arc.c revision 286764
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexs, rather they rely on the
86 * hash table mutexs for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexs).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <vm/vm_pageout.h>
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162uint_t arc_reduce_dnlc_percent = 3;
163
164/*
165 * The number of headers to evict in arc_evict_state_impl() before
166 * dropping the sublist lock and evicting from another sublist. A lower
167 * value means we're more likely to evict the "correct" header (i.e. the
168 * oldest header in the arc state), but comes with higher overhead
169 * (i.e. more invocations of arc_evict_state_impl()).
170 */
171int zfs_arc_evict_batch_limit = 10;
172
173/*
174 * The number of sublists used for each of the arc state lists. If this
175 * is not set to a suitable value by the user, it will be configured to
176 * the number of CPUs on the system in arc_init().
177 */
178int zfs_arc_num_sublists_per_state = 0;
179
180/* number of seconds before growing cache again */
181static int		arc_grow_retry = 60;
182
183/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
184int		zfs_arc_overflow_shift = 8;
185
186/* shift of arc_c for calculating both min and max arc_p */
187static int		arc_p_min_shift = 4;
188
189/* log2(fraction of arc to reclaim) */
190static int		arc_shrink_shift = 7;
191
192/*
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
200 */
201int			arc_no_grow_shift = 5;
202
203
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
208static int		arc_min_prefetch_lifespan;
209
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
215static int arc_dead;
216extern int zfs_prefetch_disable;
217
218/*
219 * The arc has filled available memory and has now warmed up.
220 */
221static boolean_t arc_warm;
222
223/*
224 * These tunables are for performance analysis.
225 */
226uint64_t zfs_arc_max;
227uint64_t zfs_arc_min;
228uint64_t zfs_arc_meta_limit = 0;
229uint64_t zfs_arc_meta_min = 0;
230int zfs_arc_grow_retry = 0;
231int zfs_arc_shrink_shift = 0;
232int zfs_arc_p_min_shift = 0;
233int zfs_disable_dup_eviction = 0;
234uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
235u_int zfs_arc_free_target = 0;
236
237static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
238static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
239
240#ifdef _KERNEL
241static void
242arc_free_target_init(void *unused __unused)
243{
244
245	zfs_arc_free_target = vm_pageout_wakeup_thresh;
246}
247SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
248    arc_free_target_init, NULL);
249
250TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
251TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
252TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
253SYSCTL_DECL(_vfs_zfs);
254SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
255    "Maximum ARC size");
256SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
257    "Minimum ARC size");
258SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
259    &zfs_arc_average_blocksize, 0,
260    "ARC average blocksize");
261SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
262    &arc_shrink_shift, 0,
263    "log2(fraction of arc to reclaim)");
264
265/*
266 * We don't have a tunable for arc_free_target due to the dependency on
267 * pagedaemon initialisation.
268 */
269SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
270    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
271    sysctl_vfs_zfs_arc_free_target, "IU",
272    "Desired number of free pages below which ARC triggers reclaim");
273
274static int
275sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
276{
277	u_int val;
278	int err;
279
280	val = zfs_arc_free_target;
281	err = sysctl_handle_int(oidp, &val, 0, req);
282	if (err != 0 || req->newptr == NULL)
283		return (err);
284
285	if (val < minfree)
286		return (EINVAL);
287	if (val > vm_cnt.v_page_count)
288		return (EINVAL);
289
290	zfs_arc_free_target = val;
291
292	return (0);
293}
294
295/*
296 * Must be declared here, before the definition of corresponding kstat
297 * macro which uses the same names will confuse the compiler.
298 */
299SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
300    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
301    sysctl_vfs_zfs_arc_meta_limit, "QU",
302    "ARC metadata limit");
303#endif
304
305/*
306 * Note that buffers can be in one of 6 states:
307 *	ARC_anon	- anonymous (discussed below)
308 *	ARC_mru		- recently used, currently cached
309 *	ARC_mru_ghost	- recentely used, no longer in cache
310 *	ARC_mfu		- frequently used, currently cached
311 *	ARC_mfu_ghost	- frequently used, no longer in cache
312 *	ARC_l2c_only	- exists in L2ARC but not other states
313 * When there are no active references to the buffer, they are
314 * are linked onto a list in one of these arc states.  These are
315 * the only buffers that can be evicted or deleted.  Within each
316 * state there are multiple lists, one for meta-data and one for
317 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
318 * etc.) is tracked separately so that it can be managed more
319 * explicitly: favored over data, limited explicitly.
320 *
321 * Anonymous buffers are buffers that are not associated with
322 * a DVA.  These are buffers that hold dirty block copies
323 * before they are written to stable storage.  By definition,
324 * they are "ref'd" and are considered part of arc_mru
325 * that cannot be freed.  Generally, they will aquire a DVA
326 * as they are written and migrate onto the arc_mru list.
327 *
328 * The ARC_l2c_only state is for buffers that are in the second
329 * level ARC but no longer in any of the ARC_m* lists.  The second
330 * level ARC itself may also contain buffers that are in any of
331 * the ARC_m* states - meaning that a buffer can exist in two
332 * places.  The reason for the ARC_l2c_only state is to keep the
333 * buffer header in the hash table, so that reads that hit the
334 * second level ARC benefit from these fast lookups.
335 */
336
337typedef struct arc_state {
338	/*
339	 * list of evictable buffers
340	 */
341	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
342	/*
343	 * total amount of evictable data in this state
344	 */
345	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
346	/*
347	 * total amount of data in this state; this includes: evictable,
348	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
349	 */
350	uint64_t arcs_size;
351} arc_state_t;
352
353/* The 6 states: */
354static arc_state_t ARC_anon;
355static arc_state_t ARC_mru;
356static arc_state_t ARC_mru_ghost;
357static arc_state_t ARC_mfu;
358static arc_state_t ARC_mfu_ghost;
359static arc_state_t ARC_l2c_only;
360
361typedef struct arc_stats {
362	kstat_named_t arcstat_hits;
363	kstat_named_t arcstat_misses;
364	kstat_named_t arcstat_demand_data_hits;
365	kstat_named_t arcstat_demand_data_misses;
366	kstat_named_t arcstat_demand_metadata_hits;
367	kstat_named_t arcstat_demand_metadata_misses;
368	kstat_named_t arcstat_prefetch_data_hits;
369	kstat_named_t arcstat_prefetch_data_misses;
370	kstat_named_t arcstat_prefetch_metadata_hits;
371	kstat_named_t arcstat_prefetch_metadata_misses;
372	kstat_named_t arcstat_mru_hits;
373	kstat_named_t arcstat_mru_ghost_hits;
374	kstat_named_t arcstat_mfu_hits;
375	kstat_named_t arcstat_mfu_ghost_hits;
376	kstat_named_t arcstat_allocated;
377	kstat_named_t arcstat_deleted;
378	/*
379	 * Number of buffers that could not be evicted because the hash lock
380	 * was held by another thread.  The lock may not necessarily be held
381	 * by something using the same buffer, since hash locks are shared
382	 * by multiple buffers.
383	 */
384	kstat_named_t arcstat_mutex_miss;
385	/*
386	 * Number of buffers skipped because they have I/O in progress, are
387	 * indrect prefetch buffers that have not lived long enough, or are
388	 * not from the spa we're trying to evict from.
389	 */
390	kstat_named_t arcstat_evict_skip;
391	/*
392	 * Number of times arc_evict_state() was unable to evict enough
393	 * buffers to reach it's target amount.
394	 */
395	kstat_named_t arcstat_evict_not_enough;
396	kstat_named_t arcstat_evict_l2_cached;
397	kstat_named_t arcstat_evict_l2_eligible;
398	kstat_named_t arcstat_evict_l2_ineligible;
399	kstat_named_t arcstat_evict_l2_skip;
400	kstat_named_t arcstat_hash_elements;
401	kstat_named_t arcstat_hash_elements_max;
402	kstat_named_t arcstat_hash_collisions;
403	kstat_named_t arcstat_hash_chains;
404	kstat_named_t arcstat_hash_chain_max;
405	kstat_named_t arcstat_p;
406	kstat_named_t arcstat_c;
407	kstat_named_t arcstat_c_min;
408	kstat_named_t arcstat_c_max;
409	kstat_named_t arcstat_size;
410	/*
411	 * Number of bytes consumed by internal ARC structures necessary
412	 * for tracking purposes; these structures are not actually
413	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
414	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
415	 * caches), and arc_buf_t structures (allocated via arc_buf_t
416	 * cache).
417	 */
418	kstat_named_t arcstat_hdr_size;
419	/*
420	 * Number of bytes consumed by ARC buffers of type equal to
421	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
422	 * on disk user data (e.g. plain file contents).
423	 */
424	kstat_named_t arcstat_data_size;
425	/*
426	 * Number of bytes consumed by ARC buffers of type equal to
427	 * ARC_BUFC_METADATA. This is generally consumed by buffers
428	 * backing on disk data that is used for internal ZFS
429	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
430	 */
431	kstat_named_t arcstat_metadata_size;
432	/*
433	 * Number of bytes consumed by various buffers and structures
434	 * not actually backed with ARC buffers. This includes bonus
435	 * buffers (allocated directly via zio_buf_* functions),
436	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
437	 * cache), and dnode_t structures (allocated via dnode_t cache).
438	 */
439	kstat_named_t arcstat_other_size;
440	/*
441	 * Total number of bytes consumed by ARC buffers residing in the
442	 * arc_anon state. This includes *all* buffers in the arc_anon
443	 * state; e.g. data, metadata, evictable, and unevictable buffers
444	 * are all included in this value.
445	 */
446	kstat_named_t arcstat_anon_size;
447	/*
448	 * Number of bytes consumed by ARC buffers that meet the
449	 * following criteria: backing buffers of type ARC_BUFC_DATA,
450	 * residing in the arc_anon state, and are eligible for eviction
451	 * (e.g. have no outstanding holds on the buffer).
452	 */
453	kstat_named_t arcstat_anon_evictable_data;
454	/*
455	 * Number of bytes consumed by ARC buffers that meet the
456	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
457	 * residing in the arc_anon state, and are eligible for eviction
458	 * (e.g. have no outstanding holds on the buffer).
459	 */
460	kstat_named_t arcstat_anon_evictable_metadata;
461	/*
462	 * Total number of bytes consumed by ARC buffers residing in the
463	 * arc_mru state. This includes *all* buffers in the arc_mru
464	 * state; e.g. data, metadata, evictable, and unevictable buffers
465	 * are all included in this value.
466	 */
467	kstat_named_t arcstat_mru_size;
468	/*
469	 * Number of bytes consumed by ARC buffers that meet the
470	 * following criteria: backing buffers of type ARC_BUFC_DATA,
471	 * residing in the arc_mru state, and are eligible for eviction
472	 * (e.g. have no outstanding holds on the buffer).
473	 */
474	kstat_named_t arcstat_mru_evictable_data;
475	/*
476	 * Number of bytes consumed by ARC buffers that meet the
477	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
478	 * residing in the arc_mru state, and are eligible for eviction
479	 * (e.g. have no outstanding holds on the buffer).
480	 */
481	kstat_named_t arcstat_mru_evictable_metadata;
482	/*
483	 * Total number of bytes that *would have been* consumed by ARC
484	 * buffers in the arc_mru_ghost state. The key thing to note
485	 * here, is the fact that this size doesn't actually indicate
486	 * RAM consumption. The ghost lists only consist of headers and
487	 * don't actually have ARC buffers linked off of these headers.
488	 * Thus, *if* the headers had associated ARC buffers, these
489	 * buffers *would have* consumed this number of bytes.
490	 */
491	kstat_named_t arcstat_mru_ghost_size;
492	/*
493	 * Number of bytes that *would have been* consumed by ARC
494	 * buffers that are eligible for eviction, of type
495	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
496	 */
497	kstat_named_t arcstat_mru_ghost_evictable_data;
498	/*
499	 * Number of bytes that *would have been* consumed by ARC
500	 * buffers that are eligible for eviction, of type
501	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
502	 */
503	kstat_named_t arcstat_mru_ghost_evictable_metadata;
504	/*
505	 * Total number of bytes consumed by ARC buffers residing in the
506	 * arc_mfu state. This includes *all* buffers in the arc_mfu
507	 * state; e.g. data, metadata, evictable, and unevictable buffers
508	 * are all included in this value.
509	 */
510	kstat_named_t arcstat_mfu_size;
511	/*
512	 * Number of bytes consumed by ARC buffers that are eligible for
513	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
514	 * state.
515	 */
516	kstat_named_t arcstat_mfu_evictable_data;
517	/*
518	 * Number of bytes consumed by ARC buffers that are eligible for
519	 * eviction, of type ARC_BUFC_METADATA, and reside in the
520	 * arc_mfu state.
521	 */
522	kstat_named_t arcstat_mfu_evictable_metadata;
523	/*
524	 * Total number of bytes that *would have been* consumed by ARC
525	 * buffers in the arc_mfu_ghost state. See the comment above
526	 * arcstat_mru_ghost_size for more details.
527	 */
528	kstat_named_t arcstat_mfu_ghost_size;
529	/*
530	 * Number of bytes that *would have been* consumed by ARC
531	 * buffers that are eligible for eviction, of type
532	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
533	 */
534	kstat_named_t arcstat_mfu_ghost_evictable_data;
535	/*
536	 * Number of bytes that *would have been* consumed by ARC
537	 * buffers that are eligible for eviction, of type
538	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
539	 */
540	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
541	kstat_named_t arcstat_l2_hits;
542	kstat_named_t arcstat_l2_misses;
543	kstat_named_t arcstat_l2_feeds;
544	kstat_named_t arcstat_l2_rw_clash;
545	kstat_named_t arcstat_l2_read_bytes;
546	kstat_named_t arcstat_l2_write_bytes;
547	kstat_named_t arcstat_l2_writes_sent;
548	kstat_named_t arcstat_l2_writes_done;
549	kstat_named_t arcstat_l2_writes_error;
550	kstat_named_t arcstat_l2_writes_lock_retry;
551	kstat_named_t arcstat_l2_evict_lock_retry;
552	kstat_named_t arcstat_l2_evict_reading;
553	kstat_named_t arcstat_l2_evict_l1cached;
554	kstat_named_t arcstat_l2_free_on_write;
555	kstat_named_t arcstat_l2_cdata_free_on_write;
556	kstat_named_t arcstat_l2_abort_lowmem;
557	kstat_named_t arcstat_l2_cksum_bad;
558	kstat_named_t arcstat_l2_io_error;
559	kstat_named_t arcstat_l2_size;
560	kstat_named_t arcstat_l2_asize;
561	kstat_named_t arcstat_l2_hdr_size;
562	kstat_named_t arcstat_l2_compress_successes;
563	kstat_named_t arcstat_l2_compress_zeros;
564	kstat_named_t arcstat_l2_compress_failures;
565	kstat_named_t arcstat_l2_write_trylock_fail;
566	kstat_named_t arcstat_l2_write_passed_headroom;
567	kstat_named_t arcstat_l2_write_spa_mismatch;
568	kstat_named_t arcstat_l2_write_in_l2;
569	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
570	kstat_named_t arcstat_l2_write_not_cacheable;
571	kstat_named_t arcstat_l2_write_full;
572	kstat_named_t arcstat_l2_write_buffer_iter;
573	kstat_named_t arcstat_l2_write_pios;
574	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
575	kstat_named_t arcstat_l2_write_buffer_list_iter;
576	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
577	kstat_named_t arcstat_memory_throttle_count;
578	kstat_named_t arcstat_duplicate_buffers;
579	kstat_named_t arcstat_duplicate_buffers_size;
580	kstat_named_t arcstat_duplicate_reads;
581	kstat_named_t arcstat_meta_used;
582	kstat_named_t arcstat_meta_limit;
583	kstat_named_t arcstat_meta_max;
584	kstat_named_t arcstat_meta_min;
585} arc_stats_t;
586
587static arc_stats_t arc_stats = {
588	{ "hits",			KSTAT_DATA_UINT64 },
589	{ "misses",			KSTAT_DATA_UINT64 },
590	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
591	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
592	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
593	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
594	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
595	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
596	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
597	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
598	{ "mru_hits",			KSTAT_DATA_UINT64 },
599	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
600	{ "mfu_hits",			KSTAT_DATA_UINT64 },
601	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
602	{ "allocated",			KSTAT_DATA_UINT64 },
603	{ "deleted",			KSTAT_DATA_UINT64 },
604	{ "mutex_miss",			KSTAT_DATA_UINT64 },
605	{ "evict_skip",			KSTAT_DATA_UINT64 },
606	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
607	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
608	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
609	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
610	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
611	{ "hash_elements",		KSTAT_DATA_UINT64 },
612	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
613	{ "hash_collisions",		KSTAT_DATA_UINT64 },
614	{ "hash_chains",		KSTAT_DATA_UINT64 },
615	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
616	{ "p",				KSTAT_DATA_UINT64 },
617	{ "c",				KSTAT_DATA_UINT64 },
618	{ "c_min",			KSTAT_DATA_UINT64 },
619	{ "c_max",			KSTAT_DATA_UINT64 },
620	{ "size",			KSTAT_DATA_UINT64 },
621	{ "hdr_size",			KSTAT_DATA_UINT64 },
622	{ "data_size",			KSTAT_DATA_UINT64 },
623	{ "metadata_size",		KSTAT_DATA_UINT64 },
624	{ "other_size",			KSTAT_DATA_UINT64 },
625	{ "anon_size",			KSTAT_DATA_UINT64 },
626	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
627	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
628	{ "mru_size",			KSTAT_DATA_UINT64 },
629	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
630	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
631	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
632	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
633	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
634	{ "mfu_size",			KSTAT_DATA_UINT64 },
635	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
636	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
637	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
638	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
639	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
640	{ "l2_hits",			KSTAT_DATA_UINT64 },
641	{ "l2_misses",			KSTAT_DATA_UINT64 },
642	{ "l2_feeds",			KSTAT_DATA_UINT64 },
643	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
644	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
645	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
646	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
647	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
648	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
649	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
650	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
651	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
652	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
653	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
654	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
655	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
656	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
657	{ "l2_io_error",		KSTAT_DATA_UINT64 },
658	{ "l2_size",			KSTAT_DATA_UINT64 },
659	{ "l2_asize",			KSTAT_DATA_UINT64 },
660	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
661	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
662	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
663	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
664	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
665	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
666	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
667	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
668	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
669	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
670	{ "l2_write_full",		KSTAT_DATA_UINT64 },
671	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
672	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
673	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
674	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
675	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
676	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
677	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
678	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
679	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
680	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
681	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
682	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
683	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
684};
685
686#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
687
688#define	ARCSTAT_INCR(stat, val) \
689	atomic_add_64(&arc_stats.stat.value.ui64, (val))
690
691#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
692#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
693
694#define	ARCSTAT_MAX(stat, val) {					\
695	uint64_t m;							\
696	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
697	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
698		continue;						\
699}
700
701#define	ARCSTAT_MAXSTAT(stat) \
702	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
703
704/*
705 * We define a macro to allow ARC hits/misses to be easily broken down by
706 * two separate conditions, giving a total of four different subtypes for
707 * each of hits and misses (so eight statistics total).
708 */
709#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
710	if (cond1) {							\
711		if (cond2) {						\
712			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
713		} else {						\
714			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
715		}							\
716	} else {							\
717		if (cond2) {						\
718			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
719		} else {						\
720			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
721		}							\
722	}
723
724kstat_t			*arc_ksp;
725static arc_state_t	*arc_anon;
726static arc_state_t	*arc_mru;
727static arc_state_t	*arc_mru_ghost;
728static arc_state_t	*arc_mfu;
729static arc_state_t	*arc_mfu_ghost;
730static arc_state_t	*arc_l2c_only;
731
732/*
733 * There are several ARC variables that are critical to export as kstats --
734 * but we don't want to have to grovel around in the kstat whenever we wish to
735 * manipulate them.  For these variables, we therefore define them to be in
736 * terms of the statistic variable.  This assures that we are not introducing
737 * the possibility of inconsistency by having shadow copies of the variables,
738 * while still allowing the code to be readable.
739 */
740#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
741#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
742#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
743#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
744#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
745#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
746#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
747#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
748#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
749
750#define	L2ARC_IS_VALID_COMPRESS(_c_) \
751	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
752
753static int		arc_no_grow;	/* Don't try to grow cache size */
754static uint64_t		arc_tempreserve;
755static uint64_t		arc_loaned_bytes;
756
757typedef struct arc_callback arc_callback_t;
758
759struct arc_callback {
760	void			*acb_private;
761	arc_done_func_t		*acb_done;
762	arc_buf_t		*acb_buf;
763	zio_t			*acb_zio_dummy;
764	arc_callback_t		*acb_next;
765};
766
767typedef struct arc_write_callback arc_write_callback_t;
768
769struct arc_write_callback {
770	void		*awcb_private;
771	arc_done_func_t	*awcb_ready;
772	arc_done_func_t	*awcb_physdone;
773	arc_done_func_t	*awcb_done;
774	arc_buf_t	*awcb_buf;
775};
776
777/*
778 * ARC buffers are separated into multiple structs as a memory saving measure:
779 *   - Common fields struct, always defined, and embedded within it:
780 *       - L2-only fields, always allocated but undefined when not in L2ARC
781 *       - L1-only fields, only allocated when in L1ARC
782 *
783 *           Buffer in L1                     Buffer only in L2
784 *    +------------------------+          +------------------------+
785 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
786 *    |                        |          |                        |
787 *    |                        |          |                        |
788 *    |                        |          |                        |
789 *    +------------------------+          +------------------------+
790 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
791 *    | (undefined if L1-only) |          |                        |
792 *    +------------------------+          +------------------------+
793 *    | l1arc_buf_hdr_t        |
794 *    |                        |
795 *    |                        |
796 *    |                        |
797 *    |                        |
798 *    +------------------------+
799 *
800 * Because it's possible for the L2ARC to become extremely large, we can wind
801 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
802 * is minimized by only allocating the fields necessary for an L1-cached buffer
803 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
804 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
805 * words in pointers. arc_hdr_realloc() is used to switch a header between
806 * these two allocation states.
807 */
808typedef struct l1arc_buf_hdr {
809	kmutex_t		b_freeze_lock;
810#ifdef ZFS_DEBUG
811	/*
812	 * used for debugging wtih kmem_flags - by allocating and freeing
813	 * b_thawed when the buffer is thawed, we get a record of the stack
814	 * trace that thawed it.
815	 */
816	void			*b_thawed;
817#endif
818
819	arc_buf_t		*b_buf;
820	uint32_t		b_datacnt;
821	/* for waiting on writes to complete */
822	kcondvar_t		b_cv;
823
824	/* protected by arc state mutex */
825	arc_state_t		*b_state;
826	multilist_node_t	b_arc_node;
827
828	/* updated atomically */
829	clock_t			b_arc_access;
830
831	/* self protecting */
832	refcount_t		b_refcnt;
833
834	arc_callback_t		*b_acb;
835	/* temporary buffer holder for in-flight compressed data */
836	void			*b_tmp_cdata;
837} l1arc_buf_hdr_t;
838
839typedef struct l2arc_dev l2arc_dev_t;
840
841typedef struct l2arc_buf_hdr {
842	/* protected by arc_buf_hdr mutex */
843	l2arc_dev_t		*b_dev;		/* L2ARC device */
844	uint64_t		b_daddr;	/* disk address, offset byte */
845	/* real alloc'd buffer size depending on b_compress applied */
846	int32_t			b_asize;
847
848	list_node_t		b_l2node;
849} l2arc_buf_hdr_t;
850
851struct arc_buf_hdr {
852	/* protected by hash lock */
853	dva_t			b_dva;
854	uint64_t		b_birth;
855	/*
856	 * Even though this checksum is only set/verified when a buffer is in
857	 * the L1 cache, it needs to be in the set of common fields because it
858	 * must be preserved from the time before a buffer is written out to
859	 * L2ARC until after it is read back in.
860	 */
861	zio_cksum_t		*b_freeze_cksum;
862
863	arc_buf_hdr_t		*b_hash_next;
864	arc_flags_t		b_flags;
865
866	/* immutable */
867	int32_t			b_size;
868	uint64_t		b_spa;
869
870	/* L2ARC fields. Undefined when not in L2ARC. */
871	l2arc_buf_hdr_t		b_l2hdr;
872	/* L1ARC fields. Undefined when in l2arc_only state */
873	l1arc_buf_hdr_t		b_l1hdr;
874};
875
876#ifdef _KERNEL
877static int
878sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
879{
880	uint64_t val;
881	int err;
882
883	val = arc_meta_limit;
884	err = sysctl_handle_64(oidp, &val, 0, req);
885	if (err != 0 || req->newptr == NULL)
886		return (err);
887
888        if (val <= 0 || val > arc_c_max)
889		return (EINVAL);
890
891	arc_meta_limit = val;
892	return (0);
893}
894#endif
895
896static arc_buf_t *arc_eviction_list;
897static arc_buf_hdr_t arc_eviction_hdr;
898
899#define	GHOST_STATE(state)	\
900	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
901	(state) == arc_l2c_only)
902
903#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
904#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
905#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
906#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
907#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
908#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
909
910#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
911#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
912#define	HDR_L2_READING(hdr)	\
913	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
914	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
915#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
916#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
917#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
918
919#define	HDR_ISTYPE_METADATA(hdr)	\
920	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
921#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
922
923#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
924#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
925
926/* For storing compression mode in b_flags */
927#define	HDR_COMPRESS_OFFSET	24
928#define	HDR_COMPRESS_NBITS	7
929
930#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET(hdr->b_flags, \
931	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
932#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
933	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
934
935/*
936 * Other sizes
937 */
938
939#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
940#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
941
942/*
943 * Hash table routines
944 */
945
946#define	HT_LOCK_PAD	CACHE_LINE_SIZE
947
948struct ht_lock {
949	kmutex_t	ht_lock;
950#ifdef _KERNEL
951	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
952#endif
953};
954
955#define	BUF_LOCKS 256
956typedef struct buf_hash_table {
957	uint64_t ht_mask;
958	arc_buf_hdr_t **ht_table;
959	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
960} buf_hash_table_t;
961
962static buf_hash_table_t buf_hash_table;
963
964#define	BUF_HASH_INDEX(spa, dva, birth) \
965	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
966#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
967#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
968#define	HDR_LOCK(hdr) \
969	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
970
971uint64_t zfs_crc64_table[256];
972
973/*
974 * Level 2 ARC
975 */
976
977#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
978#define	L2ARC_HEADROOM		2			/* num of writes */
979/*
980 * If we discover during ARC scan any buffers to be compressed, we boost
981 * our headroom for the next scanning cycle by this percentage multiple.
