arc.c revision 302265
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23277826Sdelphij * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24286766Smav * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25260835Sdelphij * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26286764Smav * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27168404Spjd */
28168404Spjd
29168404Spjd/*
30168404Spjd * DVA-based Adjustable Replacement Cache
31168404Spjd *
32168404Spjd * While much of the theory of operation used here is
33168404Spjd * based on the self-tuning, low overhead replacement cache
34168404Spjd * presented by Megiddo and Modha at FAST 2003, there are some
35168404Spjd * significant differences:
36168404Spjd *
37168404Spjd * 1. The Megiddo and Modha model assumes any page is evictable.
38168404Spjd * Pages in its cache cannot be "locked" into memory.  This makes
39168404Spjd * the eviction algorithm simple: evict the last page in the list.
40168404Spjd * This also make the performance characteristics easy to reason
41168404Spjd * about.  Our cache is not so simple.  At any given moment, some
42168404Spjd * subset of the blocks in the cache are un-evictable because we
43168404Spjd * have handed out a reference to them.  Blocks are only evictable
44168404Spjd * when there are no external references active.  This makes
45168404Spjd * eviction far more problematic:  we choose to evict the evictable
46168404Spjd * blocks that are the "lowest" in the list.
47168404Spjd *
48168404Spjd * There are times when it is not possible to evict the requested
49168404Spjd * space.  In these circumstances we are unable to adjust the cache
50168404Spjd * size.  To prevent the cache growing unbounded at these times we
51185029Spjd * implement a "cache throttle" that slows the flow of new data
52185029Spjd * into the cache until we can make space available.
53168404Spjd *
54168404Spjd * 2. The Megiddo and Modha model assumes a fixed cache size.
55168404Spjd * Pages are evicted when the cache is full and there is a cache
56168404Spjd * miss.  Our model has a variable sized cache.  It grows with
57185029Spjd * high use, but also tries to react to memory pressure from the
58168404Spjd * operating system: decreasing its size when system memory is
59168404Spjd * tight.
60168404Spjd *
61168404Spjd * 3. The Megiddo and Modha model assumes a fixed page size. All
62251631Sdelphij * elements of the cache are therefore exactly the same size.  So
63168404Spjd * when adjusting the cache size following a cache miss, its simply
64168404Spjd * a matter of choosing a single page to evict.  In our model, we
65168404Spjd * have variable sized cache blocks (rangeing from 512 bytes to
66251631Sdelphij * 128K bytes).  We therefore choose a set of blocks to evict to make
67168404Spjd * space for a cache miss that approximates as closely as possible
68168404Spjd * the space used by the new block.
69168404Spjd *
70168404Spjd * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71168404Spjd * by N. Megiddo & D. Modha, FAST 2003
72168404Spjd */
73168404Spjd
74168404Spjd/*
75168404Spjd * The locking model:
76168404Spjd *
77168404Spjd * A new reference to a cache buffer can be obtained in two
78168404Spjd * ways: 1) via a hash table lookup using the DVA as a key,
79185029Spjd * or 2) via one of the ARC lists.  The arc_read() interface
80168404Spjd * uses method 1, while the internal arc algorithms for
81251631Sdelphij * adjusting the cache use method 2.  We therefore provide two
82168404Spjd * types of locks: 1) the hash table lock array, and 2) the
83168404Spjd * arc list locks.
84168404Spjd *
85286774Smav * Buffers do not have their own mutexes, rather they rely on the
86286774Smav * hash table mutexes for the bulk of their protection (i.e. most
87286774Smav * fields in the arc_buf_hdr_t are protected by these mutexes).
88168404Spjd *
89168404Spjd * buf_hash_find() returns the appropriate mutex (held) when it
90168404Spjd * locates the requested buffer in the hash table.  It returns
91168404Spjd * NULL for the mutex if the buffer was not in the table.
92168404Spjd *
93168404Spjd * buf_hash_remove() expects the appropriate hash mutex to be
94168404Spjd * already held before it is invoked.
95168404Spjd *
96168404Spjd * Each arc state also has a mutex which is used to protect the
97168404Spjd * buffer list associated with the state.  When attempting to
98168404Spjd * obtain a hash table lock while holding an arc list lock you
99168404Spjd * must use: mutex_tryenter() to avoid deadlock.  Also note that
100168404Spjd * the active state mutex must be held before the ghost state mutex.
101168404Spjd *
102168404Spjd * Arc buffers may have an associated eviction callback function.
103168404Spjd * This function will be invoked prior to removing the buffer (e.g.
104168404Spjd * in arc_do_user_evicts()).  Note however that the data associated
105168404Spjd * with the buffer may be evicted prior to the callback.  The callback
106168404Spjd * must be made with *no locks held* (to prevent deadlock).  Additionally,
107168404Spjd * the users of callbacks must ensure that their private data is
108268858Sdelphij * protected from simultaneous callbacks from arc_clear_callback()
109168404Spjd * and arc_do_user_evicts().
110168404Spjd *
111168404Spjd * Note that the majority of the performance stats are manipulated
112168404Spjd * with atomic operations.
113185029Spjd *
114286570Smav * The L2ARC uses the l2ad_mtx on each vdev for the following:
115185029Spjd *
116185029Spjd *	- L2ARC buflist creation
117185029Spjd *	- L2ARC buflist eviction
118185029Spjd *	- L2ARC write completion, which walks L2ARC buflists
119185029Spjd *	- ARC header destruction, as it removes from L2ARC buflists
120185029Spjd *	- ARC header release, as it removes from L2ARC buflists
121168404Spjd */
122168404Spjd
123168404Spjd#include <sys/spa.h>
124168404Spjd#include <sys/zio.h>
125251478Sdelphij#include <sys/zio_compress.h>
126168404Spjd#include <sys/zfs_context.h>
127168404Spjd#include <sys/arc.h>
128168404Spjd#include <sys/refcount.h>
129185029Spjd#include <sys/vdev.h>
130219089Spjd#include <sys/vdev_impl.h>
131258632Savg#include <sys/dsl_pool.h>
132286763Smav#include <sys/multilist.h>
133168404Spjd#ifdef _KERNEL
134168404Spjd#include <sys/dnlc.h>
135297633Strasz#include <sys/racct.h>
136168404Spjd#endif
137168404Spjd#include <sys/callb.h>
138168404Spjd#include <sys/kstat.h>
139248572Ssmh#include <sys/trim_map.h>
140219089Spjd#include <zfs_fletcher.h>
141168404Spjd#include <sys/sdt.h>
142168404Spjd
143272483Ssmh#include <machine/vmparam.h>
144191902Skmacy
145240133Smm#ifdef illumos
146240133Smm#ifndef _KERNEL
147240133Smm/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148240133Smmboolean_t arc_watch = B_FALSE;
149240133Smmint arc_procfd;
150240133Smm#endif
151240133Smm#endif /* illumos */
152240133Smm
153286763Smavstatic kmutex_t		arc_reclaim_lock;
154286763Smavstatic kcondvar_t	arc_reclaim_thread_cv;
155286763Smavstatic boolean_t	arc_reclaim_thread_exit;
156286763Smavstatic kcondvar_t	arc_reclaim_waiters_cv;
157168404Spjd
158286763Smavstatic kmutex_t		arc_user_evicts_lock;
159286763Smavstatic kcondvar_t	arc_user_evicts_cv;
160286763Smavstatic boolean_t	arc_user_evicts_thread_exit;
161286763Smav
162301997Skibstatic kmutex_t		arc_dnlc_evicts_lock;
163301997Skibstatic kcondvar_t	arc_dnlc_evicts_cv;
164301997Skibstatic boolean_t	arc_dnlc_evicts_thread_exit;
165301997Skib
166286625Smavuint_t arc_reduce_dnlc_percent = 3;
167168404Spjd
168258632Savg/*
169286763Smav * The number of headers to evict in arc_evict_state_impl() before
170286763Smav * dropping the sublist lock and evicting from another sublist. A lower
171286763Smav * value means we're more likely to evict the "correct" header (i.e. the
172286763Smav * oldest header in the arc state), but comes with higher overhead
173286763Smav * (i.e. more invocations of arc_evict_state_impl()).
174258632Savg */
175286763Smavint zfs_arc_evict_batch_limit = 10;
176258632Savg
177286763Smav/*
178286763Smav * The number of sublists used for each of the arc state lists. If this
179286763Smav * is not set to a suitable value by the user, it will be configured to
180286763Smav * the number of CPUs on the system in arc_init().
181286763Smav */
182286763Smavint zfs_arc_num_sublists_per_state = 0;
183286763Smav
184168404Spjd/* number of seconds before growing cache again */
185168404Spjdstatic int		arc_grow_retry = 60;
186168404Spjd
187286763Smav/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
188286763Smavint		zfs_arc_overflow_shift = 8;
189286763Smav
190208373Smm/* shift of arc_c for calculating both min and max arc_p */
191208373Smmstatic int		arc_p_min_shift = 4;
192208373Smm
193208373Smm/* log2(fraction of arc to reclaim) */
194286625Smavstatic int		arc_shrink_shift = 7;
195208373Smm
196168404Spjd/*
197286625Smav * log2(fraction of ARC which must be free to allow growing).
198286625Smav * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
199286625Smav * when reading a new block into the ARC, we will evict an equal-sized block
200286625Smav * from the ARC.
201286625Smav *
202286625Smav * This must be less than arc_shrink_shift, so that when we shrink the ARC,
203286625Smav * we will still not allow it to grow.
204286625Smav */
205286625Smavint			arc_no_grow_shift = 5;
206286625Smav
207286625Smav
208286625Smav/*
209168404Spjd * minimum lifespan of a prefetch block in clock ticks
210168404Spjd * (initialized in arc_init())
211168404Spjd */
212168404Spjdstatic int		arc_min_prefetch_lifespan;
213168404Spjd
214258632Savg/*
215258632Savg * If this percent of memory is free, don't throttle.
216258632Savg */
217258632Savgint arc_lotsfree_percent = 10;
218258632Savg
219208373Smmstatic int arc_dead;
220287702Sdelphijextern boolean_t zfs_prefetch_disable;
221168404Spjd
222168404Spjd/*
223185029Spjd * The arc has filled available memory and has now warmed up.
224185029Spjd */
225185029Spjdstatic boolean_t arc_warm;
226185029Spjd
227286762Smav/*
228286762Smav * These tunables are for performance analysis.
229286762Smav */
230185029Spjduint64_t zfs_arc_max;
231185029Spjduint64_t zfs_arc_min;
232185029Spjduint64_t zfs_arc_meta_limit = 0;
233275780Sdelphijuint64_t zfs_arc_meta_min = 0;
234208373Smmint zfs_arc_grow_retry = 0;
235208373Smmint zfs_arc_shrink_shift = 0;
236208373Smmint zfs_arc_p_min_shift = 0;
237242845Sdelphijint zfs_disable_dup_eviction = 0;
238269230Sdelphijuint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
239272483Ssmhu_int zfs_arc_free_target = 0;
240185029Spjd
241302265Ssmh/* Absolute min for arc min / max is 16MB. */
242302265Ssmhstatic uint64_t arc_abs_min = 16 << 20;
243302265Ssmh
244270759Ssmhstatic int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
245275748Sdelphijstatic int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
246302265Ssmhstatic int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
247302265Ssmhstatic int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
248270759Ssmh
249302265Ssmh#if defined(__FreeBSD__) && defined(_KERNEL)
250270759Ssmhstatic void
251270759Ssmharc_free_target_init(void *unused __unused)
252270759Ssmh{
253270759Ssmh
254272483Ssmh	zfs_arc_free_target = vm_pageout_wakeup_thresh;
255270759Ssmh}
256270759SsmhSYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
257270759Ssmh    arc_free_target_init, NULL);
258270759Ssmh
259185029SpjdTUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
260275780SdelphijTUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
261273026SdelphijTUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
262168473SpjdSYSCTL_DECL(_vfs_zfs);
263302265SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
264302265Ssmh    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
265302265SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
266302265Ssmh    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
267269230SdelphijSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
268269230Sdelphij    &zfs_arc_average_blocksize, 0,
269269230Sdelphij    "ARC average blocksize");
270273026SdelphijSYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
271273026Sdelphij    &arc_shrink_shift, 0,
272273026Sdelphij    "log2(fraction of arc to reclaim)");
273273026Sdelphij
274270759Ssmh/*
275270759Ssmh * We don't have a tunable for arc_free_target due to the dependency on
276270759Ssmh * pagedaemon initialisation.
277270759Ssmh */
278270759SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
279270759Ssmh    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
280270759Ssmh    sysctl_vfs_zfs_arc_free_target, "IU",
281270759Ssmh    "Desired number of free pages below which ARC triggers reclaim");
282168404Spjd
283270759Ssmhstatic int
284270759Ssmhsysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
285270759Ssmh{
286270759Ssmh	u_int val;
287270759Ssmh	int err;
288270759Ssmh
289270759Ssmh	val = zfs_arc_free_target;
290270759Ssmh	err = sysctl_handle_int(oidp, &val, 0, req);
291270759Ssmh	if (err != 0 || req->newptr == NULL)
292270759Ssmh		return (err);
293270759Ssmh
294272483Ssmh	if (val < minfree)
295270759Ssmh		return (EINVAL);
296272483Ssmh	if (val > vm_cnt.v_page_count)
297270759Ssmh		return (EINVAL);
298270759Ssmh
299270759Ssmh	zfs_arc_free_target = val;
300270759Ssmh
301270759Ssmh	return (0);
302270759Ssmh}
303275748Sdelphij
304275748Sdelphij/*
305275748Sdelphij * Must be declared here, before the definition of corresponding kstat
306275748Sdelphij * macro which uses the same names will confuse the compiler.
307275748Sdelphij */
308275748SdelphijSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
309275748Sdelphij    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
310275748Sdelphij    sysctl_vfs_zfs_arc_meta_limit, "QU",
311275748Sdelphij    "ARC metadata limit");
312272483Ssmh#endif
313270759Ssmh
314168404Spjd/*
315185029Spjd * Note that buffers can be in one of 6 states:
316168404Spjd *	ARC_anon	- anonymous (discussed below)
317168404Spjd *	ARC_mru		- recently used, currently cached
318168404Spjd *	ARC_mru_ghost	- recentely used, no longer in cache
319168404Spjd *	ARC_mfu		- frequently used, currently cached
320168404Spjd *	ARC_mfu_ghost	- frequently used, no longer in cache
321185029Spjd *	ARC_l2c_only	- exists in L2ARC but not other states
322185029Spjd * When there are no active references to the buffer, they are
323185029Spjd * are linked onto a list in one of these arc states.  These are
324185029Spjd * the only buffers that can be evicted or deleted.  Within each
325185029Spjd * state there are multiple lists, one for meta-data and one for
326185029Spjd * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
327185029Spjd * etc.) is tracked separately so that it can be managed more
328185029Spjd * explicitly: favored over data, limited explicitly.
329168404Spjd *
330168404Spjd * Anonymous buffers are buffers that are not associated with
331168404Spjd * a DVA.  These are buffers that hold dirty block copies
332168404Spjd * before they are written to stable storage.  By definition,
333168404Spjd * they are "ref'd" and are considered part of arc_mru
334168404Spjd * that cannot be freed.  Generally, they will aquire a DVA
335168404Spjd * as they are written and migrate onto the arc_mru list.
336185029Spjd *
337185029Spjd * The ARC_l2c_only state is for buffers that are in the second
338185029Spjd * level ARC but no longer in any of the ARC_m* lists.  The second
339185029Spjd * level ARC itself may also contain buffers that are in any of
340185029Spjd * the ARC_m* states - meaning that a buffer can exist in two
341185029Spjd * places.  The reason for the ARC_l2c_only state is to keep the
342185029Spjd * buffer header in the hash table, so that reads that hit the
343185029Spjd * second level ARC benefit from these fast lookups.
344168404Spjd */
345168404Spjd
346168404Spjdtypedef struct arc_state {
347286763Smav	/*
348286763Smav	 * list of evictable buffers
349286763Smav	 */
350286763Smav	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
351286763Smav	/*
352286763Smav	 * total amount of evictable data in this state
353286763Smav	 */
354286763Smav	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
355286763Smav	/*
356286763Smav	 * total amount of data in this state; this includes: evictable,
357286763Smav	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
358286763Smav	 */
359286766Smav	refcount_t arcs_size;
360168404Spjd} arc_state_t;
361168404Spjd
362185029Spjd/* The 6 states: */
363168404Spjdstatic arc_state_t ARC_anon;
364168404Spjdstatic arc_state_t ARC_mru;
365168404Spjdstatic arc_state_t ARC_mru_ghost;
366168404Spjdstatic arc_state_t ARC_mfu;
367168404Spjdstatic arc_state_t ARC_mfu_ghost;
368185029Spjdstatic arc_state_t ARC_l2c_only;
369168404Spjd
370168404Spjdtypedef struct arc_stats {
371168404Spjd	kstat_named_t arcstat_hits;
372168404Spjd	kstat_named_t arcstat_misses;
373168404Spjd	kstat_named_t arcstat_demand_data_hits;
374168404Spjd	kstat_named_t arcstat_demand_data_misses;
375168404Spjd	kstat_named_t arcstat_demand_metadata_hits;
376168404Spjd	kstat_named_t arcstat_demand_metadata_misses;
377168404Spjd	kstat_named_t arcstat_prefetch_data_hits;
378168404Spjd	kstat_named_t arcstat_prefetch_data_misses;
379168404Spjd	kstat_named_t arcstat_prefetch_metadata_hits;
380168404Spjd	kstat_named_t arcstat_prefetch_metadata_misses;
381168404Spjd	kstat_named_t arcstat_mru_hits;
382168404Spjd	kstat_named_t arcstat_mru_ghost_hits;
383168404Spjd	kstat_named_t arcstat_mfu_hits;
384168404Spjd	kstat_named_t arcstat_mfu_ghost_hits;
385205231Skmacy	kstat_named_t arcstat_allocated;
386168404Spjd	kstat_named_t arcstat_deleted;
387251629Sdelphij	/*
388251629Sdelphij	 * Number of buffers that could not be evicted because the hash lock
389251629Sdelphij	 * was held by another thread.  The lock may not necessarily be held
390251629Sdelphij	 * by something using the same buffer, since hash locks are shared
391251629Sdelphij	 * by multiple buffers.
392251629Sdelphij	 */
393168404Spjd	kstat_named_t arcstat_mutex_miss;
394251629Sdelphij	/*
395251629Sdelphij	 * Number of buffers skipped because they have I/O in progress, are
396251629Sdelphij	 * indrect prefetch buffers that have not lived long enough, or are
397251629Sdelphij	 * not from the spa we're trying to evict from.
398251629Sdelphij	 */
399168404Spjd	kstat_named_t arcstat_evict_skip;
400286763Smav	/*
401286763Smav	 * Number of times arc_evict_state() was unable to evict enough
402286763Smav	 * buffers to reach it's target amount.
403286763Smav	 */
404286763Smav	kstat_named_t arcstat_evict_not_enough;
405208373Smm	kstat_named_t arcstat_evict_l2_cached;
406208373Smm	kstat_named_t arcstat_evict_l2_eligible;
407208373Smm	kstat_named_t arcstat_evict_l2_ineligible;
408286763Smav	kstat_named_t arcstat_evict_l2_skip;
409168404Spjd	kstat_named_t arcstat_hash_elements;
410168404Spjd	kstat_named_t arcstat_hash_elements_max;
411168404Spjd	kstat_named_t arcstat_hash_collisions;
412168404Spjd	kstat_named_t arcstat_hash_chains;
413168404Spjd	kstat_named_t arcstat_hash_chain_max;
414168404Spjd	kstat_named_t arcstat_p;
415168404Spjd	kstat_named_t arcstat_c;
416168404Spjd	kstat_named_t arcstat_c_min;
417168404Spjd	kstat_named_t arcstat_c_max;
418168404Spjd	kstat_named_t arcstat_size;
419286574Smav	/*
420286574Smav	 * Number of bytes consumed by internal ARC structures necessary
421286574Smav	 * for tracking purposes; these structures are not actually
422286574Smav	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
423286574Smav	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
424286574Smav	 * caches), and arc_buf_t structures (allocated via arc_buf_t
425286574Smav	 * cache).
426286574Smav	 */
427185029Spjd	kstat_named_t arcstat_hdr_size;
428286574Smav	/*
429286574Smav	 * Number of bytes consumed by ARC buffers of type equal to
430286574Smav	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
431286574Smav	 * on disk user data (e.g. plain file contents).
432286574Smav	 */
433208373Smm	kstat_named_t arcstat_data_size;
434286574Smav	/*
435286574Smav	 * Number of bytes consumed by ARC buffers of type equal to
436286574Smav	 * ARC_BUFC_METADATA. This is generally consumed by buffers
437286574Smav	 * backing on disk data that is used for internal ZFS
438286574Smav	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
439286574Smav	 */
440286574Smav	kstat_named_t arcstat_metadata_size;
441286574Smav	/*
442286574Smav	 * Number of bytes consumed by various buffers and structures
443286574Smav	 * not actually backed with ARC buffers. This includes bonus
444286574Smav	 * buffers (allocated directly via zio_buf_* functions),
445286574Smav	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
446286574Smav	 * cache), and dnode_t structures (allocated via dnode_t cache).
447286574Smav	 */
448208373Smm	kstat_named_t arcstat_other_size;
449286574Smav	/*
450286574Smav	 * Total number of bytes consumed by ARC buffers residing in the
451286574Smav	 * arc_anon state. This includes *all* buffers in the arc_anon
452286574Smav	 * state; e.g. data, metadata, evictable, and unevictable buffers
453286574Smav	 * are all included in this value.
454286574Smav	 */
455286574Smav	kstat_named_t arcstat_anon_size;
456286574Smav	/*
457286574Smav	 * Number of bytes consumed by ARC buffers that meet the
458286574Smav	 * following criteria: backing buffers of type ARC_BUFC_DATA,
459286574Smav	 * residing in the arc_anon state, and are eligible for eviction
460286574Smav	 * (e.g. have no outstanding holds on the buffer).
461286574Smav	 */
462286574Smav	kstat_named_t arcstat_anon_evictable_data;
463286574Smav	/*
464286574Smav	 * Number of bytes consumed by ARC buffers that meet the
465286574Smav	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
466286574Smav	 * residing in the arc_anon state, and are eligible for eviction
467286574Smav	 * (e.g. have no outstanding holds on the buffer).
468286574Smav	 */
469286574Smav	kstat_named_t arcstat_anon_evictable_metadata;
470286574Smav	/*
471286574Smav	 * Total number of bytes consumed by ARC buffers residing in the
472286574Smav	 * arc_mru state. This includes *all* buffers in the arc_mru
473286574Smav	 * state; e.g. data, metadata, evictable, and unevictable buffers
474286574Smav	 * are all included in this value.
475286574Smav	 */
476286574Smav	kstat_named_t arcstat_mru_size;
477286574Smav	/*
478286574Smav	 * Number of bytes consumed by ARC buffers that meet the
479286574Smav	 * following criteria: backing buffers of type ARC_BUFC_DATA,
480286574Smav	 * residing in the arc_mru state, and are eligible for eviction
481286574Smav	 * (e.g. have no outstanding holds on the buffer).
482286574Smav	 */
483286574Smav	kstat_named_t arcstat_mru_evictable_data;
484286574Smav	/*
485286574Smav	 * Number of bytes consumed by ARC buffers that meet the
486286574Smav	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
487286574Smav	 * residing in the arc_mru state, and are eligible for eviction
488286574Smav	 * (e.g. have no outstanding holds on the buffer).
489286574Smav	 */
490286574Smav	kstat_named_t arcstat_mru_evictable_metadata;
491286574Smav	/*
492286574Smav	 * Total number of bytes that *would have been* consumed by ARC
493286574Smav	 * buffers in the arc_mru_ghost state. The key thing to note
494286574Smav	 * here, is the fact that this size doesn't actually indicate
495286574Smav	 * RAM consumption. The ghost lists only consist of headers and
496286574Smav	 * don't actually have ARC buffers linked off of these headers.
497286574Smav	 * Thus, *if* the headers had associated ARC buffers, these
498286574Smav	 * buffers *would have* consumed this number of bytes.
499286574Smav	 */
500286574Smav	kstat_named_t arcstat_mru_ghost_size;
501286574Smav	/*
502286574Smav	 * Number of bytes that *would have been* consumed by ARC
503286574Smav	 * buffers that are eligible for eviction, of type
504286574Smav	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
505286574Smav	 */
506286574Smav	kstat_named_t arcstat_mru_ghost_evictable_data;
507286574Smav	/*
508286574Smav	 * Number of bytes that *would have been* consumed by ARC
509286574Smav	 * buffers that are eligible for eviction, of type
510286574Smav	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
511286574Smav	 */
512286574Smav	kstat_named_t arcstat_mru_ghost_evictable_metadata;
513286574Smav	/*
514286574Smav	 * Total number of bytes consumed by ARC buffers residing in the
515286574Smav	 * arc_mfu state. This includes *all* buffers in the arc_mfu
516286574Smav	 * state; e.g. data, metadata, evictable, and unevictable buffers
517286574Smav	 * are all included in this value.
518286574Smav	 */
519286574Smav	kstat_named_t arcstat_mfu_size;
520286574Smav	/*
521286574Smav	 * Number of bytes consumed by ARC buffers that are eligible for
522286574Smav	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
523286574Smav	 * state.
524286574Smav	 */
525286574Smav	kstat_named_t arcstat_mfu_evictable_data;
526286574Smav	/*
527286574Smav	 * Number of bytes consumed by ARC buffers that are eligible for
528286574Smav	 * eviction, of type ARC_BUFC_METADATA, and reside in the
529286574Smav	 * arc_mfu state.
530286574Smav	 */
531286574Smav	kstat_named_t arcstat_mfu_evictable_metadata;
532286574Smav	/*
533286574Smav	 * Total number of bytes that *would have been* consumed by ARC
534286574Smav	 * buffers in the arc_mfu_ghost state. See the comment above
535286574Smav	 * arcstat_mru_ghost_size for more details.
536286574Smav	 */
537286574Smav	kstat_named_t arcstat_mfu_ghost_size;
538286574Smav	/*
539286574Smav	 * Number of bytes that *would have been* consumed by ARC
540286574Smav	 * buffers that are eligible for eviction, of type
541286574Smav	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
542286574Smav	 */
543286574Smav	kstat_named_t arcstat_mfu_ghost_evictable_data;
544286574Smav	/*
545286574Smav	 * Number of bytes that *would have been* consumed by ARC
546286574Smav	 * buffers that are eligible for eviction, of type
547286574Smav	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
548286574Smav	 */
549286574Smav	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
550185029Spjd	kstat_named_t arcstat_l2_hits;
551185029Spjd	kstat_named_t arcstat_l2_misses;
552185029Spjd	kstat_named_t arcstat_l2_feeds;
553185029Spjd	kstat_named_t arcstat_l2_rw_clash;
554208373Smm	kstat_named_t arcstat_l2_read_bytes;
555208373Smm	kstat_named_t arcstat_l2_write_bytes;
556185029Spjd	kstat_named_t arcstat_l2_writes_sent;
557185029Spjd	kstat_named_t arcstat_l2_writes_done;
558185029Spjd	kstat_named_t arcstat_l2_writes_error;
559286763Smav	kstat_named_t arcstat_l2_writes_lock_retry;
560185029Spjd	kstat_named_t arcstat_l2_evict_lock_retry;
561185029Spjd	kstat_named_t arcstat_l2_evict_reading;
562286570Smav	kstat_named_t arcstat_l2_evict_l1cached;
563185029Spjd	kstat_named_t arcstat_l2_free_on_write;
564274172Savg	kstat_named_t arcstat_l2_cdata_free_on_write;
565185029Spjd	kstat_named_t arcstat_l2_abort_lowmem;
566185029Spjd	kstat_named_t arcstat_l2_cksum_bad;
567185029Spjd	kstat_named_t arcstat_l2_io_error;
568185029Spjd	kstat_named_t arcstat_l2_size;
569251478Sdelphij	kstat_named_t arcstat_l2_asize;
570185029Spjd	kstat_named_t arcstat_l2_hdr_size;
571251478Sdelphij	kstat_named_t arcstat_l2_compress_successes;
572251478Sdelphij	kstat_named_t arcstat_l2_compress_zeros;
573251478Sdelphij	kstat_named_t arcstat_l2_compress_failures;
574297848Savg	kstat_named_t arcstat_l2_padding_needed;
575205231Skmacy	kstat_named_t arcstat_l2_write_trylock_fail;
576205231Skmacy	kstat_named_t arcstat_l2_write_passed_headroom;
577205231Skmacy	kstat_named_t arcstat_l2_write_spa_mismatch;
578206796Spjd	kstat_named_t arcstat_l2_write_in_l2;
579205231Skmacy	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
580205231Skmacy	kstat_named_t arcstat_l2_write_not_cacheable;
581205231Skmacy	kstat_named_t arcstat_l2_write_full;
582205231Skmacy	kstat_named_t arcstat_l2_write_buffer_iter;
583205231Skmacy	kstat_named_t arcstat_l2_write_pios;
584205231Skmacy	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
585205231Skmacy	kstat_named_t arcstat_l2_write_buffer_list_iter;
586205231Skmacy	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
587242845Sdelphij	kstat_named_t arcstat_memory_throttle_count;
588242845Sdelphij	kstat_named_t arcstat_duplicate_buffers;
589242845Sdelphij	kstat_named_t arcstat_duplicate_buffers_size;
590242845Sdelphij	kstat_named_t arcstat_duplicate_reads;
591275748Sdelphij	kstat_named_t arcstat_meta_used;
592275748Sdelphij	kstat_named_t arcstat_meta_limit;
593275748Sdelphij	kstat_named_t arcstat_meta_max;
594275780Sdelphij	kstat_named_t arcstat_meta_min;
595287702Sdelphij	kstat_named_t arcstat_sync_wait_for_async;
596287702Sdelphij	kstat_named_t arcstat_demand_hit_predictive_prefetch;
597168404Spjd} arc_stats_t;
598168404Spjd
599168404Spjdstatic arc_stats_t arc_stats = {
600168404Spjd	{ "hits",			KSTAT_DATA_UINT64 },
601168404Spjd	{ "misses",			KSTAT_DATA_UINT64 },
602168404Spjd	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
603168404Spjd	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
604168404Spjd	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
605168404Spjd	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
606168404Spjd	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
607168404Spjd	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
608168404Spjd	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
609168404Spjd	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
610168404Spjd	{ "mru_hits",			KSTAT_DATA_UINT64 },
611168404Spjd	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
612168404Spjd	{ "mfu_hits",			KSTAT_DATA_UINT64 },
613168404Spjd	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
614205231Skmacy	{ "allocated",			KSTAT_DATA_UINT64 },
615168404Spjd	{ "deleted",			KSTAT_DATA_UINT64 },
616168404Spjd	{ "mutex_miss",			KSTAT_DATA_UINT64 },
617168404Spjd	{ "evict_skip",			KSTAT_DATA_UINT64 },
618286763Smav	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
619208373Smm	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
620208373Smm	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
621208373Smm	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
622286763Smav	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
623168404Spjd	{ "hash_elements",		KSTAT_DATA_UINT64 },
624168404Spjd	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
625168404Spjd	{ "hash_collisions",		KSTAT_DATA_UINT64 },
626168404Spjd	{ "hash_chains",		KSTAT_DATA_UINT64 },
627168404Spjd	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
628168404Spjd	{ "p",				KSTAT_DATA_UINT64 },
629168404Spjd	{ "c",				KSTAT_DATA_UINT64 },
630168404Spjd	{ "c_min",			KSTAT_DATA_UINT64 },
631168404Spjd	{ "c_max",			KSTAT_DATA_UINT64 },
632185029Spjd	{ "size",			KSTAT_DATA_UINT64 },
633185029Spjd	{ "hdr_size",			KSTAT_DATA_UINT64 },
634208373Smm	{ "data_size",			KSTAT_DATA_UINT64 },
635286574Smav	{ "metadata_size",		KSTAT_DATA_UINT64 },
636208373Smm	{ "other_size",			KSTAT_DATA_UINT64 },
637286574Smav	{ "anon_size",			KSTAT_DATA_UINT64 },
638286574Smav	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
639286574Smav	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
640286574Smav	{ "mru_size",			KSTAT_DATA_UINT64 },
641286574Smav	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
642286574Smav	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
643286574Smav	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
644286574Smav	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
645286574Smav	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
646286574Smav	{ "mfu_size",			KSTAT_DATA_UINT64 },
647286574Smav	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
648286574Smav	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
649286574Smav	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
650286574Smav	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
651286574Smav	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
652185029Spjd	{ "l2_hits",			KSTAT_DATA_UINT64 },
653185029Spjd	{ "l2_misses",			KSTAT_DATA_UINT64 },
654185029Spjd	{ "l2_feeds",			KSTAT_DATA_UINT64 },
655185029Spjd	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
656208373Smm	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
657208373Smm	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
658185029Spjd	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
659185029Spjd	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
660185029Spjd	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
661286763Smav	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
662185029Spjd	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
663185029Spjd	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
664286570Smav	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
665185029Spjd	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
666274172Savg	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
667185029Spjd	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
668185029Spjd	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
669185029Spjd	{ "l2_io_error",		KSTAT_DATA_UINT64 },
670185029Spjd	{ "l2_size",			KSTAT_DATA_UINT64 },
671251478Sdelphij	{ "l2_asize",			KSTAT_DATA_UINT64 },
672185029Spjd	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
673251478Sdelphij	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
674251478Sdelphij	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
675251478Sdelphij	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
676297848Savg	{ "l2_padding_needed",		KSTAT_DATA_UINT64 },
677206796Spjd	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
678206796Spjd	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
679206796Spjd	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
680206796Spjd	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
681206796Spjd	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
682206796Spjd	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
683206796Spjd	{ "l2_write_full",		KSTAT_DATA_UINT64 },
684206796Spjd	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
685206796Spjd	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
686206796Spjd	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
687206796Spjd	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
688242845Sdelphij	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
689242845Sdelphij	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
690242845Sdelphij	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
691242845Sdelphij	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
692275748Sdelphij	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
693275748Sdelphij	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
694275748Sdelphij	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
695275780Sdelphij	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
696287702Sdelphij	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
697287702Sdelphij	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
698287702Sdelphij	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
699168404Spjd};
700168404Spjd
701168404Spjd#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
702168404Spjd
703168404Spjd#define	ARCSTAT_INCR(stat, val) \
704251631Sdelphij	atomic_add_64(&arc_stats.stat.value.ui64, (val))
705168404Spjd
706206796Spjd#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
707168404Spjd#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
708168404Spjd
709168404Spjd#define	ARCSTAT_MAX(stat, val) {					\
710168404Spjd	uint64_t m;							\
711168404Spjd	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
712168404Spjd	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
713168404Spjd		continue;						\
714168404Spjd}
715168404Spjd
716168404Spjd#define	ARCSTAT_MAXSTAT(stat) \
717168404Spjd	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
718168404Spjd
719168404Spjd/*
720168404Spjd * We define a macro to allow ARC hits/misses to be easily broken down by
721168404Spjd * two separate conditions, giving a total of four different subtypes for
722168404Spjd * each of hits and misses (so eight statistics total).
723168404Spjd */
724168404Spjd#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
725168404Spjd	if (cond1) {							\
726168404Spjd		if (cond2) {						\
727168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
728168404Spjd		} else {						\
729168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
730168404Spjd		}							\
731168404Spjd	} else {							\
732168404Spjd		if (cond2) {						\
733168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
734168404Spjd		} else {						\
735168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
736168404Spjd		}							\
737168404Spjd	}
738168404Spjd
739168404Spjdkstat_t			*arc_ksp;
740206796Spjdstatic arc_state_t	*arc_anon;
741168404Spjdstatic arc_state_t	*arc_mru;
742168404Spjdstatic arc_state_t	*arc_mru_ghost;
743168404Spjdstatic arc_state_t	*arc_mfu;
744168404Spjdstatic arc_state_t	*arc_mfu_ghost;
745185029Spjdstatic arc_state_t	*arc_l2c_only;
746168404Spjd
747168404Spjd/*
748168404Spjd * There are several ARC variables that are critical to export as kstats --
749168404Spjd * but we don't want to have to grovel around in the kstat whenever we wish to
750168404Spjd * manipulate them.  For these variables, we therefore define them to be in
751168404Spjd * terms of the statistic variable.  This assures that we are not introducing
752168404Spjd * the possibility of inconsistency by having shadow copies of the variables,
753168404Spjd * while still allowing the code to be readable.
754168404Spjd */
755168404Spjd#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
756168404Spjd#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
757168404Spjd#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
758168404Spjd#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
759168404Spjd#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
760275748Sdelphij#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
761275780Sdelphij#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
762275748Sdelphij#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
763275748Sdelphij#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
764168404Spjd
765251478Sdelphij#define	L2ARC_IS_VALID_COMPRESS(_c_) \
766251478Sdelphij	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
767251478Sdelphij
768168404Spjdstatic int		arc_no_grow;	/* Don't try to grow cache size */
769168404Spjdstatic uint64_t		arc_tempreserve;
770209962Smmstatic uint64_t		arc_loaned_bytes;
771168404Spjd
772168404Spjdtypedef struct arc_callback arc_callback_t;
773168404Spjd
774168404Spjdstruct arc_callback {
775168404Spjd	void			*acb_private;
776168404Spjd	arc_done_func_t		*acb_done;
777168404Spjd	arc_buf_t		*acb_buf;
778168404Spjd	zio_t			*acb_zio_dummy;
779168404Spjd	arc_callback_t		*acb_next;
780168404Spjd};
781168404Spjd
782168404Spjdtypedef struct arc_write_callback arc_write_callback_t;
783168404Spjd
784168404Spjdstruct arc_write_callback {
785168404Spjd	void		*awcb_private;
786168404Spjd	arc_done_func_t	*awcb_ready;
787258632Savg	arc_done_func_t	*awcb_physdone;
788168404Spjd	arc_done_func_t	*awcb_done;
789168404Spjd	arc_buf_t	*awcb_buf;
790168404Spjd};
791168404Spjd
792286570Smav/*
793286570Smav * ARC buffers are separated into multiple structs as a memory saving measure:
794286570Smav *   - Common fields struct, always defined, and embedded within it:
795286570Smav *       - L2-only fields, always allocated but undefined when not in L2ARC
796286570Smav *       - L1-only fields, only allocated when in L1ARC
797286570Smav *
798286570Smav *           Buffer in L1                     Buffer only in L2
799286570Smav *    +------------------------+          +------------------------+
800286570Smav *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
801286570Smav *    |                        |          |                        |
802286570Smav *    |                        |          |                        |
803286570Smav *    |                        |          |                        |
804286570Smav *    +------------------------+          +------------------------+
805286570Smav *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
806286570Smav *    | (undefined if L1-only) |          |                        |
807286570Smav *    +------------------------+          +------------------------+
808286570Smav *    | l1arc_buf_hdr_t        |
809286570Smav *    |                        |
810286570Smav *    |                        |
811286570Smav *    |                        |
812286570Smav *    |                        |
813286570Smav *    +------------------------+
814286570Smav *
815286570Smav * Because it's possible for the L2ARC to become extremely large, we can wind
816286570Smav * up eating a lot of memory in L2ARC buffer headers, so the size of a header
817286570Smav * is minimized by only allocating the fields necessary for an L1-cached buffer
818286570Smav * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
819286570Smav * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
820286570Smav * words in pointers. arc_hdr_realloc() is used to switch a header between
821286570Smav * these two allocation states.
822286570Smav */
823286570Smavtypedef struct l1arc_buf_hdr {
824168404Spjd	kmutex_t		b_freeze_lock;
825286570Smav#ifdef ZFS_DEBUG
826286570Smav	/*
827286570Smav	 * used for debugging wtih kmem_flags - by allocating and freeing
828286570Smav	 * b_thawed when the buffer is thawed, we get a record of the stack
829286570Smav	 * trace that thawed it.
