arc.c revision 248572
197521Sphk/*
297521Sphk * CDDL HEADER START
397521Sphk *
4139815Simp * The contents of this file are subject to the terms of the
5139815Simp * Common Development and Distribution License (the "License").
6139815Simp * You may not use this file except in compliance with the License.
797521Sphk *
897521Sphk * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
997521Sphk * or http://www.opensolaris.org/os/licensing.
1097521Sphk * See the License for the specific language governing permissions
1197521Sphk * and limitations under the License.
1297521Sphk *
1397521Sphk * When distributing Covered Code, include this CDDL HEADER in each
1497521Sphk * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1597521Sphk * If applicable, add the following below this CDDL HEADER, with the
1697521Sphk * fields enclosed by brackets "[]" replaced with your own identifying
1797521Sphk * information: Portions Copyright [yyyy] [name of copyright owner]
1897521Sphk *
1997521Sphk * CDDL HEADER END
2097521Sphk */
2197521Sphk/*
2297521Sphk * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2397521Sphk * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2497521Sphk * Copyright (c) 2011 by Delphix. All rights reserved.
2597521Sphk */
2697521Sphk
2797521Sphk/*
2897521Sphk * DVA-based Adjustable Replacement Cache
2997521Sphk *
3097521Sphk * While much of the theory of operation used here is
3197521Sphk * based on the self-tuning, low overhead replacement cache
3297521Sphk * presented by Megiddo and Modha at FAST 2003, there are some
3397521Sphk * significant differences:
3497521Sphk *
3597521Sphk * 1. The Megiddo and Modha model assumes any page is evictable.
3697521Sphk * Pages in its cache cannot be "locked" into memory.  This makes
3797521Sphk * the eviction algorithm simple: evict the last page in the list.
3897521Sphk * This also make the performance characteristics easy to reason
3997521Sphk * about.  Our cache is not so simple.  At any given moment, some
4097521Sphk * subset of the blocks in the cache are un-evictable because we
4197521Sphk * have handed out a reference to them.  Blocks are only evictable
4297521Sphk * when there are no external references active.  This makes
4397521Sphk * eviction far more problematic:  we choose to evict the evictable
4497521Sphk * blocks that are the "lowest" in the list.
45116189Sobrien *
46116189Sobrien * There are times when it is not possible to evict the requested
47116189Sobrien * space.  In these circumstances we are unable to adjust the cache
4897521Sphk * size.  To prevent the cache growing unbounded at these times we
4997521Sphk * implement a "cache throttle" that slows the flow of new data
5097521Sphk * into the cache until we can make space available.
51233517Smarius *
5297521Sphk * 2. The Megiddo and Modha model assumes a fixed cache size.
5397521Sphk * Pages are evicted when the cache is full and there is a cache
5497521Sphk * miss.  Our model has a variable sized cache.  It grows with
5597521Sphk * high use, but also tries to react to memory pressure from the
5697521Sphk * operating system: decreasing its size when system memory is
5797521Sphk * tight.
5897521Sphk *
5997521Sphk * 3. The Megiddo and Modha model assumes a fixed page size. All
6097521Sphk * elements of the cache are therefor exactly the same size.  So
6197521Sphk * when adjusting the cache size following a cache miss, its simply
6297521Sphk * a matter of choosing a single page to evict.  In our model, we
6397521Sphk * have variable sized cache blocks (rangeing from 512 bytes to
6497521Sphk * 128K bytes).  We therefor choose a set of blocks to evict to make
6597521Sphk * space for a cache miss that approximates as closely as possible
6697521Sphk * the space used by the new block.
6797521Sphk *
6897521Sphk * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
6997521Sphk * by N. Megiddo & D. Modha, FAST 2003
7097521Sphk */
7197521Sphk
7297521Sphk/*
7397521Sphk * The locking model:
7497521Sphk *
7597521Sphk * A new reference to a cache buffer can be obtained in two
7697521Sphk * ways: 1) via a hash table lookup using the DVA as a key,
7797521Sphk * or 2) via one of the ARC lists.  The arc_read() interface
7897521Sphk * uses method 1, while the internal arc algorithms for
7997521Sphk * adjusting the cache use method 2.  We therefor provide two
8097521Sphk * types of locks: 1) the hash table lock array, and 2) the
8197521Sphk * arc list locks.
8297521Sphk *
8397521Sphk * Buffers do not have their own mutexs, rather they rely on the
8497521Sphk * hash table mutexs for the bulk of their protection (i.e. most
8597521Sphk * fields in the arc_buf_hdr_t are protected by these mutexs).
8697521Sphk *
8797521Sphk * buf_hash_find() returns the appropriate mutex (held) when it
8897521Sphk * locates the requested buffer in the hash table.  It returns
8997521Sphk * NULL for the mutex if the buffer was not in the table.
9097521Sphk *
9197521Sphk * buf_hash_remove() expects the appropriate hash mutex to be
9297521Sphk * already held before it is invoked.
9397521Sphk *
9497521Sphk * Each arc state also has a mutex which is used to protect the
9597521Sphk * buffer list associated with the state.  When attempting to
9697521Sphk * obtain a hash table lock while holding an arc list lock you
97145604Smarcel * must use: mutex_tryenter() to avoid deadlock.  Also note that
98145604Smarcel * the active state mutex must be held before the ghost state mutex.
99145604Smarcel *
100145604Smarcel * Arc buffers may have an associated eviction callback function.
101145611Smarcel * This function will be invoked prior to removing the buffer (e.g.
102145604Smarcel * in arc_do_user_evicts()).  Note however that the data associated
103145604Smarcel * with the buffer may be evicted prior to the callback.  The callback
104145604Smarcel * must be made with *no locks held* (to prevent deadlock).  Additionally,
105145604Smarcel * the users of callbacks must ensure that their private data is
106145604Smarcel * protected from simultaneous callbacks from arc_buf_evict()
107145604Smarcel * and arc_do_user_evicts().
108145604Smarcel *
109145604Smarcel * Note that the majority of the performance stats are manipulated
110145604Smarcel * with atomic operations.
111145604Smarcel *
112145604Smarcel * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113145604Smarcel *
114145604Smarcel *	- L2ARC buflist creation
115188605Srrs *	- L2ARC buflist eviction
116188605Srrs *	- L2ARC write completion, which walks L2ARC buflists
117188605Srrs *	- ARC header destruction, as it removes from L2ARC buflists
118188605Srrs *	- ARC header release, as it removes from L2ARC buflists
119188605Srrs */
120188605Srrs
121188605Srrs#include <sys/spa.h>
122188605Srrs#include <sys/zio.h>
123188605Srrs#include <sys/zfs_context.h>
124188605Srrs#include <sys/arc.h>
125188605Srrs#include <sys/refcount.h>
126188605Srrs#include <sys/vdev.h>
127188605Srrs#include <sys/vdev_impl.h>
128188605Srrs#ifdef _KERNEL
129188605Srrs#include <sys/dnlc.h>
130188605Srrs#endif
131188605Srrs#include <sys/callb.h>
132188605Srrs#include <sys/kstat.h>
133188605Srrs#include <sys/trim_map.h>
134188605Srrs#include <zfs_fletcher.h>
135188605Srrs#include <sys/sdt.h>
136188605Srrs
137233517Smarius#include <vm/vm_pageout.h>
138188605Srrs
139188605Srrs#ifdef illumos
140188605Srrs#ifndef _KERNEL
141188605Srrs/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
142188605Srrsboolean_t arc_watch = B_FALSE;
143188605Srrsint arc_procfd;
144188605Srrs#endif
145188605Srrs#endif /* illumos */
146188605Srrs
147188605Srrsstatic kmutex_t		arc_reclaim_thr_lock;
148188605Srrsstatic kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
149188605Srrsstatic uint8_t		arc_thread_exit;
150188605Srrs
151188605Srrsextern int zfs_write_limit_shift;
152188605Srrsextern uint64_t zfs_write_limit_max;
153188605Srrsextern kmutex_t zfs_write_limit_lock;
154188605Srrs
155188605Srrs#define	ARC_REDUCE_DNLC_PERCENT	3
156188605Srrsuint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
157188605Srrs
158188605Srrstypedef enum arc_reclaim_strategy {
159188605Srrs	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
160188605Srrs	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
161188605Srrs} arc_reclaim_strategy_t;
162188605Srrs
163188605Srrs/* number of seconds before growing cache again */
164188605Srrsstatic int		arc_grow_retry = 60;
165188605Srrs
166188605Srrs/* shift of arc_c for calculating both min and max arc_p */
167188605Srrsstatic int		arc_p_min_shift = 4;
168188605Srrs
169188605Srrs/* log2(fraction of arc to reclaim) */
170188605Srrsstatic int		arc_shrink_shift = 5;
171188605Srrs
172188605Srrs/*
173188605Srrs * minimum lifespan of a prefetch block in clock ticks
174188605Srrs * (initialized in arc_init())
175188605Srrs */
176188605Srrsstatic int		arc_min_prefetch_lifespan;
177188605Srrs
178188605Srrsstatic int arc_dead;
179188605Srrsextern int zfs_prefetch_disable;
180188605Srrs
181188605Srrs/*
182188605Srrs * The arc has filled available memory and has now warmed up.
183188605Srrs */
184188605Srrsstatic boolean_t arc_warm;
185188605Srrs
186188605Srrs/*
187188605Srrs * These tunables are for performance analysis.
188188605Srrs */
189188605Srrsuint64_t zfs_arc_max;
190188605Srrsuint64_t zfs_arc_min;
191188605Srrsuint64_t zfs_arc_meta_limit = 0;
192188605Srrsint zfs_arc_grow_retry = 0;
193188605Srrsint zfs_arc_shrink_shift = 0;
194188605Srrsint zfs_arc_p_min_shift = 0;
195188605Srrsint zfs_disable_dup_eviction = 0;
196188605Srrs
197188605SrrsTUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
198188605SrrsTUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
199188605SrrsTUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
200188605SrrsSYSCTL_DECL(_vfs_zfs);
201188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
202188605Srrs    "Maximum ARC size");
203188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
204188605Srrs    "Minimum ARC size");
205188605Srrs
206188605Srrs/*
207188605Srrs * Note that buffers can be in one of 6 states:
208188605Srrs *	ARC_anon	- anonymous (discussed below)
209188605Srrs *	ARC_mru		- recently used, currently cached
210188605Srrs *	ARC_mru_ghost	- recentely used, no longer in cache
211188605Srrs *	ARC_mfu		- frequently used, currently cached
212188605Srrs *	ARC_mfu_ghost	- frequently used, no longer in cache
213188605Srrs *	ARC_l2c_only	- exists in L2ARC but not other states
214188605Srrs * When there are no active references to the buffer, they are
215188605Srrs * are linked onto a list in one of these arc states.  These are
216188605Srrs * the only buffers that can be evicted or deleted.  Within each
217188605Srrs * state there are multiple lists, one for meta-data and one for
218188605Srrs * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
219188605Srrs * etc.) is tracked separately so that it can be managed more
220188605Srrs * explicitly: favored over data, limited explicitly.
221188605Srrs *
222188605Srrs * Anonymous buffers are buffers that are not associated with
223188605Srrs * a DVA.  These are buffers that hold dirty block copies
224188605Srrs * before they are written to stable storage.  By definition,
225188605Srrs * they are "ref'd" and are considered part of arc_mru
226188605Srrs * that cannot be freed.  Generally, they will aquire a DVA
227188605Srrs * as they are written and migrate onto the arc_mru list.
228188605Srrs *
229188605Srrs * The ARC_l2c_only state is for buffers that are in the second
230188605Srrs * level ARC but no longer in any of the ARC_m* lists.  The second
231188605Srrs * level ARC itself may also contain buffers that are in any of
232188605Srrs * the ARC_m* states - meaning that a buffer can exist in two
233188605Srrs * places.  The reason for the ARC_l2c_only state is to keep the
234188605Srrs * buffer header in the hash table, so that reads that hit the
235188605Srrs * second level ARC benefit from these fast lookups.