982 */
983#define	L2ARC_HEADROOM_BOOST	200
984#define	L2ARC_FEED_SECS		1		/* caching interval secs */
985#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
986
987/*
988 * Used to distinguish headers that are being process by
989 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
990 * address. This can happen when the header is added to the l2arc's list
991 * of buffers to write in the first stage of l2arc_write_buffers(), but
992 * has not yet been written out which happens in the second stage of
993 * l2arc_write_buffers().
994 */
995#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
996
997#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
998#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
999
1000/* L2ARC Performance Tunables */
1001uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1002uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1003uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1004uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1005uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1006uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1007boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1008boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1009boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1010
1011SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1012    &l2arc_write_max, 0, "max write size");
1013SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1014    &l2arc_write_boost, 0, "extra write during warmup");
1015SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1016    &l2arc_headroom, 0, "number of dev writes");
1017SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1018    &l2arc_feed_secs, 0, "interval seconds");
1019SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1020    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1021
1022SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1023    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1024SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1025    &l2arc_feed_again, 0, "turbo warmup");
1026SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1027    &l2arc_norw, 0, "no reads during writes");
1028
1029SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1030    &ARC_anon.arcs_size, 0, "size of anonymous state");
1031SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1032    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1033SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1034    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1035
1036SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1037    &ARC_mru.arcs_size, 0, "size of mru state");
1038SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1039    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1040SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1041    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1042
1043SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1044    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
1045SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1046    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1047    "size of metadata in mru ghost state");
1048SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1049    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1050    "size of data in mru ghost state");
1051
1052SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1053    &ARC_mfu.arcs_size, 0, "size of mfu state");
1054SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1055    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1056SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1057    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1058
1059SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1060    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
1061SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1062    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1063    "size of metadata in mfu ghost state");
1064SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1065    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1066    "size of data in mfu ghost state");
1067
1068SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1069    &ARC_l2c_only.arcs_size, 0, "size of mru state");
1070
1071/*
1072 * L2ARC Internals
1073 */
1074struct l2arc_dev {
1075	vdev_t			*l2ad_vdev;	/* vdev */
1076	spa_t			*l2ad_spa;	/* spa */
1077	uint64_t		l2ad_hand;	/* next write location */
1078	uint64_t		l2ad_start;	/* first addr on device */
1079	uint64_t		l2ad_end;	/* last addr on device */
1080	boolean_t		l2ad_first;	/* first sweep through */
1081	boolean_t		l2ad_writing;	/* currently writing */
1082	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1083	list_t			l2ad_buflist;	/* buffer list */
1084	list_node_t		l2ad_node;	/* device list node */
1085	refcount_t		l2ad_alloc;	/* allocated bytes */
1086};
1087
1088static list_t L2ARC_dev_list;			/* device list */
1089static list_t *l2arc_dev_list;			/* device list pointer */
1090static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1091static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1092static list_t L2ARC_free_on_write;		/* free after write buf list */
1093static list_t *l2arc_free_on_write;		/* free after write list ptr */
1094static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1095static uint64_t l2arc_ndev;			/* number of devices */
1096
1097typedef struct l2arc_read_callback {
1098	arc_buf_t		*l2rcb_buf;		/* read buffer */
1099	spa_t			*l2rcb_spa;		/* spa */
1100	blkptr_t		l2rcb_bp;		/* original blkptr */
1101	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1102	int			l2rcb_flags;		/* original flags */
1103	enum zio_compress	l2rcb_compress;		/* applied compress */
1104} l2arc_read_callback_t;
1105
1106typedef struct l2arc_write_callback {
1107	l2arc_dev_t	*l2wcb_dev;		/* device info */
1108	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1109} l2arc_write_callback_t;
1110
1111typedef struct l2arc_data_free {
1112	/* protected by l2arc_free_on_write_mtx */
1113	void		*l2df_data;
1114	size_t		l2df_size;
1115	void		(*l2df_func)(void *, size_t);
1116	list_node_t	l2df_list_node;
1117} l2arc_data_free_t;
1118
1119static kmutex_t l2arc_feed_thr_lock;
1120static kcondvar_t l2arc_feed_thr_cv;
1121static uint8_t l2arc_thread_exit;
1122
1123static void arc_get_data_buf(arc_buf_t *);
1124static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1125static boolean_t arc_is_overflowing();
1126static void arc_buf_watch(arc_buf_t *);
1127
1128static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1129static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1130
1131static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1132static void l2arc_read_done(zio_t *);
1133
1134static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1135static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1136static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1137
1138static uint64_t
1139buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1140{
1141	uint8_t *vdva = (uint8_t *)dva;
1142	uint64_t crc = -1ULL;
1143	int i;
1144
1145	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1146
1147	for (i = 0; i < sizeof (dva_t); i++)
1148		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1149
1150	crc ^= (spa>>8) ^ birth;
1151
1152	return (crc);
1153}
1154
1155#define	BUF_EMPTY(buf)						\
1156	((buf)->b_dva.dva_word[0] == 0 &&			\
1157	(buf)->b_dva.dva_word[1] == 0)
1158
1159#define	BUF_EQUAL(spa, dva, birth, buf)				\
1160	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1161	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1162	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1163
1164static void
1165buf_discard_identity(arc_buf_hdr_t *hdr)
1166{
1167	hdr->b_dva.dva_word[0] = 0;
1168	hdr->b_dva.dva_word[1] = 0;
1169	hdr->b_birth = 0;
1170}
1171
1172static arc_buf_hdr_t *
1173buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1174{
1175	const dva_t *dva = BP_IDENTITY(bp);
1176	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1177	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1178	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1179	arc_buf_hdr_t *hdr;
1180
1181	mutex_enter(hash_lock);
1182	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1183	    hdr = hdr->b_hash_next) {
1184		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1185			*lockp = hash_lock;
1186			return (hdr);
1187		}
1188	}
1189	mutex_exit(hash_lock);
1190	*lockp = NULL;
1191	return (NULL);
1192}
1193
1194/*
1195 * Insert an entry into the hash table.  If there is already an element
1196 * equal to elem in the hash table, then the already existing element
1197 * will be returned and the new element will not be inserted.
1198 * Otherwise returns NULL.
1199 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1200 */
1201static arc_buf_hdr_t *
1202buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1203{
1204	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1205	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1206	arc_buf_hdr_t *fhdr;
1207	uint32_t i;
1208
1209	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1210	ASSERT(hdr->b_birth != 0);
1211	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1212
1213	if (lockp != NULL) {
1214		*lockp = hash_lock;
1215		mutex_enter(hash_lock);
1216	} else {
1217		ASSERT(MUTEX_HELD(hash_lock));
1218	}
1219
1220	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1221	    fhdr = fhdr->b_hash_next, i++) {
1222		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1223			return (fhdr);
1224	}
1225
1226	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1227	buf_hash_table.ht_table[idx] = hdr;
1228	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1229
1230	/* collect some hash table performance data */
1231	if (i > 0) {
1232		ARCSTAT_BUMP(arcstat_hash_collisions);
1233		if (i == 1)
1234			ARCSTAT_BUMP(arcstat_hash_chains);
1235
1236		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1237	}
1238
1239	ARCSTAT_BUMP(arcstat_hash_elements);
1240	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1241
1242	return (NULL);
1243}
1244
1245static void
1246buf_hash_remove(arc_buf_hdr_t *hdr)
1247{
1248	arc_buf_hdr_t *fhdr, **hdrp;
1249	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1250
1251	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1252	ASSERT(HDR_IN_HASH_TABLE(hdr));
1253
1254	hdrp = &buf_hash_table.ht_table[idx];
1255	while ((fhdr = *hdrp) != hdr) {
1256		ASSERT(fhdr != NULL);
1257		hdrp = &fhdr->b_hash_next;
1258	}
1259	*hdrp = hdr->b_hash_next;
1260	hdr->b_hash_next = NULL;
1261	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1262
1263	/* collect some hash table performance data */
1264	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1265
1266	if (buf_hash_table.ht_table[idx] &&
1267	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1268		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1269}
1270
1271/*
1272 * Global data structures and functions for the buf kmem cache.
1273 */
1274static kmem_cache_t *hdr_full_cache;
1275static kmem_cache_t *hdr_l2only_cache;
1276static kmem_cache_t *buf_cache;
1277
1278static void
1279buf_fini(void)
1280{
1281	int i;
1282
1283	kmem_free(buf_hash_table.ht_table,
1284	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1285	for (i = 0; i < BUF_LOCKS; i++)
1286		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1287	kmem_cache_destroy(hdr_full_cache);
1288	kmem_cache_destroy(hdr_l2only_cache);
1289	kmem_cache_destroy(buf_cache);
1290}
1291
1292/*
1293 * Constructor callback - called when the cache is empty
1294 * and a new buf is requested.
1295 */
1296/* ARGSUSED */
1297static int
1298hdr_full_cons(void *vbuf, void *unused, int kmflag)
1299{
1300	arc_buf_hdr_t *hdr = vbuf;
1301
1302	bzero(hdr, HDR_FULL_SIZE);
1303	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1304	refcount_create(&hdr->b_l1hdr.b_refcnt);
1305	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1306	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1307	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1308
1309	return (0);
1310}
1311
1312/* ARGSUSED */
1313static int
1314hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1315{
1316	arc_buf_hdr_t *hdr = vbuf;
1317
1318	bzero(hdr, HDR_L2ONLY_SIZE);
1319	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1320
1321	return (0);
1322}
1323
1324/* ARGSUSED */
1325static int
1326buf_cons(void *vbuf, void *unused, int kmflag)
1327{
1328	arc_buf_t *buf = vbuf;
1329
1330	bzero(buf, sizeof (arc_buf_t));
1331	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1332	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1333
1334	return (0);
1335}
1336
1337/*
1338 * Destructor callback - called when a cached buf is
1339 * no longer required.
1340 */
1341/* ARGSUSED */
1342static void
1343hdr_full_dest(void *vbuf, void *unused)
1344{
1345	arc_buf_hdr_t *hdr = vbuf;
1346
1347	ASSERT(BUF_EMPTY(hdr));
1348	cv_destroy(&hdr->b_l1hdr.b_cv);
1349	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1350	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1351	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1352	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1353}
1354
1355/* ARGSUSED */
1356static void
1357hdr_l2only_dest(void *vbuf, void *unused)
1358{
1359	arc_buf_hdr_t *hdr = vbuf;
1360
1361	ASSERT(BUF_EMPTY(hdr));
1362	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1363}
1364
1365/* ARGSUSED */
1366static void
1367buf_dest(void *vbuf, void *unused)
1368{
1369	arc_buf_t *buf = vbuf;
1370
1371	mutex_destroy(&buf->b_evict_lock);
1372	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1373}
1374
1375/*
1376 * Reclaim callback -- invoked when memory is low.
1377 */
1378/* ARGSUSED */
1379static void
1380hdr_recl(void *unused)
1381{
1382	dprintf("hdr_recl called\n");
1383	/*
1384	 * umem calls the reclaim func when we destroy the buf cache,
1385	 * which is after we do arc_fini().
1386	 */
1387	if (!arc_dead)
1388		cv_signal(&arc_reclaim_thread_cv);
1389}
1390
1391static void
1392buf_init(void)
1393{
1394	uint64_t *ct;
1395	uint64_t hsize = 1ULL << 12;
1396	int i, j;
1397
1398	/*
1399	 * The hash table is big enough to fill all of physical memory
1400	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1401	 * By default, the table will take up
1402	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1403	 */
1404	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1405		hsize <<= 1;
1406retry:
1407	buf_hash_table.ht_mask = hsize - 1;
1408	buf_hash_table.ht_table =
1409	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1410	if (buf_hash_table.ht_table == NULL) {
1411		ASSERT(hsize > (1ULL << 8));
1412		hsize >>= 1;
1413		goto retry;
1414	}
1415
1416	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1417	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1418	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1419	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1420	    NULL, NULL, 0);
1421	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1422	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1423
1424	for (i = 0; i < 256; i++)
1425		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1426			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1427
1428	for (i = 0; i < BUF_LOCKS; i++) {
1429		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1430		    NULL, MUTEX_DEFAULT, NULL);
1431	}
1432}
1433
1434/*
1435 * Transition between the two allocation states for the arc_buf_hdr struct.
1436 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1437 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1438 * version is used when a cache buffer is only in the L2ARC in order to reduce
1439 * memory usage.
1440 */
1441static arc_buf_hdr_t *
1442arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1443{
1444	ASSERT(HDR_HAS_L2HDR(hdr));
1445
1446	arc_buf_hdr_t *nhdr;
1447	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1448
1449	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1450	    (old == hdr_l2only_cache && new == hdr_full_cache));
1451
1452	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1453
1454	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1455	buf_hash_remove(hdr);
1456
1457	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1458
1459	if (new == hdr_full_cache) {
1460		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1461		/*
1462		 * arc_access and arc_change_state need to be aware that a
1463		 * header has just come out of L2ARC, so we set its state to
1464		 * l2c_only even though it's about to change.
1465		 */
1466		nhdr->b_l1hdr.b_state = arc_l2c_only;
1467
1468		/* Verify previous threads set to NULL before freeing */
1469		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1470	} else {
1471		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1472		ASSERT0(hdr->b_l1hdr.b_datacnt);
1473
1474		/*
1475		 * If we've reached here, We must have been called from
1476		 * arc_evict_hdr(), as such we should have already been
1477		 * removed from any ghost list we were previously on
1478		 * (which protects us from racing with arc_evict_state),
1479		 * thus no locking is needed during this check.
1480		 */
1481		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1482
1483		/*
1484		 * A buffer must not be moved into the arc_l2c_only
1485		 * state if it's not finished being written out to the
1486		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1487		 * might try to be accessed, even though it was removed.
1488		 */
1489		VERIFY(!HDR_L2_WRITING(hdr));
1490		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1491
1492		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1493	}
1494	/*
1495	 * The header has been reallocated so we need to re-insert it into any
1496	 * lists it was on.
1497	 */
1498	(void) buf_hash_insert(nhdr, NULL);
1499
1500	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1501
1502	mutex_enter(&dev->l2ad_mtx);
1503
1504	/*
1505	 * We must place the realloc'ed header back into the list at
1506	 * the same spot. Otherwise, if it's placed earlier in the list,
1507	 * l2arc_write_buffers() could find it during the function's
1508	 * write phase, and try to write it out to the l2arc.
1509	 */
1510	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1511	list_remove(&dev->l2ad_buflist, hdr);
1512
1513	mutex_exit(&dev->l2ad_mtx);
1514
1515	/*
1516	 * Since we're using the pointer address as the tag when
1517	 * incrementing and decrementing the l2ad_alloc refcount, we
1518	 * must remove the old pointer (that we're about to destroy) and
1519	 * add the new pointer to the refcount. Otherwise we'd remove
1520	 * the wrong pointer address when calling arc_hdr_destroy() later.
1521	 */
1522
1523	(void) refcount_remove_many(&dev->l2ad_alloc,
1524	    hdr->b_l2hdr.b_asize, hdr);
1525
1526	(void) refcount_add_many(&dev->l2ad_alloc,
1527	    nhdr->b_l2hdr.b_asize, nhdr);
1528
1529	buf_discard_identity(hdr);
1530	hdr->b_freeze_cksum = NULL;
1531	kmem_cache_free(old, hdr);
1532
1533	return (nhdr);
1534}
1535
1536
1537#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1538
1539static void
1540arc_cksum_verify(arc_buf_t *buf)
1541{
1542	zio_cksum_t zc;
1543
1544	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1545		return;
1546
1547	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1548	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1549		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1550		return;
1551	}
1552	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1553	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1554		panic("buffer modified while frozen!");
1555	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1556}
1557
1558static int
1559arc_cksum_equal(arc_buf_t *buf)
1560{
1561	zio_cksum_t zc;
1562	int equal;
1563
1564	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1565	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1566	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1567	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1568
1569	return (equal);
1570}
1571
1572static void
1573arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1574{
1575	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1576		return;
1577
1578	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1579	if (buf->b_hdr->b_freeze_cksum != NULL) {
1580		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1581		return;
1582	}
1583	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1584	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1585	    buf->b_hdr->b_freeze_cksum);
1586	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1587#ifdef illumos
1588	arc_buf_watch(buf);
1589#endif
1590}
1591
1592#ifdef illumos
1593#ifndef _KERNEL
1594typedef struct procctl {
1595	long cmd;
1596	prwatch_t prwatch;
1597} procctl_t;
1598#endif
1599
1600/* ARGSUSED */
1601static void
1602arc_buf_unwatch(arc_buf_t *buf)
1603{
1604#ifndef _KERNEL
1605	if (arc_watch) {
1606		int result;
1607		procctl_t ctl;
1608		ctl.cmd = PCWATCH;
1609		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1610		ctl.prwatch.pr_size = 0;
1611		ctl.prwatch.pr_wflags = 0;
1612		result = write(arc_procfd, &ctl, sizeof (ctl));
1613		ASSERT3U(result, ==, sizeof (ctl));
1614	}
1615#endif
1616}
1617
1618/* ARGSUSED */
1619static void
1620arc_buf_watch(arc_buf_t *buf)
1621{
1622#ifndef _KERNEL
1623	if (arc_watch) {
1624		int result;
1625		procctl_t ctl;
1626		ctl.cmd = PCWATCH;
1627		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1628		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1629		ctl.prwatch.pr_wflags = WA_WRITE;
1630		result = write(arc_procfd, &ctl, sizeof (ctl));
1631		ASSERT3U(result, ==, sizeof (ctl));
1632	}
1633#endif
1634}
1635#endif /* illumos */
1636
1637static arc_buf_contents_t
1638arc_buf_type(arc_buf_hdr_t *hdr)
1639{
1640	if (HDR_ISTYPE_METADATA(hdr)) {
1641		return (ARC_BUFC_METADATA);
1642	} else {
1643		return (ARC_BUFC_DATA);
1644	}
1645}
1646
1647static uint32_t
1648arc_bufc_to_flags(arc_buf_contents_t type)
1649{
1650	switch (type) {
1651	case ARC_BUFC_DATA:
1652		/* metadata field is 0 if buffer contains normal data */
1653		return (0);
1654	case ARC_BUFC_METADATA:
1655		return (ARC_FLAG_BUFC_METADATA);
1656	default:
1657		break;
1658	}
1659	panic("undefined ARC buffer type!");
1660	return ((uint32_t)-1);
1661}
1662
1663void
1664arc_buf_thaw(arc_buf_t *buf)
1665{
1666	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1667		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1668			panic("modifying non-anon buffer!");
1669		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1670			panic("modifying buffer while i/o in progress!");
1671		arc_cksum_verify(buf);
1672	}
1673
1674	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1675	if (buf->b_hdr->b_freeze_cksum != NULL) {
1676		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1677		buf->b_hdr->b_freeze_cksum = NULL;
1678	}
1679
1680#ifdef ZFS_DEBUG
1681	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1682		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1683			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1684		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1685	}
1686#endif
1687
1688	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1689
1690#ifdef illumos
1691	arc_buf_unwatch(buf);
1692#endif
1693}
1694
1695void
1696arc_buf_freeze(arc_buf_t *buf)
1697{
1698	kmutex_t *hash_lock;
1699
1700	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1701		return;
1702
1703	hash_lock = HDR_LOCK(buf->b_hdr);
1704	mutex_enter(hash_lock);
1705
1706	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1707	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1708	arc_cksum_compute(buf, B_FALSE);
1709	mutex_exit(hash_lock);
1710
1711}
1712
1713static void
1714add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1715{
1716	ASSERT(HDR_HAS_L1HDR(hdr));
1717	ASSERT(MUTEX_HELD(hash_lock));
1718	arc_state_t *state = hdr->b_l1hdr.b_state;
1719
1720	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1721	    (state != arc_anon)) {
1722		/* We don't use the L2-only state list. */
1723		if (state != arc_l2c_only) {
1724			arc_buf_contents_t type = arc_buf_type(hdr);
1725			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1726			multilist_t *list = &state->arcs_list[type];
1727			uint64_t *size = &state->arcs_lsize[type];
1728
1729			multilist_remove(list, hdr);
1730
1731			if (GHOST_STATE(state)) {
1732				ASSERT0(hdr->b_l1hdr.b_datacnt);
1733				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1734				delta = hdr->b_size;
1735			}
1736			ASSERT(delta > 0);
1737			ASSERT3U(*size, >=, delta);
1738			atomic_add_64(size, -delta);
1739		}
1740		/* remove the prefetch flag if we get a reference */
1741		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1742	}
1743}
1744
1745static int
1746remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1747{
1748	int cnt;
1749	arc_state_t *state = hdr->b_l1hdr.b_state;
1750
1751	ASSERT(HDR_HAS_L1HDR(hdr));
1752	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1753	ASSERT(!GHOST_STATE(state));
1754
1755	/*
1756	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1757	 * check to prevent usage of the arc_l2c_only list.
1758	 */
1759	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1760	    (state != arc_anon)) {
1761		arc_buf_contents_t type = arc_buf_type(hdr);
1762		multilist_t *list = &state->arcs_list[type];
1763		uint64_t *size = &state->arcs_lsize[type];
1764
1765		multilist_insert(list, hdr);
1766
1767		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1768		atomic_add_64(size, hdr->b_size *
1769		    hdr->b_l1hdr.b_datacnt);
1770	}
1771	return (cnt);
1772}
1773
1774/*
1775 * Move the supplied buffer to the indicated state. The hash lock
1776 * for the buffer must be held by the caller.
1777 */
1778static void
1779arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1780    kmutex_t *hash_lock)
1781{
1782	arc_state_t *old_state;
1783	int64_t refcnt;
1784	uint32_t datacnt;
1785	uint64_t from_delta, to_delta;
1786	arc_buf_contents_t buftype = arc_buf_type(hdr);
1787
1788	/*
1789	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1790	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1791	 * L1 hdr doesn't always exist when we change state to arc_anon before
1792	 * destroying a header, in which case reallocating to add the L1 hdr is
1793	 * pointless.
1794	 */
1795	if (HDR_HAS_L1HDR(hdr)) {
1796		old_state = hdr->b_l1hdr.b_state;
1797		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1798		datacnt = hdr->b_l1hdr.b_datacnt;
1799	} else {
1800		old_state = arc_l2c_only;
1801		refcnt = 0;
1802		datacnt = 0;
1803	}
1804
1805	ASSERT(MUTEX_HELD(hash_lock));
1806	ASSERT3P(new_state, !=, old_state);
1807	ASSERT(refcnt == 0 || datacnt > 0);
1808	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1809	ASSERT(old_state != arc_anon || datacnt <= 1);
1810
1811	from_delta = to_delta = datacnt * hdr->b_size;
1812
1813	/*
1814	 * If this buffer is evictable, transfer it from the
1815	 * old state list to the new state list.
1816	 */
1817	if (refcnt == 0) {
1818		if (old_state != arc_anon && old_state != arc_l2c_only) {
1819			uint64_t *size = &old_state->arcs_lsize[buftype];
1820
1821			ASSERT(HDR_HAS_L1HDR(hdr));
1822			multilist_remove(&old_state->arcs_list[buftype], hdr);
1823
1824			/*
1825			 * If prefetching out of the ghost cache,
1826			 * we will have a non-zero datacnt.
1827			 */
1828			if (GHOST_STATE(old_state) && datacnt == 0) {
1829				/* ghost elements have a ghost size */
1830				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1831				from_delta = hdr->b_size;
1832			}
1833			ASSERT3U(*size, >=, from_delta);
1834			atomic_add_64(size, -from_delta);
1835		}
1836		if (new_state != arc_anon && new_state != arc_l2c_only) {
1837			uint64_t *size = &new_state->arcs_lsize[buftype];
1838
1839			/*
1840			 * An L1 header always exists here, since if we're
1841			 * moving to some L1-cached state (i.e. not l2c_only or
1842			 * anonymous), we realloc the header to add an L1hdr
1843			 * beforehand.
1844			 */
1845			ASSERT(HDR_HAS_L1HDR(hdr));
1846			multilist_insert(&new_state->arcs_list[buftype], hdr);
1847
1848			/* ghost elements have a ghost size */
1849			if (GHOST_STATE(new_state)) {
1850				ASSERT0(datacnt);
1851				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1852				to_delta = hdr->b_size;
1853			}
1854			atomic_add_64(size, to_delta);
1855		}
1856	}
1857
1858	ASSERT(!BUF_EMPTY(hdr));
1859	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1860		buf_hash_remove(hdr);
1861
1862	/* adjust state sizes (ignore arc_l2c_only) */
1863	if (to_delta && new_state != arc_l2c_only)
1864		atomic_add_64(&new_state->arcs_size, to_delta);
1865	if (from_delta && old_state != arc_l2c_only) {
1866		ASSERT3U(old_state->arcs_size, >=, from_delta);
1867		atomic_add_64(&old_state->arcs_size, -from_delta);
1868	}
1869	if (HDR_HAS_L1HDR(hdr))
1870		hdr->b_l1hdr.b_state = new_state;
1871
1872	/*
1873	 * L2 headers should never be on the L2 state list since they don't
1874	 * have L1 headers allocated.