830286570Smav	 */
831219089Spjd	void			*b_thawed;
832286570Smav#endif
833168404Spjd
834168404Spjd	arc_buf_t		*b_buf;
835168404Spjd	uint32_t		b_datacnt;
836286570Smav	/* for waiting on writes to complete */
837168404Spjd	kcondvar_t		b_cv;
838168404Spjd
839168404Spjd	/* protected by arc state mutex */
840168404Spjd	arc_state_t		*b_state;
841286763Smav	multilist_node_t	b_arc_node;
842168404Spjd
843168404Spjd	/* updated atomically */
844168404Spjd	clock_t			b_arc_access;
845168404Spjd
846168404Spjd	/* self protecting */
847168404Spjd	refcount_t		b_refcnt;
848185029Spjd
849286570Smav	arc_callback_t		*b_acb;
850297848Savg	/* temporary buffer holder for in-flight compressed or padded data */
851286570Smav	void			*b_tmp_cdata;
852286570Smav} l1arc_buf_hdr_t;
853286570Smav
854286570Smavtypedef struct l2arc_dev l2arc_dev_t;
855286570Smav
856286570Smavtypedef struct l2arc_buf_hdr {
857286570Smav	/* protected by arc_buf_hdr mutex */
858286570Smav	l2arc_dev_t		*b_dev;		/* L2ARC device */
859286570Smav	uint64_t		b_daddr;	/* disk address, offset byte */
860286570Smav	/* real alloc'd buffer size depending on b_compress applied */
861286570Smav	int32_t			b_asize;
862287706Sdelphij	uint8_t			b_compress;
863286570Smav
864185029Spjd	list_node_t		b_l2node;
865286570Smav} l2arc_buf_hdr_t;
866286570Smav
867286570Smavstruct arc_buf_hdr {
868286570Smav	/* protected by hash lock */
869286570Smav	dva_t			b_dva;
870286570Smav	uint64_t		b_birth;
871286570Smav	/*
872286570Smav	 * Even though this checksum is only set/verified when a buffer is in
873286570Smav	 * the L1 cache, it needs to be in the set of common fields because it
874286570Smav	 * must be preserved from the time before a buffer is written out to
875286570Smav	 * L2ARC until after it is read back in.
876286570Smav	 */
877286570Smav	zio_cksum_t		*b_freeze_cksum;
878286570Smav
879286570Smav	arc_buf_hdr_t		*b_hash_next;
880286570Smav	arc_flags_t		b_flags;
881286570Smav
882286570Smav	/* immutable */
883286570Smav	int32_t			b_size;
884286570Smav	uint64_t		b_spa;
885286570Smav
886286570Smav	/* L2ARC fields. Undefined when not in L2ARC. */
887286570Smav	l2arc_buf_hdr_t		b_l2hdr;
888286570Smav	/* L1ARC fields. Undefined when in l2arc_only state */
889286570Smav	l1arc_buf_hdr_t		b_l1hdr;
890168404Spjd};
891168404Spjd
892302265Ssmh#if defined(__FreeBSD__) && defined(_KERNEL)
893275748Sdelphijstatic int
894275748Sdelphijsysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
895275748Sdelphij{
896275748Sdelphij	uint64_t val;
897275748Sdelphij	int err;
898275748Sdelphij
899275748Sdelphij	val = arc_meta_limit;
900275748Sdelphij	err = sysctl_handle_64(oidp, &val, 0, req);
901275748Sdelphij	if (err != 0 || req->newptr == NULL)
902275748Sdelphij		return (err);
903275748Sdelphij
904275748Sdelphij        if (val <= 0 || val > arc_c_max)
905275748Sdelphij		return (EINVAL);
906275748Sdelphij
907275748Sdelphij	arc_meta_limit = val;
908275748Sdelphij	return (0);
909275748Sdelphij}
910302265Ssmh
911302265Ssmhstatic int
912302265Ssmhsysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
913302265Ssmh{
914302265Ssmh	uint64_t val;
915302265Ssmh	int err;
916302265Ssmh
917302265Ssmh	val = zfs_arc_max;
918302265Ssmh	err = sysctl_handle_64(oidp, &val, 0, req);
919302265Ssmh	if (err != 0 || req->newptr == NULL)
920302265Ssmh		return (err);
921302265Ssmh
922302265Ssmh	if (val < arc_abs_min || val > kmem_size())
923302265Ssmh		return (EINVAL);
924302265Ssmh	if (val < arc_c_min)
925302265Ssmh		return (EINVAL);
926302265Ssmh	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
927302265Ssmh		return (EINVAL);
928302265Ssmh
929302265Ssmh	arc_c_max = val;
930302265Ssmh
931302265Ssmh	arc_c = arc_c_max;
932302265Ssmh        arc_p = (arc_c >> 1);
933302265Ssmh
934302265Ssmh	if (zfs_arc_meta_limit == 0) {
935302265Ssmh		/* limit meta-data to 1/4 of the arc capacity */
936302265Ssmh		arc_meta_limit = arc_c_max / 4;
937302265Ssmh	}
938302265Ssmh
939302265Ssmh	/* if kmem_flags are set, lets try to use less memory */
940302265Ssmh	if (kmem_debugging())
941302265Ssmh		arc_c = arc_c / 2;
942302265Ssmh
943302265Ssmh	zfs_arc_max = arc_c;
944302265Ssmh
945302265Ssmh	return (0);
946302265Ssmh}
947302265Ssmh
948302265Ssmhstatic int
949302265Ssmhsysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
950302265Ssmh{
951302265Ssmh	uint64_t val;
952302265Ssmh	int err;
953302265Ssmh
954302265Ssmh	val = zfs_arc_min;
955302265Ssmh	err = sysctl_handle_64(oidp, &val, 0, req);
956302265Ssmh	if (err != 0 || req->newptr == NULL)
957302265Ssmh		return (err);
958302265Ssmh
959302265Ssmh	if (val < arc_abs_min || val > arc_c_max)
960302265Ssmh		return (EINVAL);
961302265Ssmh
962302265Ssmh	arc_c_min = val;
963302265Ssmh
964302265Ssmh	if (zfs_arc_meta_min == 0)
965302265Ssmh                arc_meta_min = arc_c_min / 2;
966302265Ssmh
967302265Ssmh	if (arc_c < arc_c_min)
968302265Ssmh                arc_c = arc_c_min;
969302265Ssmh
970302265Ssmh	zfs_arc_min = arc_c_min;
971302265Ssmh
972302265Ssmh	return (0);
973302265Ssmh}
974275748Sdelphij#endif
975275748Sdelphij
976168404Spjdstatic arc_buf_t *arc_eviction_list;
977168404Spjdstatic arc_buf_hdr_t arc_eviction_hdr;
978168404Spjd
979168404Spjd#define	GHOST_STATE(state)	\
980185029Spjd	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
981185029Spjd	(state) == arc_l2c_only)
982168404Spjd
983275811Sdelphij#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
984275811Sdelphij#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
985275811Sdelphij#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
986275811Sdelphij#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
987275811Sdelphij#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
988275811Sdelphij#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
989286570Smav
990275811Sdelphij#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
991286570Smav#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
992275811Sdelphij#define	HDR_L2_READING(hdr)	\
993286570Smav	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
994286570Smav	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
995275811Sdelphij#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
996275811Sdelphij#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
997275811Sdelphij#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
998168404Spjd
999286570Smav#define	HDR_ISTYPE_METADATA(hdr)	\
1000286570Smav	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1001286570Smav#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1002286570Smav
1003286570Smav#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1004286570Smav#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1005286570Smav
1006168404Spjd/*
1007185029Spjd * Other sizes
1008185029Spjd */
1009185029Spjd
1010286570Smav#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1011286570Smav#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1012185029Spjd
1013185029Spjd/*
1014168404Spjd * Hash table routines
1015168404Spjd */
1016168404Spjd
1017205253Skmacy#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1018168404Spjd
1019168404Spjdstruct ht_lock {
1020168404Spjd	kmutex_t	ht_lock;
1021168404Spjd#ifdef _KERNEL
1022168404Spjd	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1023168404Spjd#endif
1024168404Spjd};
1025168404Spjd
1026168404Spjd#define	BUF_LOCKS 256
1027168404Spjdtypedef struct buf_hash_table {
1028168404Spjd	uint64_t ht_mask;
1029168404Spjd	arc_buf_hdr_t **ht_table;
1030205264Skmacy	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1031168404Spjd} buf_hash_table_t;
1032168404Spjd
1033168404Spjdstatic buf_hash_table_t buf_hash_table;
1034168404Spjd
1035168404Spjd#define	BUF_HASH_INDEX(spa, dva, birth) \
1036168404Spjd	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1037168404Spjd#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1038168404Spjd#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1039219089Spjd#define	HDR_LOCK(hdr) \
1040219089Spjd	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1041168404Spjd
1042168404Spjduint64_t zfs_crc64_table[256];
1043168404Spjd
1044185029Spjd/*
1045185029Spjd * Level 2 ARC
1046185029Spjd */
1047185029Spjd
1048272707Savg#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1049251478Sdelphij#define	L2ARC_HEADROOM		2			/* num of writes */
1050251478Sdelphij/*
1051251478Sdelphij * If we discover during ARC scan any buffers to be compressed, we boost
1052251478Sdelphij * our headroom for the next scanning cycle by this percentage multiple.
1053251478Sdelphij */
1054251478Sdelphij#define	L2ARC_HEADROOM_BOOST	200
1055208373Smm#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1056208373Smm#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1057185029Spjd
1058286598Smav/*
1059286598Smav * Used to distinguish headers that are being process by
1060286598Smav * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
1061286598Smav * address. This can happen when the header is added to the l2arc's list
1062286598Smav * of buffers to write in the first stage of l2arc_write_buffers(), but
1063286598Smav * has not yet been written out which happens in the second stage of
1064286598Smav * l2arc_write_buffers().
1065286598Smav */
1066286598Smav#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
1067286598Smav
1068185029Spjd#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1069185029Spjd#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1070185029Spjd
1071251631Sdelphij/* L2ARC Performance Tunables */
1072185029Spjduint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1073185029Spjduint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1074185029Spjduint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1075251478Sdelphijuint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1076185029Spjduint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1077208373Smmuint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1078219089Spjdboolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1079208373Smmboolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1080208373Smmboolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1081185029Spjd
1082217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1083205231Skmacy    &l2arc_write_max, 0, "max write size");
1084217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1085205231Skmacy    &l2arc_write_boost, 0, "extra write during warmup");
1086217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1087205231Skmacy    &l2arc_headroom, 0, "number of dev writes");
1088217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1089205231Skmacy    &l2arc_feed_secs, 0, "interval seconds");
1090217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1091208373Smm    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1092205231Skmacy
1093205231SkmacySYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1094205231Skmacy    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1095208373SmmSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1096208373Smm    &l2arc_feed_again, 0, "turbo warmup");
1097208373SmmSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1098208373Smm    &l2arc_norw, 0, "no reads during writes");
1099205231Skmacy
1100217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1101286770Smav    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1102217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1103205231Skmacy    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1104217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1105205231Skmacy    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1106205231Skmacy
1107217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1108286770Smav    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1109217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1110205231Skmacy    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1111217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1112205231Skmacy    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1113205231Skmacy
1114217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1115286770Smav    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1116217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1117205231Skmacy    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1118205231Skmacy    "size of metadata in mru ghost state");
1119217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1120205231Skmacy    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1121205231Skmacy    "size of data in mru ghost state");
1122205231Skmacy
1123217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1124286770Smav    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1125217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1126205231Skmacy    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1127217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1128205231Skmacy    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1129205231Skmacy
1130217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1131286770Smav    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1132217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1133205231Skmacy    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1134205231Skmacy    "size of metadata in mfu ghost state");
1135217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1136205231Skmacy    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1137205231Skmacy    "size of data in mfu ghost state");
1138205231Skmacy
1139217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1140286770Smav    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1141205231Skmacy
1142185029Spjd/*
1143185029Spjd * L2ARC Internals
1144185029Spjd */
1145286570Smavstruct l2arc_dev {
1146185029Spjd	vdev_t			*l2ad_vdev;	/* vdev */
1147185029Spjd	spa_t			*l2ad_spa;	/* spa */
1148185029Spjd	uint64_t		l2ad_hand;	/* next write location */
1149185029Spjd	uint64_t		l2ad_start;	/* first addr on device */
1150185029Spjd	uint64_t		l2ad_end;	/* last addr on device */
1151185029Spjd	boolean_t		l2ad_first;	/* first sweep through */
1152208373Smm	boolean_t		l2ad_writing;	/* currently writing */
1153286570Smav	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1154286570Smav	list_t			l2ad_buflist;	/* buffer list */
1155185029Spjd	list_node_t		l2ad_node;	/* device list node */
1156286598Smav	refcount_t		l2ad_alloc;	/* allocated bytes */
1157286570Smav};
1158185029Spjd
1159185029Spjdstatic list_t L2ARC_dev_list;			/* device list */
1160185029Spjdstatic list_t *l2arc_dev_list;			/* device list pointer */
1161185029Spjdstatic kmutex_t l2arc_dev_mtx;			/* device list mutex */
1162185029Spjdstatic l2arc_dev_t *l2arc_dev_last;		/* last device used */
1163185029Spjdstatic list_t L2ARC_free_on_write;		/* free after write buf list */
1164185029Spjdstatic list_t *l2arc_free_on_write;		/* free after write list ptr */
1165185029Spjdstatic kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1166185029Spjdstatic uint64_t l2arc_ndev;			/* number of devices */
1167185029Spjd
1168185029Spjdtypedef struct l2arc_read_callback {
1169251478Sdelphij	arc_buf_t		*l2rcb_buf;		/* read buffer */
1170251478Sdelphij	spa_t			*l2rcb_spa;		/* spa */
1171251478Sdelphij	blkptr_t		l2rcb_bp;		/* original blkptr */
1172268123Sdelphij	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1173251478Sdelphij	int			l2rcb_flags;		/* original flags */
1174251478Sdelphij	enum zio_compress	l2rcb_compress;		/* applied compress */
1175297848Savg	void			*l2rcb_data;		/* temporary buffer */
1176185029Spjd} l2arc_read_callback_t;
1177185029Spjd
1178185029Spjdtypedef struct l2arc_write_callback {
1179185029Spjd	l2arc_dev_t	*l2wcb_dev;		/* device info */
1180185029Spjd	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1181185029Spjd} l2arc_write_callback_t;
1182185029Spjd
1183185029Spjdtypedef struct l2arc_data_free {
1184185029Spjd	/* protected by l2arc_free_on_write_mtx */
1185185029Spjd	void		*l2df_data;
1186185029Spjd	size_t		l2df_size;
1187185029Spjd	void		(*l2df_func)(void *, size_t);
1188185029Spjd	list_node_t	l2df_list_node;
1189185029Spjd} l2arc_data_free_t;
1190185029Spjd
1191185029Spjdstatic kmutex_t l2arc_feed_thr_lock;
1192185029Spjdstatic kcondvar_t l2arc_feed_thr_cv;
1193185029Spjdstatic uint8_t l2arc_thread_exit;
1194185029Spjd
1195275811Sdelphijstatic void arc_get_data_buf(arc_buf_t *);
1196275811Sdelphijstatic void arc_access(arc_buf_hdr_t *, kmutex_t *);
1197286763Smavstatic boolean_t arc_is_overflowing();
1198275811Sdelphijstatic void arc_buf_watch(arc_buf_t *);
1199275811Sdelphij
1200286570Smavstatic arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1201286570Smavstatic uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1202286570Smav
1203275811Sdelphijstatic boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1204275811Sdelphijstatic void l2arc_read_done(zio_t *);
1205185029Spjd
1206297848Savgstatic boolean_t l2arc_transform_buf(arc_buf_hdr_t *, boolean_t);
1207275811Sdelphijstatic void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1208275811Sdelphijstatic void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1209251478Sdelphij
1210290191Savgstatic void
1211290191Savgl2arc_trim(const arc_buf_hdr_t *hdr)
1212290191Savg{
1213290191Savg	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1214290191Savg
1215290191Savg	ASSERT(HDR_HAS_L2HDR(hdr));
1216290191Savg	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1217290191Savg
1218290191Savg	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET)
1219290191Savg		return;
1220290191Savg	if (hdr->b_l2hdr.b_asize != 0) {
1221290191Savg		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1222290191Savg		    hdr->b_l2hdr.b_asize, 0);
1223290191Savg	} else {
1224290191Savg		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_EMPTY);
1225290191Savg	}
1226290191Savg}
1227290191Savg
1228168404Spjdstatic uint64_t
1229209962Smmbuf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1230168404Spjd{
1231168404Spjd	uint8_t *vdva = (uint8_t *)dva;
1232168404Spjd	uint64_t crc = -1ULL;
1233168404Spjd	int i;
1234168404Spjd
1235168404Spjd	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1236168404Spjd
1237168404Spjd	for (i = 0; i < sizeof (dva_t); i++)
1238168404Spjd		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1239168404Spjd
1240209962Smm	crc ^= (spa>>8) ^ birth;
1241168404Spjd
1242168404Spjd	return (crc);
1243168404Spjd}
1244168404Spjd
1245168404Spjd#define	BUF_EMPTY(buf)						\
1246168404Spjd	((buf)->b_dva.dva_word[0] == 0 &&			\
1247286570Smav	(buf)->b_dva.dva_word[1] == 0)
1248168404Spjd
1249168404Spjd#define	BUF_EQUAL(spa, dva, birth, buf)				\
1250168404Spjd	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1251168404Spjd	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1252168404Spjd	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1253168404Spjd
1254219089Spjdstatic void
1255219089Spjdbuf_discard_identity(arc_buf_hdr_t *hdr)
1256219089Spjd{
1257219089Spjd	hdr->b_dva.dva_word[0] = 0;
1258219089Spjd	hdr->b_dva.dva_word[1] = 0;
1259219089Spjd	hdr->b_birth = 0;
1260219089Spjd}
1261219089Spjd
1262168404Spjdstatic arc_buf_hdr_t *
1263268075Sdelphijbuf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1264168404Spjd{
1265268075Sdelphij	const dva_t *dva = BP_IDENTITY(bp);
1266268075Sdelphij	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1267168404Spjd	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1268168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1269275811Sdelphij	arc_buf_hdr_t *hdr;
1270168404Spjd
1271168404Spjd	mutex_enter(hash_lock);
1272275811Sdelphij	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1273275811Sdelphij	    hdr = hdr->b_hash_next) {
1274275811Sdelphij		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1275168404Spjd			*lockp = hash_lock;
1276275811Sdelphij			return (hdr);
1277168404Spjd		}
1278168404Spjd	}
1279168404Spjd	mutex_exit(hash_lock);
1280168404Spjd	*lockp = NULL;
1281168404Spjd	return (NULL);
1282168404Spjd}
1283168404Spjd
1284168404Spjd/*
1285168404Spjd * Insert an entry into the hash table.  If there is already an element
1286168404Spjd * equal to elem in the hash table, then the already existing element
1287168404Spjd * will be returned and the new element will not be inserted.
1288168404Spjd * Otherwise returns NULL.
1289286570Smav * If lockp == NULL, the caller is assumed to already hold the hash lock.
1290168404Spjd */
1291168404Spjdstatic arc_buf_hdr_t *
1292275811Sdelphijbuf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1293168404Spjd{
1294275811Sdelphij	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1295168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1296275811Sdelphij	arc_buf_hdr_t *fhdr;
1297168404Spjd	uint32_t i;
1298168404Spjd
1299275811Sdelphij	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1300275811Sdelphij	ASSERT(hdr->b_birth != 0);
1301275811Sdelphij	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1302286570Smav
1303286570Smav	if (lockp != NULL) {
1304286570Smav		*lockp = hash_lock;
1305286570Smav		mutex_enter(hash_lock);
1306286570Smav	} else {
1307286570Smav		ASSERT(MUTEX_HELD(hash_lock));
1308286570Smav	}
1309286570Smav
1310275811Sdelphij	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1311275811Sdelphij	    fhdr = fhdr->b_hash_next, i++) {
1312275811Sdelphij		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1313275811Sdelphij			return (fhdr);
1314168404Spjd	}
1315168404Spjd
1316275811Sdelphij	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1317275811Sdelphij	buf_hash_table.ht_table[idx] = hdr;
1318275811Sdelphij	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1319168404Spjd
1320168404Spjd	/* collect some hash table performance data */
1321168404Spjd	if (i > 0) {
1322168404Spjd		ARCSTAT_BUMP(arcstat_hash_collisions);
1323168404Spjd		if (i == 1)
1324168404Spjd			ARCSTAT_BUMP(arcstat_hash_chains);
1325168404Spjd
1326168404Spjd		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1327168404Spjd	}
1328168404Spjd
1329168404Spjd	ARCSTAT_BUMP(arcstat_hash_elements);
1330168404Spjd	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1331168404Spjd
1332168404Spjd	return (NULL);
1333168404Spjd}
1334168404Spjd
1335168404Spjdstatic void
1336275811Sdelphijbuf_hash_remove(arc_buf_hdr_t *hdr)
1337168404Spjd{
1338275811Sdelphij	arc_buf_hdr_t *fhdr, **hdrp;
1339275811Sdelphij	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1340168404Spjd
1341168404Spjd	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1342275811Sdelphij	ASSERT(HDR_IN_HASH_TABLE(hdr));
1343168404Spjd
1344275811Sdelphij	hdrp = &buf_hash_table.ht_table[idx];
1345275811Sdelphij	while ((fhdr = *hdrp) != hdr) {
1346275811Sdelphij		ASSERT(fhdr != NULL);
1347275811Sdelphij		hdrp = &fhdr->b_hash_next;
1348168404Spjd	}
1349275811Sdelphij	*hdrp = hdr->b_hash_next;
1350275811Sdelphij	hdr->b_hash_next = NULL;
1351275811Sdelphij	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1352168404Spjd
1353168404Spjd	/* collect some hash table performance data */
1354168404Spjd	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1355168404Spjd
1356168404Spjd	if (buf_hash_table.ht_table[idx] &&
1357168404Spjd	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1358168404Spjd		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1359168404Spjd}
1360168404Spjd
1361168404Spjd/*
1362168404Spjd * Global data structures and functions for the buf kmem cache.
1363168404Spjd */
1364286570Smavstatic kmem_cache_t *hdr_full_cache;
1365286570Smavstatic kmem_cache_t *hdr_l2only_cache;
1366168404Spjdstatic kmem_cache_t *buf_cache;
1367168404Spjd
1368168404Spjdstatic void
1369168404Spjdbuf_fini(void)
1370168404Spjd{
1371168404Spjd	int i;
1372168404Spjd
1373168404Spjd	kmem_free(buf_hash_table.ht_table,
1374168404Spjd	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1375168404Spjd	for (i = 0; i < BUF_LOCKS; i++)
1376168404Spjd		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1377286570Smav	kmem_cache_destroy(hdr_full_cache);
1378286570Smav	kmem_cache_destroy(hdr_l2only_cache);
1379168404Spjd	kmem_cache_destroy(buf_cache);
1380168404Spjd}
1381168404Spjd
1382168404Spjd/*
1383168404Spjd * Constructor callback - called when the cache is empty
1384168404Spjd * and a new buf is requested.
1385168404Spjd */
1386168404Spjd/* ARGSUSED */
1387168404Spjdstatic int
1388286570Smavhdr_full_cons(void *vbuf, void *unused, int kmflag)
1389168404Spjd{
1390275811Sdelphij	arc_buf_hdr_t *hdr = vbuf;
1391168404Spjd
1392286570Smav	bzero(hdr, HDR_FULL_SIZE);
1393286570Smav	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1394286570Smav	refcount_create(&hdr->b_l1hdr.b_refcnt);
1395286570Smav	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1396286763Smav	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1397286570Smav	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1398185029Spjd
1399168404Spjd	return (0);
1400168404Spjd}
1401168404Spjd
1402185029Spjd/* ARGSUSED */
1403185029Spjdstatic int
1404286570Smavhdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1405286570Smav{
1406286570Smav	arc_buf_hdr_t *hdr = vbuf;
1407286570Smav
1408286570Smav	bzero(hdr, HDR_L2ONLY_SIZE);
1409286570Smav	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1410286570Smav
1411286570Smav	return (0);
1412286570Smav}
1413286570Smav
1414286570Smav/* ARGSUSED */
1415286570Smavstatic int
1416185029Spjdbuf_cons(void *vbuf, void *unused, int kmflag)
1417185029Spjd{
1418185029Spjd	arc_buf_t *buf = vbuf;
1419185029Spjd
1420185029Spjd	bzero(buf, sizeof (arc_buf_t));
1421219089Spjd	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1422208373Smm	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1423208373Smm
1424185029Spjd	return (0);
1425185029Spjd}
1426185029Spjd
1427168404Spjd/*
1428168404Spjd * Destructor callback - called when a cached buf is
1429168404Spjd * no longer required.
1430168404Spjd */
1431168404Spjd/* ARGSUSED */
1432168404Spjdstatic void
1433286570Smavhdr_full_dest(void *vbuf, void *unused)
1434168404Spjd{
1435275811Sdelphij	arc_buf_hdr_t *hdr = vbuf;
1436168404Spjd
1437275811Sdelphij	ASSERT(BUF_EMPTY(hdr));
1438286570Smav	cv_destroy(&hdr->b_l1hdr.b_cv);
1439286570Smav	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1440286570Smav	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1441286763Smav	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1442286570Smav	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1443168404Spjd}
1444168404Spjd
1445185029Spjd/* ARGSUSED */
1446185029Spjdstatic void
1447286570Smavhdr_l2only_dest(void *vbuf, void *unused)
1448286570Smav{
1449286570Smav	arc_buf_hdr_t *hdr = vbuf;
1450286570Smav
1451286570Smav	ASSERT(BUF_EMPTY(hdr));
1452286570Smav	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1453286570Smav}
1454286570Smav
1455286570Smav/* ARGSUSED */
1456286570Smavstatic void
1457185029Spjdbuf_dest(void *vbuf, void *unused)
1458185029Spjd{
1459185029Spjd	arc_buf_t *buf = vbuf;
1460185029Spjd
1461219089Spjd	mutex_destroy(&buf->b_evict_lock);
1462208373Smm	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1463185029Spjd}
1464185029Spjd
1465168404Spjd/*
1466168404Spjd * Reclaim callback -- invoked when memory is low.
1467168404Spjd */
1468168404Spjd/* ARGSUSED */
1469168404Spjdstatic void
1470168404Spjdhdr_recl(void *unused)
1471168404Spjd{
1472168404Spjd	dprintf("hdr_recl called\n");
1473168404Spjd	/*
1474168404Spjd	 * umem calls the reclaim func when we destroy the buf cache,
1475168404Spjd	 * which is after we do arc_fini().
1476168404Spjd	 */
1477168404Spjd	if (!arc_dead)
1478286763Smav		cv_signal(&arc_reclaim_thread_cv);
1479168404Spjd}
1480168404Spjd
1481168404Spjdstatic void
1482168404Spjdbuf_init(void)
1483168404Spjd{
1484168404Spjd	uint64_t *ct;
1485168404Spjd	uint64_t hsize = 1ULL << 12;
1486168404Spjd	int i, j;
1487168404Spjd
1488168404Spjd	/*
1489168404Spjd	 * The hash table is big enough to fill all of physical memory
1490269230Sdelphij	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1491269230Sdelphij	 * By default, the table will take up
1492269230Sdelphij	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1493168404Spjd	 */
1494269230Sdelphij	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1495168404Spjd		hsize <<= 1;
1496168404Spjdretry:
1497168404Spjd	buf_hash_table.ht_mask = hsize - 1;
1498168404Spjd	buf_hash_table.ht_table =
1499168404Spjd	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1500168404Spjd	if (buf_hash_table.ht_table == NULL) {
1501168404Spjd		ASSERT(hsize > (1ULL << 8));
1502168404Spjd		hsize >>= 1;
1503168404Spjd		goto retry;
1504168404Spjd	}
1505168404Spjd
1506286570Smav	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1507286570Smav	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1508286570Smav	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1509286570Smav	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1510286570Smav	    NULL, NULL, 0);
1511168404Spjd	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1512185029Spjd	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1513168404Spjd
1514168404Spjd	for (i = 0; i < 256; i++)
1515168404Spjd		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1516168404Spjd			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1517168404Spjd
1518168404Spjd	for (i = 0; i < BUF_LOCKS; i++) {
1519168404Spjd		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1520168404Spjd		    NULL, MUTEX_DEFAULT, NULL);
1521168404Spjd	}
1522168404Spjd}
1523168404Spjd
1524286570Smav/*
1525286570Smav * Transition between the two allocation states for the arc_buf_hdr struct.
1526286570Smav * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1527286570Smav * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1528286570Smav * version is used when a cache buffer is only in the L2ARC in order to reduce
1529286570Smav * memory usage.
1530286570Smav */
1531286570Smavstatic arc_buf_hdr_t *
1532286570Smavarc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1533286570Smav{
1534286570Smav	ASSERT(HDR_HAS_L2HDR(hdr));
1535286570Smav
1536286570Smav	arc_buf_hdr_t *nhdr;
1537286570Smav	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1538286570Smav
1539286570Smav	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1540286570Smav	    (old == hdr_l2only_cache && new == hdr_full_cache));
1541286570Smav
1542286570Smav	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1543286570Smav
1544286570Smav	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1545286570Smav	buf_hash_remove(hdr);
1546286570Smav
1547286570Smav	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1548286598Smav
1549286570Smav	if (new == hdr_full_cache) {
1550286570Smav		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1551286570Smav		/*
1552286570Smav		 * arc_access and arc_change_state need to be aware that a
1553286570Smav		 * header has just come out of L2ARC, so we set its state to
1554286570Smav		 * l2c_only even though it's about to change.
1555286570Smav		 */
1556286570Smav		nhdr->b_l1hdr.b_state = arc_l2c_only;
1557286763Smav
1558286763Smav		/* Verify previous threads set to NULL before freeing */
1559286763Smav		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1560286570Smav	} else {
1561286570Smav		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1562286570Smav		ASSERT0(hdr->b_l1hdr.b_datacnt);
1563286763Smav
1564286570Smav		/*
1565286763Smav		 * If we've reached here, We must have been called from
1566286763Smav		 * arc_evict_hdr(), as such we should have already been
1567286763Smav		 * removed from any ghost list we were previously on
1568286763Smav		 * (which protects us from racing with arc_evict_state),
1569286763Smav		 * thus no locking is needed during this check.
1570286570Smav		 */
1571286763Smav		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1572286763Smav
1573286763Smav		/*
1574286763Smav		 * A buffer must not be moved into the arc_l2c_only
1575286763Smav		 * state if it's not finished being written out to the
1576286763Smav		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1577286763Smav		 * might try to be accessed, even though it was removed.
1578286763Smav		 */
1579286763Smav		VERIFY(!HDR_L2_WRITING(hdr));
1580286763Smav		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1581286763Smav
1582288064Savg#ifdef ZFS_DEBUG
1583288064Savg		if (hdr->b_l1hdr.b_thawed != NULL) {
1584288064Savg			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1585288064Savg			hdr->b_l1hdr.b_thawed = NULL;
1586288064Savg		}
1587288064Savg#endif
1588288064Savg
1589286570Smav		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1590286570Smav	}
1591286570Smav	/*
1592286570Smav	 * The header has been reallocated so we need to re-insert it into any
1593286570Smav	 * lists it was on.
1594286570Smav	 */
1595286570Smav	(void) buf_hash_insert(nhdr, NULL);
1596286570Smav
1597286570Smav	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1598286570Smav
1599286570Smav	mutex_enter(&dev->l2ad_mtx);
1600286570Smav
1601286570Smav	/*
1602286570Smav	 * We must place the realloc'ed header back into the list at
1603286570Smav	 * the same spot. Otherwise, if it's placed earlier in the list,
1604286570Smav	 * l2arc_write_buffers() could find it during the function's
1605286570Smav	 * write phase, and try to write it out to the l2arc.
1606286570Smav	 */
1607286570Smav	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1608286570Smav	list_remove(&dev->l2ad_buflist, hdr);
1609286570Smav
1610286570Smav	mutex_exit(&dev->l2ad_mtx);
1611286570Smav
1612286598Smav	/*
1613286598Smav	 * Since we're using the pointer address as the tag when
1614286598Smav	 * incrementing and decrementing the l2ad_alloc refcount, we
1615286598Smav	 * must remove the old pointer (that we're about to destroy) and
1616286598Smav	 * add the new pointer to the refcount. Otherwise we'd remove
1617286598Smav	 * the wrong pointer address when calling arc_hdr_destroy() later.
1618286598Smav	 */
1619286598Smav
1620286598Smav	(void) refcount_remove_many(&dev->l2ad_alloc,
1621286598Smav	    hdr->b_l2hdr.b_asize, hdr);
1622286598Smav
1623286598Smav	(void) refcount_add_many(&dev->l2ad_alloc,
1624286598Smav	    nhdr->b_l2hdr.b_asize, nhdr);
1625286598Smav
1626286570Smav	buf_discard_identity(hdr);
1627286570Smav	hdr->b_freeze_cksum = NULL;
1628286570Smav	kmem_cache_free(old, hdr);
1629286570Smav
1630286570Smav	return (nhdr);
1631286570Smav}
1632286570Smav
1633286570Smav
1634168404Spjd#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1635168404Spjd
1636168404Spjdstatic void
1637168404Spjdarc_cksum_verify(arc_buf_t *buf)
1638168404Spjd{
1639168404Spjd	zio_cksum_t zc;
1640168404Spjd
1641168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1642168404Spjd		return;
1643168404Spjd
1644286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1645286570Smav	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1646286570Smav		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1647168404Spjd		return;
1648168404Spjd	}
1649289422Smav	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1650168404Spjd	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1651168404Spjd		panic("buffer modified while frozen!");
1652286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1653168404Spjd}
1654168404Spjd
1655185029Spjdstatic int
1656185029Spjdarc_cksum_equal(arc_buf_t *buf)
1657185029Spjd{
1658185029Spjd	zio_cksum_t zc;
1659185029Spjd	int equal;
1660185029Spjd
1661286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1662289422Smav	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1663185029Spjd	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1664286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1665185029Spjd
1666185029Spjd	return (equal);
1667185029Spjd}
1668185029Spjd
1669168404Spjdstatic void
1670185029Spjdarc_cksum_compute(arc_buf_t *buf, boolean_t force)
1671168404Spjd{
1672185029Spjd	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1673168404Spjd		return;
1674168404Spjd
1675286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1676168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
1677286570Smav		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1678168404Spjd		return;
1679168404Spjd	}
1680168404Spjd	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1681168404Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1682289422Smav	    NULL, buf->b_hdr->b_freeze_cksum);
1683286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1684240133Smm#ifdef illumos
1685240133Smm	arc_buf_watch(buf);
1686277300Ssmh#endif
1687168404Spjd}
1688168404Spjd
1689240133Smm#ifdef illumos
1690240133Smm#ifndef _KERNEL
1691240133Smmtypedef struct procctl {
1692240133Smm	long cmd;
1693240133Smm	prwatch_t prwatch;
1694240133Smm} procctl_t;
1695240133Smm#endif
1696240133Smm
1697240133Smm/* ARGSUSED */
1698240133Smmstatic void
1699240133Smmarc_buf_unwatch(arc_buf_t *buf)
1700240133Smm{
1701240133Smm#ifndef _KERNEL
1702240133Smm	if (arc_watch) {
1703240133Smm		int result;
1704240133Smm		procctl_t ctl;
1705240133Smm		ctl.cmd = PCWATCH;
1706240133Smm		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1707240133Smm		ctl.prwatch.pr_size = 0;
1708240133Smm		ctl.prwatch.pr_wflags = 0;
1709240133Smm		result = write(arc_procfd, &ctl, sizeof (ctl));
1710240133Smm		ASSERT3U(result, ==, sizeof (ctl));
1711240133Smm	}
1712240133Smm#endif
1713240133Smm}
1714240133Smm
1715240133Smm/* ARGSUSED */
1716240133Smmstatic void
1717240133Smmarc_buf_watch(arc_buf_t *buf)
1718240133Smm{
1719240133Smm#ifndef _KERNEL
1720240133Smm	if (arc_watch) {
1721240133Smm		int result;
1722240133Smm		procctl_t ctl;
1723240133Smm		ctl.cmd = PCWATCH;
1724240133Smm		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1725240133Smm		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1726240133Smm		ctl.prwatch.pr_wflags = WA_WRITE;
1727240133Smm		result = write(arc_procfd, &ctl, sizeof (ctl));
1728240133Smm		ASSERT3U(result, ==, sizeof (ctl));
1729240133Smm	}
1730240133Smm#endif
1731240133Smm}
1732240133Smm#endif /* illumos */
1733240133Smm
1734286570Smavstatic arc_buf_contents_t
1735286570Smavarc_buf_type(arc_buf_hdr_t *hdr)
1736286570Smav{
1737286570Smav	if (HDR_ISTYPE_METADATA(hdr)) {
1738286570Smav		return (ARC_BUFC_METADATA);
1739286570Smav	} else {
1740286570Smav		return (ARC_BUFC_DATA);
1741286570Smav	}
1742286570Smav}
1743286570Smav
1744286570Smavstatic uint32_t
1745286570Smavarc_bufc_to_flags(arc_buf_contents_t type)
1746286570Smav{
1747286570Smav	switch (type) {
1748286570Smav	case ARC_BUFC_DATA:
1749286570Smav		/* metadata field is 0 if buffer contains normal data */
1750286570Smav		return (0);
1751286570Smav	case ARC_BUFC_METADATA:
1752286570Smav		return (ARC_FLAG_BUFC_METADATA);
1753286570Smav	default:
1754286570Smav		break;
1755286570Smav	}
1756286570Smav	panic("undefined ARC buffer type!");
1757286570Smav	return ((uint32_t)-1);
1758286570Smav}
1759286570Smav
1760168404Spjdvoid
1761168404Spjdarc_buf_thaw(arc_buf_t *buf)
1762168404Spjd{
1763185029Spjd	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1764286570Smav		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1765185029Spjd			panic("modifying non-anon buffer!");
1766286570Smav		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1767185029Spjd			panic("modifying buffer while i/o in progress!");
1768185029Spjd		arc_cksum_verify(buf);
1769185029Spjd	}
1770168404Spjd
1771286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1772168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
1773168404Spjd		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1774168404Spjd		buf->b_hdr->b_freeze_cksum = NULL;
1775168404Spjd	}
1776219089Spjd
1777286570Smav#ifdef ZFS_DEBUG
1778219089Spjd	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1779286570Smav		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1780286570Smav			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1781286570Smav		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1782219089Spjd	}
1783286570Smav#endif
1784219089Spjd
1785286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1786240133Smm
1787240133Smm#ifdef illumos
1788240133Smm	arc_buf_unwatch(buf);
1789277300Ssmh#endif
1790168404Spjd}
1791168404Spjd
1792168404Spjdvoid
1793168404Spjdarc_buf_freeze(arc_buf_t *buf)
1794168404Spjd{
1795219089Spjd	kmutex_t *hash_lock;
1796219089Spjd
1797168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1798168404Spjd		return;
1799168404Spjd
1800219089Spjd	hash_lock = HDR_LOCK(buf->b_hdr);
1801219089Spjd	mutex_enter(hash_lock);
1802219089Spjd
1803168404Spjd	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1804286570Smav	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1805185029Spjd	arc_cksum_compute(buf, B_FALSE);
1806219089Spjd	mutex_exit(hash_lock);
1807240133Smm
1808168404Spjd}
1809168404Spjd
1810168404Spjdstatic void
1811275811Sdelphijadd_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1812168404Spjd{
1813286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
1814168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
1815286570Smav	arc_state_t *state = hdr->b_l1hdr.b_state;
1816168404Spjd
1817286570Smav	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1818286570Smav	    (state != arc_anon)) {
1819286570Smav		/* We don't use the L2-only state list. */
1820286570Smav		if (state != arc_l2c_only) {
1821286763Smav			arc_buf_contents_t type = arc_buf_type(hdr);
1822286570Smav			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1823286763Smav			multilist_t *list = &state->arcs_list[type];
1824286763Smav			uint64_t *size = &state->arcs_lsize[type];
1825168404Spjd
1826286763Smav			multilist_remove(list, hdr);
1827286763Smav
1828286570Smav			if (GHOST_STATE(state)) {
1829286570Smav				ASSERT0(hdr->b_l1hdr.b_datacnt);
1830286570Smav				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1831286570Smav				delta = hdr->b_size;
1832286570Smav			}
1833286570Smav			ASSERT(delta > 0);
1834286570Smav			ASSERT3U(*size, >=, delta);
1835286570Smav			atomic_add_64(size, -delta);
1836168404Spjd		}
1837185029Spjd		/* remove the prefetch flag if we get a reference */
1838286570Smav		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1839168404Spjd	}
1840168404Spjd}
1841168404Spjd
1842168404Spjdstatic int
1843275811Sdelphijremove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1844168404Spjd{
1845168404Spjd	int cnt;
1846286570Smav	arc_state_t *state = hdr->b_l1hdr.b_state;
1847168404Spjd
1848286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
1849168404Spjd	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1850168404Spjd	ASSERT(!GHOST_STATE(state));
1851168404Spjd
1852286570Smav	/*
1853286570Smav	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1854286570Smav	 * check to prevent usage of the arc_l2c_only list.