236188605Srrs */
237188605Srrs
238188605Srrs#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
239188605Srrsstruct arcs_lock {
240188605Srrs	kmutex_t	arcs_lock;
241188605Srrs#ifdef _KERNEL
242188605Srrs	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
243233517Smarius#endif
244188605Srrs};
245188605Srrs
246188605Srrs/*
247188605Srrs * must be power of two for mask use to work
248188605Srrs *
249188605Srrs */
250188605Srrs#define ARC_BUFC_NUMDATALISTS		16
251188605Srrs#define ARC_BUFC_NUMMETADATALISTS	16
252188605Srrs#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
253188605Srrs
254188605Srrstypedef struct arc_state {
255188605Srrs	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
256188605Srrs	uint64_t arcs_size;	/* total amount of data in this state */
257188605Srrs	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
258188605Srrs	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
259188605Srrs} arc_state_t;
260188605Srrs
261188605Srrs#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
262188605Srrs
263188605Srrs/* The 6 states: */
264188605Srrsstatic arc_state_t ARC_anon;
265188605Srrsstatic arc_state_t ARC_mru;
266188605Srrsstatic arc_state_t ARC_mru_ghost;
267188605Srrsstatic arc_state_t ARC_mfu;
268188605Srrsstatic arc_state_t ARC_mfu_ghost;
269188605Srrsstatic arc_state_t ARC_l2c_only;
270188605Srrs
271188605Srrstypedef struct arc_stats {
272188605Srrs	kstat_named_t arcstat_hits;
273188605Srrs	kstat_named_t arcstat_misses;
274188605Srrs	kstat_named_t arcstat_demand_data_hits;
275188605Srrs	kstat_named_t arcstat_demand_data_misses;
276188605Srrs	kstat_named_t arcstat_demand_metadata_hits;
277188605Srrs	kstat_named_t arcstat_demand_metadata_misses;
278188605Srrs	kstat_named_t arcstat_prefetch_data_hits;
279188605Srrs	kstat_named_t arcstat_prefetch_data_misses;
280188605Srrs	kstat_named_t arcstat_prefetch_metadata_hits;
281188605Srrs	kstat_named_t arcstat_prefetch_metadata_misses;
282188605Srrs	kstat_named_t arcstat_mru_hits;
283188605Srrs	kstat_named_t arcstat_mru_ghost_hits;
284188605Srrs	kstat_named_t arcstat_mfu_hits;
285188605Srrs	kstat_named_t arcstat_mfu_ghost_hits;
286188605Srrs	kstat_named_t arcstat_allocated;
287188605Srrs	kstat_named_t arcstat_deleted;
288188605Srrs	kstat_named_t arcstat_stolen;
289188605Srrs	kstat_named_t arcstat_recycle_miss;
290188605Srrs	kstat_named_t arcstat_mutex_miss;
291188605Srrs	kstat_named_t arcstat_evict_skip;
292188605Srrs	kstat_named_t arcstat_evict_l2_cached;
293188605Srrs	kstat_named_t arcstat_evict_l2_eligible;
294188605Srrs	kstat_named_t arcstat_evict_l2_ineligible;
295188605Srrs	kstat_named_t arcstat_hash_elements;
296188605Srrs	kstat_named_t arcstat_hash_elements_max;
297188605Srrs	kstat_named_t arcstat_hash_collisions;
298188605Srrs	kstat_named_t arcstat_hash_chains;
299233517Smarius	kstat_named_t arcstat_hash_chain_max;
300188605Srrs	kstat_named_t arcstat_p;
301188605Srrs	kstat_named_t arcstat_c;
302188605Srrs	kstat_named_t arcstat_c_min;
303188605Srrs	kstat_named_t arcstat_c_max;
304188605Srrs	kstat_named_t arcstat_size;
305188605Srrs	kstat_named_t arcstat_hdr_size;
306188605Srrs	kstat_named_t arcstat_data_size;
307188605Srrs	kstat_named_t arcstat_other_size;
308188605Srrs	kstat_named_t arcstat_l2_hits;
309188605Srrs	kstat_named_t arcstat_l2_misses;
310188605Srrs	kstat_named_t arcstat_l2_feeds;
311188605Srrs	kstat_named_t arcstat_l2_rw_clash;
312188605Srrs	kstat_named_t arcstat_l2_read_bytes;
313188605Srrs	kstat_named_t arcstat_l2_write_bytes;
314188605Srrs	kstat_named_t arcstat_l2_writes_sent;
315188605Srrs	kstat_named_t arcstat_l2_writes_done;
316188605Srrs	kstat_named_t arcstat_l2_writes_error;
317188605Srrs	kstat_named_t arcstat_l2_writes_hdr_miss;
318188605Srrs	kstat_named_t arcstat_l2_evict_lock_retry;
319188605Srrs	kstat_named_t arcstat_l2_evict_reading;
320188605Srrs	kstat_named_t arcstat_l2_free_on_write;
321188605Srrs	kstat_named_t arcstat_l2_abort_lowmem;
322188605Srrs	kstat_named_t arcstat_l2_cksum_bad;
323188605Srrs	kstat_named_t arcstat_l2_io_error;
324188605Srrs	kstat_named_t arcstat_l2_size;
325188605Srrs	kstat_named_t arcstat_l2_hdr_size;
326188605Srrs	kstat_named_t arcstat_l2_write_trylock_fail;
327188605Srrs	kstat_named_t arcstat_l2_write_passed_headroom;
328188605Srrs	kstat_named_t arcstat_l2_write_spa_mismatch;
329188605Srrs	kstat_named_t arcstat_l2_write_in_l2;
330188605Srrs	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
331188605Srrs	kstat_named_t arcstat_l2_write_not_cacheable;
332188605Srrs	kstat_named_t arcstat_l2_write_full;
333188605Srrs	kstat_named_t arcstat_l2_write_buffer_iter;
334188605Srrs	kstat_named_t arcstat_l2_write_pios;
335188605Srrs	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
336188605Srrs	kstat_named_t arcstat_l2_write_buffer_list_iter;
337188605Srrs	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
338188605Srrs	kstat_named_t arcstat_memory_throttle_count;
339188605Srrs	kstat_named_t arcstat_duplicate_buffers;
340188605Srrs	kstat_named_t arcstat_duplicate_buffers_size;
341188605Srrs	kstat_named_t arcstat_duplicate_reads;
342188605Srrs} arc_stats_t;
343188605Srrs
344188605Srrsstatic arc_stats_t arc_stats = {
345188605Srrs	{ "hits",			KSTAT_DATA_UINT64 },
346188605Srrs	{ "misses",			KSTAT_DATA_UINT64 },
347188605Srrs	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
348188605Srrs	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
349188605Srrs	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
350188605Srrs	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
351188605Srrs	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
352188605Srrs	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
353188605Srrs	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
354188605Srrs	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
355233517Smarius	{ "mru_hits",			KSTAT_DATA_UINT64 },
356188605Srrs	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
357188605Srrs	{ "mfu_hits",			KSTAT_DATA_UINT64 },
358188605Srrs	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
359188605Srrs	{ "allocated",			KSTAT_DATA_UINT64 },
360188605Srrs	{ "deleted",			KSTAT_DATA_UINT64 },
361188605Srrs	{ "stolen",			KSTAT_DATA_UINT64 },
362188605Srrs	{ "recycle_miss",		KSTAT_DATA_UINT64 },
363188605Srrs	{ "mutex_miss",			KSTAT_DATA_UINT64 },
364188605Srrs	{ "evict_skip",			KSTAT_DATA_UINT64 },
365188605Srrs	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
366188605Srrs	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
367188605Srrs	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
368188605Srrs	{ "hash_elements",		KSTAT_DATA_UINT64 },
369188605Srrs	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
370188605Srrs	{ "hash_collisions",		KSTAT_DATA_UINT64 },
371188605Srrs	{ "hash_chains",		KSTAT_DATA_UINT64 },
372188605Srrs	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
373188605Srrs	{ "p",				KSTAT_DATA_UINT64 },
374188605Srrs	{ "c",				KSTAT_DATA_UINT64 },
375188605Srrs	{ "c_min",			KSTAT_DATA_UINT64 },
376188605Srrs	{ "c_max",			KSTAT_DATA_UINT64 },
377188605Srrs	{ "size",			KSTAT_DATA_UINT64 },
378188605Srrs	{ "hdr_size",			KSTAT_DATA_UINT64 },
379188605Srrs	{ "data_size",			KSTAT_DATA_UINT64 },
380188605Srrs	{ "other_size",			KSTAT_DATA_UINT64 },
381188605Srrs	{ "l2_hits",			KSTAT_DATA_UINT64 },
382188605Srrs	{ "l2_misses",			KSTAT_DATA_UINT64 },
383188605Srrs	{ "l2_feeds",			KSTAT_DATA_UINT64 },
384188605Srrs	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
385188605Srrs	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
386188605Srrs	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
387188605Srrs	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
388188605Srrs	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
389188605Srrs	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
390188605Srrs	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
391188605Srrs	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
392188605Srrs	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
393188605Srrs	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
394188605Srrs	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
395188605Srrs	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
396188605Srrs	{ "l2_io_error",		KSTAT_DATA_UINT64 },
397188605Srrs	{ "l2_size",			KSTAT_DATA_UINT64 },
398188605Srrs	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
399188605Srrs	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
400188605Srrs	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
401188605Srrs	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
402188605Srrs	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
403188605Srrs	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
404188605Srrs	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
405188605Srrs	{ "l2_write_full",		KSTAT_DATA_UINT64 },
406188605Srrs	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
407188605Srrs	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
408188605Srrs	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
409188605Srrs	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
410188605Srrs	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
411233517Smarius	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
412188605Srrs	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
413188605Srrs	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
414188605Srrs	{ "duplicate_reads",		KSTAT_DATA_UINT64 }
415188605Srrs};
416188605Srrs
417188605Srrs#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
418188605Srrs
419188605Srrs#define	ARCSTAT_INCR(stat, val) \
420188605Srrs	atomic_add_64(&arc_stats.stat.value.ui64, (val));
421188605Srrs
422188605Srrs#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
423188605Srrs#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
424188605Srrs
425188605Srrs#define	ARCSTAT_MAX(stat, val) {					\
426188605Srrs	uint64_t m;							\
427188605Srrs	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
428188605Srrs	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
429188605Srrs		continue;						\
430188605Srrs}
431188605Srrs
432188605Srrs#define	ARCSTAT_MAXSTAT(stat) \
433188605Srrs	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
434188605Srrs
435188605Srrs/*
436188605Srrs * We define a macro to allow ARC hits/misses to be easily broken down by
437188605Srrs * two separate conditions, giving a total of four different subtypes for
438188605Srrs * each of hits and misses (so eight statistics total).
439188605Srrs */
440188605Srrs#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
441188605Srrs	if (cond1) {							\
442188605Srrs		if (cond2) {						\
443188605Srrs			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
444188605Srrs		} else {						\
445188605Srrs			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
446188605Srrs		}							\
447188605Srrs	} else {							\
448188605Srrs		if (cond2) {						\
449188605Srrs			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
450188605Srrs		} else {						\
451188605Srrs			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
452188605Srrs		}							\
453188605Srrs	}
454188605Srrs
455188605Srrskstat_t			*arc_ksp;
456188605Srrsstatic arc_state_t	*arc_anon;
457188605Srrsstatic arc_state_t	*arc_mru;
458188605Srrsstatic arc_state_t	*arc_mru_ghost;
459188605Srrsstatic arc_state_t	*arc_mfu;
460188605Srrsstatic arc_state_t	*arc_mfu_ghost;
461188605Srrsstatic arc_state_t	*arc_l2c_only;
462188605Srrs
463188605Srrs/*
464188605Srrs * There are several ARC variables that are critical to export as kstats --
465188605Srrs * but we don't want to have to grovel around in the kstat whenever we wish to
466188605Srrs * manipulate them.  For these variables, we therefore define them to be in
467233517Smarius * terms of the statistic variable.  This assures that we are not introducing
468188605Srrs * the possibility of inconsistency by having shadow copies of the variables,
469188605Srrs * while still allowing the code to be readable.
470188605Srrs */
471188605Srrs#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
472188605Srrs#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
473188605Srrs#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
474188605Srrs#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
475188605Srrs#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
476188605Srrs
477188605Srrsstatic int		arc_no_grow;	/* Don't try to grow cache size */
478188605Srrsstatic uint64_t		arc_tempreserve;
479188605Srrsstatic uint64_t		arc_loaned_bytes;
480188605Srrsstatic uint64_t		arc_meta_used;
481188605Srrsstatic uint64_t		arc_meta_limit;
482188605Srrsstatic uint64_t		arc_meta_max = 0;
483188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RD, &arc_meta_used, 0,
484188605Srrs    "ARC metadata used");
485188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RW, &arc_meta_limit, 0,
486188605Srrs    "ARC metadata limit");
487188605Srrs
488188605Srrstypedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
489188605Srrs
490188605Srrstypedef struct arc_callback arc_callback_t;
491188605Srrs
492188605Srrsstruct arc_callback {
493188605Srrs	void			*acb_private;
494188605Srrs	arc_done_func_t		*acb_done;
495188605Srrs	arc_buf_t		*acb_buf;
496188605Srrs	zio_t			*acb_zio_dummy;
497188605Srrs	arc_callback_t		*acb_next;
498188605Srrs};
499188605Srrs
500188605Srrstypedef struct arc_write_callback arc_write_callback_t;
501188605Srrs
502188605Srrsstruct arc_write_callback {
503188605Srrs	void		*awcb_private;
504188605Srrs	arc_done_func_t	*awcb_ready;
505188605Srrs	arc_done_func_t	*awcb_done;
506188605Srrs	arc_buf_t	*awcb_buf;
507188605Srrs};
508188605Srrs
509188605Srrsstruct arc_buf_hdr {
510188605Srrs	/* protected by hash lock */
511188605Srrs	dva_t			b_dva;
512188605Srrs	uint64_t		b_birth;
513188605Srrs	uint64_t		b_cksum0;
514188605Srrs
515188605Srrs	kmutex_t		b_freeze_lock;
516188605Srrs	zio_cksum_t		*b_freeze_cksum;
517188605Srrs	void			*b_thawed;
518188605Srrs
519188605Srrs	arc_buf_hdr_t		*b_hash_next;
520188605Srrs	arc_buf_t		*b_buf;
521188605Srrs	uint32_t		b_flags;
522188605Srrs	uint32_t		b_datacnt;
523233517Smarius
524188605Srrs	arc_callback_t		*b_acb;
525188605Srrs	kcondvar_t		b_cv;
526188605Srrs
527188605Srrs	/* immutable */
528188605Srrs	arc_buf_contents_t	b_type;
529188605Srrs	uint64_t		b_size;
530188605Srrs	uint64_t		b_spa;
531188605Srrs
532188605Srrs	/* protected by arc state mutex */
533188605Srrs	arc_state_t		*b_state;
534188605Srrs	list_node_t		b_arc_node;
535188605Srrs
536188605Srrs	/* updated atomically */
537188605Srrs	clock_t			b_arc_access;
538188605Srrs
539188605Srrs	/* self protecting */
540188605Srrs	refcount_t		b_refcnt;
541188605Srrs
542188605Srrs	l2arc_buf_hdr_t		*b_l2hdr;
543188605Srrs	list_node_t		b_l2node;
544188605Srrs};
545188605Srrs
546188605Srrsstatic arc_buf_t *arc_eviction_list;
547188605Srrsstatic kmutex_t arc_eviction_mtx;
548188605Srrsstatic arc_buf_hdr_t arc_eviction_hdr;
549188605Srrsstatic void arc_get_data_buf(arc_buf_t *buf);
550188605Srrsstatic void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
551188605Srrsstatic int arc_evict_needed(arc_buf_contents_t type);
552188605Srrsstatic void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
553188605Srrs#ifdef illumos
554188605Srrsstatic void arc_buf_watch(arc_buf_t *buf);
555188605Srrs#endif /* illumos */
556188605Srrs
557188605Srrsstatic boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
558188605Srrs
559188605Srrs#define	GHOST_STATE(state)	\
560188605Srrs	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
561188605Srrs	(state) == arc_l2c_only)
562188605Srrs
563188605Srrs/*
564188605Srrs * Private ARC flags.  These flags are private ARC only flags that will show up
565188605Srrs * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
566188605Srrs * be passed in as arc_flags in things like arc_read.  However, these flags
567188605Srrs * should never be passed and should only be set by ARC code.  When adding new
568188605Srrs * public flags, make sure not to smash the private ones.
