum != NULL) {
1580		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1581		return;
1582	}
1583	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1584	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1585	    buf->b_hdr->b_freeze_cksum);
1586	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1587#ifdef illumos
1588	arc_buf_watch(buf);
1589#endif
1590}
1591
1592#ifdef illumos
1593#ifndef _KERNEL
1594typedef struct procctl {
1595	long cmd;
1596	prwatch_t prwatch;
1597} procctl_t;
1598#endif
1599
1600/* ARGSUSED */
1601static void
1602arc_buf_unwatch(arc_buf_t *buf)
1603{
1604#ifndef _KERNEL
1605	if (arc_watch) {
1606		int result;
1607		procctl_t ctl;
1608		ctl.cmd = PCWATCH;
1609		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1610		ctl.prwatch.pr_size = 0;
1611		ctl.prwatch.pr_wflags = 0;
1612		result = write(arc_procfd, &ctl, sizeof (ctl));
1613		ASSERT3U(result, ==, sizeof (ctl));
1614	}
1615#endif
1616}
1617
1618/* ARGSUSED */
1619static void
1620arc_buf_watch(arc_buf_t *buf)
1621{
1622#ifndef _KERNEL
1623	if (arc_watch) {
1624		int result;
1625		procctl_t ctl;
1626		ctl.cmd = PCWATCH;
1627		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1628		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1629		ctl.prwatch.pr_wflags = WA_WRITE;
1630		result = write(arc_procfd, &ctl, sizeof (ctl));
1631		ASSERT3U(result, ==, sizeof (ctl));
1632	}
1633#endif
1634}
1635#endif /* illumos */
1636
1637static arc_buf_contents_t
1638arc_buf_type(arc_buf_hdr_t *hdr)
1639{
1640	if (HDR_ISTYPE_METADATA(hdr)) {
1641		return (ARC_BUFC_METADATA);
1642	} else {
1643		return (ARC_BUFC_DATA);
1644	}
1645}
1646
1647static uint32_t
1648arc_bufc_to_flags(arc_buf_contents_t type)
1649{
1650	switch (type) {
1651	case ARC_BUFC_DATA:
1652		/* metadata field is 0 if buffer contains normal data */
1653		return (0);
1654	case ARC_BUFC_METADATA:
1655		return (ARC_FLAG_BUFC_METADATA);
1656	default:
1657		break;
1658	}
1659	panic("undefined ARC buffer type!");
1660	return ((uint32_t)-1);
1661}
1662
1663void
1664arc_buf_thaw(arc_buf_t *buf)
1665{
1666	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1667		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1668			panic("modifying non-anon buffer!");
1669		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1670			panic("modifying buffer while i/o in progress!");
1671		arc_cksum_verify(buf);
1672	}
1673
1674	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1675	if (buf->b_hdr->b_freeze_cksum != NULL) {
1676		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1677		buf->b_hdr->b_freeze_cksum = NULL;
1678	}
1679
1680#ifdef ZFS_DEBUG
1681	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1682		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1683			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1684		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1685	}
1686#endif
1687
1688	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1689
1690#ifdef illumos
1691	arc_buf_unwatch(buf);
1692#endif
1693}
1694
1695void
1696arc_buf_freeze(arc_buf_t *buf)
1697{
1698	kmutex_t *hash_lock;
1699
1700	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1701		return;
1702
1703	hash_lock = HDR_LOCK(buf->b_hdr);
1704	mutex_enter(hash_lock);
1705
1706	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1707	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1708	arc_cksum_compute(buf, B_FALSE);
1709	mutex_exit(hash_lock);
1710
1711}
1712
1713static void
1714add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1715{
1716	ASSERT(HDR_HAS_L1HDR(hdr));
1717	ASSERT(MUTEX_HELD(hash_lock));
1718	arc_state_t *state = hdr->b_l1hdr.b_state;
1719
1720	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1721	    (state != arc_anon)) {
1722		/* We don't use the L2-only state list. */
1723		if (state != arc_l2c_only) {
1724			arc_buf_contents_t type = arc_buf_type(hdr);
1725			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1726			multilist_t *list = &state->arcs_list[type];
1727			uint64_t *size = &state->arcs_lsize[type];
1728
1729			multilist_remove(list, hdr);
1730
1731			if (GHOST_STATE(state)) {
1732				ASSERT0(hdr->b_l1hdr.b_datacnt);
1733				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1734				delta = hdr->b_size;
1735			}
1736			ASSERT(delta > 0);
1737			ASSERT3U(*size, >=, delta);
1738			atomic_add_64(size, -delta);
1739		}
1740		/* remove the prefetch flag if we get a reference */
1741		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1742	}
1743}
1744
1745static int
1746remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1747{
1748	int cnt;
1749	arc_state_t *state = hdr->b_l1hdr.b_state;
1750
1751	ASSERT(HDR_HAS_L1HDR(hdr));
1752	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1753	ASSERT(!GHOST_STATE(state));
1754
1755	/*
1756	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1757	 * check to prevent usage of the arc_l2c_only list.
1758	 */
1759	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1760	    (state != arc_anon)) {
1761		arc_buf_contents_t type = arc_buf_type(hdr);
1762		multilist_t *list = &state->arcs_list[type];
1763		uint64_t *size = &state->arcs_lsize[type];
1764
1765		multilist_insert(list, hdr);
1766
1767		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1768		atomic_add_64(size, hdr->b_size *
1769		    hdr->b_l1hdr.b_datacnt);
1770	}
1771	return (cnt);
1772}
1773
1774/*
1775 * Move the supplied buffer to the indicated state. The hash lock
1776 * for the buffer must be held by the caller.
1777 */
1778static void
1779arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1780    kmutex_t *hash_lock)
1781{
1782	arc_state_t *old_state;
1783	int64_t refcnt;
1784	uint32_t datacnt;
1785	uint64_t from_delta, to_delta;
1786	arc_buf_contents_t buftype = arc_buf_type(hdr);
1787
1788	/*
1789	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1790	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1791	 * L1 hdr doesn't always exist when we change state to arc_anon before
1792	 * destroying a header, in which case reallocating to add the L1 hdr is
1793	 * pointless.
1794	 */
1795	if (HDR_HAS_L1HDR(hdr)) {
1796		old_state = hdr->b_l1hdr.b_state;
1797		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1798		datacnt = hdr->b_l1hdr.b_datacnt;
1799	} else {
1800		old_state = arc_l2c_only;
1801		refcnt = 0;
1802		datacnt = 0;
1803	}
1804
1805	ASSERT(MUTEX_HELD(hash_lock));
1806	ASSERT3P(new_state, !=, old_state);
1807	ASSERT(refcnt == 0 || datacnt > 0);
1808	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1809	ASSERT(old_state != arc_anon || datacnt <= 1);
1810
1811	from_delta = to_delta = datacnt * hdr->b_size;
1812
1813	/*
1814	 * If this buffer is evictable, transfer it from the
1815	 * old state list to the new state list.
1816	 */
1817	if (refcnt == 0) {
1818		if (old_state != arc_anon && old_state != arc_l2c_only) {
1819			uint64_t *size = &old_state->arcs_lsize[buftype];
1820
1821			ASSERT(HDR_HAS_L1HDR(hdr));
1822			multilist_remove(&old_state->arcs_list[buftype], hdr);
1823
1824			/*
1825			 * If prefetching out of the ghost cache,
1826			 * we will have a non-zero datacnt.
1827			 */
1828			if (GHOST_STATE(old_state) && datacnt == 0) {
1829				/* ghost elements have a ghost size */
1830				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1831				from_delta = hdr->b_size;
1832			}
1833			ASSERT3U(*size, >=, from_delta);
1834			atomic_add_64(size, -from_delta);
1835		}
1836		if (new_state != arc_anon && new_state != arc_l2c_only) {
1837			uint64_t *size = &new_state->arcs_lsize[buftype];
1838
1839			/*
1840			 * An L1 header always exists here, since if we're
1841			 * moving to some L1-cached state (i.e. not l2c_only or
1842			 * anonymous), we realloc the header to add an L1hdr
1843			 * beforehand.
1844			 */
1845			ASSERT(HDR_HAS_L1HDR(hdr));
1846			multilist_insert(&new_state->arcs_list[buftype], hdr);
1847
1848			/* ghost elements have a ghost size */
1849			if (GHOST_STATE(new_state)) {
1850				ASSERT0(datacnt);
1851				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1852				to_delta = hdr->b_size;
1853			}
1854			atomic_add_64(size, to_delta);
1855		}
1856	}
1857
1858	ASSERT(!BUF_EMPTY(hdr));
1859	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1860		buf_hash_remove(hdr);
1861
1862	/* adjust state sizes (ignore arc_l2c_only) */
1863
1864	if (to_delta && new_state != arc_l2c_only) {
1865		ASSERT(HDR_HAS_L1HDR(hdr));
1866		if (GHOST_STATE(new_state)) {
1867			ASSERT0(datacnt);
1868
1869			/*
1870			 * We moving a header to a ghost state, we first
1871			 * remove all arc buffers. Thus, we'll have a
1872			 * datacnt of zero, and no arc buffer to use for
1873			 * the reference. As a result, we use the arc
1874			 * header pointer for the reference.
1875			 */
1876			(void) refcount_add_many(&new_state->arcs_size,
1877			    hdr->b_size, hdr);
1878		} else {
1879			ASSERT3U(datacnt, !=, 0);
1880
1881			/*
1882			 * Each individual buffer holds a unique reference,
1883			 * thus we must remove each of these references one
1884			 * at a time.
1885			 */
1886			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1887			    buf = buf->b_next) {
1888				(void) refcount_add_many(&new_state->arcs_size,
1889				    hdr->b_size, buf);
1890			}
1891		}
1892	}
1893
1894	if (from_delta && old_state != arc_l2c_only) {
1895		ASSERT(HDR_HAS_L1HDR(hdr));
1896		if (GHOST_STATE(old_state)) {
1897			/*
1898			 * When moving a header off of a ghost state,
1899			 * there's the possibility for datacnt to be
1900			 * non-zero. This is because we first add the
1901			 * arc buffer to the header prior to changing
1902			 * the header's state. Since we used the header
1903			 * for the reference when putting the header on
1904			 * the ghost state, we must balance that and use
1905			 * the header when removing off the ghost state
1906			 * (even though datacnt is non zero).
1907			 */
1908
1909			IMPLY(datacnt == 0, new_state == arc_anon ||
1910			    new_state == arc_l2c_only);
1911
1912			(void) refcount_remove_many(&old_state->arcs_size,
1913			    hdr->b_size, hdr);
1914		} else {
1915			ASSERT3P(datacnt, !=, 0);
1916
1917			/*
1918			 * Each individual buffer holds a unique reference,
1919			 * thus we must remove each of these references one
1920			 * at a time.
1921			 */
1922			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1923			    buf = buf->b_next) {
1924				(void) refcount_remove_many(
1925				    &old_state->arcs_size, hdr->b_size, buf);
1926			}
1927		}
1928	}
1929
1930	if (HDR_HAS_L1HDR(hdr))
1931		hdr->b_l1hdr.b_state = new_state;
1932
1933	/*
1934	 * L2 headers should never be on the L2 state list since they don't
1935	 * have L1 headers allocated.
1936	 */
1937	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1938	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1939}
1940
1941void
1942arc_space_consume(uint64_t space, arc_space_type_t type)
1943{
1944	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1945
1946	switch (type) {
1947	case ARC_SPACE_DATA:
1948		ARCSTAT_INCR(arcstat_data_size, space);
1949		break;
1950	case ARC_SPACE_META:
1951		ARCSTAT_INCR(arcstat_metadata_size, space);
1952		break;
1953	case ARC_SPACE_OTHER:
1954		ARCSTAT_INCR(arcstat_other_size, space);
1955		break;
1956	case ARC_SPACE_HDRS:
1957		ARCSTAT_INCR(arcstat_hdr_size, space);
1958		break;
1959	case ARC_SPACE_L2HDRS:
1960		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1961		break;
1962	}
1963
1964	if (type != ARC_SPACE_DATA)
1965		ARCSTAT_INCR(arcstat_meta_used, space);
1966
1967	atomic_add_64(&arc_size, space);
1968}
1969
1970void
1971arc_space_return(uint64_t space, arc_space_type_t type)
1972{
1973	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1974
1975	switch (type) {
1976	case ARC_SPACE_DATA:
1977		ARCSTAT_INCR(arcstat_data_size, -space);
1978		break;
1979	case ARC_SPACE_META:
1980		ARCSTAT_INCR(arcstat_metadata_size, -space);
1981		break;
1982	case ARC_SPACE_OTHER:
1983		ARCSTAT_INCR(arcstat_other_size, -space);
1984		break;
1985	case ARC_SPACE_HDRS:
1986		ARCSTAT_INCR(arcstat_hdr_size, -space);
1987		break;
1988	case ARC_SPACE_L2HDRS:
1989		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1990		break;
1991	}
1992
1993	if (type != ARC_SPACE_DATA) {
1994		ASSERT(arc_meta_used >= space);
1995		if (arc_meta_max < arc_meta_used)
1996			arc_meta_max = arc_meta_used;
1997		ARCSTAT_INCR(arcstat_meta_used, -space);
1998	}
1999
2000	ASSERT(arc_size >= space);
2001	atomic_add_64(&arc_size, -space);
2002}
2003
2004arc_buf_t *
2005arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2006{
2007	arc_buf_hdr_t *hdr;
2008	arc_buf_t *buf;
2009
2010	ASSERT3U(size, >, 0);
2011	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2012	ASSERT(BUF_EMPTY(hdr));
2013	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2014	hdr->b_size = size;
2015	hdr->b_spa = spa_load_guid(spa);
2016
2017	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2018	buf->b_hdr = hdr;
2019	buf->b_data = NULL;
2020	buf->b_efunc = NULL;
2021	buf->b_private = NULL;
2022	buf->b_next = NULL;
2023
2024	hdr->b_flags = arc_bufc_to_flags(type);
2025	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2026
2027	hdr->b_l1hdr.b_buf = buf;
2028	hdr->b_l1hdr.b_state = arc_anon;
2029	hdr->b_l1hdr.b_arc_access = 0;
2030	hdr->b_l1hdr.b_datacnt = 1;
2031	hdr->b_l1hdr.b_tmp_cdata = NULL;
2032
2033	arc_get_data_buf(buf);
2034	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2035	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2036
2037	return (buf);
2038}
2039
2040static char *arc_onloan_tag = "onloan";
2041
2042/*
2043 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2044 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2045 * buffers must be returned to the arc before they can be used by the DMU or
2046 * freed.
2047 */
2048arc_buf_t *
2049arc_loan_buf(spa_t *spa, int size)
2050{
2051	arc_buf_t *buf;
2052
2053	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2054
2055	atomic_add_64(&arc_loaned_bytes, size);
2056	return (buf);
2057}
2058
2059/*
2060 * Return a loaned arc buffer to the arc.
2061 */
2062void
2063arc_return_buf(arc_buf_t *buf, void *tag)
2064{
2065	arc_buf_hdr_t *hdr = buf->b_hdr;
2066
2067	ASSERT(buf->b_data != NULL);
2068	ASSERT(HDR_HAS_L1HDR(hdr));
2069	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2070	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2071
2072	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2073}
2074
2075/* Detach an arc_buf from a dbuf (tag) */
2076void
2077arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2078{
2079	arc_buf_hdr_t *hdr = buf->b_hdr;
2080
2081	ASSERT(buf->b_data != NULL);
2082	ASSERT(HDR_HAS_L1HDR(hdr));
2083	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2084	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2085	buf->b_efunc = NULL;
2086	buf->b_private = NULL;
2087
2088	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2089}
2090
2091static arc_buf_t *
2092arc_buf_clone(arc_buf_t *from)
2093{
2094	arc_buf_t *buf;
2095	arc_buf_hdr_t *hdr = from->b_hdr;
2096	uint64_t size = hdr->b_size;
2097
2098	ASSERT(HDR_HAS_L1HDR(hdr));
2099	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2100
2101	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2102	buf->b_hdr = hdr;
2103	buf->b_data = NULL;
2104	buf->b_efunc = NULL;
2105	buf->b_private = NULL;
2106	buf->b_next = hdr->b_l1hdr.b_buf;
2107	hdr->b_l1hdr.b_buf = buf;
2108	arc_get_data_buf(buf);
2109	bcopy(from->b_data, buf->b_data, size);
2110
2111	/*
2112	 * This buffer already exists in the arc so create a duplicate
2113	 * copy for the caller.  If the buffer is associated with user data
2114	 * then track the size and number of duplicates.  These stats will be
2115	 * updated as duplicate buffers are created and destroyed.
2116	 */
2117	if (HDR_ISTYPE_DATA(hdr)) {
2118		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2119		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2120	}
2121	hdr->b_l1hdr.b_datacnt += 1;
2122	return (buf);
2123}
2124
2125void
2126arc_buf_add_ref(arc_buf_t *buf, void* tag)
2127{
2128	arc_buf_hdr_t *hdr;
2129	kmutex_t *hash_lock;
2130
2131	/*
2132	 * Check to see if this buffer is evicted.  Callers
2133	 * must verify b_data != NULL to know if the add_ref
2134	 * was successful.
2135	 */
2136	mutex_enter(&buf->b_evict_lock);
2137	if (buf->b_data == NULL) {
2138		mutex_exit(&buf->b_evict_lock);
2139		return;
2140	}
2141	hash_lock = HDR_LOCK(buf->b_hdr);
2142	mutex_enter(hash_lock);
2143	hdr = buf->b_hdr;
2144	ASSERT(HDR_HAS_L1HDR(hdr));
2145	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2146	mutex_exit(&buf->b_evict_lock);
2147
2148	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2149	    hdr->b_l1hdr.b_state == arc_mfu);
2150
2151	add_reference(hdr, hash_lock, tag);
2152	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2153	arc_access(hdr, hash_lock);
2154	mutex_exit(hash_lock);
2155	ARCSTAT_BUMP(arcstat_hits);
2156	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2157	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2158	    data, metadata, hits);
2159}
2160
2161static void
2162arc_buf_free_on_write(void *data, size_t size,
2163    void (*free_func)(void *, size_t))
2164{
2165	l2arc_data_free_t *df;
2166
2167	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2168	df->l2df_data = data;
2169	df->l2df_size = size;
2170	df->l2df_func = free_func;
2171	mutex_enter(&l2arc_free_on_write_mtx);
2172	list_insert_head(l2arc_free_on_write, df);
2173	mutex_exit(&l2arc_free_on_write_mtx);
2174}
2175
2176/*
2177 * Free the arc data buffer.  If it is an l2arc write in progress,
2178 * the buffer is placed on l2arc_free_on_write to be freed later.
2179 */
2180static void
2181arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2182{
2183	arc_buf_hdr_t *hdr = buf->b_hdr;
2184
2185	if (HDR_L2_WRITING(hdr)) {
2186		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2187		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2188	} else {
2189		free_func(buf->b_data, hdr->b_size);
2190	}
2191}
2192
2193static void
2194arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2195{
2196	ASSERT(HDR_HAS_L2HDR(hdr));
2197	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2198
2199	/*
2200	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2201	 * that doesn't exist, the header is in the arc_l2c_only state,
2202	 * and there isn't anything to free (it's already been freed).
2203	 */
2204	if (!HDR_HAS_L1HDR(hdr))
2205		return;
2206
2207	/*
2208	 * The header isn't being written to the l2arc device, thus it
2209	 * shouldn't have a b_tmp_cdata to free.
2210	 */
2211	if (!HDR_L2_WRITING(hdr)) {
2212		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2213		return;
2214	}
2215
2216	/*
2217	 * The header does not have compression enabled. This can be due
2218	 * to the buffer not being compressible, or because we're
2219	 * freeing the buffer before the second phase of
2220	 * l2arc_write_buffer() has started (which does the compression
2221	 * step). In either case, b_tmp_cdata does not point to a
2222	 * separately compressed buffer, so there's nothing to free (it
2223	 * points to the same buffer as the arc_buf_t's b_data field).
2224	 */
2225	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2226		hdr->b_l1hdr.b_tmp_cdata = NULL;
2227		return;
2228	}
2229
2230	/*
2231	 * There's nothing to free since the buffer was all zero's and
2232	 * compressed to a zero length buffer.
2233	 */
2234	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
2235		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2236		return;
2237	}
2238
2239	ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
2240
2241	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2242	    hdr->b_size, zio_data_buf_free);
2243
2244	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2245	hdr->b_l1hdr.b_tmp_cdata = NULL;
2246}
2247
2248/*
2249 * Free up buf->b_data and if 'remove' is set, then pull the
2250 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2251 */
2252static void
2253arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2254{
2255	arc_buf_t **bufp;
2256
2257	/* free up data associated with the buf */
2258	if (buf->b_data != NULL) {
2259		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2260		uint64_t size = buf->b_hdr->b_size;
2261		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2262
2263		arc_cksum_verify(buf);
2264#ifdef illumos
2265		arc_buf_unwatch(buf);
2266#endif
2267
2268		if (type == ARC_BUFC_METADATA) {
2269			arc_buf_data_free(buf, zio_buf_free);
2270			arc_space_return(size, ARC_SPACE_META);
2271		} else {
2272			ASSERT(type == ARC_BUFC_DATA);
2273			arc_buf_data_free(buf, zio_data_buf_free);
2274			arc_space_return(size, ARC_SPACE_DATA);
2275		}
2276
2277		/* protected by hash lock, if in the hash table */
2278		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2279			uint64_t *cnt = &state->arcs_lsize[type];
2280
2281			ASSERT(refcount_is_zero(
2282			    &buf->b_hdr->b_l1hdr.b_refcnt));
2283			ASSERT(state != arc_anon && state != arc_l2c_only);
2284
2285			ASSERT3U(*cnt, >=, size);
2286			atomic_add_64(cnt, -size);
2287		}
2288
2289		(void) refcount_remove_many(&state->arcs_size, size, buf);
2290		buf->b_data = NULL;
2291
2292		/*
2293		 * If we're destroying a duplicate buffer make sure
2294		 * that the appropriate statistics are updated.