1855286570Smav	 */
1856286570Smav	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1857168404Spjd	    (state != arc_anon)) {
1858286763Smav		arc_buf_contents_t type = arc_buf_type(hdr);
1859286763Smav		multilist_t *list = &state->arcs_list[type];
1860286763Smav		uint64_t *size = &state->arcs_lsize[type];
1861185029Spjd
1862286763Smav		multilist_insert(list, hdr);
1863286763Smav
1864286570Smav		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1865286570Smav		atomic_add_64(size, hdr->b_size *
1866286570Smav		    hdr->b_l1hdr.b_datacnt);
1867168404Spjd	}
1868168404Spjd	return (cnt);
1869168404Spjd}
1870168404Spjd
1871168404Spjd/*
1872286763Smav * Move the supplied buffer to the indicated state. The hash lock
1873168404Spjd * for the buffer must be held by the caller.
1874168404Spjd */
1875168404Spjdstatic void
1876275811Sdelphijarc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1877275811Sdelphij    kmutex_t *hash_lock)
1878168404Spjd{
1879286570Smav	arc_state_t *old_state;
1880286570Smav	int64_t refcnt;
1881286570Smav	uint32_t datacnt;
1882168404Spjd	uint64_t from_delta, to_delta;
1883286570Smav	arc_buf_contents_t buftype = arc_buf_type(hdr);
1884168404Spjd
1885286570Smav	/*
1886286570Smav	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1887286570Smav	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1888286570Smav	 * L1 hdr doesn't always exist when we change state to arc_anon before
1889286570Smav	 * destroying a header, in which case reallocating to add the L1 hdr is
1890286570Smav	 * pointless.
1891286570Smav	 */
1892286570Smav	if (HDR_HAS_L1HDR(hdr)) {
1893286570Smav		old_state = hdr->b_l1hdr.b_state;
1894286570Smav		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1895286570Smav		datacnt = hdr->b_l1hdr.b_datacnt;
1896286570Smav	} else {
1897286570Smav		old_state = arc_l2c_only;
1898286570Smav		refcnt = 0;
1899286570Smav		datacnt = 0;
1900286570Smav	}
1901286570Smav
1902168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
1903258632Savg	ASSERT3P(new_state, !=, old_state);
1904286570Smav	ASSERT(refcnt == 0 || datacnt > 0);
1905286570Smav	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1906286570Smav	ASSERT(old_state != arc_anon || datacnt <= 1);
1907168404Spjd
1908286570Smav	from_delta = to_delta = datacnt * hdr->b_size;
1909168404Spjd
1910168404Spjd	/*
1911168404Spjd	 * If this buffer is evictable, transfer it from the
1912168404Spjd	 * old state list to the new state list.
1913168404Spjd	 */
1914168404Spjd	if (refcnt == 0) {
1915286570Smav		if (old_state != arc_anon && old_state != arc_l2c_only) {
1916286570Smav			uint64_t *size = &old_state->arcs_lsize[buftype];
1917168404Spjd
1918286570Smav			ASSERT(HDR_HAS_L1HDR(hdr));
1919286763Smav			multilist_remove(&old_state->arcs_list[buftype], hdr);
1920168404Spjd
1921168404Spjd			/*
1922168404Spjd			 * If prefetching out of the ghost cache,
1923219089Spjd			 * we will have a non-zero datacnt.
1924168404Spjd			 */
1925286570Smav			if (GHOST_STATE(old_state) && datacnt == 0) {
1926168404Spjd				/* ghost elements have a ghost size */
1927286570Smav				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1928275811Sdelphij				from_delta = hdr->b_size;
1929168404Spjd			}
1930185029Spjd			ASSERT3U(*size, >=, from_delta);
1931185029Spjd			atomic_add_64(size, -from_delta);
1932168404Spjd		}
1933286570Smav		if (new_state != arc_anon && new_state != arc_l2c_only) {
1934286570Smav			uint64_t *size = &new_state->arcs_lsize[buftype];
1935168404Spjd
1936286570Smav			/*
1937286570Smav			 * An L1 header always exists here, since if we're
1938286570Smav			 * moving to some L1-cached state (i.e. not l2c_only or
1939286570Smav			 * anonymous), we realloc the header to add an L1hdr
1940286570Smav			 * beforehand.
1941286570Smav			 */
1942286570Smav			ASSERT(HDR_HAS_L1HDR(hdr));
1943286763Smav			multilist_insert(&new_state->arcs_list[buftype], hdr);
1944168404Spjd
1945168404Spjd			/* ghost elements have a ghost size */
1946168404Spjd			if (GHOST_STATE(new_state)) {
1947286762Smav				ASSERT0(datacnt);
1948286570Smav				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1949275811Sdelphij				to_delta = hdr->b_size;
1950168404Spjd			}
1951185029Spjd			atomic_add_64(size, to_delta);
1952168404Spjd		}
1953168404Spjd	}
1954168404Spjd
1955275811Sdelphij	ASSERT(!BUF_EMPTY(hdr));
1956275811Sdelphij	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1957275811Sdelphij		buf_hash_remove(hdr);
1958168404Spjd
1959286570Smav	/* adjust state sizes (ignore arc_l2c_only) */
1960286766Smav
1961286766Smav	if (to_delta && new_state != arc_l2c_only) {
1962286766Smav		ASSERT(HDR_HAS_L1HDR(hdr));
1963286766Smav		if (GHOST_STATE(new_state)) {
1964286766Smav			ASSERT0(datacnt);
1965286766Smav
1966286766Smav			/*
1967286766Smav			 * We moving a header to a ghost state, we first
1968286766Smav			 * remove all arc buffers. Thus, we'll have a
1969286766Smav			 * datacnt of zero, and no arc buffer to use for
1970286766Smav			 * the reference. As a result, we use the arc
1971286766Smav			 * header pointer for the reference.
1972286766Smav			 */
1973286766Smav			(void) refcount_add_many(&new_state->arcs_size,
1974286766Smav			    hdr->b_size, hdr);
1975286766Smav		} else {
1976286766Smav			ASSERT3U(datacnt, !=, 0);
1977286766Smav
1978286766Smav			/*
1979286766Smav			 * Each individual buffer holds a unique reference,
1980286766Smav			 * thus we must remove each of these references one
1981286766Smav			 * at a time.
1982286766Smav			 */
1983286766Smav			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1984286766Smav			    buf = buf->b_next) {
1985286766Smav				(void) refcount_add_many(&new_state->arcs_size,
1986286766Smav				    hdr->b_size, buf);
1987286766Smav			}
1988286766Smav		}
1989286766Smav	}
1990286766Smav
1991286570Smav	if (from_delta && old_state != arc_l2c_only) {
1992286766Smav		ASSERT(HDR_HAS_L1HDR(hdr));
1993286766Smav		if (GHOST_STATE(old_state)) {
1994286766Smav			/*
1995286766Smav			 * When moving a header off of a ghost state,
1996286766Smav			 * there's the possibility for datacnt to be
1997286766Smav			 * non-zero. This is because we first add the
1998286766Smav			 * arc buffer to the header prior to changing
1999286766Smav			 * the header's state. Since we used the header
2000286766Smav			 * for the reference when putting the header on
2001286766Smav			 * the ghost state, we must balance that and use
2002286766Smav			 * the header when removing off the ghost state
2003286766Smav			 * (even though datacnt is non zero).
2004286766Smav			 */
2005286766Smav
2006286766Smav			IMPLY(datacnt == 0, new_state == arc_anon ||
2007286766Smav			    new_state == arc_l2c_only);
2008286766Smav
2009286766Smav			(void) refcount_remove_many(&old_state->arcs_size,
2010286766Smav			    hdr->b_size, hdr);
2011286766Smav		} else {
2012286766Smav			ASSERT3P(datacnt, !=, 0);
2013286766Smav
2014286766Smav			/*
2015286766Smav			 * Each individual buffer holds a unique reference,
2016286766Smav			 * thus we must remove each of these references one
2017286766Smav			 * at a time.
2018286766Smav			 */
2019286766Smav			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2020286766Smav			    buf = buf->b_next) {
2021286766Smav				(void) refcount_remove_many(
2022286766Smav				    &old_state->arcs_size, hdr->b_size, buf);
2023286766Smav			}
2024286766Smav		}
2025168404Spjd	}
2026286766Smav
2027286570Smav	if (HDR_HAS_L1HDR(hdr))
2028286570Smav		hdr->b_l1hdr.b_state = new_state;
2029185029Spjd
2030286570Smav	/*
2031286570Smav	 * L2 headers should never be on the L2 state list since they don't
2032286570Smav	 * have L1 headers allocated.
2033286570Smav	 */
2034286763Smav	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2035286763Smav	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2036168404Spjd}
2037168404Spjd
2038185029Spjdvoid
2039208373Smmarc_space_consume(uint64_t space, arc_space_type_t type)
2040185029Spjd{
2041208373Smm	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2042208373Smm
2043208373Smm	switch (type) {
2044208373Smm	case ARC_SPACE_DATA:
2045208373Smm		ARCSTAT_INCR(arcstat_data_size, space);
2046208373Smm		break;
2047286574Smav	case ARC_SPACE_META:
2048286574Smav		ARCSTAT_INCR(arcstat_metadata_size, space);
2049286574Smav		break;
2050208373Smm	case ARC_SPACE_OTHER:
2051208373Smm		ARCSTAT_INCR(arcstat_other_size, space);
2052208373Smm		break;
2053208373Smm	case ARC_SPACE_HDRS:
2054208373Smm		ARCSTAT_INCR(arcstat_hdr_size, space);
2055208373Smm		break;
2056208373Smm	case ARC_SPACE_L2HDRS:
2057208373Smm		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2058208373Smm		break;
2059208373Smm	}
2060208373Smm
2061286574Smav	if (type != ARC_SPACE_DATA)
2062286574Smav		ARCSTAT_INCR(arcstat_meta_used, space);
2063286574Smav
2064185029Spjd	atomic_add_64(&arc_size, space);
2065185029Spjd}
2066185029Spjd
2067185029Spjdvoid
2068208373Smmarc_space_return(uint64_t space, arc_space_type_t type)
2069185029Spjd{
2070208373Smm	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2071208373Smm
2072208373Smm	switch (type) {
2073208373Smm	case ARC_SPACE_DATA:
2074208373Smm		ARCSTAT_INCR(arcstat_data_size, -space);
2075208373Smm		break;
2076286574Smav	case ARC_SPACE_META:
2077286574Smav		ARCSTAT_INCR(arcstat_metadata_size, -space);
2078286574Smav		break;
2079208373Smm	case ARC_SPACE_OTHER:
2080208373Smm		ARCSTAT_INCR(arcstat_other_size, -space);
2081208373Smm		break;
2082208373Smm	case ARC_SPACE_HDRS:
2083208373Smm		ARCSTAT_INCR(arcstat_hdr_size, -space);
2084208373Smm		break;
2085208373Smm	case ARC_SPACE_L2HDRS:
2086208373Smm		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2087208373Smm		break;
2088208373Smm	}
2089208373Smm
2090286574Smav	if (type != ARC_SPACE_DATA) {
2091286574Smav		ASSERT(arc_meta_used >= space);
2092286574Smav		if (arc_meta_max < arc_meta_used)
2093286574Smav			arc_meta_max = arc_meta_used;
2094286574Smav		ARCSTAT_INCR(arcstat_meta_used, -space);
2095286574Smav	}
2096286574Smav
2097185029Spjd	ASSERT(arc_size >= space);
2098185029Spjd	atomic_add_64(&arc_size, -space);
2099185029Spjd}
2100185029Spjd
2101168404Spjdarc_buf_t *
2102286570Smavarc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2103168404Spjd{
2104168404Spjd	arc_buf_hdr_t *hdr;
2105168404Spjd	arc_buf_t *buf;
2106168404Spjd
2107168404Spjd	ASSERT3U(size, >, 0);
2108286570Smav	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2109168404Spjd	ASSERT(BUF_EMPTY(hdr));
2110286570Smav	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2111168404Spjd	hdr->b_size = size;
2112228103Smm	hdr->b_spa = spa_load_guid(spa);
2113286570Smav
2114185029Spjd	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2115168404Spjd	buf->b_hdr = hdr;
2116168404Spjd	buf->b_data = NULL;
2117168404Spjd	buf->b_efunc = NULL;
2118168404Spjd	buf->b_private = NULL;
2119168404Spjd	buf->b_next = NULL;
2120286570Smav
2121286570Smav	hdr->b_flags = arc_bufc_to_flags(type);
2122286570Smav	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2123286570Smav
2124286570Smav	hdr->b_l1hdr.b_buf = buf;
2125286570Smav	hdr->b_l1hdr.b_state = arc_anon;
2126286570Smav	hdr->b_l1hdr.b_arc_access = 0;
2127286570Smav	hdr->b_l1hdr.b_datacnt = 1;
2128286763Smav	hdr->b_l1hdr.b_tmp_cdata = NULL;
2129286570Smav
2130168404Spjd	arc_get_data_buf(buf);
2131286570Smav	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2132286570Smav	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2133168404Spjd
2134168404Spjd	return (buf);
2135168404Spjd}
2136168404Spjd
2137209962Smmstatic char *arc_onloan_tag = "onloan";
2138209962Smm
2139209962Smm/*
2140209962Smm * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2141209962Smm * flight data by arc_tempreserve_space() until they are "returned". Loaned
2142209962Smm * buffers must be returned to the arc before they can be used by the DMU or
2143209962Smm * freed.
2144209962Smm */
2145209962Smmarc_buf_t *
2146209962Smmarc_loan_buf(spa_t *spa, int size)
2147209962Smm{
2148209962Smm	arc_buf_t *buf;
2149209962Smm
2150209962Smm	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2151209962Smm
2152209962Smm	atomic_add_64(&arc_loaned_bytes, size);
2153209962Smm	return (buf);
2154209962Smm}
2155209962Smm
2156209962Smm/*
2157209962Smm * Return a loaned arc buffer to the arc.
2158209962Smm */
2159209962Smmvoid
2160209962Smmarc_return_buf(arc_buf_t *buf, void *tag)
2161209962Smm{
2162209962Smm	arc_buf_hdr_t *hdr = buf->b_hdr;
2163209962Smm
2164209962Smm	ASSERT(buf->b_data != NULL);
2165286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2166286570Smav	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2167286570Smav	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2168209962Smm
2169209962Smm	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2170209962Smm}
2171209962Smm
2172219089Spjd/* Detach an arc_buf from a dbuf (tag) */
2173219089Spjdvoid
2174219089Spjdarc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2175219089Spjd{
2176286570Smav	arc_buf_hdr_t *hdr = buf->b_hdr;
2177219089Spjd
2178219089Spjd	ASSERT(buf->b_data != NULL);
2179286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2180286570Smav	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2181286570Smav	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2182219089Spjd	buf->b_efunc = NULL;
2183219089Spjd	buf->b_private = NULL;
2184219089Spjd
2185219089Spjd	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2186219089Spjd}
2187219089Spjd
2188168404Spjdstatic arc_buf_t *
2189168404Spjdarc_buf_clone(arc_buf_t *from)
2190168404Spjd{
2191168404Spjd	arc_buf_t *buf;
2192168404Spjd	arc_buf_hdr_t *hdr = from->b_hdr;
2193168404Spjd	uint64_t size = hdr->b_size;
2194168404Spjd
2195286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2196286570Smav	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2197219089Spjd
2198185029Spjd	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2199168404Spjd	buf->b_hdr = hdr;
2200168404Spjd	buf->b_data = NULL;
2201168404Spjd	buf->b_efunc = NULL;
2202168404Spjd	buf->b_private = NULL;
2203286570Smav	buf->b_next = hdr->b_l1hdr.b_buf;
2204286570Smav	hdr->b_l1hdr.b_buf = buf;
2205168404Spjd	arc_get_data_buf(buf);
2206168404Spjd	bcopy(from->b_data, buf->b_data, size);
2207242845Sdelphij
2208242845Sdelphij	/*
2209242845Sdelphij	 * This buffer already exists in the arc so create a duplicate
2210242845Sdelphij	 * copy for the caller.  If the buffer is associated with user data
2211242845Sdelphij	 * then track the size and number of duplicates.  These stats will be
2212242845Sdelphij	 * updated as duplicate buffers are created and destroyed.
2213242845Sdelphij	 */
2214286570Smav	if (HDR_ISTYPE_DATA(hdr)) {
2215242845Sdelphij		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2216242845Sdelphij		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2217242845Sdelphij	}
2218286570Smav	hdr->b_l1hdr.b_datacnt += 1;
2219168404Spjd	return (buf);
2220168404Spjd}
2221168404Spjd
2222168404Spjdvoid
2223168404Spjdarc_buf_add_ref(arc_buf_t *buf, void* tag)
2224168404Spjd{
2225168404Spjd	arc_buf_hdr_t *hdr;
2226168404Spjd	kmutex_t *hash_lock;
2227168404Spjd
2228168404Spjd	/*
2229185029Spjd	 * Check to see if this buffer is evicted.  Callers
2230185029Spjd	 * must verify b_data != NULL to know if the add_ref
2231185029Spjd	 * was successful.
2232168404Spjd	 */
2233219089Spjd	mutex_enter(&buf->b_evict_lock);
2234185029Spjd	if (buf->b_data == NULL) {
2235219089Spjd		mutex_exit(&buf->b_evict_lock);
2236168404Spjd		return;
2237168404Spjd	}
2238219089Spjd	hash_lock = HDR_LOCK(buf->b_hdr);
2239219089Spjd	mutex_enter(hash_lock);
2240185029Spjd	hdr = buf->b_hdr;
2241286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2242219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2243219089Spjd	mutex_exit(&buf->b_evict_lock);
2244168404Spjd
2245286570Smav	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2246286570Smav	    hdr->b_l1hdr.b_state == arc_mfu);
2247286570Smav
2248168404Spjd	add_reference(hdr, hash_lock, tag);
2249208373Smm	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2250168404Spjd	arc_access(hdr, hash_lock);
2251168404Spjd	mutex_exit(hash_lock);
2252168404Spjd	ARCSTAT_BUMP(arcstat_hits);
2253286570Smav	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2254286570Smav	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2255168404Spjd	    data, metadata, hits);
2256168404Spjd}
2257168404Spjd
2258274172Savgstatic void
2259274172Savgarc_buf_free_on_write(void *data, size_t size,
2260274172Savg    void (*free_func)(void *, size_t))
2261274172Savg{
2262274172Savg	l2arc_data_free_t *df;
2263274172Savg
2264286763Smav	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2265274172Savg	df->l2df_data = data;
2266274172Savg	df->l2df_size = size;
2267274172Savg	df->l2df_func = free_func;
2268274172Savg	mutex_enter(&l2arc_free_on_write_mtx);
2269274172Savg	list_insert_head(l2arc_free_on_write, df);
2270274172Savg	mutex_exit(&l2arc_free_on_write_mtx);
2271274172Savg}
2272274172Savg
2273185029Spjd/*
2274185029Spjd * Free the arc data buffer.  If it is an l2arc write in progress,
2275185029Spjd * the buffer is placed on l2arc_free_on_write to be freed later.
2276185029Spjd */
2277168404Spjdstatic void
2278240133Smmarc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2279185029Spjd{
2280240133Smm	arc_buf_hdr_t *hdr = buf->b_hdr;
2281240133Smm
2282185029Spjd	if (HDR_L2_WRITING(hdr)) {
2283274172Savg		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2284185029Spjd		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2285185029Spjd	} else {
2286240133Smm		free_func(buf->b_data, hdr->b_size);
2287185029Spjd	}
2288185029Spjd}
2289185029Spjd
2290185029Spjdstatic void
2291274172Savgarc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2292274172Savg{
2293297848Savg	size_t align, asize, len;
2294297848Savg
2295286570Smav	ASSERT(HDR_HAS_L2HDR(hdr));
2296286570Smav	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2297274172Savg
2298286570Smav	/*
2299286570Smav	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2300286570Smav	 * that doesn't exist, the header is in the arc_l2c_only state,
2301286570Smav	 * and there isn't anything to free (it's already been freed).
2302286570Smav	 */
2303286570Smav	if (!HDR_HAS_L1HDR(hdr))
2304286570Smav		return;
2305274172Savg
2306286763Smav	/*
2307286763Smav	 * The header isn't being written to the l2arc device, thus it
2308286763Smav	 * shouldn't have a b_tmp_cdata to free.
2309286763Smav	 */
2310286763Smav	if (!HDR_L2_WRITING(hdr)) {
2311286763Smav		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2312274172Savg		return;
2313286763Smav	}
2314274172Savg
2315286763Smav	/*
2316297848Savg	 * The bufer has been chosen for writing to L2ARC, but it's
2317297848Savg	 * not being written just yet.  In other words,
2318297848Savg	 * b_tmp_cdata points to exactly the same buffer as b_data,
2319297848Savg	 * l2arc_transform_buf hasn't been called.
2320286763Smav	 */
2321297848Savg	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
2322297848Savg		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==,
2323297848Savg		    hdr->b_l1hdr.b_buf->b_data);
2324297848Savg		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_OFF);
2325301873Savg		hdr->b_l1hdr.b_tmp_cdata = NULL;
2326286763Smav		return;
2327286763Smav	}
2328286570Smav
2329286763Smav	/*
2330286763Smav	 * There's nothing to free since the buffer was all zero's and
2331286763Smav	 * compressed to a zero length buffer.
2332286763Smav	 */
2333287706Sdelphij	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2334286763Smav		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2335286763Smav		return;
2336286763Smav	}
2337286763Smav
2338297848Savg	/*
2339297848Savg	 * Nothing to do if the temporary buffer was not required.
2340297848Savg	 */
2341297848Savg	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2342297848Savg		return;
2343286763Smav
2344274172Savg	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2345297848Savg	len = hdr->b_size;
2346297848Savg	align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
2347297848Savg	asize = P2ROUNDUP(len, align);
2348297848Savg	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, asize,
2349297848Savg	    zio_data_buf_free);
2350286570Smav	hdr->b_l1hdr.b_tmp_cdata = NULL;
2351274172Savg}
2352274172Savg
2353286767Smav/*
2354286767Smav * Free up buf->b_data and if 'remove' is set, then pull the
2355286767Smav * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2356286767Smav */
2357274172Savgstatic void
2358286763Smavarc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2359168404Spjd{
2360168404Spjd	arc_buf_t **bufp;
2361168404Spjd
2362168404Spjd	/* free up data associated with the buf */
2363286570Smav	if (buf->b_data != NULL) {
2364286570Smav		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2365168404Spjd		uint64_t size = buf->b_hdr->b_size;
2366286570Smav		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2367168404Spjd
2368168404Spjd		arc_cksum_verify(buf);
2369240133Smm#ifdef illumos
2370240133Smm		arc_buf_unwatch(buf);
2371277300Ssmh#endif
2372219089Spjd
2373286763Smav		if (type == ARC_BUFC_METADATA) {
2374286763Smav			arc_buf_data_free(buf, zio_buf_free);
2375286763Smav			arc_space_return(size, ARC_SPACE_META);
2376286763Smav		} else {
2377286763Smav			ASSERT(type == ARC_BUFC_DATA);
2378286763Smav			arc_buf_data_free(buf, zio_data_buf_free);
2379286763Smav			arc_space_return(size, ARC_SPACE_DATA);
2380168404Spjd		}
2381286763Smav
2382286763Smav		/* protected by hash lock, if in the hash table */
2383286763Smav		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2384185029Spjd			uint64_t *cnt = &state->arcs_lsize[type];
2385185029Spjd
2386286570Smav			ASSERT(refcount_is_zero(
2387286570Smav			    &buf->b_hdr->b_l1hdr.b_refcnt));
2388286570Smav			ASSERT(state != arc_anon && state != arc_l2c_only);
2389185029Spjd
2390185029Spjd			ASSERT3U(*cnt, >=, size);
2391185029Spjd			atomic_add_64(cnt, -size);
2392168404Spjd		}
2393286766Smav
2394286766Smav		(void) refcount_remove_many(&state->arcs_size, size, buf);
2395168404Spjd		buf->b_data = NULL;
2396242845Sdelphij
2397242845Sdelphij		/*
2398242845Sdelphij		 * If we're destroying a duplicate buffer make sure
2399242845Sdelphij		 * that the appropriate statistics are updated.
2400242845Sdelphij		 */
2401286570Smav		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2402286570Smav		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2403242845Sdelphij			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2404242845Sdelphij			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2405242845Sdelphij		}
2406286570Smav		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2407286570Smav		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2408168404Spjd	}
2409168404Spjd
2410168404Spjd	/* only remove the buf if requested */
2411268858Sdelphij	if (!remove)
2412168404Spjd		return;
2413168404Spjd
2414168404Spjd	/* remove the buf from the hdr list */
2415286570Smav	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2416286570Smav	    bufp = &(*bufp)->b_next)
2417168404Spjd		continue;
2418168404Spjd	*bufp = buf->b_next;
2419219089Spjd	buf->b_next = NULL;
2420168404Spjd
2421168404Spjd	ASSERT(buf->b_efunc == NULL);
2422168404Spjd
2423168404Spjd	/* clean up the buf */
2424168404Spjd	buf->b_hdr = NULL;
2425168404Spjd	kmem_cache_free(buf_cache, buf);
2426168404Spjd}
2427168404Spjd
2428168404Spjdstatic void
2429286598Smavarc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2430286598Smav{
2431286598Smav	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2432286598Smav	l2arc_dev_t *dev = l2hdr->b_dev;
2433286598Smav
2434286598Smav	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2435286598Smav	ASSERT(HDR_HAS_L2HDR(hdr));
2436286598Smav
2437286598Smav	list_remove(&dev->l2ad_buflist, hdr);
2438286598Smav
2439286598Smav	/*
2440286598Smav	 * We don't want to leak the b_tmp_cdata buffer that was
2441286598Smav	 * allocated in l2arc_write_buffers()
2442286598Smav	 */
2443286598Smav	arc_buf_l2_cdata_free(hdr);
2444286598Smav
2445286598Smav	/*
2446286598Smav	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2447286598Smav	 * this header is being processed by l2arc_write_buffers() (i.e.
2448286598Smav	 * it's in the first stage of l2arc_write_buffers()).
2449286598Smav	 * Re-affirming that truth here, just to serve as a reminder. If
2450286598Smav	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2451286598Smav	 * may not have its HDR_L2_WRITING flag set. (the write may have
2452286598Smav	 * completed, in which case HDR_L2_WRITING will be false and the
2453286598Smav	 * b_daddr field will point to the address of the buffer on disk).
2454286598Smav	 */
2455286598Smav	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2456286598Smav
2457286598Smav	/*
2458286598Smav	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2459286598Smav	 * l2arc_write_buffers(). Since we've just removed this header
2460286598Smav	 * from the l2arc buffer list, this header will never reach the
2461286598Smav	 * second stage of l2arc_write_buffers(), which increments the
2462286598Smav	 * accounting stats for this header. Thus, we must be careful
2463286598Smav	 * not to decrement them for this header either.
2464286598Smav	 */
2465286598Smav	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2466286598Smav		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2467286598Smav		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2468286598Smav
2469286598Smav		vdev_space_update(dev->l2ad_vdev,
2470286598Smav		    -l2hdr->b_asize, 0, 0);
2471286598Smav
2472286598Smav		(void) refcount_remove_many(&dev->l2ad_alloc,
2473286598Smav		    l2hdr->b_asize, hdr);
2474286598Smav	}
2475286598Smav
2476286598Smav	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2477286598Smav}
2478286598Smav
2479286598Smavstatic void
2480168404Spjdarc_hdr_destroy(arc_buf_hdr_t *hdr)
2481168404Spjd{
2482286570Smav	if (HDR_HAS_L1HDR(hdr)) {
2483286570Smav		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2484286570Smav		    hdr->b_l1hdr.b_datacnt > 0);
2485286570Smav		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2486286570Smav		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2487286570Smav	}
2488168404Spjd	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2489286570Smav	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2490168404Spjd
2491286570Smav	if (HDR_HAS_L2HDR(hdr)) {
2492286598Smav		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2493286598Smav		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2494286570Smav
2495286598Smav		if (!buflist_held)
2496286598Smav			mutex_enter(&dev->l2ad_mtx);
2497219089Spjd
2498286570Smav		/*
2499286598Smav		 * Even though we checked this conditional above, we
2500286598Smav		 * need to check this again now that we have the
2501286598Smav		 * l2ad_mtx. This is because we could be racing with
2502286598Smav		 * another thread calling l2arc_evict() which might have
2503286598Smav		 * destroyed this header's L2 portion as we were waiting
2504286598Smav		 * to acquire the l2ad_mtx. If that happens, we don't
2505286598Smav		 * want to re-destroy the header's L2 portion.
2506286570Smav		 */
2507286598Smav		if (HDR_HAS_L2HDR(hdr)) {
2508290191Savg			l2arc_trim(hdr);
2509286598Smav			arc_hdr_l2hdr_destroy(hdr);
2510286598Smav		}
2511286570Smav
2512219089Spjd		if (!buflist_held)
2513286598Smav			mutex_exit(&dev->l2ad_mtx);
2514185029Spjd	}
2515185029Spjd
2516286570Smav	if (!BUF_EMPTY(hdr))
2517219089Spjd		buf_discard_identity(hdr);
2518286776Smav
2519168404Spjd	if (hdr->b_freeze_cksum != NULL) {
2520168404Spjd		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2521168404Spjd		hdr->b_freeze_cksum = NULL;
2522168404Spjd	}
2523286570Smav
2524286570Smav	if (HDR_HAS_L1HDR(hdr)) {
2525286570Smav		while (hdr->b_l1hdr.b_buf) {
2526286570Smav			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2527286570Smav
2528286570Smav			if (buf->b_efunc != NULL) {
2529286763Smav				mutex_enter(&arc_user_evicts_lock);
2530286570Smav				mutex_enter(&buf->b_evict_lock);
2531286570Smav				ASSERT(buf->b_hdr != NULL);
2532286763Smav				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2533286570Smav				hdr->b_l1hdr.b_buf = buf->b_next;
2534286570Smav				buf->b_hdr = &arc_eviction_hdr;
2535286570Smav				buf->b_next = arc_eviction_list;
2536286570Smav				arc_eviction_list = buf;
2537286570Smav				mutex_exit(&buf->b_evict_lock);
2538286763Smav				cv_signal(&arc_user_evicts_cv);
2539286763Smav				mutex_exit(&arc_user_evicts_lock);
2540286570Smav			} else {
2541286763Smav				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2542286570Smav			}
2543286570Smav		}
2544286570Smav#ifdef ZFS_DEBUG
2545286570Smav		if (hdr->b_l1hdr.b_thawed != NULL) {
2546286570Smav			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2547286570Smav			hdr->b_l1hdr.b_thawed = NULL;
2548286570Smav		}
2549286570Smav#endif
2550219089Spjd	}
2551168404Spjd
2552168404Spjd	ASSERT3P(hdr->b_hash_next, ==, NULL);
2553286570Smav	if (HDR_HAS_L1HDR(hdr)) {
2554286763Smav		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2555286570Smav		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2556286570Smav		kmem_cache_free(hdr_full_cache, hdr);
2557286570Smav	} else {
2558286570Smav		kmem_cache_free(hdr_l2only_cache, hdr);
2559286570Smav	}
2560168404Spjd}
2561168404Spjd
2562168404Spjdvoid
2563168404Spjdarc_buf_free(arc_buf_t *buf, void *tag)
2564168404Spjd{
2565168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2566286570Smav	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2567168404Spjd
2568168404Spjd	ASSERT(buf->b_efunc == NULL);
2569168404Spjd	ASSERT(buf->b_data != NULL);
2570168404Spjd
2571168404Spjd	if (hashed) {
2572168404Spjd		kmutex_t *hash_lock = HDR_LOCK(hdr);
2573168404Spjd
2574168404Spjd		mutex_enter(hash_lock);
2575219089Spjd		hdr = buf->b_hdr;
2576219089Spjd		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2577219089Spjd
2578168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
2579286570Smav		if (hdr->b_l1hdr.b_datacnt > 1) {
2580286763Smav			arc_buf_destroy(buf, TRUE);
2581219089Spjd		} else {
2582286570Smav			ASSERT(buf == hdr->b_l1hdr.b_buf);
2583219089Spjd			ASSERT(buf->b_efunc == NULL);
2584275811Sdelphij			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2585219089Spjd		}
2586168404Spjd		mutex_exit(hash_lock);
2587168404Spjd	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2588168404Spjd		int destroy_hdr;
2589168404Spjd		/*
2590168404Spjd		 * We are in the middle of an async write.  Don't destroy
2591168404Spjd		 * this buffer unless the write completes before we finish
2592168404Spjd		 * decrementing the reference count.
2593168404Spjd		 */
2594286763Smav		mutex_enter(&arc_user_evicts_lock);
2595168404Spjd		(void) remove_reference(hdr, NULL, tag);
2596286570Smav		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2597168404Spjd		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2598286763Smav		mutex_exit(&arc_user_evicts_lock);
2599168404Spjd		if (destroy_hdr)
2600168404Spjd			arc_hdr_destroy(hdr);
2601168404Spjd	} else {
2602219089Spjd		if (remove_reference(hdr, NULL, tag) > 0)
2603286763Smav			arc_buf_destroy(buf, TRUE);
2604219089Spjd		else
2605168404Spjd			arc_hdr_destroy(hdr);
2606168404Spjd	}
2607168404Spjd}
2608168404Spjd
2609248571Smmboolean_t
2610168404Spjdarc_buf_remove_ref(arc_buf_t *buf, void* tag)
2611168404Spjd{
2612168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2613168404Spjd	kmutex_t *hash_lock = HDR_LOCK(hdr);
2614248571Smm	boolean_t no_callback = (buf->b_efunc == NULL);
2615168404Spjd
2616286570Smav	if (hdr->b_l1hdr.b_state == arc_anon) {
2617286570Smav		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2618168404Spjd		arc_buf_free(buf, tag);
2619168404Spjd		return (no_callback);
2620168404Spjd	}
2621168404Spjd
2622168404Spjd	mutex_enter(hash_lock);
2623219089Spjd	hdr = buf->b_hdr;
2624286570Smav	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2625219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2626286570Smav	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2627168404Spjd	ASSERT(buf->b_data != NULL);
2628168404Spjd
2629168404Spjd	(void) remove_reference(hdr, hash_lock, tag);
2630286570Smav	if (hdr->b_l1hdr.b_datacnt > 1) {
2631168404Spjd		if (no_callback)
2632286763Smav			arc_buf_destroy(buf, TRUE);
2633168404Spjd	} else if (no_callback) {
2634286570Smav		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2635219089Spjd		ASSERT(buf->b_efunc == NULL);
2636275811Sdelphij		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2637168404Spjd	}
2638286570Smav	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2639286570Smav	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2640168404Spjd	mutex_exit(hash_lock);
2641168404Spjd	return (no_callback);
2642168404Spjd}
2643168404Spjd
2644286570Smavint32_t
2645168404Spjdarc_buf_size(arc_buf_t *buf)
2646168404Spjd{
2647168404Spjd	return (buf->b_hdr->b_size);
2648168404Spjd}
2649168404Spjd
2650168404Spjd/*
2651242845Sdelphij * Called from the DMU to determine if the current buffer should be
2652242845Sdelphij * evicted. In order to ensure proper locking, the eviction must be initiated
2653242845Sdelphij * from the DMU. Return true if the buffer is associated with user data and
2654242845Sdelphij * duplicate buffers still exist.
2655242845Sdelphij */
2656242845Sdelphijboolean_t
2657242845Sdelphijarc_buf_eviction_needed(arc_buf_t *buf)
2658242845Sdelphij{
2659242845Sdelphij	arc_buf_hdr_t *hdr;
2660242845Sdelphij	boolean_t evict_needed = B_FALSE;
2661242845Sdelphij
2662242845Sdelphij	if (zfs_disable_dup_eviction)
2663242845Sdelphij		return (B_FALSE);
2664242845Sdelphij
2665242845Sdelphij	mutex_enter(&buf->b_evict_lock);
2666242845Sdelphij	hdr = buf->b_hdr;
2667242845Sdelphij	if (hdr == NULL) {
2668242845Sdelphij		/*
2669242845Sdelphij		 * We are in arc_do_user_evicts(); let that function
2670242845Sdelphij		 * perform the eviction.
2671242845Sdelphij		 */
2672242845Sdelphij		ASSERT(buf->b_data == NULL);
2673242845Sdelphij		mutex_exit(&buf->b_evict_lock);
2674242845Sdelphij		return (B_FALSE);
2675242845Sdelphij	} else if (buf->b_data == NULL) {
2676242845Sdelphij		/*
2677242845Sdelphij		 * We have already been added to the arc eviction list;
2678242845Sdelphij		 * recommend eviction.
2679242845Sdelphij		 */
2680242845Sdelphij		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2681242845Sdelphij		mutex_exit(&buf->b_evict_lock);
2682242845Sdelphij		return (B_TRUE);
2683242845Sdelphij	}
2684242845Sdelphij
2685286570Smav	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2686242845Sdelphij		evict_needed = B_TRUE;
2687242845Sdelphij
2688242845Sdelphij	mutex_exit(&buf->b_evict_lock);
2689242845Sdelphij	return (evict_needed);
2690242845Sdelphij}
2691242845Sdelphij
2692242845Sdelphij/*
2693286763Smav * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2694286763Smav * state of the header is dependent on it's state prior to entering this
2695286763Smav * function. The following transitions are possible:
2696185029Spjd *
2697286763Smav *    - arc_mru -> arc_mru_ghost
2698286763Smav *    - arc_mfu -> arc_mfu_ghost
2699286763Smav *    - arc_mru_ghost -> arc_l2c_only
2700286763Smav *    - arc_mru_ghost -> deleted
2701286763Smav *    - arc_mfu_ghost -> arc_l2c_only
2702286763Smav *    - arc_mfu_ghost -> deleted
2703168404Spjd */
2704286763Smavstatic int64_t
2705286763Smavarc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2706168404Spjd{
2707286763Smav	arc_state_t *evicted_state, *state;
2708286763Smav	int64_t bytes_evicted = 0;
2709168404Spjd
2710286763Smav	ASSERT(MUTEX_HELD(hash_lock));
2711286763Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2712168404Spjd
2713286763Smav	state = hdr->b_l1hdr.b_state;
2714286763Smav	if (GHOST_STATE(state)) {
2715286763Smav		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2716286763Smav		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2717206796Spjd
2718286763Smav		/*
2719286763Smav		 * l2arc_write_buffers() relies on a header's L1 portion
2720286763Smav		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2721286763Smav		 * Thus, we cannot push a header onto the arc_l2c_only
2722286763Smav		 * state (removing it's L1 piece) until the header is
2723286763Smav		 * done being written to the l2arc.
2724286763Smav		 */
2725286763Smav		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2726286763Smav			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2727286763Smav			return (bytes_evicted);
2728286763Smav		}
2729286762Smav
2730286763Smav		ARCSTAT_BUMP(arcstat_deleted);
2731286763Smav		bytes_evicted += hdr->b_size;
2732286762Smav
2733286763Smav		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2734286763Smav
2735286763Smav		if (HDR_HAS_L2HDR(hdr)) {
2736275780Sdelphij			/*
2737286763Smav			 * This buffer is cached on the 2nd Level ARC;
2738286763Smav			 * don't destroy the header.
2739275780Sdelphij			 */
2740286763Smav			arc_change_state(arc_l2c_only, hdr, hash_lock);
2741286763Smav			/*
2742286763Smav			 * dropping from L1+L2 cached to L2-only,
2743286763Smav			 * realloc to remove the L1 header.