569188605Srrs */
570188605Srrs
571188605Srrs#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
572188605Srrs#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
573188605Srrs#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
574188605Srrs#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
575188605Srrs#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
576188605Srrs#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
577188605Srrs#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
578188605Srrs#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
579233517Smarius#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
580188605Srrs#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
581188605Srrs
582188605Srrs#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
583188605Srrs#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
584188605Srrs#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
585188605Srrs#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
586188605Srrs#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
587188605Srrs#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
588188605Srrs#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
589188605Srrs#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
590188605Srrs#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
591188605Srrs				    (hdr)->b_l2hdr != NULL)
592188605Srrs#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
593188605Srrs#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
594188605Srrs#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
595188605Srrs
596188605Srrs/*
597188605Srrs * Other sizes
598188605Srrs */
599188605Srrs
600188605Srrs#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
601188605Srrs#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
602188605Srrs
603188605Srrs/*
604188605Srrs * Hash table routines
605188605Srrs */
606188605Srrs
607188605Srrs#define	HT_LOCK_PAD	CACHE_LINE_SIZE
608188605Srrs
609188605Srrsstruct ht_lock {
610188605Srrs	kmutex_t	ht_lock;
611188605Srrs#ifdef _KERNEL
612188605Srrs	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
613188605Srrs#endif
614188605Srrs};
615188605Srrs
616188605Srrs#define	BUF_LOCKS 256
617188605Srrstypedef struct buf_hash_table {
618188605Srrs	uint64_t ht_mask;
619188605Srrs	arc_buf_hdr_t **ht_table;
620188605Srrs	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
621188605Srrs} buf_hash_table_t;
622188605Srrs
623188605Srrsstatic buf_hash_table_t buf_hash_table;
624188605Srrs
625188605Srrs#define	BUF_HASH_INDEX(spa, dva, birth) \
626188605Srrs	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
627188605Srrs#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
628188605Srrs#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
629188605Srrs#define	HDR_LOCK(hdr) \
630188605Srrs	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
631188605Srrs
632188605Srrsuint64_t zfs_crc64_table[256];
633188605Srrs
634188605Srrs/*
635233517Smarius * Level 2 ARC
636188605Srrs */
637188605Srrs
638188605Srrs#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
639188605Srrs#define	L2ARC_HEADROOM		2		/* num of writes */
640188605Srrs#define	L2ARC_FEED_SECS		1		/* caching interval secs */
641188605Srrs#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
642188605Srrs
643188605Srrs#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
644188605Srrs#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
645188605Srrs
646188605Srrs/*
647188605Srrs * L2ARC Performance Tunables
648188605Srrs */
649188605Srrsuint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
650188605Srrsuint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
651188605Srrsuint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
652188605Srrsuint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
653188605Srrsuint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
654188605Srrsboolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
655188605Srrsboolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
656188605Srrsboolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
657188605Srrs
658188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
659188605Srrs    &l2arc_write_max, 0, "max write size");
660188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
661188605Srrs    &l2arc_write_boost, 0, "extra write during warmup");
662188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
663188605Srrs    &l2arc_headroom, 0, "number of dev writes");
664188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
665188605Srrs    &l2arc_feed_secs, 0, "interval seconds");
666188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
667188605Srrs    &l2arc_feed_min_ms, 0, "min interval milliseconds");
668188605Srrs
669188605SrrsSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
670188605Srrs    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
671188605SrrsSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
672188605Srrs    &l2arc_feed_again, 0, "turbo warmup");
673188605SrrsSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
674188605Srrs    &l2arc_norw, 0, "no reads during writes");
675188605Srrs
676188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
677188605Srrs    &ARC_anon.arcs_size, 0, "size of anonymous state");
678188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
679188605Srrs    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
680188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
681188605Srrs    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
682188605Srrs
683188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
684188605Srrs    &ARC_mru.arcs_size, 0, "size of mru state");
685188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
686188605Srrs    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
687188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
688188605Srrs    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
689188605Srrs
690188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
691188605Srrs    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
692188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
693188605Srrs    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
694188605Srrs    "size of metadata in mru ghost state");
695188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
696188605Srrs    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
697188605Srrs    "size of data in mru ghost state");
698188605Srrs
699188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
700188605Srrs    &ARC_mfu.arcs_size, 0, "size of mfu state");
701188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
702188605Srrs    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
703188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
704188605Srrs    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
705188605Srrs
706188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
707188605Srrs    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
708188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
709188605Srrs    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
710188605Srrs    "size of metadata in mfu ghost state");
711188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
712188605Srrs    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
713188605Srrs    "size of data in mfu ghost state");
714188605Srrs
715188605SrrsSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
716188605Srrs    &ARC_l2c_only.arcs_size, 0, "size of mru state");
717188605Srrs
718188605Srrs/*
719188605Srrs * L2ARC Internals
720188605Srrs */
721188605Srrstypedef struct l2arc_dev {
722188605Srrs	vdev_t			*l2ad_vdev;	/* vdev */
723188605Srrs	spa_t			*l2ad_spa;	/* spa */
724188605Srrs	uint64_t		l2ad_hand;	/* next write location */
725188605Srrs	uint64_t		l2ad_write;	/* desired write size, bytes */
726188605Srrs	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
727188605Srrs	uint64_t		l2ad_start;	/* first addr on device */
728188605Srrs	uint64_t		l2ad_end;	/* last addr on device */
729188605Srrs	uint64_t		l2ad_evict;	/* last addr eviction reached */
730188605Srrs	boolean_t		l2ad_first;	/* first sweep through */
731188605Srrs	boolean_t		l2ad_writing;	/* currently writing */
732188605Srrs	list_t			*l2ad_buflist;	/* buffer list */
733188605Srrs	list_node_t		l2ad_node;	/* device list node */
734188605Srrs} l2arc_dev_t;
735188605Srrs
736188605Srrsstatic list_t L2ARC_dev_list;			/* device list */
737188605Srrsstatic list_t *l2arc_dev_list;			/* device list pointer */
738188605Srrsstatic kmutex_t l2arc_dev_mtx;			/* device list mutex */
739188605Srrsstatic l2arc_dev_t *l2arc_dev_last;		/* last device used */
740188605Srrsstatic kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
741188605Srrsstatic list_t L2ARC_free_on_write;		/* free after write buf list */
742188605Srrsstatic list_t *l2arc_free_on_write;		/* free after write list ptr */
743188605Srrsstatic kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
744188605Srrsstatic uint64_t l2arc_ndev;			/* number of devices */
745188605Srrs
746188605Srrstypedef struct l2arc_read_callback {
747188605Srrs	arc_buf_t	*l2rcb_buf;		/* read buffer */
748188605Srrs	spa_t		*l2rcb_spa;		/* spa */
749188605Srrs	blkptr_t	l2rcb_bp;		/* original blkptr */
750188605Srrs	zbookmark_t	l2rcb_zb;		/* original bookmark */
751188605Srrs	int		l2rcb_flags;		/* original flags */
752188605Srrs} l2arc_read_callback_t;
753188605Srrs
754188605Srrstypedef struct l2arc_write_callback {
755188605Srrs	l2arc_dev_t	*l2wcb_dev;		/* device info */
756188605Srrs	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
757188605Srrs} l2arc_write_callback_t;
758
759struct l2arc_buf_hdr {
760	/* protected by arc_buf_hdr  mutex */
761	l2arc_dev_t	*b_dev;			/* L2ARC device */
762	uint64_t	b_daddr;		/* disk address, offset byte */
763};
764
765typedef struct l2arc_data_free {
766	/* protected by l2arc_free_on_write_mtx */
767	void		*l2df_data;
768	size_t		l2df_size;
769	void		(*l2df_func)(void *, size_t);
770	list_node_t	l2df_list_node;
771} l2arc_data_free_t;
772
773static kmutex_t l2arc_feed_thr_lock;
774static kcondvar_t l2arc_feed_thr_cv;
775static uint8_t l2arc_thread_exit;
776
777static void l2arc_read_done(zio_t *zio);
778static void l2arc_hdr_stat_add(void);
779static void l2arc_hdr_stat_remove(void);
780
781static uint64_t
782buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
783{
784	uint8_t *vdva = (uint8_t *)dva;
785	uint64_t crc = -1ULL;
786	int i;
787
788	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
789
790	for (i = 0; i < sizeof (dva_t); i++)
791		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
792
793	crc ^= (spa>>8) ^ birth;
794
795	return (crc);
796}
797
798#define	BUF_EMPTY(buf)						\
799	((buf)->b_dva.dva_word[0] == 0 &&			\
800	(buf)->b_dva.dva_word[1] == 0 &&			\
801	(buf)->b_birth == 0)
802
803#define	BUF_EQUAL(spa, dva, birth, buf)				\
804	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
805	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
806	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
807
808static void
809buf_discard_identity(arc_buf_hdr_t *hdr)
810{
811	hdr->b_dva.dva_word[0] = 0;
812	hdr->b_dva.dva_word[1] = 0;
813	hdr->b_birth = 0;
814	hdr->b_cksum0 = 0;
815}
816
817static arc_buf_hdr_t *
818buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
819{
820	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
821	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
822	arc_buf_hdr_t *buf;
823
824	mutex_enter(hash_lock);
825	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
826	    buf = buf->b_hash_next) {
827		if (BUF_EQUAL(spa, dva, birth, buf)) {
828			*lockp = hash_lock;
829			return (buf);
830		}
831	}
832	mutex_exit(hash_lock);
833	*lockp = NULL;
834	return (NULL);
835}
836
837/*
838 * Insert an entry into the hash table.  If there is already an element
839 * equal to elem in the hash table, then the already existing element
840 * will be returned and the new element will not be inserted.
841 * Otherwise returns NULL.
842 */
843static arc_buf_hdr_t *
844buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
845{
846	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
847	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
848	arc_buf_hdr_t *fbuf;
849	uint32_t i;
850
851	ASSERT(!HDR_IN_HASH_TABLE(buf));
852	*lockp = hash_lock;
853	mutex_enter(hash_lock);
854	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
855	    fbuf = fbuf->b_hash_next, i++) {
856		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
857			return (fbuf);
858	}
859
860	buf->b_hash_next = buf_hash_table.ht_table[idx];
861	buf_hash_table.ht_table[idx] = buf;
862	buf->b_flags |= ARC_IN_HASH_TABLE;
863
864	/* collect some hash table performance data */
865	if (i > 0) {
866		ARCSTAT_BUMP(arcstat_hash_collisions);
867		if (i == 1)
868			ARCSTAT_BUMP(arcstat_hash_chains);
869
870		ARCSTAT_MAX(arcstat_hash_chain_max, i);
871	}
872
873	ARCSTAT_BUMP(arcstat_hash_elements);
874	ARCSTAT_MAXSTAT(arcstat_hash_elements);
875
876	return (NULL);
877}
878
879static void
880buf_hash_remove(arc_buf_hdr_t *buf)
881{
882	arc_buf_hdr_t *fbuf, **bufp;
883	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
884
885	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
886	ASSERT(HDR_IN_HASH_TABLE(buf));
887
888	bufp = &buf_hash_table.ht_table[idx];
889	while ((fbuf = *bufp) != buf) {
890		ASSERT(fbuf != NULL);
891		bufp = &fbuf->b_hash_next;
892	}
893	*bufp = buf->b_hash_next;
894	buf->b_hash_next = NULL;
895	buf->b_flags &= ~ARC_IN_HASH_TABLE;
896
897	/* collect some hash table performance data */
898	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
899
900	if (buf_hash_table.ht_table[idx] &&
901	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
902		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
903}
904
905/*
906 * Global data structures and functions for the buf kmem cache.
907 */
908static kmem_cache_t *hdr_cache;
909static kmem_cache_t *buf_cache;
910
911static void
912buf_fini(void)
913{
914	int i;
915
916	kmem_free(buf_hash_table.ht_table,
917	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
918	for (i = 0; i < BUF_LOCKS; i++)
919		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
920	kmem_cache_destroy(hdr_cache);
921	kmem_cache_destroy(buf_cache);
922}
923
924/*
925 * Constructor callback - called when the cache is empty
926 * and a new buf is requested.
927 */
928/* ARGSUSED */
929static int
930hdr_cons(void *vbuf, void *unused, int kmflag)
931{
932	arc_buf_hdr_t *buf = vbuf;
933
934	bzero(buf, sizeof (arc_buf_hdr_t));
935	refcount_create(&buf->b_refcnt);
936	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
937	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
938	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
939
940	return (0);
941}
942
943/* ARGSUSED */
944static int
945buf_cons(void *vbuf, void *unused, int kmflag)
946{
947	arc_buf_t *buf = vbuf;
948
949	bzero(buf, sizeof (arc_buf_t));
950	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
951	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
952
953	return (0);
954}
955
956/*
957 * Destructor callback - called when a cached buf is
958 * no longer required.
959 */
960/* ARGSUSED */
961static void
962hdr_dest(void *vbuf, void *unused)
963{
964	arc_buf_hdr_t *buf = vbuf;
965
966	ASSERT(BUF_EMPTY(buf));
967	refcount_destroy(&buf->b_refcnt);
968	cv_destroy(&buf->b_cv);
969	mutex_destroy(&buf->b_freeze_lock);
970	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
971}
972
973/* ARGSUSED */
974static void
975buf_dest(void *vbuf, void *unused)
976{
977	arc_buf_t *buf = vbuf;
978
979	mutex_destroy(&buf->b_evict_lock);
980	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
981}
982
983/*
984 * Reclaim callback -- invoked when memory is low.