1875	 */
1876	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1877	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1878}
1879
1880void
1881arc_space_consume(uint64_t space, arc_space_type_t type)
1882{
1883	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1884
1885	switch (type) {
1886	case ARC_SPACE_DATA:
1887		ARCSTAT_INCR(arcstat_data_size, space);
1888		break;
1889	case ARC_SPACE_META:
1890		ARCSTAT_INCR(arcstat_metadata_size, space);
1891		break;
1892	case ARC_SPACE_OTHER:
1893		ARCSTAT_INCR(arcstat_other_size, space);
1894		break;
1895	case ARC_SPACE_HDRS:
1896		ARCSTAT_INCR(arcstat_hdr_size, space);
1897		break;
1898	case ARC_SPACE_L2HDRS:
1899		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1900		break;
1901	}
1902
1903	if (type != ARC_SPACE_DATA)
1904		ARCSTAT_INCR(arcstat_meta_used, space);
1905
1906	atomic_add_64(&arc_size, space);
1907}
1908
1909void
1910arc_space_return(uint64_t space, arc_space_type_t type)
1911{
1912	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1913
1914	switch (type) {
1915	case ARC_SPACE_DATA:
1916		ARCSTAT_INCR(arcstat_data_size, -space);
1917		break;
1918	case ARC_SPACE_META:
1919		ARCSTAT_INCR(arcstat_metadata_size, -space);
1920		break;
1921	case ARC_SPACE_OTHER:
1922		ARCSTAT_INCR(arcstat_other_size, -space);
1923		break;
1924	case ARC_SPACE_HDRS:
1925		ARCSTAT_INCR(arcstat_hdr_size, -space);
1926		break;
1927	case ARC_SPACE_L2HDRS:
1928		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1929		break;
1930	}
1931
1932	if (type != ARC_SPACE_DATA) {
1933		ASSERT(arc_meta_used >= space);
1934		if (arc_meta_max < arc_meta_used)
1935			arc_meta_max = arc_meta_used;
1936		ARCSTAT_INCR(arcstat_meta_used, -space);
1937	}
1938
1939	ASSERT(arc_size >= space);
1940	atomic_add_64(&arc_size, -space);
1941}
1942
1943arc_buf_t *
1944arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
1945{
1946	arc_buf_hdr_t *hdr;
1947	arc_buf_t *buf;
1948
1949	ASSERT3U(size, >, 0);
1950	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1951	ASSERT(BUF_EMPTY(hdr));
1952	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1953	hdr->b_size = size;
1954	hdr->b_spa = spa_load_guid(spa);
1955
1956	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1957	buf->b_hdr = hdr;
1958	buf->b_data = NULL;
1959	buf->b_efunc = NULL;
1960	buf->b_private = NULL;
1961	buf->b_next = NULL;
1962
1963	hdr->b_flags = arc_bufc_to_flags(type);
1964	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1965
1966	hdr->b_l1hdr.b_buf = buf;
1967	hdr->b_l1hdr.b_state = arc_anon;
1968	hdr->b_l1hdr.b_arc_access = 0;
1969	hdr->b_l1hdr.b_datacnt = 1;
1970	hdr->b_l1hdr.b_tmp_cdata = NULL;
1971
1972	arc_get_data_buf(buf);
1973	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1974	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1975
1976	return (buf);
1977}
1978
1979static char *arc_onloan_tag = "onloan";
1980
1981/*
1982 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1983 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1984 * buffers must be returned to the arc before they can be used by the DMU or
1985 * freed.
1986 */
1987arc_buf_t *
1988arc_loan_buf(spa_t *spa, int size)
1989{
1990	arc_buf_t *buf;
1991
1992	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1993
1994	atomic_add_64(&arc_loaned_bytes, size);
1995	return (buf);
1996}
1997
1998/*
1999 * Return a loaned arc buffer to the arc.
2000 */
2001void
2002arc_return_buf(arc_buf_t *buf, void *tag)
2003{
2004	arc_buf_hdr_t *hdr = buf->b_hdr;
2005
2006	ASSERT(buf->b_data != NULL);
2007	ASSERT(HDR_HAS_L1HDR(hdr));
2008	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2009	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2010
2011	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2012}
2013
2014/* Detach an arc_buf from a dbuf (tag) */
2015void
2016arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2017{
2018	arc_buf_hdr_t *hdr = buf->b_hdr;
2019
2020	ASSERT(buf->b_data != NULL);
2021	ASSERT(HDR_HAS_L1HDR(hdr));
2022	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2023	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2024	buf->b_efunc = NULL;
2025	buf->b_private = NULL;
2026
2027	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2028}
2029
2030static arc_buf_t *
2031arc_buf_clone(arc_buf_t *from)
2032{
2033	arc_buf_t *buf;
2034	arc_buf_hdr_t *hdr = from->b_hdr;
2035	uint64_t size = hdr->b_size;
2036
2037	ASSERT(HDR_HAS_L1HDR(hdr));
2038	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2039
2040	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2041	buf->b_hdr = hdr;
2042	buf->b_data = NULL;
2043	buf->b_efunc = NULL;
2044	buf->b_private = NULL;
2045	buf->b_next = hdr->b_l1hdr.b_buf;
2046	hdr->b_l1hdr.b_buf = buf;
2047	arc_get_data_buf(buf);
2048	bcopy(from->b_data, buf->b_data, size);
2049
2050	/*
2051	 * This buffer already exists in the arc so create a duplicate
2052	 * copy for the caller.  If the buffer is associated with user data
2053	 * then track the size and number of duplicates.  These stats will be
2054	 * updated as duplicate buffers are created and destroyed.
2055	 */
2056	if (HDR_ISTYPE_DATA(hdr)) {
2057		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2058		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2059	}
2060	hdr->b_l1hdr.b_datacnt += 1;
2061	return (buf);
2062}
2063
2064void
2065arc_buf_add_ref(arc_buf_t *buf, void* tag)
2066{
2067	arc_buf_hdr_t *hdr;
2068	kmutex_t *hash_lock;
2069
2070	/*
2071	 * Check to see if this buffer is evicted.  Callers
2072	 * must verify b_data != NULL to know if the add_ref
2073	 * was successful.
2074	 */
2075	mutex_enter(&buf->b_evict_lock);
2076	if (buf->b_data == NULL) {
2077		mutex_exit(&buf->b_evict_lock);
2078		return;
2079	}
2080	hash_lock = HDR_LOCK(buf->b_hdr);
2081	mutex_enter(hash_lock);
2082	hdr = buf->b_hdr;
2083	ASSERT(HDR_HAS_L1HDR(hdr));
2084	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2085	mutex_exit(&buf->b_evict_lock);
2086
2087	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2088	    hdr->b_l1hdr.b_state == arc_mfu);
2089
2090	add_reference(hdr, hash_lock, tag);
2091	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2092	arc_access(hdr, hash_lock);
2093	mutex_exit(hash_lock);
2094	ARCSTAT_BUMP(arcstat_hits);
2095	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2096	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2097	    data, metadata, hits);
2098}
2099
2100static void
2101arc_buf_free_on_write(void *data, size_t size,
2102    void (*free_func)(void *, size_t))
2103{
2104	l2arc_data_free_t *df;
2105
2106	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2107	df->l2df_data = data;
2108	df->l2df_size = size;
2109	df->l2df_func = free_func;
2110	mutex_enter(&l2arc_free_on_write_mtx);
2111	list_insert_head(l2arc_free_on_write, df);
2112	mutex_exit(&l2arc_free_on_write_mtx);
2113}
2114
2115/*
2116 * Free the arc data buffer.  If it is an l2arc write in progress,
2117 * the buffer is placed on l2arc_free_on_write to be freed later.
2118 */
2119static void
2120arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2121{
2122	arc_buf_hdr_t *hdr = buf->b_hdr;
2123
2124	if (HDR_L2_WRITING(hdr)) {
2125		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2126		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2127	} else {
2128		free_func(buf->b_data, hdr->b_size);
2129	}
2130}
2131
2132/*
2133 * Free up buf->b_data and if 'remove' is set, then pull the
2134 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2135 */
2136static void
2137arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2138{
2139	ASSERT(HDR_HAS_L2HDR(hdr));
2140	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2141
2142	/*
2143	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2144	 * that doesn't exist, the header is in the arc_l2c_only state,
2145	 * and there isn't anything to free (it's already been freed).
2146	 */
2147	if (!HDR_HAS_L1HDR(hdr))
2148		return;
2149
2150	/*
2151	 * The header isn't being written to the l2arc device, thus it
2152	 * shouldn't have a b_tmp_cdata to free.
2153	 */
2154	if (!HDR_L2_WRITING(hdr)) {
2155		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2156		return;
2157	}
2158
2159	/*
2160	 * The header does not have compression enabled. This can be due
2161	 * to the buffer not being compressible, or because we're
2162	 * freeing the buffer before the second phase of
2163	 * l2arc_write_buffer() has started (which does the compression
2164	 * step). In either case, b_tmp_cdata does not point to a
2165	 * separately compressed buffer, so there's nothing to free (it
2166	 * points to the same buffer as the arc_buf_t's b_data field).
2167	 */
2168	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2169		hdr->b_l1hdr.b_tmp_cdata = NULL;
2170		return;
2171	}
2172
2173	/*
2174	 * There's nothing to free since the buffer was all zero's and
2175	 * compressed to a zero length buffer.
2176	 */
2177	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
2178		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2179		return;
2180	}
2181
2182	ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
2183
2184	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2185	    hdr->b_size, zio_data_buf_free);
2186
2187	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2188	hdr->b_l1hdr.b_tmp_cdata = NULL;
2189}
2190
2191static void
2192arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2193{
2194	arc_buf_t **bufp;
2195
2196	/* free up data associated with the buf */
2197	if (buf->b_data != NULL) {
2198		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2199		uint64_t size = buf->b_hdr->b_size;
2200		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2201
2202		arc_cksum_verify(buf);
2203#ifdef illumos
2204		arc_buf_unwatch(buf);
2205#endif
2206
2207		if (type == ARC_BUFC_METADATA) {
2208			arc_buf_data_free(buf, zio_buf_free);
2209			arc_space_return(size, ARC_SPACE_META);
2210		} else {
2211			ASSERT(type == ARC_BUFC_DATA);
2212			arc_buf_data_free(buf, zio_data_buf_free);
2213			arc_space_return(size, ARC_SPACE_DATA);
2214		}
2215
2216		/* protected by hash lock, if in the hash table */
2217		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2218			uint64_t *cnt = &state->arcs_lsize[type];
2219
2220			ASSERT(refcount_is_zero(
2221			    &buf->b_hdr->b_l1hdr.b_refcnt));
2222			ASSERT(state != arc_anon && state != arc_l2c_only);
2223
2224			ASSERT3U(*cnt, >=, size);
2225			atomic_add_64(cnt, -size);
2226		}
2227		ASSERT3U(state->arcs_size, >=, size);
2228		atomic_add_64(&state->arcs_size, -size);
2229		buf->b_data = NULL;
2230
2231		/*
2232		 * If we're destroying a duplicate buffer make sure
2233		 * that the appropriate statistics are updated.
2234		 */
2235		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2236		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2237			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2238			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2239		}
2240		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2241		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2242	}
2243
2244	/* only remove the buf if requested */
2245	if (!remove)
2246		return;
2247
2248	/* remove the buf from the hdr list */
2249	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2250	    bufp = &(*bufp)->b_next)
2251		continue;
2252	*bufp = buf->b_next;
2253	buf->b_next = NULL;
2254
2255	ASSERT(buf->b_efunc == NULL);
2256
2257	/* clean up the buf */
2258	buf->b_hdr = NULL;
2259	kmem_cache_free(buf_cache, buf);
2260}
2261
2262static void
2263arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2264{
2265	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2266	l2arc_dev_t *dev = l2hdr->b_dev;
2267
2268	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2269	ASSERT(HDR_HAS_L2HDR(hdr));
2270
2271	list_remove(&dev->l2ad_buflist, hdr);
2272
2273	/*
2274	 * We don't want to leak the b_tmp_cdata buffer that was
2275	 * allocated in l2arc_write_buffers()
2276	 */
2277	arc_buf_l2_cdata_free(hdr);
2278
2279	/*
2280	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2281	 * this header is being processed by l2arc_write_buffers() (i.e.
2282	 * it's in the first stage of l2arc_write_buffers()).
2283	 * Re-affirming that truth here, just to serve as a reminder. If
2284	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2285	 * may not have its HDR_L2_WRITING flag set. (the write may have
2286	 * completed, in which case HDR_L2_WRITING will be false and the
2287	 * b_daddr field will point to the address of the buffer on disk).
2288	 */
2289	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2290
2291	/*
2292	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2293	 * l2arc_write_buffers(). Since we've just removed this header
2294	 * from the l2arc buffer list, this header will never reach the
2295	 * second stage of l2arc_write_buffers(), which increments the
2296	 * accounting stats for this header. Thus, we must be careful
2297	 * not to decrement them for this header either.
2298	 */
2299	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2300		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2301		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2302
2303		vdev_space_update(dev->l2ad_vdev,
2304		    -l2hdr->b_asize, 0, 0);
2305
2306		(void) refcount_remove_many(&dev->l2ad_alloc,
2307		    l2hdr->b_asize, hdr);
2308	}
2309
2310	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2311}
2312
2313static void
2314arc_hdr_destroy(arc_buf_hdr_t *hdr)
2315{
2316	if (HDR_HAS_L1HDR(hdr)) {
2317		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2318		    hdr->b_l1hdr.b_datacnt > 0);
2319		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2320		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2321	}
2322	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2323	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2324
2325	if (HDR_HAS_L2HDR(hdr)) {
2326		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2327		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2328
2329		if (!buflist_held)
2330			mutex_enter(&dev->l2ad_mtx);
2331
2332		/*
2333		 * Even though we checked this conditional above, we
2334		 * need to check this again now that we have the
2335		 * l2ad_mtx. This is because we could be racing with
2336		 * another thread calling l2arc_evict() which might have
2337		 * destroyed this header's L2 portion as we were waiting
2338		 * to acquire the l2ad_mtx. If that happens, we don't
2339		 * want to re-destroy the header's L2 portion.
2340		 */
2341		if (HDR_HAS_L2HDR(hdr)) {
2342			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
2343				trim_map_free(dev->l2ad_vdev,
2344				    hdr->b_l2hdr.b_daddr,
2345				    hdr->b_l2hdr.b_asize, 0);
2346			arc_hdr_l2hdr_destroy(hdr);
2347		}
2348
2349		if (!buflist_held)
2350			mutex_exit(&dev->l2ad_mtx);
2351	}
2352
2353	if (!BUF_EMPTY(hdr))
2354		buf_discard_identity(hdr);
2355	if (hdr->b_freeze_cksum != NULL) {
2356		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2357		hdr->b_freeze_cksum = NULL;
2358	}
2359
2360	if (HDR_HAS_L1HDR(hdr)) {
2361		while (hdr->b_l1hdr.b_buf) {
2362			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2363
2364			if (buf->b_efunc != NULL) {
2365				mutex_enter(&arc_user_evicts_lock);
2366				mutex_enter(&buf->b_evict_lock);
2367				ASSERT(buf->b_hdr != NULL);
2368				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2369				hdr->b_l1hdr.b_buf = buf->b_next;
2370				buf->b_hdr = &arc_eviction_hdr;
2371				buf->b_next = arc_eviction_list;
2372				arc_eviction_list = buf;
2373				mutex_exit(&buf->b_evict_lock);
2374				cv_signal(&arc_user_evicts_cv);
2375				mutex_exit(&arc_user_evicts_lock);
2376			} else {
2377				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2378			}
2379		}
2380#ifdef ZFS_DEBUG
2381		if (hdr->b_l1hdr.b_thawed != NULL) {
2382			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2383			hdr->b_l1hdr.b_thawed = NULL;
2384		}
2385#endif
2386	}
2387
2388	ASSERT3P(hdr->b_hash_next, ==, NULL);
2389	if (HDR_HAS_L1HDR(hdr)) {
2390		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2391		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2392		kmem_cache_free(hdr_full_cache, hdr);
2393	} else {
2394		kmem_cache_free(hdr_l2only_cache, hdr);
2395	}
2396}
2397
2398void
2399arc_buf_free(arc_buf_t *buf, void *tag)
2400{
2401	arc_buf_hdr_t *hdr = buf->b_hdr;
2402	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2403
2404	ASSERT(buf->b_efunc == NULL);
2405	ASSERT(buf->b_data != NULL);
2406
2407	if (hashed) {
2408		kmutex_t *hash_lock = HDR_LOCK(hdr);
2409
2410		mutex_enter(hash_lock);
2411		hdr = buf->b_hdr;
2412		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2413
2414		(void) remove_reference(hdr, hash_lock, tag);
2415		if (hdr->b_l1hdr.b_datacnt > 1) {
2416			arc_buf_destroy(buf, TRUE);
2417		} else {
2418			ASSERT(buf == hdr->b_l1hdr.b_buf);
2419			ASSERT(buf->b_efunc == NULL);
2420			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2421		}
2422		mutex_exit(hash_lock);
2423	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2424		int destroy_hdr;
2425		/*
2426		 * We are in the middle of an async write.  Don't destroy
2427		 * this buffer unless the write completes before we finish
2428		 * decrementing the reference count.
2429		 */
2430		mutex_enter(&arc_user_evicts_lock);
2431		(void) remove_reference(hdr, NULL, tag);
2432		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2433		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2434		mutex_exit(&arc_user_evicts_lock);
2435		if (destroy_hdr)
2436			arc_hdr_destroy(hdr);
2437	} else {
2438		if (remove_reference(hdr, NULL, tag) > 0)
2439			arc_buf_destroy(buf, TRUE);
2440		else
2441			arc_hdr_destroy(hdr);
2442	}
2443}
2444
2445boolean_t
2446arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2447{
2448	arc_buf_hdr_t *hdr = buf->b_hdr;
2449	kmutex_t *hash_lock = HDR_LOCK(hdr);
2450	boolean_t no_callback = (buf->b_efunc == NULL);
2451
2452	if (hdr->b_l1hdr.b_state == arc_anon) {
2453		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2454		arc_buf_free(buf, tag);
2455		return (no_callback);
2456	}
2457
2458	mutex_enter(hash_lock);
2459	hdr = buf->b_hdr;
2460	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2461	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2462	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2463	ASSERT(buf->b_data != NULL);
2464
2465	(void) remove_reference(hdr, hash_lock, tag);
2466	if (hdr->b_l1hdr.b_datacnt > 1) {
2467		if (no_callback)
2468			arc_buf_destroy(buf, TRUE);
2469	} else if (no_callback) {
2470		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2471		ASSERT(buf->b_efunc == NULL);
2472		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2473	}
2474	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2475	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2476	mutex_exit(hash_lock);
2477	return (no_callback);
2478}
2479
2480int32_t
2481arc_buf_size(arc_buf_t *buf)
2482{
2483	return (buf->b_hdr->b_size);
2484}
2485
2486/*
2487 * Called from the DMU to determine if the current buffer should be
2488 * evicted. In order to ensure proper locking, the eviction must be initiated
2489 * from the DMU. Return true if the buffer is associated with user data and
2490 * duplicate buffers still exist.
2491 */
2492boolean_t
2493arc_buf_eviction_needed(arc_buf_t *buf)
2494{
2495	arc_buf_hdr_t *hdr;
2496	boolean_t evict_needed = B_FALSE;
2497
2498	if (zfs_disable_dup_eviction)
2499		return (B_FALSE);
2500
2501	mutex_enter(&buf->b_evict_lock);
2502	hdr = buf->b_hdr;
2503	if (hdr == NULL) {
2504		/*
2505		 * We are in arc_do_user_evicts(); let that function
2506		 * perform the eviction.
2507		 */
2508		ASSERT(buf->b_data == NULL);
2509		mutex_exit(&buf->b_evict_lock);
2510		return (B_FALSE);
2511	} else if (buf->b_data == NULL) {
2512		/*
2513		 * We have already been added to the arc eviction list;
2514		 * recommend eviction.
2515		 */
2516		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2517		mutex_exit(&buf->b_evict_lock);
2518		return (B_TRUE);
2519	}
2520
2521	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2522		evict_needed = B_TRUE;
2523
2524	mutex_exit(&buf->b_evict_lock);
2525	return (evict_needed);
2526}
2527
2528/*
2529 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2530 * state of the header is dependent on it's state prior to entering this
2531 * function. The following transitions are possible:
2532 *
2533 *    - arc_mru -> arc_mru_ghost
2534 *    - arc_mfu -> arc_mfu_ghost
2535 *    - arc_mru_ghost -> arc_l2c_only
2536 *    - arc_mru_ghost -> deleted
2537 *    - arc_mfu_ghost -> arc_l2c_only
2538 *    - arc_mfu_ghost -> deleted
2539 */
2540static int64_t
2541arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2542{
2543	arc_state_t *evicted_state, *state;
2544	int64_t bytes_evicted = 0;
2545
2546	ASSERT(MUTEX_HELD(hash_lock));
2547	ASSERT(HDR_HAS_L1HDR(hdr));
2548
2549	state = hdr->b_l1hdr.b_state;
2550	if (GHOST_STATE(state)) {
2551		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2552		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2553
2554		/*
2555		 * l2arc_write_buffers() relies on a header's L1 portion
2556		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2557		 * Thus, we cannot push a header onto the arc_l2c_only
2558		 * state (removing it's L1 piece) until the header is
2559		 * done being written to the l2arc.
2560		 */
2561		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2562			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2563			return (bytes_evicted);
2564		}
2565
2566		ARCSTAT_BUMP(arcstat_deleted);
2567		bytes_evicted += hdr->b_size;
2568
2569		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2570
2571		if (HDR_HAS_L2HDR(hdr)) {
2572			/*
2573			 * This buffer is cached on the 2nd Level ARC;
2574			 * don't destroy the header.
2575			 */
2576			arc_change_state(arc_l2c_only, hdr, hash_lock);
2577			/*
2578			 * dropping from L1+L2 cached to L2-only,
2579			 * realloc to remove the L1 header.
2580			 */
2581			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2582			    hdr_l2only_cache);
2583		} else {
2584			arc_change_state(arc_anon, hdr, hash_lock);
2585			arc_hdr_destroy(hdr);
2586		}
2587		return (bytes_evicted);
2588	}
2589
2590	ASSERT(state == arc_mru || state == arc_mfu);
2591	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2592
2593	/* prefetch buffers have a minimum lifespan */
2594	if (HDR_IO_IN_PROGRESS(hdr) ||
2595	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2596	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2597	    arc_min_prefetch_lifespan)) {
2598		ARCSTAT_BUMP(arcstat_evict_skip);
2599		return (bytes_evicted);
2600	}
2601
2602	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2603	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2604	while (hdr->b_l1hdr.b_buf) {
2605		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2606		if (!mutex_tryenter(&buf->b_evict_lock)) {
2607			ARCSTAT_BUMP(arcstat_mutex_miss);
2608			break;
2609		}
2610		if (buf->b_data != NULL)
2611			bytes_evicted += hdr->b_size;
2612		if (buf->b_efunc != NULL) {
2613			mutex_enter(&arc_user_evicts_lock);
2614			arc_buf_destroy(buf, FALSE);
2615			hdr->b_l1hdr.b_buf = buf->b_next;
2616			buf->b_hdr = &arc_eviction_hdr;
2617			buf->b_next = arc_eviction_list;
2618			arc_eviction_list = buf;
2619			cv_signal(&arc_user_evicts_cv);
2620			mutex_exit(&arc_user_evicts_lock);
2621			mutex_exit(&buf->b_evict_lock);
2622		} else {
2623			mutex_exit(&buf->b_evict_lock);
2624			arc_buf_destroy(buf, TRUE);
2625		}
2626	}
2627
2628	if (HDR_HAS_L2HDR(hdr)) {
2629		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2630	} else {
2631		if (l2arc_write_eligible(hdr->b_spa, hdr))
2632			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2633		else
2634			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2635	}
2636
2637	if (hdr->b_l1hdr.b_datacnt == 0) {
2638		arc_change_state(evicted_state, hdr, hash_lock);
2639		ASSERT(HDR_IN_HASH_TABLE(hdr));
2640		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2641		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2642		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2643	}
2644
2645	return (bytes_evicted);
2646}
2647
2648static uint64_t
2649arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2650    uint64_t spa, int64_t bytes)
2651{
2652	multilist_sublist_t *mls;
2653	uint64_t bytes_evicted = 0;
2654	arc_buf_hdr_t *hdr;
2655	kmutex_t *hash_lock;
2656	int evict_count = 0;
2657
2658	ASSERT3P(marker, !=, NULL);
2659	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2660
2661	mls = multilist_sublist_lock(ml, idx);
2662
2663	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2664	    hdr = multilist_sublist_prev(mls, marker)) {
2665		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2666		    (evict_count >= zfs_arc_evict_batch_limit))
2667			break;
2668
2669		/*
2670		 * To keep our iteration location, move the marker
2671		 * forward. Since we're not holding hdr's hash lock, we
2672		 * must be very careful and not remove 'hdr' from the
2673		 * sublist. Otherwise, other consumers might mistake the
2674		 * 'hdr' as not being on a sublist when they call the
2675		 * multilist_link_active() function (they all rely on
2676		 * the hash lock protecting concurrent insertions and
2677		 * removals). multilist_sublist_move_forward() was
2678		 * specifically implemented to ensure this is the case
2679		 * (only 'marker' will be removed and re-inserted).
2680		 */
2681		multilist_sublist_move_forward(mls, marker);
2682
2683		/*
2684		 * The only case where the b_spa field should ever be
2685		 * zero, is the marker headers inserted by
2686		 * arc_evict_state(). It's possible for multiple threads
2687		 * to be calling arc_evict_state() concurrently (e.g.
2688		 * dsl_pool_close() and zio_inject_fault()), so we must
2689		 * skip any markers we see from these other threads.
2690		 */
2691		if (hdr->b_spa == 0)
2692			continue;
2693
2694		/* we're only interested in evicting buffers of a certain spa */
2695		if (spa != 0 && hdr->b_spa != spa) {
2696			ARCSTAT_BUMP(arcstat_evict_skip);
2697			continue;
2698		}
2699
2700		hash_lock = HDR_LOCK(hdr);
2701
2702		/*
2703		 * We aren't calling this function from any code path
2704		 * that would already be holding a hash lock, so we're
2705		 * asserting on this assumption to be defensive in case
2706		 * this ever changes. Without this check, it would be
2707		 * possible to incorrectly increment arcstat_mutex_miss
2708		 * below (e.g. if the code changed such that we called
2709		 * this function with a hash lock held).