2744286763Smav			 */
2745286763Smav			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2746286763Smav			    hdr_l2only_cache);
2747286763Smav		} else {
2748286763Smav			arc_change_state(arc_anon, hdr, hash_lock);
2749286763Smav			arc_hdr_destroy(hdr);
2750275780Sdelphij		}
2751286763Smav		return (bytes_evicted);
2752275780Sdelphij	}
2753275780Sdelphij
2754286763Smav	ASSERT(state == arc_mru || state == arc_mfu);
2755286763Smav	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2756206796Spjd
2757286763Smav	/* prefetch buffers have a minimum lifespan */
2758286763Smav	if (HDR_IO_IN_PROGRESS(hdr) ||
2759286763Smav	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2760286763Smav	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2761286763Smav	    arc_min_prefetch_lifespan)) {
2762286763Smav		ARCSTAT_BUMP(arcstat_evict_skip);
2763286763Smav		return (bytes_evicted);
2764286763Smav	}
2765286763Smav
2766286763Smav	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2767286763Smav	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2768286763Smav	while (hdr->b_l1hdr.b_buf) {
2769286763Smav		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2770286763Smav		if (!mutex_tryenter(&buf->b_evict_lock)) {
2771286763Smav			ARCSTAT_BUMP(arcstat_mutex_miss);
2772286763Smav			break;
2773168404Spjd		}
2774286763Smav		if (buf->b_data != NULL)
2775286763Smav			bytes_evicted += hdr->b_size;
2776286763Smav		if (buf->b_efunc != NULL) {
2777286763Smav			mutex_enter(&arc_user_evicts_lock);
2778286763Smav			arc_buf_destroy(buf, FALSE);
2779286763Smav			hdr->b_l1hdr.b_buf = buf->b_next;
2780286763Smav			buf->b_hdr = &arc_eviction_hdr;
2781286763Smav			buf->b_next = arc_eviction_list;
2782286763Smav			arc_eviction_list = buf;
2783286763Smav			cv_signal(&arc_user_evicts_cv);
2784286763Smav			mutex_exit(&arc_user_evicts_lock);
2785286763Smav			mutex_exit(&buf->b_evict_lock);
2786286763Smav		} else {
2787286763Smav			mutex_exit(&buf->b_evict_lock);
2788286763Smav			arc_buf_destroy(buf, TRUE);
2789286763Smav		}
2790286763Smav	}
2791258632Savg
2792286763Smav	if (HDR_HAS_L2HDR(hdr)) {
2793286763Smav		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2794286763Smav	} else {
2795286763Smav		if (l2arc_write_eligible(hdr->b_spa, hdr))
2796286763Smav			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2797286763Smav		else
2798286763Smav			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2799286763Smav	}
2800258632Savg
2801286763Smav	if (hdr->b_l1hdr.b_datacnt == 0) {
2802286763Smav		arc_change_state(evicted_state, hdr, hash_lock);
2803286763Smav		ASSERT(HDR_IN_HASH_TABLE(hdr));
2804286763Smav		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2805286763Smav		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2806286763Smav		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2807286763Smav	}
2808286763Smav
2809286763Smav	return (bytes_evicted);
2810286763Smav}
2811286763Smav
2812286763Smavstatic uint64_t
2813286763Smavarc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2814286763Smav    uint64_t spa, int64_t bytes)
2815286763Smav{
2816286763Smav	multilist_sublist_t *mls;
2817286763Smav	uint64_t bytes_evicted = 0;
2818286763Smav	arc_buf_hdr_t *hdr;
2819286763Smav	kmutex_t *hash_lock;
2820286763Smav	int evict_count = 0;
2821286763Smav
2822286763Smav	ASSERT3P(marker, !=, NULL);
2823286763Smav	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2824286763Smav
2825286763Smav	mls = multilist_sublist_lock(ml, idx);
2826286763Smav
2827286763Smav	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2828286763Smav	    hdr = multilist_sublist_prev(mls, marker)) {
2829286763Smav		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2830286763Smav		    (evict_count >= zfs_arc_evict_batch_limit))
2831286763Smav			break;
2832286763Smav
2833258632Savg		/*
2834286763Smav		 * To keep our iteration location, move the marker
2835286763Smav		 * forward. Since we're not holding hdr's hash lock, we
2836286763Smav		 * must be very careful and not remove 'hdr' from the
2837286763Smav		 * sublist. Otherwise, other consumers might mistake the
2838286763Smav		 * 'hdr' as not being on a sublist when they call the
2839286763Smav		 * multilist_link_active() function (they all rely on
2840286763Smav		 * the hash lock protecting concurrent insertions and
2841286763Smav		 * removals). multilist_sublist_move_forward() was
2842286763Smav		 * specifically implemented to ensure this is the case
2843286763Smav		 * (only 'marker' will be removed and re-inserted).
2844258632Savg		 */
2845286763Smav		multilist_sublist_move_forward(mls, marker);
2846286763Smav
2847286763Smav		/*
2848286763Smav		 * The only case where the b_spa field should ever be
2849286763Smav		 * zero, is the marker headers inserted by
2850286763Smav		 * arc_evict_state(). It's possible for multiple threads
2851286763Smav		 * to be calling arc_evict_state() concurrently (e.g.
2852286763Smav		 * dsl_pool_close() and zio_inject_fault()), so we must
2853286763Smav		 * skip any markers we see from these other threads.
2854286763Smav		 */
2855286763Smav		if (hdr->b_spa == 0)
2856258632Savg			continue;
2857286763Smav
2858286763Smav		/* we're only interested in evicting buffers of a certain spa */
2859286763Smav		if (spa != 0 && hdr->b_spa != spa) {
2860286763Smav			ARCSTAT_BUMP(arcstat_evict_skip);
2861286763Smav			continue;
2862258632Savg		}
2863258632Savg
2864275811Sdelphij		hash_lock = HDR_LOCK(hdr);
2865208373Smm
2866286763Smav		/*
2867286763Smav		 * We aren't calling this function from any code path
2868286763Smav		 * that would already be holding a hash lock, so we're
2869286763Smav		 * asserting on this assumption to be defensive in case
2870286763Smav		 * this ever changes. Without this check, it would be
2871286763Smav		 * possible to incorrectly increment arcstat_mutex_miss
2872286763Smav		 * below (e.g. if the code changed such that we called
2873286763Smav		 * this function with a hash lock held).
2874286763Smav		 */
2875286763Smav		ASSERT(!MUTEX_HELD(hash_lock));
2876208373Smm
2877286763Smav		if (mutex_tryenter(hash_lock)) {
2878286763Smav			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2879286763Smav			mutex_exit(hash_lock);
2880286763Smav
2881286763Smav			bytes_evicted += evicted;
2882286763Smav
2883286763Smav			/*
2884286763Smav			 * If evicted is zero, arc_evict_hdr() must have
2885286763Smav			 * decided to skip this header, don't increment
2886286763Smav			 * evict_count in this case.
2887286763Smav			 */
2888286763Smav			if (evicted != 0)
2889286763Smav				evict_count++;
2890286763Smav
2891286763Smav			/*
2892286763Smav			 * If arc_size isn't overflowing, signal any
2893286763Smav			 * threads that might happen to be waiting.
2894286763Smav			 *
2895286763Smav			 * For each header evicted, we wake up a single
2896286763Smav			 * thread. If we used cv_broadcast, we could
2897286763Smav			 * wake up "too many" threads causing arc_size
2898286763Smav			 * to significantly overflow arc_c; since
2899286763Smav			 * arc_get_data_buf() doesn't check for overflow
2900286763Smav			 * when it's woken up (it doesn't because it's
2901286763Smav			 * possible for the ARC to be overflowing while
2902286763Smav			 * full of un-evictable buffers, and the
2903286763Smav			 * function should proceed in this case).
2904286763Smav			 *
2905286763Smav			 * If threads are left sleeping, due to not
2906286763Smav			 * using cv_broadcast, they will be woken up
2907286763Smav			 * just before arc_reclaim_thread() sleeps.
2908286763Smav			 */
2909286763Smav			mutex_enter(&arc_reclaim_lock);
2910286763Smav			if (!arc_is_overflowing())
2911286763Smav				cv_signal(&arc_reclaim_waiters_cv);
2912286763Smav			mutex_exit(&arc_reclaim_lock);
2913168404Spjd		} else {
2914286763Smav			ARCSTAT_BUMP(arcstat_mutex_miss);
2915168404Spjd		}
2916168404Spjd	}
2917168404Spjd
2918286763Smav	multilist_sublist_unlock(mls);
2919206796Spjd
2920286763Smav	return (bytes_evicted);
2921286763Smav}
2922168404Spjd
2923286763Smav/*
2924286763Smav * Evict buffers from the given arc state, until we've removed the
2925286763Smav * specified number of bytes. Move the removed buffers to the
2926286763Smav * appropriate evict state.
2927286763Smav *
2928286763Smav * This function makes a "best effort". It skips over any buffers
2929286763Smav * it can't get a hash_lock on, and so, may not catch all candidates.
2930286763Smav * It may also return without evicting as much space as requested.
2931286763Smav *
2932286763Smav * If bytes is specified using the special value ARC_EVICT_ALL, this
2933286763Smav * will evict all available (i.e. unlocked and evictable) buffers from
2934286763Smav * the given arc state; which is used by arc_flush().
2935286763Smav */
2936286763Smavstatic uint64_t
2937286763Smavarc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2938286763Smav    arc_buf_contents_t type)
2939286763Smav{
2940286763Smav	uint64_t total_evicted = 0;
2941286763Smav	multilist_t *ml = &state->arcs_list[type];
2942286763Smav	int num_sublists;
2943286763Smav	arc_buf_hdr_t **markers;
2944168404Spjd
2945286763Smav	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2946168404Spjd
2947286763Smav	num_sublists = multilist_get_num_sublists(ml);
2948286763Smav
2949185029Spjd	/*
2950286763Smav	 * If we've tried to evict from each sublist, made some
2951286763Smav	 * progress, but still have not hit the target number of bytes
2952286763Smav	 * to evict, we want to keep trying. The markers allow us to
2953286763Smav	 * pick up where we left off for each individual sublist, rather
2954286763Smav	 * than starting from the tail each time.
2955185029Spjd	 */
2956286763Smav	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2957286763Smav	for (int i = 0; i < num_sublists; i++) {
2958286763Smav		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2959185029Spjd
2960286763Smav		/*
2961286763Smav		 * A b_spa of 0 is used to indicate that this header is
2962286763Smav		 * a marker. This fact is used in arc_adjust_type() and
2963286763Smav		 * arc_evict_state_impl().
2964286763Smav		 */
2965286763Smav		markers[i]->b_spa = 0;
2966168404Spjd
2967286763Smav		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2968286763Smav		multilist_sublist_insert_tail(mls, markers[i]);
2969286763Smav		multilist_sublist_unlock(mls);
2970286763Smav	}
2971168404Spjd
2972286763Smav	/*
2973286763Smav	 * While we haven't hit our target number of bytes to evict, or
2974286763Smav	 * we're evicting all available buffers.
2975286763Smav	 */
2976286763Smav	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2977286763Smav		/*
2978286763Smav		 * Start eviction using a randomly selected sublist,
2979286763Smav		 * this is to try and evenly balance eviction across all
2980286763Smav		 * sublists. Always starting at the same sublist
2981286763Smav		 * (e.g. index 0) would cause evictions to favor certain
2982286763Smav		 * sublists over others.
2983286763Smav		 */
2984286763Smav		int sublist_idx = multilist_get_random_index(ml);
2985286763Smav		uint64_t scan_evicted = 0;
2986219089Spjd
2987286763Smav		for (int i = 0; i < num_sublists; i++) {
2988286763Smav			uint64_t bytes_remaining;
2989286763Smav			uint64_t bytes_evicted;
2990219089Spjd
2991286763Smav			if (bytes == ARC_EVICT_ALL)
2992286763Smav				bytes_remaining = ARC_EVICT_ALL;
2993286763Smav			else if (total_evicted < bytes)
2994286763Smav				bytes_remaining = bytes - total_evicted;
2995286763Smav			else
2996286763Smav				break;
2997258632Savg
2998286763Smav			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2999286763Smav			    markers[sublist_idx], spa, bytes_remaining);
3000286763Smav
3001286763Smav			scan_evicted += bytes_evicted;
3002286763Smav			total_evicted += bytes_evicted;
3003286763Smav
3004286763Smav			/* we've reached the end, wrap to the beginning */
3005286763Smav			if (++sublist_idx >= num_sublists)
3006286763Smav				sublist_idx = 0;
3007286763Smav		}
3008286763Smav
3009258632Savg		/*
3010286763Smav		 * If we didn't evict anything during this scan, we have
3011286763Smav		 * no reason to believe we'll evict more during another
3012286763Smav		 * scan, so break the loop.
3013258632Savg		 */
3014286763Smav		if (scan_evicted == 0) {
3015286763Smav			/* This isn't possible, let's make that obvious */
3016286763Smav			ASSERT3S(bytes, !=, 0);
3017185029Spjd
3018286763Smav			/*
3019286763Smav			 * When bytes is ARC_EVICT_ALL, the only way to
3020286763Smav			 * break the loop is when scan_evicted is zero.
3021286763Smav			 * In that case, we actually have evicted enough,
3022286763Smav			 * so we don't want to increment the kstat.
3023286763Smav			 */
3024286763Smav			if (bytes != ARC_EVICT_ALL) {
3025286763Smav				ASSERT3S(total_evicted, <, bytes);
3026286763Smav				ARCSTAT_BUMP(arcstat_evict_not_enough);
3027185029Spjd			}
3028185029Spjd
3029286763Smav			break;
3030258632Savg		}
3031286763Smav	}
3032258632Savg
3033286763Smav	for (int i = 0; i < num_sublists; i++) {
3034286763Smav		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3035286763Smav		multilist_sublist_remove(mls, markers[i]);
3036286763Smav		multilist_sublist_unlock(mls);
3037286763Smav
3038286763Smav		kmem_cache_free(hdr_full_cache, markers[i]);
3039168404Spjd	}
3040286763Smav	kmem_free(markers, sizeof (*markers) * num_sublists);
3041206796Spjd
3042286763Smav	return (total_evicted);
3043286763Smav}
3044286763Smav
3045286763Smav/*
3046286763Smav * Flush all "evictable" data of the given type from the arc state
3047286763Smav * specified. This will not evict any "active" buffers (i.e. referenced).
3048286763Smav *
3049286763Smav * When 'retry' is set to FALSE, the function will make a single pass
3050286763Smav * over the state and evict any buffers that it can. Since it doesn't
3051286763Smav * continually retry the eviction, it might end up leaving some buffers
3052286763Smav * in the ARC due to lock misses.
3053286763Smav *
3054286763Smav * When 'retry' is set to TRUE, the function will continually retry the
3055286763Smav * eviction until *all* evictable buffers have been removed from the
3056286763Smav * state. As a result, if concurrent insertions into the state are
3057286763Smav * allowed (e.g. if the ARC isn't shutting down), this function might
3058286763Smav * wind up in an infinite loop, continually trying to evict buffers.
3059286763Smav */
3060286763Smavstatic uint64_t
3061286763Smavarc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3062286763Smav    boolean_t retry)
3063286763Smav{
3064286763Smav	uint64_t evicted = 0;
3065286763Smav
3066286763Smav	while (state->arcs_lsize[type] != 0) {
3067286763Smav		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3068286763Smav
3069286763Smav		if (!retry)
3070286763Smav			break;
3071185029Spjd	}
3072185029Spjd
3073286763Smav	return (evicted);
3074286763Smav}
3075286763Smav
3076286763Smav/*
3077286763Smav * Evict the specified number of bytes from the state specified,
3078286763Smav * restricting eviction to the spa and type given. This function
3079286763Smav * prevents us from trying to evict more from a state's list than
3080286763Smav * is "evictable", and to skip evicting altogether when passed a
3081286763Smav * negative value for "bytes". In contrast, arc_evict_state() will
3082286763Smav * evict everything it can, when passed a negative value for "bytes".
3083286763Smav */
3084286763Smavstatic uint64_t
3085286763Smavarc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3086286763Smav    arc_buf_contents_t type)
3087286763Smav{
3088286763Smav	int64_t delta;
3089286763Smav
3090286763Smav	if (bytes > 0 && state->arcs_lsize[type] > 0) {
3091286763Smav		delta = MIN(state->arcs_lsize[type], bytes);
3092286763Smav		return (arc_evict_state(state, spa, delta, type));
3093168404Spjd	}
3094168404Spjd
3095286763Smav	return (0);
3096168404Spjd}
3097168404Spjd
3098286763Smav/*
3099286763Smav * Evict metadata buffers from the cache, such that arc_meta_used is
3100286763Smav * capped by the arc_meta_limit tunable.
3101286763Smav */
3102286763Smavstatic uint64_t
3103286763Smavarc_adjust_meta(void)
3104286763Smav{
3105286763Smav	uint64_t total_evicted = 0;
3106286763Smav	int64_t target;
3107286763Smav
3108286763Smav	/*
3109286763Smav	 * If we're over the meta limit, we want to evict enough
3110286763Smav	 * metadata to get back under the meta limit. We don't want to
3111286763Smav	 * evict so much that we drop the MRU below arc_p, though. If
3112286763Smav	 * we're over the meta limit more than we're over arc_p, we
3113286763Smav	 * evict some from the MRU here, and some from the MFU below.
3114286763Smav	 */
3115286763Smav	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3116286766Smav	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3117286766Smav	    refcount_count(&arc_mru->arcs_size) - arc_p));
3118286763Smav
3119286763Smav	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3120286763Smav
3121286763Smav	/*
3122286763Smav	 * Similar to the above, we want to evict enough bytes to get us
3123286763Smav	 * below the meta limit, but not so much as to drop us below the
3124286763Smav	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3125286763Smav	 */
3126286763Smav	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3127286766Smav	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3128286763Smav
3129286763Smav	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3130286763Smav
3131286763Smav	return (total_evicted);
3132286763Smav}
3133286763Smav
3134286763Smav/*
3135286763Smav * Return the type of the oldest buffer in the given arc state
3136286763Smav *
3137286763Smav * This function will select a random sublist of type ARC_BUFC_DATA and
3138286763Smav * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3139286763Smav * is compared, and the type which contains the "older" buffer will be
3140286763Smav * returned.
3141286763Smav */
3142286763Smavstatic arc_buf_contents_t
3143286763Smavarc_adjust_type(arc_state_t *state)
3144286763Smav{
3145286763Smav	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3146286763Smav	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3147286763Smav	int data_idx = multilist_get_random_index(data_ml);
3148286763Smav	int meta_idx = multilist_get_random_index(meta_ml);
3149286763Smav	multilist_sublist_t *data_mls;
3150286763Smav	multilist_sublist_t *meta_mls;
3151286763Smav	arc_buf_contents_t type;
3152286763Smav	arc_buf_hdr_t *data_hdr;
3153286763Smav	arc_buf_hdr_t *meta_hdr;
3154286763Smav
3155286763Smav	/*
3156286763Smav	 * We keep the sublist lock until we're finished, to prevent
3157286763Smav	 * the headers from being destroyed via arc_evict_state().
3158286763Smav	 */
3159286763Smav	data_mls = multilist_sublist_lock(data_ml, data_idx);
3160286763Smav	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3161286763Smav
3162286763Smav	/*
3163286763Smav	 * These two loops are to ensure we skip any markers that
3164286763Smav	 * might be at the tail of the lists due to arc_evict_state().
3165286763Smav	 */
3166286763Smav
3167286763Smav	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3168286763Smav	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3169286763Smav		if (data_hdr->b_spa != 0)
3170286763Smav			break;
3171286763Smav	}
3172286763Smav
3173286763Smav	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3174286763Smav	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3175286763Smav		if (meta_hdr->b_spa != 0)
3176286763Smav			break;
3177286763Smav	}
3178286763Smav
3179286763Smav	if (data_hdr == NULL && meta_hdr == NULL) {
3180286763Smav		type = ARC_BUFC_DATA;
3181286763Smav	} else if (data_hdr == NULL) {
3182286763Smav		ASSERT3P(meta_hdr, !=, NULL);
3183286763Smav		type = ARC_BUFC_METADATA;
3184286763Smav	} else if (meta_hdr == NULL) {
3185286763Smav		ASSERT3P(data_hdr, !=, NULL);
3186286763Smav		type = ARC_BUFC_DATA;
3187286763Smav	} else {
3188286763Smav		ASSERT3P(data_hdr, !=, NULL);
3189286763Smav		ASSERT3P(meta_hdr, !=, NULL);
3190286763Smav
3191286763Smav		/* The headers can't be on the sublist without an L1 header */
3192286763Smav		ASSERT(HDR_HAS_L1HDR(data_hdr));
3193286763Smav		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3194286763Smav
3195286763Smav		if (data_hdr->b_l1hdr.b_arc_access <
3196286763Smav		    meta_hdr->b_l1hdr.b_arc_access) {
3197286763Smav			type = ARC_BUFC_DATA;
3198286763Smav		} else {
3199286763Smav			type = ARC_BUFC_METADATA;
3200286763Smav		}
3201286763Smav	}
3202286763Smav
3203286763Smav	multilist_sublist_unlock(meta_mls);
3204286763Smav	multilist_sublist_unlock(data_mls);
3205286763Smav
3206286763Smav	return (type);
3207286763Smav}
3208286763Smav
3209286763Smav/*
3210286763Smav * Evict buffers from the cache, such that arc_size is capped by arc_c.
3211286763Smav */
3212286763Smavstatic uint64_t
3213168404Spjdarc_adjust(void)
3214168404Spjd{
3215286763Smav	uint64_t total_evicted = 0;
3216286763Smav	uint64_t bytes;
3217286763Smav	int64_t target;
3218168404Spjd
3219208373Smm	/*
3220286763Smav	 * If we're over arc_meta_limit, we want to correct that before
3221286763Smav	 * potentially evicting data buffers below.
3222286763Smav	 */
3223286763Smav	total_evicted += arc_adjust_meta();
3224286763Smav
3225286763Smav	/*
3226208373Smm	 * Adjust MRU size
3227286763Smav	 *
3228286763Smav	 * If we're over the target cache size, we want to evict enough
3229286763Smav	 * from the list to get back to our target size. We don't want
3230286763Smav	 * to evict too much from the MRU, such that it drops below
3231286763Smav	 * arc_p. So, if we're over our target cache size more than
3232286763Smav	 * the MRU is over arc_p, we'll evict enough to get back to
3233286763Smav	 * arc_p here, and then evict more from the MFU below.
3234208373Smm	 */
3235286763Smav	target = MIN((int64_t)(arc_size - arc_c),
3236286766Smav	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3237286766Smav	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3238208373Smm
3239286763Smav	/*
3240286763Smav	 * If we're below arc_meta_min, always prefer to evict data.
3241286763Smav	 * Otherwise, try to satisfy the requested number of bytes to
3242286763Smav	 * evict from the type which contains older buffers; in an
3243286763Smav	 * effort to keep newer buffers in the cache regardless of their
3244286763Smav	 * type. If we cannot satisfy the number of bytes from this
3245286763Smav	 * type, spill over into the next type.
3246286763Smav	 */
3247286763Smav	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3248286763Smav	    arc_meta_used > arc_meta_min) {
3249286763Smav		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3250286763Smav		total_evicted += bytes;
3251168404Spjd
3252286763Smav		/*
3253286763Smav		 * If we couldn't evict our target number of bytes from
3254286763Smav		 * metadata, we try to get the rest from data.
3255286763Smav		 */
3256286763Smav		target -= bytes;
3257286763Smav
3258286763Smav		total_evicted +=
3259286763Smav		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3260286763Smav	} else {
3261286763Smav		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3262286763Smav		total_evicted += bytes;
3263286763Smav
3264286763Smav		/*
3265286763Smav		 * If we couldn't evict our target number of bytes from
3266286763Smav		 * data, we try to get the rest from metadata.
3267286763Smav		 */
3268286763Smav		target -= bytes;
3269286763Smav
3270286763Smav		total_evicted +=
3271286763Smav		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3272185029Spjd	}
3273185029Spjd
3274208373Smm	/*
3275208373Smm	 * Adjust MFU size
3276286763Smav	 *
3277286763Smav	 * Now that we've tried to evict enough from the MRU to get its
3278286763Smav	 * size back to arc_p, if we're still above the target cache
3279286763Smav	 * size, we evict the rest from the MFU.
3280208373Smm	 */
3281286763Smav	target = arc_size - arc_c;
3282168404Spjd
3283286764Smav	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3284286763Smav	    arc_meta_used > arc_meta_min) {
3285286763Smav		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3286286763Smav		total_evicted += bytes;
3287208373Smm
3288286763Smav		/*
3289286763Smav		 * If we couldn't evict our target number of bytes from
3290286763Smav		 * metadata, we try to get the rest from data.
3291286763Smav		 */
3292286763Smav		target -= bytes;
3293168404Spjd
3294286763Smav		total_evicted +=
3295286763Smav		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3296286763Smav	} else {
3297286763Smav		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3298286763Smav		total_evicted += bytes;
3299286763Smav
3300286763Smav		/*
3301286763Smav		 * If we couldn't evict our target number of bytes from
3302286763Smav		 * data, we try to get the rest from data.
3303286763Smav		 */
3304286763Smav		target -= bytes;
3305286763Smav
3306286763Smav		total_evicted +=
3307286763Smav		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3308208373Smm	}
3309168404Spjd
3310208373Smm	/*
3311208373Smm	 * Adjust ghost lists
3312286763Smav	 *
3313286763Smav	 * In addition to the above, the ARC also defines target values
3314286763Smav	 * for the ghost lists. The sum of the mru list and mru ghost
3315286763Smav	 * list should never exceed the target size of the cache, and
3316286763Smav	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3317286763Smav	 * ghost list should never exceed twice the target size of the
3318286763Smav	 * cache. The following logic enforces these limits on the ghost
3319286763Smav	 * caches, and evicts from them as needed.
3320208373Smm	 */
3321286766Smav	target = refcount_count(&arc_mru->arcs_size) +
3322286766Smav	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3323168404Spjd
3324286763Smav	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3325286763Smav	total_evicted += bytes;
3326168404Spjd
3327286763Smav	target -= bytes;
3328185029Spjd
3329286763Smav	total_evicted +=
3330286763Smav	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3331208373Smm
3332286763Smav	/*
3333286763Smav	 * We assume the sum of the mru list and mfu list is less than
3334286763Smav	 * or equal to arc_c (we enforced this above), which means we
3335286763Smav	 * can use the simpler of the two equations below:
3336286763Smav	 *
3337286763Smav	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3338286763Smav	 *		    mru ghost + mfu ghost <= arc_c
3339286763Smav	 */
3340286766Smav	target = refcount_count(&arc_mru_ghost->arcs_size) +
3341286766Smav	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3342286763Smav
3343286763Smav	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3344286763Smav	total_evicted += bytes;
3345286763Smav
3346286763Smav	target -= bytes;
3347286763Smav
3348286763Smav	total_evicted +=
3349286763Smav	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3350286763Smav
3351286763Smav	return (total_evicted);
3352168404Spjd}
3353168404Spjd
3354168404Spjdstatic void
3355168404Spjdarc_do_user_evicts(void)
3356168404Spjd{
3357286763Smav	mutex_enter(&arc_user_evicts_lock);
3358286762Smav	while (arc_eviction_list != NULL) {
3359286762Smav		arc_buf_t *buf = arc_eviction_list;
3360286762Smav		arc_eviction_list = buf->b_next;
3361219089Spjd		mutex_enter(&buf->b_evict_lock);
3362168404Spjd		buf->b_hdr = NULL;
3363219089Spjd		mutex_exit(&buf->b_evict_lock);
3364286763Smav		mutex_exit(&arc_user_evicts_lock);
3365168404Spjd
3366168404Spjd		if (buf->b_efunc != NULL)
3367268858Sdelphij			VERIFY0(buf->b_efunc(buf->b_private));
3368168404Spjd
3369168404Spjd		buf->b_efunc = NULL;
3370168404Spjd		buf->b_private = NULL;
3371168404Spjd		kmem_cache_free(buf_cache, buf);
3372286763Smav		mutex_enter(&arc_user_evicts_lock);
3373168404Spjd	}
3374286763Smav	mutex_exit(&arc_user_evicts_lock);
3375168404Spjd}
3376168404Spjd
3377168404Spjdvoid
3378286763Smavarc_flush(spa_t *spa, boolean_t retry)
3379168404Spjd{
3380209962Smm	uint64_t guid = 0;
3381209962Smm
3382286763Smav	/*
3383286763Smav	 * If retry is TRUE, a spa must not be specified since we have
3384286763Smav	 * no good way to determine if all of a spa's buffers have been
3385286763Smav	 * evicted from an arc state.
3386286763Smav	 */
3387286763Smav	ASSERT(!retry || spa == 0);
3388286763Smav
3389286570Smav	if (spa != NULL)
3390228103Smm		guid = spa_load_guid(spa);
3391209962Smm
3392286763Smav	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3393286763Smav	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3394168404Spjd
3395286763Smav	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3396286763Smav	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3397168404Spjd
3398286763Smav	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3399286763Smav	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3400286763Smav
3401286763Smav	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3402286763Smav	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3403286763Smav
3404168404Spjd	arc_do_user_evicts();
3405185029Spjd	ASSERT(spa || arc_eviction_list == NULL);
3406168404Spjd}
3407168404Spjd
3408168404Spjdvoid
3409286625Smavarc_shrink(int64_t to_free)
3410168404Spjd{
3411168404Spjd	if (arc_c > arc_c_min) {
3412272483Ssmh		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3413272483Ssmh			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3414168404Spjd		if (arc_c > arc_c_min + to_free)
3415168404Spjd			atomic_add_64(&arc_c, -to_free);
3416168404Spjd		else
3417168404Spjd			arc_c = arc_c_min;
3418168404Spjd
3419168404Spjd		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3420168404Spjd		if (arc_c > arc_size)
3421168404Spjd			arc_c = MAX(arc_size, arc_c_min);
3422168404Spjd		if (arc_p > arc_c)
3423168404Spjd			arc_p = (arc_c >> 1);
3424272483Ssmh
3425272483Ssmh		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3426272483Ssmh			arc_p);
3427272483Ssmh
3428168404Spjd		ASSERT(arc_c >= arc_c_min);
3429168404Spjd		ASSERT((int64_t)arc_p >= 0);
3430168404Spjd	}
3431168404Spjd
3432270759Ssmh	if (arc_size > arc_c) {
3433270759Ssmh		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3434270759Ssmh			uint64_t, arc_c);
3435286763Smav		(void) arc_adjust();
3436270759Ssmh	}
3437168404Spjd}
3438168404Spjd
3439286625Smavstatic long needfree = 0;
3440168404Spjd
3441286625Smavtypedef enum free_memory_reason_t {
3442286625Smav	FMR_UNKNOWN,
3443286625Smav	FMR_NEEDFREE,
3444286625Smav	FMR_LOTSFREE,
3445286625Smav	FMR_SWAPFS_MINFREE,
3446286625Smav	FMR_PAGES_PP_MAXIMUM,
3447286625Smav	FMR_HEAP_ARENA,
3448286625Smav	FMR_ZIO_ARENA,
3449286625Smav	FMR_ZIO_FRAG,
3450286625Smav} free_memory_reason_t;
3451286625Smav
3452286625Smavint64_t last_free_memory;
3453286625Smavfree_memory_reason_t last_free_reason;
3454286625Smav
3455286625Smav/*
3456286625Smav * Additional reserve of pages for pp_reserve.
3457286625Smav */
3458286625Smavint64_t arc_pages_pp_reserve = 64;
3459286625Smav
3460286625Smav/*
3461286625Smav * Additional reserve of pages for swapfs.
3462286625Smav */
3463286625Smavint64_t arc_swapfs_reserve = 64;
3464286625Smav
3465286625Smav/*
3466286625Smav * Return the amount of memory that can be consumed before reclaim will be
3467286625Smav * needed.  Positive if there is sufficient free memory, negative indicates
3468286625Smav * the amount of memory that needs to be freed up.
3469286625Smav */
3470286625Smavstatic int64_t
3471286625Smavarc_available_memory(void)
3472168404Spjd{
3473286625Smav	int64_t lowest = INT64_MAX;
3474286625Smav	int64_t n;
3475286625Smav	free_memory_reason_t r = FMR_UNKNOWN;
3476168404Spjd
3477168404Spjd#ifdef _KERNEL
3478286625Smav	if (needfree > 0) {
3479286625Smav		n = PAGESIZE * (-needfree);
3480286625Smav		if (n < lowest) {
3481286625Smav			lowest = n;
3482286625Smav			r = FMR_NEEDFREE;
3483286625Smav		}
3484270759Ssmh	}
3485168404Spjd
3486191902Skmacy	/*
3487212780Savg	 * Cooperate with pagedaemon when it's time for it to scan
3488212780Savg	 * and reclaim some pages.
3489191902Skmacy	 */
3490286655Smav	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3491286625Smav	if (n < lowest) {
3492286625Smav		lowest = n;
3493286625Smav		r = FMR_LOTSFREE;
3494270759Ssmh	}
3495191902Skmacy
3496277300Ssmh#ifdef illumos
3497168404Spjd	/*
3498185029Spjd	 * check that we're out of range of the pageout scanner.  It starts to
3499185029Spjd	 * schedule paging if freemem is less than lotsfree and needfree.
3500185029Spjd	 * lotsfree is the high-water mark for pageout, and needfree is the
3501185029Spjd	 * number of needed free pages.  We add extra pages here to make sure
3502185029Spjd	 * the scanner doesn't start up while we're freeing memory.
3503185029Spjd	 */
3504286625Smav	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3505286625Smav	if (n < lowest) {
3506286625Smav		lowest = n;
3507286625Smav		r = FMR_LOTSFREE;
3508286625Smav	}
3509185029Spjd
3510185029Spjd	/*
3511168404Spjd	 * check to make sure that swapfs has enough space so that anon
3512185029Spjd	 * reservations can still succeed. anon_resvmem() checks that the
3513168404Spjd	 * availrmem is greater than swapfs_minfree, and the number of reserved
3514168404Spjd	 * swap pages.  We also add a bit of extra here just to prevent
3515168404Spjd	 * circumstances from getting really dire.
3516168404Spjd	 */
3517286625Smav	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3518286625Smav	    desfree - arc_swapfs_reserve);
3519286625Smav	if (n < lowest) {
3520286625Smav		lowest = n;
3521286625Smav		r = FMR_SWAPFS_MINFREE;
3522286625Smav	}
3523168404Spjd
3524286625Smav
3525168404Spjd	/*
3526272483Ssmh	 * Check that we have enough availrmem that memory locking (e.g., via
3527272483Ssmh	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3528272483Ssmh	 * stores the number of pages that cannot be locked; when availrmem
3529272483Ssmh	 * drops below pages_pp_maximum, page locking mechanisms such as
3530272483Ssmh	 * page_pp_lock() will fail.)
3531272483Ssmh	 */
3532286625Smav	n = PAGESIZE * (availrmem - pages_pp_maximum -
3533286625Smav	    arc_pages_pp_reserve);
3534286625Smav	if (n < lowest) {
3535286625Smav		lowest = n;
3536286625Smav		r = FMR_PAGES_PP_MAXIMUM;
3537286625Smav	}
3538272483Ssmh
3539277300Ssmh#endif	/* illumos */
3540272483Ssmh#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3541272483Ssmh	/*
3542168404Spjd	 * If we're on an i386 platform, it's possible that we'll exhaust the
3543168404Spjd	 * kernel heap space before we ever run out of available physical
3544168404Spjd	 * memory.  Most checks of the size of the heap_area compare against
3545168404Spjd	 * tune.t_minarmem, which is the minimum available real memory that we
3546168404Spjd	 * can have in the system.  However, this is generally fixed at 25 pages
3547168404Spjd	 * which is so low that it's useless.  In this comparison, we seek to
3548168404Spjd	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3549185029Spjd	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3550168404Spjd	 * free)
3551168404Spjd	 */
3552286655Smav	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3553286628Smav	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3554286625Smav	if (n < lowest) {
3555286625Smav		lowest = n;
3556286625Smav		r = FMR_HEAP_ARENA;
3557270861Ssmh	}
3558281026Smav#define	zio_arena	NULL
3559281026Smav#else
3560281026Smav#define	zio_arena	heap_arena
3561270861Ssmh#endif
3562281026Smav
3563272483Ssmh	/*
3564272483Ssmh	 * If zio data pages are being allocated out of a separate heap segment,
3565272483Ssmh	 * then enforce that the size of available vmem for this arena remains
3566272483Ssmh	 * above about 1/16th free.
3567272483Ssmh	 *
3568272483Ssmh	 * Note: The 1/16th arena free requirement was put in place
3569272483Ssmh	 * to aggressively evict memory from the arc in order to avoid
3570272483Ssmh	 * memory fragmentation issues.
3571272483Ssmh	 */
3572286625Smav	if (zio_arena != NULL) {
3573286655Smav		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3574286625Smav		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3575286625Smav		if (n < lowest) {
3576286625Smav			lowest = n;
3577286625Smav			r = FMR_ZIO_ARENA;
3578286625Smav		}
3579286625Smav	}
3580281026Smav
3581281026Smav	/*
3582281026Smav	 * Above limits know nothing about real level of KVA fragmentation.
3583281026Smav	 * Start aggressive reclamation if too little sequential KVA left.
3584281026Smav	 */
3585286625Smav	if (lowest > 0) {
3586286625Smav		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3587286655Smav		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3588286655Smav		    INT64_MAX;
3589286625Smav		if (n < lowest) {
3590286625Smav			lowest = n;
3591286625Smav			r = FMR_ZIO_FRAG;
3592286625Smav		}
3593281109Smav	}
3594281026Smav
3595272483Ssmh#else	/* _KERNEL */
3596286625Smav	/* Every 100 calls, free a small amount */
3597168404Spjd	if (spa_get_random(100) == 0)
3598286625Smav		lowest = -1024;
3599272483Ssmh#endif	/* _KERNEL */
3600270759Ssmh
3601286625Smav	last_free_memory = lowest;
3602286625Smav	last_free_reason = r;
3603286625Smav	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3604286625Smav	return (lowest);
3605168404Spjd}
3606168404Spjd
3607286625Smav
3608286625Smav/*
3609286625Smav * Determine if the system is under memory pressure and is asking
3610286625Smav * to reclaim memory. A return value of TRUE indicates that the system
3611286625Smav * is under memory pressure and that the arc should adjust accordingly.
3612286625Smav */
3613286625Smavstatic boolean_t
3614286625Smavarc_reclaim_needed(void)
3615286625Smav{
3616286625Smav	return (arc_available_memory() < 0);
3617286625Smav}
3618286625Smav
3619208454Spjdextern kmem_cache_t	*zio_buf_cache[];
3620208454Spjdextern kmem_cache_t	*zio_data_buf_cache[];
3621272527Sdelphijextern kmem_cache_t	*range_seg_cache;
3622208454Spjd
3623278040Ssmhstatic __noinline void
3624286625Smavarc_kmem_reap_now(void)
3625168404Spjd{
3626168404Spjd	size_t			i;
3627168404Spjd	kmem_cache_t		*prev_cache = NULL;
3628168404Spjd	kmem_cache_t		*prev_data_cache = NULL;
3629168404Spjd
3630272483Ssmh	DTRACE_PROBE(arc__kmem_reap_start);
3631168404Spjd#ifdef _KERNEL
3632185029Spjd	if (arc_meta_used >= arc_meta_limit) {
3633185029Spjd		/*
3634185029Spjd		 * We are exceeding our meta-data cache limit.
3635185029Spjd		 * Purge some DNLC entries to release holds on meta-data.
3636185029Spjd		 */
3637185029Spjd		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3638185029Spjd	}
3639168404Spjd#if defined(__i386)
3640168404Spjd	/*
3641168404Spjd	 * Reclaim unused memory from all kmem caches.
3642168404Spjd	 */
3643168404Spjd	kmem_reap();
3644168404Spjd#endif
3645168404Spjd#endif
3646168404Spjd
3647168404Spjd	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3648168404Spjd		if (zio_buf_cache[i] != prev_cache) {
3649168404Spjd			prev_cache = zio_buf_cache[i];
3650168404Spjd			kmem_cache_reap_now(zio_buf_cache[i]);
3651168404Spjd		}
3652168404Spjd		if (zio_data_buf_cache[i] != prev_data_cache) {
3653168404Spjd			prev_data_cache = zio_data_buf_cache[i];
3654168404Spjd			kmem_cache_reap_now(zio_data_buf_cache[i]);
3655168404Spjd		}
3656168404Spjd	}
3657168404Spjd	kmem_cache_reap_now(buf_cache);
3658286570Smav	kmem_cache_reap_now(hdr_full_cache);
3659286570Smav	kmem_cache_reap_now(hdr_l2only_cache);
3660272506Sdelphij	kmem_cache_reap_now(range_seg_cache);
3661272483Ssmh
3662277300Ssmh#ifdef illumos
3663286625Smav	if (zio_arena != NULL) {
3664286625Smav		/*
3665286625Smav		 * Ask the vmem arena to reclaim unused memory from its
3666286625Smav		 * quantum caches.
3667286625Smav		 */
3668272483Ssmh		vmem_qcache_reap(zio_arena);
3669286625Smav	}
3670272483Ssmh#endif
3671272483Ssmh	DTRACE_PROBE(arc__kmem_reap_end);
3672168404Spjd}
3673168404Spjd
3674286763Smav/*
3675286763Smav * Threads can block in arc_get_data_buf() waiting for this thread to evict
3676286763Smav * enough data and signal them to proceed. When this happens, the threads in
3677286763Smav * arc_get_data_buf() are sleeping while holding the hash lock for their
3678286763Smav * particular arc header. Thus, we must be careful to never sleep on a
3679286763Smav * hash lock in this thread. This is to prevent the following deadlock:
3680286763Smav *
3681286763Smav *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3682286763Smav *    waiting for the reclaim thread to signal it.
3683286763Smav *
3684286763Smav *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3685286763Smav *    fails, and goes to sleep forever.
3686286763Smav *
3687286763Smav * This possible deadlock is avoided by always acquiring a hash lock
3688286763Smav * using mutex_tryenter() from arc_reclaim_thread().