985 */
986/* ARGSUSED */
987static void
988hdr_recl(void *unused)
989{
990	dprintf("hdr_recl called\n");
991	/*
992	 * umem calls the reclaim func when we destroy the buf cache,
993	 * which is after we do arc_fini().
994	 */
995	if (!arc_dead)
996		cv_signal(&arc_reclaim_thr_cv);
997}
998
999static void
1000buf_init(void)
1001{
1002	uint64_t *ct;
1003	uint64_t hsize = 1ULL << 12;
1004	int i, j;
1005
1006	/*
1007	 * The hash table is big enough to fill all of physical memory
1008	 * with an average 64K block size.  The table will take up
1009	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
1010	 */
1011	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
1012		hsize <<= 1;
1013retry:
1014	buf_hash_table.ht_mask = hsize - 1;
1015	buf_hash_table.ht_table =
1016	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1017	if (buf_hash_table.ht_table == NULL) {
1018		ASSERT(hsize > (1ULL << 8));
1019		hsize >>= 1;
1020		goto retry;
1021	}
1022
1023	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1024	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1025	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1026	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1027
1028	for (i = 0; i < 256; i++)
1029		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1030			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1031
1032	for (i = 0; i < BUF_LOCKS; i++) {
1033		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1034		    NULL, MUTEX_DEFAULT, NULL);
1035	}
1036}
1037
1038#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1039
1040static void
1041arc_cksum_verify(arc_buf_t *buf)
1042{
1043	zio_cksum_t zc;
1044
1045	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1046		return;
1047
1048	mutex_enter(&buf->b_hdr->b_freeze_lock);
1049	if (buf->b_hdr->b_freeze_cksum == NULL ||
1050	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1051		mutex_exit(&buf->b_hdr->b_freeze_lock);
1052		return;
1053	}
1054	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1055	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1056		panic("buffer modified while frozen!");
1057	mutex_exit(&buf->b_hdr->b_freeze_lock);
1058}
1059
1060static int
1061arc_cksum_equal(arc_buf_t *buf)
1062{
1063	zio_cksum_t zc;
1064	int equal;
1065
1066	mutex_enter(&buf->b_hdr->b_freeze_lock);
1067	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1068	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1069	mutex_exit(&buf->b_hdr->b_freeze_lock);
1070
1071	return (equal);
1072}
1073
1074static void
1075arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1076{
1077	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1078		return;
1079
1080	mutex_enter(&buf->b_hdr->b_freeze_lock);
1081	if (buf->b_hdr->b_freeze_cksum != NULL) {
1082		mutex_exit(&buf->b_hdr->b_freeze_lock);
1083		return;
1084	}
1085	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1086	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1087	    buf->b_hdr->b_freeze_cksum);
1088	mutex_exit(&buf->b_hdr->b_freeze_lock);
1089#ifdef illumos
1090	arc_buf_watch(buf);
1091#endif /* illumos */
1092}
1093
1094#ifdef illumos
1095#ifndef _KERNEL
1096typedef struct procctl {
1097	long cmd;
1098	prwatch_t prwatch;
1099} procctl_t;
1100#endif
1101
1102/* ARGSUSED */
1103static void
1104arc_buf_unwatch(arc_buf_t *buf)
1105{
1106#ifndef _KERNEL
1107	if (arc_watch) {
1108		int result;
1109		procctl_t ctl;
1110		ctl.cmd = PCWATCH;
1111		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1112		ctl.prwatch.pr_size = 0;
1113		ctl.prwatch.pr_wflags = 0;
1114		result = write(arc_procfd, &ctl, sizeof (ctl));
1115		ASSERT3U(result, ==, sizeof (ctl));
1116	}
1117#endif
1118}
1119
1120/* ARGSUSED */
1121static void
1122arc_buf_watch(arc_buf_t *buf)
1123{
1124#ifndef _KERNEL
1125	if (arc_watch) {
1126		int result;
1127		procctl_t ctl;
1128		ctl.cmd = PCWATCH;
1129		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1130		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1131		ctl.prwatch.pr_wflags = WA_WRITE;
1132		result = write(arc_procfd, &ctl, sizeof (ctl));
1133		ASSERT3U(result, ==, sizeof (ctl));
1134	}
1135#endif
1136}
1137#endif /* illumos */
1138
1139void
1140arc_buf_thaw(arc_buf_t *buf)
1141{
1142	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1143		if (buf->b_hdr->b_state != arc_anon)
1144			panic("modifying non-anon buffer!");
1145		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1146			panic("modifying buffer while i/o in progress!");
1147		arc_cksum_verify(buf);
1148	}
1149
1150	mutex_enter(&buf->b_hdr->b_freeze_lock);
1151	if (buf->b_hdr->b_freeze_cksum != NULL) {
1152		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1153		buf->b_hdr->b_freeze_cksum = NULL;
1154	}
1155
1156	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1157		if (buf->b_hdr->b_thawed)
1158			kmem_free(buf->b_hdr->b_thawed, 1);
1159		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1160	}
1161
1162	mutex_exit(&buf->b_hdr->b_freeze_lock);
1163
1164#ifdef illumos
1165	arc_buf_unwatch(buf);
1166#endif /* illumos */
1167}
1168
1169void
1170arc_buf_freeze(arc_buf_t *buf)
1171{
1172	kmutex_t *hash_lock;
1173
1174	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1175		return;
1176
1177	hash_lock = HDR_LOCK(buf->b_hdr);
1178	mutex_enter(hash_lock);
1179
1180	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1181	    buf->b_hdr->b_state == arc_anon);
1182	arc_cksum_compute(buf, B_FALSE);
1183	mutex_exit(hash_lock);
1184
1185}
1186
1187static void
1188get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1189{
1190	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1191
1192	if (ab->b_type == ARC_BUFC_METADATA)
1193		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1194	else {
1195		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1196		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1197	}
1198
1199	*list = &state->arcs_lists[buf_hashid];
1200	*lock = ARCS_LOCK(state, buf_hashid);
1201}
1202
1203
1204static void
1205add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1206{
1207	ASSERT(MUTEX_HELD(hash_lock));
1208
1209	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1210	    (ab->b_state != arc_anon)) {
1211		uint64_t delta = ab->b_size * ab->b_datacnt;
1212		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1213		list_t *list;
1214		kmutex_t *lock;
1215
1216		get_buf_info(ab, ab->b_state, &list, &lock);
1217		ASSERT(!MUTEX_HELD(lock));
1218		mutex_enter(lock);
1219		ASSERT(list_link_active(&ab->b_arc_node));
1220		list_remove(list, ab);
1221		if (GHOST_STATE(ab->b_state)) {
1222			ASSERT0(ab->b_datacnt);
1223			ASSERT3P(ab->b_buf, ==, NULL);
1224			delta = ab->b_size;
1225		}
1226		ASSERT(delta > 0);
1227		ASSERT3U(*size, >=, delta);
1228		atomic_add_64(size, -delta);
1229		mutex_exit(lock);
1230		/* remove the prefetch flag if we get a reference */
1231		if (ab->b_flags & ARC_PREFETCH)
1232			ab->b_flags &= ~ARC_PREFETCH;
1233	}
1234}
1235
1236static int
1237remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1238{
1239	int cnt;
1240	arc_state_t *state = ab->b_state;
1241
1242	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1243	ASSERT(!GHOST_STATE(state));
1244
1245	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1246	    (state != arc_anon)) {
1247		uint64_t *size = &state->arcs_lsize[ab->b_type];
1248		list_t *list;
1249		kmutex_t *lock;
1250
1251		get_buf_info(ab, state, &list, &lock);
1252		ASSERT(!MUTEX_HELD(lock));
1253		mutex_enter(lock);
1254		ASSERT(!list_link_active(&ab->b_arc_node));
1255		list_insert_head(list, ab);
1256		ASSERT(ab->b_datacnt > 0);
1257		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1258		mutex_exit(lock);
1259	}
1260	return (cnt);
1261}
1262
1263/*
1264 * Move the supplied buffer to the indicated state.  The mutex
1265 * for the buffer must be held by the caller.
1266 */
1267static void
1268arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1269{
1270	arc_state_t *old_state = ab->b_state;
1271	int64_t refcnt = refcount_count(&ab->b_refcnt);
1272	uint64_t from_delta, to_delta;
1273	list_t *list;
1274	kmutex_t *lock;
1275
1276	ASSERT(MUTEX_HELD(hash_lock));
1277	ASSERT(new_state != old_state);
1278	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1279	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1280	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1281
1282	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1283
1284	/*
1285	 * If this buffer is evictable, transfer it from the
1286	 * old state list to the new state list.
1287	 */
1288	if (refcnt == 0) {
1289		if (old_state != arc_anon) {
1290			int use_mutex;
1291			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1292
1293			get_buf_info(ab, old_state, &list, &lock);
1294			use_mutex = !MUTEX_HELD(lock);
1295			if (use_mutex)
1296				mutex_enter(lock);
1297
1298			ASSERT(list_link_active(&ab->b_arc_node));
1299			list_remove(list, ab);
1300
1301			/*
1302			 * If prefetching out of the ghost cache,
1303			 * we will have a non-zero datacnt.
1304			 */
1305			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1306				/* ghost elements have a ghost size */
1307				ASSERT(ab->b_buf == NULL);
1308				from_delta = ab->b_size;
1309			}
1310			ASSERT3U(*size, >=, from_delta);
1311			atomic_add_64(size, -from_delta);
1312
1313			if (use_mutex)
1314				mutex_exit(lock);
1315		}
1316		if (new_state != arc_anon) {
1317			int use_mutex;
1318			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1319
1320			get_buf_info(ab, new_state, &list, &lock);
1321			use_mutex = !MUTEX_HELD(lock);
1322			if (use_mutex)
1323				mutex_enter(lock);
1324
1325			list_insert_head(list, ab);
1326
1327			/* ghost elements have a ghost size */
1328			if (GHOST_STATE(new_state)) {
1329				ASSERT(ab->b_datacnt == 0);
1330				ASSERT(ab->b_buf == NULL);
1331				to_delta = ab->b_size;
1332			}
1333			atomic_add_64(size, to_delta);
1334
1335			if (use_mutex)
1336				mutex_exit(lock);
1337		}
1338	}
1339
1340	ASSERT(!BUF_EMPTY(ab));
1341	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1342		buf_hash_remove(ab);
1343
1344	/* adjust state sizes */
1345	if (to_delta)
1346		atomic_add_64(&new_state->arcs_size, to_delta);
1347	if (from_delta) {
1348		ASSERT3U(old_state->arcs_size, >=, from_delta);
1349		atomic_add_64(&old_state->arcs_size, -from_delta);
1350	}
1351	ab->b_state = new_state;
1352
1353	/* adjust l2arc hdr stats */
1354	if (new_state == arc_l2c_only)
1355		l2arc_hdr_stat_add();
1356	else if (old_state == arc_l2c_only)
1357		l2arc_hdr_stat_remove();
1358}
1359
1360void
1361arc_space_consume(uint64_t space, arc_space_type_t type)
1362{
1363	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1364
1365	switch (type) {
1366	case ARC_SPACE_DATA:
1367		ARCSTAT_INCR(arcstat_data_size, space);
1368		break;
1369	case ARC_SPACE_OTHER:
1370		ARCSTAT_INCR(arcstat_other_size, space);
1371		break;
1372	case ARC_SPACE_HDRS:
1373		ARCSTAT_INCR(arcstat_hdr_size, space);
1374		break;
1375	case ARC_SPACE_L2HDRS:
1376		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1377		break;
1378	}
1379
1380	atomic_add_64(&arc_meta_used, space);
1381	atomic_add_64(&arc_size, space);
1382}
1383
1384void
1385arc_space_return(uint64_t space, arc_space_type_t type)
1386{
1387	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1388
1389	switch (type) {
1390	case ARC_SPACE_DATA:
1391		ARCSTAT_INCR(arcstat_data_size, -space);
1392		break;
1393	case ARC_SPACE_OTHER:
1394		ARCSTAT_INCR(arcstat_other_size, -space);
1395		break;
1396	case ARC_SPACE_HDRS:
1397		ARCSTAT_INCR(arcstat_hdr_size, -space);
1398		break;
1399	case ARC_SPACE_L2HDRS:
1400		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1401		break;
1402	}
1403
1404	ASSERT(arc_meta_used >= space);
1405	if (arc_meta_max < arc_meta_used)
1406		arc_meta_max = arc_meta_used;
1407	atomic_add_64(&arc_meta_used, -space);
1408	ASSERT(arc_size >= space);
1409	atomic_add_64(&arc_size, -space);
1410}
1411
1412void *
1413arc_data_buf_alloc(uint64_t size)
1414{
1415	if (arc_evict_needed(ARC_BUFC_DATA))
1416		cv_signal(&arc_reclaim_thr_cv);
1417	atomic_add_64(&arc_size, size);
1418	return (zio_data_buf_alloc(size));
1419}
1420
1421void
1422arc_data_buf_free(void *buf, uint64_t size)
1423{
1424	zio_data_buf_free(buf, size);
1425	ASSERT(arc_size >= size);
1426	atomic_add_64(&arc_size, -size);
1427}
1428
1429arc_buf_t *
1430arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1431{
1432	arc_buf_hdr_t *hdr;
1433	arc_buf_t *buf;
1434
1435	ASSERT3U(size, >, 0);
1436	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1437	ASSERT(BUF_EMPTY(hdr));
1438	hdr->b_size = size;
1439	hdr->b_type = type;
1440	hdr->b_spa = spa_load_guid(spa);
1441	hdr->b_state = arc_anon;
1442	hdr->b_arc_access = 0;
1443	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1444	buf->b_hdr = hdr;
1445	buf->b_data = NULL;
1446	buf->b_efunc = NULL;
1447	buf->b_private = NULL;
1448	buf->b_next = NULL;
1449	hdr->b_buf = buf;
1450	arc_get_data_buf(buf);
1451	hdr->b_datacnt = 1;
1452	hdr->b_flags = 0;
1453	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1454	(void) refcount_add(&hdr->b_refcnt, tag);
1455
1456	return (buf);
1457}
1458
1459static char *arc_onloan_tag = "onloan";
1460
1461/*
1462 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1463 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1464 * buffers must be returned to the arc before they can be used by the DMU or
1465 * freed.