2710		 */
2711		ASSERT(!MUTEX_HELD(hash_lock));
2712
2713		if (mutex_tryenter(hash_lock)) {
2714			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2715			mutex_exit(hash_lock);
2716
2717			bytes_evicted += evicted;
2718
2719			/*
2720			 * If evicted is zero, arc_evict_hdr() must have
2721			 * decided to skip this header, don't increment
2722			 * evict_count in this case.
2723			 */
2724			if (evicted != 0)
2725				evict_count++;
2726
2727			/*
2728			 * If arc_size isn't overflowing, signal any
2729			 * threads that might happen to be waiting.
2730			 *
2731			 * For each header evicted, we wake up a single
2732			 * thread. If we used cv_broadcast, we could
2733			 * wake up "too many" threads causing arc_size
2734			 * to significantly overflow arc_c; since
2735			 * arc_get_data_buf() doesn't check for overflow
2736			 * when it's woken up (it doesn't because it's
2737			 * possible for the ARC to be overflowing while
2738			 * full of un-evictable buffers, and the
2739			 * function should proceed in this case).
2740			 *
2741			 * If threads are left sleeping, due to not
2742			 * using cv_broadcast, they will be woken up
2743			 * just before arc_reclaim_thread() sleeps.
2744			 */
2745			mutex_enter(&arc_reclaim_lock);
2746			if (!arc_is_overflowing())
2747				cv_signal(&arc_reclaim_waiters_cv);
2748			mutex_exit(&arc_reclaim_lock);
2749		} else {
2750			ARCSTAT_BUMP(arcstat_mutex_miss);
2751		}
2752	}
2753
2754	multilist_sublist_unlock(mls);
2755
2756	return (bytes_evicted);
2757}
2758
2759/*
2760 * Evict buffers from the given arc state, until we've removed the
2761 * specified number of bytes. Move the removed buffers to the
2762 * appropriate evict state.
2763 *
2764 * This function makes a "best effort". It skips over any buffers
2765 * it can't get a hash_lock on, and so, may not catch all candidates.
2766 * It may also return without evicting as much space as requested.
2767 *
2768 * If bytes is specified using the special value ARC_EVICT_ALL, this
2769 * will evict all available (i.e. unlocked and evictable) buffers from
2770 * the given arc state; which is used by arc_flush().
2771 */
2772static uint64_t
2773arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2774    arc_buf_contents_t type)
2775{
2776	uint64_t total_evicted = 0;
2777	multilist_t *ml = &state->arcs_list[type];
2778	int num_sublists;
2779	arc_buf_hdr_t **markers;
2780
2781	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2782
2783	num_sublists = multilist_get_num_sublists(ml);
2784
2785	/*
2786	 * If we've tried to evict from each sublist, made some
2787	 * progress, but still have not hit the target number of bytes
2788	 * to evict, we want to keep trying. The markers allow us to
2789	 * pick up where we left off for each individual sublist, rather
2790	 * than starting from the tail each time.
2791	 */
2792	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2793	for (int i = 0; i < num_sublists; i++) {
2794		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2795
2796		/*
2797		 * A b_spa of 0 is used to indicate that this header is
2798		 * a marker. This fact is used in arc_adjust_type() and
2799		 * arc_evict_state_impl().
2800		 */
2801		markers[i]->b_spa = 0;
2802
2803		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2804		multilist_sublist_insert_tail(mls, markers[i]);
2805		multilist_sublist_unlock(mls);
2806	}
2807
2808	/*
2809	 * While we haven't hit our target number of bytes to evict, or
2810	 * we're evicting all available buffers.
2811	 */
2812	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2813		/*
2814		 * Start eviction using a randomly selected sublist,
2815		 * this is to try and evenly balance eviction across all
2816		 * sublists. Always starting at the same sublist
2817		 * (e.g. index 0) would cause evictions to favor certain
2818		 * sublists over others.
2819		 */
2820		int sublist_idx = multilist_get_random_index(ml);
2821		uint64_t scan_evicted = 0;
2822
2823		for (int i = 0; i < num_sublists; i++) {
2824			uint64_t bytes_remaining;
2825			uint64_t bytes_evicted;
2826
2827			if (bytes == ARC_EVICT_ALL)
2828				bytes_remaining = ARC_EVICT_ALL;
2829			else if (total_evicted < bytes)
2830				bytes_remaining = bytes - total_evicted;
2831			else
2832				break;
2833
2834			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2835			    markers[sublist_idx], spa, bytes_remaining);
2836
2837			scan_evicted += bytes_evicted;
2838			total_evicted += bytes_evicted;
2839
2840			/* we've reached the end, wrap to the beginning */
2841			if (++sublist_idx >= num_sublists)
2842				sublist_idx = 0;
2843		}
2844
2845		/*
2846		 * If we didn't evict anything during this scan, we have
2847		 * no reason to believe we'll evict more during another
2848		 * scan, so break the loop.
2849		 */
2850		if (scan_evicted == 0) {
2851			/* This isn't possible, let's make that obvious */
2852			ASSERT3S(bytes, !=, 0);
2853
2854			/*
2855			 * When bytes is ARC_EVICT_ALL, the only way to
2856			 * break the loop is when scan_evicted is zero.
2857			 * In that case, we actually have evicted enough,
2858			 * so we don't want to increment the kstat.
2859			 */
2860			if (bytes != ARC_EVICT_ALL) {
2861				ASSERT3S(total_evicted, <, bytes);
2862				ARCSTAT_BUMP(arcstat_evict_not_enough);
2863			}
2864
2865			break;
2866		}
2867	}
2868
2869	for (int i = 0; i < num_sublists; i++) {
2870		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2871		multilist_sublist_remove(mls, markers[i]);
2872		multilist_sublist_unlock(mls);
2873
2874		kmem_cache_free(hdr_full_cache, markers[i]);
2875	}
2876	kmem_free(markers, sizeof (*markers) * num_sublists);
2877
2878	return (total_evicted);
2879}
2880
2881/*
2882 * Flush all "evictable" data of the given type from the arc state
2883 * specified. This will not evict any "active" buffers (i.e. referenced).
2884 *
2885 * When 'retry' is set to FALSE, the function will make a single pass
2886 * over the state and evict any buffers that it can. Since it doesn't
2887 * continually retry the eviction, it might end up leaving some buffers
2888 * in the ARC due to lock misses.
2889 *
2890 * When 'retry' is set to TRUE, the function will continually retry the
2891 * eviction until *all* evictable buffers have been removed from the
2892 * state. As a result, if concurrent insertions into the state are
2893 * allowed (e.g. if the ARC isn't shutting down), this function might
2894 * wind up in an infinite loop, continually trying to evict buffers.
2895 */
2896static uint64_t
2897arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2898    boolean_t retry)
2899{
2900	uint64_t evicted = 0;
2901
2902	while (state->arcs_lsize[type] != 0) {
2903		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2904
2905		if (!retry)
2906			break;
2907	}
2908
2909	return (evicted);
2910}
2911
2912/*
2913 * Evict the specified number of bytes from the state specified,
2914 * restricting eviction to the spa and type given. This function
2915 * prevents us from trying to evict more from a state's list than
2916 * is "evictable", and to skip evicting altogether when passed a
2917 * negative value for "bytes". In contrast, arc_evict_state() will
2918 * evict everything it can, when passed a negative value for "bytes".
2919 */
2920static uint64_t
2921arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2922    arc_buf_contents_t type)
2923{
2924	int64_t delta;
2925
2926	if (bytes > 0 && state->arcs_lsize[type] > 0) {
2927		delta = MIN(state->arcs_lsize[type], bytes);
2928		return (arc_evict_state(state, spa, delta, type));
2929	}
2930
2931	return (0);
2932}
2933
2934/*
2935 * Evict metadata buffers from the cache, such that arc_meta_used is
2936 * capped by the arc_meta_limit tunable.
2937 */
2938static uint64_t
2939arc_adjust_meta(void)
2940{
2941	uint64_t total_evicted = 0;
2942	int64_t target;
2943
2944	/*
2945	 * If we're over the meta limit, we want to evict enough
2946	 * metadata to get back under the meta limit. We don't want to
2947	 * evict so much that we drop the MRU below arc_p, though. If
2948	 * we're over the meta limit more than we're over arc_p, we
2949	 * evict some from the MRU here, and some from the MFU below.
2950	 */
2951	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2952	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
2953
2954	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2955
2956	/*
2957	 * Similar to the above, we want to evict enough bytes to get us
2958	 * below the meta limit, but not so much as to drop us below the
2959	 * space alloted to the MFU (which is defined as arc_c - arc_p).
2960	 */
2961	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2962	    (int64_t)(arc_mfu->arcs_size - (arc_c - arc_p)));
2963
2964	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2965
2966	return (total_evicted);
2967}
2968
2969/*
2970 * Return the type of the oldest buffer in the given arc state
2971 *
2972 * This function will select a random sublist of type ARC_BUFC_DATA and
2973 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2974 * is compared, and the type which contains the "older" buffer will be
2975 * returned.
2976 */
2977static arc_buf_contents_t
2978arc_adjust_type(arc_state_t *state)
2979{
2980	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2981	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2982	int data_idx = multilist_get_random_index(data_ml);
2983	int meta_idx = multilist_get_random_index(meta_ml);
2984	multilist_sublist_t *data_mls;
2985	multilist_sublist_t *meta_mls;
2986	arc_buf_contents_t type;
2987	arc_buf_hdr_t *data_hdr;
2988	arc_buf_hdr_t *meta_hdr;
2989
2990	/*
2991	 * We keep the sublist lock until we're finished, to prevent
2992	 * the headers from being destroyed via arc_evict_state().
2993	 */
2994	data_mls = multilist_sublist_lock(data_ml, data_idx);
2995	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2996
2997	/*
2998	 * These two loops are to ensure we skip any markers that
2999	 * might be at the tail of the lists due to arc_evict_state().
3000	 */
3001
3002	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3003	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3004		if (data_hdr->b_spa != 0)
3005			break;
3006	}
3007
3008	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3009	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3010		if (meta_hdr->b_spa != 0)
3011			break;
3012	}
3013
3014	if (data_hdr == NULL && meta_hdr == NULL) {
3015		type = ARC_BUFC_DATA;
3016	} else if (data_hdr == NULL) {
3017		ASSERT3P(meta_hdr, !=, NULL);
3018		type = ARC_BUFC_METADATA;
3019	} else if (meta_hdr == NULL) {
3020		ASSERT3P(data_hdr, !=, NULL);
3021		type = ARC_BUFC_DATA;
3022	} else {
3023		ASSERT3P(data_hdr, !=, NULL);
3024		ASSERT3P(meta_hdr, !=, NULL);
3025
3026		/* The headers can't be on the sublist without an L1 header */
3027		ASSERT(HDR_HAS_L1HDR(data_hdr));
3028		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3029
3030		if (data_hdr->b_l1hdr.b_arc_access <
3031		    meta_hdr->b_l1hdr.b_arc_access) {
3032			type = ARC_BUFC_DATA;
3033		} else {
3034			type = ARC_BUFC_METADATA;
3035		}
3036	}
3037
3038	multilist_sublist_unlock(meta_mls);
3039	multilist_sublist_unlock(data_mls);
3040
3041	return (type);
3042}
3043
3044/*
3045 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3046 */
3047static uint64_t
3048arc_adjust(void)
3049{
3050	uint64_t total_evicted = 0;
3051	uint64_t bytes;
3052	int64_t target;
3053
3054	/*
3055	 * If we're over arc_meta_limit, we want to correct that before
3056	 * potentially evicting data buffers below.
3057	 */
3058	total_evicted += arc_adjust_meta();
3059
3060	/*
3061	 * Adjust MRU size
3062	 *
3063	 * If we're over the target cache size, we want to evict enough
3064	 * from the list to get back to our target size. We don't want
3065	 * to evict too much from the MRU, such that it drops below
3066	 * arc_p. So, if we're over our target cache size more than
3067	 * the MRU is over arc_p, we'll evict enough to get back to
3068	 * arc_p here, and then evict more from the MFU below.
3069	 */
3070	target = MIN((int64_t)(arc_size - arc_c),
3071	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
3072	    arc_p));
3073
3074	/*
3075	 * If we're below arc_meta_min, always prefer to evict data.
3076	 * Otherwise, try to satisfy the requested number of bytes to
3077	 * evict from the type which contains older buffers; in an
3078	 * effort to keep newer buffers in the cache regardless of their
3079	 * type. If we cannot satisfy the number of bytes from this
3080	 * type, spill over into the next type.
3081	 */
3082	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3083	    arc_meta_used > arc_meta_min) {
3084		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3085		total_evicted += bytes;
3086
3087		/*
3088		 * If we couldn't evict our target number of bytes from
3089		 * metadata, we try to get the rest from data.
3090		 */
3091		target -= bytes;
3092
3093		total_evicted +=
3094		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3095	} else {
3096		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3097		total_evicted += bytes;
3098
3099		/*
3100		 * If we couldn't evict our target number of bytes from
3101		 * data, we try to get the rest from metadata.
3102		 */
3103		target -= bytes;
3104
3105		total_evicted +=
3106		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3107	}
3108
3109	/*
3110	 * Adjust MFU size
3111	 *
3112	 * Now that we've tried to evict enough from the MRU to get its
3113	 * size back to arc_p, if we're still above the target cache
3114	 * size, we evict the rest from the MFU.
3115	 */
3116	target = arc_size - arc_c;
3117
3118	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3119	    arc_meta_used > arc_meta_min) {
3120		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3121		total_evicted += bytes;
3122
3123		/*
3124		 * If we couldn't evict our target number of bytes from
3125		 * metadata, we try to get the rest from data.
3126		 */
3127		target -= bytes;
3128
3129		total_evicted +=
3130		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3131	} else {
3132		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3133		total_evicted += bytes;
3134
3135		/*
3136		 * If we couldn't evict our target number of bytes from
3137		 * data, we try to get the rest from data.
3138		 */
3139		target -= bytes;
3140
3141		total_evicted +=
3142		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3143	}
3144
3145	/*
3146	 * Adjust ghost lists
3147	 *
3148	 * In addition to the above, the ARC also defines target values
3149	 * for the ghost lists. The sum of the mru list and mru ghost
3150	 * list should never exceed the target size of the cache, and
3151	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3152	 * ghost list should never exceed twice the target size of the
3153	 * cache. The following logic enforces these limits on the ghost
3154	 * caches, and evicts from them as needed.
3155	 */
3156	target = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
3157
3158	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3159	total_evicted += bytes;
3160
3161	target -= bytes;
3162
3163	total_evicted +=
3164	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3165
3166	/*
3167	 * We assume the sum of the mru list and mfu list is less than
3168	 * or equal to arc_c (we enforced this above), which means we
3169	 * can use the simpler of the two equations below:
3170	 *
3171	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3172	 *		    mru ghost + mfu ghost <= arc_c
3173	 */
3174	target = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
3175
3176	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3177	total_evicted += bytes;
3178
3179	target -= bytes;
3180
3181	total_evicted +=
3182	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3183
3184	return (total_evicted);
3185}
3186
3187static void
3188arc_do_user_evicts(void)
3189{
3190	mutex_enter(&arc_user_evicts_lock);
3191	while (arc_eviction_list != NULL) {
3192		arc_buf_t *buf = arc_eviction_list;
3193		arc_eviction_list = buf->b_next;
3194		mutex_enter(&buf->b_evict_lock);
3195		buf->b_hdr = NULL;
3196		mutex_exit(&buf->b_evict_lock);
3197		mutex_exit(&arc_user_evicts_lock);
3198
3199		if (buf->b_efunc != NULL)
3200			VERIFY0(buf->b_efunc(buf->b_private));
3201
3202		buf->b_efunc = NULL;
3203		buf->b_private = NULL;
3204		kmem_cache_free(buf_cache, buf);
3205		mutex_enter(&arc_user_evicts_lock);
3206	}
3207	mutex_exit(&arc_user_evicts_lock);
3208}
3209
3210void
3211arc_flush(spa_t *spa, boolean_t retry)
3212{
3213	uint64_t guid = 0;
3214
3215	/*
3216	 * If retry is TRUE, a spa must not be specified since we have
3217	 * no good way to determine if all of a spa's buffers have been
3218	 * evicted from an arc state.
3219	 */
3220	ASSERT(!retry || spa == 0);
3221
3222	if (spa != NULL)
3223		guid = spa_load_guid(spa);
3224
3225	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3226	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3227
3228	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3229	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3230
3231	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3232	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3233
3234	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3235	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3236
3237	arc_do_user_evicts();
3238	ASSERT(spa || arc_eviction_list == NULL);
3239}
3240
3241void
3242arc_shrink(int64_t to_free)
3243{
3244	if (arc_c > arc_c_min) {
3245		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3246			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3247		if (arc_c > arc_c_min + to_free)
3248			atomic_add_64(&arc_c, -to_free);
3249		else
3250			arc_c = arc_c_min;
3251
3252		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3253		if (arc_c > arc_size)
3254			arc_c = MAX(arc_size, arc_c_min);
3255		if (arc_p > arc_c)
3256			arc_p = (arc_c >> 1);
3257
3258		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3259			arc_p);
3260
3261		ASSERT(arc_c >= arc_c_min);
3262		ASSERT((int64_t)arc_p >= 0);
3263	}
3264
3265	if (arc_size > arc_c) {
3266		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3267			uint64_t, arc_c);
3268		(void) arc_adjust();
3269	}
3270}
3271
3272static long needfree = 0;
3273
3274typedef enum free_memory_reason_t {
3275	FMR_UNKNOWN,
3276	FMR_NEEDFREE,
3277	FMR_LOTSFREE,
3278	FMR_SWAPFS_MINFREE,
3279	FMR_PAGES_PP_MAXIMUM,
3280	FMR_HEAP_ARENA,
3281	FMR_ZIO_ARENA,
3282	FMR_ZIO_FRAG,
3283} free_memory_reason_t;
3284
3285int64_t last_free_memory;
3286free_memory_reason_t last_free_reason;
3287
3288/*
3289 * Additional reserve of pages for pp_reserve.
3290 */
3291int64_t arc_pages_pp_reserve = 64;
3292
3293/*
3294 * Additional reserve of pages for swapfs.
3295 */
3296int64_t arc_swapfs_reserve = 64;
3297
3298/*
3299 * Return the amount of memory that can be consumed before reclaim will be
3300 * needed.  Positive if there is sufficient free memory, negative indicates
3301 * the amount of memory that needs to be freed up.
3302 */
3303static int64_t
3304arc_available_memory(void)
3305{
3306	int64_t lowest = INT64_MAX;
3307	int64_t n;
3308	free_memory_reason_t r = FMR_UNKNOWN;
3309
3310#ifdef _KERNEL
3311	if (needfree > 0) {
3312		n = PAGESIZE * (-needfree);
3313		if (n < lowest) {
3314			lowest = n;
3315			r = FMR_NEEDFREE;
3316		}
3317	}
3318
3319	/*
3320	 * Cooperate with pagedaemon when it's time for it to scan
3321	 * and reclaim some pages.
3322	 */
3323	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3324	if (n < lowest) {
3325		lowest = n;
3326		r = FMR_LOTSFREE;
3327	}
3328
3329#ifdef illumos
3330	/*
3331	 * check that we're out of range of the pageout scanner.  It starts to
3332	 * schedule paging if freemem is less than lotsfree and needfree.
3333	 * lotsfree is the high-water mark for pageout, and needfree is the
3334	 * number of needed free pages.  We add extra pages here to make sure
3335	 * the scanner doesn't start up while we're freeing memory.
3336	 */
3337	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3338	if (n < lowest) {
3339		lowest = n;
3340		r = FMR_LOTSFREE;
3341	}
3342
3343	/*
3344	 * check to make sure that swapfs has enough space so that anon
3345	 * reservations can still succeed. anon_resvmem() checks that the
3346	 * availrmem is greater than swapfs_minfree, and the number of reserved
3347	 * swap pages.  We also add a bit of extra here just to prevent
3348	 * circumstances from getting really dire.
3349	 */
3350	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3351	    desfree - arc_swapfs_reserve);
3352	if (n < lowest) {
3353		lowest = n;
3354		r = FMR_SWAPFS_MINFREE;
3355	}
3356
3357
3358	/*
3359	 * Check that we have enough availrmem that memory locking (e.g., via
3360	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3361	 * stores the number of pages that cannot be locked; when availrmem
3362	 * drops below pages_pp_maximum, page locking mechanisms such as
3363	 * page_pp_lock() will fail.)
3364	 */
3365	n = PAGESIZE * (availrmem - pages_pp_maximum -
3366	    arc_pages_pp_reserve);
3367	if (n < lowest) {
3368		lowest = n;
3369		r = FMR_PAGES_PP_MAXIMUM;
3370	}
3371
3372#endif	/* illumos */
3373#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3374	/*
3375	 * If we're on an i386 platform, it's possible that we'll exhaust the
3376	 * kernel heap space before we ever run out of available physical
3377	 * memory.  Most checks of the size of the heap_area compare against
3378	 * tune.t_minarmem, which is the minimum available real memory that we
3379	 * can have in the system.  However, this is generally fixed at 25 pages
3380	 * which is so low that it's useless.  In this comparison, we seek to
3381	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3382	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3383	 * free)
3384	 */
3385	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3386	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3387	if (n < lowest) {
3388		lowest = n;
3389		r = FMR_HEAP_ARENA;
3390	}
3391#define	zio_arena	NULL
3392#else
3393#define	zio_arena	heap_arena
3394#endif
3395
3396	/*
3397	 * If zio data pages are being allocated out of a separate heap segment,
3398	 * then enforce that the size of available vmem for this arena remains
3399	 * above about 1/16th free.
3400	 *
3401	 * Note: The 1/16th arena free requirement was put in place
3402	 * to aggressively evict memory from the arc in order to avoid
3403	 * memory fragmentation issues.
3404	 */
3405	if (zio_arena != NULL) {
3406		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3407		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3408		if (n < lowest) {
3409			lowest = n;
3410			r = FMR_ZIO_ARENA;
3411		}
3412	}
3413
3414	/*
3415	 * Above limits know nothing about real level of KVA fragmentation.
3416	 * Start aggressive reclamation if too little sequential KVA left.
3417	 */
3418	if (lowest > 0) {
3419		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3420		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3421		    INT64_MAX;
3422		if (n < lowest) {
3423			lowest = n;
3424			r = FMR_ZIO_FRAG;
3425		}
3426	}
3427
3428#else	/* _KERNEL */
3429	/* Every 100 calls, free a small amount */
3430	if (spa_get_random(100) == 0)
3431		lowest = -1024;
3432#endif	/* _KERNEL */
3433
3434	last_free_memory = lowest;
3435	last_free_reason = r;
3436	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3437	return (lowest);
3438}
3439
3440
3441/*
3442 * Determine if the system is under memory pressure and is asking
3443 * to reclaim memory. A return value of TRUE indicates that the system
3444 * is under memory pressure and that the arc should adjust accordingly.
3445 */
3446static boolean_t
3447arc_reclaim_needed(void)
3448{
3449	return (arc_available_memory() < 0);
3450}
3451
3452extern kmem_cache_t	*zio_buf_cache[];
3453extern kmem_cache_t	*zio_data_buf_cache[];
3454extern kmem_cache_t	*range_seg_cache;
3455
3456static __noinline void
3457arc_kmem_reap_now(void)
3458{
3459	size_t			i;
3460	kmem_cache_t		*prev_cache = NULL;
3461	kmem_cache_t		*prev_data_cache = NULL;
3462
3463	DTRACE_PROBE(arc__kmem_reap_start);
3464#ifdef _KERNEL
3465	if (arc_meta_used >= arc_meta_limit) {
3466		/*
3467		 * We are exceeding our meta-data cache limit.
3468		 * Purge some DNLC entries to release holds on meta-data.
3469		 */
3470		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3471	}
3472#if defined(__i386)
3473	/*
3474	 * Reclaim unused memory from all kmem caches.
3475	 */
3476	kmem_reap();
3477#endif
3478#endif
3479
3480	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3481		if (zio_buf_cache[i] != prev_cache) {
3482			prev_cache = zio_buf_cache[i];
3483			kmem_cache_reap_now(zio_buf_cache[i]);
3484		}
3485		if (zio_data_buf_cache[i] != prev_data_cache) {
3486			prev_data_cache = zio_data_buf_cache[i];
3487			kmem_cache_reap_now(zio_data_buf_cache[i]);
3488		}
3489	}
3490	kmem_cache_reap_now(buf_cache);
3491	kmem_cache_reap_now(hdr_full_cache);
3492	kmem_cache_reap_now(hdr_l2only_cache);
3493	kmem_cache_reap_now(range_seg_cache);
3494
3495#ifdef illumos
3496	if (zio_arena != NULL) {
3497		/*
3498		 * Ask the vmem arena to reclaim unused memory from its
3499		 * quantum caches.
3500		 */
3501		vmem_qcache_reap(zio_arena);
3502	}
3503#endif
3504	DTRACE_PROBE(arc__kmem_reap_end);
3505}
3506
3507/*
3508 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3509 * enough data and signal them to proceed. When this happens, the threads in
3510 * arc_get_data_buf() are sleeping while holding the hash lock for their
3511 * particular arc header. Thus, we must be careful to never sleep on a
3512 * hash lock in this thread. This is to prevent the following deadlock:
3513 *
3514 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3515 *    waiting for the reclaim thread to signal it.
3516 *
3517 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3518 *    fails, and goes to sleep forever.
3519 *
3520 * This possible deadlock is avoided by always acquiring a hash lock
3521 * using mutex_tryenter() from arc_reclaim_thread().
3522 */
3523static void
3524arc_reclaim_thread(void *dummy __unused)
3525{
3526	clock_t			growtime = 0;
3527	callb_cpr_t		cpr;
3528
3529	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3530
3531	mutex_enter(&arc_reclaim_lock);
3532	while (!arc_reclaim_thread_exit) {
3533		int64_t free_memory = arc_available_memory();
3534		uint64_t evicted = 0;
3535
3536		mutex_exit(&arc_reclaim_lock);
3537
3538		if (free_memory < 0) {
3539
3540			arc_no_grow = B_TRUE;
3541			arc_warm = B_TRUE;
3542
3543			/*
3544			 * Wait at least zfs_grow_retry (default 60) seconds
3545			 * before considering growing.