3689286763Smav */
3690168404Spjdstatic void
3691168404Spjdarc_reclaim_thread(void *dummy __unused)
3692168404Spjd{
3693296530Smav	hrtime_t		growtime = 0;
3694168404Spjd	callb_cpr_t		cpr;
3695168404Spjd
3696286763Smav	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3697168404Spjd
3698286763Smav	mutex_enter(&arc_reclaim_lock);
3699286763Smav	while (!arc_reclaim_thread_exit) {
3700286625Smav		int64_t free_memory = arc_available_memory();
3701286763Smav		uint64_t evicted = 0;
3702286763Smav
3703286763Smav		mutex_exit(&arc_reclaim_lock);
3704286763Smav
3705286625Smav		if (free_memory < 0) {
3706168404Spjd
3707286625Smav			arc_no_grow = B_TRUE;
3708286625Smav			arc_warm = B_TRUE;
3709168404Spjd
3710286625Smav			/*
3711286625Smav			 * Wait at least zfs_grow_retry (default 60) seconds
3712286625Smav			 * before considering growing.
3713286625Smav			 */
3714296530Smav			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3715168404Spjd
3716286625Smav			arc_kmem_reap_now();
3717286625Smav
3718286625Smav			/*
3719286625Smav			 * If we are still low on memory, shrink the ARC
3720286625Smav			 * so that we have arc_shrink_min free space.
3721286625Smav			 */
3722286625Smav			free_memory = arc_available_memory();
3723286625Smav
3724286625Smav			int64_t to_free =
3725286625Smav			    (arc_c >> arc_shrink_shift) - free_memory;
3726286625Smav			if (to_free > 0) {
3727286625Smav#ifdef _KERNEL
3728286625Smav				to_free = MAX(to_free, ptob(needfree));
3729286625Smav#endif
3730286625Smav				arc_shrink(to_free);
3731168404Spjd			}
3732286625Smav		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3733286625Smav			arc_no_grow = B_TRUE;
3734296530Smav		} else if (gethrtime() >= growtime) {
3735286625Smav			arc_no_grow = B_FALSE;
3736168404Spjd		}
3737168404Spjd
3738286763Smav		evicted = arc_adjust();
3739168404Spjd
3740286763Smav		mutex_enter(&arc_reclaim_lock);
3741168404Spjd
3742286763Smav		/*
3743286763Smav		 * If evicted is zero, we couldn't evict anything via
3744286763Smav		 * arc_adjust(). This could be due to hash lock
3745286763Smav		 * collisions, but more likely due to the majority of
3746286763Smav		 * arc buffers being unevictable. Therefore, even if
3747286763Smav		 * arc_size is above arc_c, another pass is unlikely to
3748286763Smav		 * be helpful and could potentially cause us to enter an
3749286763Smav		 * infinite loop.
3750286763Smav		 */
3751286763Smav		if (arc_size <= arc_c || evicted == 0) {
3752211762Savg#ifdef _KERNEL
3753185029Spjd			needfree = 0;
3754168404Spjd#endif
3755286763Smav			/*
3756286763Smav			 * We're either no longer overflowing, or we
3757286763Smav			 * can't evict anything more, so we should wake
3758286763Smav			 * up any threads before we go to sleep.
3759286763Smav			 */
3760286763Smav			cv_broadcast(&arc_reclaim_waiters_cv);
3761168404Spjd
3762286763Smav			/*
3763286763Smav			 * Block until signaled, or after one second (we
3764286763Smav			 * might need to perform arc_kmem_reap_now()
3765286763Smav			 * even if we aren't being signalled)
3766286763Smav			 */
3767286763Smav			CALLB_CPR_SAFE_BEGIN(&cpr);
3768296530Smav			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3769296530Smav			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3770286763Smav			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3771286763Smav		}
3772286763Smav	}
3773286763Smav
3774286763Smav	arc_reclaim_thread_exit = FALSE;
3775286763Smav	cv_broadcast(&arc_reclaim_thread_cv);
3776286763Smav	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3777286763Smav	thread_exit();
3778286763Smav}
3779286763Smav
3780286763Smavstatic void
3781286763Smavarc_user_evicts_thread(void *dummy __unused)
3782286763Smav{
3783286763Smav	callb_cpr_t cpr;
3784286763Smav
3785286763Smav	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3786286763Smav
3787286763Smav	mutex_enter(&arc_user_evicts_lock);
3788286763Smav	while (!arc_user_evicts_thread_exit) {
3789286763Smav		mutex_exit(&arc_user_evicts_lock);
3790286763Smav
3791286763Smav		arc_do_user_evicts();
3792286763Smav
3793286574Smav		/*
3794286574Smav		 * This is necessary in order for the mdb ::arc dcmd to
3795286574Smav		 * show up to date information. Since the ::arc command
3796286574Smav		 * does not call the kstat's update function, without
3797286574Smav		 * this call, the command may show stale stats for the
3798286574Smav		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3799286574Smav		 * with this change, the data might be up to 1 second
3800286574Smav		 * out of date; but that should suffice. The arc_state_t
3801286574Smav		 * structures can be queried directly if more accurate
3802286574Smav		 * information is needed.
3803286574Smav		 */
3804286574Smav		if (arc_ksp != NULL)
3805286574Smav			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3806286574Smav
3807286763Smav		mutex_enter(&arc_user_evicts_lock);
3808286763Smav
3809286763Smav		/*
3810286763Smav		 * Block until signaled, or after one second (we need to
3811286763Smav		 * call the arc's kstat update function regularly).
3812286763Smav		 */
3813168404Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
3814286763Smav		(void) cv_timedwait(&arc_user_evicts_cv,
3815286763Smav		    &arc_user_evicts_lock, hz);
3816286763Smav		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3817168404Spjd	}
3818168404Spjd
3819286763Smav	arc_user_evicts_thread_exit = FALSE;
3820286763Smav	cv_broadcast(&arc_user_evicts_cv);
3821286763Smav	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3822168404Spjd	thread_exit();
3823168404Spjd}
3824168404Spjd
3825301997Skibstatic u_int arc_dnlc_evicts_arg;
3826301997Skibextern struct vfsops zfs_vfsops;
3827301997Skib
3828301997Skibstatic void
3829301997Skibarc_dnlc_evicts_thread(void *dummy __unused)
3830301997Skib{
3831301997Skib	callb_cpr_t cpr;
3832301997Skib	u_int percent;
3833301997Skib
3834301997Skib	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
3835301997Skib
3836301997Skib	mutex_enter(&arc_dnlc_evicts_lock);
3837301997Skib	while (!arc_dnlc_evicts_thread_exit) {
3838301997Skib		CALLB_CPR_SAFE_BEGIN(&cpr);
3839301997Skib		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
3840301997Skib		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
3841301997Skib		if (arc_dnlc_evicts_arg != 0) {
3842301997Skib			percent = arc_dnlc_evicts_arg;
3843301997Skib			mutex_exit(&arc_dnlc_evicts_lock);
3844301997Skib#ifdef _KERNEL
3845301997Skib			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
3846301997Skib#endif
3847301997Skib			mutex_enter(&arc_dnlc_evicts_lock);
3848301997Skib			/*
3849301997Skib			 * Clear our token only after vnlru_free()
3850301997Skib			 * pass is done, to avoid false queueing of
3851301997Skib			 * the requests.
3852301997Skib			 */
3853301997Skib			arc_dnlc_evicts_arg = 0;
3854301997Skib		}
3855301997Skib	}
3856301997Skib	arc_dnlc_evicts_thread_exit = FALSE;
3857301997Skib	cv_broadcast(&arc_dnlc_evicts_cv);
3858301997Skib	CALLB_CPR_EXIT(&cpr);
3859301997Skib	thread_exit();
3860301997Skib}
3861301997Skib
3862301997Skibvoid
3863301997Skibdnlc_reduce_cache(void *arg)
3864301997Skib{
3865301997Skib	u_int percent;
3866301997Skib
3867302012Skib	percent = (u_int)(uintptr_t)arg;
3868301997Skib	mutex_enter(&arc_dnlc_evicts_lock);
3869301997Skib	if (arc_dnlc_evicts_arg == 0) {
3870301997Skib		arc_dnlc_evicts_arg = percent;
3871301997Skib		cv_broadcast(&arc_dnlc_evicts_cv);
3872301997Skib	}
3873301997Skib	mutex_exit(&arc_dnlc_evicts_lock);
3874301997Skib}
3875301997Skib
3876168404Spjd/*
3877168404Spjd * Adapt arc info given the number of bytes we are trying to add and
3878168404Spjd * the state that we are comming from.  This function is only called
3879168404Spjd * when we are adding new content to the cache.
3880168404Spjd */
3881168404Spjdstatic void
3882168404Spjdarc_adapt(int bytes, arc_state_t *state)
3883168404Spjd{
3884168404Spjd	int mult;
3885208373Smm	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3886286766Smav	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3887286766Smav	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3888168404Spjd
3889185029Spjd	if (state == arc_l2c_only)
3890185029Spjd		return;
3891185029Spjd
3892168404Spjd	ASSERT(bytes > 0);
3893168404Spjd	/*
3894168404Spjd	 * Adapt the target size of the MRU list:
3895168404Spjd	 *	- if we just hit in the MRU ghost list, then increase
3896168404Spjd	 *	  the target size of the MRU list.
3897168404Spjd	 *	- if we just hit in the MFU ghost list, then increase
3898168404Spjd	 *	  the target size of the MFU list by decreasing the
3899168404Spjd	 *	  target size of the MRU list.
3900168404Spjd	 */
3901168404Spjd	if (state == arc_mru_ghost) {
3902286766Smav		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3903209275Smm		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3904168404Spjd
3905208373Smm		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3906168404Spjd	} else if (state == arc_mfu_ghost) {
3907208373Smm		uint64_t delta;
3908208373Smm
3909286766Smav		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3910209275Smm		mult = MIN(mult, 10);
3911168404Spjd
3912208373Smm		delta = MIN(bytes * mult, arc_p);
3913208373Smm		arc_p = MAX(arc_p_min, arc_p - delta);
3914168404Spjd	}
3915168404Spjd	ASSERT((int64_t)arc_p >= 0);
3916168404Spjd
3917168404Spjd	if (arc_reclaim_needed()) {
3918286763Smav		cv_signal(&arc_reclaim_thread_cv);
3919168404Spjd		return;
3920168404Spjd	}
3921168404Spjd
3922168404Spjd	if (arc_no_grow)
3923168404Spjd		return;
3924168404Spjd
3925168404Spjd	if (arc_c >= arc_c_max)
3926168404Spjd		return;
3927168404Spjd
3928168404Spjd	/*
3929168404Spjd	 * If we're within (2 * maxblocksize) bytes of the target
3930168404Spjd	 * cache size, increment the target cache size
3931168404Spjd	 */
3932168404Spjd	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3933272483Ssmh		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3934168404Spjd		atomic_add_64(&arc_c, (int64_t)bytes);
3935168404Spjd		if (arc_c > arc_c_max)
3936168404Spjd			arc_c = arc_c_max;
3937168404Spjd		else if (state == arc_anon)
3938168404Spjd			atomic_add_64(&arc_p, (int64_t)bytes);
3939168404Spjd		if (arc_p > arc_c)
3940168404Spjd			arc_p = arc_c;
3941168404Spjd	}
3942168404Spjd	ASSERT((int64_t)arc_p >= 0);
3943168404Spjd}
3944168404Spjd
3945168404Spjd/*
3946286763Smav * Check if arc_size has grown past our upper threshold, determined by
3947286763Smav * zfs_arc_overflow_shift.
3948168404Spjd */
3949286763Smavstatic boolean_t
3950286763Smavarc_is_overflowing(void)
3951168404Spjd{
3952286763Smav	/* Always allow at least one block of overflow */
3953286763Smav	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3954286763Smav	    arc_c >> zfs_arc_overflow_shift);
3955185029Spjd
3956286763Smav	return (arc_size >= arc_c + overflow);
3957168404Spjd}
3958168404Spjd
3959168404Spjd/*
3960286763Smav * The buffer, supplied as the first argument, needs a data block. If we
3961286763Smav * are hitting the hard limit for the cache size, we must sleep, waiting
3962286763Smav * for the eviction thread to catch up. If we're past the target size
3963286763Smav * but below the hard limit, we'll only signal the reclaim thread and
3964286763Smav * continue on.
3965168404Spjd */
3966168404Spjdstatic void
3967168404Spjdarc_get_data_buf(arc_buf_t *buf)
3968168404Spjd{
3969286570Smav	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3970168404Spjd	uint64_t		size = buf->b_hdr->b_size;
3971286570Smav	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3972168404Spjd
3973168404Spjd	arc_adapt(size, state);
3974168404Spjd
3975168404Spjd	/*
3976286763Smav	 * If arc_size is currently overflowing, and has grown past our
3977286763Smav	 * upper limit, we must be adding data faster than the evict
3978286763Smav	 * thread can evict. Thus, to ensure we don't compound the
3979286763Smav	 * problem by adding more data and forcing arc_size to grow even
3980286763Smav	 * further past it's target size, we halt and wait for the
3981286763Smav	 * eviction thread to catch up.
3982286763Smav	 *
3983286763Smav	 * It's also possible that the reclaim thread is unable to evict
3984286763Smav	 * enough buffers to get arc_size below the overflow limit (e.g.
3985286763Smav	 * due to buffers being un-evictable, or hash lock collisions).
3986286763Smav	 * In this case, we want to proceed regardless if we're
3987286763Smav	 * overflowing; thus we don't use a while loop here.
3988168404Spjd	 */
3989286763Smav	if (arc_is_overflowing()) {
3990286763Smav		mutex_enter(&arc_reclaim_lock);
3991286763Smav
3992286763Smav		/*
3993286763Smav		 * Now that we've acquired the lock, we may no longer be
3994286763Smav		 * over the overflow limit, lets check.
3995286763Smav		 *
3996286763Smav		 * We're ignoring the case of spurious wake ups. If that
3997286763Smav		 * were to happen, it'd let this thread consume an ARC
3998286763Smav		 * buffer before it should have (i.e. before we're under
3999286763Smav		 * the overflow limit and were signalled by the reclaim
4000286763Smav		 * thread). As long as that is a rare occurrence, it
4001286763Smav		 * shouldn't cause any harm.
4002286763Smav		 */
4003286763Smav		if (arc_is_overflowing()) {
4004286763Smav			cv_signal(&arc_reclaim_thread_cv);
4005286763Smav			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4006168404Spjd		}
4007286763Smav
4008286763Smav		mutex_exit(&arc_reclaim_lock);
4009168404Spjd	}
4010168404Spjd
4011286763Smav	if (type == ARC_BUFC_METADATA) {
4012286763Smav		buf->b_data = zio_buf_alloc(size);
4013286763Smav		arc_space_consume(size, ARC_SPACE_META);
4014168404Spjd	} else {
4015286763Smav		ASSERT(type == ARC_BUFC_DATA);
4016286763Smav		buf->b_data = zio_data_buf_alloc(size);
4017286763Smav		arc_space_consume(size, ARC_SPACE_DATA);
4018168404Spjd	}
4019286763Smav
4020168404Spjd	/*
4021168404Spjd	 * Update the state size.  Note that ghost states have a
4022168404Spjd	 * "ghost size" and so don't need to be updated.
4023168404Spjd	 */
4024286570Smav	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
4025168404Spjd		arc_buf_hdr_t *hdr = buf->b_hdr;
4026286766Smav		arc_state_t *state = hdr->b_l1hdr.b_state;
4027168404Spjd
4028286766Smav		(void) refcount_add_many(&state->arcs_size, size, buf);
4029286763Smav
4030286763Smav		/*
4031286763Smav		 * If this is reached via arc_read, the link is
4032286763Smav		 * protected by the hash lock. If reached via
4033286763Smav		 * arc_buf_alloc, the header should not be accessed by
4034286763Smav		 * any other thread. And, if reached via arc_read_done,
4035286763Smav		 * the hash lock will protect it if it's found in the
4036286763Smav		 * hash table; otherwise no other thread should be
4037286763Smav		 * trying to [add|remove]_reference it.
4038286763Smav		 */
4039286763Smav		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4040286570Smav			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4041286570Smav			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
4042286570Smav			    size);
4043168404Spjd		}
4044168404Spjd		/*
4045168404Spjd		 * If we are growing the cache, and we are adding anonymous
4046168404Spjd		 * data, and we have outgrown arc_p, update arc_p
4047168404Spjd		 */
4048286570Smav		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4049286766Smav		    (refcount_count(&arc_anon->arcs_size) +
4050286766Smav		    refcount_count(&arc_mru->arcs_size) > arc_p))
4051168404Spjd			arc_p = MIN(arc_c, arc_p + size);
4052168404Spjd	}
4053205231Skmacy	ARCSTAT_BUMP(arcstat_allocated);
4054168404Spjd}
4055168404Spjd
4056168404Spjd/*
4057168404Spjd * This routine is called whenever a buffer is accessed.
4058168404Spjd * NOTE: the hash lock is dropped in this function.
4059168404Spjd */
4060168404Spjdstatic void
4061275811Sdelphijarc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4062168404Spjd{
4063219089Spjd	clock_t now;
4064219089Spjd
4065168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
4066286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
4067168404Spjd
4068286570Smav	if (hdr->b_l1hdr.b_state == arc_anon) {
4069168404Spjd		/*
4070168404Spjd		 * This buffer is not in the cache, and does not
4071168404Spjd		 * appear in our "ghost" list.  Add the new buffer
4072168404Spjd		 * to the MRU state.
4073168404Spjd		 */
4074168404Spjd
4075286570Smav		ASSERT0(hdr->b_l1hdr.b_arc_access);
4076286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4077275811Sdelphij		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4078275811Sdelphij		arc_change_state(arc_mru, hdr, hash_lock);
4079168404Spjd
4080286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4081219089Spjd		now = ddi_get_lbolt();
4082219089Spjd
4083168404Spjd		/*
4084168404Spjd		 * If this buffer is here because of a prefetch, then either:
4085168404Spjd		 * - clear the flag if this is a "referencing" read
4086168404Spjd		 *   (any subsequent access will bump this into the MFU state).
4087168404Spjd		 * or
4088168404Spjd		 * - move the buffer to the head of the list if this is
4089168404Spjd		 *   another prefetch (to make it less likely to be evicted).
4090168404Spjd		 */
4091286570Smav		if (HDR_PREFETCH(hdr)) {
4092286570Smav			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4093286763Smav				/* link protected by hash lock */
4094286763Smav				ASSERT(multilist_link_active(
4095286570Smav				    &hdr->b_l1hdr.b_arc_node));
4096168404Spjd			} else {
4097275811Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4098168404Spjd				ARCSTAT_BUMP(arcstat_mru_hits);
4099168404Spjd			}
4100286570Smav			hdr->b_l1hdr.b_arc_access = now;
4101168404Spjd			return;
4102168404Spjd		}
4103168404Spjd
4104168404Spjd		/*
4105168404Spjd		 * This buffer has been "accessed" only once so far,
4106168404Spjd		 * but it is still in the cache. Move it to the MFU
4107168404Spjd		 * state.
4108168404Spjd		 */
4109286570Smav		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4110168404Spjd			/*
4111168404Spjd			 * More than 125ms have passed since we
4112168404Spjd			 * instantiated this buffer.  Move it to the
4113168404Spjd			 * most frequently used state.
4114168404Spjd			 */
4115286570Smav			hdr->b_l1hdr.b_arc_access = now;
4116275811Sdelphij			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4117275811Sdelphij			arc_change_state(arc_mfu, hdr, hash_lock);
4118168404Spjd		}
4119168404Spjd		ARCSTAT_BUMP(arcstat_mru_hits);
4120286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4121168404Spjd		arc_state_t	*new_state;
4122168404Spjd		/*
4123168404Spjd		 * This buffer has been "accessed" recently, but
4124168404Spjd		 * was evicted from the cache.  Move it to the
4125168404Spjd		 * MFU state.
4126168404Spjd		 */
4127168404Spjd
4128286570Smav		if (HDR_PREFETCH(hdr)) {
4129168404Spjd			new_state = arc_mru;
4130286570Smav			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4131275811Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4132275811Sdelphij			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4133168404Spjd		} else {
4134168404Spjd			new_state = arc_mfu;
4135275811Sdelphij			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4136168404Spjd		}
4137168404Spjd
4138286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4139275811Sdelphij		arc_change_state(new_state, hdr, hash_lock);
4140168404Spjd
4141168404Spjd		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4142286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4143168404Spjd		/*
4144168404Spjd		 * This buffer has been accessed more than once and is
4145168404Spjd		 * still in the cache.  Keep it in the MFU state.
4146168404Spjd		 *
4147168404Spjd		 * NOTE: an add_reference() that occurred when we did
4148168404Spjd		 * the arc_read() will have kicked this off the list.
4149168404Spjd		 * If it was a prefetch, we will explicitly move it to
4150168404Spjd		 * the head of the list now.
4151168404Spjd		 */
4152286570Smav		if ((HDR_PREFETCH(hdr)) != 0) {
4153286570Smav			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4154286763Smav			/* link protected by hash_lock */
4155286763Smav			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4156168404Spjd		}
4157168404Spjd		ARCSTAT_BUMP(arcstat_mfu_hits);
4158286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4159286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4160168404Spjd		arc_state_t	*new_state = arc_mfu;
4161168404Spjd		/*
4162168404Spjd		 * This buffer has been accessed more than once but has
4163168404Spjd		 * been evicted from the cache.  Move it back to the
4164168404Spjd		 * MFU state.
4165168404Spjd		 */
4166168404Spjd
4167286570Smav		if (HDR_PREFETCH(hdr)) {
4168168404Spjd			/*
4169168404Spjd			 * This is a prefetch access...
4170168404Spjd			 * move this block back to the MRU state.
4171168404Spjd			 */
4172286570Smav			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4173168404Spjd			new_state = arc_mru;
4174168404Spjd		}
4175168404Spjd
4176286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4177275811Sdelphij		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4178275811Sdelphij		arc_change_state(new_state, hdr, hash_lock);
4179168404Spjd
4180168404Spjd		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4181286570Smav	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4182185029Spjd		/*
4183185029Spjd		 * This buffer is on the 2nd Level ARC.
4184185029Spjd		 */
4185185029Spjd
4186286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4187275811Sdelphij		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4188275811Sdelphij		arc_change_state(arc_mfu, hdr, hash_lock);
4189168404Spjd	} else {
4190168404Spjd		ASSERT(!"invalid arc state");
4191168404Spjd	}
4192168404Spjd}
4193168404Spjd
4194168404Spjd/* a generic arc_done_func_t which you can use */
4195168404Spjd/* ARGSUSED */
4196168404Spjdvoid
4197168404Spjdarc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4198168404Spjd{
4199219089Spjd	if (zio == NULL || zio->io_error == 0)
4200219089Spjd		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4201248571Smm	VERIFY(arc_buf_remove_ref(buf, arg));
4202168404Spjd}
4203168404Spjd
4204185029Spjd/* a generic arc_done_func_t */
4205168404Spjdvoid
4206168404Spjdarc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4207168404Spjd{
4208168404Spjd	arc_buf_t **bufp = arg;
4209168404Spjd	if (zio && zio->io_error) {
4210248571Smm		VERIFY(arc_buf_remove_ref(buf, arg));
4211168404Spjd		*bufp = NULL;
4212168404Spjd	} else {
4213168404Spjd		*bufp = buf;
4214219089Spjd		ASSERT(buf->b_data);
4215168404Spjd	}
4216168404Spjd}
4217168404Spjd
4218168404Spjdstatic void
4219168404Spjdarc_read_done(zio_t *zio)
4220168404Spjd{
4221268075Sdelphij	arc_buf_hdr_t	*hdr;
4222168404Spjd	arc_buf_t	*buf;
4223168404Spjd	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4224268075Sdelphij	kmutex_t	*hash_lock = NULL;
4225168404Spjd	arc_callback_t	*callback_list, *acb;
4226168404Spjd	int		freeable = FALSE;
4227168404Spjd
4228168404Spjd	buf = zio->io_private;
4229168404Spjd	hdr = buf->b_hdr;
4230168404Spjd
4231168404Spjd	/*
4232168404Spjd	 * The hdr was inserted into hash-table and removed from lists
4233168404Spjd	 * prior to starting I/O.  We should find this header, since
4234168404Spjd	 * it's in the hash table, and it should be legit since it's
4235168404Spjd	 * not possible to evict it during the I/O.  The only possible
4236168404Spjd	 * reason for it not to be found is if we were freed during the
4237168404Spjd	 * read.
4238168404Spjd	 */
4239268075Sdelphij	if (HDR_IN_HASH_TABLE(hdr)) {
4240268075Sdelphij		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4241268075Sdelphij		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4242268075Sdelphij		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4243268075Sdelphij		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4244268075Sdelphij		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4245168404Spjd
4246268075Sdelphij		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4247268075Sdelphij		    &hash_lock);
4248168404Spjd
4249268075Sdelphij		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4250268075Sdelphij		    hash_lock == NULL) ||
4251268075Sdelphij		    (found == hdr &&
4252268075Sdelphij		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4253268075Sdelphij		    (found == hdr && HDR_L2_READING(hdr)));
4254268075Sdelphij	}
4255268075Sdelphij
4256275811Sdelphij	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4257286570Smav	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4258275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4259206796Spjd
4260168404Spjd	/* byteswap if necessary */
4261286570Smav	callback_list = hdr->b_l1hdr.b_acb;
4262168404Spjd	ASSERT(callback_list != NULL);
4263209101Smm	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4264236884Smm		dmu_object_byteswap_t bswap =
4265236884Smm		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4266185029Spjd		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4267185029Spjd		    byteswap_uint64_array :
4268236884Smm		    dmu_ot_byteswap[bswap].ob_func;
4269185029Spjd		func(buf->b_data, hdr->b_size);
4270185029Spjd	}
4271168404Spjd
4272185029Spjd	arc_cksum_compute(buf, B_FALSE);
4273240133Smm#ifdef illumos
4274240133Smm	arc_buf_watch(buf);
4275277300Ssmh#endif
4276168404Spjd
4277286570Smav	if (hash_lock && zio->io_error == 0 &&
4278286570Smav	    hdr->b_l1hdr.b_state == arc_anon) {
4279219089Spjd		/*
4280219089Spjd		 * Only call arc_access on anonymous buffers.  This is because
4281219089Spjd		 * if we've issued an I/O for an evicted buffer, we've already
4282219089Spjd		 * called arc_access (to prevent any simultaneous readers from
4283219089Spjd		 * getting confused).
4284219089Spjd		 */
4285219089Spjd		arc_access(hdr, hash_lock);
4286219089Spjd	}
4287219089Spjd
4288168404Spjd	/* create copies of the data buffer for the callers */
4289168404Spjd	abuf = buf;
4290168404Spjd	for (acb = callback_list; acb; acb = acb->acb_next) {
4291168404Spjd		if (acb->acb_done) {
4292242845Sdelphij			if (abuf == NULL) {
4293242845Sdelphij				ARCSTAT_BUMP(arcstat_duplicate_reads);
4294168404Spjd				abuf = arc_buf_clone(buf);
4295242845Sdelphij			}
4296168404Spjd			acb->acb_buf = abuf;
4297168404Spjd			abuf = NULL;
4298168404Spjd		}
4299168404Spjd	}
4300286570Smav	hdr->b_l1hdr.b_acb = NULL;
4301275811Sdelphij	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4302168404Spjd	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4303219089Spjd	if (abuf == buf) {
4304219089Spjd		ASSERT(buf->b_efunc == NULL);
4305286570Smav		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4306275811Sdelphij		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4307219089Spjd	}
4308168404Spjd
4309286570Smav	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4310286570Smav	    callback_list != NULL);
4311168404Spjd
4312168404Spjd	if (zio->io_error != 0) {
4313275811Sdelphij		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4314286570Smav		if (hdr->b_l1hdr.b_state != arc_anon)
4315168404Spjd			arc_change_state(arc_anon, hdr, hash_lock);
4316168404Spjd		if (HDR_IN_HASH_TABLE(hdr))
4317168404Spjd			buf_hash_remove(hdr);
4318286570Smav		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4319168404Spjd	}
4320168404Spjd
4321168404Spjd	/*
4322168404Spjd	 * Broadcast before we drop the hash_lock to avoid the possibility
4323168404Spjd	 * that the hdr (and hence the cv) might be freed before we get to
4324168404Spjd	 * the cv_broadcast().
4325168404Spjd	 */
4326286570Smav	cv_broadcast(&hdr->b_l1hdr.b_cv);
4327168404Spjd
4328286570Smav	if (hash_lock != NULL) {
4329168404Spjd		mutex_exit(hash_lock);
4330168404Spjd	} else {
4331168404Spjd		/*
4332168404Spjd		 * This block was freed while we waited for the read to
4333168404Spjd		 * complete.  It has been removed from the hash table and
4334168404Spjd		 * moved to the anonymous state (so that it won't show up
4335168404Spjd		 * in the cache).
4336168404Spjd		 */
4337286570Smav		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4338286570Smav		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4339168404Spjd	}
4340168404Spjd
4341168404Spjd	/* execute each callback and free its structure */
4342168404Spjd	while ((acb = callback_list) != NULL) {
4343168404Spjd		if (acb->acb_done)
4344168404Spjd			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4345168404Spjd
4346168404Spjd		if (acb->acb_zio_dummy != NULL) {
4347168404Spjd			acb->acb_zio_dummy->io_error = zio->io_error;
4348168404Spjd			zio_nowait(acb->acb_zio_dummy);
4349168404Spjd		}
4350168404Spjd
4351168404Spjd		callback_list = acb->acb_next;
4352168404Spjd		kmem_free(acb, sizeof (arc_callback_t));
4353168404Spjd	}
4354168404Spjd
4355168404Spjd	if (freeable)
4356168404Spjd		arc_hdr_destroy(hdr);
4357168404Spjd}
4358168404Spjd
4359168404Spjd/*
4360286762Smav * "Read" the block at the specified DVA (in bp) via the
4361168404Spjd * cache.  If the block is found in the cache, invoke the provided
4362168404Spjd * callback immediately and return.  Note that the `zio' parameter
4363168404Spjd * in the callback will be NULL in this case, since no IO was
4364168404Spjd * required.  If the block is not in the cache pass the read request
4365168404Spjd * on to the spa with a substitute callback function, so that the
4366168404Spjd * requested block will be added to the cache.
4367168404Spjd *
4368168404Spjd * If a read request arrives for a block that has a read in-progress,
4369168404Spjd * either wait for the in-progress read to complete (and return the
4370168404Spjd * results); or, if this is a read with a "done" func, add a record
4371168404Spjd * to the read to invoke the "done" func when the read completes,
4372168404Spjd * and return; or just return.
4373168404Spjd *
4374168404Spjd * arc_read_done() will invoke all the requested "done" functions
4375168404Spjd * for readers of this block.
4376168404Spjd */
4377168404Spjdint
4378246666Smmarc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4379275811Sdelphij    void *private, zio_priority_t priority, int zio_flags,
4380275811Sdelphij    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4381168404Spjd{
4382268075Sdelphij	arc_buf_hdr_t *hdr = NULL;
4383247187Smm	arc_buf_t *buf = NULL;
4384268075Sdelphij	kmutex_t *hash_lock = NULL;
4385185029Spjd	zio_t *rzio;
4386228103Smm	uint64_t guid = spa_load_guid(spa);
4387168404Spjd
4388268075Sdelphij	ASSERT(!BP_IS_EMBEDDED(bp) ||
4389268075Sdelphij	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4390268075Sdelphij
4391168404Spjdtop:
4392268075Sdelphij	if (!BP_IS_EMBEDDED(bp)) {
4393268075Sdelphij		/*
4394268075Sdelphij		 * Embedded BP's have no DVA and require no I/O to "read".
4395268075Sdelphij		 * Create an anonymous arc buf to back it.
4396268075Sdelphij		 */
4397268075Sdelphij		hdr = buf_hash_find(guid, bp, &hash_lock);
4398268075Sdelphij	}
4399168404Spjd
4400286570Smav	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4401268075Sdelphij
4402275811Sdelphij		*arc_flags |= ARC_FLAG_CACHED;
4403168404Spjd
4404168404Spjd		if (HDR_IO_IN_PROGRESS(hdr)) {
4405168404Spjd
4406287702Sdelphij			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4407287702Sdelphij			    priority == ZIO_PRIORITY_SYNC_READ) {
4408287702Sdelphij				/*
4409287702Sdelphij				 * This sync read must wait for an
4410287702Sdelphij				 * in-progress async read (e.g. a predictive
4411287702Sdelphij				 * prefetch).  Async reads are queued
4412287702Sdelphij				 * separately at the vdev_queue layer, so
4413287702Sdelphij				 * this is a form of priority inversion.
4414287702Sdelphij				 * Ideally, we would "inherit" the demand
4415287702Sdelphij				 * i/o's priority by moving the i/o from
4416287702Sdelphij				 * the async queue to the synchronous queue,
4417287702Sdelphij				 * but there is currently no mechanism to do
4418287702Sdelphij				 * so.  Track this so that we can evaluate
4419287702Sdelphij				 * the magnitude of this potential performance
4420287702Sdelphij				 * problem.
4421287702Sdelphij				 *
4422287702Sdelphij				 * Note that if the prefetch i/o is already
4423287702Sdelphij				 * active (has been issued to the device),
4424287702Sdelphij				 * the prefetch improved performance, because
4425287702Sdelphij				 * we issued it sooner than we would have
4426287702Sdelphij				 * without the prefetch.
4427287702Sdelphij				 */
4428287702Sdelphij				DTRACE_PROBE1(arc__sync__wait__for__async,
4429287702Sdelphij				    arc_buf_hdr_t *, hdr);
4430287702Sdelphij				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4431287702Sdelphij			}
4432287702Sdelphij			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4433287702Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4434287702Sdelphij			}
4435287702Sdelphij
4436275811Sdelphij			if (*arc_flags & ARC_FLAG_WAIT) {
4437286570Smav				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4438168404Spjd				mutex_exit(hash_lock);
4439168404Spjd				goto top;
4440168404Spjd			}
4441275811Sdelphij			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4442168404Spjd
4443168404Spjd			if (done) {
4444287702Sdelphij				arc_callback_t *acb = NULL;
4445168404Spjd
4446168404Spjd				acb = kmem_zalloc(sizeof (arc_callback_t),
4447168404Spjd				    KM_SLEEP);
4448168404Spjd				acb->acb_done = done;
4449168404Spjd				acb->acb_private = private;
4450168404Spjd				if (pio != NULL)
4451168404Spjd					acb->acb_zio_dummy = zio_null(pio,
4452209962Smm					    spa, NULL, NULL, NULL, zio_flags);
4453168404Spjd
4454168404Spjd				ASSERT(acb->acb_done != NULL);
4455286570Smav				acb->acb_next = hdr->b_l1hdr.b_acb;
4456286570Smav				hdr->b_l1hdr.b_acb = acb;
4457168404Spjd				add_reference(hdr, hash_lock, private);
4458168404Spjd				mutex_exit(hash_lock);
4459168404Spjd				return (0);
4460168404Spjd			}
4461168404Spjd			mutex_exit(hash_lock);
4462168404Spjd			return (0);
4463168404Spjd		}
4464168404Spjd
4465286570Smav		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4466286570Smav		    hdr->b_l1hdr.b_state == arc_mfu);
4467168404Spjd
4468168404Spjd		if (done) {
4469287702Sdelphij			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4470287702Sdelphij				/*
4471287702Sdelphij				 * This is a demand read which does not have to
4472287702Sdelphij				 * wait for i/o because we did a predictive
4473287702Sdelphij				 * prefetch i/o for it, which has completed.
4474287702Sdelphij				 */
4475287702Sdelphij				DTRACE_PROBE1(
4476287702Sdelphij				    arc__demand__hit__predictive__prefetch,
4477287702Sdelphij				    arc_buf_hdr_t *, hdr);
4478287702Sdelphij				ARCSTAT_BUMP(
4479287702Sdelphij				    arcstat_demand_hit_predictive_prefetch);
4480287702Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4481287702Sdelphij			}
4482168404Spjd			add_reference(hdr, hash_lock, private);
4483168404Spjd			/*
4484168404Spjd			 * If this block is already in use, create a new
4485168404Spjd			 * copy of the data so that we will be guaranteed
4486168404Spjd			 * that arc_release() will always succeed.
4487168404Spjd			 */
4488286570Smav			buf = hdr->b_l1hdr.b_buf;
4489168404Spjd			ASSERT(buf);
4490168404Spjd			ASSERT(buf->b_data);
4491168404Spjd			if (HDR_BUF_AVAILABLE(hdr)) {
4492168404Spjd				ASSERT(buf->b_efunc == NULL);
4493275811Sdelphij				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4494168404Spjd			} else {
4495168404Spjd				buf = arc_buf_clone(buf);
4496168404Spjd			}
4497219089Spjd
4498275811Sdelphij		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4499286570Smav		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4500275811Sdelphij			hdr->b_flags |= ARC_FLAG_PREFETCH;
4501168404Spjd		}
4502168404Spjd		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4503168404Spjd		arc_access(hdr, hash_lock);
4504275811Sdelphij		if (*arc_flags & ARC_FLAG_L2CACHE)
4505275811Sdelphij			hdr->b_flags |= ARC_FLAG_L2CACHE;
4506275811Sdelphij		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4507275811Sdelphij			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4508168404Spjd		mutex_exit(hash_lock);
4509168404Spjd		ARCSTAT_BUMP(arcstat_hits);
4510286570Smav		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4511286570Smav		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4512168404Spjd		    data, metadata, hits);
4513168404Spjd
4514168404Spjd		if (done)
4515168404Spjd			done(NULL, buf, private);
4516168404Spjd	} else {
4517168404Spjd		uint64_t size = BP_GET_LSIZE(bp);
4518268075Sdelphij		arc_callback_t *acb;
4519185029Spjd		vdev_t *vd = NULL;
4520247187Smm		uint64_t addr = 0;
4521208373Smm		boolean_t devw = B_FALSE;
4522258389Savg		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4523286570Smav		int32_t b_asize = 0;
4524168404Spjd
4525168404Spjd		if (hdr == NULL) {
4526168404Spjd			/* this block is not in the cache */
4527268075Sdelphij			arc_buf_hdr_t *exists = NULL;
4528168404Spjd			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4529168404Spjd			buf = arc_buf_alloc(spa, size, private, type);
4530168404Spjd			hdr = buf->b_hdr;
4531268075Sdelphij			if (!BP_IS_EMBEDDED(bp)) {
4532268075Sdelphij				hdr->b_dva = *BP_IDENTITY(bp);
4533268075Sdelphij				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4534268075Sdelphij				exists = buf_hash_insert(hdr, &hash_lock);
4535268075Sdelphij			}
4536268075Sdelphij			if (exists != NULL) {
4537168404Spjd				/* somebody beat us to the hash insert */
4538168404Spjd				mutex_exit(hash_lock);
4539219089Spjd				buf_discard_identity(hdr);
4540168404Spjd				(void) arc_buf_remove_ref(buf, private);
4541168404Spjd				goto top; /* restart the IO request */
4542168404Spjd			}
4543275811Sdelphij
4544287702Sdelphij			/*
4545287702Sdelphij			 * If there is a callback, we pass our reference to
4546287702Sdelphij			 * it; otherwise we remove our reference.
4547287702Sdelphij			 */
4548287702Sdelphij			if (done == NULL) {
4549168404Spjd				(void) remove_reference(hdr, hash_lock,
4550168404Spjd				    private);
4551287702Sdelphij			}
4552287702Sdelphij			if (*arc_flags & ARC_FLAG_PREFETCH)
4553275811Sdelphij				hdr->b_flags |= ARC_FLAG_PREFETCH;
4554275811Sdelphij			if (*arc_flags & ARC_FLAG_L2CACHE)
4555275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2CACHE;
4556275811Sdelphij			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4557275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4558168404Spjd			if (BP_GET_LEVEL(bp) > 0)
4559275811Sdelphij				hdr->b_flags |= ARC_FLAG_INDIRECT;
4560168404Spjd		} else {
4561286570Smav			/*
4562286570Smav			 * This block is in the ghost cache. If it was L2-only
4563286570Smav			 * (and thus didn't have an L1 hdr), we realloc the
4564286570Smav			 * header to add an L1 hdr.
4565286570Smav			 */
4566286570Smav			if (!HDR_HAS_L1HDR(hdr)) {
4567286570Smav				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4568286570Smav				    hdr_full_cache);
4569286570Smav			}
4570286570Smav
4571286570Smav			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4572168404Spjd			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4573286570Smav			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4574286763Smav			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4575168404Spjd
4576287702Sdelphij			/*
4577287702Sdelphij			 * If there is a callback, we pass a reference to it.