2295		 */
2296		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2297		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2298			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2299			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2300		}
2301		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2302		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2303	}
2304
2305	/* only remove the buf if requested */
2306	if (!remove)
2307		return;
2308
2309	/* remove the buf from the hdr list */
2310	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2311	    bufp = &(*bufp)->b_next)
2312		continue;
2313	*bufp = buf->b_next;
2314	buf->b_next = NULL;
2315
2316	ASSERT(buf->b_efunc == NULL);
2317
2318	/* clean up the buf */
2319	buf->b_hdr = NULL;
2320	kmem_cache_free(buf_cache, buf);
2321}
2322
2323static void
2324arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2325{
2326	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2327	l2arc_dev_t *dev = l2hdr->b_dev;
2328
2329	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2330	ASSERT(HDR_HAS_L2HDR(hdr));
2331
2332	list_remove(&dev->l2ad_buflist, hdr);
2333
2334	/*
2335	 * We don't want to leak the b_tmp_cdata buffer that was
2336	 * allocated in l2arc_write_buffers()
2337	 */
2338	arc_buf_l2_cdata_free(hdr);
2339
2340	/*
2341	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2342	 * this header is being processed by l2arc_write_buffers() (i.e.
2343	 * it's in the first stage of l2arc_write_buffers()).
2344	 * Re-affirming that truth here, just to serve as a reminder. If
2345	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2346	 * may not have its HDR_L2_WRITING flag set. (the write may have
2347	 * completed, in which case HDR_L2_WRITING will be false and the
2348	 * b_daddr field will point to the address of the buffer on disk).
2349	 */
2350	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2351
2352	/*
2353	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2354	 * l2arc_write_buffers(). Since we've just removed this header
2355	 * from the l2arc buffer list, this header will never reach the
2356	 * second stage of l2arc_write_buffers(), which increments the
2357	 * accounting stats for this header. Thus, we must be careful
2358	 * not to decrement them for this header either.
2359	 */
2360	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2361		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2362		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2363
2364		vdev_space_update(dev->l2ad_vdev,
2365		    -l2hdr->b_asize, 0, 0);
2366
2367		(void) refcount_remove_many(&dev->l2ad_alloc,
2368		    l2hdr->b_asize, hdr);
2369	}
2370
2371	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2372}
2373
2374static void
2375arc_hdr_destroy(arc_buf_hdr_t *hdr)
2376{
2377	if (HDR_HAS_L1HDR(hdr)) {
2378		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2379		    hdr->b_l1hdr.b_datacnt > 0);
2380		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2381		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2382	}
2383	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2384	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2385
2386	if (HDR_HAS_L2HDR(hdr)) {
2387		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2388		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2389
2390		if (!buflist_held)
2391			mutex_enter(&dev->l2ad_mtx);
2392
2393		/*
2394		 * Even though we checked this conditional above, we
2395		 * need to check this again now that we have the
2396		 * l2ad_mtx. This is because we could be racing with
2397		 * another thread calling l2arc_evict() which might have
2398		 * destroyed this header's L2 portion as we were waiting
2399		 * to acquire the l2ad_mtx. If that happens, we don't
2400		 * want to re-destroy the header's L2 portion.
2401		 */
2402		if (HDR_HAS_L2HDR(hdr)) {
2403			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
2404				trim_map_free(dev->l2ad_vdev,
2405				    hdr->b_l2hdr.b_daddr,
2406				    hdr->b_l2hdr.b_asize, 0);
2407			arc_hdr_l2hdr_destroy(hdr);
2408		}
2409
2410		if (!buflist_held)
2411			mutex_exit(&dev->l2ad_mtx);
2412	}
2413
2414	if (!BUF_EMPTY(hdr))
2415		buf_discard_identity(hdr);
2416	if (hdr->b_freeze_cksum != NULL) {
2417		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2418		hdr->b_freeze_cksum = NULL;
2419	}
2420
2421	if (HDR_HAS_L1HDR(hdr)) {
2422		while (hdr->b_l1hdr.b_buf) {
2423			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2424
2425			if (buf->b_efunc != NULL) {
2426				mutex_enter(&arc_user_evicts_lock);
2427				mutex_enter(&buf->b_evict_lock);
2428				ASSERT(buf->b_hdr != NULL);
2429				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2430				hdr->b_l1hdr.b_buf = buf->b_next;
2431				buf->b_hdr = &arc_eviction_hdr;
2432				buf->b_next = arc_eviction_list;
2433				arc_eviction_list = buf;
2434				mutex_exit(&buf->b_evict_lock);
2435				cv_signal(&arc_user_evicts_cv);
2436				mutex_exit(&arc_user_evicts_lock);
2437			} else {
2438				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2439			}
2440		}
2441#ifdef ZFS_DEBUG
2442		if (hdr->b_l1hdr.b_thawed != NULL) {
2443			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2444			hdr->b_l1hdr.b_thawed = NULL;
2445		}
2446#endif
2447	}
2448
2449	ASSERT3P(hdr->b_hash_next, ==, NULL);
2450	if (HDR_HAS_L1HDR(hdr)) {
2451		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2452		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2453		kmem_cache_free(hdr_full_cache, hdr);
2454	} else {
2455		kmem_cache_free(hdr_l2only_cache, hdr);
2456	}
2457}
2458
2459void
2460arc_buf_free(arc_buf_t *buf, void *tag)
2461{
2462	arc_buf_hdr_t *hdr = buf->b_hdr;
2463	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2464
2465	ASSERT(buf->b_efunc == NULL);
2466	ASSERT(buf->b_data != NULL);
2467
2468	if (hashed) {
2469		kmutex_t *hash_lock = HDR_LOCK(hdr);
2470
2471		mutex_enter(hash_lock);
2472		hdr = buf->b_hdr;
2473		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2474
2475		(void) remove_reference(hdr, hash_lock, tag);
2476		if (hdr->b_l1hdr.b_datacnt > 1) {
2477			arc_buf_destroy(buf, TRUE);
2478		} else {
2479			ASSERT(buf == hdr->b_l1hdr.b_buf);
2480			ASSERT(buf->b_efunc == NULL);
2481			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2482		}
2483		mutex_exit(hash_lock);
2484	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2485		int destroy_hdr;
2486		/*
2487		 * We are in the middle of an async write.  Don't destroy
2488		 * this buffer unless the write completes before we finish
2489		 * decrementing the reference count.
2490		 */
2491		mutex_enter(&arc_user_evicts_lock);
2492		(void) remove_reference(hdr, NULL, tag);
2493		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2494		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2495		mutex_exit(&arc_user_evicts_lock);
2496		if (destroy_hdr)
2497			arc_hdr_destroy(hdr);
2498	} else {
2499		if (remove_reference(hdr, NULL, tag) > 0)
2500			arc_buf_destroy(buf, TRUE);
2501		else
2502			arc_hdr_destroy(hdr);
2503	}
2504}
2505
2506boolean_t
2507arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2508{
2509	arc_buf_hdr_t *hdr = buf->b_hdr;
2510	kmutex_t *hash_lock = HDR_LOCK(hdr);
2511	boolean_t no_callback = (buf->b_efunc == NULL);
2512
2513	if (hdr->b_l1hdr.b_state == arc_anon) {
2514		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2515		arc_buf_free(buf, tag);
2516		return (no_callback);
2517	}
2518
2519	mutex_enter(hash_lock);
2520	hdr = buf->b_hdr;
2521	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2522	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2523	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2524	ASSERT(buf->b_data != NULL);
2525
2526	(void) remove_reference(hdr, hash_lock, tag);
2527	if (hdr->b_l1hdr.b_datacnt > 1) {
2528		if (no_callback)
2529			arc_buf_destroy(buf, TRUE);
2530	} else if (no_callback) {
2531		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2532		ASSERT(buf->b_efunc == NULL);
2533		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2534	}
2535	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2536	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2537	mutex_exit(hash_lock);
2538	return (no_callback);
2539}
2540
2541int32_t
2542arc_buf_size(arc_buf_t *buf)
2543{
2544	return (buf->b_hdr->b_size);
2545}
2546
2547/*
2548 * Called from the DMU to determine if the current buffer should be
2549 * evicted. In order to ensure proper locking, the eviction must be initiated
2550 * from the DMU. Return true if the buffer is associated with user data and
2551 * duplicate buffers still exist.
2552 */
2553boolean_t
2554arc_buf_eviction_needed(arc_buf_t *buf)
2555{
2556	arc_buf_hdr_t *hdr;
2557	boolean_t evict_needed = B_FALSE;
2558
2559	if (zfs_disable_dup_eviction)
2560		return (B_FALSE);
2561
2562	mutex_enter(&buf->b_evict_lock);
2563	hdr = buf->b_hdr;
2564	if (hdr == NULL) {
2565		/*
2566		 * We are in arc_do_user_evicts(); let that function
2567		 * perform the eviction.
2568		 */
2569		ASSERT(buf->b_data == NULL);
2570		mutex_exit(&buf->b_evict_lock);
2571		return (B_FALSE);
2572	} else if (buf->b_data == NULL) {
2573		/*
2574		 * We have already been added to the arc eviction list;
2575		 * recommend eviction.
2576		 */
2577		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2578		mutex_exit(&buf->b_evict_lock);
2579		return (B_TRUE);
2580	}
2581
2582	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2583		evict_needed = B_TRUE;
2584
2585	mutex_exit(&buf->b_evict_lock);
2586	return (evict_needed);
2587}
2588
2589/*
2590 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2591 * state of the header is dependent on it's state prior to entering this
2592 * function. The following transitions are possible:
2593 *
2594 *    - arc_mru -> arc_mru_ghost
2595 *    - arc_mfu -> arc_mfu_ghost
2596 *    - arc_mru_ghost -> arc_l2c_only
2597 *    - arc_mru_ghost -> deleted
2598 *    - arc_mfu_ghost -> arc_l2c_only
2599 *    - arc_mfu_ghost -> deleted
2600 */
2601static int64_t
2602arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2603{
2604	arc_state_t *evicted_state, *state;
2605	int64_t bytes_evicted = 0;
2606
2607	ASSERT(MUTEX_HELD(hash_lock));
2608	ASSERT(HDR_HAS_L1HDR(hdr));
2609
2610	state = hdr->b_l1hdr.b_state;
2611	if (GHOST_STATE(state)) {
2612		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2613		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2614
2615		/*
2616		 * l2arc_write_buffers() relies on a header's L1 portion
2617		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2618		 * Thus, we cannot push a header onto the arc_l2c_only
2619		 * state (removing it's L1 piece) until the header is
2620		 * done being written to the l2arc.
2621		 */
2622		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2623			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2624			return (bytes_evicted);
2625		}
2626
2627		ARCSTAT_BUMP(arcstat_deleted);
2628		bytes_evicted += hdr->b_size;
2629
2630		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2631
2632		if (HDR_HAS_L2HDR(hdr)) {
2633			/*
2634			 * This buffer is cached on the 2nd Level ARC;
2635			 * don't destroy the header.
2636			 */
2637			arc_change_state(arc_l2c_only, hdr, hash_lock);
2638			/*
2639			 * dropping from L1+L2 cached to L2-only,
2640			 * realloc to remove the L1 header.
2641			 */
2642			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2643			    hdr_l2only_cache);
2644		} else {
2645			arc_change_state(arc_anon, hdr, hash_lock);
2646			arc_hdr_destroy(hdr);
2647		}
2648		return (bytes_evicted);
2649	}
2650
2651	ASSERT(state == arc_mru || state == arc_mfu);
2652	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2653
2654	/* prefetch buffers have a minimum lifespan */
2655	if (HDR_IO_IN_PROGRESS(hdr) ||
2656	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2657	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2658	    arc_min_prefetch_lifespan)) {
2659		ARCSTAT_BUMP(arcstat_evict_skip);
2660		return (bytes_evicted);
2661	}
2662
2663	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2664	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2665	while (hdr->b_l1hdr.b_buf) {
2666		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2667		if (!mutex_tryenter(&buf->b_evict_lock)) {
2668			ARCSTAT_BUMP(arcstat_mutex_miss);
2669			break;
2670		}
2671		if (buf->b_data != NULL)
2672			bytes_evicted += hdr->b_size;
2673		if (buf->b_efunc != NULL) {
2674			mutex_enter(&arc_user_evicts_lock);
2675			arc_buf_destroy(buf, FALSE);
2676			hdr->b_l1hdr.b_buf = buf->b_next;
2677			buf->b_hdr = &arc_eviction_hdr;
2678			buf->b_next = arc_eviction_list;
2679			arc_eviction_list = buf;
2680			cv_signal(&arc_user_evicts_cv);
2681			mutex_exit(&arc_user_evicts_lock);
2682			mutex_exit(&buf->b_evict_lock);
2683		} else {
2684			mutex_exit(&buf->b_evict_lock);
2685			arc_buf_destroy(buf, TRUE);
2686		}
2687	}
2688
2689	if (HDR_HAS_L2HDR(hdr)) {
2690		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2691	} else {
2692		if (l2arc_write_eligible(hdr->b_spa, hdr))
2693			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2694		else
2695			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2696	}
2697
2698	if (hdr->b_l1hdr.b_datacnt == 0) {
2699		arc_change_state(evicted_state, hdr, hash_lock);
2700		ASSERT(HDR_IN_HASH_TABLE(hdr));
2701		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2702		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2703		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2704	}
2705
2706	return (bytes_evicted);
2707}
2708
2709static uint64_t
2710arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2711    uint64_t spa, int64_t bytes)
2712{
2713	multilist_sublist_t *mls;
2714	uint64_t bytes_evicted = 0;
2715	arc_buf_hdr_t *hdr;
2716	kmutex_t *hash_lock;
2717	int evict_count = 0;
2718
2719	ASSERT3P(marker, !=, NULL);
2720	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2721
2722	mls = multilist_sublist_lock(ml, idx);
2723
2724	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2725	    hdr = multilist_sublist_prev(mls, marker)) {
2726		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2727		    (evict_count >= zfs_arc_evict_batch_limit))
2728			break;
2729
2730		/*
2731		 * To keep our iteration location, move the marker
2732		 * forward. Since we're not holding hdr's hash lock, we
2733		 * must be very careful and not remove 'hdr' from the
2734		 * sublist. Otherwise, other consumers might mistake the
2735		 * 'hdr' as not being on a sublist when they call the
2736		 * multilist_link_active() function (they all rely on
2737		 * the hash lock protecting concurrent insertions and
2738		 * removals). multilist_sublist_move_forward() was
2739		 * specifically implemented to ensure this is the case
2740		 * (only 'marker' will be removed and re-inserted).
2741		 */
2742		multilist_sublist_move_forward(mls, marker);
2743
2744		/*
2745		 * The only case where the b_spa field should ever be
2746		 * zero, is the marker headers inserted by
2747		 * arc_evict_state(). It's possible for multiple threads
2748		 * to be calling arc_evict_state() concurrently (e.g.
2749		 * dsl_pool_close() and zio_inject_fault()), so we must
2750		 * skip any markers we see from these other threads.
2751		 */
2752		if (hdr->b_spa == 0)
2753			continue;
2754
2755		/* we're only interested in evicting buffers of a certain spa */
2756		if (spa != 0 && hdr->b_spa != spa) {
2757			ARCSTAT_BUMP(arcstat_evict_skip);
2758			continue;
2759		}
2760
2761		hash_lock = HDR_LOCK(hdr);
2762
2763		/*
2764		 * We aren't calling this function from any code path
2765		 * that would already be holding a hash lock, so we're
2766		 * asserting on this assumption to be defensive in case
2767		 * this ever changes. Without this check, it would be
2768		 * possible to incorrectly increment arcstat_mutex_miss
2769		 * below (e.g. if the code changed such that we called
2770		 * this function with a hash lock held).
2771		 */
2772		ASSERT(!MUTEX_HELD(hash_lock));
2773
2774		if (mutex_tryenter(hash_lock)) {
2775			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2776			mutex_exit(hash_lock);
2777
2778			bytes_evicted += evicted;
2779
2780			/*
2781			 * If evicted is zero, arc_evict_hdr() must have
2782			 * decided to skip this header, don't increment
2783			 * evict_count in this case.
2784			 */
2785			if (evicted != 0)
2786				evict_count++;
2787
2788			/*
2789			 * If arc_size isn't overflowing, signal any
2790			 * threads that might happen to be waiting.
2791			 *
2792			 * For each header evicted, we wake up a single
2793			 * thread. If we used cv_broadcast, we could
2794			 * wake up "too many" threads causing arc_size
2795			 * to significantly overflow arc_c; since
2796			 * arc_get_data_buf() doesn't check for overflow
2797			 * when it's woken up (it doesn't because it's
2798			 * possible for the ARC to be overflowing while
2799			 * full of un-evictable buffers, and the
2800			 * function should proceed in this case).
2801			 *
2802			 * If threads are left sleeping, due to not
2803			 * using cv_broadcast, they will be woken up
2804			 * just before arc_reclaim_thread() sleeps.
2805			 */
2806			mutex_enter(&arc_reclaim_lock);
2807			if (!arc_is_overflowing())
2808				cv_signal(&arc_reclaim_waiters_cv);
2809			mutex_exit(&arc_reclaim_lock);
2810		} else {
2811			ARCSTAT_BUMP(arcstat_mutex_miss);
2812		}
2813	}
2814
2815	multilist_sublist_unlock(mls);
2816
2817	return (bytes_evicted);
2818}
2819
2820/*
2821 * Evict buffers from the given arc state, until we've removed the
2822 * specified number of bytes. Move the removed buffers to the
2823 * appropriate evict state.
2824 *
2825 * This function makes a "best effort". It skips over any buffers
2826 * it can't get a hash_lock on, and so, may not catch all candidates.
2827 * It may also return without evicting as much space as requested.
2828 *
2829 * If bytes is specified using the special value ARC_EVICT_ALL, this
2830 * will evict all available (i.e. unlocked and evictable) buffers from
2831 * the given arc state; which is used by arc_flush().
2832 */
2833static uint64_t
2834arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2835    arc_buf_contents_t type)
2836{
2837	uint64_t total_evicted = 0;
2838	multilist_t *ml = &state->arcs_list[type];
2839	int num_sublists;
2840	arc_buf_hdr_t **markers;
2841
2842	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2843
2844	num_sublists = multilist_get_num_sublists(ml);
2845
2846	/*
2847	 * If we've tried to evict from each sublist, made some
2848	 * progress, but still have not hit the target number of bytes
2849	 * to evict, we want to keep trying. The markers allow us to
2850	 * pick up where we left off for each individual sublist, rather
2851	 * than starting from the tail each time.
2852	 */
2853	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2854	for (int i = 0; i < num_sublists; i++) {
2855		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2856
2857		/*
2858		 * A b_spa of 0 is used to indicate that this header is
2859		 * a marker. This fact is used in arc_adjust_type() and
2860		 * arc_evict_state_impl().
2861		 */
2862		markers[i]->b_spa = 0;
2863
2864		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2865		multilist_sublist_insert_tail(mls, markers[i]);
2866		multilist_sublist_unlock(mls);
2867	}
2868
2869	/*
2870	 * While we haven't hit our target number of bytes to evict, or
2871	 * we're evicting all available buffers.
2872	 */
2873	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2874		/*
2875		 * Start eviction using a randomly selected sublist,
2876		 * this is to try and evenly balance eviction across all
2877		 * sublists. Always starting at the same sublist
2878		 * (e.g. index 0) would cause evictions to favor certain
2879		 * sublists over others.
2880		 */
2881		int sublist_idx = multilist_get_random_index(ml);
2882		uint64_t scan_evicted = 0;
2883
2884		for (int i = 0; i < num_sublists; i++) {
2885			uint64_t bytes_remaining;
2886			uint64_t bytes_evicted;
2887
2888			if (bytes == ARC_EVICT_ALL)
2889				bytes_remaining = ARC_EVICT_ALL;
2890			else if (total_evicted < bytes)
2891				bytes_remaining = bytes - total_evicted;
2892			else
2893				break;
2894
2895			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2896			    markers[sublist_idx], spa, bytes_remaining);
2897
2898			scan_evicted += bytes_evicted;
2899			total_evicted += bytes_evicted;
2900
2901			/* we've reached the end, wrap to the beginning */
2902			if (++sublist_idx >= num_sublists)
2903				sublist_idx = 0;
2904		}
2905
2906		/*
2907		 * If we didn't evict anything during this scan, we have
2908		 * no reason to believe we'll evict more during another
2909		 * scan, so break the loop.