1466 */
1467arc_buf_t *
1468arc_loan_buf(spa_t *spa, int size)
1469{
1470	arc_buf_t *buf;
1471
1472	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1473
1474	atomic_add_64(&arc_loaned_bytes, size);
1475	return (buf);
1476}
1477
1478/*
1479 * Return a loaned arc buffer to the arc.
1480 */
1481void
1482arc_return_buf(arc_buf_t *buf, void *tag)
1483{
1484	arc_buf_hdr_t *hdr = buf->b_hdr;
1485
1486	ASSERT(buf->b_data != NULL);
1487	(void) refcount_add(&hdr->b_refcnt, tag);
1488	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1489
1490	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1491}
1492
1493/* Detach an arc_buf from a dbuf (tag) */
1494void
1495arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1496{
1497	arc_buf_hdr_t *hdr;
1498
1499	ASSERT(buf->b_data != NULL);
1500	hdr = buf->b_hdr;
1501	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1502	(void) refcount_remove(&hdr->b_refcnt, tag);
1503	buf->b_efunc = NULL;
1504	buf->b_private = NULL;
1505
1506	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1507}
1508
1509static arc_buf_t *
1510arc_buf_clone(arc_buf_t *from)
1511{
1512	arc_buf_t *buf;
1513	arc_buf_hdr_t *hdr = from->b_hdr;
1514	uint64_t size = hdr->b_size;
1515
1516	ASSERT(hdr->b_state != arc_anon);
1517
1518	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1519	buf->b_hdr = hdr;
1520	buf->b_data = NULL;
1521	buf->b_efunc = NULL;
1522	buf->b_private = NULL;
1523	buf->b_next = hdr->b_buf;
1524	hdr->b_buf = buf;
1525	arc_get_data_buf(buf);
1526	bcopy(from->b_data, buf->b_data, size);
1527
1528	/*
1529	 * This buffer already exists in the arc so create a duplicate
1530	 * copy for the caller.  If the buffer is associated with user data
1531	 * then track the size and number of duplicates.  These stats will be
1532	 * updated as duplicate buffers are created and destroyed.
1533	 */
1534	if (hdr->b_type == ARC_BUFC_DATA) {
1535		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1536		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1537	}
1538	hdr->b_datacnt += 1;
1539	return (buf);
1540}
1541
1542void
1543arc_buf_add_ref(arc_buf_t *buf, void* tag)
1544{
1545	arc_buf_hdr_t *hdr;
1546	kmutex_t *hash_lock;
1547
1548	/*
1549	 * Check to see if this buffer is evicted.  Callers
1550	 * must verify b_data != NULL to know if the add_ref
1551	 * was successful.
1552	 */
1553	mutex_enter(&buf->b_evict_lock);
1554	if (buf->b_data == NULL) {
1555		mutex_exit(&buf->b_evict_lock);
1556		return;
1557	}
1558	hash_lock = HDR_LOCK(buf->b_hdr);
1559	mutex_enter(hash_lock);
1560	hdr = buf->b_hdr;
1561	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1562	mutex_exit(&buf->b_evict_lock);
1563
1564	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1565	add_reference(hdr, hash_lock, tag);
1566	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1567	arc_access(hdr, hash_lock);
1568	mutex_exit(hash_lock);
1569	ARCSTAT_BUMP(arcstat_hits);
1570	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1571	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1572	    data, metadata, hits);
1573}
1574
1575/*
1576 * Free the arc data buffer.  If it is an l2arc write in progress,
1577 * the buffer is placed on l2arc_free_on_write to be freed later.
1578 */
1579static void
1580arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1581{
1582	arc_buf_hdr_t *hdr = buf->b_hdr;
1583
1584	if (HDR_L2_WRITING(hdr)) {
1585		l2arc_data_free_t *df;
1586		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1587		df->l2df_data = buf->b_data;
1588		df->l2df_size = hdr->b_size;
1589		df->l2df_func = free_func;
1590		mutex_enter(&l2arc_free_on_write_mtx);
1591		list_insert_head(l2arc_free_on_write, df);
1592		mutex_exit(&l2arc_free_on_write_mtx);
1593		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1594	} else {
1595		free_func(buf->b_data, hdr->b_size);
1596	}
1597}
1598
1599static void
1600arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1601{
1602	arc_buf_t **bufp;
1603
1604	/* free up data associated with the buf */
1605	if (buf->b_data) {
1606		arc_state_t *state = buf->b_hdr->b_state;
1607		uint64_t size = buf->b_hdr->b_size;
1608		arc_buf_contents_t type = buf->b_hdr->b_type;
1609
1610		arc_cksum_verify(buf);
1611#ifdef illumos
1612		arc_buf_unwatch(buf);
1613#endif /* illumos */
1614
1615		if (!recycle) {
1616			if (type == ARC_BUFC_METADATA) {
1617				arc_buf_data_free(buf, zio_buf_free);
1618				arc_space_return(size, ARC_SPACE_DATA);
1619			} else {
1620				ASSERT(type == ARC_BUFC_DATA);
1621				arc_buf_data_free(buf, zio_data_buf_free);
1622				ARCSTAT_INCR(arcstat_data_size, -size);
1623				atomic_add_64(&arc_size, -size);
1624			}
1625		}
1626		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1627			uint64_t *cnt = &state->arcs_lsize[type];
1628
1629			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1630			ASSERT(state != arc_anon);
1631
1632			ASSERT3U(*cnt, >=, size);
1633			atomic_add_64(cnt, -size);
1634		}
1635		ASSERT3U(state->arcs_size, >=, size);
1636		atomic_add_64(&state->arcs_size, -size);
1637		buf->b_data = NULL;
1638
1639		/*
1640		 * If we're destroying a duplicate buffer make sure
1641		 * that the appropriate statistics are updated.
1642		 */
1643		if (buf->b_hdr->b_datacnt > 1 &&
1644		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1645			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1646			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1647		}
1648		ASSERT(buf->b_hdr->b_datacnt > 0);
1649		buf->b_hdr->b_datacnt -= 1;
1650	}
1651
1652	/* only remove the buf if requested */
1653	if (!all)
1654		return;
1655
1656	/* remove the buf from the hdr list */
1657	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1658		continue;
1659	*bufp = buf->b_next;
1660	buf->b_next = NULL;
1661
1662	ASSERT(buf->b_efunc == NULL);
1663
1664	/* clean up the buf */
1665	buf->b_hdr = NULL;
1666	kmem_cache_free(buf_cache, buf);
1667}
1668
1669static void
1670arc_hdr_destroy(arc_buf_hdr_t *hdr)
1671{
1672	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1673	ASSERT3P(hdr->b_state, ==, arc_anon);
1674	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1675	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1676
1677	if (l2hdr != NULL) {
1678		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1679		/*
1680		 * To prevent arc_free() and l2arc_evict() from
1681		 * attempting to free the same buffer at the same time,
1682		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1683		 * give it priority.  l2arc_evict() can't destroy this
1684		 * header while we are waiting on l2arc_buflist_mtx.
1685		 *
1686		 * The hdr may be removed from l2ad_buflist before we
1687		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1688		 */
1689		if (!buflist_held) {
1690			mutex_enter(&l2arc_buflist_mtx);
1691			l2hdr = hdr->b_l2hdr;
1692		}
1693
1694		if (l2hdr != NULL) {
1695			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1696			    hdr->b_size);
1697			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1698			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1699			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1700			if (hdr->b_state == arc_l2c_only)
1701				l2arc_hdr_stat_remove();
1702			hdr->b_l2hdr = NULL;
1703		}
1704
1705		if (!buflist_held)
1706			mutex_exit(&l2arc_buflist_mtx);
1707	}
1708
1709	if (!BUF_EMPTY(hdr)) {
1710		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1711		buf_discard_identity(hdr);
1712	}
1713	while (hdr->b_buf) {
1714		arc_buf_t *buf = hdr->b_buf;
1715
1716		if (buf->b_efunc) {
1717			mutex_enter(&arc_eviction_mtx);
1718			mutex_enter(&buf->b_evict_lock);
1719			ASSERT(buf->b_hdr != NULL);
1720			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1721			hdr->b_buf = buf->b_next;
1722			buf->b_hdr = &arc_eviction_hdr;
1723			buf->b_next = arc_eviction_list;
1724			arc_eviction_list = buf;
1725			mutex_exit(&buf->b_evict_lock);
1726			mutex_exit(&arc_eviction_mtx);
1727		} else {
1728			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1729		}
1730	}
1731	if (hdr->b_freeze_cksum != NULL) {
1732		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1733		hdr->b_freeze_cksum = NULL;
1734	}
1735	if (hdr->b_thawed) {
1736		kmem_free(hdr->b_thawed, 1);
1737		hdr->b_thawed = NULL;
1738	}
1739
1740	ASSERT(!list_link_active(&hdr->b_arc_node));
1741	ASSERT3P(hdr->b_hash_next, ==, NULL);
1742	ASSERT3P(hdr->b_acb, ==, NULL);
1743	kmem_cache_free(hdr_cache, hdr);
1744}
1745
1746void
1747arc_buf_free(arc_buf_t *buf, void *tag)
1748{
1749	arc_buf_hdr_t *hdr = buf->b_hdr;
1750	int hashed = hdr->b_state != arc_anon;
1751
1752	ASSERT(buf->b_efunc == NULL);
1753	ASSERT(buf->b_data != NULL);
1754
1755	if (hashed) {
1756		kmutex_t *hash_lock = HDR_LOCK(hdr);
1757
1758		mutex_enter(hash_lock);
1759		hdr = buf->b_hdr;
1760		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1761
1762		(void) remove_reference(hdr, hash_lock, tag);
1763		if (hdr->b_datacnt > 1) {
1764			arc_buf_destroy(buf, FALSE, TRUE);
1765		} else {
1766			ASSERT(buf == hdr->b_buf);
1767			ASSERT(buf->b_efunc == NULL);
1768			hdr->b_flags |= ARC_BUF_AVAILABLE;
1769		}
1770		mutex_exit(hash_lock);
1771	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1772		int destroy_hdr;
1773		/*
1774		 * We are in the middle of an async write.  Don't destroy
1775		 * this buffer unless the write completes before we finish
1776		 * decrementing the reference count.
1777		 */
1778		mutex_enter(&arc_eviction_mtx);
1779		(void) remove_reference(hdr, NULL, tag);
1780		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1781		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1782		mutex_exit(&arc_eviction_mtx);
1783		if (destroy_hdr)
1784			arc_hdr_destroy(hdr);
1785	} else {
1786		if (remove_reference(hdr, NULL, tag) > 0)
1787			arc_buf_destroy(buf, FALSE, TRUE);
1788		else
1789			arc_hdr_destroy(hdr);
1790	}
1791}
1792
1793boolean_t
1794arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1795{
1796	arc_buf_hdr_t *hdr = buf->b_hdr;
1797	kmutex_t *hash_lock = HDR_LOCK(hdr);
1798	boolean_t no_callback = (buf->b_efunc == NULL);
1799
1800	if (hdr->b_state == arc_anon) {
1801		ASSERT(hdr->b_datacnt == 1);
1802		arc_buf_free(buf, tag);
1803		return (no_callback);
1804	}
1805
1806	mutex_enter(hash_lock);
1807	hdr = buf->b_hdr;
1808	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1809	ASSERT(hdr->b_state != arc_anon);
1810	ASSERT(buf->b_data != NULL);
1811
1812	(void) remove_reference(hdr, hash_lock, tag);
1813	if (hdr->b_datacnt > 1) {
1814		if (no_callback)
1815			arc_buf_destroy(buf, FALSE, TRUE);
1816	} else if (no_callback) {
1817		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1818		ASSERT(buf->b_efunc == NULL);
1819		hdr->b_flags |= ARC_BUF_AVAILABLE;
1820	}
1821	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1822	    refcount_is_zero(&hdr->b_refcnt));
1823	mutex_exit(hash_lock);
1824	return (no_callback);
1825}
1826
1827int
1828arc_buf_size(arc_buf_t *buf)
1829{
1830	return (buf->b_hdr->b_size);
1831}
1832
1833/*
1834 * Called from the DMU to determine if the current buffer should be
1835 * evicted. In order to ensure proper locking, the eviction must be initiated
1836 * from the DMU. Return true if the buffer is associated with user data and
1837 * duplicate buffers still exist.
1838 */
1839boolean_t
1840arc_buf_eviction_needed(arc_buf_t *buf)
1841{
1842	arc_buf_hdr_t *hdr;
1843	boolean_t evict_needed = B_FALSE;
1844
1845	if (zfs_disable_dup_eviction)
1846		return (B_FALSE);
1847
1848	mutex_enter(&buf->b_evict_lock);
1849	hdr = buf->b_hdr;
1850	if (hdr == NULL) {
1851		/*
1852		 * We are in arc_do_user_evicts(); let that function
1853		 * perform the eviction.
1854		 */
1855		ASSERT(buf->b_data == NULL);
1856		mutex_exit(&buf->b_evict_lock);
1857		return (B_FALSE);
1858	} else if (buf->b_data == NULL) {
1859		/*
1860		 * We have already been added to the arc eviction list;
1861		 * recommend eviction.
1862		 */
1863		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1864		mutex_exit(&buf->b_evict_lock);
1865		return (B_TRUE);
1866	}
1867
1868	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1869		evict_needed = B_TRUE;
1870
1871	mutex_exit(&buf->b_evict_lock);
1872	return (evict_needed);
1873}
1874
1875/*
1876 * Evict buffers from list until we've removed the specified number of
1877 * bytes.  Move the removed buffers to the appropriate evict state.