3546			 */
3547			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3548
3549			arc_kmem_reap_now();
3550
3551			/*
3552			 * If we are still low on memory, shrink the ARC
3553			 * so that we have arc_shrink_min free space.
3554			 */
3555			free_memory = arc_available_memory();
3556
3557			int64_t to_free =
3558			    (arc_c >> arc_shrink_shift) - free_memory;
3559			if (to_free > 0) {
3560#ifdef _KERNEL
3561				to_free = MAX(to_free, ptob(needfree));
3562#endif
3563				arc_shrink(to_free);
3564			}
3565		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3566			arc_no_grow = B_TRUE;
3567		} else if (ddi_get_lbolt() >= growtime) {
3568			arc_no_grow = B_FALSE;
3569		}
3570
3571		evicted = arc_adjust();
3572
3573		mutex_enter(&arc_reclaim_lock);
3574
3575		/*
3576		 * If evicted is zero, we couldn't evict anything via
3577		 * arc_adjust(). This could be due to hash lock
3578		 * collisions, but more likely due to the majority of
3579		 * arc buffers being unevictable. Therefore, even if
3580		 * arc_size is above arc_c, another pass is unlikely to
3581		 * be helpful and could potentially cause us to enter an
3582		 * infinite loop.
3583		 */
3584		if (arc_size <= arc_c || evicted == 0) {
3585#ifdef _KERNEL
3586			needfree = 0;
3587#endif
3588			/*
3589			 * We're either no longer overflowing, or we
3590			 * can't evict anything more, so we should wake
3591			 * up any threads before we go to sleep.
3592			 */
3593			cv_broadcast(&arc_reclaim_waiters_cv);
3594
3595			/*
3596			 * Block until signaled, or after one second (we
3597			 * might need to perform arc_kmem_reap_now()
3598			 * even if we aren't being signalled)
3599			 */
3600			CALLB_CPR_SAFE_BEGIN(&cpr);
3601			(void) cv_timedwait(&arc_reclaim_thread_cv,
3602			    &arc_reclaim_lock, hz);
3603			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3604		}
3605	}
3606
3607	arc_reclaim_thread_exit = FALSE;
3608	cv_broadcast(&arc_reclaim_thread_cv);
3609	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3610	thread_exit();
3611}
3612
3613static void
3614arc_user_evicts_thread(void *dummy __unused)
3615{
3616	callb_cpr_t cpr;
3617
3618	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3619
3620	mutex_enter(&arc_user_evicts_lock);
3621	while (!arc_user_evicts_thread_exit) {
3622		mutex_exit(&arc_user_evicts_lock);
3623
3624		arc_do_user_evicts();
3625
3626		/*
3627		 * This is necessary in order for the mdb ::arc dcmd to
3628		 * show up to date information. Since the ::arc command
3629		 * does not call the kstat's update function, without
3630		 * this call, the command may show stale stats for the
3631		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3632		 * with this change, the data might be up to 1 second
3633		 * out of date; but that should suffice. The arc_state_t
3634		 * structures can be queried directly if more accurate
3635		 * information is needed.
3636		 */
3637		if (arc_ksp != NULL)
3638			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3639
3640		mutex_enter(&arc_user_evicts_lock);
3641
3642		/*
3643		 * Block until signaled, or after one second (we need to
3644		 * call the arc's kstat update function regularly).
3645		 */
3646		CALLB_CPR_SAFE_BEGIN(&cpr);
3647		(void) cv_timedwait(&arc_user_evicts_cv,
3648		    &arc_user_evicts_lock, hz);
3649		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3650	}
3651
3652	arc_user_evicts_thread_exit = FALSE;
3653	cv_broadcast(&arc_user_evicts_cv);
3654	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3655	thread_exit();
3656}
3657
3658/*
3659 * Adapt arc info given the number of bytes we are trying to add and
3660 * the state that we are comming from.  This function is only called
3661 * when we are adding new content to the cache.
3662 */
3663static void
3664arc_adapt(int bytes, arc_state_t *state)
3665{
3666	int mult;
3667	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3668
3669	if (state == arc_l2c_only)
3670		return;
3671
3672	ASSERT(bytes > 0);
3673	/*
3674	 * Adapt the target size of the MRU list:
3675	 *	- if we just hit in the MRU ghost list, then increase
3676	 *	  the target size of the MRU list.
3677	 *	- if we just hit in the MFU ghost list, then increase
3678	 *	  the target size of the MFU list by decreasing the
3679	 *	  target size of the MRU list.
3680	 */
3681	if (state == arc_mru_ghost) {
3682		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3683		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
3684		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3685
3686		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3687	} else if (state == arc_mfu_ghost) {
3688		uint64_t delta;
3689
3690		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3691		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
3692		mult = MIN(mult, 10);
3693
3694		delta = MIN(bytes * mult, arc_p);
3695		arc_p = MAX(arc_p_min, arc_p - delta);
3696	}
3697	ASSERT((int64_t)arc_p >= 0);
3698
3699	if (arc_reclaim_needed()) {
3700		cv_signal(&arc_reclaim_thread_cv);
3701		return;
3702	}
3703
3704	if (arc_no_grow)
3705		return;
3706
3707	if (arc_c >= arc_c_max)
3708		return;
3709
3710	/*
3711	 * If we're within (2 * maxblocksize) bytes of the target
3712	 * cache size, increment the target cache size
3713	 */
3714	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3715		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3716		atomic_add_64(&arc_c, (int64_t)bytes);
3717		if (arc_c > arc_c_max)
3718			arc_c = arc_c_max;
3719		else if (state == arc_anon)
3720			atomic_add_64(&arc_p, (int64_t)bytes);
3721		if (arc_p > arc_c)
3722			arc_p = arc_c;
3723	}
3724	ASSERT((int64_t)arc_p >= 0);
3725}
3726
3727/*
3728 * Check if arc_size has grown past our upper threshold, determined by
3729 * zfs_arc_overflow_shift.
3730 */
3731static boolean_t
3732arc_is_overflowing(void)
3733{
3734	/* Always allow at least one block of overflow */
3735	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3736	    arc_c >> zfs_arc_overflow_shift);
3737
3738	return (arc_size >= arc_c + overflow);
3739}
3740
3741/*
3742 * The buffer, supplied as the first argument, needs a data block. If we
3743 * are hitting the hard limit for the cache size, we must sleep, waiting
3744 * for the eviction thread to catch up. If we're past the target size
3745 * but below the hard limit, we'll only signal the reclaim thread and
3746 * continue on.
3747 */
3748static void
3749arc_get_data_buf(arc_buf_t *buf)
3750{
3751	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3752	uint64_t		size = buf->b_hdr->b_size;
3753	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3754
3755	arc_adapt(size, state);
3756
3757	/*
3758	 * If arc_size is currently overflowing, and has grown past our
3759	 * upper limit, we must be adding data faster than the evict
3760	 * thread can evict. Thus, to ensure we don't compound the
3761	 * problem by adding more data and forcing arc_size to grow even
3762	 * further past it's target size, we halt and wait for the
3763	 * eviction thread to catch up.
3764	 *
3765	 * It's also possible that the reclaim thread is unable to evict
3766	 * enough buffers to get arc_size below the overflow limit (e.g.
3767	 * due to buffers being un-evictable, or hash lock collisions).
3768	 * In this case, we want to proceed regardless if we're
3769	 * overflowing; thus we don't use a while loop here.
3770	 */
3771	if (arc_is_overflowing()) {
3772		mutex_enter(&arc_reclaim_lock);
3773
3774		/*
3775		 * Now that we've acquired the lock, we may no longer be
3776		 * over the overflow limit, lets check.
3777		 *
3778		 * We're ignoring the case of spurious wake ups. If that
3779		 * were to happen, it'd let this thread consume an ARC
3780		 * buffer before it should have (i.e. before we're under
3781		 * the overflow limit and were signalled by the reclaim
3782		 * thread). As long as that is a rare occurrence, it
3783		 * shouldn't cause any harm.
3784		 */
3785		if (arc_is_overflowing()) {
3786			cv_signal(&arc_reclaim_thread_cv);
3787			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3788		}
3789
3790		mutex_exit(&arc_reclaim_lock);
3791	}
3792
3793	if (type == ARC_BUFC_METADATA) {
3794		buf->b_data = zio_buf_alloc(size);
3795		arc_space_consume(size, ARC_SPACE_META);
3796	} else {
3797		ASSERT(type == ARC_BUFC_DATA);
3798		buf->b_data = zio_data_buf_alloc(size);
3799		arc_space_consume(size, ARC_SPACE_DATA);
3800	}
3801
3802	/*
3803	 * Update the state size.  Note that ghost states have a
3804	 * "ghost size" and so don't need to be updated.
3805	 */
3806	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3807		arc_buf_hdr_t *hdr = buf->b_hdr;
3808
3809		atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
3810
3811		/*
3812		 * If this is reached via arc_read, the link is
3813		 * protected by the hash lock. If reached via
3814		 * arc_buf_alloc, the header should not be accessed by
3815		 * any other thread. And, if reached via arc_read_done,
3816		 * the hash lock will protect it if it's found in the
3817		 * hash table; otherwise no other thread should be
3818		 * trying to [add|remove]_reference it.
3819		 */
3820		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3821			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3822			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3823			    size);
3824		}
3825		/*
3826		 * If we are growing the cache, and we are adding anonymous
3827		 * data, and we have outgrown arc_p, update arc_p
3828		 */
3829		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3830		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3831			arc_p = MIN(arc_c, arc_p + size);
3832	}
3833	ARCSTAT_BUMP(arcstat_allocated);
3834}
3835
3836/*
3837 * This routine is called whenever a buffer is accessed.
3838 * NOTE: the hash lock is dropped in this function.
3839 */
3840static void
3841arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3842{
3843	clock_t now;
3844
3845	ASSERT(MUTEX_HELD(hash_lock));
3846	ASSERT(HDR_HAS_L1HDR(hdr));
3847
3848	if (hdr->b_l1hdr.b_state == arc_anon) {
3849		/*
3850		 * This buffer is not in the cache, and does not
3851		 * appear in our "ghost" list.  Add the new buffer
3852		 * to the MRU state.
3853		 */
3854
3855		ASSERT0(hdr->b_l1hdr.b_arc_access);
3856		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3857		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3858		arc_change_state(arc_mru, hdr, hash_lock);
3859
3860	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3861		now = ddi_get_lbolt();
3862
3863		/*
3864		 * If this buffer is here because of a prefetch, then either:
3865		 * - clear the flag if this is a "referencing" read
3866		 *   (any subsequent access will bump this into the MFU state).
3867		 * or
3868		 * - move the buffer to the head of the list if this is
3869		 *   another prefetch (to make it less likely to be evicted).
3870		 */
3871		if (HDR_PREFETCH(hdr)) {
3872			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3873				/* link protected by hash lock */
3874				ASSERT(multilist_link_active(
3875				    &hdr->b_l1hdr.b_arc_node));
3876			} else {
3877				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3878				ARCSTAT_BUMP(arcstat_mru_hits);
3879			}
3880			hdr->b_l1hdr.b_arc_access = now;
3881			return;
3882		}
3883
3884		/*
3885		 * This buffer has been "accessed" only once so far,
3886		 * but it is still in the cache. Move it to the MFU
3887		 * state.
3888		 */
3889		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3890			/*
3891			 * More than 125ms have passed since we
3892			 * instantiated this buffer.  Move it to the
3893			 * most frequently used state.
3894			 */
3895			hdr->b_l1hdr.b_arc_access = now;
3896			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3897			arc_change_state(arc_mfu, hdr, hash_lock);
3898		}
3899		ARCSTAT_BUMP(arcstat_mru_hits);
3900	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3901		arc_state_t	*new_state;
3902		/*
3903		 * This buffer has been "accessed" recently, but
3904		 * was evicted from the cache.  Move it to the
3905		 * MFU state.
3906		 */
3907
3908		if (HDR_PREFETCH(hdr)) {
3909			new_state = arc_mru;
3910			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3911				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3912			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3913		} else {
3914			new_state = arc_mfu;
3915			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3916		}
3917
3918		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3919		arc_change_state(new_state, hdr, hash_lock);
3920
3921		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3922	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3923		/*
3924		 * This buffer has been accessed more than once and is
3925		 * still in the cache.  Keep it in the MFU state.
3926		 *
3927		 * NOTE: an add_reference() that occurred when we did
3928		 * the arc_read() will have kicked this off the list.
3929		 * If it was a prefetch, we will explicitly move it to
3930		 * the head of the list now.
3931		 */
3932		if ((HDR_PREFETCH(hdr)) != 0) {
3933			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3934			/* link protected by hash_lock */
3935			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3936		}
3937		ARCSTAT_BUMP(arcstat_mfu_hits);
3938		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3939	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3940		arc_state_t	*new_state = arc_mfu;
3941		/*
3942		 * This buffer has been accessed more than once but has
3943		 * been evicted from the cache.  Move it back to the
3944		 * MFU state.
3945		 */
3946
3947		if (HDR_PREFETCH(hdr)) {
3948			/*
3949			 * This is a prefetch access...
3950			 * move this block back to the MRU state.
3951			 */
3952			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3953			new_state = arc_mru;
3954		}
3955
3956		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3957		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3958		arc_change_state(new_state, hdr, hash_lock);
3959
3960		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3961	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3962		/*
3963		 * This buffer is on the 2nd Level ARC.
3964		 */
3965
3966		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3967		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3968		arc_change_state(arc_mfu, hdr, hash_lock);
3969	} else {
3970		ASSERT(!"invalid arc state");
3971	}
3972}
3973
3974/* a generic arc_done_func_t which you can use */
3975/* ARGSUSED */
3976void
3977arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3978{
3979	if (zio == NULL || zio->io_error == 0)
3980		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3981	VERIFY(arc_buf_remove_ref(buf, arg));
3982}
3983
3984/* a generic arc_done_func_t */
3985void
3986arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3987{
3988	arc_buf_t **bufp = arg;
3989	if (zio && zio->io_error) {
3990		VERIFY(arc_buf_remove_ref(buf, arg));
3991		*bufp = NULL;
3992	} else {
3993		*bufp = buf;
3994		ASSERT(buf->b_data);
3995	}
3996}
3997
3998static void
3999arc_read_done(zio_t *zio)
4000{
4001	arc_buf_hdr_t	*hdr;
4002	arc_buf_t	*buf;
4003	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4004	kmutex_t	*hash_lock = NULL;
4005	arc_callback_t	*callback_list, *acb;
4006	int		freeable = FALSE;
4007
4008	buf = zio->io_private;
4009	hdr = buf->b_hdr;
4010
4011	/*
4012	 * The hdr was inserted into hash-table and removed from lists
4013	 * prior to starting I/O.  We should find this header, since
4014	 * it's in the hash table, and it should be legit since it's
4015	 * not possible to evict it during the I/O.  The only possible
4016	 * reason for it not to be found is if we were freed during the
4017	 * read.
4018	 */
4019	if (HDR_IN_HASH_TABLE(hdr)) {
4020		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4021		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4022		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4023		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4024		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4025
4026		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4027		    &hash_lock);
4028
4029		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4030		    hash_lock == NULL) ||
4031		    (found == hdr &&
4032		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4033		    (found == hdr && HDR_L2_READING(hdr)));
4034	}
4035
4036	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4037	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4038		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4039
4040	/* byteswap if necessary */
4041	callback_list = hdr->b_l1hdr.b_acb;
4042	ASSERT(callback_list != NULL);
4043	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4044		dmu_object_byteswap_t bswap =
4045		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4046		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4047		    byteswap_uint64_array :
4048		    dmu_ot_byteswap[bswap].ob_func;
4049		func(buf->b_data, hdr->b_size);
4050	}
4051
4052	arc_cksum_compute(buf, B_FALSE);
4053#ifdef illumos
4054	arc_buf_watch(buf);
4055#endif
4056
4057	if (hash_lock && zio->io_error == 0 &&
4058	    hdr->b_l1hdr.b_state == arc_anon) {
4059		/*
4060		 * Only call arc_access on anonymous buffers.  This is because
4061		 * if we've issued an I/O for an evicted buffer, we've already
4062		 * called arc_access (to prevent any simultaneous readers from
4063		 * getting confused).
4064		 */
4065		arc_access(hdr, hash_lock);
4066	}
4067
4068	/* create copies of the data buffer for the callers */
4069	abuf = buf;
4070	for (acb = callback_list; acb; acb = acb->acb_next) {
4071		if (acb->acb_done) {
4072			if (abuf == NULL) {
4073				ARCSTAT_BUMP(arcstat_duplicate_reads);
4074				abuf = arc_buf_clone(buf);
4075			}
4076			acb->acb_buf = abuf;
4077			abuf = NULL;
4078		}
4079	}
4080	hdr->b_l1hdr.b_acb = NULL;
4081	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4082	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4083	if (abuf == buf) {
4084		ASSERT(buf->b_efunc == NULL);
4085		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4086		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4087	}
4088
4089	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4090	    callback_list != NULL);
4091
4092	if (zio->io_error != 0) {
4093		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4094		if (hdr->b_l1hdr.b_state != arc_anon)
4095			arc_change_state(arc_anon, hdr, hash_lock);
4096		if (HDR_IN_HASH_TABLE(hdr))
4097			buf_hash_remove(hdr);
4098		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4099	}
4100
4101	/*
4102	 * Broadcast before we drop the hash_lock to avoid the possibility
4103	 * that the hdr (and hence the cv) might be freed before we get to
4104	 * the cv_broadcast().
4105	 */
4106	cv_broadcast(&hdr->b_l1hdr.b_cv);
4107
4108	if (hash_lock != NULL) {
4109		mutex_exit(hash_lock);
4110	} else {
4111		/*
4112		 * This block was freed while we waited for the read to
4113		 * complete.  It has been removed from the hash table and
4114		 * moved to the anonymous state (so that it won't show up
4115		 * in the cache).
4116		 */
4117		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4118		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4119	}
4120
4121	/* execute each callback and free its structure */
4122	while ((acb = callback_list) != NULL) {
4123		if (acb->acb_done)
4124			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4125
4126		if (acb->acb_zio_dummy != NULL) {
4127			acb->acb_zio_dummy->io_error = zio->io_error;
4128			zio_nowait(acb->acb_zio_dummy);
4129		}
4130
4131		callback_list = acb->acb_next;
4132		kmem_free(acb, sizeof (arc_callback_t));
4133	}
4134
4135	if (freeable)
4136		arc_hdr_destroy(hdr);
4137}
4138
4139/*
4140 * "Read" the block at the specified DVA (in bp) via the
4141 * cache.  If the block is found in the cache, invoke the provided
4142 * callback immediately and return.  Note that the `zio' parameter
4143 * in the callback will be NULL in this case, since no IO was
4144 * required.  If the block is not in the cache pass the read request
4145 * on to the spa with a substitute callback function, so that the
4146 * requested block will be added to the cache.
4147 *
4148 * If a read request arrives for a block that has a read in-progress,
4149 * either wait for the in-progress read to complete (and return the
4150 * results); or, if this is a read with a "done" func, add a record
4151 * to the read to invoke the "done" func when the read completes,
4152 * and return; or just return.
4153 *
4154 * arc_read_done() will invoke all the requested "done" functions
4155 * for readers of this block.
4156 */
4157int
4158arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4159    void *private, zio_priority_t priority, int zio_flags,
4160    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4161{
4162	arc_buf_hdr_t *hdr = NULL;
4163	arc_buf_t *buf = NULL;
4164	kmutex_t *hash_lock = NULL;
4165	zio_t *rzio;
4166	uint64_t guid = spa_load_guid(spa);
4167
4168	ASSERT(!BP_IS_EMBEDDED(bp) ||
4169	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4170
4171top:
4172	if (!BP_IS_EMBEDDED(bp)) {
4173		/*
4174		 * Embedded BP's have no DVA and require no I/O to "read".
4175		 * Create an anonymous arc buf to back it.
4176		 */
4177		hdr = buf_hash_find(guid, bp, &hash_lock);
4178	}
4179
4180	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4181
4182		*arc_flags |= ARC_FLAG_CACHED;
4183
4184		if (HDR_IO_IN_PROGRESS(hdr)) {
4185
4186			if (*arc_flags & ARC_FLAG_WAIT) {
4187				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4188				mutex_exit(hash_lock);
4189				goto top;
4190			}
4191			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4192
4193			if (done) {
4194				arc_callback_t	*acb = NULL;
4195
4196				acb = kmem_zalloc(sizeof (arc_callback_t),
4197				    KM_SLEEP);
4198				acb->acb_done = done;
4199				acb->acb_private = private;
4200				if (pio != NULL)
4201					acb->acb_zio_dummy = zio_null(pio,
4202					    spa, NULL, NULL, NULL, zio_flags);
4203
4204				ASSERT(acb->acb_done != NULL);
4205				acb->acb_next = hdr->b_l1hdr.b_acb;
4206				hdr->b_l1hdr.b_acb = acb;
4207				add_reference(hdr, hash_lock, private);
4208				mutex_exit(hash_lock);
4209				return (0);
4210			}
4211			mutex_exit(hash_lock);
4212			return (0);
4213		}
4214
4215		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4216		    hdr->b_l1hdr.b_state == arc_mfu);
4217
4218		if (done) {
4219			add_reference(hdr, hash_lock, private);
4220			/*
4221			 * If this block is already in use, create a new
4222			 * copy of the data so that we will be guaranteed
4223			 * that arc_release() will always succeed.
4224			 */
4225			buf = hdr->b_l1hdr.b_buf;
4226			ASSERT(buf);
4227			ASSERT(buf->b_data);
4228			if (HDR_BUF_AVAILABLE(hdr)) {
4229				ASSERT(buf->b_efunc == NULL);
4230				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4231			} else {
4232				buf = arc_buf_clone(buf);
4233			}
4234
4235		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4236		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4237			hdr->b_flags |= ARC_FLAG_PREFETCH;
4238		}
4239		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4240		arc_access(hdr, hash_lock);
4241		if (*arc_flags & ARC_FLAG_L2CACHE)
4242			hdr->b_flags |= ARC_FLAG_L2CACHE;
4243		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4244			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4245		mutex_exit(hash_lock);
4246		ARCSTAT_BUMP(arcstat_hits);
4247		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4248		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4249		    data, metadata, hits);
4250
4251		if (done)
4252			done(NULL, buf, private);
4253	} else {
4254		uint64_t size = BP_GET_LSIZE(bp);
4255		arc_callback_t *acb;
4256		vdev_t *vd = NULL;
4257		uint64_t addr = 0;
4258		boolean_t devw = B_FALSE;
4259		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4260		int32_t b_asize = 0;
4261
4262		if (hdr == NULL) {
4263			/* this block is not in the cache */
4264			arc_buf_hdr_t *exists = NULL;
4265			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4266			buf = arc_buf_alloc(spa, size, private, type);
4267			hdr = buf->b_hdr;
4268			if (!BP_IS_EMBEDDED(bp)) {
4269				hdr->b_dva = *BP_IDENTITY(bp);
4270				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4271				exists = buf_hash_insert(hdr, &hash_lock);
4272			}
4273			if (exists != NULL) {
4274				/* somebody beat us to the hash insert */
4275				mutex_exit(hash_lock);
4276				buf_discard_identity(hdr);
4277				(void) arc_buf_remove_ref(buf, private);
4278				goto top; /* restart the IO request */
4279			}
4280
4281			/* if this is a prefetch, we don't have a reference */
4282			if (*arc_flags & ARC_FLAG_PREFETCH) {
4283				(void) remove_reference(hdr, hash_lock,
4284				    private);
4285				hdr->b_flags |= ARC_FLAG_PREFETCH;
4286			}
4287			if (*arc_flags & ARC_FLAG_L2CACHE)
4288				hdr->b_flags |= ARC_FLAG_L2CACHE;
4289			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4290				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4291			if (BP_GET_LEVEL(bp) > 0)
4292				hdr->b_flags |= ARC_FLAG_INDIRECT;
4293		} else {
4294			/*
4295			 * This block is in the ghost cache. If it was L2-only
4296			 * (and thus didn't have an L1 hdr), we realloc the
4297			 * header to add an L1 hdr.
4298			 */
4299			if (!HDR_HAS_L1HDR(hdr)) {
4300				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4301				    hdr_full_cache);
4302			}
4303
4304			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4305			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4306			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4307			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4308
4309			/* if this is a prefetch, we don't have a reference */
4310			if (*arc_flags & ARC_FLAG_PREFETCH)
4311				hdr->b_flags |= ARC_FLAG_PREFETCH;
4312			else
4313				add_reference(hdr, hash_lock, private);
4314			if (*arc_flags & ARC_FLAG_L2CACHE)
4315				hdr->b_flags |= ARC_FLAG_L2CACHE;
4316			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4317				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4318			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4319			buf->b_hdr = hdr;
4320			buf->b_data = NULL;
4321			buf->b_efunc = NULL;
4322			buf->b_private = NULL;
4323			buf->b_next = NULL;
4324			hdr->b_l1hdr.b_buf = buf;
4325			ASSERT0(hdr->b_l1hdr.b_datacnt);
4326			hdr->b_l1hdr.b_datacnt = 1;
4327			arc_get_data_buf(buf);
4328			arc_access(hdr, hash_lock);
4329		}
4330
4331		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4332
4333		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4334		acb->acb_done = done;
4335		acb->acb_private = private;
4336
4337		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4338		hdr->b_l1hdr.b_acb = acb;
4339		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4340
4341		if (HDR_HAS_L2HDR(hdr) &&
4342		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4343			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4344			addr = hdr->b_l2hdr.b_daddr;
4345			b_compress = HDR_GET_COMPRESS(hdr);
4346			b_asize = hdr->b_l2hdr.b_asize;
4347			/*
4348			 * Lock out device removal.
4349			 */
4350			if (vdev_is_dead(vd) ||
4351			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4352				vd = NULL;
4353		}
4354
4355		if (hash_lock != NULL)
4356			mutex_exit(hash_lock);
4357
4358		/*
4359		 * At this point, we have a level 1 cache miss.  Try again in
4360		 * L2ARC if possible.