2910		 */
2911		if (scan_evicted == 0) {
2912			/* This isn't possible, let's make that obvious */
2913			ASSERT3S(bytes, !=, 0);
2914
2915			/*
2916			 * When bytes is ARC_EVICT_ALL, the only way to
2917			 * break the loop is when scan_evicted is zero.
2918			 * In that case, we actually have evicted enough,
2919			 * so we don't want to increment the kstat.
2920			 */
2921			if (bytes != ARC_EVICT_ALL) {
2922				ASSERT3S(total_evicted, <, bytes);
2923				ARCSTAT_BUMP(arcstat_evict_not_enough);
2924			}
2925
2926			break;
2927		}
2928	}
2929
2930	for (int i = 0; i < num_sublists; i++) {
2931		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2932		multilist_sublist_remove(mls, markers[i]);
2933		multilist_sublist_unlock(mls);
2934
2935		kmem_cache_free(hdr_full_cache, markers[i]);
2936	}
2937	kmem_free(markers, sizeof (*markers) * num_sublists);
2938
2939	return (total_evicted);
2940}
2941
2942/*
2943 * Flush all "evictable" data of the given type from the arc state
2944 * specified. This will not evict any "active" buffers (i.e. referenced).
2945 *
2946 * When 'retry' is set to FALSE, the function will make a single pass
2947 * over the state and evict any buffers that it can. Since it doesn't
2948 * continually retry the eviction, it might end up leaving some buffers
2949 * in the ARC due to lock misses.
2950 *
2951 * When 'retry' is set to TRUE, the function will continually retry the
2952 * eviction until *all* evictable buffers have been removed from the
2953 * state. As a result, if concurrent insertions into the state are
2954 * allowed (e.g. if the ARC isn't shutting down), this function might
2955 * wind up in an infinite loop, continually trying to evict buffers.
2956 */
2957static uint64_t
2958arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2959    boolean_t retry)
2960{
2961	uint64_t evicted = 0;
2962
2963	while (state->arcs_lsize[type] != 0) {
2964		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2965
2966		if (!retry)
2967			break;
2968	}
2969
2970	return (evicted);
2971}
2972
2973/*
2974 * Evict the specified number of bytes from the state specified,
2975 * restricting eviction to the spa and type given. This function
2976 * prevents us from trying to evict more from a state's list than
2977 * is "evictable", and to skip evicting altogether when passed a
2978 * negative value for "bytes". In contrast, arc_evict_state() will
2979 * evict everything it can, when passed a negative value for "bytes".
2980 */
2981static uint64_t
2982arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2983    arc_buf_contents_t type)
2984{
2985	int64_t delta;
2986
2987	if (bytes > 0 && state->arcs_lsize[type] > 0) {
2988		delta = MIN(state->arcs_lsize[type], bytes);
2989		return (arc_evict_state(state, spa, delta, type));
2990	}
2991
2992	return (0);
2993}
2994
2995/*
2996 * Evict metadata buffers from the cache, such that arc_meta_used is
2997 * capped by the arc_meta_limit tunable.
2998 */
2999static uint64_t
3000arc_adjust_meta(void)
3001{
3002	uint64_t total_evicted = 0;
3003	int64_t target;
3004
3005	/*
3006	 * If we're over the meta limit, we want to evict enough
3007	 * metadata to get back under the meta limit. We don't want to
3008	 * evict so much that we drop the MRU below arc_p, though. If
3009	 * we're over the meta limit more than we're over arc_p, we
3010	 * evict some from the MRU here, and some from the MFU below.
3011	 */
3012	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3013	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3014	    refcount_count(&arc_mru->arcs_size) - arc_p));
3015
3016	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3017
3018	/*
3019	 * Similar to the above, we want to evict enough bytes to get us
3020	 * below the meta limit, but not so much as to drop us below the
3021	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3022	 */
3023	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3024	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3025
3026	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3027
3028	return (total_evicted);
3029}
3030
3031/*
3032 * Return the type of the oldest buffer in the given arc state
3033 *
3034 * This function will select a random sublist of type ARC_BUFC_DATA and
3035 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3036 * is compared, and the type which contains the "older" buffer will be
3037 * returned.
3038 */
3039static arc_buf_contents_t
3040arc_adjust_type(arc_state_t *state)
3041{
3042	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3043	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3044	int data_idx = multilist_get_random_index(data_ml);
3045	int meta_idx = multilist_get_random_index(meta_ml);
3046	multilist_sublist_t *data_mls;
3047	multilist_sublist_t *meta_mls;
3048	arc_buf_contents_t type;
3049	arc_buf_hdr_t *data_hdr;
3050	arc_buf_hdr_t *meta_hdr;
3051
3052	/*
3053	 * We keep the sublist lock until we're finished, to prevent
3054	 * the headers from being destroyed via arc_evict_state().
3055	 */
3056	data_mls = multilist_sublist_lock(data_ml, data_idx);
3057	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3058
3059	/*
3060	 * These two loops are to ensure we skip any markers that
3061	 * might be at the tail of the lists due to arc_evict_state().
3062	 */
3063
3064	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3065	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3066		if (data_hdr->b_spa != 0)
3067			break;
3068	}
3069
3070	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3071	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3072		if (meta_hdr->b_spa != 0)
3073			break;
3074	}
3075
3076	if (data_hdr == NULL && meta_hdr == NULL) {
3077		type = ARC_BUFC_DATA;
3078	} else if (data_hdr == NULL) {
3079		ASSERT3P(meta_hdr, !=, NULL);
3080		type = ARC_BUFC_METADATA;
3081	} else if (meta_hdr == NULL) {
3082		ASSERT3P(data_hdr, !=, NULL);
3083		type = ARC_BUFC_DATA;
3084	} else {
3085		ASSERT3P(data_hdr, !=, NULL);
3086		ASSERT3P(meta_hdr, !=, NULL);
3087
3088		/* The headers can't be on the sublist without an L1 header */
3089		ASSERT(HDR_HAS_L1HDR(data_hdr));
3090		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3091
3092		if (data_hdr->b_l1hdr.b_arc_access <
3093		    meta_hdr->b_l1hdr.b_arc_access) {
3094			type = ARC_BUFC_DATA;
3095		} else {
3096			type = ARC_BUFC_METADATA;
3097		}
3098	}
3099
3100	multilist_sublist_unlock(meta_mls);
3101	multilist_sublist_unlock(data_mls);
3102
3103	return (type);
3104}
3105
3106/*
3107 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3108 */
3109static uint64_t
3110arc_adjust(void)
3111{
3112	uint64_t total_evicted = 0;
3113	uint64_t bytes;
3114	int64_t target;
3115
3116	/*
3117	 * If we're over arc_meta_limit, we want to correct that before
3118	 * potentially evicting data buffers below.
3119	 */
3120	total_evicted += arc_adjust_meta();
3121
3122	/*
3123	 * Adjust MRU size
3124	 *
3125	 * If we're over the target cache size, we want to evict enough
3126	 * from the list to get back to our target size. We don't want
3127	 * to evict too much from the MRU, such that it drops below
3128	 * arc_p. So, if we're over our target cache size more than
3129	 * the MRU is over arc_p, we'll evict enough to get back to
3130	 * arc_p here, and then evict more from the MFU below.
3131	 */
3132	target = MIN((int64_t)(arc_size - arc_c),
3133	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3134	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3135
3136	/*
3137	 * If we're below arc_meta_min, always prefer to evict data.
3138	 * Otherwise, try to satisfy the requested number of bytes to
3139	 * evict from the type which contains older buffers; in an
3140	 * effort to keep newer buffers in the cache regardless of their
3141	 * type. If we cannot satisfy the number of bytes from this
3142	 * type, spill over into the next type.
3143	 */
3144	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3145	    arc_meta_used > arc_meta_min) {
3146		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3147		total_evicted += bytes;
3148
3149		/*
3150		 * If we couldn't evict our target number of bytes from
3151		 * metadata, we try to get the rest from data.
3152		 */
3153		target -= bytes;
3154
3155		total_evicted +=
3156		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3157	} else {
3158		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3159		total_evicted += bytes;
3160
3161		/*
3162		 * If we couldn't evict our target number of bytes from
3163		 * data, we try to get the rest from metadata.
3164		 */
3165		target -= bytes;
3166
3167		total_evicted +=
3168		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3169	}
3170
3171	/*
3172	 * Adjust MFU size
3173	 *
3174	 * Now that we've tried to evict enough from the MRU to get its
3175	 * size back to arc_p, if we're still above the target cache
3176	 * size, we evict the rest from the MFU.
3177	 */
3178	target = arc_size - arc_c;
3179
3180	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3181	    arc_meta_used > arc_meta_min) {
3182		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3183		total_evicted += bytes;
3184
3185		/*
3186		 * If we couldn't evict our target number of bytes from
3187		 * metadata, we try to get the rest from data.
3188		 */
3189		target -= bytes;
3190
3191		total_evicted +=
3192		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3193	} else {
3194		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3195		total_evicted += bytes;
3196
3197		/*
3198		 * If we couldn't evict our target number of bytes from
3199		 * data, we try to get the rest from data.
3200		 */
3201		target -= bytes;
3202
3203		total_evicted +=
3204		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3205	}
3206
3207	/*
3208	 * Adjust ghost lists
3209	 *
3210	 * In addition to the above, the ARC also defines target values
3211	 * for the ghost lists. The sum of the mru list and mru ghost
3212	 * list should never exceed the target size of the cache, and
3213	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3214	 * ghost list should never exceed twice the target size of the
3215	 * cache. The following logic enforces these limits on the ghost
3216	 * caches, and evicts from them as needed.
3217	 */
3218	target = refcount_count(&arc_mru->arcs_size) +
3219	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3220
3221	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3222	total_evicted += bytes;
3223
3224	target -= bytes;
3225
3226	total_evicted +=
3227	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3228
3229	/*
3230	 * We assume the sum of the mru list and mfu list is less than
3231	 * or equal to arc_c (we enforced this above), which means we
3232	 * can use the simpler of the two equations below:
3233	 *
3234	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3235	 *		    mru ghost + mfu ghost <= arc_c
3236	 */
3237	target = refcount_count(&arc_mru_ghost->arcs_size) +
3238	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3239
3240	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3241	total_evicted += bytes;
3242
3243	target -= bytes;
3244
3245	total_evicted +=
3246	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3247
3248	return (total_evicted);
3249}
3250
3251static void
3252arc_do_user_evicts(void)
3253{
3254	mutex_enter(&arc_user_evicts_lock);
3255	while (arc_eviction_list != NULL) {
3256		arc_buf_t *buf = arc_eviction_list;
3257		arc_eviction_list = buf->b_next;
3258		mutex_enter(&buf->b_evict_lock);
3259		buf->b_hdr = NULL;
3260		mutex_exit(&buf->b_evict_lock);
3261		mutex_exit(&arc_user_evicts_lock);
3262
3263		if (buf->b_efunc != NULL)
3264			VERIFY0(buf->b_efunc(buf->b_private));
3265
3266		buf->b_efunc = NULL;
3267		buf->b_private = NULL;
3268		kmem_cache_free(buf_cache, buf);
3269		mutex_enter(&arc_user_evicts_lock);
3270	}
3271	mutex_exit(&arc_user_evicts_lock);
3272}
3273
3274void
3275arc_flush(spa_t *spa, boolean_t retry)
3276{
3277	uint64_t guid = 0;
3278
3279	/*
3280	 * If retry is TRUE, a spa must not be specified since we have
3281	 * no good way to determine if all of a spa's buffers have been
3282	 * evicted from an arc state.
3283	 */
3284	ASSERT(!retry || spa == 0);
3285
3286	if (spa != NULL)
3287		guid = spa_load_guid(spa);
3288
3289	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3290	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3291
3292	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3293	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3294
3295	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3296	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3297
3298	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3299	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3300
3301	arc_do_user_evicts();
3302	ASSERT(spa || arc_eviction_list == NULL);
3303}
3304
3305void
3306arc_shrink(int64_t to_free)
3307{
3308	if (arc_c > arc_c_min) {
3309		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3310			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3311		if (arc_c > arc_c_min + to_free)
3312			atomic_add_64(&arc_c, -to_free);
3313		else
3314			arc_c = arc_c_min;
3315
3316		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3317		if (arc_c > arc_size)
3318			arc_c = MAX(arc_size, arc_c_min);
3319		if (arc_p > arc_c)
3320			arc_p = (arc_c >> 1);
3321
3322		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3323			arc_p);
3324
3325		ASSERT(arc_c >= arc_c_min);
3326		ASSERT((int64_t)arc_p >= 0);
3327	}
3328
3329	if (arc_size > arc_c) {
3330		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3331			uint64_t, arc_c);
3332		(void) arc_adjust();
3333	}
3334}
3335
3336static long needfree = 0;
3337
3338typedef enum free_memory_reason_t {
3339	FMR_UNKNOWN,
3340	FMR_NEEDFREE,
3341	FMR_LOTSFREE,
3342	FMR_SWAPFS_MINFREE,
3343	FMR_PAGES_PP_MAXIMUM,
3344	FMR_HEAP_ARENA,
3345	FMR_ZIO_ARENA,
3346	FMR_ZIO_FRAG,
3347} free_memory_reason_t;
3348
3349int64_t last_free_memory;
3350free_memory_reason_t last_free_reason;
3351
3352/*
3353 * Additional reserve of pages for pp_reserve.
3354 */
3355int64_t arc_pages_pp_reserve = 64;
3356
3357/*
3358 * Additional reserve of pages for swapfs.
3359 */
3360int64_t arc_swapfs_reserve = 64;
3361
3362/*
3363 * Return the amount of memory that can be consumed before reclaim will be
3364 * needed.  Positive if there is sufficient free memory, negative indicates
3365 * the amount of memory that needs to be freed up.
3366 */
3367static int64_t
3368arc_available_memory(void)
3369{
3370	int64_t lowest = INT64_MAX;
3371	int64_t n;
3372	free_memory_reason_t r = FMR_UNKNOWN;
3373
3374#ifdef _KERNEL
3375	if (needfree > 0) {
3376		n = PAGESIZE * (-needfree);
3377		if (n < lowest) {
3378			lowest = n;
3379			r = FMR_NEEDFREE;
3380		}
3381	}
3382
3383	/*
3384	 * Cooperate with pagedaemon when it's time for it to scan
3385	 * and reclaim some pages.
3386	 */
3387	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3388	if (n < lowest) {
3389		lowest = n;
3390		r = FMR_LOTSFREE;
3391	}
3392
3393#ifdef illumos
3394	/*
3395	 * check that we're out of range of the pageout scanner.  It starts to
3396	 * schedule paging if freemem is less than lotsfree and needfree.
3397	 * lotsfree is the high-water mark for pageout, and needfree is the
3398	 * number of needed free pages.  We add extra pages here to make sure
3399	 * the scanner doesn't start up while we're freeing memory.
3400	 */
3401	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3402	if (n < lowest) {
3403		lowest = n;
3404		r = FMR_LOTSFREE;
3405	}
3406
3407	/*
3408	 * check to make sure that swapfs has enough space so that anon
3409	 * reservations can still succeed. anon_resvmem() checks that the
3410	 * availrmem is greater than swapfs_minfree, and the number of reserved
3411	 * swap pages.  We also add a bit of extra here just to prevent
3412	 * circumstances from getting really dire.
3413	 */
3414	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3415	    desfree - arc_swapfs_reserve);
3416	if (n < lowest) {
3417		lowest = n;
3418		r = FMR_SWAPFS_MINFREE;
3419	}
3420
3421
3422	/*
3423	 * Check that we have enough availrmem that memory locking (e.g., via
3424	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3425	 * stores the number of pages that cannot be locked; when availrmem
3426	 * drops below pages_pp_maximum, page locking mechanisms such as
3427	 * page_pp_lock() will fail.)
3428	 */
3429	n = PAGESIZE * (availrmem - pages_pp_maximum -
3430	    arc_pages_pp_reserve);
3431	if (n < lowest) {
3432		lowest = n;
3433		r = FMR_PAGES_PP_MAXIMUM;
3434	}
3435
3436#endif	/* illumos */
3437#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3438	/*
3439	 * If we're on an i386 platform, it's possible that we'll exhaust the
3440	 * kernel heap space before we ever run out of available physical
3441	 * memory.  Most checks of the size of the heap_area compare against
3442	 * tune.t_minarmem, which is the minimum available real memory that we
3443	 * can have in the system.  However, this is generally fixed at 25 pages
3444	 * which is so low that it's useless.  In this comparison, we seek to
3445	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3446	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3447	 * free)
3448	 */
3449	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3450	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3451	if (n < lowest) {
3452		lowest = n;
3453		r = FMR_HEAP_ARENA;
3454	}
3455#define	zio_arena	NULL
3456#else
3457#define	zio_arena	heap_arena
3458#endif
3459
3460	/*
3461	 * If zio data pages are being allocated out of a separate heap segment,
3462	 * then enforce that the size of available vmem for this arena remains
3463	 * above about 1/16th free.
3464	 *
3465	 * Note: The 1/16th arena free requirement was put in place
3466	 * to aggressively evict memory from the arc in order to avoid
3467	 * memory fragmentation issues.
3468	 */
3469	if (zio_arena != NULL) {
3470		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3471		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3472		if (n < lowest) {
3473			lowest = n;
3474			r = FMR_ZIO_ARENA;
3475		}
3476	}
3477
3478	/*
3479	 * Above limits know nothing about real level of KVA fragmentation.
3480	 * Start aggressive reclamation if too little sequential KVA left.
3481	 */
3482	if (lowest > 0) {
3483		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3484		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3485		    INT64_MAX;
3486		if (n < lowest) {
3487			lowest = n;
3488			r = FMR_ZIO_FRAG;
3489		}
3490	}
3491
3492#else	/* _KERNEL */
3493	/* Every 100 calls, free a small amount */
3494	if (spa_get_random(100) == 0)
3495		lowest = -1024;
3496#endif	/* _KERNEL */
3497
3498	last_free_memory = lowest;
3499	last_free_reason = r;
3500	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3501	return (lowest);
3502}
3503
3504
3505/*
3506 * Determine if the system is under memory pressure and is asking
3507 * to reclaim memory. A return value of TRUE indicates that the system
3508 * is under memory pressure and that the arc should adjust accordingly.
3509 */
3510static boolean_t
3511arc_reclaim_needed(void)
3512{
3513	return (arc_available_memory() < 0);
3514}
3515
3516extern kmem_cache_t	*zio_buf_cache[];
3517extern kmem_cache_t	*zio_data_buf_cache[];
3518extern kmem_cache_t	*range_seg_cache;
3519
3520static __noinline void
3521arc_kmem_reap_now(void)
3522{
3523	size_t			i;
3524	kmem_cache_t		*prev_cache = NULL;
3525	kmem_cache_t		*prev_data_cache = NULL;
3526
3527	DTRACE_PROBE(arc__kmem_reap_start);
3528#ifdef _KERNEL
3529	if (arc_meta_used >= arc_meta_limit) {
3530		/*
3531		 * We are exceeding our meta-data cache limit.
3532		 * Purge some DNLC entries to release holds on meta-data.
3533		 */
3534		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3535	}
3536#if defined(__i386)
3537	/*
3538	 * Reclaim unused memory from all kmem caches.
3539	 */
3540	kmem_reap();
3541#endif
3542#endif
3543
3544	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3545		if (zio_buf_cache[i] != prev_cache) {
3546			prev_cache = zio_buf_cache[i];
3547			kmem_cache_reap_now(zio_buf_cache[i]);
3548		}
3549		if (zio_data_buf_cache[i] != prev_data_cache) {
3550			prev_data_cache = zio_data_buf_cache[i];
3551			kmem_cache_reap_now(zio_data_buf_cache[i]);
3552		}
3553	}
3554	kmem_cache_reap_now(buf_cache);
3555	kmem_cache_reap_now(hdr_full_cache);
3556	kmem_cache_reap_now(hdr_l2only_cache);
3557	kmem_cache_reap_now(range_seg_cache);
3558
3559#ifdef illumos
3560	if (zio_arena != NULL) {
3561		/*
3562		 * Ask the vmem arena to reclaim unused memory from its
3563		 * quantum caches.
3564		 */
3565		vmem_qcache_reap(zio_arena);
3566	}
3567#endif
3568	DTRACE_PROBE(arc__kmem_reap_end);
3569}
3570
3571/*
3572 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3573 * enough data and signal them to proceed. When this happens, the threads in
3574 * arc_get_data_buf() are sleeping while holding the hash lock for their
3575 * particular arc header. Thus, we must be careful to never sleep on a
3576 * hash lock in this thread. This is to prevent the following deadlock:
3577 *
3578 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3579 *    waiting for the reclaim thread to signal it.
3580 *
3581 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3582 *    fails, and goes to sleep forever.
3583 *
3584 * This possible deadlock is avoided by always acquiring a hash lock
3585 * using mutex_tryenter() from arc_reclaim_thread().