4578287702Sdelphij			 */
4579287702Sdelphij			if (done != NULL)
4580287702Sdelphij				add_reference(hdr, hash_lock, private);
4581275811Sdelphij			if (*arc_flags & ARC_FLAG_PREFETCH)
4582275811Sdelphij				hdr->b_flags |= ARC_FLAG_PREFETCH;
4583275811Sdelphij			if (*arc_flags & ARC_FLAG_L2CACHE)
4584275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2CACHE;
4585275811Sdelphij			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4586275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4587185029Spjd			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4588168404Spjd			buf->b_hdr = hdr;
4589168404Spjd			buf->b_data = NULL;
4590168404Spjd			buf->b_efunc = NULL;
4591168404Spjd			buf->b_private = NULL;
4592168404Spjd			buf->b_next = NULL;
4593286570Smav			hdr->b_l1hdr.b_buf = buf;
4594286570Smav			ASSERT0(hdr->b_l1hdr.b_datacnt);
4595286570Smav			hdr->b_l1hdr.b_datacnt = 1;
4596219089Spjd			arc_get_data_buf(buf);
4597219089Spjd			arc_access(hdr, hash_lock);
4598168404Spjd		}
4599168404Spjd
4600287702Sdelphij		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4601287702Sdelphij			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4602286570Smav		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4603219089Spjd
4604168404Spjd		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4605168404Spjd		acb->acb_done = done;
4606168404Spjd		acb->acb_private = private;
4607168404Spjd
4608286570Smav		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4609286570Smav		hdr->b_l1hdr.b_acb = acb;
4610275811Sdelphij		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4611168404Spjd
4612286570Smav		if (HDR_HAS_L2HDR(hdr) &&
4613286570Smav		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4614286570Smav			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4615286570Smav			addr = hdr->b_l2hdr.b_daddr;
4616287706Sdelphij			b_compress = hdr->b_l2hdr.b_compress;
4617286570Smav			b_asize = hdr->b_l2hdr.b_asize;
4618185029Spjd			/*
4619185029Spjd			 * Lock out device removal.
4620185029Spjd			 */
4621185029Spjd			if (vdev_is_dead(vd) ||
4622185029Spjd			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4623185029Spjd				vd = NULL;
4624185029Spjd		}
4625185029Spjd
4626268075Sdelphij		if (hash_lock != NULL)
4627268075Sdelphij			mutex_exit(hash_lock);
4628168404Spjd
4629251629Sdelphij		/*
4630251629Sdelphij		 * At this point, we have a level 1 cache miss.  Try again in
4631251629Sdelphij		 * L2ARC if possible.
4632251629Sdelphij		 */
4633168404Spjd		ASSERT3U(hdr->b_size, ==, size);
4634219089Spjd		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4635268123Sdelphij		    uint64_t, size, zbookmark_phys_t *, zb);
4636168404Spjd		ARCSTAT_BUMP(arcstat_misses);
4637286570Smav		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4638286570Smav		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4639168404Spjd		    data, metadata, misses);
4640228392Spjd#ifdef _KERNEL
4641297633Strasz#ifdef RACCT
4642297633Strasz		if (racct_enable) {
4643297633Strasz			PROC_LOCK(curproc);
4644297633Strasz			racct_add_force(curproc, RACCT_READBPS, size);
4645297633Strasz			racct_add_force(curproc, RACCT_READIOPS, 1);
4646297633Strasz			PROC_UNLOCK(curproc);
4647297633Strasz		}
4648297633Strasz#endif /* RACCT */
4649228392Spjd		curthread->td_ru.ru_inblock++;
4650228392Spjd#endif
4651168404Spjd
4652287702Sdelphij		if (priority == ZIO_PRIORITY_ASYNC_READ)
4653287702Sdelphij			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4654287702Sdelphij		else
4655287702Sdelphij			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4656287702Sdelphij
4657208373Smm		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4658185029Spjd			/*
4659185029Spjd			 * Read from the L2ARC if the following are true:
4660185029Spjd			 * 1. The L2ARC vdev was previously cached.
4661185029Spjd			 * 2. This buffer still has L2ARC metadata.
4662185029Spjd			 * 3. This buffer isn't currently writing to the L2ARC.
4663185029Spjd			 * 4. The L2ARC entry wasn't evicted, which may
4664185029Spjd			 *    also have invalidated the vdev.
4665208373Smm			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4666185029Spjd			 */
4667286570Smav			if (HDR_HAS_L2HDR(hdr) &&
4668208373Smm			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4669208373Smm			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4670185029Spjd				l2arc_read_callback_t *cb;
4671297848Savg				void* b_data;
4672185029Spjd
4673185029Spjd				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4674185029Spjd				ARCSTAT_BUMP(arcstat_l2_hits);
4675185029Spjd
4676185029Spjd				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4677185029Spjd				    KM_SLEEP);
4678185029Spjd				cb->l2rcb_buf = buf;
4679185029Spjd				cb->l2rcb_spa = spa;
4680185029Spjd				cb->l2rcb_bp = *bp;
4681185029Spjd				cb->l2rcb_zb = *zb;
4682185029Spjd				cb->l2rcb_flags = zio_flags;
4683258389Savg				cb->l2rcb_compress = b_compress;
4684297848Savg				if (b_asize > hdr->b_size) {
4685297848Savg					ASSERT3U(b_compress, ==,
4686297848Savg					    ZIO_COMPRESS_OFF);
4687297848Savg					b_data = zio_data_buf_alloc(b_asize);
4688297848Savg					cb->l2rcb_data = b_data;
4689297848Savg				} else {
4690297848Savg					b_data = buf->b_data;
4691297848Savg				}
4692185029Spjd
4693247187Smm				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4694247187Smm				    addr + size < vd->vdev_psize -
4695247187Smm				    VDEV_LABEL_END_SIZE);
4696247187Smm
4697185029Spjd				/*
4698185029Spjd				 * l2arc read.  The SCL_L2ARC lock will be
4699185029Spjd				 * released by l2arc_read_done().
4700251478Sdelphij				 * Issue a null zio if the underlying buffer
4701251478Sdelphij				 * was squashed to zero size by compression.
4702185029Spjd				 */
4703258389Savg				if (b_compress == ZIO_COMPRESS_EMPTY) {
4704297848Savg					ASSERT3U(b_asize, ==, 0);
4705251478Sdelphij					rzio = zio_null(pio, spa, vd,
4706251478Sdelphij					    l2arc_read_done, cb,
4707251478Sdelphij					    zio_flags | ZIO_FLAG_DONT_CACHE |
4708251478Sdelphij					    ZIO_FLAG_CANFAIL |
4709251478Sdelphij					    ZIO_FLAG_DONT_PROPAGATE |
4710251478Sdelphij					    ZIO_FLAG_DONT_RETRY);
4711251478Sdelphij				} else {
4712251478Sdelphij					rzio = zio_read_phys(pio, vd, addr,
4713297848Savg					    b_asize, b_data,
4714258389Savg					    ZIO_CHECKSUM_OFF,
4715251478Sdelphij					    l2arc_read_done, cb, priority,
4716251478Sdelphij					    zio_flags | ZIO_FLAG_DONT_CACHE |
4717251478Sdelphij					    ZIO_FLAG_CANFAIL |
4718251478Sdelphij					    ZIO_FLAG_DONT_PROPAGATE |
4719251478Sdelphij					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4720251478Sdelphij				}
4721185029Spjd				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4722185029Spjd				    zio_t *, rzio);
4723258389Savg				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4724185029Spjd
4725275811Sdelphij				if (*arc_flags & ARC_FLAG_NOWAIT) {
4726185029Spjd					zio_nowait(rzio);
4727185029Spjd					return (0);
4728185029Spjd				}
4729185029Spjd
4730275811Sdelphij				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4731185029Spjd				if (zio_wait(rzio) == 0)
4732185029Spjd					return (0);
4733185029Spjd
4734185029Spjd				/* l2arc read error; goto zio_read() */
4735185029Spjd			} else {
4736185029Spjd				DTRACE_PROBE1(l2arc__miss,
4737185029Spjd				    arc_buf_hdr_t *, hdr);
4738185029Spjd				ARCSTAT_BUMP(arcstat_l2_misses);
4739185029Spjd				if (HDR_L2_WRITING(hdr))
4740185029Spjd					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4741185029Spjd				spa_config_exit(spa, SCL_L2ARC, vd);
4742185029Spjd			}
4743208373Smm		} else {
4744208373Smm			if (vd != NULL)
4745208373Smm				spa_config_exit(spa, SCL_L2ARC, vd);
4746208373Smm			if (l2arc_ndev != 0) {
4747208373Smm				DTRACE_PROBE1(l2arc__miss,
4748208373Smm				    arc_buf_hdr_t *, hdr);
4749208373Smm				ARCSTAT_BUMP(arcstat_l2_misses);
4750208373Smm			}
4751185029Spjd		}
4752185029Spjd
4753168404Spjd		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4754185029Spjd		    arc_read_done, buf, priority, zio_flags, zb);
4755168404Spjd
4756275811Sdelphij		if (*arc_flags & ARC_FLAG_WAIT)
4757168404Spjd			return (zio_wait(rzio));
4758168404Spjd
4759275811Sdelphij		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4760168404Spjd		zio_nowait(rzio);
4761168404Spjd	}
4762168404Spjd	return (0);
4763168404Spjd}
4764168404Spjd
4765168404Spjdvoid
4766168404Spjdarc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4767168404Spjd{
4768168404Spjd	ASSERT(buf->b_hdr != NULL);
4769286570Smav	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4770286570Smav	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4771286570Smav	    func == NULL);
4772219089Spjd	ASSERT(buf->b_efunc == NULL);
4773219089Spjd	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4774219089Spjd
4775168404Spjd	buf->b_efunc = func;
4776168404Spjd	buf->b_private = private;
4777168404Spjd}
4778168404Spjd
4779168404Spjd/*
4780251520Sdelphij * Notify the arc that a block was freed, and thus will never be used again.
4781251520Sdelphij */
4782251520Sdelphijvoid
4783251520Sdelphijarc_freed(spa_t *spa, const blkptr_t *bp)
4784251520Sdelphij{
4785251520Sdelphij	arc_buf_hdr_t *hdr;
4786251520Sdelphij	kmutex_t *hash_lock;
4787251520Sdelphij	uint64_t guid = spa_load_guid(spa);
4788251520Sdelphij
4789268075Sdelphij	ASSERT(!BP_IS_EMBEDDED(bp));
4790268075Sdelphij
4791268075Sdelphij	hdr = buf_hash_find(guid, bp, &hash_lock);
4792251520Sdelphij	if (hdr == NULL)
4793251520Sdelphij		return;
4794251520Sdelphij	if (HDR_BUF_AVAILABLE(hdr)) {
4795286570Smav		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4796251520Sdelphij		add_reference(hdr, hash_lock, FTAG);
4797275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4798251520Sdelphij		mutex_exit(hash_lock);
4799251520Sdelphij
4800251520Sdelphij		arc_release(buf, FTAG);
4801251520Sdelphij		(void) arc_buf_remove_ref(buf, FTAG);
4802251520Sdelphij	} else {
4803251520Sdelphij		mutex_exit(hash_lock);
4804251520Sdelphij	}
4805251520Sdelphij
4806251520Sdelphij}
4807251520Sdelphij
4808251520Sdelphij/*
4809268858Sdelphij * Clear the user eviction callback set by arc_set_callback(), first calling
4810268858Sdelphij * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4811268858Sdelphij * clearing the callback may result in the arc_buf being destroyed.  However,
4812268858Sdelphij * it will not result in the *last* arc_buf being destroyed, hence the data
4813268858Sdelphij * will remain cached in the ARC. We make a copy of the arc buffer here so
4814268858Sdelphij * that we can process the callback without holding any locks.
4815268858Sdelphij *
4816268858Sdelphij * It's possible that the callback is already in the process of being cleared
4817268858Sdelphij * by another thread.  In this case we can not clear the callback.
4818268858Sdelphij *
4819268858Sdelphij * Returns B_TRUE if the callback was successfully called and cleared.
4820168404Spjd */
4821268858Sdelphijboolean_t
4822268858Sdelphijarc_clear_callback(arc_buf_t *buf)
4823168404Spjd{
4824168404Spjd	arc_buf_hdr_t *hdr;
4825168404Spjd	kmutex_t *hash_lock;
4826268858Sdelphij	arc_evict_func_t *efunc = buf->b_efunc;
4827268858Sdelphij	void *private = buf->b_private;
4828206796Spjd
4829219089Spjd	mutex_enter(&buf->b_evict_lock);
4830168404Spjd	hdr = buf->b_hdr;
4831168404Spjd	if (hdr == NULL) {
4832168404Spjd		/*
4833168404Spjd		 * We are in arc_do_user_evicts().
4834168404Spjd		 */
4835168404Spjd		ASSERT(buf->b_data == NULL);
4836219089Spjd		mutex_exit(&buf->b_evict_lock);
4837268858Sdelphij		return (B_FALSE);
4838185029Spjd	} else if (buf->b_data == NULL) {
4839185029Spjd		/*
4840185029Spjd		 * We are on the eviction list; process this buffer now
4841185029Spjd		 * but let arc_do_user_evicts() do the reaping.
4842185029Spjd		 */
4843185029Spjd		buf->b_efunc = NULL;
4844219089Spjd		mutex_exit(&buf->b_evict_lock);
4845268858Sdelphij		VERIFY0(efunc(private));
4846268858Sdelphij		return (B_TRUE);
4847168404Spjd	}
4848168404Spjd	hash_lock = HDR_LOCK(hdr);
4849168404Spjd	mutex_enter(hash_lock);
4850219089Spjd	hdr = buf->b_hdr;
4851219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4852168404Spjd
4853286570Smav	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4854286570Smav	    hdr->b_l1hdr.b_datacnt);
4855286570Smav	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4856286570Smav	    hdr->b_l1hdr.b_state == arc_mfu);
4857168404Spjd
4858268858Sdelphij	buf->b_efunc = NULL;
4859268858Sdelphij	buf->b_private = NULL;
4860168404Spjd
4861286570Smav	if (hdr->b_l1hdr.b_datacnt > 1) {
4862268858Sdelphij		mutex_exit(&buf->b_evict_lock);
4863286763Smav		arc_buf_destroy(buf, TRUE);
4864268858Sdelphij	} else {
4865286570Smav		ASSERT(buf == hdr->b_l1hdr.b_buf);
4866275811Sdelphij		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4867268858Sdelphij		mutex_exit(&buf->b_evict_lock);
4868268858Sdelphij	}
4869168404Spjd
4870168404Spjd	mutex_exit(hash_lock);
4871268858Sdelphij	VERIFY0(efunc(private));
4872268858Sdelphij	return (B_TRUE);
4873168404Spjd}
4874168404Spjd
4875168404Spjd/*
4876251629Sdelphij * Release this buffer from the cache, making it an anonymous buffer.  This
4877251629Sdelphij * must be done after a read and prior to modifying the buffer contents.
4878168404Spjd * If the buffer has more than one reference, we must make
4879185029Spjd * a new hdr for the buffer.
4880168404Spjd */
4881168404Spjdvoid
4882168404Spjdarc_release(arc_buf_t *buf, void *tag)
4883168404Spjd{
4884286570Smav	arc_buf_hdr_t *hdr = buf->b_hdr;
4885168404Spjd
4886219089Spjd	/*
4887219089Spjd	 * It would be nice to assert that if it's DMU metadata (level >
4888219089Spjd	 * 0 || it's the dnode file), then it must be syncing context.
4889219089Spjd	 * But we don't know that information at this level.
4890219089Spjd	 */
4891219089Spjd
4892219089Spjd	mutex_enter(&buf->b_evict_lock);
4893286776Smav
4894286776Smav	ASSERT(HDR_HAS_L1HDR(hdr));
4895286776Smav
4896286570Smav	/*
4897286570Smav	 * We don't grab the hash lock prior to this check, because if
4898286570Smav	 * the buffer's header is in the arc_anon state, it won't be
4899286570Smav	 * linked into the hash table.
4900286570Smav	 */
4901286570Smav	if (hdr->b_l1hdr.b_state == arc_anon) {
4902286570Smav		mutex_exit(&buf->b_evict_lock);
4903286570Smav		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4904286570Smav		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4905286570Smav		ASSERT(!HDR_HAS_L2HDR(hdr));
4906286570Smav		ASSERT(BUF_EMPTY(hdr));
4907286570Smav		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4908286570Smav		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4909286570Smav		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4910185029Spjd
4911286570Smav		ASSERT3P(buf->b_efunc, ==, NULL);
4912286570Smav		ASSERT3P(buf->b_private, ==, NULL);
4913168404Spjd
4914286570Smav		hdr->b_l1hdr.b_arc_access = 0;
4915286570Smav		arc_buf_thaw(buf);
4916286570Smav
4917286570Smav		return;
4918168404Spjd	}
4919168404Spjd
4920286570Smav	kmutex_t *hash_lock = HDR_LOCK(hdr);
4921286570Smav	mutex_enter(hash_lock);
4922286570Smav
4923286570Smav	/*
4924286570Smav	 * This assignment is only valid as long as the hash_lock is
4925286570Smav	 * held, we must be careful not to reference state or the
4926286570Smav	 * b_state field after dropping the lock.
4927286570Smav	 */
4928286570Smav	arc_state_t *state = hdr->b_l1hdr.b_state;
4929286570Smav	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4930286570Smav	ASSERT3P(state, !=, arc_anon);
4931286570Smav
4932286570Smav	/* this buffer is not on any list */
4933286570Smav	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4934286570Smav
4935286570Smav	if (HDR_HAS_L2HDR(hdr)) {
4936286570Smav		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4937286570Smav
4938286570Smav		/*
4939286598Smav		 * We have to recheck this conditional again now that
4940286598Smav		 * we're holding the l2ad_mtx to prevent a race with
4941286598Smav		 * another thread which might be concurrently calling
4942286598Smav		 * l2arc_evict(). In that case, l2arc_evict() might have
4943286598Smav		 * destroyed the header's L2 portion as we were waiting
4944286598Smav		 * to acquire the l2ad_mtx.
4945286570Smav		 */
4946286598Smav		if (HDR_HAS_L2HDR(hdr)) {
4947290191Savg			l2arc_trim(hdr);
4948286598Smav			arc_hdr_l2hdr_destroy(hdr);
4949286598Smav		}
4950286570Smav
4951286570Smav		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4952185029Spjd	}
4953185029Spjd
4954168404Spjd	/*
4955168404Spjd	 * Do we have more than one buf?
4956168404Spjd	 */
4957286570Smav	if (hdr->b_l1hdr.b_datacnt > 1) {
4958168404Spjd		arc_buf_hdr_t *nhdr;
4959168404Spjd		arc_buf_t **bufp;
4960168404Spjd		uint64_t blksz = hdr->b_size;
4961209962Smm		uint64_t spa = hdr->b_spa;
4962286570Smav		arc_buf_contents_t type = arc_buf_type(hdr);
4963185029Spjd		uint32_t flags = hdr->b_flags;
4964168404Spjd
4965286570Smav		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4966168404Spjd		/*
4967219089Spjd		 * Pull the data off of this hdr and attach it to
4968219089Spjd		 * a new anonymous hdr.
4969168404Spjd		 */
4970168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
4971286570Smav		bufp = &hdr->b_l1hdr.b_buf;
4972168404Spjd		while (*bufp != buf)
4973168404Spjd			bufp = &(*bufp)->b_next;
4974219089Spjd		*bufp = buf->b_next;
4975168404Spjd		buf->b_next = NULL;
4976168404Spjd
4977286570Smav		ASSERT3P(state, !=, arc_l2c_only);
4978286766Smav
4979286766Smav		(void) refcount_remove_many(
4980286766Smav		    &state->arcs_size, hdr->b_size, buf);
4981286766Smav
4982286570Smav		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4983286570Smav			ASSERT3P(state, !=, arc_l2c_only);
4984286570Smav			uint64_t *size = &state->arcs_lsize[type];
4985185029Spjd			ASSERT3U(*size, >=, hdr->b_size);
4986185029Spjd			atomic_add_64(size, -hdr->b_size);
4987168404Spjd		}
4988242845Sdelphij
4989242845Sdelphij		/*
4990242845Sdelphij		 * We're releasing a duplicate user data buffer, update
4991242845Sdelphij		 * our statistics accordingly.
4992242845Sdelphij		 */
4993286570Smav		if (HDR_ISTYPE_DATA(hdr)) {
4994242845Sdelphij			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4995242845Sdelphij			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4996242845Sdelphij			    -hdr->b_size);
4997242845Sdelphij		}
4998286570Smav		hdr->b_l1hdr.b_datacnt -= 1;
4999168404Spjd		arc_cksum_verify(buf);
5000240133Smm#ifdef illumos
5001240133Smm		arc_buf_unwatch(buf);
5002277300Ssmh#endif
5003168404Spjd
5004168404Spjd		mutex_exit(hash_lock);
5005168404Spjd
5006286570Smav		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
5007168404Spjd		nhdr->b_size = blksz;
5008168404Spjd		nhdr->b_spa = spa;
5009286570Smav
5010275811Sdelphij		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
5011286570Smav		nhdr->b_flags |= arc_bufc_to_flags(type);
5012286570Smav		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
5013286570Smav
5014286570Smav		nhdr->b_l1hdr.b_buf = buf;
5015286570Smav		nhdr->b_l1hdr.b_datacnt = 1;
5016286570Smav		nhdr->b_l1hdr.b_state = arc_anon;
5017286570Smav		nhdr->b_l1hdr.b_arc_access = 0;
5018286763Smav		nhdr->b_l1hdr.b_tmp_cdata = NULL;
5019168404Spjd		nhdr->b_freeze_cksum = NULL;
5020286570Smav
5021286570Smav		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5022168404Spjd		buf->b_hdr = nhdr;
5023219089Spjd		mutex_exit(&buf->b_evict_lock);
5024286766Smav		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
5025168404Spjd	} else {
5026219089Spjd		mutex_exit(&buf->b_evict_lock);
5027286570Smav		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5028286763Smav		/* protected by hash lock, or hdr is on arc_anon */
5029286763Smav		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5030168404Spjd		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5031286570Smav		arc_change_state(arc_anon, hdr, hash_lock);
5032286570Smav		hdr->b_l1hdr.b_arc_access = 0;
5033286570Smav		mutex_exit(hash_lock);
5034185029Spjd
5035219089Spjd		buf_discard_identity(hdr);
5036168404Spjd		arc_buf_thaw(buf);
5037168404Spjd	}
5038168404Spjd	buf->b_efunc = NULL;
5039168404Spjd	buf->b_private = NULL;
5040168404Spjd}
5041168404Spjd
5042168404Spjdint
5043168404Spjdarc_released(arc_buf_t *buf)
5044168404Spjd{
5045185029Spjd	int released;
5046185029Spjd
5047219089Spjd	mutex_enter(&buf->b_evict_lock);
5048286570Smav	released = (buf->b_data != NULL &&
5049286570Smav	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5050219089Spjd	mutex_exit(&buf->b_evict_lock);
5051185029Spjd	return (released);
5052168404Spjd}
5053168404Spjd
5054168404Spjd#ifdef ZFS_DEBUG
5055168404Spjdint
5056168404Spjdarc_referenced(arc_buf_t *buf)
5057168404Spjd{
5058185029Spjd	int referenced;
5059185029Spjd
5060219089Spjd	mutex_enter(&buf->b_evict_lock);
5061286570Smav	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5062219089Spjd	mutex_exit(&buf->b_evict_lock);
5063185029Spjd	return (referenced);
5064168404Spjd}
5065168404Spjd#endif
5066168404Spjd
5067168404Spjdstatic void
5068168404Spjdarc_write_ready(zio_t *zio)
5069168404Spjd{
5070168404Spjd	arc_write_callback_t *callback = zio->io_private;
5071168404Spjd	arc_buf_t *buf = callback->awcb_buf;
5072185029Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
5073168404Spjd
5074286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
5075286570Smav	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5076286570Smav	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5077185029Spjd	callback->awcb_ready(zio, buf, callback->awcb_private);
5078185029Spjd
5079185029Spjd	/*
5080185029Spjd	 * If the IO is already in progress, then this is a re-write
5081185029Spjd	 * attempt, so we need to thaw and re-compute the cksum.
5082185029Spjd	 * It is the responsibility of the callback to handle the
5083185029Spjd	 * accounting for any re-write attempt.
5084185029Spjd	 */
5085185029Spjd	if (HDR_IO_IN_PROGRESS(hdr)) {
5086286570Smav		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
5087185029Spjd		if (hdr->b_freeze_cksum != NULL) {
5088185029Spjd			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
5089185029Spjd			hdr->b_freeze_cksum = NULL;
5090185029Spjd		}
5091286570Smav		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
5092168404Spjd	}
5093185029Spjd	arc_cksum_compute(buf, B_FALSE);
5094275811Sdelphij	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
5095168404Spjd}
5096168404Spjd
5097258632Savg/*
5098258632Savg * The SPA calls this callback for each physical write that happens on behalf
5099258632Savg * of a logical write.  See the comment in dbuf_write_physdone() for details.
5100258632Savg */
5101168404Spjdstatic void
5102258632Savgarc_write_physdone(zio_t *zio)
5103258632Savg{
5104258632Savg	arc_write_callback_t *cb = zio->io_private;
5105258632Savg	if (cb->awcb_physdone != NULL)
5106258632Savg		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5107258632Savg}
5108258632Savg
5109258632Savgstatic void
5110168404Spjdarc_write_done(zio_t *zio)
5111168404Spjd{
5112168404Spjd	arc_write_callback_t *callback = zio->io_private;
5113168404Spjd	arc_buf_t *buf = callback->awcb_buf;
5114168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
5115168404Spjd
5116286570Smav	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5117168404Spjd
5118219089Spjd	if (zio->io_error == 0) {
5119268075Sdelphij		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5120260150Sdelphij			buf_discard_identity(hdr);
5121260150Sdelphij		} else {
5122260150Sdelphij			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5123260150Sdelphij			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5124260150Sdelphij		}
5125219089Spjd	} else {
5126219089Spjd		ASSERT(BUF_EMPTY(hdr));
5127219089Spjd	}
5128219089Spjd
5129168404Spjd	/*
5130268075Sdelphij	 * If the block to be written was all-zero or compressed enough to be
5131268075Sdelphij	 * embedded in the BP, no write was performed so there will be no
5132268075Sdelphij	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5133268075Sdelphij	 * (and uncached).
5134168404Spjd	 */
5135168404Spjd	if (!BUF_EMPTY(hdr)) {
5136168404Spjd		arc_buf_hdr_t *exists;
5137168404Spjd		kmutex_t *hash_lock;
5138168404Spjd
5139219089Spjd		ASSERT(zio->io_error == 0);
5140219089Spjd
5141168404Spjd		arc_cksum_verify(buf);
5142168404Spjd
5143168404Spjd		exists = buf_hash_insert(hdr, &hash_lock);
5144286570Smav		if (exists != NULL) {
5145168404Spjd			/*
5146168404Spjd			 * This can only happen if we overwrite for
5147168404Spjd			 * sync-to-convergence, because we remove
5148168404Spjd			 * buffers from the hash table when we arc_free().
5149168404Spjd			 */
5150219089Spjd			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5151219089Spjd				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5152219089Spjd					panic("bad overwrite, hdr=%p exists=%p",
5153219089Spjd					    (void *)hdr, (void *)exists);
5154286570Smav				ASSERT(refcount_is_zero(
5155286570Smav				    &exists->b_l1hdr.b_refcnt));
5156219089Spjd				arc_change_state(arc_anon, exists, hash_lock);
5157219089Spjd				mutex_exit(hash_lock);
5158219089Spjd				arc_hdr_destroy(exists);
5159219089Spjd				exists = buf_hash_insert(hdr, &hash_lock);
5160219089Spjd				ASSERT3P(exists, ==, NULL);
5161243524Smm			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5162243524Smm				/* nopwrite */
5163243524Smm				ASSERT(zio->io_prop.zp_nopwrite);
5164243524Smm				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5165243524Smm					panic("bad nopwrite, hdr=%p exists=%p",
5166243524Smm					    (void *)hdr, (void *)exists);
5167219089Spjd			} else {
5168219089Spjd				/* Dedup */
5169286570Smav				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5170286570Smav				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5171219089Spjd				ASSERT(BP_GET_DEDUP(zio->io_bp));
5172219089Spjd				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5173219089Spjd			}
5174168404Spjd		}
5175275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5176185029Spjd		/* if it's not anon, we are doing a scrub */
5177286570Smav		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5178185029Spjd			arc_access(hdr, hash_lock);
5179168404Spjd		mutex_exit(hash_lock);
5180168404Spjd	} else {
5181275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5182168404Spjd	}
5183168404Spjd
5184286570Smav	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5185219089Spjd	callback->awcb_done(zio, buf, callback->awcb_private);
5186168404Spjd
5187168404Spjd	kmem_free(callback, sizeof (arc_write_callback_t));
5188168404Spjd}
5189168404Spjd
5190168404Spjdzio_t *
5191219089Spjdarc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5192251478Sdelphij    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5193258632Savg    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5194258632Savg    arc_done_func_t *done, void *private, zio_priority_t priority,
5195268123Sdelphij    int zio_flags, const zbookmark_phys_t *zb)
5196168404Spjd{
5197168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
5198168404Spjd	arc_write_callback_t *callback;
5199185029Spjd	zio_t *zio;
5200168404Spjd
5201185029Spjd	ASSERT(ready != NULL);
5202219089Spjd	ASSERT(done != NULL);
5203168404Spjd	ASSERT(!HDR_IO_ERROR(hdr));
5204286570Smav	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5205286570Smav	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5206286570Smav	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5207185029Spjd	if (l2arc)
5208275811Sdelphij		hdr->b_flags |= ARC_FLAG_L2CACHE;
5209251478Sdelphij	if (l2arc_compress)
5210275811Sdelphij		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5211168404Spjd	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5212168404Spjd	callback->awcb_ready = ready;
5213258632Savg	callback->awcb_physdone = physdone;
5214168404Spjd	callback->awcb_done = done;
5215168404Spjd	callback->awcb_private = private;
5216168404Spjd	callback->awcb_buf = buf;
5217168404Spjd
5218219089Spjd	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5219258632Savg	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
5220258632Savg	    priority, zio_flags, zb);
5221185029Spjd
5222168404Spjd	return (zio);
5223168404Spjd}
5224168404Spjd
5225185029Spjdstatic int
5226258632Savgarc_memory_throttle(uint64_t reserve, uint64_t txg)
5227185029Spjd{
5228185029Spjd#ifdef _KERNEL
5229272483Ssmh	uint64_t available_memory = ptob(freemem);
5230185029Spjd	static uint64_t page_load = 0;
5231185029Spjd	static uint64_t last_txg = 0;
5232185029Spjd
5233272483Ssmh#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5234185029Spjd	available_memory =
5235272483Ssmh	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5236185029Spjd#endif
5237258632Savg
5238272483Ssmh	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5239185029Spjd		return (0);
5240185029Spjd
5241185029Spjd	if (txg > last_txg) {
5242185029Spjd		last_txg = txg;
5243185029Spjd		page_load = 0;
5244185029Spjd	}
5245185029Spjd	/*
5246185029Spjd	 * If we are in pageout, we know that memory is already tight,
5247185029Spjd	 * the arc is already going to be evicting, so we just want to
5248185029Spjd	 * continue to let page writes occur as quickly as possible.
5249185029Spjd	 */
5250185029Spjd	if (curproc == pageproc) {
5251272483Ssmh		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5252249195Smm			return (SET_ERROR(ERESTART));
5253185029Spjd		/* Note: reserve is inflated, so we deflate */
5254185029Spjd		page_load += reserve / 8;
5255185029Spjd		return (0);
5256185029Spjd	} else if (page_load > 0 && arc_reclaim_needed()) {
5257185029Spjd		/* memory is low, delay before restarting */
5258185029Spjd		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5259249195Smm		return (SET_ERROR(EAGAIN));
5260185029Spjd	}
5261185029Spjd	page_load = 0;
5262185029Spjd#endif
5263185029Spjd	return (0);
5264185029Spjd}
5265185029Spjd
5266168404Spjdvoid
5267185029Spjdarc_tempreserve_clear(uint64_t reserve)
5268168404Spjd{
5269185029Spjd	atomic_add_64(&arc_tempreserve, -reserve);
5270168404Spjd	ASSERT((int64_t)arc_tempreserve >= 0);
5271168404Spjd}
5272168404Spjd
5273168404Spjdint
5274185029Spjdarc_tempreserve_space(uint64_t reserve, uint64_t txg)
5275168404Spjd{
5276185029Spjd	int error;
5277209962Smm	uint64_t anon_size;
5278185029Spjd
5279272483Ssmh	if (reserve > arc_c/4 && !arc_no_grow) {
5280185029Spjd		arc_c = MIN(arc_c_max, reserve * 4);
5281272483Ssmh		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5282272483Ssmh	}
5283185029Spjd	if (reserve > arc_c)
5284249195Smm		return (SET_ERROR(ENOMEM));
5285168404Spjd
5286168404Spjd	/*
5287209962Smm	 * Don't count loaned bufs as in flight dirty data to prevent long
5288209962Smm	 * network delays from blocking transactions that are ready to be
5289209962Smm	 * assigned to a txg.
5290209962Smm	 */
5291286766Smav	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5292286766Smav	    arc_loaned_bytes), 0);
5293209962Smm
5294209962Smm	/*
5295185029Spjd	 * Writes will, almost always, require additional memory allocations
5296251631Sdelphij	 * in order to compress/encrypt/etc the data.  We therefore need to
5297185029Spjd	 * make sure that there is sufficient available memory for this.
5298185029Spjd	 */
5299258632Savg	error = arc_memory_throttle(reserve, txg);
5300258632Savg	if (error != 0)
5301185029Spjd		return (error);
5302185029Spjd
5303185029Spjd	/*
5304168404Spjd	 * Throttle writes when the amount of dirty data in the cache
5305168404Spjd	 * gets too large.  We try to keep the cache less than half full
5306168404Spjd	 * of dirty blocks so that our sync times don't grow too large.
5307168404Spjd	 * Note: if two requests come in concurrently, we might let them
5308168404Spjd	 * both succeed, when one of them should fail.  Not a huge deal.
5309168404Spjd	 */
5310209962Smm
5311209962Smm	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5312209962Smm	    anon_size > arc_c / 4) {
5313185029Spjd		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5314185029Spjd		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5315185029Spjd		    arc_tempreserve>>10,
5316185029Spjd		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5317185029Spjd		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5318185029Spjd		    reserve>>10, arc_c>>10);
5319249195Smm		return (SET_ERROR(ERESTART));
5320168404Spjd	}
5321185029Spjd	atomic_add_64(&arc_tempreserve, reserve);
5322168404Spjd	return (0);
5323168404Spjd}
5324168404Spjd
5325286626Smavstatic void
5326286626Smavarc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5327286626Smav    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5328286626Smav{
5329286766Smav	size->value.ui64 = refcount_count(&state->arcs_size);
5330286626Smav	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5331286626Smav	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5332286626Smav}
5333286626Smav
5334286626Smavstatic int
5335286626Smavarc_kstat_update(kstat_t *ksp, int rw)
5336286626Smav{
5337286626Smav	arc_stats_t *as = ksp->ks_data;
5338286626Smav
5339286626Smav	if (rw == KSTAT_WRITE) {
5340286626Smav		return (EACCES);
5341286626Smav	} else {
5342286626Smav		arc_kstat_update_state(arc_anon,
5343286626Smav		    &as->arcstat_anon_size,
5344286626Smav		    &as->arcstat_anon_evictable_data,
5345286626Smav		    &as->arcstat_anon_evictable_metadata);
5346286626Smav		arc_kstat_update_state(arc_mru,
5347286626Smav		    &as->arcstat_mru_size,
5348286626Smav		    &as->arcstat_mru_evictable_data,
5349286626Smav		    &as->arcstat_mru_evictable_metadata);
5350286626Smav		arc_kstat_update_state(arc_mru_ghost,
5351286626Smav		    &as->arcstat_mru_ghost_size,
5352286626Smav		    &as->arcstat_mru_ghost_evictable_data,
5353286626Smav		    &as->arcstat_mru_ghost_evictable_metadata);
5354286626Smav		arc_kstat_update_state(arc_mfu,
5355286626Smav		    &as->arcstat_mfu_size,
5356286626Smav		    &as->arcstat_mfu_evictable_data,
5357286626Smav		    &as->arcstat_mfu_evictable_metadata);
5358286626Smav		arc_kstat_update_state(arc_mfu_ghost,
5359286626Smav		    &as->arcstat_mfu_ghost_size,
5360286626Smav		    &as->arcstat_mfu_ghost_evictable_data,
5361286626Smav		    &as->arcstat_mfu_ghost_evictable_metadata);
5362286626Smav	}
5363286626Smav
5364286626Smav	return (0);
5365286626Smav}
5366286626Smav
5367286763Smav/*
5368286763Smav * This function *must* return indices evenly distributed between all
5369286763Smav * sublists of the multilist. This is needed due to how the ARC eviction
5370286763Smav * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5371286763Smav * distributed between all sublists and uses this assumption when
5372286763Smav * deciding which sublist to evict from and how much to evict from it.
5373286763Smav */
5374286763Smavunsigned int
5375286763Smavarc_state_multilist_index_func(multilist_t *ml, void *obj)
5376286763Smav{
5377286763Smav	arc_buf_hdr_t *hdr = obj;
5378286763Smav
5379286763Smav	/*
5380286763Smav	 * We rely on b_dva to generate evenly distributed index
5381286763Smav	 * numbers using buf_hash below. So, as an added precaution,
5382286763Smav	 * let's make sure we never add empty buffers to the arc lists.
5383286763Smav	 */
5384286763Smav	ASSERT(!BUF_EMPTY(hdr));
5385286763Smav
5386286763Smav	/*
5387286763Smav	 * The assumption here, is the hash value for a given
5388286763Smav	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5389286763Smav	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5390286763Smav	 * Thus, we don't need to store the header's sublist index
5391286763Smav	 * on insertion, as this index can be recalculated on removal.
5392286763Smav	 *
5393286763Smav	 * Also, the low order bits of the hash value are thought to be
5394286763Smav	 * distributed evenly. Otherwise, in the case that the multilist
5395286763Smav	 * has a power of two number of sublists, each sublists' usage
5396286763Smav	 * would not be evenly distributed.
5397286763Smav	 */
5398286763Smav	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5399286763Smav	    multilist_get_num_sublists(ml));
5400286763Smav}
5401286763Smav
5402168404Spjd#ifdef _KERNEL
5403168566Spjdstatic eventhandler_tag arc_event_lowmem = NULL;
5404168404Spjd
5405168404Spjdstatic void
5406168566Spjdarc_lowmem(void *arg __unused, int howto __unused)
5407168404Spjd{
5408168404Spjd
5409286763Smav	mutex_enter(&arc_reclaim_lock);
5410286625Smav	/* XXX: Memory deficit should be passed as argument. */
5411286625Smav	needfree = btoc(arc_c >> arc_shrink_shift);
5412272483Ssmh	DTRACE_PROBE(arc__needfree);
5413286763Smav	cv_signal(&arc_reclaim_thread_cv);
5414241773Savg
5415241773Savg	/*
5416241773Savg	 * It is unsafe to block here in arbitrary threads, because we can come
5417241773Savg	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5418241773Savg	 * with ARC reclaim thread.
5419241773Savg	 */
5420286623Smav	if (curproc == pageproc)
5421286763Smav		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5422286763Smav	mutex_exit(&arc_reclaim_lock);
5423168404Spjd}
5424168404Spjd#endif
5425168404Spjd
5426168404Spjdvoid
5427168404Spjdarc_init(void)
5428168404Spjd{
5429219089Spjd	int i, prefetch_tunable_set = 0;
5430205231Skmacy
5431286763Smav	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5432286763Smav	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5433286763Smav	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5434168404Spjd
5435286763Smav	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5436286763Smav	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5437286763Smav
5438301997Skib	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5439301997Skib	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
5440301997Skib
5441168404Spjd	/* Convert seconds to clock ticks */
5442168404Spjd	arc_min_prefetch_lifespan = 1 * hz;
5443168404Spjd
5444168404Spjd	/* Start out with 1/8 of all memory */
5445168566Spjd	arc_c = kmem_size() / 8;
5446219089Spjd
5447277300Ssmh#ifdef illumos
5448192360Skmacy#ifdef _KERNEL
5449192360Skmacy	/*
5450192360Skmacy	 * On architectures where the physical memory can be larger
5451192360Skmacy	 * than the addressable space (intel in 32-bit mode), we may
5452192360Skmacy	 * need to limit the cache to 1/8 of VM size.
5453192360Skmacy	 */
5454192360Skmacy	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5455192360Skmacy#endif
5456277300Ssmh#endif	/* illumos */
5457302265Ssmh	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5458302265Ssmh	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5459168566Spjd	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5460280822Smav	if (arc_c * 8 >= 1 << 30)
5461280822Smav		arc_c_max = (arc_c * 8) - (1 << 30);
5462168404Spjd	else
5463168404Spjd		arc_c_max = arc_c_min;
5464175633Spjd	arc_c_max = MAX(arc_c * 5, arc_c_max);
5465219089Spjd
5466289305Smav	/*
5467289305Smav	 * In userland, there's only the memory pressure that we artificially
5468289305Smav	 * create (see arc_available_memory()).  Don't let arc_c get too
5469289305Smav	 * small, because it can cause transactions to be larger than
5470289305Smav	 * arc_c, causing arc_tempreserve_space() to fail.