4361		 */
4362		ASSERT3U(hdr->b_size, ==, size);
4363		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4364		    uint64_t, size, zbookmark_phys_t *, zb);
4365		ARCSTAT_BUMP(arcstat_misses);
4366		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4367		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4368		    data, metadata, misses);
4369#ifdef _KERNEL
4370		curthread->td_ru.ru_inblock++;
4371#endif
4372
4373		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4374			/*
4375			 * Read from the L2ARC if the following are true:
4376			 * 1. The L2ARC vdev was previously cached.
4377			 * 2. This buffer still has L2ARC metadata.
4378			 * 3. This buffer isn't currently writing to the L2ARC.
4379			 * 4. The L2ARC entry wasn't evicted, which may
4380			 *    also have invalidated the vdev.
4381			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4382			 */
4383			if (HDR_HAS_L2HDR(hdr) &&
4384			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4385			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4386				l2arc_read_callback_t *cb;
4387
4388				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4389				ARCSTAT_BUMP(arcstat_l2_hits);
4390
4391				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4392				    KM_SLEEP);
4393				cb->l2rcb_buf = buf;
4394				cb->l2rcb_spa = spa;
4395				cb->l2rcb_bp = *bp;
4396				cb->l2rcb_zb = *zb;
4397				cb->l2rcb_flags = zio_flags;
4398				cb->l2rcb_compress = b_compress;
4399
4400				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4401				    addr + size < vd->vdev_psize -
4402				    VDEV_LABEL_END_SIZE);
4403
4404				/*
4405				 * l2arc read.  The SCL_L2ARC lock will be
4406				 * released by l2arc_read_done().
4407				 * Issue a null zio if the underlying buffer
4408				 * was squashed to zero size by compression.
4409				 */
4410				if (b_compress == ZIO_COMPRESS_EMPTY) {
4411					rzio = zio_null(pio, spa, vd,
4412					    l2arc_read_done, cb,
4413					    zio_flags | ZIO_FLAG_DONT_CACHE |
4414					    ZIO_FLAG_CANFAIL |
4415					    ZIO_FLAG_DONT_PROPAGATE |
4416					    ZIO_FLAG_DONT_RETRY);
4417				} else {
4418					rzio = zio_read_phys(pio, vd, addr,
4419					    b_asize, buf->b_data,
4420					    ZIO_CHECKSUM_OFF,
4421					    l2arc_read_done, cb, priority,
4422					    zio_flags | ZIO_FLAG_DONT_CACHE |
4423					    ZIO_FLAG_CANFAIL |
4424					    ZIO_FLAG_DONT_PROPAGATE |
4425					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4426				}
4427				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4428				    zio_t *, rzio);
4429				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4430
4431				if (*arc_flags & ARC_FLAG_NOWAIT) {
4432					zio_nowait(rzio);
4433					return (0);
4434				}
4435
4436				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4437				if (zio_wait(rzio) == 0)
4438					return (0);
4439
4440				/* l2arc read error; goto zio_read() */
4441			} else {
4442				DTRACE_PROBE1(l2arc__miss,
4443				    arc_buf_hdr_t *, hdr);
4444				ARCSTAT_BUMP(arcstat_l2_misses);
4445				if (HDR_L2_WRITING(hdr))
4446					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4447				spa_config_exit(spa, SCL_L2ARC, vd);
4448			}
4449		} else {
4450			if (vd != NULL)
4451				spa_config_exit(spa, SCL_L2ARC, vd);
4452			if (l2arc_ndev != 0) {
4453				DTRACE_PROBE1(l2arc__miss,
4454				    arc_buf_hdr_t *, hdr);
4455				ARCSTAT_BUMP(arcstat_l2_misses);
4456			}
4457		}
4458
4459		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4460		    arc_read_done, buf, priority, zio_flags, zb);
4461
4462		if (*arc_flags & ARC_FLAG_WAIT)
4463			return (zio_wait(rzio));
4464
4465		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4466		zio_nowait(rzio);
4467	}
4468	return (0);
4469}
4470
4471void
4472arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4473{
4474	ASSERT(buf->b_hdr != NULL);
4475	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4476	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4477	    func == NULL);
4478	ASSERT(buf->b_efunc == NULL);
4479	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4480
4481	buf->b_efunc = func;
4482	buf->b_private = private;
4483}
4484
4485/*
4486 * Notify the arc that a block was freed, and thus will never be used again.
4487 */
4488void
4489arc_freed(spa_t *spa, const blkptr_t *bp)
4490{
4491	arc_buf_hdr_t *hdr;
4492	kmutex_t *hash_lock;
4493	uint64_t guid = spa_load_guid(spa);
4494
4495	ASSERT(!BP_IS_EMBEDDED(bp));
4496
4497	hdr = buf_hash_find(guid, bp, &hash_lock);
4498	if (hdr == NULL)
4499		return;
4500	if (HDR_BUF_AVAILABLE(hdr)) {
4501		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4502		add_reference(hdr, hash_lock, FTAG);
4503		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4504		mutex_exit(hash_lock);
4505
4506		arc_release(buf, FTAG);
4507		(void) arc_buf_remove_ref(buf, FTAG);
4508	} else {
4509		mutex_exit(hash_lock);
4510	}
4511
4512}
4513
4514/*
4515 * Clear the user eviction callback set by arc_set_callback(), first calling
4516 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4517 * clearing the callback may result in the arc_buf being destroyed.  However,
4518 * it will not result in the *last* arc_buf being destroyed, hence the data
4519 * will remain cached in the ARC. We make a copy of the arc buffer here so
4520 * that we can process the callback without holding any locks.
4521 *
4522 * It's possible that the callback is already in the process of being cleared
4523 * by another thread.  In this case we can not clear the callback.
4524 *
4525 * Returns B_TRUE if the callback was successfully called and cleared.
4526 */
4527boolean_t
4528arc_clear_callback(arc_buf_t *buf)
4529{
4530	arc_buf_hdr_t *hdr;
4531	kmutex_t *hash_lock;
4532	arc_evict_func_t *efunc = buf->b_efunc;
4533	void *private = buf->b_private;
4534
4535	mutex_enter(&buf->b_evict_lock);
4536	hdr = buf->b_hdr;
4537	if (hdr == NULL) {
4538		/*
4539		 * We are in arc_do_user_evicts().
4540		 */
4541		ASSERT(buf->b_data == NULL);
4542		mutex_exit(&buf->b_evict_lock);
4543		return (B_FALSE);
4544	} else if (buf->b_data == NULL) {
4545		/*
4546		 * We are on the eviction list; process this buffer now
4547		 * but let arc_do_user_evicts() do the reaping.
4548		 */
4549		buf->b_efunc = NULL;
4550		mutex_exit(&buf->b_evict_lock);
4551		VERIFY0(efunc(private));
4552		return (B_TRUE);
4553	}
4554	hash_lock = HDR_LOCK(hdr);
4555	mutex_enter(hash_lock);
4556	hdr = buf->b_hdr;
4557	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4558
4559	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4560	    hdr->b_l1hdr.b_datacnt);
4561	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4562	    hdr->b_l1hdr.b_state == arc_mfu);
4563
4564	buf->b_efunc = NULL;
4565	buf->b_private = NULL;
4566
4567	if (hdr->b_l1hdr.b_datacnt > 1) {
4568		mutex_exit(&buf->b_evict_lock);
4569		arc_buf_destroy(buf, TRUE);
4570	} else {
4571		ASSERT(buf == hdr->b_l1hdr.b_buf);
4572		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4573		mutex_exit(&buf->b_evict_lock);
4574	}
4575
4576	mutex_exit(hash_lock);
4577	VERIFY0(efunc(private));
4578	return (B_TRUE);
4579}
4580
4581/*
4582 * Release this buffer from the cache, making it an anonymous buffer.  This
4583 * must be done after a read and prior to modifying the buffer contents.
4584 * If the buffer has more than one reference, we must make
4585 * a new hdr for the buffer.
4586 */
4587void
4588arc_release(arc_buf_t *buf, void *tag)
4589{
4590	arc_buf_hdr_t *hdr = buf->b_hdr;
4591
4592	ASSERT(HDR_HAS_L1HDR(hdr));
4593
4594	/*
4595	 * It would be nice to assert that if it's DMU metadata (level >
4596	 * 0 || it's the dnode file), then it must be syncing context.
4597	 * But we don't know that information at this level.
4598	 */
4599
4600	mutex_enter(&buf->b_evict_lock);
4601	/*
4602	 * We don't grab the hash lock prior to this check, because if
4603	 * the buffer's header is in the arc_anon state, it won't be
4604	 * linked into the hash table.
4605	 */
4606	if (hdr->b_l1hdr.b_state == arc_anon) {
4607		mutex_exit(&buf->b_evict_lock);
4608		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4609		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4610		ASSERT(!HDR_HAS_L2HDR(hdr));
4611		ASSERT(BUF_EMPTY(hdr));
4612		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4613		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4614		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4615
4616		ASSERT3P(buf->b_efunc, ==, NULL);
4617		ASSERT3P(buf->b_private, ==, NULL);
4618
4619		hdr->b_l1hdr.b_arc_access = 0;
4620		arc_buf_thaw(buf);
4621
4622		return;
4623	}
4624
4625	kmutex_t *hash_lock = HDR_LOCK(hdr);
4626	mutex_enter(hash_lock);
4627
4628	/*
4629	 * This assignment is only valid as long as the hash_lock is
4630	 * held, we must be careful not to reference state or the
4631	 * b_state field after dropping the lock.
4632	 */
4633	arc_state_t *state = hdr->b_l1hdr.b_state;
4634	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4635	ASSERT3P(state, !=, arc_anon);
4636
4637	/* this buffer is not on any list */
4638	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4639
4640	if (HDR_HAS_L2HDR(hdr)) {
4641		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4642
4643		/*
4644		 * We have to recheck this conditional again now that
4645		 * we're holding the l2ad_mtx to prevent a race with
4646		 * another thread which might be concurrently calling
4647		 * l2arc_evict(). In that case, l2arc_evict() might have
4648		 * destroyed the header's L2 portion as we were waiting
4649		 * to acquire the l2ad_mtx.
4650		 */
4651		if (HDR_HAS_L2HDR(hdr)) {
4652			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
4653				trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4654				    hdr->b_l2hdr.b_daddr,
4655				    hdr->b_l2hdr.b_asize, 0);
4656			arc_hdr_l2hdr_destroy(hdr);
4657		}
4658
4659		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4660	}
4661
4662	/*
4663	 * Do we have more than one buf?
4664	 */
4665	if (hdr->b_l1hdr.b_datacnt > 1) {
4666		arc_buf_hdr_t *nhdr;
4667		arc_buf_t **bufp;
4668		uint64_t blksz = hdr->b_size;
4669		uint64_t spa = hdr->b_spa;
4670		arc_buf_contents_t type = arc_buf_type(hdr);
4671		uint32_t flags = hdr->b_flags;
4672
4673		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4674		/*
4675		 * Pull the data off of this hdr and attach it to
4676		 * a new anonymous hdr.
4677		 */
4678		(void) remove_reference(hdr, hash_lock, tag);
4679		bufp = &hdr->b_l1hdr.b_buf;
4680		while (*bufp != buf)
4681			bufp = &(*bufp)->b_next;
4682		*bufp = buf->b_next;
4683		buf->b_next = NULL;
4684
4685		ASSERT3P(state, !=, arc_l2c_only);
4686		ASSERT3U(state->arcs_size, >=, hdr->b_size);
4687		atomic_add_64(&state->arcs_size, -hdr->b_size);
4688		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4689			ASSERT3P(state, !=, arc_l2c_only);
4690			uint64_t *size = &state->arcs_lsize[type];
4691			ASSERT3U(*size, >=, hdr->b_size);
4692			atomic_add_64(size, -hdr->b_size);
4693		}
4694
4695		/*
4696		 * We're releasing a duplicate user data buffer, update
4697		 * our statistics accordingly.
4698		 */
4699		if (HDR_ISTYPE_DATA(hdr)) {
4700			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4701			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4702			    -hdr->b_size);
4703		}
4704		hdr->b_l1hdr.b_datacnt -= 1;
4705		arc_cksum_verify(buf);
4706#ifdef illumos
4707		arc_buf_unwatch(buf);
4708#endif
4709
4710		mutex_exit(hash_lock);
4711
4712		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4713		nhdr->b_size = blksz;
4714		nhdr->b_spa = spa;
4715
4716		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4717		nhdr->b_flags |= arc_bufc_to_flags(type);
4718		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4719
4720		nhdr->b_l1hdr.b_buf = buf;
4721		nhdr->b_l1hdr.b_datacnt = 1;
4722		nhdr->b_l1hdr.b_state = arc_anon;
4723		nhdr->b_l1hdr.b_arc_access = 0;
4724		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4725		nhdr->b_freeze_cksum = NULL;
4726
4727		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4728		buf->b_hdr = nhdr;
4729		mutex_exit(&buf->b_evict_lock);
4730		atomic_add_64(&arc_anon->arcs_size, blksz);
4731	} else {
4732		mutex_exit(&buf->b_evict_lock);
4733		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4734		/* protected by hash lock, or hdr is on arc_anon */
4735		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4736		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4737		arc_change_state(arc_anon, hdr, hash_lock);
4738		hdr->b_l1hdr.b_arc_access = 0;
4739		mutex_exit(hash_lock);
4740
4741		buf_discard_identity(hdr);
4742		arc_buf_thaw(buf);
4743	}
4744	buf->b_efunc = NULL;
4745	buf->b_private = NULL;
4746}
4747
4748int
4749arc_released(arc_buf_t *buf)
4750{
4751	int released;
4752
4753	mutex_enter(&buf->b_evict_lock);
4754	released = (buf->b_data != NULL &&
4755	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4756	mutex_exit(&buf->b_evict_lock);
4757	return (released);
4758}
4759
4760#ifdef ZFS_DEBUG
4761int
4762arc_referenced(arc_buf_t *buf)
4763{
4764	int referenced;
4765
4766	mutex_enter(&buf->b_evict_lock);
4767	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4768	mutex_exit(&buf->b_evict_lock);
4769	return (referenced);
4770}
4771#endif
4772
4773static void
4774arc_write_ready(zio_t *zio)
4775{
4776	arc_write_callback_t *callback = zio->io_private;
4777	arc_buf_t *buf = callback->awcb_buf;
4778	arc_buf_hdr_t *hdr = buf->b_hdr;
4779
4780	ASSERT(HDR_HAS_L1HDR(hdr));
4781	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4782	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4783	callback->awcb_ready(zio, buf, callback->awcb_private);
4784
4785	/*
4786	 * If the IO is already in progress, then this is a re-write
4787	 * attempt, so we need to thaw and re-compute the cksum.
4788	 * It is the responsibility of the callback to handle the
4789	 * accounting for any re-write attempt.
4790	 */
4791	if (HDR_IO_IN_PROGRESS(hdr)) {
4792		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4793		if (hdr->b_freeze_cksum != NULL) {
4794			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4795			hdr->b_freeze_cksum = NULL;
4796		}
4797		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4798	}
4799	arc_cksum_compute(buf, B_FALSE);
4800	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4801}
4802
4803/*
4804 * The SPA calls this callback for each physical write that happens on behalf
4805 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4806 */
4807static void
4808arc_write_physdone(zio_t *zio)
4809{
4810	arc_write_callback_t *cb = zio->io_private;
4811	if (cb->awcb_physdone != NULL)
4812		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4813}
4814
4815static void
4816arc_write_done(zio_t *zio)
4817{
4818	arc_write_callback_t *callback = zio->io_private;
4819	arc_buf_t *buf = callback->awcb_buf;
4820	arc_buf_hdr_t *hdr = buf->b_hdr;
4821
4822	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4823
4824	if (zio->io_error == 0) {
4825		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4826			buf_discard_identity(hdr);
4827		} else {
4828			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4829			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4830		}
4831	} else {
4832		ASSERT(BUF_EMPTY(hdr));
4833	}
4834
4835	/*
4836	 * If the block to be written was all-zero or compressed enough to be
4837	 * embedded in the BP, no write was performed so there will be no
4838	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4839	 * (and uncached).
4840	 */
4841	if (!BUF_EMPTY(hdr)) {
4842		arc_buf_hdr_t *exists;
4843		kmutex_t *hash_lock;
4844
4845		ASSERT(zio->io_error == 0);
4846
4847		arc_cksum_verify(buf);
4848
4849		exists = buf_hash_insert(hdr, &hash_lock);
4850		if (exists != NULL) {
4851			/*
4852			 * This can only happen if we overwrite for
4853			 * sync-to-convergence, because we remove
4854			 * buffers from the hash table when we arc_free().
4855			 */
4856			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4857				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4858					panic("bad overwrite, hdr=%p exists=%p",
4859					    (void *)hdr, (void *)exists);
4860				ASSERT(refcount_is_zero(
4861				    &exists->b_l1hdr.b_refcnt));
4862				arc_change_state(arc_anon, exists, hash_lock);
4863				mutex_exit(hash_lock);
4864				arc_hdr_destroy(exists);
4865				exists = buf_hash_insert(hdr, &hash_lock);
4866				ASSERT3P(exists, ==, NULL);
4867			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4868				/* nopwrite */
4869				ASSERT(zio->io_prop.zp_nopwrite);
4870				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4871					panic("bad nopwrite, hdr=%p exists=%p",
4872					    (void *)hdr, (void *)exists);
4873			} else {
4874				/* Dedup */
4875				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4876				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4877				ASSERT(BP_GET_DEDUP(zio->io_bp));
4878				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4879			}
4880		}
4881		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4882		/* if it's not anon, we are doing a scrub */
4883		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4884			arc_access(hdr, hash_lock);
4885		mutex_exit(hash_lock);
4886	} else {
4887		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4888	}
4889
4890	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4891	callback->awcb_done(zio, buf, callback->awcb_private);
4892
4893	kmem_free(callback, sizeof (arc_write_callback_t));
4894}
4895
4896zio_t *
4897arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4898    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4899    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4900    arc_done_func_t *done, void *private, zio_priority_t priority,
4901    int zio_flags, const zbookmark_phys_t *zb)
4902{
4903	arc_buf_hdr_t *hdr = buf->b_hdr;
4904	arc_write_callback_t *callback;
4905	zio_t *zio;
4906
4907	ASSERT(ready != NULL);
4908	ASSERT(done != NULL);
4909	ASSERT(!HDR_IO_ERROR(hdr));
4910	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4911	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4912	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4913	if (l2arc)
4914		hdr->b_flags |= ARC_FLAG_L2CACHE;
4915	if (l2arc_compress)
4916		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4917	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4918	callback->awcb_ready = ready;
4919	callback->awcb_physdone = physdone;
4920	callback->awcb_done = done;
4921	callback->awcb_private = private;
4922	callback->awcb_buf = buf;
4923
4924	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4925	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4926	    priority, zio_flags, zb);
4927
4928	return (zio);
4929}
4930
4931static int
4932arc_memory_throttle(uint64_t reserve, uint64_t txg)
4933{
4934#ifdef _KERNEL
4935	uint64_t available_memory = ptob(freemem);
4936	static uint64_t page_load = 0;
4937	static uint64_t last_txg = 0;
4938
4939#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4940	available_memory =
4941	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
4942#endif
4943
4944	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
4945		return (0);
4946
4947	if (txg > last_txg) {
4948		last_txg = txg;
4949		page_load = 0;
4950	}
4951	/*
4952	 * If we are in pageout, we know that memory is already tight,
4953	 * the arc is already going to be evicting, so we just want to
4954	 * continue to let page writes occur as quickly as possible.
4955	 */
4956	if (curproc == pageproc) {
4957		if (page_load > MAX(ptob(minfree), available_memory) / 4)
4958			return (SET_ERROR(ERESTART));
4959		/* Note: reserve is inflated, so we deflate */
4960		page_load += reserve / 8;
4961		return (0);
4962	} else if (page_load > 0 && arc_reclaim_needed()) {
4963		/* memory is low, delay before restarting */
4964		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4965		return (SET_ERROR(EAGAIN));
4966	}
4967	page_load = 0;
4968#endif
4969	return (0);
4970}
4971
4972void
4973arc_tempreserve_clear(uint64_t reserve)
4974{
4975	atomic_add_64(&arc_tempreserve, -reserve);
4976	ASSERT((int64_t)arc_tempreserve >= 0);
4977}
4978
4979int
4980arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4981{
4982	int error;
4983	uint64_t anon_size;
4984
4985	if (reserve > arc_c/4 && !arc_no_grow) {
4986		arc_c = MIN(arc_c_max, reserve * 4);
4987		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
4988	}
4989	if (reserve > arc_c)
4990		return (SET_ERROR(ENOMEM));
4991
4992	/*
4993	 * Don't count loaned bufs as in flight dirty data to prevent long
4994	 * network delays from blocking transactions that are ready to be
4995	 * assigned to a txg.
4996	 */
4997	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4998
4999	/*
5000	 * Writes will, almost always, require additional memory allocations
5001	 * in order to compress/encrypt/etc the data.  We therefore need to
5002	 * make sure that there is sufficient available memory for this.
5003	 */
5004	error = arc_memory_throttle(reserve, txg);
5005	if (error != 0)
5006		return (error);
5007
5008	/*
5009	 * Throttle writes when the amount of dirty data in the cache
5010	 * gets too large.  We try to keep the cache less than half full
5011	 * of dirty blocks so that our sync times don't grow too large.
5012	 * Note: if two requests come in concurrently, we might let them
5013	 * both succeed, when one of them should fail.  Not a huge deal.
5014	 */
5015
5016	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5017	    anon_size > arc_c / 4) {
5018		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5019		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5020		    arc_tempreserve>>10,
5021		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5022		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5023		    reserve>>10, arc_c>>10);
5024		return (SET_ERROR(ERESTART));
5025	}
5026	atomic_add_64(&arc_tempreserve, reserve);
5027	return (0);
5028}
5029
5030static void
5031arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5032    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5033{
5034	size->value.ui64 = state->arcs_size;
5035	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5036	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5037}
5038
5039static int
5040arc_kstat_update(kstat_t *ksp, int rw)
5041{
5042	arc_stats_t *as = ksp->ks_data;
5043
5044	if (rw == KSTAT_WRITE) {
5045		return (EACCES);
5046	} else {
5047		arc_kstat_update_state(arc_anon,
5048		    &as->arcstat_anon_size,
5049		    &as->arcstat_anon_evictable_data,
5050		    &as->arcstat_anon_evictable_metadata);
5051		arc_kstat_update_state(arc_mru,
5052		    &as->arcstat_mru_size,
5053		    &as->arcstat_mru_evictable_data,
5054		    &as->arcstat_mru_evictable_metadata);
5055		arc_kstat_update_state(arc_mru_ghost,
5056		    &as->arcstat_mru_ghost_size,
5057		    &as->arcstat_mru_ghost_evictable_data,
5058		    &as->arcstat_mru_ghost_evictable_metadata);
5059		arc_kstat_update_state(arc_mfu,
5060		    &as->arcstat_mfu_size,
5061		    &as->arcstat_mfu_evictable_data,
5062		    &as->arcstat_mfu_evictable_metadata);
5063		arc_kstat_update_state(arc_mfu_ghost,
5064		    &as->arcstat_mfu_ghost_size,
5065		    &as->arcstat_mfu_ghost_evictable_data,
5066		    &as->arcstat_mfu_ghost_evictable_metadata);
5067	}
5068
5069	return (0);
5070}
5071
5072/*
5073 * This function *must* return indices evenly distributed between all
5074 * sublists of the multilist. This is needed due to how the ARC eviction
5075 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5076 * distributed between all sublists and uses this assumption when
5077 * deciding which sublist to evict from and how much to evict from it.
5078 */
5079unsigned int
5080arc_state_multilist_index_func(multilist_t *ml, void *obj)
5081{
5082	arc_buf_hdr_t *hdr = obj;
5083
5084	/*
5085	 * We rely on b_dva to generate evenly distributed index
5086	 * numbers using buf_hash below. So, as an added precaution,
5087	 * let's make sure we never add empty buffers to the arc lists.
5088	 */
5089	ASSERT(!BUF_EMPTY(hdr));
5090
5091	/*
5092	 * The assumption here, is the hash value for a given
5093	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5094	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5095	 * Thus, we don't need to store the header's sublist index
5096	 * on insertion, as this index can be recalculated on removal.
5097	 *
5098	 * Also, the low order bits of the hash value are thought to be
5099	 * distributed evenly. Otherwise, in the case that the multilist
5100	 * has a power of two number of sublists, each sublists' usage
5101	 * would not be evenly distributed.
5102	 */
5103	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5104	    multilist_get_num_sublists(ml));
5105}
5106
5107#ifdef _KERNEL
5108static eventhandler_tag arc_event_lowmem = NULL;
5109
5110static void
5111arc_lowmem(void *arg __unused, int howto __unused)
5112{
5113
5114	mutex_enter(&arc_reclaim_lock);
5115	/* XXX: Memory deficit should be passed as argument. */
5116	needfree = btoc(arc_c >> arc_shrink_shift);
5117	DTRACE_PROBE(arc__needfree);
5118	cv_signal(&arc_reclaim_thread_cv);
5119
5120	/*
5121	 * It is unsafe to block here in arbitrary threads, because we can come
5122	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5123	 * with ARC reclaim thread.
5124	 */
5125	if (curproc == pageproc)
5126		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5127	mutex_exit(&arc_reclaim_lock);
5128}
5129#endif
5130
5131void
5132arc_init(void)
5133{
5134	int i, prefetch_tunable_set = 0;
5135
5136	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5137	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5138	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5139
5140	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5141	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5142
5143	/* Convert seconds to clock ticks */
5144	arc_min_prefetch_lifespan = 1 * hz;
5145
5146	/* Start out with 1/8 of all memory */
5147	arc_c = kmem_size() / 8;
5148
5149#ifdef illumos
5150#ifdef _KERNEL
5151	/*
5152	 * On architectures where the physical memory can be larger
5153	 * than the addressable space (intel in 32-bit mode), we may
5154	 * need to limit the cache to 1/8 of VM size.