1878 * If the recycle flag is set, then attempt to "recycle" a buffer:
1879 * - look for a buffer to evict that is `bytes' long.
1880 * - return the data block from this buffer rather than freeing it.
1881 * This flag is used by callers that are trying to make space for a
1882 * new buffer in a full arc cache.
1883 *
1884 * This function makes a "best effort".  It skips over any buffers
1885 * it can't get a hash_lock on, and so may not catch all candidates.
1886 * It may also return without evicting as much space as requested.
1887 */
1888static void *
1889arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1890    arc_buf_contents_t type)
1891{
1892	arc_state_t *evicted_state;
1893	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1894	int64_t bytes_remaining;
1895	arc_buf_hdr_t *ab, *ab_prev = NULL;
1896	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1897	kmutex_t *lock, *evicted_lock;
1898	kmutex_t *hash_lock;
1899	boolean_t have_lock;
1900	void *stolen = NULL;
1901	static int evict_metadata_offset, evict_data_offset;
1902	int i, idx, offset, list_count, count;
1903
1904	ASSERT(state == arc_mru || state == arc_mfu);
1905
1906	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1907
1908	if (type == ARC_BUFC_METADATA) {
1909		offset = 0;
1910		list_count = ARC_BUFC_NUMMETADATALISTS;
1911		list_start = &state->arcs_lists[0];
1912		evicted_list_start = &evicted_state->arcs_lists[0];
1913		idx = evict_metadata_offset;
1914	} else {
1915		offset = ARC_BUFC_NUMMETADATALISTS;
1916		list_start = &state->arcs_lists[offset];
1917		evicted_list_start = &evicted_state->arcs_lists[offset];
1918		list_count = ARC_BUFC_NUMDATALISTS;
1919		idx = evict_data_offset;
1920	}
1921	bytes_remaining = evicted_state->arcs_lsize[type];
1922	count = 0;
1923
1924evict_start:
1925	list = &list_start[idx];
1926	evicted_list = &evicted_list_start[idx];
1927	lock = ARCS_LOCK(state, (offset + idx));
1928	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1929
1930	mutex_enter(lock);
1931	mutex_enter(evicted_lock);
1932
1933	for (ab = list_tail(list); ab; ab = ab_prev) {
1934		ab_prev = list_prev(list, ab);
1935		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1936		/* prefetch buffers have a minimum lifespan */
1937		if (HDR_IO_IN_PROGRESS(ab) ||
1938		    (spa && ab->b_spa != spa) ||
1939		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1940		    ddi_get_lbolt() - ab->b_arc_access <
1941		    arc_min_prefetch_lifespan)) {
1942			skipped++;
1943			continue;
1944		}
1945		/* "lookahead" for better eviction candidate */
1946		if (recycle && ab->b_size != bytes &&
1947		    ab_prev && ab_prev->b_size == bytes)
1948			continue;
1949		hash_lock = HDR_LOCK(ab);
1950		have_lock = MUTEX_HELD(hash_lock);
1951		if (have_lock || mutex_tryenter(hash_lock)) {
1952			ASSERT0(refcount_count(&ab->b_refcnt));
1953			ASSERT(ab->b_datacnt > 0);
1954			while (ab->b_buf) {
1955				arc_buf_t *buf = ab->b_buf;
1956				if (!mutex_tryenter(&buf->b_evict_lock)) {
1957					missed += 1;
1958					break;
1959				}
1960				if (buf->b_data) {
1961					bytes_evicted += ab->b_size;
1962					if (recycle && ab->b_type == type &&
1963					    ab->b_size == bytes &&
1964					    !HDR_L2_WRITING(ab)) {
1965						stolen = buf->b_data;
1966						recycle = FALSE;
1967					}
1968				}
1969				if (buf->b_efunc) {
1970					mutex_enter(&arc_eviction_mtx);
1971					arc_buf_destroy(buf,
1972					    buf->b_data == stolen, FALSE);
1973					ab->b_buf = buf->b_next;
1974					buf->b_hdr = &arc_eviction_hdr;
1975					buf->b_next = arc_eviction_list;
1976					arc_eviction_list = buf;
1977					mutex_exit(&arc_eviction_mtx);
1978					mutex_exit(&buf->b_evict_lock);
1979				} else {
1980					mutex_exit(&buf->b_evict_lock);
1981					arc_buf_destroy(buf,
1982					    buf->b_data == stolen, TRUE);
1983				}
1984			}
1985
1986			if (ab->b_l2hdr) {
1987				ARCSTAT_INCR(arcstat_evict_l2_cached,
1988				    ab->b_size);
1989			} else {
1990				if (l2arc_write_eligible(ab->b_spa, ab)) {
1991					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1992					    ab->b_size);
1993				} else {
1994					ARCSTAT_INCR(
1995					    arcstat_evict_l2_ineligible,
1996					    ab->b_size);
1997				}
1998			}
1999
2000			if (ab->b_datacnt == 0) {
2001				arc_change_state(evicted_state, ab, hash_lock);
2002				ASSERT(HDR_IN_HASH_TABLE(ab));
2003				ab->b_flags |= ARC_IN_HASH_TABLE;
2004				ab->b_flags &= ~ARC_BUF_AVAILABLE;
2005				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
2006			}
2007			if (!have_lock)
2008				mutex_exit(hash_lock);
2009			if (bytes >= 0 && bytes_evicted >= bytes)
2010				break;
2011			if (bytes_remaining > 0) {
2012				mutex_exit(evicted_lock);
2013				mutex_exit(lock);
2014				idx  = ((idx + 1) & (list_count - 1));
2015				count++;
2016				goto evict_start;
2017			}
2018		} else {
2019			missed += 1;
2020		}
2021	}
2022
2023	mutex_exit(evicted_lock);
2024	mutex_exit(lock);
2025
2026	idx  = ((idx + 1) & (list_count - 1));
2027	count++;
2028
2029	if (bytes_evicted < bytes) {
2030		if (count < list_count)
2031			goto evict_start;
2032		else
2033			dprintf("only evicted %lld bytes from %x",
2034			    (longlong_t)bytes_evicted, state);
2035	}
2036	if (type == ARC_BUFC_METADATA)
2037		evict_metadata_offset = idx;
2038	else
2039		evict_data_offset = idx;
2040
2041	if (skipped)
2042		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2043
2044	if (missed)
2045		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2046
2047	/*
2048	 * We have just evicted some data into the ghost state, make
2049	 * sure we also adjust the ghost state size if necessary.
2050	 */
2051	if (arc_no_grow &&
2052	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
2053		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
2054		    arc_mru_ghost->arcs_size - arc_c;
2055
2056		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2057			int64_t todelete =
2058			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
2059			arc_evict_ghost(arc_mru_ghost, 0, todelete);
2060		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
2061			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
2062			    arc_mru_ghost->arcs_size +
2063			    arc_mfu_ghost->arcs_size - arc_c);
2064			arc_evict_ghost(arc_mfu_ghost, 0, todelete);
2065		}
2066	}
2067	if (stolen)
2068		ARCSTAT_BUMP(arcstat_stolen);
2069
2070	return (stolen);
2071}
2072
2073/*
2074 * Remove buffers from list until we've removed the specified number of
2075 * bytes.  Destroy the buffers that are removed.
2076 */
2077static void
2078arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2079{
2080	arc_buf_hdr_t *ab, *ab_prev;
2081	arc_buf_hdr_t marker = { 0 };
2082	list_t *list, *list_start;
2083	kmutex_t *hash_lock, *lock;
2084	uint64_t bytes_deleted = 0;
2085	uint64_t bufs_skipped = 0;
2086	static int evict_offset;
2087	int list_count, idx = evict_offset;
2088	int offset, count = 0;
2089
2090	ASSERT(GHOST_STATE(state));
2091
2092	/*
2093	 * data lists come after metadata lists
2094	 */
2095	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2096	list_count = ARC_BUFC_NUMDATALISTS;
2097	offset = ARC_BUFC_NUMMETADATALISTS;
2098
2099evict_start:
2100	list = &list_start[idx];
2101	lock = ARCS_LOCK(state, idx + offset);
2102
2103	mutex_enter(lock);
2104	for (ab = list_tail(list); ab; ab = ab_prev) {
2105		ab_prev = list_prev(list, ab);
2106		if (spa && ab->b_spa != spa)
2107			continue;
2108
2109		/* ignore markers */
2110		if (ab->b_spa == 0)
2111			continue;
2112
2113		hash_lock = HDR_LOCK(ab);
2114		/* caller may be trying to modify this buffer, skip it */
2115		if (MUTEX_HELD(hash_lock))
2116			continue;
2117		if (mutex_tryenter(hash_lock)) {
2118			ASSERT(!HDR_IO_IN_PROGRESS(ab));
2119			ASSERT(ab->b_buf == NULL);
2120			ARCSTAT_BUMP(arcstat_deleted);
2121			bytes_deleted += ab->b_size;
2122
2123			if (ab->b_l2hdr != NULL) {
2124				/*
2125				 * This buffer is cached on the 2nd Level ARC;
2126				 * don't destroy the header.
2127				 */
2128				arc_change_state(arc_l2c_only, ab, hash_lock);
2129				mutex_exit(hash_lock);
2130			} else {
2131				arc_change_state(arc_anon, ab, hash_lock);
2132				mutex_exit(hash_lock);
2133				arc_hdr_destroy(ab);
2134			}
2135
2136			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2137			if (bytes >= 0 && bytes_deleted >= bytes)
2138				break;
2139		} else if (bytes < 0) {
2140			/*
2141			 * Insert a list marker and then wait for the
2142			 * hash lock to become available. Once its
2143			 * available, restart from where we left off.
2144			 */
2145			list_insert_after(list, ab, &marker);
2146			mutex_exit(lock);
2147			mutex_enter(hash_lock);
2148			mutex_exit(hash_lock);
2149			mutex_enter(lock);
2150			ab_prev = list_prev(list, &marker);
2151			list_remove(list, &marker);
2152		} else
2153			bufs_skipped += 1;
2154	}
2155	mutex_exit(lock);
2156	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2157	count++;
2158
2159	if (count < list_count)
2160		goto evict_start;
2161
2162	evict_offset = idx;
2163	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2164	    (bytes < 0 || bytes_deleted < bytes)) {
2165		list_start = &state->arcs_lists[0];
2166		list_count = ARC_BUFC_NUMMETADATALISTS;
2167		offset = count = 0;
2168		goto evict_start;
2169	}
2170
2171	if (bufs_skipped) {
2172		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2173		ASSERT(bytes >= 0);
2174	}
2175
2176	if (bytes_deleted < bytes)
2177		dprintf("only deleted %lld bytes from %p",
2178		    (longlong_t)bytes_deleted, state);
2179}
2180
2181static void
2182arc_adjust(void)
2183{
2184	int64_t adjustment, delta;
2185
2186	/*
2187	 * Adjust MRU size
2188	 */
2189
2190	adjustment = MIN((int64_t)(arc_size - arc_c),
2191	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2192	    arc_p));
2193
2194	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2195		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2196		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2197		adjustment -= delta;
2198	}
2199
2200	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2201		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2202		(void) arc_evict(arc_mru, 0, delta, FALSE,
2203		    ARC_BUFC_METADATA);
2204	}
2205
2206	/*
2207	 * Adjust MFU size
2208	 */
2209
2210	adjustment = arc_size - arc_c;
2211
2212	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2213		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2214		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2215		adjustment -= delta;
2216	}
2217
2218	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2219		int64_t delta = MIN(adjustment,
2220		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2221		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2222		    ARC_BUFC_METADATA);
2223	}
2224
2225	/*
2226	 * Adjust ghost lists
2227	 */
2228
2229	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2230
2231	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2232		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2233		arc_evict_ghost(arc_mru_ghost, 0, delta);
2234	}
2235
2236	adjustment =
2237	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2238
2239	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2240		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2241		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2242	}
2243}
2244
2245static void
2246arc_do_user_evicts(void)
2247{
2248	static arc_buf_t *tmp_arc_eviction_list;
2249
2250	/*
2251	 * Move list over to avoid LOR
2252	 */
2253restart:
2254	mutex_enter(&arc_eviction_mtx);
2255	tmp_arc_eviction_list = arc_eviction_list;
2256	arc_eviction_list = NULL;
2257	mutex_exit(&arc_eviction_mtx);
2258
2259	while (tmp_arc_eviction_list != NULL) {
2260		arc_buf_t *buf = tmp_arc_eviction_list;
2261		tmp_arc_eviction_list = buf->b_next;
2262		mutex_enter(&buf->b_evict_lock);
2263		buf->b_hdr = NULL;
2264		mutex_exit(&buf->b_evict_lock);
2265
2266		if (buf->b_efunc != NULL)
2267			VERIFY(buf->b_efunc(buf) == 0);
2268
2269		buf->b_efunc = NULL;
2270		buf->b_private = NULL;
2271		kmem_cache_free(buf_cache, buf);
2272	}
2273
2274	if (arc_eviction_list != NULL)
2275		goto restart;
2276}
2277
2278/*
2279 * Flush all *evictable* data from the cache for the given spa.
2280 * NOTE: this will not touch "active" (i.e. referenced) data.