3586 */
3587static void
3588arc_reclaim_thread(void *dummy __unused)
3589{
3590	clock_t			growtime = 0;
3591	callb_cpr_t		cpr;
3592
3593	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3594
3595	mutex_enter(&arc_reclaim_lock);
3596	while (!arc_reclaim_thread_exit) {
3597		int64_t free_memory = arc_available_memory();
3598		uint64_t evicted = 0;
3599
3600		mutex_exit(&arc_reclaim_lock);
3601
3602		if (free_memory < 0) {
3603
3604			arc_no_grow = B_TRUE;
3605			arc_warm = B_TRUE;
3606
3607			/*
3608			 * Wait at least zfs_grow_retry (default 60) seconds
3609			 * before considering growing.
3610			 */
3611			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3612
3613			arc_kmem_reap_now();
3614
3615			/*
3616			 * If we are still low on memory, shrink the ARC
3617			 * so that we have arc_shrink_min free space.
3618			 */
3619			free_memory = arc_available_memory();
3620
3621			int64_t to_free =
3622			    (arc_c >> arc_shrink_shift) - free_memory;
3623			if (to_free > 0) {
3624#ifdef _KERNEL
3625				to_free = MAX(to_free, ptob(needfree));
3626#endif
3627				arc_shrink(to_free);
3628			}
3629		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3630			arc_no_grow = B_TRUE;
3631		} else if (ddi_get_lbolt() >= growtime) {
3632			arc_no_grow = B_FALSE;
3633		}
3634
3635		evicted = arc_adjust();
3636
3637		mutex_enter(&arc_reclaim_lock);
3638
3639		/*
3640		 * If evicted is zero, we couldn't evict anything via
3641		 * arc_adjust(). This could be due to hash lock
3642		 * collisions, but more likely due to the majority of
3643		 * arc buffers being unevictable. Therefore, even if
3644		 * arc_size is above arc_c, another pass is unlikely to
3645		 * be helpful and could potentially cause us to enter an
3646		 * infinite loop.
3647		 */
3648		if (arc_size <= arc_c || evicted == 0) {
3649#ifdef _KERNEL
3650			needfree = 0;
3651#endif
3652			/*
3653			 * We're either no longer overflowing, or we
3654			 * can't evict anything more, so we should wake
3655			 * up any threads before we go to sleep.
3656			 */
3657			cv_broadcast(&arc_reclaim_waiters_cv);
3658
3659			/*
3660			 * Block until signaled, or after one second (we
3661			 * might need to perform arc_kmem_reap_now()
3662			 * even if we aren't being signalled)
3663			 */
3664			CALLB_CPR_SAFE_BEGIN(&cpr);
3665			(void) cv_timedwait(&arc_reclaim_thread_cv,
3666			    &arc_reclaim_lock, hz);
3667			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3668		}
3669	}
3670
3671	arc_reclaim_thread_exit = FALSE;
3672	cv_broadcast(&arc_reclaim_thread_cv);
3673	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3674	thread_exit();
3675}
3676
3677static void
3678arc_user_evicts_thread(void *dummy __unused)
3679{
3680	callb_cpr_t cpr;
3681
3682	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3683
3684	mutex_enter(&arc_user_evicts_lock);
3685	while (!arc_user_evicts_thread_exit) {
3686		mutex_exit(&arc_user_evicts_lock);
3687
3688		arc_do_user_evicts();
3689
3690		/*
3691		 * This is necessary in order for the mdb ::arc dcmd to
3692		 * show up to date information. Since the ::arc command
3693		 * does not call the kstat's update function, without
3694		 * this call, the command may show stale stats for the
3695		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3696		 * with this change, the data might be up to 1 second
3697		 * out of date; but that should suffice. The arc_state_t
3698		 * structures can be queried directly if more accurate
3699		 * information is needed.
3700		 */
3701		if (arc_ksp != NULL)
3702			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3703
3704		mutex_enter(&arc_user_evicts_lock);
3705
3706		/*
3707		 * Block until signaled, or after one second (we need to
3708		 * call the arc's kstat update function regularly).
3709		 */
3710		CALLB_CPR_SAFE_BEGIN(&cpr);
3711		(void) cv_timedwait(&arc_user_evicts_cv,
3712		    &arc_user_evicts_lock, hz);
3713		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3714	}
3715
3716	arc_user_evicts_thread_exit = FALSE;
3717	cv_broadcast(&arc_user_evicts_cv);
3718	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3719	thread_exit();
3720}
3721
3722/*
3723 * Adapt arc info given the number of bytes we are trying to add and
3724 * the state that we are comming from.  This function is only called
3725 * when we are adding new content to the cache.
3726 */
3727static void
3728arc_adapt(int bytes, arc_state_t *state)
3729{
3730	int mult;
3731	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3732	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3733	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3734
3735	if (state == arc_l2c_only)
3736		return;
3737
3738	ASSERT(bytes > 0);
3739	/*
3740	 * Adapt the target size of the MRU list:
3741	 *	- if we just hit in the MRU ghost list, then increase
3742	 *	  the target size of the MRU list.
3743	 *	- if we just hit in the MFU ghost list, then increase
3744	 *	  the target size of the MFU list by decreasing the
3745	 *	  target size of the MRU list.
3746	 */
3747	if (state == arc_mru_ghost) {
3748		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3749		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3750
3751		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3752	} else if (state == arc_mfu_ghost) {
3753		uint64_t delta;
3754
3755		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3756		mult = MIN(mult, 10);
3757
3758		delta = MIN(bytes * mult, arc_p);
3759		arc_p = MAX(arc_p_min, arc_p - delta);
3760	}
3761	ASSERT((int64_t)arc_p >= 0);
3762
3763	if (arc_reclaim_needed()) {
3764		cv_signal(&arc_reclaim_thread_cv);
3765		return;
3766	}
3767
3768	if (arc_no_grow)
3769		return;
3770
3771	if (arc_c >= arc_c_max)
3772		return;
3773
3774	/*
3775	 * If we're within (2 * maxblocksize) bytes of the target
3776	 * cache size, increment the target cache size
3777	 */
3778	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3779		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3780		atomic_add_64(&arc_c, (int64_t)bytes);
3781		if (arc_c > arc_c_max)
3782			arc_c = arc_c_max;
3783		else if (state == arc_anon)
3784			atomic_add_64(&arc_p, (int64_t)bytes);
3785		if (arc_p > arc_c)
3786			arc_p = arc_c;
3787	}
3788	ASSERT((int64_t)arc_p >= 0);
3789}
3790
3791/*
3792 * Check if arc_size has grown past our upper threshold, determined by
3793 * zfs_arc_overflow_shift.
3794 */
3795static boolean_t
3796arc_is_overflowing(void)
3797{
3798	/* Always allow at least one block of overflow */
3799	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3800	    arc_c >> zfs_arc_overflow_shift);
3801
3802	return (arc_size >= arc_c + overflow);
3803}
3804
3805/*
3806 * The buffer, supplied as the first argument, needs a data block. If we
3807 * are hitting the hard limit for the cache size, we must sleep, waiting
3808 * for the eviction thread to catch up. If we're past the target size
3809 * but below the hard limit, we'll only signal the reclaim thread and
3810 * continue on.
3811 */
3812static void
3813arc_get_data_buf(arc_buf_t *buf)
3814{
3815	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3816	uint64_t		size = buf->b_hdr->b_size;
3817	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3818
3819	arc_adapt(size, state);
3820
3821	/*
3822	 * If arc_size is currently overflowing, and has grown past our
3823	 * upper limit, we must be adding data faster than the evict
3824	 * thread can evict. Thus, to ensure we don't compound the
3825	 * problem by adding more data and forcing arc_size to grow even
3826	 * further past it's target size, we halt and wait for the
3827	 * eviction thread to catch up.
3828	 *
3829	 * It's also possible that the reclaim thread is unable to evict
3830	 * enough buffers to get arc_size below the overflow limit (e.g.
3831	 * due to buffers being un-evictable, or hash lock collisions).
3832	 * In this case, we want to proceed regardless if we're
3833	 * overflowing; thus we don't use a while loop here.
3834	 */
3835	if (arc_is_overflowing()) {
3836		mutex_enter(&arc_reclaim_lock);
3837
3838		/*
3839		 * Now that we've acquired the lock, we may no longer be
3840		 * over the overflow limit, lets check.
3841		 *
3842		 * We're ignoring the case of spurious wake ups. If that
3843		 * were to happen, it'd let this thread consume an ARC
3844		 * buffer before it should have (i.e. before we're under
3845		 * the overflow limit and were signalled by the reclaim
3846		 * thread). As long as that is a rare occurrence, it
3847		 * shouldn't cause any harm.
3848		 */
3849		if (arc_is_overflowing()) {
3850			cv_signal(&arc_reclaim_thread_cv);
3851			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3852		}
3853
3854		mutex_exit(&arc_reclaim_lock);
3855	}
3856
3857	if (type == ARC_BUFC_METADATA) {
3858		buf->b_data = zio_buf_alloc(size);
3859		arc_space_consume(size, ARC_SPACE_META);
3860	} else {
3861		ASSERT(type == ARC_BUFC_DATA);
3862		buf->b_data = zio_data_buf_alloc(size);
3863		arc_space_consume(size, ARC_SPACE_DATA);
3864	}
3865
3866	/*
3867	 * Update the state size.  Note that ghost states have a
3868	 * "ghost size" and so don't need to be updated.
3869	 */
3870	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3871		arc_buf_hdr_t *hdr = buf->b_hdr;
3872		arc_state_t *state = hdr->b_l1hdr.b_state;
3873
3874		(void) refcount_add_many(&state->arcs_size, size, buf);
3875
3876		/*
3877		 * If this is reached via arc_read, the link is
3878		 * protected by the hash lock. If reached via
3879		 * arc_buf_alloc, the header should not be accessed by
3880		 * any other thread. And, if reached via arc_read_done,
3881		 * the hash lock will protect it if it's found in the
3882		 * hash table; otherwise no other thread should be
3883		 * trying to [add|remove]_reference it.
3884		 */
3885		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3886			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3887			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3888			    size);
3889		}
3890		/*
3891		 * If we are growing the cache, and we are adding anonymous
3892		 * data, and we have outgrown arc_p, update arc_p
3893		 */
3894		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3895		    (refcount_count(&arc_anon->arcs_size) +
3896		    refcount_count(&arc_mru->arcs_size) > arc_p))
3897			arc_p = MIN(arc_c, arc_p + size);
3898	}
3899	ARCSTAT_BUMP(arcstat_allocated);
3900}
3901
3902/*
3903 * This routine is called whenever a buffer is accessed.
3904 * NOTE: the hash lock is dropped in this function.
3905 */
3906static void
3907arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3908{
3909	clock_t now;
3910
3911	ASSERT(MUTEX_HELD(hash_lock));
3912	ASSERT(HDR_HAS_L1HDR(hdr));
3913
3914	if (hdr->b_l1hdr.b_state == arc_anon) {
3915		/*
3916		 * This buffer is not in the cache, and does not
3917		 * appear in our "ghost" list.  Add the new buffer
3918		 * to the MRU state.
3919		 */
3920
3921		ASSERT0(hdr->b_l1hdr.b_arc_access);
3922		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3923		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3924		arc_change_state(arc_mru, hdr, hash_lock);
3925
3926	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3927		now = ddi_get_lbolt();
3928
3929		/*
3930		 * If this buffer is here because of a prefetch, then either:
3931		 * - clear the flag if this is a "referencing" read
3932		 *   (any subsequent access will bump this into the MFU state).
3933		 * or
3934		 * - move the buffer to the head of the list if this is
3935		 *   another prefetch (to make it less likely to be evicted).
3936		 */
3937		if (HDR_PREFETCH(hdr)) {
3938			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3939				/* link protected by hash lock */
3940				ASSERT(multilist_link_active(
3941				    &hdr->b_l1hdr.b_arc_node));
3942			} else {
3943				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3944				ARCSTAT_BUMP(arcstat_mru_hits);
3945			}
3946			hdr->b_l1hdr.b_arc_access = now;
3947			return;
3948		}
3949
3950		/*
3951		 * This buffer has been "accessed" only once so far,
3952		 * but it is still in the cache. Move it to the MFU
3953		 * state.
3954		 */
3955		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3956			/*
3957			 * More than 125ms have passed since we
3958			 * instantiated this buffer.  Move it to the
3959			 * most frequently used state.
3960			 */
3961			hdr->b_l1hdr.b_arc_access = now;
3962			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3963			arc_change_state(arc_mfu, hdr, hash_lock);
3964		}
3965		ARCSTAT_BUMP(arcstat_mru_hits);
3966	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3967		arc_state_t	*new_state;
3968		/*
3969		 * This buffer has been "accessed" recently, but
3970		 * was evicted from the cache.  Move it to the
3971		 * MFU state.
3972		 */
3973
3974		if (HDR_PREFETCH(hdr)) {
3975			new_state = arc_mru;
3976			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3977				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3978			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3979		} else {
3980			new_state = arc_mfu;
3981			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3982		}
3983
3984		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3985		arc_change_state(new_state, hdr, hash_lock);
3986
3987		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3988	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3989		/*
3990		 * This buffer has been accessed more than once and is
3991		 * still in the cache.  Keep it in the MFU state.
3992		 *
3993		 * NOTE: an add_reference() that occurred when we did
3994		 * the arc_read() will have kicked this off the list.
3995		 * If it was a prefetch, we will explicitly move it to
3996		 * the head of the list now.
3997		 */
3998		if ((HDR_PREFETCH(hdr)) != 0) {
3999			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4000			/* link protected by hash_lock */
4001			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4002		}
4003		ARCSTAT_BUMP(arcstat_mfu_hits);
4004		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4005	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4006		arc_state_t	*new_state = arc_mfu;
4007		/*
4008		 * This buffer has been accessed more than once but has
4009		 * been evicted from the cache.  Move it back to the
4010		 * MFU state.
4011		 */
4012
4013		if (HDR_PREFETCH(hdr)) {
4014			/*
4015			 * This is a prefetch access...
4016			 * move this block back to the MRU state.
4017			 */
4018			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4019			new_state = arc_mru;
4020		}
4021
4022		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4023		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4024		arc_change_state(new_state, hdr, hash_lock);
4025
4026		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4027	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4028		/*
4029		 * This buffer is on the 2nd Level ARC.
4030		 */
4031
4032		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4033		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4034		arc_change_state(arc_mfu, hdr, hash_lock);
4035	} else {
4036		ASSERT(!"invalid arc state");
4037	}
4038}
4039
4040/* a generic arc_done_func_t which you can use */
4041/* ARGSUSED */
4042void
4043arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4044{
4045	if (zio == NULL || zio->io_error == 0)
4046		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4047	VERIFY(arc_buf_remove_ref(buf, arg));
4048}
4049
4050/* a generic arc_done_func_t */
4051void
4052arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4053{
4054	arc_buf_t **bufp = arg;
4055	if (zio && zio->io_error) {
4056		VERIFY(arc_buf_remove_ref(buf, arg));
4057		*bufp = NULL;
4058	} else {
4059		*bufp = buf;
4060		ASSERT(buf->b_data);
4061	}
4062}
4063
4064static void
4065arc_read_done(zio_t *zio)
4066{
4067	arc_buf_hdr_t	*hdr;
4068	arc_buf_t	*buf;
4069	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4070	kmutex_t	*hash_lock = NULL;
4071	arc_callback_t	*callback_list, *acb;
4072	int		freeable = FALSE;
4073
4074	buf = zio->io_private;
4075	hdr = buf->b_hdr;
4076
4077	/*
4078	 * The hdr was inserted into hash-table and removed from lists
4079	 * prior to starting I/O.  We should find this header, since
4080	 * it's in the hash table, and it should be legit since it's
4081	 * not possible to evict it during the I/O.  The only possible
4082	 * reason for it not to be found is if we were freed during the
4083	 * read.
4084	 */
4085	if (HDR_IN_HASH_TABLE(hdr)) {
4086		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4087		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4088		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4089		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4090		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4091
4092		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4093		    &hash_lock);
4094
4095		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4096		    hash_lock == NULL) ||
4097		    (found == hdr &&
4098		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4099		    (found == hdr && HDR_L2_READING(hdr)));
4100	}
4101
4102	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4103	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4104		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4105
4106	/* byteswap if necessary */
4107	callback_list = hdr->b_l1hdr.b_acb;
4108	ASSERT(callback_list != NULL);
4109	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4110		dmu_object_byteswap_t bswap =
4111		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4112		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4113		    byteswap_uint64_array :
4114		    dmu_ot_byteswap[bswap].ob_func;
4115		func(buf->b_data, hdr->b_size);
4116	}
4117
4118	arc_cksum_compute(buf, B_FALSE);
4119#ifdef illumos
4120	arc_buf_watch(buf);
4121#endif
4122
4123	if (hash_lock && zio->io_error == 0 &&
4124	    hdr->b_l1hdr.b_state == arc_anon) {
4125		/*
4126		 * Only call arc_access on anonymous buffers.  This is because
4127		 * if we've issued an I/O for an evicted buffer, we've already
4128		 * called arc_access (to prevent any simultaneous readers from
4129		 * getting confused).
4130		 */
4131		arc_access(hdr, hash_lock);
4132	}
4133
4134	/* create copies of the data buffer for the callers */
4135	abuf = buf;
4136	for (acb = callback_list; acb; acb = acb->acb_next) {
4137		if (acb->acb_done) {
4138			if (abuf == NULL) {
4139				ARCSTAT_BUMP(arcstat_duplicate_reads);
4140				abuf = arc_buf_clone(buf);
4141			}
4142			acb->acb_buf = abuf;
4143			abuf = NULL;
4144		}
4145	}
4146	hdr->b_l1hdr.b_acb = NULL;
4147	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4148	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4149	if (abuf == buf) {
4150		ASSERT(buf->b_efunc == NULL);
4151		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4152		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4153	}
4154
4155	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4156	    callback_list != NULL);
4157
4158	if (zio->io_error != 0) {
4159		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4160		if (hdr->b_l1hdr.b_state != arc_anon)
4161			arc_change_state(arc_anon, hdr, hash_lock);
4162		if (HDR_IN_HASH_TABLE(hdr))
4163			buf_hash_remove(hdr);
4164		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4165	}
4166
4167	/*
4168	 * Broadcast before we drop the hash_lock to avoid the possibility
4169	 * that the hdr (and hence the cv) might be freed before we get to
4170	 * the cv_broadcast().
4171	 */
4172	cv_broadcast(&hdr->b_l1hdr.b_cv);
4173
4174	if (hash_lock != NULL) {
4175		mutex_exit(hash_lock);
4176	} else {
4177		/*
4178		 * This block was freed while we waited for the read to
4179		 * complete.  It has been removed from the hash table and
4180		 * moved to the anonymous state (so that it won't show up
4181		 * in the cache).
4182		 */
4183		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4184		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4185	}
4186
4187	/* execute each callback and free its structure */
4188	while ((acb = callback_list) != NULL) {
4189		if (acb->acb_done)
4190			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4191
4192		if (acb->acb_zio_dummy != NULL) {
4193			acb->acb_zio_dummy->io_error = zio->io_error;
4194			zio_nowait(acb->acb_zio_dummy);
4195		}
4196
4197		callback_list = acb->acb_next;
4198		kmem_free(acb, sizeof (arc_callback_t));
4199	}
4200
4201	if (freeable)
4202		arc_hdr_destroy(hdr);
4203}
4204
4205/*
4206 * "Read" the block at the specified DVA (in bp) via the
4207 * cache.  If the block is found in the cache, invoke the provided
4208 * callback immediately and return.  Note that the `zio' parameter
4209 * in the callback will be NULL in this case, since no IO was
4210 * required.  If the block is not in the cache pass the read request
4211 * on to the spa with a substitute callback function, so that the
4212 * requested block will be added to the cache.
4213 *
4214 * If a read request arrives for a block that has a read in-progress,
4215 * either wait for the in-progress read to complete (and return the
4216 * results); or, if this is a read with a "done" func, add a record
4217 * to the read to invoke the "done" func when the read completes,
4218 * and return; or just return.
4219 *
4220 * arc_read_done() will invoke all the requested "done" functions
4221 * for readers of this block.
4222 */
4223int
4224arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4225    void *private, zio_priority_t priority, int zio_flags,
4226    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4227{
4228	arc_buf_hdr_t *hdr = NULL;
4229	arc_buf_t *buf = NULL;
4230	kmutex_t *hash_lock = NULL;
4231	zio_t *rzio;
4232	uint64_t guid = spa_load_guid(spa);
4233
4234	ASSERT(!BP_IS_EMBEDDED(bp) ||
4235	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4236
4237top:
4238	if (!BP_IS_EMBEDDED(bp)) {
4239		/*
4240		 * Embedded BP's have no DVA and require no I/O to "read".
4241		 * Create an anonymous arc buf to back it.