5155	 */
5156	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5157#endif
5158#endif	/* illumos */
5159	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
5160	arc_c_min = MAX(arc_c / 4, 16 << 20);
5161	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5162	if (arc_c * 8 >= 1 << 30)
5163		arc_c_max = (arc_c * 8) - (1 << 30);
5164	else
5165		arc_c_max = arc_c_min;
5166	arc_c_max = MAX(arc_c * 5, arc_c_max);
5167
5168#ifdef _KERNEL
5169	/*
5170	 * Allow the tunables to override our calculations if they are
5171	 * reasonable (ie. over 16MB)
5172	 */
5173	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
5174		arc_c_max = zfs_arc_max;
5175	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
5176		arc_c_min = zfs_arc_min;
5177#endif
5178
5179	arc_c = arc_c_max;
5180	arc_p = (arc_c >> 1);
5181
5182	/* limit meta-data to 1/4 of the arc capacity */
5183	arc_meta_limit = arc_c_max / 4;
5184
5185	/* Allow the tunable to override if it is reasonable */
5186	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5187		arc_meta_limit = zfs_arc_meta_limit;
5188
5189	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5190		arc_c_min = arc_meta_limit / 2;
5191
5192	if (zfs_arc_meta_min > 0) {
5193		arc_meta_min = zfs_arc_meta_min;
5194	} else {
5195		arc_meta_min = arc_c_min / 2;
5196	}
5197
5198	if (zfs_arc_grow_retry > 0)
5199		arc_grow_retry = zfs_arc_grow_retry;
5200
5201	if (zfs_arc_shrink_shift > 0)
5202		arc_shrink_shift = zfs_arc_shrink_shift;
5203
5204	/*
5205	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5206	 */
5207	if (arc_no_grow_shift >= arc_shrink_shift)
5208		arc_no_grow_shift = arc_shrink_shift - 1;
5209
5210	if (zfs_arc_p_min_shift > 0)
5211		arc_p_min_shift = zfs_arc_p_min_shift;
5212
5213	if (zfs_arc_num_sublists_per_state < 1)
5214		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5215
5216	/* if kmem_flags are set, lets try to use less memory */
5217	if (kmem_debugging())
5218		arc_c = arc_c / 2;
5219	if (arc_c < arc_c_min)
5220		arc_c = arc_c_min;
5221
5222	zfs_arc_min = arc_c_min;
5223	zfs_arc_max = arc_c_max;
5224
5225	arc_anon = &ARC_anon;
5226	arc_mru = &ARC_mru;
5227	arc_mru_ghost = &ARC_mru_ghost;
5228	arc_mfu = &ARC_mfu;
5229	arc_mfu_ghost = &ARC_mfu_ghost;
5230	arc_l2c_only = &ARC_l2c_only;
5231	arc_size = 0;
5232
5233	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5234	    sizeof (arc_buf_hdr_t),
5235	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5236	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5237	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5238	    sizeof (arc_buf_hdr_t),
5239	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5240	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5241	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5242	    sizeof (arc_buf_hdr_t),
5243	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5244	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5245	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5246	    sizeof (arc_buf_hdr_t),
5247	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5248	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5249	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5250	    sizeof (arc_buf_hdr_t),
5251	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5252	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5253	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5254	    sizeof (arc_buf_hdr_t),
5255	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5256	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5257	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5258	    sizeof (arc_buf_hdr_t),
5259	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5260	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5261	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5262	    sizeof (arc_buf_hdr_t),
5263	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5264	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5265	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5266	    sizeof (arc_buf_hdr_t),
5267	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5268	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5269	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5270	    sizeof (arc_buf_hdr_t),
5271	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5272	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5273
5274	buf_init();
5275
5276	arc_reclaim_thread_exit = FALSE;
5277	arc_user_evicts_thread_exit = FALSE;
5278	arc_eviction_list = NULL;
5279	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5280
5281	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5282	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5283
5284	if (arc_ksp != NULL) {
5285		arc_ksp->ks_data = &arc_stats;
5286		arc_ksp->ks_update = arc_kstat_update;
5287		kstat_install(arc_ksp);
5288	}
5289
5290	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5291	    TS_RUN, minclsyspri);
5292
5293#ifdef _KERNEL
5294	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5295	    EVENTHANDLER_PRI_FIRST);
5296#endif
5297
5298	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5299	    TS_RUN, minclsyspri);
5300
5301	arc_dead = FALSE;
5302	arc_warm = B_FALSE;
5303
5304	/*
5305	 * Calculate maximum amount of dirty data per pool.
5306	 *
5307	 * If it has been set by /etc/system, take that.
5308	 * Otherwise, use a percentage of physical memory defined by
5309	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5310	 * zfs_dirty_data_max_max (default 4GB).
5311	 */
5312	if (zfs_dirty_data_max == 0) {
5313		zfs_dirty_data_max = ptob(physmem) *
5314		    zfs_dirty_data_max_percent / 100;
5315		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5316		    zfs_dirty_data_max_max);
5317	}
5318
5319#ifdef _KERNEL
5320	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5321		prefetch_tunable_set = 1;
5322
5323#ifdef __i386__
5324	if (prefetch_tunable_set == 0) {
5325		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5326		    "-- to enable,\n");
5327		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5328		    "to /boot/loader.conf.\n");
5329		zfs_prefetch_disable = 1;
5330	}
5331#else
5332	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5333	    prefetch_tunable_set == 0) {
5334		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5335		    "than 4GB of RAM is present;\n"
5336		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5337		    "to /boot/loader.conf.\n");
5338		zfs_prefetch_disable = 1;
5339	}
5340#endif
5341	/* Warn about ZFS memory and address space requirements. */
5342	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5343		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5344		    "expect unstable behavior.\n");
5345	}
5346	if (kmem_size() < 512 * (1 << 20)) {
5347		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5348		    "expect unstable behavior.\n");
5349		printf("             Consider tuning vm.kmem_size and "
5350		    "vm.kmem_size_max\n");
5351		printf("             in /boot/loader.conf.\n");
5352	}
5353#endif
5354}
5355
5356void
5357arc_fini(void)
5358{
5359	mutex_enter(&arc_reclaim_lock);
5360	arc_reclaim_thread_exit = TRUE;
5361	/*
5362	 * The reclaim thread will set arc_reclaim_thread_exit back to
5363	 * FALSE when it is finished exiting; we're waiting for that.
5364	 */
5365	while (arc_reclaim_thread_exit) {
5366		cv_signal(&arc_reclaim_thread_cv);
5367		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5368	}
5369	mutex_exit(&arc_reclaim_lock);
5370
5371	mutex_enter(&arc_user_evicts_lock);
5372	arc_user_evicts_thread_exit = TRUE;
5373	/*
5374	 * The user evicts thread will set arc_user_evicts_thread_exit
5375	 * to FALSE when it is finished exiting; we're waiting for that.
5376	 */
5377	while (arc_user_evicts_thread_exit) {
5378		cv_signal(&arc_user_evicts_cv);
5379		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5380	}
5381	mutex_exit(&arc_user_evicts_lock);
5382
5383	/* Use TRUE to ensure *all* buffers are evicted */
5384	arc_flush(NULL, TRUE);
5385
5386	arc_dead = TRUE;
5387
5388	if (arc_ksp != NULL) {
5389		kstat_delete(arc_ksp);
5390		arc_ksp = NULL;
5391	}
5392
5393	mutex_destroy(&arc_reclaim_lock);
5394	cv_destroy(&arc_reclaim_thread_cv);
5395	cv_destroy(&arc_reclaim_waiters_cv);
5396
5397	mutex_destroy(&arc_user_evicts_lock);
5398	cv_destroy(&arc_user_evicts_cv);
5399
5400	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5401	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5402	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5403	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5404	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5405	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5406	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5407	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5408
5409	buf_fini();
5410
5411	ASSERT0(arc_loaned_bytes);
5412
5413#ifdef _KERNEL
5414	if (arc_event_lowmem != NULL)
5415		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5416#endif
5417}
5418
5419/*
5420 * Level 2 ARC
5421 *
5422 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5423 * It uses dedicated storage devices to hold cached data, which are populated
5424 * using large infrequent writes.  The main role of this cache is to boost
5425 * the performance of random read workloads.  The intended L2ARC devices
5426 * include short-stroked disks, solid state disks, and other media with
5427 * substantially faster read latency than disk.
5428 *
5429 *                 +-----------------------+
5430 *                 |         ARC           |
5431 *                 +-----------------------+
5432 *                    |         ^     ^
5433 *                    |         |     |
5434 *      l2arc_feed_thread()    arc_read()
5435 *                    |         |     |
5436 *                    |  l2arc read   |
5437 *                    V         |     |
5438 *               +---------------+    |
5439 *               |     L2ARC     |    |
5440 *               +---------------+    |
5441 *                   |    ^           |
5442 *          l2arc_write() |           |
5443 *                   |    |           |
5444 *                   V    |           |
5445 *                 +-------+      +-------+
5446 *                 | vdev  |      | vdev  |
5447 *                 | cache |      | cache |
5448 *                 +-------+      +-------+
5449 *                 +=========+     .-----.
5450 *                 :  L2ARC  :    |-_____-|
5451 *                 : devices :    | Disks |
5452 *                 +=========+    `-_____-'
5453 *
5454 * Read requests are satisfied from the following sources, in order:
5455 *
5456 *	1) ARC
5457 *	2) vdev cache of L2ARC devices
5458 *	3) L2ARC devices
5459 *	4) vdev cache of disks
5460 *	5) disks
5461 *
5462 * Some L2ARC device types exhibit extremely slow write performance.
5463 * To accommodate for this there are some significant differences between
5464 * the L2ARC and traditional cache design:
5465 *
5466 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5467 * the ARC behave as usual, freeing buffers and placing headers on ghost
5468 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5469 * this would add inflated write latencies for all ARC memory pressure.
5470 *
5471 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5472 * It does this by periodically scanning buffers from the eviction-end of
5473 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5474 * not already there. It scans until a headroom of buffers is satisfied,
5475 * which itself is a buffer for ARC eviction. If a compressible buffer is
5476 * found during scanning and selected for writing to an L2ARC device, we
5477 * temporarily boost scanning headroom during the next scan cycle to make
5478 * sure we adapt to compression effects (which might significantly reduce
5479 * the data volume we write to L2ARC). The thread that does this is
5480 * l2arc_feed_thread(), illustrated below; example sizes are included to
5481 * provide a better sense of ratio than this diagram:
5482 *
5483 *	       head -->                        tail
5484 *	        +---------------------+----------+
5485 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5486 *	        +---------------------+----------+   |   o L2ARC eligible
5487 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5488 *	        +---------------------+----------+   |
5489 *	             15.9 Gbytes      ^ 32 Mbytes    |
5490 *	                           headroom          |
5491 *	                                      l2arc_feed_thread()
5492 *	                                             |
5493 *	                 l2arc write hand <--[oooo]--'
5494 *	                         |           8 Mbyte
5495 *	                         |          write max
5496 *	                         V
5497 *		  +==============================+
5498 *	L2ARC dev |####|#|###|###|    |####| ... |
5499 *	          +==============================+
5500 *	                     32 Gbytes
5501 *
5502 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5503 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5504 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5505 * safe to say that this is an uncommon case, since buffers at the end of
5506 * the ARC lists have moved there due to inactivity.
5507 *
5508 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5509 * then the L2ARC simply misses copying some buffers.  This serves as a
5510 * pressure valve to prevent heavy read workloads from both stalling the ARC
5511 * with waits and clogging the L2ARC with writes.  This also helps prevent
5512 * the potential for the L2ARC to churn if it attempts to cache content too
5513 * quickly, such as during backups of the entire pool.
5514 *
5515 * 5. After system boot and before the ARC has filled main memory, there are
5516 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5517 * lists can remain mostly static.  Instead of searching from tail of these
5518 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5519 * for eligible buffers, greatly increasing its chance of finding them.
5520 *
5521 * The L2ARC device write speed is also boosted during this time so that
5522 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5523 * there are no L2ARC reads, and no fear of degrading read performance
5524 * through increased writes.
5525 *
5526 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5527 * the vdev queue can aggregate them into larger and fewer writes.  Each
5528 * device is written to in a rotor fashion, sweeping writes through
5529 * available space then repeating.
5530 *
5531 * 7. The L2ARC does not store dirty content.  It never needs to flush
5532 * write buffers back to disk based storage.
5533 *
5534 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5535 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5536 *
5537 * The performance of the L2ARC can be tweaked by a number of tunables, which
5538 * may be necessary for different workloads:
5539 *
5540 *	l2arc_write_max		max write bytes per interval
5541 *	l2arc_write_boost	extra write bytes during device warmup
5542 *	l2arc_noprefetch	skip caching prefetched buffers
5543 *	l2arc_headroom		number of max device writes to precache
5544 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5545 *				scanning, we multiply headroom by this
5546 *				percentage factor for the next scan cycle,
5547 *				since more compressed buffers are likely to
5548 *				be present
5549 *	l2arc_feed_secs		seconds between L2ARC writing
5550 *
5551 * Tunables may be removed or added as future performance improvements are
5552 * integrated, and also may become zpool properties.
5553 *
5554 * There are three key functions that control how the L2ARC warms up:
5555 *
5556 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5557 *	l2arc_write_size()	calculate how much to write
5558 *	l2arc_write_interval()	calculate sleep delay between writes
5559 *
5560 * These three functions determine what to write, how much, and how quickly
5561 * to send writes.
5562 */
5563
5564static boolean_t
5565l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5566{
5567	/*
5568	 * A buffer is *not* eligible for the L2ARC if it:
5569	 * 1. belongs to a different spa.
5570	 * 2. is already cached on the L2ARC.
5571	 * 3. has an I/O in progress (it may be an incomplete read).
5572	 * 4. is flagged not eligible (zfs property).
5573	 */
5574	if (hdr->b_spa != spa_guid) {
5575		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5576		return (B_FALSE);
5577	}
5578	if (HDR_HAS_L2HDR(hdr)) {
5579		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5580		return (B_FALSE);
5581	}
5582	if (HDR_IO_IN_PROGRESS(hdr)) {
5583		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5584		return (B_FALSE);
5585	}
5586	if (!HDR_L2CACHE(hdr)) {
5587		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5588		return (B_FALSE);
5589	}
5590
5591	return (B_TRUE);
5592}
5593
5594static uint64_t
5595l2arc_write_size(void)
5596{
5597	uint64_t size;
5598
5599	/*
5600	 * Make sure our globals have meaningful values in case the user
5601	 * altered them.
5602	 */
5603	size = l2arc_write_max;
5604	if (size == 0) {
5605		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5606		    "be greater than zero, resetting it to the default (%d)",
5607		    L2ARC_WRITE_SIZE);
5608		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5609	}
5610
5611	if (arc_warm == B_FALSE)
5612		size += l2arc_write_boost;
5613
5614	return (size);
5615
5616}
5617
5618static clock_t
5619l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5620{
5621	clock_t interval, next, now;
5622
5623	/*
5624	 * If the ARC lists are busy, increase our write rate; if the
5625	 * lists are stale, idle back.  This is achieved by checking
5626	 * how much we previously wrote - if it was more than half of
5627	 * what we wanted, schedule the next write much sooner.
5628	 */
5629	if (l2arc_feed_again && wrote > (wanted / 2))
5630		interval = (hz * l2arc_feed_min_ms) / 1000;
5631	else
5632		interval = hz * l2arc_feed_secs;
5633
5634	now = ddi_get_lbolt();
5635	next = MAX(now, MIN(now + interval, began + interval));
5636
5637	return (next);
5638}
5639
5640/*
5641 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5642 * If a device is returned, this also returns holding the spa config lock.
5643 */
5644static l2arc_dev_t *
5645l2arc_dev_get_next(void)
5646{
5647	l2arc_dev_t *first, *next = NULL;
5648
5649	/*
5650	 * Lock out the removal of spas (spa_namespace_lock), then removal
5651	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5652	 * both locks will be dropped and a spa config lock held instead.
5653	 */
5654	mutex_enter(&spa_namespace_lock);
5655	mutex_enter(&l2arc_dev_mtx);
5656
5657	/* if there are no vdevs, there is nothing to do */
5658	if (l2arc_ndev == 0)
5659		goto out;
5660
5661	first = NULL;
5662	next = l2arc_dev_last;
5663	do {
5664		/* loop around the list looking for a non-faulted vdev */
5665		if (next == NULL) {
5666			next = list_head(l2arc_dev_list);
5667		} else {
5668			next = list_next(l2arc_dev_list, next);
5669			if (next == NULL)
5670				next = list_head(l2arc_dev_list);
5671		}
5672
5673		/* if we have come back to the start, bail out */
5674		if (first == NULL)
5675			first = next;
5676		else if (next == first)
5677			break;
5678
5679	} while (vdev_is_dead(next->l2ad_vdev));
5680
5681	/* if we were unable to find any usable vdevs, return NULL */
5682	if (vdev_is_dead(next->l2ad_vdev))
5683		next = NULL;
5684
5685	l2arc_dev_last = next;
5686
5687out:
5688	mutex_exit(&l2arc_dev_mtx);
5689
5690	/*
5691	 * Grab the config lock to prevent the 'next' device from being
5692	 * removed while we are writing to it.
5693	 */
5694	if (next != NULL)
5695		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5696	mutex_exit(&spa_namespace_lock);
5697
5698	return (next);
5699}
5700
5701/*
5702 * Free buffers that were tagged for destruction.
5703 */
5704static void
5705l2arc_do_free_on_write()
5706{
5707	list_t *buflist;
5708	l2arc_data_free_t *df, *df_prev;
5709
5710	mutex_enter(&l2arc_free_on_write_mtx);
5711	buflist = l2arc_free_on_write;
5712
5713	for (df = list_tail(buflist); df; df = df_prev) {
5714		df_prev = list_prev(buflist, df);
5715		ASSERT(df->l2df_data != NULL);
5716		ASSERT(df->l2df_func != NULL);
5717		df->l2df_func(df->l2df_data, df->l2df_size);
5718		list_remove(buflist, df);
5719		kmem_free(df, sizeof (l2arc_data_free_t));
5720	}
5721
5722	mutex_exit(&l2arc_free_on_write_mtx);
5723}
5724
5725/*
5726 * A write to a cache device has completed.  Update all headers to allow
5727 * reads from these buffers to begin.
5728 */
5729static void
5730l2arc_write_done(zio_t *zio)
5731{
5732	l2arc_write_callback_t *cb;
5733	l2arc_dev_t *dev;
5734	list_t *buflist;
5735	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5736	kmutex_t *hash_lock;
5737	int64_t bytes_dropped = 0;
5738
5739	cb = zio->io_private;
5740	ASSERT(cb != NULL);
5741	dev = cb->l2wcb_dev;
5742	ASSERT(dev != NULL);
5743	head = cb->l2wcb_head;
5744	ASSERT(head != NULL);
5745	buflist = &dev->l2ad_buflist;
5746	ASSERT(buflist != NULL);
5747	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5748	    l2arc_write_callback_t *, cb);
5749
5750	if (zio->io_error != 0)
5751		ARCSTAT_BUMP(arcstat_l2_writes_error);
5752
5753	/*
5754	 * All writes completed, or an error was hit.
5755	 */
5756top:
5757	mutex_enter(&dev->l2ad_mtx);
5758	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5759		hdr_prev = list_prev(buflist, hdr);
5760
5761		hash_lock = HDR_LOCK(hdr);
5762
5763		/*
5764		 * We cannot use mutex_enter or else we can deadlock
5765		 * with l2arc_write_buffers (due to swapping the order
5766		 * the hash lock and l2ad_mtx are taken).
5767		 */
5768		if (!mutex_tryenter(hash_lock)) {
5769			/*
5770			 * Missed the hash lock. We must retry so we
5771			 * don't leave the ARC_FLAG_L2_WRITING bit set.
5772			 */
5773			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5774
5775			/*
5776			 * We don't want to rescan the headers we've
5777			 * already marked as having been written out, so
5778			 * we reinsert the head node so we can pick up
5779			 * where we left off.
5780			 */
5781			list_remove(buflist, head);
5782			list_insert_after(buflist, hdr, head);
5783
5784			mutex_exit(&dev->l2ad_mtx);
5785
5786			/*
5787			 * We wait for the hash lock to become available
5788			 * to try and prevent busy waiting, and increase
5789			 * the chance we'll be able to acquire the lock
5790			 * the next time around.
5791			 */
5792			mutex_enter(hash_lock);
5793			mutex_exit(hash_lock);
5794			goto top;
5795		}
5796
5797		/*
5798		 * We could not have been moved into the arc_l2c_only
5799		 * state while in-flight due to our ARC_FLAG_L2_WRITING
5800		 * bit being set. Let's just ensure that's being enforced.
5801		 */
5802		ASSERT(HDR_HAS_L1HDR(hdr));
5803
5804		/*
5805		 * We may have allocated a buffer for L2ARC compression,
5806		 * we must release it to avoid leaking this data.
5807		 */
5808		l2arc_release_cdata_buf(hdr);
5809
5810		if (zio->io_error != 0) {
5811			/*
5812			 * Error - drop L2ARC entry.
5813			 */
5814			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5815			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5816			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5817
5818			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5819			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5820
5821			bytes_dropped += hdr->b_l2hdr.b_asize;
5822			(void) refcount_remove_many(&dev->l2ad_alloc,
5823			    hdr->b_l2hdr.b_asize, hdr);
5824		}
5825
5826		/*
5827		 * Allow ARC to begin reads and ghost list evictions to
5828		 * this L2ARC entry.
5829		 */
5830		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5831
5832		mutex_exit(hash_lock);
5833	}
5834
5835	atomic_inc_64(&l2arc_writes_done);
5836	list_remove(buflist, head);
5837	ASSERT(!HDR_HAS_L1HDR(head));
5838	kmem_cache_free(hdr_l2only_cache, head);
5839	mutex_exit(&dev->l2ad_mtx);
5840
5841	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5842
5843	l2arc_do_free_on_write();
5844
5845	kmem_free(cb, sizeof (l2arc_write_callback_t));
5846}
5847
5848/*
5849 * A read to a cache device completed.  Validate buffer contents before
5850 * handing over to the regular ARC routines.
5851 */
5852static void
5853l2arc_read_done(zio_t *zio)
5854{
5855	l2arc_read_callback_t *cb;
5856	arc_buf_hdr_t *hdr;
5857	arc_buf_t *buf;
5858	kmutex_t *hash_lock;
5859	int equal;
5860
5861	ASSERT(zio->io_vd != NULL);
5862	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5863
5864	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5865
5866	cb = zio->io_private;
5867	ASSERT(cb != NULL);
5868	buf = cb->l2rcb_buf;
5869	ASSERT(buf != NULL);
5870
5871	hash_lock = HDR_LOCK(buf->b_hdr);
5872	mutex_enter(hash_lock);
5873	hdr = buf->b_hdr;
5874	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5875
5876	/*
5877	 * If the buffer was compressed, decompress it first.
5878	 */
5879	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5880		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5881	ASSERT(zio->io_data != NULL);
5882
5883	/*
5884	 * Check this survived the L2ARC journey.
5885	 */
5886	equal = arc_cksum_equal(buf);
5887	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5888		mutex_exit(hash_lock);
5889		zio->io_private = buf;
5890		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
5891		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
5892		arc_read_done(zio);
5893	} else {
5894		mutex_exit(hash_lock);
5895		/*
5896		 * Buffer didn't survive caching.  Increment stats and
5897		 * reissue to the original storage device.
5898		 */
5899		if (zio->io_error != 0) {
5900			ARCSTAT_BUMP(arcstat_l2_io_error);
5901		} else {
5902			zio->io_error = SET_ERROR(EIO);
5903		}
5904		if (!equal)
5905			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5906
5907		/*
5908		 * If there's no waiter, issue an async i/o to the primary
5909		 * storage now.  If there *is* a waiter, the caller must
5910		 * issue the i/o in a context where it's OK to block.
5911		 */
5912		if (zio->io_waiter == NULL) {
5913			zio_t *pio = zio_unique_parent(zio);
5914
5915			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5916
5917			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5918			    buf->b_data, zio->io_size, arc_read_done, buf,
5919			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5920		}
5921	}
5922
5923	kmem_free(cb, sizeof (l2arc_read_callback_t));
5924}
5925
5926/*
5927 * This is the list priority from which the L2ARC will search for pages to
5928 * cache.  This is used within loops (0..3) to cycle through lists in the
5929 * desired order.  This order can have a significant effect on cache
5930 * performance.
5931 *
5932 * Currently the metadata lists are hit first, MFU then MRU, followed by
5933 * the data lists.  This function returns a locked list, and also returns
5934 * the lock pointer.
5935 */
5936static multilist_sublist_t *
5937l2arc_sublist_lock(int list_num)
5938{
5939	multilist_t *ml = NULL;
5940	unsigned int idx;
5941
5942	ASSERT(list_num >= 0 && list_num <= 3);
5943
5944	switch (list_num) {
5945	case 0:
5946		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
5947		break;
5948	case 1:
5949		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
5950		break;
5951	case 2:
5952		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
5953		break;
5954	case 3:
5955		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
5956		break;
5957	}
5958
5959	/*
5960	 * Return a randomly-selected sublist. This is acceptable
5961	 * because the caller feeds only a little bit of data for each
5962	 * call (8MB). Subsequent calls will result in different
5963	 * sublists being selected.
5964	 */
5965	idx = multilist_get_random_index(ml);
5966	return (multilist_sublist_lock(ml, idx));
5967}
5968
5969/*
5970 * Evict buffers from the device write hand to the distance specified in
5971 * bytes.  This distance may span populated buffers, it may span nothing.
5972 * This is clearing a region on the L2ARC device ready for writing.
5973 * If the 'all' boolean is set, every buffer is evicted.
5974 */
5975static void
5976l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5977{
5978	list_t *buflist;
5979	arc_buf_hdr_t *hdr, *hdr_prev;
5980	kmutex_t *hash_lock;
5981	uint64_t taddr;
5982
5983	buflist = &dev->l2ad_buflist;
5984
5985	if (!all && dev->l2ad_first) {
5986		/*
5987		 * This is the first sweep through the device.  There is
5988		 * nothing to evict.