2281 */
2282void
2283arc_flush(spa_t *spa)
2284{
2285	uint64_t guid = 0;
2286
2287	if (spa)
2288		guid = spa_load_guid(spa);
2289
2290	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2291		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2292		if (spa)
2293			break;
2294	}
2295	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2296		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2297		if (spa)
2298			break;
2299	}
2300	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2301		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2302		if (spa)
2303			break;
2304	}
2305	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2306		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2307		if (spa)
2308			break;
2309	}
2310
2311	arc_evict_ghost(arc_mru_ghost, guid, -1);
2312	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2313
2314	mutex_enter(&arc_reclaim_thr_lock);
2315	arc_do_user_evicts();
2316	mutex_exit(&arc_reclaim_thr_lock);
2317	ASSERT(spa || arc_eviction_list == NULL);
2318}
2319
2320void
2321arc_shrink(void)
2322{
2323	if (arc_c > arc_c_min) {
2324		uint64_t to_free;
2325
2326#ifdef _KERNEL
2327		to_free = arc_c >> arc_shrink_shift;
2328#else
2329		to_free = arc_c >> arc_shrink_shift;
2330#endif
2331		if (arc_c > arc_c_min + to_free)
2332			atomic_add_64(&arc_c, -to_free);
2333		else
2334			arc_c = arc_c_min;
2335
2336		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2337		if (arc_c > arc_size)
2338			arc_c = MAX(arc_size, arc_c_min);
2339		if (arc_p > arc_c)
2340			arc_p = (arc_c >> 1);
2341		ASSERT(arc_c >= arc_c_min);
2342		ASSERT((int64_t)arc_p >= 0);
2343	}
2344
2345	if (arc_size > arc_c)
2346		arc_adjust();
2347}
2348
2349static int needfree = 0;
2350
2351static int
2352arc_reclaim_needed(void)
2353{
2354
2355#ifdef _KERNEL
2356
2357	if (needfree)
2358		return (1);
2359
2360	/*
2361	 * Cooperate with pagedaemon when it's time for it to scan
2362	 * and reclaim some pages.
2363	 */
2364	if (vm_paging_needed())
2365		return (1);
2366
2367#ifdef sun
2368	/*
2369	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2370	 */
2371	extra = desfree;
2372
2373	/*
2374	 * check that we're out of range of the pageout scanner.  It starts to
2375	 * schedule paging if freemem is less than lotsfree and needfree.
2376	 * lotsfree is the high-water mark for pageout, and needfree is the
2377	 * number of needed free pages.  We add extra pages here to make sure
2378	 * the scanner doesn't start up while we're freeing memory.
2379	 */
2380	if (freemem < lotsfree + needfree + extra)
2381		return (1);
2382
2383	/*
2384	 * check to make sure that swapfs has enough space so that anon
2385	 * reservations can still succeed. anon_resvmem() checks that the
2386	 * availrmem is greater than swapfs_minfree, and the number of reserved
2387	 * swap pages.  We also add a bit of extra here just to prevent
2388	 * circumstances from getting really dire.
2389	 */
2390	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2391		return (1);
2392
2393#if defined(__i386)
2394	/*
2395	 * If we're on an i386 platform, it's possible that we'll exhaust the
2396	 * kernel heap space before we ever run out of available physical
2397	 * memory.  Most checks of the size of the heap_area compare against
2398	 * tune.t_minarmem, which is the minimum available real memory that we
2399	 * can have in the system.  However, this is generally fixed at 25 pages
2400	 * which is so low that it's useless.  In this comparison, we seek to
2401	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2402	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2403	 * free)
2404	 */
2405	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2406	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2407		return (1);
2408#endif
2409#else	/* !sun */
2410	if (kmem_used() > (kmem_size() * 3) / 4)
2411		return (1);
2412#endif	/* sun */
2413
2414#else
2415	if (spa_get_random(100) == 0)
2416		return (1);
2417#endif
2418	return (0);
2419}
2420
2421extern kmem_cache_t	*zio_buf_cache[];
2422extern kmem_cache_t	*zio_data_buf_cache[];
2423
2424static void
2425arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2426{
2427	size_t			i;
2428	kmem_cache_t		*prev_cache = NULL;
2429	kmem_cache_t		*prev_data_cache = NULL;
2430
2431#ifdef _KERNEL
2432	if (arc_meta_used >= arc_meta_limit) {
2433		/*
2434		 * We are exceeding our meta-data cache limit.
2435		 * Purge some DNLC entries to release holds on meta-data.
2436		 */
2437		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2438	}
2439#if defined(__i386)
2440	/*
2441	 * Reclaim unused memory from all kmem caches.
2442	 */
2443	kmem_reap();
2444#endif
2445#endif
2446
2447	/*
2448	 * An aggressive reclamation will shrink the cache size as well as
2449	 * reap free buffers from the arc kmem caches.
2450	 */
2451	if (strat == ARC_RECLAIM_AGGR)
2452		arc_shrink();
2453
2454	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2455		if (zio_buf_cache[i] != prev_cache) {
2456			prev_cache = zio_buf_cache[i];
2457			kmem_cache_reap_now(zio_buf_cache[i]);
2458		}
2459		if (zio_data_buf_cache[i] != prev_data_cache) {
2460			prev_data_cache = zio_data_buf_cache[i];
2461			kmem_cache_reap_now(zio_data_buf_cache[i]);
2462		}
2463	}
2464	kmem_cache_reap_now(buf_cache);
2465	kmem_cache_reap_now(hdr_cache);
2466}
2467
2468static void
2469arc_reclaim_thread(void *dummy __unused)
2470{
2471	clock_t			growtime = 0;
2472	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2473	callb_cpr_t		cpr;
2474
2475	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2476
2477	mutex_enter(&arc_reclaim_thr_lock);
2478	while (arc_thread_exit == 0) {
2479		if (arc_reclaim_needed()) {
2480
2481			if (arc_no_grow) {
2482				if (last_reclaim == ARC_RECLAIM_CONS) {
2483					last_reclaim = ARC_RECLAIM_AGGR;
2484				} else {
2485					last_reclaim = ARC_RECLAIM_CONS;
2486				}
2487			} else {
2488				arc_no_grow = TRUE;
2489				last_reclaim = ARC_RECLAIM_AGGR;
2490				membar_producer();
2491			}
2492
2493			/* reset the growth delay for every reclaim */
2494			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2495
2496			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2497				/*
2498				 * If needfree is TRUE our vm_lowmem hook
2499				 * was called and in that case we must free some
2500				 * memory, so switch to aggressive mode.
2501				 */
2502				arc_no_grow = TRUE;
2503				last_reclaim = ARC_RECLAIM_AGGR;
2504			}
2505			arc_kmem_reap_now(last_reclaim);
2506			arc_warm = B_TRUE;
2507
2508		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2509			arc_no_grow = FALSE;
2510		}
2511
2512		arc_adjust();
2513
2514		if (arc_eviction_list != NULL)
2515			arc_do_user_evicts();
2516
2517#ifdef _KERNEL
2518		if (needfree) {
2519			needfree = 0;
2520			wakeup(&needfree);
2521		}
2522#endif
2523
2524		/* block until needed, or one second, whichever is shorter */
2525		CALLB_CPR_SAFE_BEGIN(&cpr);
2526		(void) cv_timedwait(&arc_reclaim_thr_cv,
2527		    &arc_reclaim_thr_lock, hz);
2528		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2529	}
2530
2531	arc_thread_exit = 0;
2532	cv_broadcast(&arc_reclaim_thr_cv);
2533	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2534	thread_exit();
2535}
2536
2537/*
2538 * Adapt arc info given the number of bytes we are trying to add and
2539 * the state that we are comming from.  This function is only called
2540 * when we are adding new content to the cache.
2541 */
2542static void
2543arc_adapt(int bytes, arc_state_t *state)
2544{
2545	int mult;
2546	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2547
2548	if (state == arc_l2c_only)
2549		return;
2550
2551	ASSERT(bytes > 0);
2552	/*
2553	 * Adapt the target size of the MRU list:
2554	 *	- if we just hit in the MRU ghost list, then increase
2555	 *	  the target size of the MRU list.
2556	 *	- if we just hit in the MFU ghost list, then increase
2557	 *	  the target size of the MFU list by decreasing the
2558	 *	  target size of the MRU list.
2559	 */
2560	if (state == arc_mru_ghost) {
2561		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2562		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2563		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2564
2565		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2566	} else if (state == arc_mfu_ghost) {
2567		uint64_t delta;
2568
2569		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2570		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2571		mult = MIN(mult, 10);
2572
2573		delta = MIN(bytes * mult, arc_p);
2574		arc_p = MAX(arc_p_min, arc_p - delta);
2575	}
2576	ASSERT((int64_t)arc_p >= 0);
2577
2578	if (arc_reclaim_needed()) {
2579		cv_signal(&arc_reclaim_thr_cv);
2580		return;
2581	}
2582
2583	if (arc_no_grow)
2584		return;
2585
2586	if (arc_c >= arc_c_max)
2587		return;
2588
2589	/*
2590	 * If we're within (2 * maxblocksize) bytes of the target
2591	 * cache size, increment the target cache size
2592	 */
2593	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2594		atomic_add_64(&arc_c, (int64_t)bytes);
2595		if (arc_c > arc_c_max)
2596			arc_c = arc_c_max;
2597		else if (state == arc_anon)
2598			atomic_add_64(&arc_p, (int64_t)bytes);
2599		if (arc_p > arc_c)
2600			arc_p = arc_c;
2601	}
2602	ASSERT((int64_t)arc_p >= 0);
2603}
2604
2605/*
2606 * Check if the cache has reached its limits and eviction is required
2607 * prior to insert.
2608 */
2609static int
2610arc_evict_needed(arc_buf_contents_t type)
2611{
2612	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2613		return (1);
2614
2615#ifdef sun
2616#ifdef _KERNEL
2617	/*
2618	 * If zio data pages are being allocated out of a separate heap segment,
2619	 * then enforce that the size of available vmem for this area remains
2620	 * above about 1/32nd free.
2621	 */
2622	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2623	    vmem_size(zio_arena, VMEM_FREE) <
2624	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2625		return (1);
2626#endif
2627#endif	/* sun */
2628
2629	if (arc_reclaim_needed())
2630		return (1);
2631
2632	return (arc_size > arc_c);
2633}
2634
2635/*
2636 * The buffer, supplied as the first argument, needs a data block.
2637 * So, if we are at cache max, determine which cache should be victimized.
2638 * We have the following cases:
2639 *
2640 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2641 * In this situation if we're out of space, but the resident size of the MFU is
2642 * under the limit, victimize the MFU cache to satisfy this insertion request.
2643 *
2644 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2645 * Here, we've used up all of the available space for the MRU, so we need to
2646 * evict from our own cache instead.  Evict from the set of resident MRU
2647 * entries.
2648 *
2649 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2650 * c minus p represents the MFU space in the cache, since p is the size of the
2651 * cache that is dedicated to the MRU.  In this situation there's still space on
2652 * the MFU side, so the MRU side needs to be victimized.
2653 *
2654 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2655 * MFU's resident set is consuming more space than it has been allotted.  In
2656 * this situation, we must victimize our own cache, the MFU, for this insertion.
2657 */
2658static void
2659arc_get_data_buf(arc_buf_t *buf)
2660{
2661	arc_state_t		*state = buf->b_hdr->b_state;
2662	uint64_t		size = buf->b_hdr->b_size;
2663	arc_buf_contents_t	type = buf->b_hdr->b_type;
2664
2665	arc_adapt(size, state);
2666
2667	/*
2668	 * We have not yet reached cache maximum size,
2669	 * just allocate a new buffer.
2670	 */
2671	if (!arc_evict_needed(type)) {
2672		if (type == ARC_BUFC_METADATA) {
2673			buf->b_data = zio_buf_alloc(size);
2674			arc_space_consume(size, ARC_SPACE_DATA);
2675		} else {
2676			ASSERT(type == ARC_BUFC_DATA);
2677			buf->b_data = zio_data_buf_alloc(size);
2678			ARCSTAT_INCR(arcstat_data_size, size);
2679			atomic_add_64(&arc_size, size);
2680		}
2681		goto out;
2682	}
2683
2684	/*
2685	 * If we are prefetching from the mfu ghost list, this buffer
2686	 * will end up on the mru list; so steal space from there.
2687	 */
2688	if (state == arc_mfu_ghost)
2689		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2690	else if (state == arc_mru_ghost)
2691		state = arc_mru;
2692
2693	if (state == arc_mru || state == arc_anon) {
2694		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2695		state = (arc_mfu->arcs_lsize[type] >= size &&
2696		    arc_p > mru_used) ? arc_mfu : arc_mru;
2697	} else {
2698		/* MFU cases */
2699		uint64_t mfu_space = arc_c - arc_p;
2700		state =  (arc_mru->arcs_lsize[type] >= size &&
2701		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2702	}
2703	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2704		if (type == ARC_BUFC_METADATA) {
2705			buf->b_data = zio_buf_alloc(size);
2706			arc_space_consume(size, ARC_SPACE_DATA);
2707		} else {
2708			ASSERT(type == ARC_BUFC_DATA);
2709			buf->b_data = zio_data_buf_alloc(size);
2710			ARCSTAT_INCR(arcstat_data_size, size);
2711			atomic_add_64(&arc_size, size);
2712		}
2713		ARCSTAT_BUMP(arcstat_recycle_miss);
2714	}
2715	ASSERT(buf->b_data != NULL);
2716out:
2717	/*
2718	 * Update the state size.  Note that ghost states have a
2719	 * "ghost size" and so don't need to be updated.
2720	 */
2721	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2722		arc_buf_hdr_t *hdr = buf->b_hdr;
2723
2724		atomic_add_64(&hdr->b_state->arcs_size, size);
2725		if (list_link_active(&hdr->b_arc_node)) {
2726			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2727			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2728		}
2729		/*
2730		 * If we are growing the cache, and we are adding anonymous
2731		 * data, and we have outgrown arc_p, update arc_p
2732		 */
2733		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2734		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2735			arc_p = MIN(arc_c, arc_p + size);
2736	}
2737	ARCSTAT_BUMP(arcstat_allocated);
2738}
2739
2740/*
2741 * This routine is called whenever a buffer is accessed.
2742 * NOTE: the hash lock is dropped in this function.
2743 */
2744static void
2745arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2746{
2747	clock_t now;
2748
2749	ASSERT(MUTEX_HELD(hash_lock));
2750
2751	if (buf->b_state == arc_anon) {
2752		/*
2753		 * This buffer is not in the cache, and does not
2754		 * appear in our "ghost" list.  Add the new buffer
2755		 * to the MRU state.