4242		 */
4243		hdr = buf_hash_find(guid, bp, &hash_lock);
4244	}
4245
4246	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4247
4248		*arc_flags |= ARC_FLAG_CACHED;
4249
4250		if (HDR_IO_IN_PROGRESS(hdr)) {
4251
4252			if (*arc_flags & ARC_FLAG_WAIT) {
4253				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4254				mutex_exit(hash_lock);
4255				goto top;
4256			}
4257			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4258
4259			if (done) {
4260				arc_callback_t	*acb = NULL;
4261
4262				acb = kmem_zalloc(sizeof (arc_callback_t),
4263				    KM_SLEEP);
4264				acb->acb_done = done;
4265				acb->acb_private = private;
4266				if (pio != NULL)
4267					acb->acb_zio_dummy = zio_null(pio,
4268					    spa, NULL, NULL, NULL, zio_flags);
4269
4270				ASSERT(acb->acb_done != NULL);
4271				acb->acb_next = hdr->b_l1hdr.b_acb;
4272				hdr->b_l1hdr.b_acb = acb;
4273				add_reference(hdr, hash_lock, private);
4274				mutex_exit(hash_lock);
4275				return (0);
4276			}
4277			mutex_exit(hash_lock);
4278			return (0);
4279		}
4280
4281		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4282		    hdr->b_l1hdr.b_state == arc_mfu);
4283
4284		if (done) {
4285			add_reference(hdr, hash_lock, private);
4286			/*
4287			 * If this block is already in use, create a new
4288			 * copy of the data so that we will be guaranteed
4289			 * that arc_release() will always succeed.
4290			 */
4291			buf = hdr->b_l1hdr.b_buf;
4292			ASSERT(buf);
4293			ASSERT(buf->b_data);
4294			if (HDR_BUF_AVAILABLE(hdr)) {
4295				ASSERT(buf->b_efunc == NULL);
4296				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4297			} else {
4298				buf = arc_buf_clone(buf);
4299			}
4300
4301		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4302		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4303			hdr->b_flags |= ARC_FLAG_PREFETCH;
4304		}
4305		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4306		arc_access(hdr, hash_lock);
4307		if (*arc_flags & ARC_FLAG_L2CACHE)
4308			hdr->b_flags |= ARC_FLAG_L2CACHE;
4309		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4310			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4311		mutex_exit(hash_lock);
4312		ARCSTAT_BUMP(arcstat_hits);
4313		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4314		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4315		    data, metadata, hits);
4316
4317		if (done)
4318			done(NULL, buf, private);
4319	} else {
4320		uint64_t size = BP_GET_LSIZE(bp);
4321		arc_callback_t *acb;
4322		vdev_t *vd = NULL;
4323		uint64_t addr = 0;
4324		boolean_t devw = B_FALSE;
4325		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4326		int32_t b_asize = 0;
4327
4328		if (hdr == NULL) {
4329			/* this block is not in the cache */
4330			arc_buf_hdr_t *exists = NULL;
4331			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4332			buf = arc_buf_alloc(spa, size, private, type);
4333			hdr = buf->b_hdr;
4334			if (!BP_IS_EMBEDDED(bp)) {
4335				hdr->b_dva = *BP_IDENTITY(bp);
4336				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4337				exists = buf_hash_insert(hdr, &hash_lock);
4338			}
4339			if (exists != NULL) {
4340				/* somebody beat us to the hash insert */
4341				mutex_exit(hash_lock);
4342				buf_discard_identity(hdr);
4343				(void) arc_buf_remove_ref(buf, private);
4344				goto top; /* restart the IO request */
4345			}
4346
4347			/* if this is a prefetch, we don't have a reference */
4348			if (*arc_flags & ARC_FLAG_PREFETCH) {
4349				(void) remove_reference(hdr, hash_lock,
4350				    private);
4351				hdr->b_flags |= ARC_FLAG_PREFETCH;
4352			}
4353			if (*arc_flags & ARC_FLAG_L2CACHE)
4354				hdr->b_flags |= ARC_FLAG_L2CACHE;
4355			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4356				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4357			if (BP_GET_LEVEL(bp) > 0)
4358				hdr->b_flags |= ARC_FLAG_INDIRECT;
4359		} else {
4360			/*
4361			 * This block is in the ghost cache. If it was L2-only
4362			 * (and thus didn't have an L1 hdr), we realloc the
4363			 * header to add an L1 hdr.
4364			 */
4365			if (!HDR_HAS_L1HDR(hdr)) {
4366				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4367				    hdr_full_cache);
4368			}
4369
4370			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4371			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4372			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4373			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4374
4375			/* if this is a prefetch, we don't have a reference */
4376			if (*arc_flags & ARC_FLAG_PREFETCH)
4377				hdr->b_flags |= ARC_FLAG_PREFETCH;
4378			else
4379				add_reference(hdr, hash_lock, private);
4380			if (*arc_flags & ARC_FLAG_L2CACHE)
4381				hdr->b_flags |= ARC_FLAG_L2CACHE;
4382			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4383				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4384			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4385			buf->b_hdr = hdr;
4386			buf->b_data = NULL;
4387			buf->b_efunc = NULL;
4388			buf->b_private = NULL;
4389			buf->b_next = NULL;
4390			hdr->b_l1hdr.b_buf = buf;
4391			ASSERT0(hdr->b_l1hdr.b_datacnt);
4392			hdr->b_l1hdr.b_datacnt = 1;
4393			arc_get_data_buf(buf);
4394			arc_access(hdr, hash_lock);
4395		}
4396
4397		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4398
4399		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4400		acb->acb_done = done;
4401		acb->acb_private = private;
4402
4403		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4404		hdr->b_l1hdr.b_acb = acb;
4405		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4406
4407		if (HDR_HAS_L2HDR(hdr) &&
4408		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4409			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4410			addr = hdr->b_l2hdr.b_daddr;
4411			b_compress = HDR_GET_COMPRESS(hdr);
4412			b_asize = hdr->b_l2hdr.b_asize;
4413			/*
4414			 * Lock out device removal.
4415			 */
4416			if (vdev_is_dead(vd) ||
4417			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4418				vd = NULL;
4419		}
4420
4421		if (hash_lock != NULL)
4422			mutex_exit(hash_lock);
4423
4424		/*
4425		 * At this point, we have a level 1 cache miss.  Try again in
4426		 * L2ARC if possible.
4427		 */
4428		ASSERT3U(hdr->b_size, ==, size);
4429		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4430		    uint64_t, size, zbookmark_phys_t *, zb);
4431		ARCSTAT_BUMP(arcstat_misses);
4432		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4433		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4434		    data, metadata, misses);
4435#ifdef _KERNEL
4436		curthread->td_ru.ru_inblock++;
4437#endif
4438
4439		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4440			/*
4441			 * Read from the L2ARC if the following are true:
4442			 * 1. The L2ARC vdev was previously cached.
4443			 * 2. This buffer still has L2ARC metadata.
4444			 * 3. This buffer isn't currently writing to the L2ARC.
4445			 * 4. The L2ARC entry wasn't evicted, which may
4446			 *    also have invalidated the vdev.
4447			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4448			 */
4449			if (HDR_HAS_L2HDR(hdr) &&
4450			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4451			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4452				l2arc_read_callback_t *cb;
4453
4454				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4455				ARCSTAT_BUMP(arcstat_l2_hits);
4456
4457				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4458				    KM_SLEEP);
4459				cb->l2rcb_buf = buf;
4460				cb->l2rcb_spa = spa;
4461				cb->l2rcb_bp = *bp;
4462				cb->l2rcb_zb = *zb;
4463				cb->l2rcb_flags = zio_flags;
4464				cb->l2rcb_compress = b_compress;
4465
4466				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4467				    addr + size < vd->vdev_psize -
4468				    VDEV_LABEL_END_SIZE);
4469
4470				/*
4471				 * l2arc read.  The SCL_L2ARC lock will be
4472				 * released by l2arc_read_done().
4473				 * Issue a null zio if the underlying buffer
4474				 * was squashed to zero size by compression.
4475				 */
4476				if (b_compress == ZIO_COMPRESS_EMPTY) {
4477					rzio = zio_null(pio, spa, vd,
4478					    l2arc_read_done, cb,
4479					    zio_flags | ZIO_FLAG_DONT_CACHE |
4480					    ZIO_FLAG_CANFAIL |
4481					    ZIO_FLAG_DONT_PROPAGATE |
4482					    ZIO_FLAG_DONT_RETRY);
4483				} else {
4484					rzio = zio_read_phys(pio, vd, addr,
4485					    b_asize, buf->b_data,
4486					    ZIO_CHECKSUM_OFF,
4487					    l2arc_read_done, cb, priority,
4488					    zio_flags | ZIO_FLAG_DONT_CACHE |
4489					    ZIO_FLAG_CANFAIL |
4490					    ZIO_FLAG_DONT_PROPAGATE |
4491					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4492				}
4493				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4494				    zio_t *, rzio);
4495				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4496
4497				if (*arc_flags & ARC_FLAG_NOWAIT) {
4498					zio_nowait(rzio);
4499					return (0);
4500				}
4501
4502				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4503				if (zio_wait(rzio) == 0)
4504					return (0);
4505
4506				/* l2arc read error; goto zio_read() */
4507			} else {
4508				DTRACE_PROBE1(l2arc__miss,
4509				    arc_buf_hdr_t *, hdr);
4510				ARCSTAT_BUMP(arcstat_l2_misses);
4511				if (HDR_L2_WRITING(hdr))
4512					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4513				spa_config_exit(spa, SCL_L2ARC, vd);
4514			}
4515		} else {
4516			if (vd != NULL)
4517				spa_config_exit(spa, SCL_L2ARC, vd);
4518			if (l2arc_ndev != 0) {
4519				DTRACE_PROBE1(l2arc__miss,
4520				    arc_buf_hdr_t *, hdr);
4521				ARCSTAT_BUMP(arcstat_l2_misses);
4522			}
4523		}
4524
4525		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4526		    arc_read_done, buf, priority, zio_flags, zb);
4527
4528		if (*arc_flags & ARC_FLAG_WAIT)
4529			return (zio_wait(rzio));
4530
4531		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4532		zio_nowait(rzio);
4533	}
4534	return (0);
4535}
4536
4537void
4538arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4539{
4540	ASSERT(buf->b_hdr != NULL);
4541	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4542	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4543	    func == NULL);
4544	ASSERT(buf->b_efunc == NULL);
4545	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4546
4547	buf->b_efunc = func;
4548	buf->b_private = private;
4549}
4550
4551/*
4552 * Notify the arc that a block was freed, and thus will never be used again.
4553 */
4554void
4555arc_freed(spa_t *spa, const blkptr_t *bp)
4556{
4557	arc_buf_hdr_t *hdr;
4558	kmutex_t *hash_lock;
4559	uint64_t guid = spa_load_guid(spa);
4560
4561	ASSERT(!BP_IS_EMBEDDED(bp));
4562
4563	hdr = buf_hash_find(guid, bp, &hash_lock);
4564	if (hdr == NULL)
4565		return;
4566	if (HDR_BUF_AVAILABLE(hdr)) {
4567		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4568		add_reference(hdr, hash_lock, FTAG);
4569		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4570		mutex_exit(hash_lock);
4571
4572		arc_release(buf, FTAG);
4573		(void) arc_buf_remove_ref(buf, FTAG);
4574	} else {
4575		mutex_exit(hash_lock);
4576	}
4577
4578}
4579
4580/*
4581 * Clear the user eviction callback set by arc_set_callback(), first calling
4582 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4583 * clearing the callback may result in the arc_buf being destroyed.  However,
4584 * it will not result in the *last* arc_buf being destroyed, hence the data
4585 * will remain cached in the ARC. We make a copy of the arc buffer here so
4586 * that we can process the callback without holding any locks.
4587 *
4588 * It's possible that the callback is already in the process of being cleared
4589 * by another thread.  In this case we can not clear the callback.
4590 *
4591 * Returns B_TRUE if the callback was successfully called and cleared.
4592 */
4593boolean_t
4594arc_clear_callback(arc_buf_t *buf)
4595{
4596	arc_buf_hdr_t *hdr;
4597	kmutex_t *hash_lock;
4598	arc_evict_func_t *efunc = buf->b_efunc;
4599	void *private = buf->b_private;
4600
4601	mutex_enter(&buf->b_evict_lock);
4602	hdr = buf->b_hdr;
4603	if (hdr == NULL) {
4604		/*
4605		 * We are in arc_do_user_evicts().
4606		 */
4607		ASSERT(buf->b_data == NULL);
4608		mutex_exit(&buf->b_evict_lock);
4609		return (B_FALSE);
4610	} else if (buf->b_data == NULL) {
4611		/*
4612		 * We are on the eviction list; process this buffer now
4613		 * but let arc_do_user_evicts() do the reaping.
4614		 */
4615		buf->b_efunc = NULL;
4616		mutex_exit(&buf->b_evict_lock);
4617		VERIFY0(efunc(private));
4618		return (B_TRUE);
4619	}
4620	hash_lock = HDR_LOCK(hdr);
4621	mutex_enter(hash_lock);
4622	hdr = buf->b_hdr;
4623	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4624
4625	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4626	    hdr->b_l1hdr.b_datacnt);
4627	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4628	    hdr->b_l1hdr.b_state == arc_mfu);
4629
4630	buf->b_efunc = NULL;
4631	buf->b_private = NULL;
4632
4633	if (hdr->b_l1hdr.b_datacnt > 1) {
4634		mutex_exit(&buf->b_evict_lock);
4635		arc_buf_destroy(buf, TRUE);
4636	} else {
4637		ASSERT(buf == hdr->b_l1hdr.b_buf);
4638		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4639		mutex_exit(&buf->b_evict_lock);
4640	}
4641
4642	mutex_exit(hash_lock);
4643	VERIFY0(efunc(private));
4644	return (B_TRUE);
4645}
4646
4647/*
4648 * Release this buffer from the cache, making it an anonymous buffer.  This
4649 * must be done after a read and prior to modifying the buffer contents.
4650 * If the buffer has more than one reference, we must make
4651 * a new hdr for the buffer.
4652 */
4653void
4654arc_release(arc_buf_t *buf, void *tag)
4655{
4656	arc_buf_hdr_t *hdr = buf->b_hdr;
4657
4658	ASSERT(HDR_HAS_L1HDR(hdr));
4659
4660	/*
4661	 * It would be nice to assert that if it's DMU metadata (level >
4662	 * 0 || it's the dnode file), then it must be syncing context.
4663	 * But we don't know that information at this level.
4664	 */
4665
4666	mutex_enter(&buf->b_evict_lock);
4667	/*
4668	 * We don't grab the hash lock prior to this check, because if
4669	 * the buffer's header is in the arc_anon state, it won't be
4670	 * linked into the hash table.
4671	 */
4672	if (hdr->b_l1hdr.b_state == arc_anon) {
4673		mutex_exit(&buf->b_evict_lock);
4674		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4675		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4676		ASSERT(!HDR_HAS_L2HDR(hdr));
4677		ASSERT(BUF_EMPTY(hdr));
4678		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4679		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4680		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4681
4682		ASSERT3P(buf->b_efunc, ==, NULL);
4683		ASSERT3P(buf->b_private, ==, NULL);
4684
4685		hdr->b_l1hdr.b_arc_access = 0;
4686		arc_buf_thaw(buf);
4687
4688		return;
4689	}
4690
4691	kmutex_t *hash_lock = HDR_LOCK(hdr);
4692	mutex_enter(hash_lock);
4693
4694	/*
4695	 * This assignment is only valid as long as the hash_lock is
4696	 * held, we must be careful not to reference state or the
4697	 * b_state field after dropping the lock.
4698	 */
4699	arc_state_t *state = hdr->b_l1hdr.b_state;
4700	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4701	ASSERT3P(state, !=, arc_anon);
4702
4703	/* this buffer is not on any list */
4704	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4705
4706	if (HDR_HAS_L2HDR(hdr)) {
4707		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4708
4709		/*
4710		 * We have to recheck this conditional again now that
4711		 * we're holding the l2ad_mtx to prevent a race with
4712		 * another thread which might be concurrently calling
4713		 * l2arc_evict(). In that case, l2arc_evict() might have
4714		 * destroyed the header's L2 portion as we were waiting
4715		 * to acquire the l2ad_mtx.
4716		 */
4717		if (HDR_HAS_L2HDR(hdr)) {
4718			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
4719				trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4720				    hdr->b_l2hdr.b_daddr,
4721				    hdr->b_l2hdr.b_asize, 0);
4722			arc_hdr_l2hdr_destroy(hdr);
4723		}
4724
4725		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4726	}
4727
4728	/*
4729	 * Do we have more than one buf?
4730	 */
4731	if (hdr->b_l1hdr.b_datacnt > 1) {
4732		arc_buf_hdr_t *nhdr;
4733		arc_buf_t **bufp;
4734		uint64_t blksz = hdr->b_size;
4735		uint64_t spa = hdr->b_spa;
4736		arc_buf_contents_t type = arc_buf_type(hdr);
4737		uint32_t flags = hdr->b_flags;
4738
4739		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4740		/*
4741		 * Pull the data off of this hdr and attach it to
4742		 * a new anonymous hdr.
4743		 */
4744		(void) remove_reference(hdr, hash_lock, tag);
4745		bufp = &hdr->b_l1hdr.b_buf;
4746		while (*bufp != buf)
4747			bufp = &(*bufp)->b_next;
4748		*bufp = buf->b_next;
4749		buf->b_next = NULL;
4750
4751		ASSERT3P(state, !=, arc_l2c_only);
4752
4753		(void) refcount_remove_many(
4754		    &state->arcs_size, hdr->b_size, buf);
4755
4756		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4757			ASSERT3P(state, !=, arc_l2c_only);
4758			uint64_t *size = &state->arcs_lsize[type];
4759			ASSERT3U(*size, >=, hdr->b_size);
4760			atomic_add_64(size, -hdr->b_size);
4761		}
4762
4763		/*
4764		 * We're releasing a duplicate user data buffer, update
4765		 * our statistics accordingly.
4766		 */
4767		if (HDR_ISTYPE_DATA(hdr)) {
4768			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4769			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4770			    -hdr->b_size);
4771		}
4772		hdr->b_l1hdr.b_datacnt -= 1;
4773		arc_cksum_verify(buf);
4774#ifdef illumos
4775		arc_buf_unwatch(buf);
4776#endif
4777
4778		mutex_exit(hash_lock);
4779
4780		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4781		nhdr->b_size = blksz;
4782		nhdr->b_spa = spa;
4783
4784		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4785		nhdr->b_flags |= arc_bufc_to_flags(type);
4786		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4787
4788		nhdr->b_l1hdr.b_buf = buf;
4789		nhdr->b_l1hdr.b_datacnt = 1;
4790		nhdr->b_l1hdr.b_state = arc_anon;
4791		nhdr->b_l1hdr.b_arc_access = 0;
4792		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4793		nhdr->b_freeze_cksum = NULL;
4794
4795		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4796		buf->b_hdr = nhdr;
4797		mutex_exit(&buf->b_evict_lock);
4798		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4799	} else {
4800		mutex_exit(&buf->b_evict_lock);
4801		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4802		/* protected by hash lock, or hdr is on arc_anon */
4803		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4804		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4805		arc_change_state(arc_anon, hdr, hash_lock);
4806		hdr->b_l1hdr.b_arc_access = 0;
4807		mutex_exit(hash_lock);
4808
4809		buf_discard_identity(hdr);
4810		arc_buf_thaw(buf);
4811	}
4812	buf->b_efunc = NULL;
4813	buf->b_private = NULL;
4814}
4815
4816int
4817arc_released(arc_buf_t *buf)
4818{
4819	int released;
4820
4821	mutex_enter(&buf->b_evict_lock);
4822	released = (buf->b_data != NULL &&
4823	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4824	mutex_exit(&buf->b_evict_lock);
4825	return (released);
4826}
4827
4828#ifdef ZFS_DEBUG
4829int
4830arc_referenced(arc_buf_t *buf)
4831{
4832	int referenced;
4833
4834	mutex_enter(&buf->b_evict_lock);
4835	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4836	mutex_exit(&buf->b_evict_lock);
4837	return (referenced);
4838}
4839#endif
4840
4841static void
4842arc_write_ready(zio_t *zio)
4843{
4844	arc_write_callback_t *callback = zio->io_private;
4845	arc_buf_t *buf = callback->awcb_buf;
4846	arc_buf_hdr_t *hdr = buf->b_hdr;
4847
4848	ASSERT(HDR_HAS_L1HDR(hdr));
4849	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4850	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4851	callback->awcb_ready(zio, buf, callback->awcb_private);
4852
4853	/*
4854	 * If the IO is already in progress, then this is a re-write
4855	 * attempt, so we need to thaw and re-compute the cksum.
4856	 * It is the responsibility of the callback to handle the
4857	 * accounting for any re-write attempt.
4858	 */
4859	if (HDR_IO_IN_PROGRESS(hdr)) {
4860		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4861		if (hdr->b_freeze_cksum != NULL) {
4862			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4863			hdr->b_freeze_cksum = NULL;
4864		}
4865		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4866	}
4867	arc_cksum_compute(buf, B_FALSE);
4868	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4869}
4870
4871/*
4872 * The SPA calls this callback for each physical write that happens on behalf
4873 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4874 */
4875static void
4876arc_write_physdone(zio_t *zio)
4877{
4878	arc_write_callback_t *cb = zio->io_private;
4879	if (cb->awcb_physdone != NULL)
4880		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4881}
4882
4883static void
4884arc_write_done(zio_t *zio)
4885{
4886	arc_write_callback_t *callback = zio->io_private;
4887	arc_buf_t *buf = callback->awcb_buf;
4888	arc_buf_hdr_t *hdr = buf->b_hdr;
4889
4890	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4891
4892	if (zio->io_error == 0) {
4893		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4894			buf_discard_identity(hdr);
4895		} else {
4896			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4897			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4898		}
4899	} else {
4900		ASSERT(BUF_EMPTY(hdr));
4901	}
4902
4903	/*
4904	 * If the block to be written was all-zero or compressed enough to be
4905	 * embedded in the BP, no write was performed so there will be no
4906	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4907	 * (and uncached).