5471289305Smav	 */
5472289305Smav#ifndef _KERNEL
5473289305Smav	arc_c_min = arc_c_max / 2;
5474289305Smav#endif
5475289305Smav
5476168481Spjd#ifdef _KERNEL
5477168404Spjd	/*
5478168404Spjd	 * Allow the tunables to override our calculations if they are
5479302265Ssmh	 * reasonable.
5480168404Spjd	 */
5481302265Ssmh	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size())
5482168404Spjd		arc_c_max = zfs_arc_max;
5483302265Ssmh	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
5484168404Spjd		arc_c_min = zfs_arc_min;
5485168481Spjd#endif
5486219089Spjd
5487168404Spjd	arc_c = arc_c_max;
5488168404Spjd	arc_p = (arc_c >> 1);
5489168404Spjd
5490185029Spjd	/* limit meta-data to 1/4 of the arc capacity */
5491185029Spjd	arc_meta_limit = arc_c_max / 4;
5492185029Spjd
5493185029Spjd	/* Allow the tunable to override if it is reasonable */
5494185029Spjd	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5495185029Spjd		arc_meta_limit = zfs_arc_meta_limit;
5496185029Spjd
5497185029Spjd	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5498185029Spjd		arc_c_min = arc_meta_limit / 2;
5499185029Spjd
5500275780Sdelphij	if (zfs_arc_meta_min > 0) {
5501275780Sdelphij		arc_meta_min = zfs_arc_meta_min;
5502275780Sdelphij	} else {
5503275780Sdelphij		arc_meta_min = arc_c_min / 2;
5504275780Sdelphij	}
5505275780Sdelphij
5506208373Smm	if (zfs_arc_grow_retry > 0)
5507208373Smm		arc_grow_retry = zfs_arc_grow_retry;
5508208373Smm
5509208373Smm	if (zfs_arc_shrink_shift > 0)
5510208373Smm		arc_shrink_shift = zfs_arc_shrink_shift;
5511208373Smm
5512286625Smav	/*
5513286625Smav	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5514286625Smav	 */
5515286625Smav	if (arc_no_grow_shift >= arc_shrink_shift)
5516286625Smav		arc_no_grow_shift = arc_shrink_shift - 1;
5517286625Smav
5518208373Smm	if (zfs_arc_p_min_shift > 0)
5519208373Smm		arc_p_min_shift = zfs_arc_p_min_shift;
5520208373Smm
5521286763Smav	if (zfs_arc_num_sublists_per_state < 1)
5522286763Smav		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5523286763Smav
5524168404Spjd	/* if kmem_flags are set, lets try to use less memory */
5525168404Spjd	if (kmem_debugging())
5526168404Spjd		arc_c = arc_c / 2;
5527168404Spjd	if (arc_c < arc_c_min)
5528168404Spjd		arc_c = arc_c_min;
5529168404Spjd
5530168473Spjd	zfs_arc_min = arc_c_min;
5531168473Spjd	zfs_arc_max = arc_c_max;
5532168473Spjd
5533168404Spjd	arc_anon = &ARC_anon;
5534168404Spjd	arc_mru = &ARC_mru;
5535168404Spjd	arc_mru_ghost = &ARC_mru_ghost;
5536168404Spjd	arc_mfu = &ARC_mfu;
5537168404Spjd	arc_mfu_ghost = &ARC_mfu_ghost;
5538185029Spjd	arc_l2c_only = &ARC_l2c_only;
5539168404Spjd	arc_size = 0;
5540168404Spjd
5541286763Smav	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5542286762Smav	    sizeof (arc_buf_hdr_t),
5543286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5544286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5545286763Smav	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5546286762Smav	    sizeof (arc_buf_hdr_t),
5547286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5548286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5549286763Smav	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5550286762Smav	    sizeof (arc_buf_hdr_t),
5551286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5552286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5553286763Smav	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5554286762Smav	    sizeof (arc_buf_hdr_t),
5555286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5556286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5557286763Smav	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5558286762Smav	    sizeof (arc_buf_hdr_t),
5559286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5560286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5561286763Smav	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5562286762Smav	    sizeof (arc_buf_hdr_t),
5563286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5564286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5565286763Smav	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5566286762Smav	    sizeof (arc_buf_hdr_t),
5567286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5568286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5569286763Smav	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5570286762Smav	    sizeof (arc_buf_hdr_t),
5571286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5572286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5573286763Smav	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5574286762Smav	    sizeof (arc_buf_hdr_t),
5575286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5576286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5577286763Smav	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5578286762Smav	    sizeof (arc_buf_hdr_t),
5579286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5580286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5581168404Spjd
5582286766Smav	refcount_create(&arc_anon->arcs_size);
5583286766Smav	refcount_create(&arc_mru->arcs_size);
5584286766Smav	refcount_create(&arc_mru_ghost->arcs_size);
5585286766Smav	refcount_create(&arc_mfu->arcs_size);
5586286766Smav	refcount_create(&arc_mfu_ghost->arcs_size);
5587286766Smav	refcount_create(&arc_l2c_only->arcs_size);
5588286766Smav
5589168404Spjd	buf_init();
5590168404Spjd
5591286763Smav	arc_reclaim_thread_exit = FALSE;
5592286763Smav	arc_user_evicts_thread_exit = FALSE;
5593301997Skib	arc_dnlc_evicts_thread_exit = FALSE;
5594168404Spjd	arc_eviction_list = NULL;
5595168404Spjd	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5596168404Spjd
5597168404Spjd	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5598168404Spjd	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5599168404Spjd
5600168404Spjd	if (arc_ksp != NULL) {
5601168404Spjd		arc_ksp->ks_data = &arc_stats;
5602286574Smav		arc_ksp->ks_update = arc_kstat_update;
5603168404Spjd		kstat_install(arc_ksp);
5604168404Spjd	}
5605168404Spjd
5606168404Spjd	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5607168404Spjd	    TS_RUN, minclsyspri);
5608168404Spjd
5609168404Spjd#ifdef _KERNEL
5610168566Spjd	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5611168404Spjd	    EVENTHANDLER_PRI_FIRST);
5612168404Spjd#endif
5613168404Spjd
5614286763Smav	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5615286763Smav	    TS_RUN, minclsyspri);
5616286763Smav
5617301997Skib	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
5618301997Skib	    TS_RUN, minclsyspri);
5619301997Skib
5620168404Spjd	arc_dead = FALSE;
5621185029Spjd	arc_warm = B_FALSE;
5622168566Spjd
5623258632Savg	/*
5624258632Savg	 * Calculate maximum amount of dirty data per pool.
5625258632Savg	 *
5626258632Savg	 * If it has been set by /etc/system, take that.
5627258632Savg	 * Otherwise, use a percentage of physical memory defined by
5628258632Savg	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5629258632Savg	 * zfs_dirty_data_max_max (default 4GB).
5630258632Savg	 */
5631258632Savg	if (zfs_dirty_data_max == 0) {
5632258632Savg		zfs_dirty_data_max = ptob(physmem) *
5633258632Savg		    zfs_dirty_data_max_percent / 100;
5634258632Savg		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5635258632Savg		    zfs_dirty_data_max_max);
5636258632Savg	}
5637185029Spjd
5638168566Spjd#ifdef _KERNEL
5639194043Skmacy	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5640193953Skmacy		prefetch_tunable_set = 1;
5641206796Spjd
5642193878Skmacy#ifdef __i386__
5643193953Skmacy	if (prefetch_tunable_set == 0) {
5644196863Strasz		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5645196863Strasz		    "-- to enable,\n");
5646196863Strasz		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5647196863Strasz		    "to /boot/loader.conf.\n");
5648219089Spjd		zfs_prefetch_disable = 1;
5649193878Skmacy	}
5650206796Spjd#else
5651193878Skmacy	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5652193953Skmacy	    prefetch_tunable_set == 0) {
5653196863Strasz		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5654196941Strasz		    "than 4GB of RAM is present;\n"
5655196863Strasz		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5656196863Strasz		    "to /boot/loader.conf.\n");
5657219089Spjd		zfs_prefetch_disable = 1;
5658193878Skmacy	}
5659206796Spjd#endif
5660175633Spjd	/* Warn about ZFS memory and address space requirements. */
5661168696Spjd	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5662168987Sbmah		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5663168987Sbmah		    "expect unstable behavior.\n");
5664175633Spjd	}
5665175633Spjd	if (kmem_size() < 512 * (1 << 20)) {
5666173419Spjd		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5667168987Sbmah		    "expect unstable behavior.\n");
5668185029Spjd		printf("             Consider tuning vm.kmem_size and "
5669173419Spjd		    "vm.kmem_size_max\n");
5670185029Spjd		printf("             in /boot/loader.conf.\n");
5671168566Spjd	}
5672168566Spjd#endif
5673168404Spjd}
5674168404Spjd
5675168404Spjdvoid
5676168404Spjdarc_fini(void)
5677168404Spjd{
5678286763Smav	mutex_enter(&arc_reclaim_lock);
5679286763Smav	arc_reclaim_thread_exit = TRUE;
5680286763Smav	/*
5681286763Smav	 * The reclaim thread will set arc_reclaim_thread_exit back to
5682286763Smav	 * FALSE when it is finished exiting; we're waiting for that.
5683286763Smav	 */
5684286763Smav	while (arc_reclaim_thread_exit) {
5685286763Smav		cv_signal(&arc_reclaim_thread_cv);
5686286763Smav		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5687286763Smav	}
5688286763Smav	mutex_exit(&arc_reclaim_lock);
5689168404Spjd
5690286763Smav	mutex_enter(&arc_user_evicts_lock);
5691286763Smav	arc_user_evicts_thread_exit = TRUE;
5692286763Smav	/*
5693286763Smav	 * The user evicts thread will set arc_user_evicts_thread_exit
5694286763Smav	 * to FALSE when it is finished exiting; we're waiting for that.
5695286763Smav	 */
5696286763Smav	while (arc_user_evicts_thread_exit) {
5697286763Smav		cv_signal(&arc_user_evicts_cv);
5698286763Smav		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5699286763Smav	}
5700286763Smav	mutex_exit(&arc_user_evicts_lock);
5701168404Spjd
5702301997Skib	mutex_enter(&arc_dnlc_evicts_lock);
5703301997Skib	arc_dnlc_evicts_thread_exit = TRUE;
5704301997Skib	/*
5705301997Skib	 * The user evicts thread will set arc_user_evicts_thread_exit
5706301997Skib	 * to FALSE when it is finished exiting; we're waiting for that.
5707301997Skib	 */
5708301997Skib	while (arc_dnlc_evicts_thread_exit) {
5709301997Skib		cv_signal(&arc_dnlc_evicts_cv);
5710301997Skib		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
5711301997Skib	}
5712301997Skib	mutex_exit(&arc_dnlc_evicts_lock);
5713301997Skib
5714286763Smav	/* Use TRUE to ensure *all* buffers are evicted */
5715286763Smav	arc_flush(NULL, TRUE);
5716286763Smav
5717168404Spjd	arc_dead = TRUE;
5718168404Spjd
5719168404Spjd	if (arc_ksp != NULL) {
5720168404Spjd		kstat_delete(arc_ksp);
5721168404Spjd		arc_ksp = NULL;
5722168404Spjd	}
5723168404Spjd
5724286763Smav	mutex_destroy(&arc_reclaim_lock);
5725286763Smav	cv_destroy(&arc_reclaim_thread_cv);
5726286763Smav	cv_destroy(&arc_reclaim_waiters_cv);
5727168404Spjd
5728286763Smav	mutex_destroy(&arc_user_evicts_lock);
5729286763Smav	cv_destroy(&arc_user_evicts_cv);
5730168404Spjd
5731301997Skib	mutex_destroy(&arc_dnlc_evicts_lock);
5732301997Skib	cv_destroy(&arc_dnlc_evicts_cv);
5733301997Skib
5734286766Smav	refcount_destroy(&arc_anon->arcs_size);
5735286766Smav	refcount_destroy(&arc_mru->arcs_size);
5736286766Smav	refcount_destroy(&arc_mru_ghost->arcs_size);
5737286766Smav	refcount_destroy(&arc_mfu->arcs_size);
5738286766Smav	refcount_destroy(&arc_mfu_ghost->arcs_size);
5739286766Smav	refcount_destroy(&arc_l2c_only->arcs_size);
5740286766Smav
5741286763Smav	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5742286763Smav	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5743286763Smav	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5744286763Smav	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5745294809Smav	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5746286763Smav	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5747286763Smav	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5748286763Smav	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5749286763Smav	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5750294809Smav	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5751206796Spjd
5752168404Spjd	buf_fini();
5753168404Spjd
5754286570Smav	ASSERT0(arc_loaned_bytes);
5755209962Smm
5756168404Spjd#ifdef _KERNEL
5757168566Spjd	if (arc_event_lowmem != NULL)
5758168566Spjd		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5759168404Spjd#endif
5760168404Spjd}
5761185029Spjd
5762185029Spjd/*
5763185029Spjd * Level 2 ARC
5764185029Spjd *
5765185029Spjd * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5766185029Spjd * It uses dedicated storage devices to hold cached data, which are populated
5767185029Spjd * using large infrequent writes.  The main role of this cache is to boost
5768185029Spjd * the performance of random read workloads.  The intended L2ARC devices
5769185029Spjd * include short-stroked disks, solid state disks, and other media with
5770185029Spjd * substantially faster read latency than disk.
5771185029Spjd *
5772185029Spjd *                 +-----------------------+
5773185029Spjd *                 |         ARC           |
5774185029Spjd *                 +-----------------------+
5775185029Spjd *                    |         ^     ^
5776185029Spjd *                    |         |     |
5777185029Spjd *      l2arc_feed_thread()    arc_read()
5778185029Spjd *                    |         |     |
5779185029Spjd *                    |  l2arc read   |
5780185029Spjd *                    V         |     |
5781185029Spjd *               +---------------+    |
5782185029Spjd *               |     L2ARC     |    |
5783185029Spjd *               +---------------+    |
5784185029Spjd *                   |    ^           |
5785185029Spjd *          l2arc_write() |           |
5786185029Spjd *                   |    |           |
5787185029Spjd *                   V    |           |
5788185029Spjd *                 +-------+      +-------+
5789185029Spjd *                 | vdev  |      | vdev  |
5790185029Spjd *                 | cache |      | cache |
5791185029Spjd *                 +-------+      +-------+
5792185029Spjd *                 +=========+     .-----.
5793185029Spjd *                 :  L2ARC  :    |-_____-|
5794185029Spjd *                 : devices :    | Disks |
5795185029Spjd *                 +=========+    `-_____-'
5796185029Spjd *
5797185029Spjd * Read requests are satisfied from the following sources, in order:
5798185029Spjd *
5799185029Spjd *	1) ARC
5800185029Spjd *	2) vdev cache of L2ARC devices
5801185029Spjd *	3) L2ARC devices
5802185029Spjd *	4) vdev cache of disks
5803185029Spjd *	5) disks
5804185029Spjd *
5805185029Spjd * Some L2ARC device types exhibit extremely slow write performance.
5806185029Spjd * To accommodate for this there are some significant differences between
5807185029Spjd * the L2ARC and traditional cache design:
5808185029Spjd *
5809185029Spjd * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5810185029Spjd * the ARC behave as usual, freeing buffers and placing headers on ghost
5811185029Spjd * lists.  The ARC does not send buffers to the L2ARC during eviction as
5812185029Spjd * this would add inflated write latencies for all ARC memory pressure.
5813185029Spjd *
5814185029Spjd * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5815185029Spjd * It does this by periodically scanning buffers from the eviction-end of
5816185029Spjd * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5817251478Sdelphij * not already there. It scans until a headroom of buffers is satisfied,
5818251478Sdelphij * which itself is a buffer for ARC eviction. If a compressible buffer is
5819251478Sdelphij * found during scanning and selected for writing to an L2ARC device, we
5820251478Sdelphij * temporarily boost scanning headroom during the next scan cycle to make
5821251478Sdelphij * sure we adapt to compression effects (which might significantly reduce
5822251478Sdelphij * the data volume we write to L2ARC). The thread that does this is
5823185029Spjd * l2arc_feed_thread(), illustrated below; example sizes are included to
5824185029Spjd * provide a better sense of ratio than this diagram:
5825185029Spjd *
5826185029Spjd *	       head -->                        tail
5827185029Spjd *	        +---------------------+----------+
5828185029Spjd *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5829185029Spjd *	        +---------------------+----------+   |   o L2ARC eligible
5830185029Spjd *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5831185029Spjd *	        +---------------------+----------+   |
5832185029Spjd *	             15.9 Gbytes      ^ 32 Mbytes    |
5833185029Spjd *	                           headroom          |
5834185029Spjd *	                                      l2arc_feed_thread()
5835185029Spjd *	                                             |
5836185029Spjd *	                 l2arc write hand <--[oooo]--'
5837185029Spjd *	                         |           8 Mbyte
5838185029Spjd *	                         |          write max
5839185029Spjd *	                         V
5840185029Spjd *		  +==============================+
5841185029Spjd *	L2ARC dev |####|#|###|###|    |####| ... |
5842185029Spjd *	          +==============================+
5843185029Spjd *	                     32 Gbytes
5844185029Spjd *
5845185029Spjd * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5846185029Spjd * evicted, then the L2ARC has cached a buffer much sooner than it probably
5847185029Spjd * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5848185029Spjd * safe to say that this is an uncommon case, since buffers at the end of
5849185029Spjd * the ARC lists have moved there due to inactivity.
5850185029Spjd *
5851185029Spjd * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5852185029Spjd * then the L2ARC simply misses copying some buffers.  This serves as a
5853185029Spjd * pressure valve to prevent heavy read workloads from both stalling the ARC
5854185029Spjd * with waits and clogging the L2ARC with writes.  This also helps prevent
5855185029Spjd * the potential for the L2ARC to churn if it attempts to cache content too
5856185029Spjd * quickly, such as during backups of the entire pool.
5857185029Spjd *
5858185029Spjd * 5. After system boot and before the ARC has filled main memory, there are
5859185029Spjd * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5860185029Spjd * lists can remain mostly static.  Instead of searching from tail of these
5861185029Spjd * lists as pictured, the l2arc_feed_thread() will search from the list heads
5862185029Spjd * for eligible buffers, greatly increasing its chance of finding them.
5863185029Spjd *
5864185029Spjd * The L2ARC device write speed is also boosted during this time so that
5865185029Spjd * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5866185029Spjd * there are no L2ARC reads, and no fear of degrading read performance
5867185029Spjd * through increased writes.
5868185029Spjd *
5869185029Spjd * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5870185029Spjd * the vdev queue can aggregate them into larger and fewer writes.  Each
5871185029Spjd * device is written to in a rotor fashion, sweeping writes through
5872185029Spjd * available space then repeating.
5873185029Spjd *
5874185029Spjd * 7. The L2ARC does not store dirty content.  It never needs to flush
5875185029Spjd * write buffers back to disk based storage.
5876185029Spjd *
5877185029Spjd * 8. If an ARC buffer is written (and dirtied) which also exists in the
5878185029Spjd * L2ARC, the now stale L2ARC buffer is immediately dropped.
5879185029Spjd *
5880185029Spjd * The performance of the L2ARC can be tweaked by a number of tunables, which
5881185029Spjd * may be necessary for different workloads:
5882185029Spjd *
5883185029Spjd *	l2arc_write_max		max write bytes per interval
5884185029Spjd *	l2arc_write_boost	extra write bytes during device warmup
5885185029Spjd *	l2arc_noprefetch	skip caching prefetched buffers
5886185029Spjd *	l2arc_headroom		number of max device writes to precache
5887251478Sdelphij *	l2arc_headroom_boost	when we find compressed buffers during ARC
5888251478Sdelphij *				scanning, we multiply headroom by this
5889251478Sdelphij *				percentage factor for the next scan cycle,
5890251478Sdelphij *				since more compressed buffers are likely to
5891251478Sdelphij *				be present
5892185029Spjd *	l2arc_feed_secs		seconds between L2ARC writing
5893185029Spjd *
5894185029Spjd * Tunables may be removed or added as future performance improvements are
5895185029Spjd * integrated, and also may become zpool properties.
5896208373Smm *
5897208373Smm * There are three key functions that control how the L2ARC warms up:
5898208373Smm *
5899208373Smm *	l2arc_write_eligible()	check if a buffer is eligible to cache
5900208373Smm *	l2arc_write_size()	calculate how much to write
5901208373Smm *	l2arc_write_interval()	calculate sleep delay between writes
5902208373Smm *
5903208373Smm * These three functions determine what to write, how much, and how quickly
5904208373Smm * to send writes.
5905185029Spjd */
5906185029Spjd
5907208373Smmstatic boolean_t
5908275811Sdelphijl2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5909208373Smm{
5910208373Smm	/*
5911208373Smm	 * A buffer is *not* eligible for the L2ARC if it:
5912208373Smm	 * 1. belongs to a different spa.
5913208373Smm	 * 2. is already cached on the L2ARC.
5914208373Smm	 * 3. has an I/O in progress (it may be an incomplete read).
5915208373Smm	 * 4. is flagged not eligible (zfs property).
5916208373Smm	 */
5917275811Sdelphij	if (hdr->b_spa != spa_guid) {
5918208373Smm		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5919208373Smm		return (B_FALSE);
5920208373Smm	}
5921286570Smav	if (HDR_HAS_L2HDR(hdr)) {
5922208373Smm		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5923208373Smm		return (B_FALSE);
5924208373Smm	}
5925275811Sdelphij	if (HDR_IO_IN_PROGRESS(hdr)) {
5926208373Smm		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5927208373Smm		return (B_FALSE);
5928208373Smm	}
5929275811Sdelphij	if (!HDR_L2CACHE(hdr)) {
5930208373Smm		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5931208373Smm		return (B_FALSE);
5932208373Smm	}
5933208373Smm
5934208373Smm	return (B_TRUE);
5935208373Smm}
5936208373Smm
5937208373Smmstatic uint64_t
5938251478Sdelphijl2arc_write_size(void)
5939208373Smm{
5940208373Smm	uint64_t size;
5941208373Smm
5942251478Sdelphij	/*
5943251478Sdelphij	 * Make sure our globals have meaningful values in case the user
5944251478Sdelphij	 * altered them.
5945251478Sdelphij	 */
5946251478Sdelphij	size = l2arc_write_max;
5947251478Sdelphij	if (size == 0) {
5948251478Sdelphij		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5949251478Sdelphij		    "be greater than zero, resetting it to the default (%d)",
5950251478Sdelphij		    L2ARC_WRITE_SIZE);
5951251478Sdelphij		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5952251478Sdelphij	}
5953208373Smm
5954208373Smm	if (arc_warm == B_FALSE)
5955251478Sdelphij		size += l2arc_write_boost;
5956208373Smm
5957208373Smm	return (size);
5958208373Smm
5959208373Smm}
5960208373Smm
5961208373Smmstatic clock_t
5962208373Smml2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5963208373Smm{
5964219089Spjd	clock_t interval, next, now;
5965208373Smm
5966208373Smm	/*
5967208373Smm	 * If the ARC lists are busy, increase our write rate; if the
5968208373Smm	 * lists are stale, idle back.  This is achieved by checking
5969208373Smm	 * how much we previously wrote - if it was more than half of
5970208373Smm	 * what we wanted, schedule the next write much sooner.
5971208373Smm	 */
5972208373Smm	if (l2arc_feed_again && wrote > (wanted / 2))
5973208373Smm		interval = (hz * l2arc_feed_min_ms) / 1000;
5974208373Smm	else
5975208373Smm		interval = hz * l2arc_feed_secs;
5976208373Smm
5977219089Spjd	now = ddi_get_lbolt();
5978219089Spjd	next = MAX(now, MIN(now + interval, began + interval));
5979208373Smm
5980208373Smm	return (next);
5981208373Smm}
5982208373Smm
5983185029Spjd/*
5984185029Spjd * Cycle through L2ARC devices.  This is how L2ARC load balances.
5985185029Spjd * If a device is returned, this also returns holding the spa config lock.
5986185029Spjd */
5987185029Spjdstatic l2arc_dev_t *
5988185029Spjdl2arc_dev_get_next(void)
5989185029Spjd{
5990185029Spjd	l2arc_dev_t *first, *next = NULL;
5991185029Spjd
5992185029Spjd	/*
5993185029Spjd	 * Lock out the removal of spas (spa_namespace_lock), then removal
5994185029Spjd	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5995185029Spjd	 * both locks will be dropped and a spa config lock held instead.
5996185029Spjd	 */
5997185029Spjd	mutex_enter(&spa_namespace_lock);
5998185029Spjd	mutex_enter(&l2arc_dev_mtx);
5999185029Spjd
6000185029Spjd	/* if there are no vdevs, there is nothing to do */
6001185029Spjd	if (l2arc_ndev == 0)
6002185029Spjd		goto out;
6003185029Spjd
6004185029Spjd	first = NULL;
6005185029Spjd	next = l2arc_dev_last;
6006185029Spjd	do {
6007185029Spjd		/* loop around the list looking for a non-faulted vdev */
6008185029Spjd		if (next == NULL) {
6009185029Spjd			next = list_head(l2arc_dev_list);
6010185029Spjd		} else {
6011185029Spjd			next = list_next(l2arc_dev_list, next);
6012185029Spjd			if (next == NULL)
6013185029Spjd				next = list_head(l2arc_dev_list);
6014185029Spjd		}
6015185029Spjd
6016185029Spjd		/* if we have come back to the start, bail out */
6017185029Spjd		if (first == NULL)
6018185029Spjd			first = next;
6019185029Spjd		else if (next == first)
6020185029Spjd			break;
6021185029Spjd
6022185029Spjd	} while (vdev_is_dead(next->l2ad_vdev));
6023185029Spjd
6024185029Spjd	/* if we were unable to find any usable vdevs, return NULL */
6025185029Spjd	if (vdev_is_dead(next->l2ad_vdev))
6026185029Spjd		next = NULL;
6027185029Spjd
6028185029Spjd	l2arc_dev_last = next;
6029185029Spjd
6030185029Spjdout:
6031185029Spjd	mutex_exit(&l2arc_dev_mtx);
6032185029Spjd
6033185029Spjd	/*
6034185029Spjd	 * Grab the config lock to prevent the 'next' device from being
6035185029Spjd	 * removed while we are writing to it.
6036185029Spjd	 */
6037185029Spjd	if (next != NULL)
6038185029Spjd		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6039185029Spjd	mutex_exit(&spa_namespace_lock);
6040185029Spjd
6041185029Spjd	return (next);
6042185029Spjd}
6043185029Spjd
6044185029Spjd/*
6045185029Spjd * Free buffers that were tagged for destruction.
6046185029Spjd */
6047185029Spjdstatic void
6048185029Spjdl2arc_do_free_on_write()
6049185029Spjd{
6050185029Spjd	list_t *buflist;
6051185029Spjd	l2arc_data_free_t *df, *df_prev;
6052185029Spjd
6053185029Spjd	mutex_enter(&l2arc_free_on_write_mtx);
6054185029Spjd	buflist = l2arc_free_on_write;
6055185029Spjd
6056185029Spjd	for (df = list_tail(buflist); df; df = df_prev) {
6057185029Spjd		df_prev = list_prev(buflist, df);
6058185029Spjd		ASSERT(df->l2df_data != NULL);
6059185029Spjd		ASSERT(df->l2df_func != NULL);
6060185029Spjd		df->l2df_func(df->l2df_data, df->l2df_size);
6061185029Spjd		list_remove(buflist, df);
6062185029Spjd		kmem_free(df, sizeof (l2arc_data_free_t));
6063185029Spjd	}
6064185029Spjd
6065185029Spjd	mutex_exit(&l2arc_free_on_write_mtx);
6066185029Spjd}
6067185029Spjd
6068185029Spjd/*
6069185029Spjd * A write to a cache device has completed.  Update all headers to allow
6070185029Spjd * reads from these buffers to begin.
6071185029Spjd */
6072185029Spjdstatic void
6073185029Spjdl2arc_write_done(zio_t *zio)
6074185029Spjd{
6075185029Spjd	l2arc_write_callback_t *cb;
6076185029Spjd	l2arc_dev_t *dev;
6077185029Spjd	list_t *buflist;
6078275811Sdelphij	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6079185029Spjd	kmutex_t *hash_lock;
6080268085Sdelphij	int64_t bytes_dropped = 0;
6081185029Spjd
6082185029Spjd	cb = zio->io_private;
6083185029Spjd	ASSERT(cb != NULL);
6084185029Spjd	dev = cb->l2wcb_dev;
6085185029Spjd	ASSERT(dev != NULL);
6086185029Spjd	head = cb->l2wcb_head;
6087185029Spjd	ASSERT(head != NULL);
6088286570Smav	buflist = &dev->l2ad_buflist;
6089185029Spjd	ASSERT(buflist != NULL);
6090185029Spjd	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6091185029Spjd	    l2arc_write_callback_t *, cb);
6092185029Spjd
6093185029Spjd	if (zio->io_error != 0)
6094185029Spjd		ARCSTAT_BUMP(arcstat_l2_writes_error);
6095185029Spjd
6096185029Spjd	/*
6097185029Spjd	 * All writes completed, or an error was hit.
6098185029Spjd	 */
6099286763Smavtop:
6100286763Smav	mutex_enter(&dev->l2ad_mtx);
6101275811Sdelphij	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6102275811Sdelphij		hdr_prev = list_prev(buflist, hdr);
6103185029Spjd
6104275811Sdelphij		hash_lock = HDR_LOCK(hdr);
6105286763Smav
6106286763Smav		/*
6107286763Smav		 * We cannot use mutex_enter or else we can deadlock
6108286763Smav		 * with l2arc_write_buffers (due to swapping the order
6109286763Smav		 * the hash lock and l2ad_mtx are taken).
6110286763Smav		 */
6111185029Spjd		if (!mutex_tryenter(hash_lock)) {
6112185029Spjd			/*
6113286763Smav			 * Missed the hash lock. We must retry so we
6114286763Smav			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6115185029Spjd			 */
6116286763Smav			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6117286763Smav
6118286763Smav			/*
6119286763Smav			 * We don't want to rescan the headers we've
6120286763Smav			 * already marked as having been written out, so
6121286763Smav			 * we reinsert the head node so we can pick up
6122286763Smav			 * where we left off.
6123286763Smav			 */
6124286763Smav			list_remove(buflist, head);
6125286763Smav			list_insert_after(buflist, hdr, head);
6126286763Smav
6127286763Smav			mutex_exit(&dev->l2ad_mtx);
6128286763Smav
6129286763Smav			/*
6130286763Smav			 * We wait for the hash lock to become available
6131286763Smav			 * to try and prevent busy waiting, and increase
6132286763Smav			 * the chance we'll be able to acquire the lock
6133286763Smav			 * the next time around.
6134286763Smav			 */
6135286763Smav			mutex_enter(hash_lock);
6136286763Smav			mutex_exit(hash_lock);
6137286763Smav			goto top;
6138185029Spjd		}
6139185029Spjd
6140286570Smav		/*
6141286763Smav		 * We could not have been moved into the arc_l2c_only
6142286763Smav		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6143286763Smav		 * bit being set. Let's just ensure that's being enforced.
6144286570Smav		 */
6145286763Smav		ASSERT(HDR_HAS_L1HDR(hdr));
6146286570Smav
6147286763Smav		/*
6148286763Smav		 * We may have allocated a buffer for L2ARC compression,
6149286763Smav		 * we must release it to avoid leaking this data.
6150286763Smav		 */
6151286763Smav		l2arc_release_cdata_buf(hdr);
6152286763Smav
6153185029Spjd		if (zio->io_error != 0) {
6154185029Spjd			/*
6155185029Spjd			 * Error - drop L2ARC entry.
6156185029Spjd			 */
6157286776Smav			list_remove(buflist, hdr);
6158290191Savg			l2arc_trim(hdr);
6159286570Smav			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6160286570Smav
6161286570Smav			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
6162275811Sdelphij			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
6163286598Smav
6164286598Smav			bytes_dropped += hdr->b_l2hdr.b_asize;
6165286598Smav			(void) refcount_remove_many(&dev->l2ad_alloc,
6166286598Smav			    hdr->b_l2hdr.b_asize, hdr);
6167185029Spjd		}
6168185029Spjd
6169185029Spjd		/*
6170286763Smav		 * Allow ARC to begin reads and ghost list evictions to
6171286763Smav		 * this L2ARC entry.
6172185029Spjd		 */
6173275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6174185029Spjd
6175185029Spjd		mutex_exit(hash_lock);
6176185029Spjd	}
6177185029Spjd
6178185029Spjd	atomic_inc_64(&l2arc_writes_done);
6179185029Spjd	list_remove(buflist, head);
6180286570Smav	ASSERT(!HDR_HAS_L1HDR(head));
6181286570Smav	kmem_cache_free(hdr_l2only_cache, head);
6182286570Smav	mutex_exit(&dev->l2ad_mtx);
6183185029Spjd
6184268085Sdelphij	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6185268085Sdelphij
6186185029Spjd	l2arc_do_free_on_write();
6187185029Spjd
6188185029Spjd	kmem_free(cb, sizeof (l2arc_write_callback_t));
6189185029Spjd}
6190185029Spjd
6191185029Spjd/*
6192185029Spjd * A read to a cache device completed.  Validate buffer contents before
6193185029Spjd * handing over to the regular ARC routines.
6194185029Spjd */
6195185029Spjdstatic void
6196185029Spjdl2arc_read_done(zio_t *zio)
6197185029Spjd{
6198185029Spjd	l2arc_read_callback_t *cb;
6199185029Spjd	arc_buf_hdr_t *hdr;
6200185029Spjd	arc_buf_t *buf;
6201185029Spjd	kmutex_t *hash_lock;
6202185029Spjd	int equal;
6203185029Spjd
6204185029Spjd	ASSERT(zio->io_vd != NULL);
6205185029Spjd	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6206185029Spjd
6207185029Spjd	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6208185029Spjd
6209185029Spjd	cb = zio->io_private;
6210185029Spjd	ASSERT(cb != NULL);
6211185029Spjd	buf = cb->l2rcb_buf;
6212185029Spjd	ASSERT(buf != NULL);
6213185029Spjd
6214219089Spjd	hash_lock = HDR_LOCK(buf->b_hdr);
6215185029Spjd	mutex_enter(hash_lock);
6216219089Spjd	hdr = buf->b_hdr;
6217219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6218185029Spjd
6219185029Spjd	/*
6220297848Savg	 * If the data was read into a temporary buffer,
6221297848Savg	 * move it and free the buffer.
6222297848Savg	 */
6223297848Savg	if (cb->l2rcb_data != NULL) {
6224297848Savg		ASSERT3U(hdr->b_size, <, zio->io_size);
6225297848Savg		ASSERT3U(cb->l2rcb_compress, ==, ZIO_COMPRESS_OFF);
6226297848Savg		if (zio->io_error == 0)
6227297848Savg			bcopy(cb->l2rcb_data, buf->b_data, hdr->b_size);
6228297848Savg
6229297848Savg		/*
6230297848Savg		 * The following must be done regardless of whether
6231297848Savg		 * there was an error:
6232297848Savg		 * - free the temporary buffer
6233297848Savg		 * - point zio to the real ARC buffer
6234297848Savg		 * - set zio size accordingly
6235297848Savg		 * These are required because zio is either re-used for
6236297848Savg		 * an I/O of the block in the case of the error
6237297848Savg		 * or the zio is passed to arc_read_done() and it
6238297848Savg		 * needs real data.
6239297848Savg		 */
6240297848Savg		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6241297848Savg		zio->io_size = zio->io_orig_size = hdr->b_size;
6242297848Savg		zio->io_data = zio->io_orig_data = buf->b_data;
6243297848Savg	}
6244297848Savg
6245297848Savg	/*
6246251478Sdelphij	 * If the buffer was compressed, decompress it first.
6247251478Sdelphij	 */
6248251478Sdelphij	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6249251478Sdelphij		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6250251478Sdelphij	ASSERT(zio->io_data != NULL);
6251287706Sdelphij	ASSERT3U(zio->io_size, ==, hdr->b_size);
6252287706Sdelphij	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6253251478Sdelphij
6254251478Sdelphij	/*
6255185029Spjd	 * Check this survived the L2ARC journey.
6256185029Spjd	 */
6257185029Spjd	equal = arc_cksum_equal(buf);
6258185029Spjd	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6259185029Spjd		mutex_exit(hash_lock);
6260185029Spjd		zio->io_private = buf;
6261185029Spjd		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6262185029Spjd		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6263185029Spjd		arc_read_done(zio);
6264185029Spjd	} else {
6265185029Spjd		mutex_exit(hash_lock);
6266185029Spjd		/*
6267185029Spjd		 * Buffer didn't survive caching.  Increment stats and
6268185029Spjd		 * reissue to the original storage device.
6269185029Spjd		 */
6270185029Spjd		if (zio->io_error != 0) {
6271185029Spjd			ARCSTAT_BUMP(arcstat_l2_io_error);
6272185029Spjd		} else {
6273249195Smm			zio->io_error = SET_ERROR(EIO);
6274185029Spjd		}
6275185029Spjd		if (!equal)
6276185029Spjd			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6277185029Spjd
6278185029Spjd		/*
6279185029Spjd		 * If there's no waiter, issue an async i/o to the primary
6280185029Spjd		 * storage now.  If there *is* a waiter, the caller must
6281185029Spjd		 * issue the i/o in a context where it's OK to block.
6282185029Spjd		 */
6283209962Smm		if (zio->io_waiter == NULL) {
6284209962Smm			zio_t *pio = zio_unique_parent(zio);
6285209962Smm
6286209962Smm			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6287209962Smm
6288209962Smm			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6289287706Sdelphij			    buf->b_data, hdr->b_size, arc_read_done, buf,
6290185029Spjd			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6291209962Smm		}
6292185029Spjd	}
6293185029Spjd
6294185029Spjd	kmem_free(cb, sizeof (l2arc_read_callback_t));
6295185029Spjd}
6296185029Spjd
6297185029Spjd/*
6298185029Spjd * This is the list priority from which the L2ARC will search for pages to
6299185029Spjd * cache.  This is used within loops (0..3) to cycle through lists in the
6300185029Spjd * desired order.  This order can have a significant effect on cache
6301185029Spjd * performance.
6302185029Spjd *
6303185029Spjd * Currently the metadata lists are hit first, MFU then MRU, followed by
6304185029Spjd * the data lists.  This function returns a locked list, and also returns
6305185029Spjd * the lock pointer.
6306185029Spjd */
6307286763Smavstatic multilist_sublist_t *
6308286763Smavl2arc_sublist_lock(int list_num)
6309185029Spjd{
6310286763Smav	multilist_t *ml = NULL;
6311286763Smav	unsigned int idx;
6312185029Spjd
6313286762Smav	ASSERT(list_num >= 0 && list_num <= 3);
6314206796Spjd
6315286762Smav	switch (list_num) {
6316286762Smav	case 0:
6317286763Smav		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6318286762Smav		break;
6319286762Smav	case 1:
6320286763Smav		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6321286762Smav		break;
6322286762Smav	case 2:
6323286763Smav		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6324286762Smav		break;
6325286762Smav	case 3:
6326286763Smav		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6327286762Smav		break;
6328185029Spjd	}
6329185029Spjd
6330286763Smav	/*
6331286763Smav	 * Return a randomly-selected sublist. This is acceptable
6332286763Smav	 * because the caller feeds only a little bit of data for each
6333286763Smav	 * call (8MB). Subsequent calls will result in different
6334286763Smav	 * sublists being selected.
6335286763Smav	 */
6336286763Smav	idx = multilist_get_random_index(ml);
6337286763Smav	return (multilist_sublist_lock(ml, idx));
6338185029Spjd}
6339185029Spjd
6340185029Spjd/*
6341185029Spjd * Evict buffers from the device write hand to the distance specified in
6342185029Spjd * bytes.  This distance may span populated buffers, it may span nothing.
6343185029Spjd * This is clearing a region on the L2ARC device ready for writing.
6344185029Spjd * If the 'all' boolean is set, every buffer is evicted.
6345185029Spjd */
6346185029Spjdstatic void
6347185029Spjdl2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6348185029Spjd{
6349185029Spjd	list_t *buflist;
6350275811Sdelphij	arc_buf_hdr_t *hdr, *hdr_prev;
6351185029Spjd	kmutex_t *hash_lock;
6352185029Spjd	uint64_t taddr;
6353185029Spjd
6354286570Smav	buflist = &dev->l2ad_buflist;
6355185029Spjd
6356185029Spjd	if (!all && dev->l2ad_first) {
6357185029Spjd		/*
6358185029Spjd		 * This is the first sweep through the device.  There is
6359185029Spjd		 * nothing to evict.