5989		 */
5990		return;
5991	}
5992
5993	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5994		/*
5995		 * When nearing the end of the device, evict to the end
5996		 * before the device write hand jumps to the start.
5997		 */
5998		taddr = dev->l2ad_end;
5999	} else {
6000		taddr = dev->l2ad_hand + distance;
6001	}
6002	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6003	    uint64_t, taddr, boolean_t, all);
6004
6005top:
6006	mutex_enter(&dev->l2ad_mtx);
6007	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6008		hdr_prev = list_prev(buflist, hdr);
6009
6010		hash_lock = HDR_LOCK(hdr);
6011
6012		/*
6013		 * We cannot use mutex_enter or else we can deadlock
6014		 * with l2arc_write_buffers (due to swapping the order
6015		 * the hash lock and l2ad_mtx are taken).
6016		 */
6017		if (!mutex_tryenter(hash_lock)) {
6018			/*
6019			 * Missed the hash lock.  Retry.
6020			 */
6021			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6022			mutex_exit(&dev->l2ad_mtx);
6023			mutex_enter(hash_lock);
6024			mutex_exit(hash_lock);
6025			goto top;
6026		}
6027
6028		if (HDR_L2_WRITE_HEAD(hdr)) {
6029			/*
6030			 * We hit a write head node.  Leave it for
6031			 * l2arc_write_done().
6032			 */
6033			list_remove(buflist, hdr);
6034			mutex_exit(hash_lock);
6035			continue;
6036		}
6037
6038		if (!all && HDR_HAS_L2HDR(hdr) &&
6039		    (hdr->b_l2hdr.b_daddr > taddr ||
6040		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6041			/*
6042			 * We've evicted to the target address,
6043			 * or the end of the device.
6044			 */
6045			mutex_exit(hash_lock);
6046			break;
6047		}
6048
6049		ASSERT(HDR_HAS_L2HDR(hdr));
6050		if (!HDR_HAS_L1HDR(hdr)) {
6051			ASSERT(!HDR_L2_READING(hdr));
6052			/*
6053			 * This doesn't exist in the ARC.  Destroy.
6054			 * arc_hdr_destroy() will call list_remove()
6055			 * and decrement arcstat_l2_size.
6056			 */
6057			arc_change_state(arc_anon, hdr, hash_lock);
6058			arc_hdr_destroy(hdr);
6059		} else {
6060			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6061			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6062			/*
6063			 * Invalidate issued or about to be issued
6064			 * reads, since we may be about to write
6065			 * over this location.
6066			 */
6067			if (HDR_L2_READING(hdr)) {
6068				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6069				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6070			}
6071
6072			/* Ensure this header has finished being written */
6073			ASSERT(!HDR_L2_WRITING(hdr));
6074			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6075
6076			arc_hdr_l2hdr_destroy(hdr);
6077		}
6078		mutex_exit(hash_lock);
6079	}
6080	mutex_exit(&dev->l2ad_mtx);
6081}
6082
6083/*
6084 * Find and write ARC buffers to the L2ARC device.
6085 *
6086 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6087 * for reading until they have completed writing.
6088 * The headroom_boost is an in-out parameter used to maintain headroom boost
6089 * state between calls to this function.
6090 *
6091 * Returns the number of bytes actually written (which may be smaller than
6092 * the delta by which the device hand has changed due to alignment).
6093 */
6094static uint64_t
6095l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6096    boolean_t *headroom_boost)
6097{
6098	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6099	uint64_t write_asize, write_psize, write_sz, headroom,
6100	    buf_compress_minsz;
6101	void *buf_data;
6102	boolean_t full;
6103	l2arc_write_callback_t *cb;
6104	zio_t *pio, *wzio;
6105	uint64_t guid = spa_load_guid(spa);
6106	const boolean_t do_headroom_boost = *headroom_boost;
6107	int try;
6108
6109	ASSERT(dev->l2ad_vdev != NULL);
6110
6111	/* Lower the flag now, we might want to raise it again later. */
6112	*headroom_boost = B_FALSE;
6113
6114	pio = NULL;
6115	write_sz = write_asize = write_psize = 0;
6116	full = B_FALSE;
6117	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6118	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6119	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6120
6121	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6122	/*
6123	 * We will want to try to compress buffers that are at least 2x the
6124	 * device sector size.
6125	 */
6126	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6127
6128	/*
6129	 * Copy buffers for L2ARC writing.
6130	 */
6131	for (try = 0; try <= 3; try++) {
6132		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6133		uint64_t passed_sz = 0;
6134
6135		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6136
6137		/*
6138		 * L2ARC fast warmup.
6139		 *
6140		 * Until the ARC is warm and starts to evict, read from the
6141		 * head of the ARC lists rather than the tail.
6142		 */
6143		if (arc_warm == B_FALSE)
6144			hdr = multilist_sublist_head(mls);
6145		else
6146			hdr = multilist_sublist_tail(mls);
6147		if (hdr == NULL)
6148			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6149
6150		headroom = target_sz * l2arc_headroom;
6151		if (do_headroom_boost)
6152			headroom = (headroom * l2arc_headroom_boost) / 100;
6153
6154		for (; hdr; hdr = hdr_prev) {
6155			kmutex_t *hash_lock;
6156			uint64_t buf_sz;
6157
6158			if (arc_warm == B_FALSE)
6159				hdr_prev = multilist_sublist_next(mls, hdr);
6160			else
6161				hdr_prev = multilist_sublist_prev(mls, hdr);
6162			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6163
6164			hash_lock = HDR_LOCK(hdr);
6165			if (!mutex_tryenter(hash_lock)) {
6166				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6167				/*
6168				 * Skip this buffer rather than waiting.
6169				 */
6170				continue;
6171			}
6172
6173			passed_sz += hdr->b_size;
6174			if (passed_sz > headroom) {
6175				/*
6176				 * Searched too far.
6177				 */
6178				mutex_exit(hash_lock);
6179				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6180				break;
6181			}
6182
6183			if (!l2arc_write_eligible(guid, hdr)) {
6184				mutex_exit(hash_lock);
6185				continue;
6186			}
6187
6188			if ((write_sz + hdr->b_size) > target_sz) {
6189				full = B_TRUE;
6190				mutex_exit(hash_lock);
6191				ARCSTAT_BUMP(arcstat_l2_write_full);
6192				break;
6193			}
6194
6195			if (pio == NULL) {
6196				/*
6197				 * Insert a dummy header on the buflist so
6198				 * l2arc_write_done() can find where the
6199				 * write buffers begin without searching.
6200				 */
6201				mutex_enter(&dev->l2ad_mtx);
6202				list_insert_head(&dev->l2ad_buflist, head);
6203				mutex_exit(&dev->l2ad_mtx);
6204
6205				cb = kmem_alloc(
6206				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6207				cb->l2wcb_dev = dev;
6208				cb->l2wcb_head = head;
6209				pio = zio_root(spa, l2arc_write_done, cb,
6210				    ZIO_FLAG_CANFAIL);
6211				ARCSTAT_BUMP(arcstat_l2_write_pios);
6212			}
6213
6214			/*
6215			 * Create and add a new L2ARC header.
6216			 */
6217			hdr->b_l2hdr.b_dev = dev;
6218			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6219			/*
6220			 * Temporarily stash the data buffer in b_tmp_cdata.
6221			 * The subsequent write step will pick it up from
6222			 * there. This is because can't access b_l1hdr.b_buf
6223			 * without holding the hash_lock, which we in turn
6224			 * can't access without holding the ARC list locks
6225			 * (which we want to avoid during compression/writing).
6226			 */
6227			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6228			hdr->b_l2hdr.b_asize = hdr->b_size;
6229			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6230
6231			/*
6232			 * Explicitly set the b_daddr field to a known
6233			 * value which means "invalid address". This
6234			 * enables us to differentiate which stage of
6235			 * l2arc_write_buffers() the particular header
6236			 * is in (e.g. this loop, or the one below).
6237			 * ARC_FLAG_L2_WRITING is not enough to make
6238			 * this distinction, and we need to know in
6239			 * order to do proper l2arc vdev accounting in
6240			 * arc_release() and arc_hdr_destroy().
6241			 *
6242			 * Note, we can't use a new flag to distinguish
6243			 * the two stages because we don't hold the
6244			 * header's hash_lock below, in the second stage
6245			 * of this function. Thus, we can't simply
6246			 * change the b_flags field to denote that the
6247			 * IO has been sent. We can change the b_daddr
6248			 * field of the L2 portion, though, since we'll
6249			 * be holding the l2ad_mtx; which is why we're
6250			 * using it to denote the header's state change.
6251			 */
6252			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6253
6254			buf_sz = hdr->b_size;
6255			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6256
6257			mutex_enter(&dev->l2ad_mtx);
6258			list_insert_head(&dev->l2ad_buflist, hdr);
6259			mutex_exit(&dev->l2ad_mtx);
6260
6261			/*
6262			 * Compute and store the buffer cksum before
6263			 * writing.  On debug the cksum is verified first.
6264			 */
6265			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6266			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6267
6268			mutex_exit(hash_lock);
6269
6270			write_sz += buf_sz;
6271		}
6272
6273		multilist_sublist_unlock(mls);
6274
6275		if (full == B_TRUE)
6276			break;
6277	}
6278
6279	/* No buffers selected for writing? */
6280	if (pio == NULL) {
6281		ASSERT0(write_sz);
6282		ASSERT(!HDR_HAS_L1HDR(head));
6283		kmem_cache_free(hdr_l2only_cache, head);
6284		return (0);
6285	}
6286
6287	mutex_enter(&dev->l2ad_mtx);
6288
6289	/*
6290	 * Now start writing the buffers. We're starting at the write head
6291	 * and work backwards, retracing the course of the buffer selector
6292	 * loop above.
6293	 */
6294	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6295	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6296		uint64_t buf_sz;
6297
6298		/*
6299		 * We rely on the L1 portion of the header below, so
6300		 * it's invalid for this header to have been evicted out
6301		 * of the ghost cache, prior to being written out. The
6302		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6303		 */
6304		ASSERT(HDR_HAS_L1HDR(hdr));
6305
6306		/*
6307		 * We shouldn't need to lock the buffer here, since we flagged
6308		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6309		 * take care to only access its L2 cache parameters. In
6310		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6311		 * ARC eviction.
6312		 */
6313		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6314
6315		if ((HDR_L2COMPRESS(hdr)) &&
6316		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6317			if (l2arc_compress_buf(hdr)) {
6318				/*
6319				 * If compression succeeded, enable headroom
6320				 * boost on the next scan cycle.
6321				 */
6322				*headroom_boost = B_TRUE;
6323			}
6324		}
6325
6326		/*
6327		 * Pick up the buffer data we had previously stashed away
6328		 * (and now potentially also compressed).
6329		 */
6330		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6331		buf_sz = hdr->b_l2hdr.b_asize;
6332
6333		/*
6334		 * If the data has not been compressed, then clear b_tmp_cdata
6335		 * to make sure that it points only to a temporary compression
6336		 * buffer.
6337		 */
6338		if (!L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)))
6339			hdr->b_l1hdr.b_tmp_cdata = NULL;
6340
6341		/*
6342		 * We need to do this regardless if buf_sz is zero or
6343		 * not, otherwise, when this l2hdr is evicted we'll
6344		 * remove a reference that was never added.
6345		 */
6346		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6347
6348		/* Compression may have squashed the buffer to zero length. */
6349		if (buf_sz != 0) {
6350			uint64_t buf_p_sz;
6351
6352			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6353			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6354			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6355			    ZIO_FLAG_CANFAIL, B_FALSE);
6356
6357			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6358			    zio_t *, wzio);
6359			(void) zio_nowait(wzio);
6360
6361			write_asize += buf_sz;
6362
6363			/*
6364			 * Keep the clock hand suitably device-aligned.
6365			 */
6366			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6367			write_psize += buf_p_sz;
6368			dev->l2ad_hand += buf_p_sz;
6369		}
6370	}
6371
6372	mutex_exit(&dev->l2ad_mtx);
6373
6374	ASSERT3U(write_asize, <=, target_sz);
6375	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6376	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6377	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6378	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6379	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6380
6381	/*
6382	 * Bump device hand to the device start if it is approaching the end.
6383	 * l2arc_evict() will already have evicted ahead for this case.
6384	 */
6385	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6386		dev->l2ad_hand = dev->l2ad_start;
6387		dev->l2ad_first = B_FALSE;
6388	}
6389
6390	dev->l2ad_writing = B_TRUE;
6391	(void) zio_wait(pio);
6392	dev->l2ad_writing = B_FALSE;
6393
6394	return (write_asize);
6395}
6396
6397/*
6398 * Compresses an L2ARC buffer.
6399 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6400 * size in l2hdr->b_asize. This routine tries to compress the data and
6401 * depending on the compression result there are three possible outcomes:
6402 * *) The buffer was incompressible. The original l2hdr contents were left
6403 *    untouched and are ready for writing to an L2 device.
6404 * *) The buffer was all-zeros, so there is no need to write it to an L2
6405 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6406 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6407 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6408 *    data buffer which holds the compressed data to be written, and b_asize
6409 *    tells us how much data there is. b_compress is set to the appropriate
6410 *    compression algorithm. Once writing is done, invoke
6411 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6412 *
6413 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6414 * buffer was incompressible).
6415 */
6416static boolean_t
6417l2arc_compress_buf(arc_buf_hdr_t *hdr)
6418{
6419	void *cdata;
6420	size_t csize, len, rounded;
6421	ASSERT(HDR_HAS_L2HDR(hdr));
6422	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6423
6424	ASSERT(HDR_HAS_L1HDR(hdr));
6425	ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6426	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6427
6428	len = l2hdr->b_asize;
6429	cdata = zio_data_buf_alloc(len);
6430	ASSERT3P(cdata, !=, NULL);
6431	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6432	    cdata, l2hdr->b_asize);
6433
6434	if (csize == 0) {
6435		/* zero block, indicate that there's nothing to write */
6436		zio_data_buf_free(cdata, len);
6437		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6438		l2hdr->b_asize = 0;
6439		hdr->b_l1hdr.b_tmp_cdata = NULL;
6440		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6441		return (B_TRUE);
6442	}
6443
6444	rounded = P2ROUNDUP(csize,
6445	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
6446	if (rounded < len) {
6447		/*
6448		 * Compression succeeded, we'll keep the cdata around for
6449		 * writing and release it afterwards.
6450		 */
6451		if (rounded > csize) {
6452			bzero((char *)cdata + csize, rounded - csize);
6453			csize = rounded;
6454		}
6455		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6456		l2hdr->b_asize = csize;
6457		hdr->b_l1hdr.b_tmp_cdata = cdata;
6458		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6459		return (B_TRUE);
6460	} else {
6461		/*
6462		 * Compression failed, release the compressed buffer.
6463		 * l2hdr will be left unmodified.
6464		 */
6465		zio_data_buf_free(cdata, len);
6466		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6467		return (B_FALSE);
6468	}
6469}
6470
6471/*
6472 * Decompresses a zio read back from an l2arc device. On success, the
6473 * underlying zio's io_data buffer is overwritten by the uncompressed
6474 * version. On decompression error (corrupt compressed stream), the
6475 * zio->io_error value is set to signal an I/O error.
6476 *
6477 * Please note that the compressed data stream is not checksummed, so
6478 * if the underlying device is experiencing data corruption, we may feed
6479 * corrupt data to the decompressor, so the decompressor needs to be
6480 * able to handle this situation (LZ4 does).
6481 */
6482static void
6483l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6484{
6485	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6486
6487	if (zio->io_error != 0) {
6488		/*
6489		 * An io error has occured, just restore the original io
6490		 * size in preparation for a main pool read.
6491		 */
6492		zio->io_orig_size = zio->io_size = hdr->b_size;
6493		return;
6494	}
6495
6496	if (c == ZIO_COMPRESS_EMPTY) {
6497		/*
6498		 * An empty buffer results in a null zio, which means we
6499		 * need to fill its io_data after we're done restoring the
6500		 * buffer's contents.
6501		 */
6502		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6503		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6504		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6505	} else {
6506		ASSERT(zio->io_data != NULL);
6507		/*
6508		 * We copy the compressed data from the start of the arc buffer
6509		 * (the zio_read will have pulled in only what we need, the
6510		 * rest is garbage which we will overwrite at decompression)
6511		 * and then decompress back to the ARC data buffer. This way we
6512		 * can minimize copying by simply decompressing back over the
6513		 * original compressed data (rather than decompressing to an
6514		 * aux buffer and then copying back the uncompressed buffer,
6515		 * which is likely to be much larger).
6516		 */
6517		uint64_t csize;
6518		void *cdata;
6519
6520		csize = zio->io_size;
6521		cdata = zio_data_buf_alloc(csize);
6522		bcopy(zio->io_data, cdata, csize);
6523		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6524		    hdr->b_size) != 0)
6525			zio->io_error = EIO;
6526		zio_data_buf_free(cdata, csize);
6527	}
6528
6529	/* Restore the expected uncompressed IO size. */
6530	zio->io_orig_size = zio->io_size = hdr->b_size;
6531}
6532
6533/*
6534 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6535 * This buffer serves as a temporary holder of compressed data while
6536 * the buffer entry is being written to an l2arc device. Once that is
6537 * done, we can dispose of it.
6538 */
6539static void
6540l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6541{
6542	enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6543
6544	ASSERT(HDR_HAS_L1HDR(hdr));
6545	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6546
6547	if (comp == ZIO_COMPRESS_OFF) {
6548		/*
6549		 * In this case, b_tmp_cdata points to the same buffer
6550		 * as the arc_buf_t's b_data field. We don't want to
6551		 * free it, since the arc_buf_t will handle that.
6552		 */
6553		hdr->b_l1hdr.b_tmp_cdata = NULL;
6554	} else if (comp == ZIO_COMPRESS_EMPTY) {
6555		/*
6556		 * In this case, b_tmp_cdata was compressed to an empty
6557		 * buffer, thus there's nothing to free and b_tmp_cdata
6558		 * should have been set to NULL in l2arc_write_buffers().
6559		 */
6560		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6561	} else {
6562		/*
6563		 * If the data was compressed, then we've allocated a
6564		 * temporary buffer for it, so now we need to release it.
6565		 */
6566		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6567		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6568		    hdr->b_size);
6569		hdr->b_l1hdr.b_tmp_cdata = NULL;
6570	}
6571}
6572
6573/*
6574 * This thread feeds the L2ARC at regular intervals.  This is the beating
6575 * heart of the L2ARC.
6576 */
6577static void
6578l2arc_feed_thread(void *dummy __unused)
6579{
6580	callb_cpr_t cpr;
6581	l2arc_dev_t *dev;
6582	spa_t *spa;
6583	uint64_t size, wrote;
6584	clock_t begin, next = ddi_get_lbolt();
6585	boolean_t headroom_boost = B_FALSE;
6586
6587	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6588
6589	mutex_enter(&l2arc_feed_thr_lock);
6590
6591	while (l2arc_thread_exit == 0) {
6592		CALLB_CPR_SAFE_BEGIN(&cpr);
6593		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6594		    next - ddi_get_lbolt());
6595		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6596		next = ddi_get_lbolt() + hz;
6597
6598		/*
6599		 * Quick check for L2ARC devices.
6600		 */
6601		mutex_enter(&l2arc_dev_mtx);
6602		if (l2arc_ndev == 0) {
6603			mutex_exit(&l2arc_dev_mtx);
6604			continue;
6605		}
6606		mutex_exit(&l2arc_dev_mtx);
6607		begin = ddi_get_lbolt();
6608
6609		/*
6610		 * This selects the next l2arc device to write to, and in
6611		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6612		 * will return NULL if there are now no l2arc devices or if
6613		 * they are all faulted.
6614		 *
6615		 * If a device is returned, its spa's config lock is also
6616		 * held to prevent device removal.  l2arc_dev_get_next()
6617		 * will grab and release l2arc_dev_mtx.
6618		 */
6619		if ((dev = l2arc_dev_get_next()) == NULL)
6620			continue;
6621
6622		spa = dev->l2ad_spa;
6623		ASSERT(spa != NULL);
6624
6625		/*
6626		 * If the pool is read-only then force the feed thread to
6627		 * sleep a little longer.
6628		 */
6629		if (!spa_writeable(spa)) {
6630			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6631			spa_config_exit(spa, SCL_L2ARC, dev);
6632			continue;
6633		}
6634
6635		/*
6636		 * Avoid contributing to memory pressure.
6637		 */
6638		if (arc_reclaim_needed()) {
6639			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6640			spa_config_exit(spa, SCL_L2ARC, dev);
6641			continue;
6642		}
6643
6644		ARCSTAT_BUMP(arcstat_l2_feeds);
6645
6646		size = l2arc_write_size();
6647
6648		/*
6649		 * Evict L2ARC buffers that will be overwritten.
6650		 */
6651		l2arc_evict(dev, size, B_FALSE);
6652
6653		/*
6654		 * Write ARC buffers.
6655		 */
6656		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6657
6658		/*
6659		 * Calculate interval between writes.
6660		 */
6661		next = l2arc_write_interval(begin, size, wrote);
6662		spa_config_exit(spa, SCL_L2ARC, dev);
6663	}
6664
6665	l2arc_thread_exit = 0;
6666	cv_broadcast(&l2arc_feed_thr_cv);
6667	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6668	thread_exit();
6669}
6670
6671boolean_t
6672l2arc_vdev_present(vdev_t *vd)
6673{
6674	l2arc_dev_t *dev;
6675
6676	mutex_enter(&l2arc_dev_mtx);
6677	for (dev = list_head(l2arc_dev_list); dev != NULL;
6678	    dev = list_next(l2arc_dev_list, dev)) {
6679		if (dev->l2ad_vdev == vd)
6680			break;
6681	}
6682	mutex_exit(&l2arc_dev_mtx);
6683
6684	return (dev != NULL);
6685}
6686
6687/*
6688 * Add a vdev for use by the L2ARC.  By this point the spa has already
6689 * validated the vdev and opened it.
6690 */
6691void
6692l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6693{
6694	l2arc_dev_t *adddev;
6695
6696	ASSERT(!l2arc_vdev_present(vd));
6697
6698	vdev_ashift_optimize(vd);
6699
6700	/*
6701	 * Create a new l2arc device entry.
6702	 */
6703	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6704	adddev->l2ad_spa = spa;
6705	adddev->l2ad_vdev = vd;
6706	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6707	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6708	adddev->l2ad_hand = adddev->l2ad_start;
6709	adddev->l2ad_first = B_TRUE;
6710	adddev->l2ad_writing = B_FALSE;
6711
6712	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6713	/*
6714	 * This is a list of all ARC buffers that are still valid on the
6715	 * device.
6716	 */
6717	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6718	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6719
6720	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6721	refcount_create(&adddev->l2ad_alloc);
6722
6723	/*
6724	 * Add device to global list
6725	 */
6726	mutex_enter(&l2arc_dev_mtx);
6727	list_insert_head(l2arc_dev_list, adddev);
6728	atomic_inc_64(&l2arc_ndev);
6729	mutex_exit(&l2arc_dev_mtx);
6730}
6731
6732/*
6733 * Remove a vdev from the L2ARC.
6734 */
6735void
6736l2arc_remove_vdev(vdev_t *vd)
6737{
6738	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6739
6740	/*
6741	 * Find the device by vdev
6742	 */
6743	mutex_enter(&l2arc_dev_mtx);
6744	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6745		nextdev = list_next(l2arc_dev_list, dev);
6746		if (vd == dev->l2ad_vdev) {
6747			remdev = dev;
6748			break;
6749		}
6750	}
6751	ASSERT(remdev != NULL);
6752
6753	/*
6754	 * Remove device from global list
6755	 */
6756	list_remove(l2arc_dev_list, remdev);
6757	l2arc_dev_last = NULL;		/* may have been invalidated */
6758	atomic_dec_64(&l2arc_ndev);
6759	mutex_exit(&l2arc_dev_mtx);
6760
6761	/*
6762	 * Clear all buflists and ARC references.  L2ARC device flush.
6763	 */
6764	l2arc_evict(remdev, 0, B_TRUE);
6765	list_destroy(&remdev->l2ad_buflist);
6766	mutex_destroy(&remdev->l2ad_mtx);
6767	refcount_destroy(&remdev->l2ad_alloc);
6768	kmem_free(remdev, sizeof (l2arc_dev_t));
6769}
6770
6771void
6772l2arc_init(void)
6773{
6774	l2arc_thread_exit = 0;
6775	l2arc_ndev = 0;
6776	l2arc_writes_sent = 0;
6777	l2arc_writes_done = 0;
6778
6779	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6780	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6781	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6782	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6783
6784	l2arc_dev_list = &L2ARC_dev_list;
6785	l2arc_free_on_write = &L2ARC_free_on_write;
6786	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6787	    offsetof(l2arc_dev_t, l2ad_node));
6788	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6789	    offsetof(l2arc_data_free_t, l2df_list_node));
6790}
6791
6792void
6793l2arc_fini(void)
6794{
6795	/*
6796	 * This is called from dmu_fini(), which is called from spa_fini();
6797	 * Because of this, we can assume that all l2arc devices have
6798	 * already been removed when the pools themselves were removed.
6799	 */
6800
6801	l2arc_do_free_on_write();
6802
6803	mutex_destroy(&l2arc_feed_thr_lock);
6804	cv_destroy(&l2arc_feed_thr_cv);
6805	mutex_destroy(&l2arc_dev_mtx);
6806	mutex_destroy(&l2arc_free_on_write_mtx);
6807
6808	list_destroy(l2arc_dev_list);
6809	list_destroy(l2arc_free_on_write);
6810}
6811
6812void
6813l2arc_start(void)
6814{
6815	if (!(spa_mode_global & FWRITE))
6816		return;
6817
6818	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6819	    TS_RUN, minclsyspri);
6820}
6821
6822void
6823l2arc_stop(void)
6824{
6825	if (!(spa_mode_global & FWRITE))
6826		return;
6827
6828	mutex_enter(&l2arc_feed_thr_lock);
6829	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6830	l2arc_thread_exit = 1;
6831	while (l2arc_thread_exit != 0)
6832		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6833	mutex_exit(&l2arc_feed_thr_lock);
6834}
6835