4908	 */
4909	if (!BUF_EMPTY(hdr)) {
4910		arc_buf_hdr_t *exists;
4911		kmutex_t *hash_lock;
4912
4913		ASSERT(zio->io_error == 0);
4914
4915		arc_cksum_verify(buf);
4916
4917		exists = buf_hash_insert(hdr, &hash_lock);
4918		if (exists != NULL) {
4919			/*
4920			 * This can only happen if we overwrite for
4921			 * sync-to-convergence, because we remove
4922			 * buffers from the hash table when we arc_free().
4923			 */
4924			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4925				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4926					panic("bad overwrite, hdr=%p exists=%p",
4927					    (void *)hdr, (void *)exists);
4928				ASSERT(refcount_is_zero(
4929				    &exists->b_l1hdr.b_refcnt));
4930				arc_change_state(arc_anon, exists, hash_lock);
4931				mutex_exit(hash_lock);
4932				arc_hdr_destroy(exists);
4933				exists = buf_hash_insert(hdr, &hash_lock);
4934				ASSERT3P(exists, ==, NULL);
4935			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4936				/* nopwrite */
4937				ASSERT(zio->io_prop.zp_nopwrite);
4938				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4939					panic("bad nopwrite, hdr=%p exists=%p",
4940					    (void *)hdr, (void *)exists);
4941			} else {
4942				/* Dedup */
4943				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4944				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4945				ASSERT(BP_GET_DEDUP(zio->io_bp));
4946				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4947			}
4948		}
4949		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4950		/* if it's not anon, we are doing a scrub */
4951		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4952			arc_access(hdr, hash_lock);
4953		mutex_exit(hash_lock);
4954	} else {
4955		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4956	}
4957
4958	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4959	callback->awcb_done(zio, buf, callback->awcb_private);
4960
4961	kmem_free(callback, sizeof (arc_write_callback_t));
4962}
4963
4964zio_t *
4965arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4966    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4967    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4968    arc_done_func_t *done, void *private, zio_priority_t priority,
4969    int zio_flags, const zbookmark_phys_t *zb)
4970{
4971	arc_buf_hdr_t *hdr = buf->b_hdr;
4972	arc_write_callback_t *callback;
4973	zio_t *zio;
4974
4975	ASSERT(ready != NULL);
4976	ASSERT(done != NULL);
4977	ASSERT(!HDR_IO_ERROR(hdr));
4978	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4979	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4980	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4981	if (l2arc)
4982		hdr->b_flags |= ARC_FLAG_L2CACHE;
4983	if (l2arc_compress)
4984		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4985	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4986	callback->awcb_ready = ready;
4987	callback->awcb_physdone = physdone;
4988	callback->awcb_done = done;
4989	callback->awcb_private = private;
4990	callback->awcb_buf = buf;
4991
4992	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4993	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4994	    priority, zio_flags, zb);
4995
4996	return (zio);
4997}
4998
4999static int
5000arc_memory_throttle(uint64_t reserve, uint64_t txg)
5001{
5002#ifdef _KERNEL
5003	uint64_t available_memory = ptob(freemem);
5004	static uint64_t page_load = 0;
5005	static uint64_t last_txg = 0;
5006
5007#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5008	available_memory =
5009	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5010#endif
5011
5012	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5013		return (0);
5014
5015	if (txg > last_txg) {
5016		last_txg = txg;
5017		page_load = 0;
5018	}
5019	/*
5020	 * If we are in pageout, we know that memory is already tight,
5021	 * the arc is already going to be evicting, so we just want to
5022	 * continue to let page writes occur as quickly as possible.
5023	 */
5024	if (curproc == pageproc) {
5025		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5026			return (SET_ERROR(ERESTART));
5027		/* Note: reserve is inflated, so we deflate */
5028		page_load += reserve / 8;
5029		return (0);
5030	} else if (page_load > 0 && arc_reclaim_needed()) {
5031		/* memory is low, delay before restarting */
5032		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5033		return (SET_ERROR(EAGAIN));
5034	}
5035	page_load = 0;
5036#endif
5037	return (0);
5038}
5039
5040void
5041arc_tempreserve_clear(uint64_t reserve)
5042{
5043	atomic_add_64(&arc_tempreserve, -reserve);
5044	ASSERT((int64_t)arc_tempreserve >= 0);
5045}
5046
5047int
5048arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5049{
5050	int error;
5051	uint64_t anon_size;
5052
5053	if (reserve > arc_c/4 && !arc_no_grow) {
5054		arc_c = MIN(arc_c_max, reserve * 4);
5055		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5056	}
5057	if (reserve > arc_c)
5058		return (SET_ERROR(ENOMEM));
5059
5060	/*
5061	 * Don't count loaned bufs as in flight dirty data to prevent long
5062	 * network delays from blocking transactions that are ready to be
5063	 * assigned to a txg.
5064	 */
5065	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5066	    arc_loaned_bytes), 0);
5067
5068	/*
5069	 * Writes will, almost always, require additional memory allocations
5070	 * in order to compress/encrypt/etc the data.  We therefore need to
5071	 * make sure that there is sufficient available memory for this.
5072	 */
5073	error = arc_memory_throttle(reserve, txg);
5074	if (error != 0)
5075		return (error);
5076
5077	/*
5078	 * Throttle writes when the amount of dirty data in the cache
5079	 * gets too large.  We try to keep the cache less than half full
5080	 * of dirty blocks so that our sync times don't grow too large.
5081	 * Note: if two requests come in concurrently, we might let them
5082	 * both succeed, when one of them should fail.  Not a huge deal.
5083	 */
5084
5085	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5086	    anon_size > arc_c / 4) {
5087		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5088		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5089		    arc_tempreserve>>10,
5090		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5091		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5092		    reserve>>10, arc_c>>10);
5093		return (SET_ERROR(ERESTART));
5094	}
5095	atomic_add_64(&arc_tempreserve, reserve);
5096	return (0);
5097}
5098
5099static void
5100arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5101    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5102{
5103	size->value.ui64 = refcount_count(&state->arcs_size);
5104	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5105	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5106}
5107
5108static int
5109arc_kstat_update(kstat_t *ksp, int rw)
5110{
5111	arc_stats_t *as = ksp->ks_data;
5112
5113	if (rw == KSTAT_WRITE) {
5114		return (EACCES);
5115	} else {
5116		arc_kstat_update_state(arc_anon,
5117		    &as->arcstat_anon_size,
5118		    &as->arcstat_anon_evictable_data,
5119		    &as->arcstat_anon_evictable_metadata);
5120		arc_kstat_update_state(arc_mru,
5121		    &as->arcstat_mru_size,
5122		    &as->arcstat_mru_evictable_data,
5123		    &as->arcstat_mru_evictable_metadata);
5124		arc_kstat_update_state(arc_mru_ghost,
5125		    &as->arcstat_mru_ghost_size,
5126		    &as->arcstat_mru_ghost_evictable_data,
5127		    &as->arcstat_mru_ghost_evictable_metadata);
5128		arc_kstat_update_state(arc_mfu,
5129		    &as->arcstat_mfu_size,
5130		    &as->arcstat_mfu_evictable_data,
5131		    &as->arcstat_mfu_evictable_metadata);
5132		arc_kstat_update_state(arc_mfu_ghost,
5133		    &as->arcstat_mfu_ghost_size,
5134		    &as->arcstat_mfu_ghost_evictable_data,
5135		    &as->arcstat_mfu_ghost_evictable_metadata);
5136	}
5137
5138	return (0);
5139}
5140
5141/*
5142 * This function *must* return indices evenly distributed between all
5143 * sublists of the multilist. This is needed due to how the ARC eviction
5144 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5145 * distributed between all sublists and uses this assumption when
5146 * deciding which sublist to evict from and how much to evict from it.
5147 */
5148unsigned int
5149arc_state_multilist_index_func(multilist_t *ml, void *obj)
5150{
5151	arc_buf_hdr_t *hdr = obj;
5152
5153	/*
5154	 * We rely on b_dva to generate evenly distributed index
5155	 * numbers using buf_hash below. So, as an added precaution,
5156	 * let's make sure we never add empty buffers to the arc lists.
5157	 */
5158	ASSERT(!BUF_EMPTY(hdr));
5159
5160	/*
5161	 * The assumption here, is the hash value for a given
5162	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5163	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5164	 * Thus, we don't need to store the header's sublist index
5165	 * on insertion, as this index can be recalculated on removal.
5166	 *
5167	 * Also, the low order bits of the hash value are thought to be
5168	 * distributed evenly. Otherwise, in the case that the multilist
5169	 * has a power of two number of sublists, each sublists' usage
5170	 * would not be evenly distributed.
5171	 */
5172	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5173	    multilist_get_num_sublists(ml));
5174}
5175
5176#ifdef _KERNEL
5177static eventhandler_tag arc_event_lowmem = NULL;
5178
5179static void
5180arc_lowmem(void *arg __unused, int howto __unused)
5181{
5182
5183	mutex_enter(&arc_reclaim_lock);
5184	/* XXX: Memory deficit should be passed as argument. */
5185	needfree = btoc(arc_c >> arc_shrink_shift);
5186	DTRACE_PROBE(arc__needfree);
5187	cv_signal(&arc_reclaim_thread_cv);
5188
5189	/*
5190	 * It is unsafe to block here in arbitrary threads, because we can come
5191	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5192	 * with ARC reclaim thread.
5193	 */
5194	if (curproc == pageproc)
5195		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5196	mutex_exit(&arc_reclaim_lock);
5197}
5198#endif
5199
5200void
5201arc_init(void)
5202{
5203	int i, prefetch_tunable_set = 0;
5204
5205	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5206	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5207	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5208
5209	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5210	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5211
5212	/* Convert seconds to clock ticks */
5213	arc_min_prefetch_lifespan = 1 * hz;
5214
5215	/* Start out with 1/8 of all memory */
5216	arc_c = kmem_size() / 8;
5217
5218#ifdef illumos
5219#ifdef _KERNEL
5220	/*
5221	 * On architectures where the physical memory can be larger
5222	 * than the addressable space (intel in 32-bit mode), we may
5223	 * need to limit the cache to 1/8 of VM size.
5224	 */
5225	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5226#endif
5227#endif	/* illumos */
5228	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
5229	arc_c_min = MAX(arc_c / 4, 16 << 20);
5230	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5231	if (arc_c * 8 >= 1 << 30)
5232		arc_c_max = (arc_c * 8) - (1 << 30);
5233	else
5234		arc_c_max = arc_c_min;
5235	arc_c_max = MAX(arc_c * 5, arc_c_max);
5236
5237#ifdef _KERNEL
5238	/*
5239	 * Allow the tunables to override our calculations if they are
5240	 * reasonable (ie. over 16MB)
5241	 */
5242	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
5243		arc_c_max = zfs_arc_max;
5244	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
5245		arc_c_min = zfs_arc_min;
5246#endif
5247
5248	arc_c = arc_c_max;
5249	arc_p = (arc_c >> 1);
5250
5251	/* limit meta-data to 1/4 of the arc capacity */
5252	arc_meta_limit = arc_c_max / 4;
5253
5254	/* Allow the tunable to override if it is reasonable */
5255	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5256		arc_meta_limit = zfs_arc_meta_limit;
5257
5258	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5259		arc_c_min = arc_meta_limit / 2;
5260
5261	if (zfs_arc_meta_min > 0) {
5262		arc_meta_min = zfs_arc_meta_min;
5263	} else {
5264		arc_meta_min = arc_c_min / 2;
5265	}
5266
5267	if (zfs_arc_grow_retry > 0)
5268		arc_grow_retry = zfs_arc_grow_retry;
5269
5270	if (zfs_arc_shrink_shift > 0)
5271		arc_shrink_shift = zfs_arc_shrink_shift;
5272
5273	/*
5274	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5275	 */
5276	if (arc_no_grow_shift >= arc_shrink_shift)
5277		arc_no_grow_shift = arc_shrink_shift - 1;
5278
5279	if (zfs_arc_p_min_shift > 0)
5280		arc_p_min_shift = zfs_arc_p_min_shift;
5281
5282	if (zfs_arc_num_sublists_per_state < 1)
5283		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5284
5285	/* if kmem_flags are set, lets try to use less memory */
5286	if (kmem_debugging())
5287		arc_c = arc_c / 2;
5288	if (arc_c < arc_c_min)
5289		arc_c = arc_c_min;
5290
5291	zfs_arc_min = arc_c_min;
5292	zfs_arc_max = arc_c_max;
5293
5294	arc_anon = &ARC_anon;
5295	arc_mru = &ARC_mru;
5296	arc_mru_ghost = &ARC_mru_ghost;
5297	arc_mfu = &ARC_mfu;
5298	arc_mfu_ghost = &ARC_mfu_ghost;
5299	arc_l2c_only = &ARC_l2c_only;
5300	arc_size = 0;
5301
5302	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5303	    sizeof (arc_buf_hdr_t),
5304	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5305	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5306	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5307	    sizeof (arc_buf_hdr_t),
5308	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5309	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5310	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5311	    sizeof (arc_buf_hdr_t),
5312	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5313	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5314	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5315	    sizeof (arc_buf_hdr_t),
5316	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5317	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5318	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5319	    sizeof (arc_buf_hdr_t),
5320	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5321	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5322	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5323	    sizeof (arc_buf_hdr_t),
5324	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5325	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5326	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5327	    sizeof (arc_buf_hdr_t),
5328	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5329	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5330	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5331	    sizeof (arc_buf_hdr_t),
5332	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5333	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5334	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5335	    sizeof (arc_buf_hdr_t),
5336	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5337	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5338	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5339	    sizeof (arc_buf_hdr_t),
5340	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5341	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5342
5343	refcount_create(&arc_anon->arcs_size);
5344	refcount_create(&arc_mru->arcs_size);
5345	refcount_create(&arc_mru_ghost->arcs_size);
5346	refcount_create(&arc_mfu->arcs_size);
5347	refcount_create(&arc_mfu_ghost->arcs_size);
5348	refcount_create(&arc_l2c_only->arcs_size);
5349
5350	buf_init();
5351
5352	arc_reclaim_thread_exit = FALSE;
5353	arc_user_evicts_thread_exit = FALSE;
5354	arc_eviction_list = NULL;
5355	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5356
5357	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5358	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5359
5360	if (arc_ksp != NULL) {
5361		arc_ksp->ks_data = &arc_stats;
5362		arc_ksp->ks_update = arc_kstat_update;
5363		kstat_install(arc_ksp);
5364	}
5365
5366	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5367	    TS_RUN, minclsyspri);
5368
5369#ifdef _KERNEL
5370	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5371	    EVENTHANDLER_PRI_FIRST);
5372#endif
5373
5374	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5375	    TS_RUN, minclsyspri);
5376
5377	arc_dead = FALSE;
5378	arc_warm = B_FALSE;
5379
5380	/*
5381	 * Calculate maximum amount of dirty data per pool.
5382	 *
5383	 * If it has been set by /etc/system, take that.
5384	 * Otherwise, use a percentage of physical memory defined by
5385	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5386	 * zfs_dirty_data_max_max (default 4GB).
5387	 */
5388	if (zfs_dirty_data_max == 0) {
5389		zfs_dirty_data_max = ptob(physmem) *
5390		    zfs_dirty_data_max_percent / 100;
5391		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5392		    zfs_dirty_data_max_max);
5393	}
5394
5395#ifdef _KERNEL
5396	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5397		prefetch_tunable_set = 1;
5398
5399#ifdef __i386__
5400	if (prefetch_tunable_set == 0) {
5401		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5402		    "-- to enable,\n");
5403		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5404		    "to /boot/loader.conf.\n");
5405		zfs_prefetch_disable = 1;
5406	}
5407#else
5408	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5409	    prefetch_tunable_set == 0) {
5410		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5411		    "than 4GB of RAM is present;\n"
5412		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5413		    "to /boot/loader.conf.\n");
5414		zfs_prefetch_disable = 1;
5415	}
5416#endif
5417	/* Warn about ZFS memory and address space requirements. */
5418	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5419		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5420		    "expect unstable behavior.\n");
5421	}
5422	if (kmem_size() < 512 * (1 << 20)) {
5423		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5424		    "expect unstable behavior.\n");
5425		printf("             Consider tuning vm.kmem_size and "
5426		    "vm.kmem_size_max\n");
5427		printf("             in /boot/loader.conf.\n");
5428	}
5429#endif
5430}
5431
5432void
5433arc_fini(void)
5434{
5435	mutex_enter(&arc_reclaim_lock);
5436	arc_reclaim_thread_exit = TRUE;
5437	/*
5438	 * The reclaim thread will set arc_reclaim_thread_exit back to
5439	 * FALSE when it is finished exiting; we're waiting for that.
5440	 */
5441	while (arc_reclaim_thread_exit) {
5442		cv_signal(&arc_reclaim_thread_cv);
5443		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5444	}
5445	mutex_exit(&arc_reclaim_lock);
5446
5447	mutex_enter(&arc_user_evicts_lock);
5448	arc_user_evicts_thread_exit = TRUE;
5449	/*
5450	 * The user evicts thread will set arc_user_evicts_thread_exit
5451	 * to FALSE when it is finished exiting; we're waiting for that.
5452	 */
5453	while (arc_user_evicts_thread_exit) {
5454		cv_signal(&arc_user_evicts_cv);
5455		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5456	}
5457	mutex_exit(&arc_user_evicts_lock);
5458
5459	/* Use TRUE to ensure *all* buffers are evicted */
5460	arc_flush(NULL, TRUE);
5461
5462	arc_dead = TRUE;
5463
5464	if (arc_ksp != NULL) {
5465		kstat_delete(arc_ksp);
5466		arc_ksp = NULL;
5467	}
5468
5469	mutex_destroy(&arc_reclaim_lock);
5470	cv_destroy(&arc_reclaim_thread_cv);
5471	cv_destroy(&arc_reclaim_waiters_cv);
5472
5473	mutex_destroy(&arc_user_evicts_lock);
5474	cv_destroy(&arc_user_evicts_cv);
5475
5476	refcount_destroy(&arc_anon->arcs_size);
5477	refcount_destroy(&arc_mru->arcs_size);
5478	refcount_destroy(&arc_mru_ghost->arcs_size);
5479	refcount_destroy(&arc_mfu->arcs_size);
5480	refcount_destroy(&arc_mfu_ghost->arcs_size);
5481	refcount_destroy(&arc_l2c_only->arcs_size);
5482
5483	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5484	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5485	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5486	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5487	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5488	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5489	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5490	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5491
5492	buf_fini();
5493
5494	ASSERT0(arc_loaned_bytes);
5495
5496#ifdef _KERNEL
5497	if (arc_event_lowmem != NULL)
5498		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5499#endif
5500}
5501
5502/*
5503 * Level 2 ARC
5504 *
5505 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5506 * It uses dedicated storage devices to hold cached data, which are populated
5507 * using large infrequent writes.  The main role of this cache is to boost
5508 * the performance of random read workloads.  The intended L2ARC devices
5509 * include short-stroked disks, solid state disks, and other media with
5510 * substantially faster read latency than disk.
5511 *
5512 *                 +-----------------------+
5513 *                 |         ARC           |
5514 *                 +-----------------------+
5515 *                    |         ^     ^
5516 *                    |         |     |
5517 *      l2arc_feed_thread()    arc_read()
5518 *                    |         |     |
5519 *                    |  l2arc read   |
5520 *                    V         |     |
5521 *               +---------------+    |
5522 *               |     L2ARC     |    |
5523 *               +---------------+    |
5524 *                   |    ^           |
5525 *          l2arc_write() |           |
5526 *                   |    |           |
5527 *                   V    |           |
5528 *                 +-------+      +-------+
5529 *                 | vdev  |      | vdev  |
5530 *                 | cache |      | cache |
5531 *                 +-------+      +-------+
5532 *                 +=========+     .-----.
5533 *                 :  L2ARC  :    |-_____-|
5534 *                 : devices :    | Disks |
5535 *                 +=========+    `-_____-'
5536 *
5537 * Read requests are satisfied from the following sources, in order:
5538 *
5539 *	1) ARC
5540 *	2) vdev cache of L2ARC devices
5541 *	3) L2ARC devices
5542 *	4) vdev cache of disks
5543 *	5) disks
5544 *
5545 * Some L2ARC device types exhibit extremely slow write performance.
5546 * To accommodate for this there are some significant differences between
5547 * the L2ARC and traditional cache design:
5548 *
5549 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5550 * the ARC behave as usual, freeing buffers and placing headers on ghost
5551 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5552 * this would add inflated write latencies for all ARC memory pressure.