6360185029Spjd		 */
6361185029Spjd		return;
6362185029Spjd	}
6363185029Spjd
6364185029Spjd	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6365185029Spjd		/*
6366185029Spjd		 * When nearing the end of the device, evict to the end
6367185029Spjd		 * before the device write hand jumps to the start.
6368185029Spjd		 */
6369185029Spjd		taddr = dev->l2ad_end;
6370185029Spjd	} else {
6371185029Spjd		taddr = dev->l2ad_hand + distance;
6372185029Spjd	}
6373185029Spjd	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6374185029Spjd	    uint64_t, taddr, boolean_t, all);
6375185029Spjd
6376185029Spjdtop:
6377286570Smav	mutex_enter(&dev->l2ad_mtx);
6378275811Sdelphij	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6379275811Sdelphij		hdr_prev = list_prev(buflist, hdr);
6380185029Spjd
6381275811Sdelphij		hash_lock = HDR_LOCK(hdr);
6382286763Smav
6383286763Smav		/*
6384286763Smav		 * We cannot use mutex_enter or else we can deadlock
6385286763Smav		 * with l2arc_write_buffers (due to swapping the order
6386286763Smav		 * the hash lock and l2ad_mtx are taken).
6387286763Smav		 */
6388185029Spjd		if (!mutex_tryenter(hash_lock)) {
6389185029Spjd			/*
6390185029Spjd			 * Missed the hash lock.  Retry.
6391185029Spjd			 */
6392185029Spjd			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6393286570Smav			mutex_exit(&dev->l2ad_mtx);
6394185029Spjd			mutex_enter(hash_lock);
6395185029Spjd			mutex_exit(hash_lock);
6396185029Spjd			goto top;
6397185029Spjd		}
6398185029Spjd
6399275811Sdelphij		if (HDR_L2_WRITE_HEAD(hdr)) {
6400185029Spjd			/*
6401185029Spjd			 * We hit a write head node.  Leave it for
6402185029Spjd			 * l2arc_write_done().
6403185029Spjd			 */
6404275811Sdelphij			list_remove(buflist, hdr);
6405185029Spjd			mutex_exit(hash_lock);
6406185029Spjd			continue;
6407185029Spjd		}
6408185029Spjd
6409286570Smav		if (!all && HDR_HAS_L2HDR(hdr) &&
6410286570Smav		    (hdr->b_l2hdr.b_daddr > taddr ||
6411286570Smav		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6412185029Spjd			/*
6413185029Spjd			 * We've evicted to the target address,
6414185029Spjd			 * or the end of the device.
6415185029Spjd			 */
6416185029Spjd			mutex_exit(hash_lock);
6417185029Spjd			break;
6418185029Spjd		}
6419185029Spjd
6420286570Smav		ASSERT(HDR_HAS_L2HDR(hdr));
6421286570Smav		if (!HDR_HAS_L1HDR(hdr)) {
6422275811Sdelphij			ASSERT(!HDR_L2_READING(hdr));
6423185029Spjd			/*
6424185029Spjd			 * This doesn't exist in the ARC.  Destroy.
6425185029Spjd			 * arc_hdr_destroy() will call list_remove()
6426185029Spjd			 * and decrement arcstat_l2_size.
6427185029Spjd			 */
6428275811Sdelphij			arc_change_state(arc_anon, hdr, hash_lock);
6429275811Sdelphij			arc_hdr_destroy(hdr);
6430185029Spjd		} else {
6431286570Smav			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6432286570Smav			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6433185029Spjd			/*
6434185029Spjd			 * Invalidate issued or about to be issued
6435185029Spjd			 * reads, since we may be about to write
6436185029Spjd			 * over this location.
6437185029Spjd			 */
6438275811Sdelphij			if (HDR_L2_READING(hdr)) {
6439185029Spjd				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6440275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6441185029Spjd			}
6442185029Spjd
6443286763Smav			/* Ensure this header has finished being written */
6444286763Smav			ASSERT(!HDR_L2_WRITING(hdr));
6445286763Smav			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6446286763Smav
6447286598Smav			arc_hdr_l2hdr_destroy(hdr);
6448185029Spjd		}
6449185029Spjd		mutex_exit(hash_lock);
6450185029Spjd	}
6451286570Smav	mutex_exit(&dev->l2ad_mtx);
6452185029Spjd}
6453185029Spjd
6454185029Spjd/*
6455185029Spjd * Find and write ARC buffers to the L2ARC device.
6456185029Spjd *
6457275811Sdelphij * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6458185029Spjd * for reading until they have completed writing.
6459251478Sdelphij * The headroom_boost is an in-out parameter used to maintain headroom boost
6460251478Sdelphij * state between calls to this function.
6461251478Sdelphij *
6462251478Sdelphij * Returns the number of bytes actually written (which may be smaller than
6463251478Sdelphij * the delta by which the device hand has changed due to alignment).
6464185029Spjd */
6465208373Smmstatic uint64_t
6466251478Sdelphijl2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6467251478Sdelphij    boolean_t *headroom_boost)
6468185029Spjd{
6469275811Sdelphij	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6470289295Smav	uint64_t write_asize, write_sz, headroom,
6471289295Smav	    buf_compress_minsz;
6472185029Spjd	void *buf_data;
6473251478Sdelphij	boolean_t full;
6474185029Spjd	l2arc_write_callback_t *cb;
6475185029Spjd	zio_t *pio, *wzio;
6476228103Smm	uint64_t guid = spa_load_guid(spa);
6477251478Sdelphij	const boolean_t do_headroom_boost = *headroom_boost;
6478185029Spjd	int try;
6479185029Spjd
6480185029Spjd	ASSERT(dev->l2ad_vdev != NULL);
6481185029Spjd
6482251478Sdelphij	/* Lower the flag now, we might want to raise it again later. */
6483251478Sdelphij	*headroom_boost = B_FALSE;
6484251478Sdelphij
6485185029Spjd	pio = NULL;
6486287099Savg	write_sz = write_asize = 0;
6487185029Spjd	full = B_FALSE;
6488286570Smav	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6489275811Sdelphij	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6490286570Smav	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6491185029Spjd
6492205231Skmacy	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6493185029Spjd	/*
6494251478Sdelphij	 * We will want to try to compress buffers that are at least 2x the
6495251478Sdelphij	 * device sector size.
6496251478Sdelphij	 */
6497251478Sdelphij	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6498251478Sdelphij
6499251478Sdelphij	/*
6500185029Spjd	 * Copy buffers for L2ARC writing.
6501185029Spjd	 */
6502286762Smav	for (try = 0; try <= 3; try++) {
6503286763Smav		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6504251478Sdelphij		uint64_t passed_sz = 0;
6505251478Sdelphij
6506205231Skmacy		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6507185029Spjd
6508185029Spjd		/*
6509185029Spjd		 * L2ARC fast warmup.
6510185029Spjd		 *
6511185029Spjd		 * Until the ARC is warm and starts to evict, read from the
6512185029Spjd		 * head of the ARC lists rather than the tail.
6513185029Spjd		 */
6514185029Spjd		if (arc_warm == B_FALSE)
6515286763Smav			hdr = multilist_sublist_head(mls);
6516185029Spjd		else
6517286763Smav			hdr = multilist_sublist_tail(mls);
6518275811Sdelphij		if (hdr == NULL)
6519205231Skmacy			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6520185029Spjd
6521286762Smav		headroom = target_sz * l2arc_headroom;
6522251478Sdelphij		if (do_headroom_boost)
6523251478Sdelphij			headroom = (headroom * l2arc_headroom_boost) / 100;
6524251478Sdelphij
6525275811Sdelphij		for (; hdr; hdr = hdr_prev) {
6526251478Sdelphij			kmutex_t *hash_lock;
6527251478Sdelphij			uint64_t buf_sz;
6528287099Savg			uint64_t buf_a_sz;
6529297848Savg			size_t align;
6530251478Sdelphij
6531185029Spjd			if (arc_warm == B_FALSE)
6532286763Smav				hdr_prev = multilist_sublist_next(mls, hdr);
6533185029Spjd			else
6534286763Smav				hdr_prev = multilist_sublist_prev(mls, hdr);
6535275811Sdelphij			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6536206796Spjd
6537275811Sdelphij			hash_lock = HDR_LOCK(hdr);
6538251478Sdelphij			if (!mutex_tryenter(hash_lock)) {
6539205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6540185029Spjd				/*
6541185029Spjd				 * Skip this buffer rather than waiting.
6542185029Spjd				 */
6543185029Spjd				continue;
6544185029Spjd			}
6545185029Spjd
6546275811Sdelphij			passed_sz += hdr->b_size;
6547185029Spjd			if (passed_sz > headroom) {
6548185029Spjd				/*
6549185029Spjd				 * Searched too far.
6550185029Spjd				 */
6551185029Spjd				mutex_exit(hash_lock);
6552205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6553185029Spjd				break;
6554185029Spjd			}
6555185029Spjd
6556275811Sdelphij			if (!l2arc_write_eligible(guid, hdr)) {
6557185029Spjd				mutex_exit(hash_lock);
6558185029Spjd				continue;
6559185029Spjd			}
6560185029Spjd
6561287099Savg			/*
6562287099Savg			 * Assume that the buffer is not going to be compressed
6563287099Savg			 * and could take more space on disk because of a larger
6564287099Savg			 * disk block size.
6565287099Savg			 */
6566287099Savg			buf_sz = hdr->b_size;
6567297848Savg			align = (size_t)1 << dev->l2ad_vdev->vdev_ashift;
6568297848Savg			buf_a_sz = P2ROUNDUP(buf_sz, align);
6569287099Savg
6570287099Savg			if ((write_asize + buf_a_sz) > target_sz) {
6571185029Spjd				full = B_TRUE;
6572185029Spjd				mutex_exit(hash_lock);
6573205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_full);
6574185029Spjd				break;
6575185029Spjd			}
6576185029Spjd
6577185029Spjd			if (pio == NULL) {
6578185029Spjd				/*
6579185029Spjd				 * Insert a dummy header on the buflist so
6580185029Spjd				 * l2arc_write_done() can find where the
6581185029Spjd				 * write buffers begin without searching.
6582185029Spjd				 */
6583286763Smav				mutex_enter(&dev->l2ad_mtx);
6584286570Smav				list_insert_head(&dev->l2ad_buflist, head);
6585286763Smav				mutex_exit(&dev->l2ad_mtx);
6586185029Spjd
6587185029Spjd				cb = kmem_alloc(
6588185029Spjd				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6589185029Spjd				cb->l2wcb_dev = dev;
6590185029Spjd				cb->l2wcb_head = head;
6591185029Spjd				pio = zio_root(spa, l2arc_write_done, cb,
6592185029Spjd				    ZIO_FLAG_CANFAIL);
6593205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_pios);
6594185029Spjd			}
6595185029Spjd
6596185029Spjd			/*
6597185029Spjd			 * Create and add a new L2ARC header.
6598185029Spjd			 */
6599286570Smav			hdr->b_l2hdr.b_dev = dev;
6600275811Sdelphij			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6601251478Sdelphij			/*
6602251478Sdelphij			 * Temporarily stash the data buffer in b_tmp_cdata.
6603251478Sdelphij			 * The subsequent write step will pick it up from
6604286570Smav			 * there. This is because can't access b_l1hdr.b_buf
6605251478Sdelphij			 * without holding the hash_lock, which we in turn
6606251478Sdelphij			 * can't access without holding the ARC list locks
6607251478Sdelphij			 * (which we want to avoid during compression/writing).
6608251478Sdelphij			 */
6609287706Sdelphij			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6610286570Smav			hdr->b_l2hdr.b_asize = hdr->b_size;
6611286570Smav			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6612251478Sdelphij
6613286598Smav			/*
6614286598Smav			 * Explicitly set the b_daddr field to a known
6615286598Smav			 * value which means "invalid address". This
6616286598Smav			 * enables us to differentiate which stage of
6617286598Smav			 * l2arc_write_buffers() the particular header
6618286598Smav			 * is in (e.g. this loop, or the one below).
6619286598Smav			 * ARC_FLAG_L2_WRITING is not enough to make
6620286598Smav			 * this distinction, and we need to know in
6621286598Smav			 * order to do proper l2arc vdev accounting in
6622286598Smav			 * arc_release() and arc_hdr_destroy().
6623286598Smav			 *
6624286598Smav			 * Note, we can't use a new flag to distinguish
6625286598Smav			 * the two stages because we don't hold the
6626286598Smav			 * header's hash_lock below, in the second stage
6627286598Smav			 * of this function. Thus, we can't simply
6628286598Smav			 * change the b_flags field to denote that the
6629286598Smav			 * IO has been sent. We can change the b_daddr
6630286598Smav			 * field of the L2 portion, though, since we'll
6631286598Smav			 * be holding the l2ad_mtx; which is why we're
6632286598Smav			 * using it to denote the header's state change.
6633286598Smav			 */
6634286598Smav			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6635289295Smav
6636286570Smav			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6637185029Spjd
6638286763Smav			mutex_enter(&dev->l2ad_mtx);
6639286570Smav			list_insert_head(&dev->l2ad_buflist, hdr);
6640286763Smav			mutex_exit(&dev->l2ad_mtx);
6641251478Sdelphij
6642185029Spjd			/*
6643185029Spjd			 * Compute and store the buffer cksum before
6644185029Spjd			 * writing.  On debug the cksum is verified first.
6645185029Spjd			 */
6646286570Smav			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6647286570Smav			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6648185029Spjd
6649185029Spjd			mutex_exit(hash_lock);
6650185029Spjd
6651251478Sdelphij			write_sz += buf_sz;
6652287099Savg			write_asize += buf_a_sz;
6653251478Sdelphij		}
6654251478Sdelphij
6655286763Smav		multilist_sublist_unlock(mls);
6656251478Sdelphij
6657251478Sdelphij		if (full == B_TRUE)
6658251478Sdelphij			break;
6659251478Sdelphij	}
6660251478Sdelphij
6661251478Sdelphij	/* No buffers selected for writing? */
6662251478Sdelphij	if (pio == NULL) {
6663251478Sdelphij		ASSERT0(write_sz);
6664286570Smav		ASSERT(!HDR_HAS_L1HDR(head));
6665286570Smav		kmem_cache_free(hdr_l2only_cache, head);
6666251478Sdelphij		return (0);
6667251478Sdelphij	}
6668251478Sdelphij
6669286763Smav	mutex_enter(&dev->l2ad_mtx);
6670286763Smav
6671251478Sdelphij	/*
6672251478Sdelphij	 * Now start writing the buffers. We're starting at the write head
6673251478Sdelphij	 * and work backwards, retracing the course of the buffer selector
6674251478Sdelphij	 * loop above.
6675251478Sdelphij	 */
6676297848Savg	write_asize = 0;
6677286570Smav	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6678286570Smav	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6679251478Sdelphij		uint64_t buf_sz;
6680297848Savg		boolean_t compress;
6681251478Sdelphij
6682251478Sdelphij		/*
6683286763Smav		 * We rely on the L1 portion of the header below, so
6684286763Smav		 * it's invalid for this header to have been evicted out
6685286763Smav		 * of the ghost cache, prior to being written out. The
6686286763Smav		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6687286763Smav		 */
6688286763Smav		ASSERT(HDR_HAS_L1HDR(hdr));
6689286763Smav
6690286763Smav		/*
6691251478Sdelphij		 * We shouldn't need to lock the buffer here, since we flagged
6692275811Sdelphij		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6693275811Sdelphij		 * take care to only access its L2 cache parameters. In
6694286570Smav		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6695275811Sdelphij		 * ARC eviction.
6696251478Sdelphij		 */
6697286570Smav		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6698251478Sdelphij
6699297848Savg		/*
6700297848Savg		 * Save a pointer to the original buffer data we had previously
6701297848Savg		 * stashed away.
6702297848Savg		 */
6703297848Savg		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6704297848Savg
6705297848Savg		compress = HDR_L2COMPRESS(hdr) &&
6706297848Savg		    hdr->b_l2hdr.b_asize >= buf_compress_minsz;
6707297848Savg		if (l2arc_transform_buf(hdr, compress)) {
6708297848Savg			/*
6709297848Savg			 * If compression succeeded, enable headroom
6710297848Savg			 * boost on the next scan cycle.
6711297848Savg			 */
6712297848Savg			*headroom_boost = B_TRUE;
6713251478Sdelphij		}
6714251478Sdelphij
6715251478Sdelphij		/*
6716297848Savg		 * Get the new buffer size that accounts for compression
6717297848Savg		 * and padding.
6718251478Sdelphij		 */
6719286570Smav		buf_sz = hdr->b_l2hdr.b_asize;
6720251478Sdelphij
6721274172Savg		/*
6722286598Smav		 * We need to do this regardless if buf_sz is zero or
6723286598Smav		 * not, otherwise, when this l2hdr is evicted we'll
6724286598Smav		 * remove a reference that was never added.
6725286598Smav		 */
6726286598Smav		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6727286598Smav
6728251478Sdelphij		/* Compression may have squashed the buffer to zero length. */
6729251478Sdelphij		if (buf_sz != 0) {
6730297848Savg			/*
6731297848Savg			 * If the data was padded or compressed, then it
6732297848Savg			 * it is in a new buffer.
6733297848Savg			 */
6734297848Savg			if (hdr->b_l1hdr.b_tmp_cdata != NULL)
6735297848Savg				buf_data = hdr->b_l1hdr.b_tmp_cdata;
6736185029Spjd			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6737185029Spjd			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6738185029Spjd			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6739185029Spjd			    ZIO_FLAG_CANFAIL, B_FALSE);
6740185029Spjd
6741185029Spjd			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6742185029Spjd			    zio_t *, wzio);
6743185029Spjd			(void) zio_nowait(wzio);
6744185029Spjd
6745297848Savg			write_asize += buf_sz;
6746297848Savg			dev->l2ad_hand += buf_sz;
6747185029Spjd		}
6748251478Sdelphij	}
6749185029Spjd
6750286570Smav	mutex_exit(&dev->l2ad_mtx);
6751185029Spjd
6752251478Sdelphij	ASSERT3U(write_asize, <=, target_sz);
6753185029Spjd	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6754251478Sdelphij	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6755185029Spjd	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6756297848Savg	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6757297848Savg	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6758185029Spjd
6759185029Spjd	/*
6760185029Spjd	 * Bump device hand to the device start if it is approaching the end.
6761185029Spjd	 * l2arc_evict() will already have evicted ahead for this case.
6762185029Spjd	 */
6763185029Spjd	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6764185029Spjd		dev->l2ad_hand = dev->l2ad_start;
6765185029Spjd		dev->l2ad_first = B_FALSE;
6766185029Spjd	}
6767185029Spjd
6768208373Smm	dev->l2ad_writing = B_TRUE;
6769185029Spjd	(void) zio_wait(pio);
6770208373Smm	dev->l2ad_writing = B_FALSE;
6771208373Smm
6772251478Sdelphij	return (write_asize);
6773185029Spjd}
6774185029Spjd
6775185029Spjd/*
6776297848Savg * Transforms, possibly compresses and pads, an L2ARC buffer.
6777286570Smav * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6778251478Sdelphij * size in l2hdr->b_asize. This routine tries to compress the data and
6779251478Sdelphij * depending on the compression result there are three possible outcomes:
6780297848Savg * *) The buffer was incompressible. The buffer size was already ashift aligned.
6781297848Savg *    The original hdr contents were left untouched except for b_tmp_cdata,
6782297848Savg *    which is reset to NULL. The caller must keep a pointer to the original
6783297848Savg *    data.
6784297848Savg * *) The buffer was incompressible. The buffer size was not ashift aligned.
6785297848Savg *    b_tmp_cdata was replaced with a temporary data buffer which holds a padded
6786297848Savg *    (aligned) copy of the data. Once writing is done, invoke
6787297848Savg *    l2arc_release_cdata_buf on this hdr to free the temporary buffer.
6788251478Sdelphij * *) The buffer was all-zeros, so there is no need to write it to an L2
6789251478Sdelphij *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6790251478Sdelphij *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6791251478Sdelphij * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6792251478Sdelphij *    data buffer which holds the compressed data to be written, and b_asize
6793251478Sdelphij *    tells us how much data there is. b_compress is set to the appropriate
6794251478Sdelphij *    compression algorithm. Once writing is done, invoke
6795251478Sdelphij *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6796251478Sdelphij *
6797251478Sdelphij * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6798251478Sdelphij * buffer was incompressible).
6799251478Sdelphij */
6800251478Sdelphijstatic boolean_t
6801297848Savgl2arc_transform_buf(arc_buf_hdr_t *hdr, boolean_t compress)
6802251478Sdelphij{
6803251478Sdelphij	void *cdata;
6804297848Savg	size_t align, asize, csize, len, rounded;
6805297848Savg
6806286570Smav	ASSERT(HDR_HAS_L2HDR(hdr));
6807286570Smav	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6808251478Sdelphij
6809286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
6810287706Sdelphij	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6811286570Smav	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6812251478Sdelphij
6813251478Sdelphij	len = l2hdr->b_asize;
6814297848Savg	align = (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift;
6815297848Savg	asize = P2ROUNDUP(len, align);
6816297848Savg	cdata = zio_data_buf_alloc(asize);
6817286570Smav	ASSERT3P(cdata, !=, NULL);
6818297848Savg	if (compress)
6819297848Savg		csize = zio_compress_data(ZIO_COMPRESS_LZ4,
6820297848Savg		    hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6821297848Savg	else
6822297848Savg		csize = len;
6823251478Sdelphij
6824251478Sdelphij	if (csize == 0) {
6825251478Sdelphij		/* zero block, indicate that there's nothing to write */
6826297848Savg		zio_data_buf_free(cdata, asize);
6827287706Sdelphij		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6828251478Sdelphij		l2hdr->b_asize = 0;
6829286570Smav		hdr->b_l1hdr.b_tmp_cdata = NULL;
6830251478Sdelphij		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6831251478Sdelphij		return (B_TRUE);
6832287283Sdelphij	}
6833287283Sdelphij
6834297848Savg	rounded = P2ROUNDUP(csize, align);
6835297848Savg	ASSERT3U(rounded, <=, asize);
6836287283Sdelphij	if (rounded < len) {
6837251478Sdelphij		/*
6838251478Sdelphij		 * Compression succeeded, we'll keep the cdata around for
6839251478Sdelphij		 * writing and release it afterwards.
6840251478Sdelphij		 */
6841287283Sdelphij		if (rounded > csize) {
6842287283Sdelphij			bzero((char *)cdata + csize, rounded - csize);
6843287283Sdelphij			csize = rounded;
6844287283Sdelphij		}
6845287706Sdelphij		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6846251478Sdelphij		l2hdr->b_asize = csize;
6847286570Smav		hdr->b_l1hdr.b_tmp_cdata = cdata;
6848251478Sdelphij		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6849251478Sdelphij		return (B_TRUE);
6850251478Sdelphij	} else {
6851251478Sdelphij		/*
6852297848Savg		 * Compression did not save space.
6853251478Sdelphij		 */
6854297848Savg		if (P2PHASE(len, align) != 0) {
6855297848Savg			/*
6856297848Savg			 * Use compression buffer for a copy of data padded to
6857297848Savg			 * the proper size.  Compression algorithm remains set
6858297848Savg			 * to ZIO_COMPRESS_OFF.
6859297848Savg			 */
6860297848Savg			ASSERT3U(len, <, asize);
6861297848Savg			bcopy(hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6862297848Savg			bzero((char *)cdata + len, asize - len);
6863297848Savg			l2hdr->b_asize = asize;
6864297848Savg			hdr->b_l1hdr.b_tmp_cdata = cdata;
6865297848Savg			ARCSTAT_BUMP(arcstat_l2_padding_needed);
6866297848Savg		} else {
6867297848Savg			ASSERT3U(len, ==, asize);
6868297848Savg			/*
6869297848Savg			 * The original buffer is good as is,
6870297848Savg			 * release the compressed buffer.
6871297848Savg			 * l2hdr will be left unmodified except for b_tmp_cdata.
6872297848Savg			 */
6873297848Savg			zio_data_buf_free(cdata, asize);
6874297848Savg			hdr->b_l1hdr.b_tmp_cdata = NULL;
6875297848Savg		}
6876297848Savg		if (compress)
6877297848Savg			ARCSTAT_BUMP(arcstat_l2_compress_failures);
6878251478Sdelphij		return (B_FALSE);
6879251478Sdelphij	}
6880251478Sdelphij}
6881251478Sdelphij
6882251478Sdelphij/*
6883251478Sdelphij * Decompresses a zio read back from an l2arc device. On success, the
6884251478Sdelphij * underlying zio's io_data buffer is overwritten by the uncompressed
6885251478Sdelphij * version. On decompression error (corrupt compressed stream), the
6886251478Sdelphij * zio->io_error value is set to signal an I/O error.
6887251478Sdelphij *
6888251478Sdelphij * Please note that the compressed data stream is not checksummed, so
6889251478Sdelphij * if the underlying device is experiencing data corruption, we may feed
6890251478Sdelphij * corrupt data to the decompressor, so the decompressor needs to be
6891251478Sdelphij * able to handle this situation (LZ4 does).
6892251478Sdelphij */
6893251478Sdelphijstatic void
6894251478Sdelphijl2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6895251478Sdelphij{
6896251478Sdelphij	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6897251478Sdelphij
6898251478Sdelphij	if (zio->io_error != 0) {
6899251478Sdelphij		/*
6900251478Sdelphij		 * An io error has occured, just restore the original io
6901251478Sdelphij		 * size in preparation for a main pool read.
6902251478Sdelphij		 */
6903251478Sdelphij		zio->io_orig_size = zio->io_size = hdr->b_size;
6904251478Sdelphij		return;
6905251478Sdelphij	}
6906251478Sdelphij
6907251478Sdelphij	if (c == ZIO_COMPRESS_EMPTY) {
6908251478Sdelphij		/*
6909251478Sdelphij		 * An empty buffer results in a null zio, which means we
6910251478Sdelphij		 * need to fill its io_data after we're done restoring the
6911251478Sdelphij		 * buffer's contents.
6912251478Sdelphij		 */
6913286570Smav		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6914286570Smav		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6915286570Smav		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6916251478Sdelphij	} else {
6917251478Sdelphij		ASSERT(zio->io_data != NULL);
6918251478Sdelphij		/*
6919251478Sdelphij		 * We copy the compressed data from the start of the arc buffer
6920251478Sdelphij		 * (the zio_read will have pulled in only what we need, the
6921251478Sdelphij		 * rest is garbage which we will overwrite at decompression)
6922251478Sdelphij		 * and then decompress back to the ARC data buffer. This way we
6923251478Sdelphij		 * can minimize copying by simply decompressing back over the
6924251478Sdelphij		 * original compressed data (rather than decompressing to an
6925251478Sdelphij		 * aux buffer and then copying back the uncompressed buffer,
6926251478Sdelphij		 * which is likely to be much larger).
6927251478Sdelphij		 */
6928251478Sdelphij		uint64_t csize;
6929251478Sdelphij		void *cdata;
6930251478Sdelphij
6931251478Sdelphij		csize = zio->io_size;
6932251478Sdelphij		cdata = zio_data_buf_alloc(csize);
6933251478Sdelphij		bcopy(zio->io_data, cdata, csize);
6934251478Sdelphij		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6935251478Sdelphij		    hdr->b_size) != 0)
6936251478Sdelphij			zio->io_error = EIO;
6937251478Sdelphij		zio_data_buf_free(cdata, csize);
6938251478Sdelphij	}
6939251478Sdelphij
6940251478Sdelphij	/* Restore the expected uncompressed IO size. */
6941251478Sdelphij	zio->io_orig_size = zio->io_size = hdr->b_size;
6942251478Sdelphij}
6943251478Sdelphij
6944251478Sdelphij/*
6945251478Sdelphij * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6946297848Savg * This buffer serves as a temporary holder of compressed or padded data while
6947251478Sdelphij * the buffer entry is being written to an l2arc device. Once that is
6948251478Sdelphij * done, we can dispose of it.
6949251478Sdelphij */
6950251478Sdelphijstatic void
6951275811Sdelphijl2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6952251478Sdelphij{
6953297848Savg	size_t align, asize, len;
6954287706Sdelphij	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6955286763Smav
6956297848Savg	ASSERT(HDR_HAS_L2HDR(hdr));
6957286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
6958286763Smav	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6959286763Smav
6960297848Savg	if (hdr->b_l1hdr.b_tmp_cdata != NULL) {
6961297848Savg		ASSERT(comp != ZIO_COMPRESS_EMPTY);
6962297848Savg		len = hdr->b_size;
6963297848Savg		align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
6964297848Savg		asize = P2ROUNDUP(len, align);
6965297848Savg		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, asize);
6966286763Smav		hdr->b_l1hdr.b_tmp_cdata = NULL;
6967286763Smav	} else {
6968297848Savg		ASSERT(comp == ZIO_COMPRESS_OFF || comp == ZIO_COMPRESS_EMPTY);
6969251478Sdelphij	}
6970251478Sdelphij}
6971251478Sdelphij
6972251478Sdelphij/*
6973185029Spjd * This thread feeds the L2ARC at regular intervals.  This is the beating
6974185029Spjd * heart of the L2ARC.
6975185029Spjd */
6976185029Spjdstatic void
6977185029Spjdl2arc_feed_thread(void *dummy __unused)
6978185029Spjd{
6979185029Spjd	callb_cpr_t cpr;
6980185029Spjd	l2arc_dev_t *dev;
6981185029Spjd	spa_t *spa;
6982208373Smm	uint64_t size, wrote;
6983219089Spjd	clock_t begin, next = ddi_get_lbolt();
6984251478Sdelphij	boolean_t headroom_boost = B_FALSE;
6985185029Spjd
6986185029Spjd	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6987185029Spjd
6988185029Spjd	mutex_enter(&l2arc_feed_thr_lock);
6989185029Spjd
6990185029Spjd	while (l2arc_thread_exit == 0) {
6991185029Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
6992185029Spjd		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6993219089Spjd		    next - ddi_get_lbolt());
6994185029Spjd		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6995219089Spjd		next = ddi_get_lbolt() + hz;
6996185029Spjd
6997185029Spjd		/*
6998185029Spjd		 * Quick check for L2ARC devices.
6999185029Spjd		 */
7000185029Spjd		mutex_enter(&l2arc_dev_mtx);
7001185029Spjd		if (l2arc_ndev == 0) {
7002185029Spjd			mutex_exit(&l2arc_dev_mtx);
7003185029Spjd			continue;
7004185029Spjd		}
7005185029Spjd		mutex_exit(&l2arc_dev_mtx);
7006219089Spjd		begin = ddi_get_lbolt();
7007185029Spjd
7008185029Spjd		/*
7009185029Spjd		 * This selects the next l2arc device to write to, and in
7010185029Spjd		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7011185029Spjd		 * will return NULL if there are now no l2arc devices or if
7012185029Spjd		 * they are all faulted.
7013185029Spjd		 *
7014185029Spjd		 * If a device is returned, its spa's config lock is also
7015185029Spjd		 * held to prevent device removal.  l2arc_dev_get_next()
7016185029Spjd		 * will grab and release l2arc_dev_mtx.
7017185029Spjd		 */
7018185029Spjd		if ((dev = l2arc_dev_get_next()) == NULL)
7019185029Spjd			continue;
7020185029Spjd
7021185029Spjd		spa = dev->l2ad_spa;
7022185029Spjd		ASSERT(spa != NULL);
7023185029Spjd
7024185029Spjd		/*
7025219089Spjd		 * If the pool is read-only then force the feed thread to
7026219089Spjd		 * sleep a little longer.
7027219089Spjd		 */
7028219089Spjd		if (!spa_writeable(spa)) {
7029219089Spjd			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7030219089Spjd			spa_config_exit(spa, SCL_L2ARC, dev);
7031219089Spjd			continue;
7032219089Spjd		}
7033219089Spjd
7034219089Spjd		/*
7035185029Spjd		 * Avoid contributing to memory pressure.
7036185029Spjd		 */
7037185029Spjd		if (arc_reclaim_needed()) {
7038185029Spjd			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7039185029Spjd			spa_config_exit(spa, SCL_L2ARC, dev);
7040185029Spjd			continue;
7041185029Spjd		}
7042185029Spjd
7043185029Spjd		ARCSTAT_BUMP(arcstat_l2_feeds);
7044185029Spjd
7045251478Sdelphij		size = l2arc_write_size();
7046185029Spjd
7047185029Spjd		/*
7048185029Spjd		 * Evict L2ARC buffers that will be overwritten.
7049185029Spjd		 */
7050185029Spjd		l2arc_evict(dev, size, B_FALSE);
7051185029Spjd
7052185029Spjd		/*
7053185029Spjd		 * Write ARC buffers.
7054185029Spjd		 */
7055251478Sdelphij		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
7056208373Smm
7057208373Smm		/*
7058208373Smm		 * Calculate interval between writes.
7059208373Smm		 */
7060208373Smm		next = l2arc_write_interval(begin, size, wrote);
7061185029Spjd		spa_config_exit(spa, SCL_L2ARC, dev);
7062185029Spjd	}
7063185029Spjd
7064185029Spjd	l2arc_thread_exit = 0;
7065185029Spjd	cv_broadcast(&l2arc_feed_thr_cv);
7066185029Spjd	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7067185029Spjd	thread_exit();
7068185029Spjd}
7069185029Spjd
7070185029Spjdboolean_t
7071185029Spjdl2arc_vdev_present(vdev_t *vd)
7072185029Spjd{
7073185029Spjd	l2arc_dev_t *dev;
7074185029Spjd
7075185029Spjd	mutex_enter(&l2arc_dev_mtx);
7076185029Spjd	for (dev = list_head(l2arc_dev_list); dev != NULL;
7077185029Spjd	    dev = list_next(l2arc_dev_list, dev)) {
7078185029Spjd		if (dev->l2ad_vdev == vd)
7079185029Spjd			break;
7080185029Spjd	}
7081185029Spjd	mutex_exit(&l2arc_dev_mtx);
7082185029Spjd
7083185029Spjd	return (dev != NULL);
7084185029Spjd}
7085185029Spjd
7086185029Spjd/*
7087185029Spjd * Add a vdev for use by the L2ARC.  By this point the spa has already
7088185029Spjd * validated the vdev and opened it.
7089185029Spjd */
7090185029Spjdvoid
7091219089Spjdl2arc_add_vdev(spa_t *spa, vdev_t *vd)
7092185029Spjd{
7093185029Spjd	l2arc_dev_t *adddev;
7094185029Spjd
7095185029Spjd	ASSERT(!l2arc_vdev_present(vd));
7096185029Spjd
7097255753Sgibbs	vdev_ashift_optimize(vd);
7098255753Sgibbs
7099185029Spjd	/*
7100185029Spjd	 * Create a new l2arc device entry.
7101185029Spjd	 */
7102185029Spjd	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7103185029Spjd	adddev->l2ad_spa = spa;
7104185029Spjd	adddev->l2ad_vdev = vd;
7105219089Spjd	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7106219089Spjd	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7107185029Spjd	adddev->l2ad_hand = adddev->l2ad_start;
7108185029Spjd	adddev->l2ad_first = B_TRUE;
7109208373Smm	adddev->l2ad_writing = B_FALSE;
7110185029Spjd
7111286570Smav	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7112185029Spjd	/*
7113185029Spjd	 * This is a list of all ARC buffers that are still valid on the
7114185029Spjd	 * device.
7115185029Spjd	 */
7116286570Smav	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7117286570Smav	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7118185029Spjd
7119219089Spjd	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7120286598Smav	refcount_create(&adddev->l2ad_alloc);
7121185029Spjd
7122185029Spjd	/*
7123185029Spjd	 * Add device to global list
7124185029Spjd	 */
7125185029Spjd	mutex_enter(&l2arc_dev_mtx);
7126185029Spjd	list_insert_head(l2arc_dev_list, adddev);
7127185029Spjd	atomic_inc_64(&l2arc_ndev);
7128185029Spjd	mutex_exit(&l2arc_dev_mtx);
7129185029Spjd}
7130185029Spjd
7131185029Spjd/*
7132185029Spjd * Remove a vdev from the L2ARC.
7133185029Spjd */
7134185029Spjdvoid
7135185029Spjdl2arc_remove_vdev(vdev_t *vd)
7136185029Spjd{
7137185029Spjd	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7138185029Spjd
7139185029Spjd	/*
7140185029Spjd	 * Find the device by vdev
7141185029Spjd	 */
7142185029Spjd	mutex_enter(&l2arc_dev_mtx);
7143185029Spjd	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7144185029Spjd		nextdev = list_next(l2arc_dev_list, dev);
7145185029Spjd		if (vd == dev->l2ad_vdev) {
7146185029Spjd			remdev = dev;
7147185029Spjd			break;
7148185029Spjd		}
7149185029Spjd	}
7150185029Spjd	ASSERT(remdev != NULL);
7151185029Spjd
7152185029Spjd	/*
7153185029Spjd	 * Remove device from global list
7154185029Spjd	 */
7155185029Spjd	list_remove(l2arc_dev_list, remdev);
7156185029Spjd	l2arc_dev_last = NULL;		/* may have been invalidated */
7157185029Spjd	atomic_dec_64(&l2arc_ndev);
7158185029Spjd	mutex_exit(&l2arc_dev_mtx);
7159185029Spjd
7160185029Spjd	/*
7161185029Spjd	 * Clear all buflists and ARC references.  L2ARC device flush.
7162185029Spjd	 */
7163185029Spjd	l2arc_evict(remdev, 0, B_TRUE);
7164286570Smav	list_destroy(&remdev->l2ad_buflist);
7165286570Smav	mutex_destroy(&remdev->l2ad_mtx);
7166286598Smav	refcount_destroy(&remdev->l2ad_alloc);
7167185029Spjd	kmem_free(remdev, sizeof (l2arc_dev_t));
7168185029Spjd}
7169185029Spjd
7170185029Spjdvoid
7171185029Spjdl2arc_init(void)
7172185029Spjd{
7173185029Spjd	l2arc_thread_exit = 0;
7174185029Spjd	l2arc_ndev = 0;
7175185029Spjd	l2arc_writes_sent = 0;
7176185029Spjd	l2arc_writes_done = 0;
7177185029Spjd
7178185029Spjd	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7179185029Spjd	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7180185029Spjd	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7181185029Spjd	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7182185029Spjd
7183185029Spjd	l2arc_dev_list = &L2ARC_dev_list;
7184185029Spjd	l2arc_free_on_write = &L2ARC_free_on_write;
7185185029Spjd	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7186185029Spjd	    offsetof(l2arc_dev_t, l2ad_node));
7187185029Spjd	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7188185029Spjd	    offsetof(l2arc_data_free_t, l2df_list_node));
7189185029Spjd}
7190185029Spjd
7191185029Spjdvoid
7192185029Spjdl2arc_fini(void)
7193185029Spjd{
7194185029Spjd	/*
7195185029Spjd	 * This is called from dmu_fini(), which is called from spa_fini();
7196185029Spjd	 * Because of this, we can assume that all l2arc devices have
7197185029Spjd	 * already been removed when the pools themselves were removed.
7198185029Spjd	 */
7199185029Spjd
7200185029Spjd	l2arc_do_free_on_write();
7201185029Spjd
7202185029Spjd	mutex_destroy(&l2arc_feed_thr_lock);
7203185029Spjd	cv_destroy(&l2arc_feed_thr_cv);
7204185029Spjd	mutex_destroy(&l2arc_dev_mtx);
7205185029Spjd	mutex_destroy(&l2arc_free_on_write_mtx);
7206185029Spjd
7207185029Spjd	list_destroy(l2arc_dev_list);
7208185029Spjd	list_destroy(l2arc_free_on_write);
7209185029Spjd}
7210185029Spjd
7211185029Spjdvoid
7212185029Spjdl2arc_start(void)
7213185029Spjd{
7214209962Smm	if (!(spa_mode_global & FWRITE))
7215185029Spjd		return;
7216185029Spjd
7217185029Spjd	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7218185029Spjd	    TS_RUN, minclsyspri);
7219185029Spjd}
7220185029Spjd
7221185029Spjdvoid
7222185029Spjdl2arc_stop(void)
7223185029Spjd{
7224209962Smm	if (!(spa_mode_global & FWRITE))
7225185029Spjd		return;
7226185029Spjd
7227185029Spjd	mutex_enter(&l2arc_feed_thr_lock);
7228185029Spjd	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7229185029Spjd	l2arc_thread_exit = 1;
7230185029Spjd	while (l2arc_thread_exit != 0)
7231185029Spjd		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7232185029Spjd	mutex_exit(&l2arc_feed_thr_lock);
7233185029Spjd}
7234