5553 *
5554 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5555 * It does this by periodically scanning buffers from the eviction-end of
5556 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5557 * not already there. It scans until a headroom of buffers is satisfied,
5558 * which itself is a buffer for ARC eviction. If a compressible buffer is
5559 * found during scanning and selected for writing to an L2ARC device, we
5560 * temporarily boost scanning headroom during the next scan cycle to make
5561 * sure we adapt to compression effects (which might significantly reduce
5562 * the data volume we write to L2ARC). The thread that does this is
5563 * l2arc_feed_thread(), illustrated below; example sizes are included to
5564 * provide a better sense of ratio than this diagram:
5565 *
5566 *	       head -->                        tail
5567 *	        +---------------------+----------+
5568 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5569 *	        +---------------------+----------+   |   o L2ARC eligible
5570 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5571 *	        +---------------------+----------+   |
5572 *	             15.9 Gbytes      ^ 32 Mbytes    |
5573 *	                           headroom          |
5574 *	                                      l2arc_feed_thread()
5575 *	                                             |
5576 *	                 l2arc write hand <--[oooo]--'
5577 *	                         |           8 Mbyte
5578 *	                         |          write max
5579 *	                         V
5580 *		  +==============================+
5581 *	L2ARC dev |####|#|###|###|    |####| ... |
5582 *	          +==============================+
5583 *	                     32 Gbytes
5584 *
5585 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5586 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5587 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5588 * safe to say that this is an uncommon case, since buffers at the end of
5589 * the ARC lists have moved there due to inactivity.
5590 *
5591 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5592 * then the L2ARC simply misses copying some buffers.  This serves as a
5593 * pressure valve to prevent heavy read workloads from both stalling the ARC
5594 * with waits and clogging the L2ARC with writes.  This also helps prevent
5595 * the potential for the L2ARC to churn if it attempts to cache content too
5596 * quickly, such as during backups of the entire pool.
5597 *
5598 * 5. After system boot and before the ARC has filled main memory, there are
5599 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5600 * lists can remain mostly static.  Instead of searching from tail of these
5601 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5602 * for eligible buffers, greatly increasing its chance of finding them.
5603 *
5604 * The L2ARC device write speed is also boosted during this time so that
5605 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5606 * there are no L2ARC reads, and no fear of degrading read performance
5607 * through increased writes.
5608 *
5609 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5610 * the vdev queue can aggregate them into larger and fewer writes.  Each
5611 * device is written to in a rotor fashion, sweeping writes through
5612 * available space then repeating.
5613 *
5614 * 7. The L2ARC does not store dirty content.  It never needs to flush
5615 * write buffers back to disk based storage.
5616 *
5617 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5618 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5619 *
5620 * The performance of the L2ARC can be tweaked by a number of tunables, which
5621 * may be necessary for different workloads:
5622 *
5623 *	l2arc_write_max		max write bytes per interval
5624 *	l2arc_write_boost	extra write bytes during device warmup
5625 *	l2arc_noprefetch	skip caching prefetched buffers
5626 *	l2arc_headroom		number of max device writes to precache
5627 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5628 *				scanning, we multiply headroom by this
5629 *				percentage factor for the next scan cycle,
5630 *				since more compressed buffers are likely to
5631 *				be present
5632 *	l2arc_feed_secs		seconds between L2ARC writing
5633 *
5634 * Tunables may be removed or added as future performance improvements are
5635 * integrated, and also may become zpool properties.
5636 *
5637 * There are three key functions that control how the L2ARC warms up:
5638 *
5639 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5640 *	l2arc_write_size()	calculate how much to write
5641 *	l2arc_write_interval()	calculate sleep delay between writes
5642 *
5643 * These three functions determine what to write, how much, and how quickly
5644 * to send writes.
5645 */
5646
5647static boolean_t
5648l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5649{
5650	/*
5651	 * A buffer is *not* eligible for the L2ARC if it:
5652	 * 1. belongs to a different spa.
5653	 * 2. is already cached on the L2ARC.
5654	 * 3. has an I/O in progress (it may be an incomplete read).
5655	 * 4. is flagged not eligible (zfs property).
5656	 */
5657	if (hdr->b_spa != spa_guid) {
5658		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5659		return (B_FALSE);
5660	}
5661	if (HDR_HAS_L2HDR(hdr)) {
5662		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5663		return (B_FALSE);
5664	}
5665	if (HDR_IO_IN_PROGRESS(hdr)) {
5666		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5667		return (B_FALSE);
5668	}
5669	if (!HDR_L2CACHE(hdr)) {
5670		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5671		return (B_FALSE);
5672	}
5673
5674	return (B_TRUE);
5675}
5676
5677static uint64_t
5678l2arc_write_size(void)
5679{
5680	uint64_t size;
5681
5682	/*
5683	 * Make sure our globals have meaningful values in case the user
5684	 * altered them.
5685	 */
5686	size = l2arc_write_max;
5687	if (size == 0) {
5688		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5689		    "be greater than zero, resetting it to the default (%d)",
5690		    L2ARC_WRITE_SIZE);
5691		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5692	}
5693
5694	if (arc_warm == B_FALSE)
5695		size += l2arc_write_boost;
5696
5697	return (size);
5698
5699}
5700
5701static clock_t
5702l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5703{
5704	clock_t interval, next, now;
5705
5706	/*
5707	 * If the ARC lists are busy, increase our write rate; if the
5708	 * lists are stale, idle back.  This is achieved by checking
5709	 * how much we previously wrote - if it was more than half of
5710	 * what we wanted, schedule the next write much sooner.
5711	 */
5712	if (l2arc_feed_again && wrote > (wanted / 2))
5713		interval = (hz * l2arc_feed_min_ms) / 1000;
5714	else
5715		interval = hz * l2arc_feed_secs;
5716
5717	now = ddi_get_lbolt();
5718	next = MAX(now, MIN(now + interval, began + interval));
5719
5720	return (next);
5721}
5722
5723/*
5724 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5725 * If a device is returned, this also returns holding the spa config lock.
5726 */
5727static l2arc_dev_t *
5728l2arc_dev_get_next(void)
5729{
5730	l2arc_dev_t *first, *next = NULL;
5731
5732	/*
5733	 * Lock out the removal of spas (spa_namespace_lock), then removal
5734	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5735	 * both locks will be dropped and a spa config lock held instead.
5736	 */
5737	mutex_enter(&spa_namespace_lock);
5738	mutex_enter(&l2arc_dev_mtx);
5739
5740	/* if there are no vdevs, there is nothing to do */
5741	if (l2arc_ndev == 0)
5742		goto out;
5743
5744	first = NULL;
5745	next = l2arc_dev_last;
5746	do {
5747		/* loop around the list looking for a non-faulted vdev */
5748		if (next == NULL) {
5749			next = list_head(l2arc_dev_list);
5750		} else {
5751			next = list_next(l2arc_dev_list, next);
5752			if (next == NULL)
5753				next = list_head(l2arc_dev_list);
5754		}
5755
5756		/* if we have come back to the start, bail out */
5757		if (first == NULL)
5758			first = next;
5759		else if (next == first)
5760			break;
5761
5762	} while (vdev_is_dead(next->l2ad_vdev));
5763
5764	/* if we were unable to find any usable vdevs, return NULL */
5765	if (vdev_is_dead(next->l2ad_vdev))
5766		next = NULL;
5767
5768	l2arc_dev_last = next;
5769
5770out:
5771	mutex_exit(&l2arc_dev_mtx);
5772
5773	/*
5774	 * Grab the config lock to prevent the 'next' device from being
5775	 * removed while we are writing to it.
5776	 */
5777	if (next != NULL)
5778		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5779	mutex_exit(&spa_namespace_lock);
5780
5781	return (next);
5782}
5783
5784/*
5785 * Free buffers that were tagged for destruction.
5786 */
5787static void
5788l2arc_do_free_on_write()
5789{
5790	list_t *buflist;
5791	l2arc_data_free_t *df, *df_prev;
5792
5793	mutex_enter(&l2arc_free_on_write_mtx);
5794	buflist = l2arc_free_on_write;
5795
5796	for (df = list_tail(buflist); df; df = df_prev) {
5797		df_prev = list_prev(buflist, df);
5798		ASSERT(df->l2df_data != NULL);
5799		ASSERT(df->l2df_func != NULL);
5800		df->l2df_func(df->l2df_data, df->l2df_size);
5801		list_remove(buflist, df);
5802		kmem_free(df, sizeof (l2arc_data_free_t));
5803	}
5804
5805	mutex_exit(&l2arc_free_on_write_mtx);
5806}
5807
5808/*
5809 * A write to a cache device has completed.  Update all headers to allow
5810 * reads from these buffers to begin.
5811 */
5812static void
5813l2arc_write_done(zio_t *zio)
5814{
5815	l2arc_write_callback_t *cb;
5816	l2arc_dev_t *dev;
5817	list_t *buflist;
5818	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5819	kmutex_t *hash_lock;
5820	int64_t bytes_dropped = 0;
5821
5822	cb = zio->io_private;
5823	ASSERT(cb != NULL);
5824	dev = cb->l2wcb_dev;
5825	ASSERT(dev != NULL);
5826	head = cb->l2wcb_head;
5827	ASSERT(head != NULL);
5828	buflist = &dev->l2ad_buflist;
5829	ASSERT(buflist != NULL);
5830	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5831	    l2arc_write_callback_t *, cb);
5832
5833	if (zio->io_error != 0)
5834		ARCSTAT_BUMP(arcstat_l2_writes_error);
5835
5836	/*
5837	 * All writes completed, or an error was hit.
5838	 */
5839top:
5840	mutex_enter(&dev->l2ad_mtx);
5841	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5842		hdr_prev = list_prev(buflist, hdr);
5843
5844		hash_lock = HDR_LOCK(hdr);
5845
5846		/*
5847		 * We cannot use mutex_enter or else we can deadlock
5848		 * with l2arc_write_buffers (due to swapping the order
5849		 * the hash lock and l2ad_mtx are taken).
5850		 */
5851		if (!mutex_tryenter(hash_lock)) {
5852			/*
5853			 * Missed the hash lock. We must retry so we
5854			 * don't leave the ARC_FLAG_L2_WRITING bit set.
5855			 */
5856			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5857
5858			/*
5859			 * We don't want to rescan the headers we've
5860			 * already marked as having been written out, so
5861			 * we reinsert the head node so we can pick up
5862			 * where we left off.
5863			 */
5864			list_remove(buflist, head);
5865			list_insert_after(buflist, hdr, head);
5866
5867			mutex_exit(&dev->l2ad_mtx);
5868
5869			/*
5870			 * We wait for the hash lock to become available
5871			 * to try and prevent busy waiting, and increase
5872			 * the chance we'll be able to acquire the lock
5873			 * the next time around.
5874			 */
5875			mutex_enter(hash_lock);
5876			mutex_exit(hash_lock);
5877			goto top;
5878		}
5879
5880		/*
5881		 * We could not have been moved into the arc_l2c_only
5882		 * state while in-flight due to our ARC_FLAG_L2_WRITING
5883		 * bit being set. Let's just ensure that's being enforced.
5884		 */
5885		ASSERT(HDR_HAS_L1HDR(hdr));
5886
5887		/*
5888		 * We may have allocated a buffer for L2ARC compression,
5889		 * we must release it to avoid leaking this data.
5890		 */
5891		l2arc_release_cdata_buf(hdr);
5892
5893		if (zio->io_error != 0) {
5894			/*
5895			 * Error - drop L2ARC entry.
5896			 */
5897			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5898			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5899			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5900
5901			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5902			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5903
5904			bytes_dropped += hdr->b_l2hdr.b_asize;
5905			(void) refcount_remove_many(&dev->l2ad_alloc,
5906			    hdr->b_l2hdr.b_asize, hdr);
5907		}
5908
5909		/*
5910		 * Allow ARC to begin reads and ghost list evictions to
5911		 * this L2ARC entry.
5912		 */
5913		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5914
5915		mutex_exit(hash_lock);
5916	}
5917
5918	atomic_inc_64(&l2arc_writes_done);
5919	list_remove(buflist, head);
5920	ASSERT(!HDR_HAS_L1HDR(head));
5921	kmem_cache_free(hdr_l2only_cache, head);
5922	mutex_exit(&dev->l2ad_mtx);
5923
5924	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5925
5926	l2arc_do_free_on_write();
5927
5928	kmem_free(cb, sizeof (l2arc_write_callback_t));
5929}
5930
5931/*
5932 * A read to a cache device completed.  Validate buffer contents before
5933 * handing over to the regular ARC routines.
5934 */
5935static void
5936l2arc_read_done(zio_t *zio)
5937{
5938	l2arc_read_callback_t *cb;
5939	arc_buf_hdr_t *hdr;
5940	arc_buf_t *buf;
5941	kmutex_t *hash_lock;
5942	int equal;
5943
5944	ASSERT(zio->io_vd != NULL);
5945	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5946
5947	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5948
5949	cb = zio->io_private;
5950	ASSERT(cb != NULL);
5951	buf = cb->l2rcb_buf;
5952	ASSERT(buf != NULL);
5953
5954	hash_lock = HDR_LOCK(buf->b_hdr);
5955	mutex_enter(hash_lock);
5956	hdr = buf->b_hdr;
5957	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5958
5959	/*
5960	 * If the buffer was compressed, decompress it first.
5961	 */
5962	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5963		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5964	ASSERT(zio->io_data != NULL);
5965
5966	/*
5967	 * Check this survived the L2ARC journey.
5968	 */
5969	equal = arc_cksum_equal(buf);
5970	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5971		mutex_exit(hash_lock);
5972		zio->io_private = buf;
5973		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
5974		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
5975		arc_read_done(zio);
5976	} else {
5977		mutex_exit(hash_lock);
5978		/*
5979		 * Buffer didn't survive caching.  Increment stats and
5980		 * reissue to the original storage device.
5981		 */
5982		if (zio->io_error != 0) {
5983			ARCSTAT_BUMP(arcstat_l2_io_error);
5984		} else {
5985			zio->io_error = SET_ERROR(EIO);
5986		}
5987		if (!equal)
5988			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5989
5990		/*
5991		 * If there's no waiter, issue an async i/o to the primary
5992		 * storage now.  If there *is* a waiter, the caller must
5993		 * issue the i/o in a context where it's OK to block.
5994		 */
5995		if (zio->io_waiter == NULL) {
5996			zio_t *pio = zio_unique_parent(zio);
5997
5998			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5999
6000			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6001			    buf->b_data, zio->io_size, arc_read_done, buf,
6002			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6003		}
6004	}
6005
6006	kmem_free(cb, sizeof (l2arc_read_callback_t));
6007}
6008
6009/*
6010 * This is the list priority from which the L2ARC will search for pages to
6011 * cache.  This is used within loops (0..3) to cycle through lists in the
6012 * desired order.  This order can have a significant effect on cache
6013 * performance.
6014 *
6015 * Currently the metadata lists are hit first, MFU then MRU, followed by
6016 * the data lists.  This function returns a locked list, and also returns
6017 * the lock pointer.
6018 */
6019static multilist_sublist_t *
6020l2arc_sublist_lock(int list_num)
6021{
6022	multilist_t *ml = NULL;
6023	unsigned int idx;
6024
6025	ASSERT(list_num >= 0 && list_num <= 3);
6026
6027	switch (list_num) {
6028	case 0:
6029		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6030		break;
6031	case 1:
6032		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6033		break;
6034	case 2:
6035		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6036		break;
6037	case 3:
6038		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6039		break;
6040	}
6041
6042	/*
6043	 * Return a randomly-selected sublist. This is acceptable
6044	 * because the caller feeds only a little bit of data for each
6045	 * call (8MB). Subsequent calls will result in different
6046	 * sublists being selected.
6047	 */
6048	idx = multilist_get_random_index(ml);
6049	return (multilist_sublist_lock(ml, idx));
6050}
6051
6052/*
6053 * Evict buffers from the device write hand to the distance specified in
6054 * bytes.  This distance may span populated buffers, it may span nothing.
6055 * This is clearing a region on the L2ARC device ready for writing.
6056 * If the 'all' boolean is set, every buffer is evicted.
6057 */
6058static void
6059l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6060{
6061	list_t *buflist;
6062	arc_buf_hdr_t *hdr, *hdr_prev;
6063	kmutex_t *hash_lock;
6064	uint64_t taddr;
6065
6066	buflist = &dev->l2ad_buflist;
6067
6068	if (!all && dev->l2ad_first) {
6069		/*
6070		 * This is the first sweep through the device.  There is
6071		 * nothing to evict.
6072		 */
6073		return;
6074	}
6075
6076	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6077		/*
6078		 * When nearing the end of the device, evict to the end
6079		 * before the device write hand jumps to the start.
6080		 */
6081		taddr = dev->l2ad_end;
6082	} else {
6083		taddr = dev->l2ad_hand + distance;
6084	}
6085	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6086	    uint64_t, taddr, boolean_t, all);
6087
6088top:
6089	mutex_enter(&dev->l2ad_mtx);
6090	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6091		hdr_prev = list_prev(buflist, hdr);
6092
6093		hash_lock = HDR_LOCK(hdr);
6094
6095		/*
6096		 * We cannot use mutex_enter or else we can deadlock
6097		 * with l2arc_write_buffers (due to swapping the order
6098		 * the hash lock and l2ad_mtx are taken).
6099		 */
6100		if (!mutex_tryenter(hash_lock)) {
6101			/*
6102			 * Missed the hash lock.  Retry.
6103			 */
6104			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6105			mutex_exit(&dev->l2ad_mtx);
6106			mutex_enter(hash_lock);
6107			mutex_exit(hash_lock);
6108			goto top;
6109		}
6110
6111		if (HDR_L2_WRITE_HEAD(hdr)) {
6112			/*
6113			 * We hit a write head node.  Leave it for
6114			 * l2arc_write_done().
6115			 */
6116			list_remove(buflist, hdr);
6117			mutex_exit(hash_lock);
6118			continue;
6119		}
6120
6121		if (!all && HDR_HAS_L2HDR(hdr) &&
6122		    (hdr->b_l2hdr.b_daddr > taddr ||
6123		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6124			/*
6125			 * We've evicted to the target address,
6126			 * or the end of the device.
6127			 */
6128			mutex_exit(hash_lock);
6129			break;
6130		}
6131
6132		ASSERT(HDR_HAS_L2HDR(hdr));
6133		if (!HDR_HAS_L1HDR(hdr)) {
6134			ASSERT(!HDR_L2_READING(hdr));
6135			/*
6136			 * This doesn't exist in the ARC.  Destroy.
6137			 * arc_hdr_destroy() will call list_remove()
6138			 * and decrement arcstat_l2_size.
6139			 */
6140			arc_change_state(arc_anon, hdr, hash_lock);
6141			arc_hdr_destroy(hdr);
6142		} else {
6143			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6144			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6145			/*
6146			 * Invalidate issued or about to be issued
6147			 * reads, since we may be about to write
6148			 * over this location.
6149			 */
6150			if (HDR_L2_READING(hdr)) {
6151				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6152				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6153			}
6154
6155			/* Ensure this header has finished being written */
6156			ASSERT(!HDR_L2_WRITING(hdr));
6157			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6158
6159			arc_hdr_l2hdr_destroy(hdr);
6160		}
6161		mutex_exit(hash_lock);
6162	}
6163	mutex_exit(&dev->l2ad_mtx);
6164}
6165
6166/*
6167 * Find and write ARC buffers to the L2ARC device.
6168 *
6169 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6170 * for reading until they have completed writing.
6171 * The headroom_boost is an in-out parameter used to maintain headroom boost
6172 * state between calls to this function.
6173 *
6174 * Returns the number of bytes actually written (which may be smaller than
6175 * the delta by which the device hand has changed due to alignment).
6176 */
6177static uint64_t
6178l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6179    boolean_t *headroom_boost)
6180{
6181	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6182	uint64_t write_asize, write_psize, write_sz, headroom,
6183	    buf_compress_minsz;
6184	void *buf_data;
6185	boolean_t full;
6186	l2arc_write_callback_t *cb;
6187	zio_t *pio, *wzio;
6188	uint64_t guid = spa_load_guid(spa);
6189	const boolean_t do_headroom_boost = *headroom_boost;
6190	int try;
6191
6192	ASSERT(dev->l2ad_vdev != NULL);
6193
6194	/* Lower the flag now, we might want to raise it again later. */
6195	*headroom_boost = B_FALSE;
6196
6197	pio = NULL;
6198	write_sz = write_asize = write_psize = 0;
6199	full = B_FALSE;
6200	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6201	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6202	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6203
6204	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6205	/*
6206	 * We will want to try to compress buffers that are at least 2x the
6207	 * device sector size.
6208	 */
6209	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6210
6211	/*
6212	 * Copy buffers for L2ARC writing.
6213	 */
6214	for (try = 0; try <= 3; try++) {
6215		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6216		uint64_t passed_sz = 0;
6217
6218		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6219
6220		/*
6221		 * L2ARC fast warmup.
6222		 *
6223		 * Until the ARC is warm and starts to evict, read from the
6224		 * head of the ARC lists rather than the tail.
6225		 */
6226		if (arc_warm == B_FALSE)
6227			hdr = multilist_sublist_head(mls);
6228		else
6229			hdr = multilist_sublist_tail(mls);
6230		if (hdr == NULL)
6231			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6232
6233		headroom = target_sz * l2arc_headroom;
6234		if (do_headroom_boost)
6235			headroom = (headroom * l2arc_headroom_boost) / 100;
6236
6237		for (; hdr; hdr = hdr_prev) {
6238			kmutex_t *hash_lock;
6239			uint64_t buf_sz;
6240
6241			if (arc_warm == B_FALSE)
6242				hdr_prev = multilist_sublist_next(mls, hdr);
6243			else
6244				hdr_prev = multilist_sublist_prev(mls, hdr);
6245			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6246
6247			hash_lock = HDR_LOCK(hdr);
6248			if (!mutex_tryenter(hash_lock)) {
6249				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6250				/*
6251				 * Skip this buffer rather than waiting.
6252				 */
6253				continue;
6254			}
6255
6256			passed_sz += hdr->b_size;
6257			if (passed_sz > headroom) {
6258				/*
6259				 * Searched too far.
6260				 */
6261				mutex_exit(hash_lock);
6262				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6263				break;
6264			}
6265
6266			if (!l2arc_write_eligible(guid, hdr)) {
6267				mutex_exit(hash_lock);
6268				continue;
6269			}
6270
6271			if ((write_sz + hdr->b_size) > target_sz) {
6272				full = B_TRUE;
6273				mutex_exit(hash_lock);
6274				ARCSTAT_BUMP(arcstat_l2_write_full);
6275				break;
6276			}
6277
6278			if (pio == NULL) {
6279				/*
6280				 * Insert a dummy header on the buflist so
6281				 * l2arc_write_done() can find where the
6282				 * write buffers begin without searching.
6283				 */
6284				mutex_enter(&dev->l2ad_mtx);
6285				list_insert_head(&dev->l2ad_buflist, head);
6286				mutex_exit(&dev->l2ad_mtx);
6287
6288				cb = kmem_alloc(
6289				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6290				cb->l2wcb_dev = dev;
6291				cb->l2wcb_head = head;
6292				pio = zio_root(spa, l2arc_write_done, cb,
6293				    ZIO_FLAG_CANFAIL);
6294				ARCSTAT_BUMP(arcstat_l2_write_pios);
6295			}
6296
6297			/*
6298			 * Create and add a new L2ARC header.
6299			 */
6300			hdr->b_l2hdr.b_dev = dev;
6301			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6302			/*
6303			 * Temporarily stash the data buffer in b_tmp_cdata.
6304			 * The subsequent write step will pick it up from
6305			 * there. This is because can't access b_l1hdr.b_buf
6306			 * without holding the hash_lock, which we in turn
6307			 * can't access without holding the ARC list locks
6308			 * (which we want to avoid during compression/writing).
6309			 */
6310			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6311			hdr->b_l2hdr.b_asize = hdr->b_size;
6312			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6313
6314			/*
6315			 * Explicitly set the b_daddr field to a known
6316			 * value which means "invalid address". This
6317			 * enables us to differentiate which stage of
6318			 * l2arc_write_buffers() the particular header
6319			 * is in (e.g. this loop, or the one below).
6320			 * ARC_FLAG_L2_WRITING is not enough to make
6321			 * this distinction, and we need to know in
6322			 * order to do proper l2arc vdev accounting in
6323			 * arc_release() and arc_hdr_destroy().
6324			 *
6325			 * Note, we can't use a new flag to distinguish
6326			 * the two stages because we don't hold the
6327			 * header's hash_lock below, in the second stage
6328			 * of this function. Thus, we can't simply
6329			 * change the b_flags field to denote that the
6330			 * IO has been sent. We can change the b_daddr
6331			 * field of the L2 portion, though, since we'll
6332			 * be holding the l2ad_mtx; which is why we're
6333			 * using it to denote the header's state change.
6334			 */
6335			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6336
6337			buf_sz = hdr->b_size;
6338			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6339
6340			mutex_enter(&dev->l2ad_mtx);
6341			list_insert_head(&dev->l2ad_buflist, hdr);
6342			mutex_exit(&dev->l2ad_mtx);
6343
6344			/*
6345			 * Compute and store the buffer cksum before
6346			 * writing.  On debug the cksum is verified first.
6347			 */
6348			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6349			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6350
6351			mutex_exit(hash_lock);
6352
6353			write_sz += buf_sz;
6354		}
6355
6356		multilist_sublist_unlock(mls);
6357
6358		if (full == B_TRUE)
6359			break;
6360	}
6361
6362	/* No buffers selected for writing? */
6363	if (pio == NULL) {
6364		ASSERT0(write_sz);
6365		ASSERT(!HDR_HAS_L1HDR(head));
6366		kmem_cache_free(hdr_l2only_cache, head);
6367		return (0);
6368	}
6369
6370	mutex_enter(&dev->l2ad_mtx);
6371
6372	/*
6373	 * Now start writing the buffers. We're starting at the write head
6374	 * and work backwards, retracing the course of the buffer selector
6375	 * loop above.
6376	 */
6377	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6378	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6379		uint64_t buf_sz;
6380
6381		/*
6382		 * We rely on the L1 portion of the header below, so
6383		 * it's invalid for this header to have been evicted out
6384		 * of the ghost cache, prior to being written out. The
6385		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6386		 */
6387		ASSERT(HDR_HAS_L1HDR(hdr));
6388
6389		/*
6390		 * We shouldn't need to lock the buffer here, since we flagged
6391		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6392		 * take care to only access its L2 cache parameters. In
6393		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6394		 * ARC eviction.
6395		 */
6396		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6397
6398		if ((HDR_L2COMPRESS(hdr)) &&
6399		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6400			if (l2arc_compress_buf(hdr)) {
6401				/*
6402				 * If compression succeeded, enable headroom
6403				 * boost on the next scan cycle.
6404				 */
6405				*headroom_boost = B_TRUE;
6406			}
6407		}
6408
6409		/*
6410		 * Pick up the buffer data we had previously stashed away
6411		 * (and now potentially also compressed).
6412		 */
6413		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6414		buf_sz = hdr->b_l2hdr.b_asize;
6415
6416		/*
6417		 * If the data has not been compressed, then clear b_tmp_cdata
6418		 * to make sure that it points only to a temporary compression
6419		 * buffer.
6420		 */
6421		if (!L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)))
6422			hdr->b_l1hdr.b_tmp_cdata = NULL;
6423
6424		/*
6425		 * We need to do this regardless if buf_sz is zero or
6426		 * not, otherwise, when this l2hdr is evicted we'll
6427		 * remove a reference that was never added.
6428		 */
6429		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6430
6431		/* Compression may have squashed the buffer to zero length. */
6432		if (buf_sz != 0) {
6433			uint64_t buf_p_sz;
6434
6435			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6436			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6437			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6438			    ZIO_FLAG_CANFAIL, B_FALSE);
6439
6440			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6441			    zio_t *, wzio);
6442			(void) zio_nowait(wzio);
6443
6444			write_asize += buf_sz;
6445
6446			/*
6447			 * Keep the clock hand suitably device-aligned.
6448			 */
6449			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6450			write_psize += buf_p_sz;
6451			dev->l2ad_hand += buf_p_sz;
6452		}
6453	}
6454
6455	mutex_exit(&dev->l2ad_mtx);
6456
6457	ASSERT3U(write_asize, <=, target_sz);
6458	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6459	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6460	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6461	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6462	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6463
6464	/*
6465	 * Bump device hand to the device start if it is approaching the end.
6466	 * l2arc_evict() will already have evicted ahead for this case.
6467	 */
6468	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6469		dev->l2ad_hand = dev->l2ad_start;
6470		dev->l2ad_first = B_FALSE;
6471	}
6472
6473	dev->l2ad_writing = B_TRUE;
6474	(void) zio_wait(pio);
6475	dev->l2ad_writing = B_FALSE;
6476
6477	return (write_asize);
6478}
6479
6480/*
6481 * Compresses an L2ARC buffer.
6482 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6483 * size in l2hdr->b_asize. This routine tries to compress the data and
6484 * depending on the compression result there are three possible outcomes:
6485 * *) The buffer was incompressible. The original l2hdr contents were left
6486 *    untouched and are ready for writing to an L2 device.
6487 * *) The buffer was all-zeros, so there is no need to write it to an L2
6488 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6489 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6490 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6491 *    data buffer which holds the compressed data to be written, and b_asize
6492 *    tells us how much data there is. b_compress is set to the appropriate
6493 *    compression algorithm. Once writing is done, invoke
6494 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6495 *
6496 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6497 * buffer was incompressible).
6498 */
6499static boolean_t
6500l2arc_compress_buf(arc_buf_hdr_t *hdr)
6501{
6502	void *cdata;
6503	size_t csize, len, rounded;
6504	ASSERT(HDR_HAS_L2HDR(hdr));
6505	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6506
6507	ASSERT(HDR_HAS_L1HDR(hdr));
6508	ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6509	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6510
6511	len = l2hdr->b_asize;
6512	cdata = zio_data_buf_alloc(len);
6513	ASSERT3P(cdata, !=, NULL);
6514	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6515	    cdata, l2hdr->b_asize);
6516
6517	if (csize == 0) {
6518		/* zero block, indicate that there's nothing to write */
6519		zio_data_buf_free(cdata, len);
6520		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6521		l2hdr->b_asize = 0;
6522		hdr->b_l1hdr.b_tmp_cdata = NULL;
6523		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6524		return (B_TRUE);
6525	}
6526
6527	rounded = P2ROUNDUP(csize,
6528	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
6529	if (rounded < len) {
6530		/*
6531		 * Compression succeeded, we'll keep the cdata around for
6532		 * writing and release it afterwards.
6533		 */
6534		if (rounded > csize) {
6535			bzero((char *)cdata + csize, rounded - csize);
6536			csize = rounded;
6537		}
6538		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6539		l2hdr->b_asize = csize;
6540		hdr->b_l1hdr.b_tmp_cdata = cdata;
6541		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6542		return (B_TRUE);
6543	} else {
6544		/*
6545		 * Compression failed, release the compressed buffer.
6546		 * l2hdr will be left unmodified.
6547		 */
6548		zio_data_buf_free(cdata, len);
6549		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6550		return (B_FALSE);
6551	}
6552}
6553
6554/*
6555 * Decompresses a zio read back from an l2arc device. On success, the
6556 * underlying zio's io_data buffer is overwritten by the uncompressed
6557 * version. On decompression error (corrupt compressed stream), the
6558 * zio->io_error value is set to signal an I/O error.
6559 *
6560 * Please note that the compressed data stream is not checksummed, so
6561 * if the underlying device is experiencing data corruption, we may feed
6562 * corrupt data to the decompressor, so the decompressor needs to be
6563 * able to handle this situation (LZ4 does).
6564 */
6565static void
6566l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6567{
6568	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6569
6570	if (zio->io_error != 0) {
6571		/*
6572		 * An io error has occured, just restore the original io
6573		 * size in preparation for a main pool read.
6574		 */
6575		zio->io_orig_size = zio->io_size = hdr->b_size;
6576		return;
6577	}
6578
6579	if (c == ZIO_COMPRESS_EMPTY) {
6580		/*
6581		 * An empty buffer results in a null zio, which means we
6582		 * need to fill its io_data after we're done restoring the
6583		 * buffer's contents.
6584		 */
6585		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6586		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6587		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6588	} else {
6589		ASSERT(zio->io_data != NULL);
6590		/*
6591		 * We copy the compressed data from the start of the arc buffer
6592		 * (the zio_read will have pulled in only what we need, the
6593		 * rest is garbage which we will overwrite at decompression)
6594		 * and then decompress back to the ARC data buffer. This way we
6595		 * can minimize copying by simply decompressing back over the
6596		 * original compressed data (rather than decompressing to an
6597		 * aux buffer and then copying back the uncompressed buffer,
6598		 * which is likely to be much larger).
6599		 */
6600		uint64_t csize;
6601		void *cdata;
6602
6603		csize = zio->io_size;
6604		cdata = zio_data_buf_alloc(csize);
6605		bcopy(zio->io_data, cdata, csize);
6606		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6607		    hdr->b_size) != 0)
6608			zio->io_error = EIO;
6609		zio_data_buf_free(cdata, csize);
6610	}
6611
6612	/* Restore the expected uncompressed IO size. */
6613	zio->io_orig_size = zio->io_size = hdr->b_size;
6614}
6615
6616/*
6617 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6618 * This buffer serves as a temporary holder of compressed data while
6619 * the buffer entry is being written to an l2arc device. Once that is
6620 * done, we can dispose of it.
6621 */
6622static void
6623l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6624{
6625	enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6626
6627	ASSERT(HDR_HAS_L1HDR(hdr));
6628	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6629
6630	if (comp == ZIO_COMPRESS_OFF) {
6631		/*
6632		 * In this case, b_tmp_cdata points to the same buffer
6633		 * as the arc_buf_t's b_data field. We don't want to
6634		 * free it, since the arc_buf_t will handle that.
6635		 */
6636		hdr->b_l1hdr.b_tmp_cdata = NULL;
6637	} else if (comp == ZIO_COMPRESS_EMPTY) {
6638		/*
6639		 * In this case, b_tmp_cdata was compressed to an empty
6640		 * buffer, thus there's nothing to free and b_tmp_cdata
6641		 * should have been set to NULL in l2arc_write_buffers().
6642		 */
6643		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6644	} else {
6645		/*
6646		 * If the data was compressed, then we've allocated a
6647		 * temporary buffer for it, so now we need to release it.
6648		 */
6649		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6650		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6651		    hdr->b_size);
6652		hdr->b_l1hdr.b_tmp_cdata = NULL;
6653	}
6654}
6655
6656/*
6657 * This thread feeds the L2ARC at regular intervals.  This is the beating
6658 * heart of the L2ARC.
6659 */
6660static void
6661l2arc_feed_thread(void *dummy __unused)
6662{
6663	callb_cpr_t cpr;
6664	l2arc_dev_t *dev;
6665	spa_t *spa;
6666	uint64_t size, wrote;
6667	clock_t begin, next = ddi_get_lbolt();
6668	boolean_t headroom_boost = B_FALSE;
6669
6670	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6671
6672	mutex_enter(&l2arc_feed_thr_lock);
6673
6674	while (l2arc_thread_exit == 0) {
6675		CALLB_CPR_SAFE_BEGIN(&cpr);
6676		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6677		    next - ddi_get_lbolt());
6678		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6679		next = ddi_get_lbolt() + hz;
6680
6681		/*
6682		 * Quick check for L2ARC devices.
6683		 */
6684		mutex_enter(&l2arc_dev_mtx);
6685		if (l2arc_ndev == 0) {
6686			mutex_exit(&l2arc_dev_mtx);
6687			continue;
6688		}
6689		mutex_exit(&l2arc_dev_mtx);
6690		begin = ddi_get_lbolt();
6691
6692		/*
6693		 * This selects the next l2arc device to write to, and in
6694		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6695		 * will return NULL if there are now no l2arc devices or if
6696		 * they are all faulted.
6697		 *
6698		 * If a device is returned, its spa's config lock is also
6699		 * held to prevent device removal.  l2arc_dev_get_next()
6700		 * will grab and release l2arc_dev_mtx.
6701		 */
6702		if ((dev = l2arc_dev_get_next()) == NULL)
6703			continue;
6704
6705		spa = dev->l2ad_spa;
6706		ASSERT(spa != NULL);
6707
6708		/*
6709		 * If the pool is read-only then force the feed thread to
6710		 * sleep a little longer.
6711		 */
6712		if (!spa_writeable(spa)) {
6713			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6714			spa_config_exit(spa, SCL_L2ARC, dev);
6715			continue;
6716		}
6717
6718		/*
6719		 * Avoid contributing to memory pressure.
6720		 */
6721		if (arc_reclaim_needed()) {
6722			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6723			spa_config_exit(spa, SCL_L2ARC, dev);
6724			continue;
6725		}
6726
6727		ARCSTAT_BUMP(arcstat_l2_feeds);
6728
6729		size = l2arc_write_size();
6730
6731		/*
6732		 * Evict L2ARC buffers that will be overwritten.
6733		 */
6734		l2arc_evict(dev, size, B_FALSE);
6735
6736		/*
6737		 * Write ARC buffers.
6738		 */
6739		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6740
6741		/*
6742		 * Calculate interval between writes.
6743		 */
6744		next = l2arc_write_interval(begin, size, wrote);
6745		spa_config_exit(spa, SCL_L2ARC, dev);
6746	}
6747
6748	l2arc_thread_exit = 0;
6749	cv_broadcast(&l2arc_feed_thr_cv);
6750	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6751	thread_exit();
6752}
6753
6754boolean_t
6755l2arc_vdev_present(vdev_t *vd)
6756{
6757	l2arc_dev_t *dev;
6758
6759	mutex_enter(&l2arc_dev_mtx);
6760	for (dev = list_head(l2arc_dev_list); dev != NULL;
6761	    dev = list_next(l2arc_dev_list, dev)) {
6762		if (dev->l2ad_vdev == vd)
6763			break;
6764	}
6765	mutex_exit(&l2arc_dev_mtx);
6766
6767	return (dev != NULL);
6768}
6769
6770/*
6771 * Add a vdev for use by the L2ARC.  By this point the spa has already
6772 * validated the vdev and opened it.
6773 */
6774void
6775l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6776{
6777	l2arc_dev_t *adddev;
6778
6779	ASSERT(!l2arc_vdev_present(vd));
6780
6781	vdev_ashift_optimize(vd);
6782
6783	/*
6784	 * Create a new l2arc device entry.
6785	 */
6786	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6787	adddev->l2ad_spa = spa;
6788	adddev->l2ad_vdev = vd;
6789	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6790	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6791	adddev->l2ad_hand = adddev->l2ad_start;
6792	adddev->l2ad_first = B_TRUE;
6793	adddev->l2ad_writing = B_FALSE;
6794
6795	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6796	/*
6797	 * This is a list of all ARC buffers that are still valid on the
6798	 * device.
6799	 */
6800	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6801	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6802
6803	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6804	refcount_create(&adddev->l2ad_alloc);
6805
6806	/*
6807	 * Add device to global list
6808	 */
6809	mutex_enter(&l2arc_dev_mtx);
6810	list_insert_head(l2arc_dev_list, adddev);
6811	atomic_inc_64(&l2arc_ndev);
6812	mutex_exit(&l2arc_dev_mtx);
6813}
6814
6815/*
6816 * Remove a vdev from the L2ARC.
6817 */
6818void
6819l2arc_remove_vdev(vdev_t *vd)
6820{
6821	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6822
6823	/*
6824	 * Find the device by vdev
6825	 */
6826	mutex_enter(&l2arc_dev_mtx);
6827	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6828		nextdev = list_next(l2arc_dev_list, dev);
6829		if (vd == dev->l2ad_vdev) {
6830			remdev = dev;
6831			break;
6832		}
6833	}
6834	ASSERT(remdev != NULL);
6835
6836	/*
6837	 * Remove device from global list
6838	 */
6839	list_remove(l2arc_dev_list, remdev);
6840	l2arc_dev_last = NULL;		/* may have been invalidated */
6841	atomic_dec_64(&l2arc_ndev);
6842	mutex_exit(&l2arc_dev_mtx);
6843
6844	/*
6845	 * Clear all buflists and ARC references.  L2ARC device flush.
6846	 */
6847	l2arc_evict(remdev, 0, B_TRUE);
6848	list_destroy(&remdev->l2ad_buflist);
6849	mutex_destroy(&remdev->l2ad_mtx);
6850	refcount_destroy(&remdev->l2ad_alloc);
6851	kmem_free(remdev, sizeof (l2arc_dev_t));
6852}
6853
6854void
6855l2arc_init(void)
6856{
6857	l2arc_thread_exit = 0;
6858	l2arc_ndev = 0;
6859	l2arc_writes_sent = 0;
6860	l2arc_writes_done = 0;
6861
6862	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6863	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6864	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6865	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6866
6867	l2arc_dev_list = &L2ARC_dev_list;
6868	l2arc_free_on_write = &L2ARC_free_on_write;
6869	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6870	    offsetof(l2arc_dev_t, l2ad_node));
6871	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6872	    offsetof(l2arc_data_free_t, l2df_list_node));
6873}
6874
6875void
6876l2arc_fini(void)
6877{
6878	/*
6879	 * This is called from dmu_fini(), which is called from spa_fini();
6880	 * Because of this, we can assume that all l2arc devices have
6881	 * already been removed when the pools themselves were removed.
6882	 */
6883
6884	l2arc_do_free_on_write();
6885
6886	mutex_destroy(&l2arc_feed_thr_lock);
6887	cv_destroy(&l2arc_feed_thr_cv);
6888	mutex_destroy(&l2arc_dev_mtx);
6889	mutex_destroy(&l2arc_free_on_write_mtx);
6890
6891	list_destroy(l2arc_dev_list);
6892	list_destroy(l2arc_free_on_write);
6893}
6894
6895void
6896l2arc_start(void)
6897{
6898	if (!(spa_mode_global & FWRITE))
6899		return;
6900
6901	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6902	    TS_RUN, minclsyspri);
6903}
6904
6905void
6906l2arc_stop(void)
6907{
6908	if (!(spa_mode_global & FWRITE))
6909		return;
6910
6911	mutex_enter(&l2arc_feed_thr_lock);
6912	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6913	l2arc_thread_exit = 1;
6914	while (l2arc_thread_exit != 0)
6915		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6916	mutex_exit(&l2arc_feed_thr_lock);
6917}
6918