2756		 */
2757
2758		ASSERT(buf->b_arc_access == 0);
2759		buf->b_arc_access = ddi_get_lbolt();
2760		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2761		arc_change_state(arc_mru, buf, hash_lock);
2762
2763	} else if (buf->b_state == arc_mru) {
2764		now = ddi_get_lbolt();
2765
2766		/*
2767		 * If this buffer is here because of a prefetch, then either:
2768		 * - clear the flag if this is a "referencing" read
2769		 *   (any subsequent access will bump this into the MFU state).
2770		 * or
2771		 * - move the buffer to the head of the list if this is
2772		 *   another prefetch (to make it less likely to be evicted).
2773		 */
2774		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2775			if (refcount_count(&buf->b_refcnt) == 0) {
2776				ASSERT(list_link_active(&buf->b_arc_node));
2777			} else {
2778				buf->b_flags &= ~ARC_PREFETCH;
2779				ARCSTAT_BUMP(arcstat_mru_hits);
2780			}
2781			buf->b_arc_access = now;
2782			return;
2783		}
2784
2785		/*
2786		 * This buffer has been "accessed" only once so far,
2787		 * but it is still in the cache. Move it to the MFU
2788		 * state.
2789		 */
2790		if (now > buf->b_arc_access + ARC_MINTIME) {
2791			/*
2792			 * More than 125ms have passed since we
2793			 * instantiated this buffer.  Move it to the
2794			 * most frequently used state.
2795			 */
2796			buf->b_arc_access = now;
2797			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2798			arc_change_state(arc_mfu, buf, hash_lock);
2799		}
2800		ARCSTAT_BUMP(arcstat_mru_hits);
2801	} else if (buf->b_state == arc_mru_ghost) {
2802		arc_state_t	*new_state;
2803		/*
2804		 * This buffer has been "accessed" recently, but
2805		 * was evicted from the cache.  Move it to the
2806		 * MFU state.
2807		 */
2808
2809		if (buf->b_flags & ARC_PREFETCH) {
2810			new_state = arc_mru;
2811			if (refcount_count(&buf->b_refcnt) > 0)
2812				buf->b_flags &= ~ARC_PREFETCH;
2813			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2814		} else {
2815			new_state = arc_mfu;
2816			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2817		}
2818
2819		buf->b_arc_access = ddi_get_lbolt();
2820		arc_change_state(new_state, buf, hash_lock);
2821
2822		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2823	} else if (buf->b_state == arc_mfu) {
2824		/*
2825		 * This buffer has been accessed more than once and is
2826		 * still in the cache.  Keep it in the MFU state.
2827		 *
2828		 * NOTE: an add_reference() that occurred when we did
2829		 * the arc_read() will have kicked this off the list.
2830		 * If it was a prefetch, we will explicitly move it to
2831		 * the head of the list now.
2832		 */
2833		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2834			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2835			ASSERT(list_link_active(&buf->b_arc_node));
2836		}
2837		ARCSTAT_BUMP(arcstat_mfu_hits);
2838		buf->b_arc_access = ddi_get_lbolt();
2839	} else if (buf->b_state == arc_mfu_ghost) {
2840		arc_state_t	*new_state = arc_mfu;
2841		/*
2842		 * This buffer has been accessed more than once but has
2843		 * been evicted from the cache.  Move it back to the
2844		 * MFU state.
2845		 */
2846
2847		if (buf->b_flags & ARC_PREFETCH) {
2848			/*
2849			 * This is a prefetch access...
2850			 * move this block back to the MRU state.
2851			 */
2852			ASSERT0(refcount_count(&buf->b_refcnt));
2853			new_state = arc_mru;
2854		}
2855
2856		buf->b_arc_access = ddi_get_lbolt();
2857		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2858		arc_change_state(new_state, buf, hash_lock);
2859
2860		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2861	} else if (buf->b_state == arc_l2c_only) {
2862		/*
2863		 * This buffer is on the 2nd Level ARC.
2864		 */
2865
2866		buf->b_arc_access = ddi_get_lbolt();
2867		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2868		arc_change_state(arc_mfu, buf, hash_lock);
2869	} else {
2870		ASSERT(!"invalid arc state");
2871	}
2872}
2873
2874/* a generic arc_done_func_t which you can use */
2875/* ARGSUSED */
2876void
2877arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2878{
2879	if (zio == NULL || zio->io_error == 0)
2880		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2881	VERIFY(arc_buf_remove_ref(buf, arg));
2882}
2883
2884/* a generic arc_done_func_t */
2885void
2886arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2887{
2888	arc_buf_t **bufp = arg;
2889	if (zio && zio->io_error) {
2890		VERIFY(arc_buf_remove_ref(buf, arg));
2891		*bufp = NULL;
2892	} else {
2893		*bufp = buf;
2894		ASSERT(buf->b_data);
2895	}
2896}
2897
2898static void
2899arc_read_done(zio_t *zio)
2900{
2901	arc_buf_hdr_t	*hdr, *found;
2902	arc_buf_t	*buf;
2903	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2904	kmutex_t	*hash_lock;
2905	arc_callback_t	*callback_list, *acb;
2906	int		freeable = FALSE;
2907
2908	buf = zio->io_private;
2909	hdr = buf->b_hdr;
2910
2911	/*
2912	 * The hdr was inserted into hash-table and removed from lists
2913	 * prior to starting I/O.  We should find this header, since
2914	 * it's in the hash table, and it should be legit since it's
2915	 * not possible to evict it during the I/O.  The only possible
2916	 * reason for it not to be found is if we were freed during the
2917	 * read.
2918	 */
2919	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2920	    &hash_lock);
2921
2922	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2923	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2924	    (found == hdr && HDR_L2_READING(hdr)));
2925
2926	hdr->b_flags &= ~ARC_L2_EVICTED;
2927	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2928		hdr->b_flags &= ~ARC_L2CACHE;
2929
2930	/* byteswap if necessary */
2931	callback_list = hdr->b_acb;
2932	ASSERT(callback_list != NULL);
2933	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2934		dmu_object_byteswap_t bswap =
2935		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2936		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2937		    byteswap_uint64_array :
2938		    dmu_ot_byteswap[bswap].ob_func;
2939		func(buf->b_data, hdr->b_size);
2940	}
2941
2942	arc_cksum_compute(buf, B_FALSE);
2943#ifdef illumos
2944	arc_buf_watch(buf);
2945#endif /* illumos */
2946
2947	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2948		/*
2949		 * Only call arc_access on anonymous buffers.  This is because
2950		 * if we've issued an I/O for an evicted buffer, we've already
2951		 * called arc_access (to prevent any simultaneous readers from
2952		 * getting confused).
2953		 */
2954		arc_access(hdr, hash_lock);
2955	}
2956
2957	/* create copies of the data buffer for the callers */
2958	abuf = buf;
2959	for (acb = callback_list; acb; acb = acb->acb_next) {
2960		if (acb->acb_done) {
2961			if (abuf == NULL) {
2962				ARCSTAT_BUMP(arcstat_duplicate_reads);
2963				abuf = arc_buf_clone(buf);
2964			}
2965			acb->acb_buf = abuf;
2966			abuf = NULL;
2967		}
2968	}
2969	hdr->b_acb = NULL;
2970	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2971	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2972	if (abuf == buf) {
2973		ASSERT(buf->b_efunc == NULL);
2974		ASSERT(hdr->b_datacnt == 1);
2975		hdr->b_flags |= ARC_BUF_AVAILABLE;
2976	}
2977
2978	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2979
2980	if (zio->io_error != 0) {
2981		hdr->b_flags |= ARC_IO_ERROR;
2982		if (hdr->b_state != arc_anon)
2983			arc_change_state(arc_anon, hdr, hash_lock);
2984		if (HDR_IN_HASH_TABLE(hdr))
2985			buf_hash_remove(hdr);
2986		freeable = refcount_is_zero(&hdr->b_refcnt);
2987	}
2988
2989	/*
2990	 * Broadcast before we drop the hash_lock to avoid the possibility
2991	 * that the hdr (and hence the cv) might be freed before we get to
2992	 * the cv_broadcast().
2993	 */
2994	cv_broadcast(&hdr->b_cv);
2995
2996	if (hash_lock) {
2997		mutex_exit(hash_lock);
2998	} else {
2999		/*
3000		 * This block was freed while we waited for the read to
3001		 * complete.  It has been removed from the hash table and
3002		 * moved to the anonymous state (so that it won't show up
3003		 * in the cache).
3004		 */
3005		ASSERT3P(hdr->b_state, ==, arc_anon);
3006		freeable = refcount_is_zero(&hdr->b_refcnt);
3007	}
3008
3009	/* execute each callback and free its structure */
3010	while ((acb = callback_list) != NULL) {
3011		if (acb->acb_done)
3012			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3013
3014		if (acb->acb_zio_dummy != NULL) {
3015			acb->acb_zio_dummy->io_error = zio->io_error;
3016			zio_nowait(acb->acb_zio_dummy);
3017		}
3018
3019		callback_list = acb->acb_next;
3020		kmem_free(acb, sizeof (arc_callback_t));
3021	}
3022
3023	if (freeable)
3024		arc_hdr_destroy(hdr);
3025}
3026
3027/*
3028 * "Read" the block block at the specified DVA (in bp) via the
3029 * cache.  If the block is found in the cache, invoke the provided
3030 * callback immediately and return.  Note that the `zio' parameter
3031 * in the callback will be NULL in this case, since no IO was
3032 * required.  If the block is not in the cache pass the read request
3033 * on to the spa with a substitute callback function, so that the
3034 * requested block will be added to the cache.
3035 *
3036 * If a read request arrives for a block that has a read in-progress,
3037 * either wait for the in-progress read to complete (and return the
3038 * results); or, if this is a read with a "done" func, add a record
3039 * to the read to invoke the "done" func when the read completes,
3040 * and return; or just return.
3041 *
3042 * arc_read_done() will invoke all the requested "done" functions
3043 * for readers of this block.
3044 */
3045int
3046arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3047    void *private, int priority, int zio_flags, uint32_t *arc_flags,
3048    const zbookmark_t *zb)
3049{
3050	arc_buf_hdr_t *hdr;
3051	arc_buf_t *buf = NULL;
3052	kmutex_t *hash_lock;
3053	zio_t *rzio;
3054	uint64_t guid = spa_load_guid(spa);
3055
3056top:
3057	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3058	    &hash_lock);
3059	if (hdr && hdr->b_datacnt > 0) {
3060
3061		*arc_flags |= ARC_CACHED;
3062
3063		if (HDR_IO_IN_PROGRESS(hdr)) {
3064
3065			if (*arc_flags & ARC_WAIT) {
3066				cv_wait(&hdr->b_cv, hash_lock);
3067				mutex_exit(hash_lock);
3068				goto top;
3069			}
3070			ASSERT(*arc_flags & ARC_NOWAIT);
3071
3072			if (done) {
3073				arc_callback_t	*acb = NULL;
3074
3075				acb = kmem_zalloc(sizeof (arc_callback_t),
3076				    KM_SLEEP);
3077				acb->acb_done = done;
3078				acb->acb_private = private;
3079				if (pio != NULL)
3080					acb->acb_zio_dummy = zio_null(pio,
3081					    spa, NULL, NULL, NULL, zio_flags);
3082
3083				ASSERT(acb->acb_done != NULL);
3084				acb->acb_next = hdr->b_acb;
3085				hdr->b_acb = acb;
3086				add_reference(hdr, hash_lock, private);
3087				mutex_exit(hash_lock);
3088				return (0);
3089			}
3090			mutex_exit(hash_lock);
3091			return (0);
3092		}
3093
3094		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3095
3096		if (done) {
3097			add_reference(hdr, hash_lock, private);
3098			/*
3099			 * If this block is already in use, create a new
3100			 * copy of the data so that we will be guaranteed
3101			 * that arc_release() will always succeed.
3102			 */
3103			buf = hdr->b_buf;
3104			ASSERT(buf);
3105			ASSERT(buf->b_data);
3106			if (HDR_BUF_AVAILABLE(hdr)) {
3107				ASSERT(buf->b_efunc == NULL);
3108				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3109			} else {
3110				buf = arc_buf_clone(buf);
3111			}
3112
3113		} else if (*arc_flags & ARC_PREFETCH &&
3114		    refcount_count(&hdr->b_refcnt) == 0) {
3115			hdr->b_flags |= ARC_PREFETCH;
3116		}
3117		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3118		arc_access(hdr, hash_lock);
3119		if (*arc_flags & ARC_L2CACHE)
3120			hdr->b_flags |= ARC_L2CACHE;
3121		mutex_exit(hash_lock);
3122		ARCSTAT_BUMP(arcstat_hits);
3123		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3124		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3125		    data, metadata, hits);
3126
3127		if (done)
3128			done(NULL, buf, private);
3129	} else {
3130		uint64_t size = BP_GET_LSIZE(bp);
3131		arc_callback_t	*acb;
3132		vdev_t *vd = NULL;
3133		uint64_t addr = 0;
3134		boolean_t devw = B_FALSE;
3135
3136		if (hdr == NULL) {
3137			/* this block is not in the cache */
3138			arc_buf_hdr_t	*exists;
3139			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3140			buf = arc_buf_alloc(spa, size, private, type);
3141			hdr = buf->b_hdr;
3142			hdr->b_dva = *BP_IDENTITY(bp);
3143			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3144			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3145			exists = buf_hash_insert(hdr, &hash_lock);
3146			if (exists) {
3147				/* somebody beat us to the hash insert */
3148				mutex_exit(hash_lock);
3149				buf_discard_identity(hdr);
3150				(void) arc_buf_remove_ref(buf, private);
3151				goto top; /* restart the IO request */
3152			}
3153			/* if this is a prefetch, we don't have a reference */
3154			if (*arc_flags & ARC_PREFETCH) {
3155				(void) remove_reference(hdr, hash_lock,
3156				    private);
3157				hdr->b_flags |= ARC_PREFETCH;
3158			}
3159			if (*arc_flags & ARC_L2CACHE)
3160				hdr->b_flags |= ARC_L2CACHE;
3161			if (BP_GET_LEVEL(bp) > 0)
3162				hdr->b_flags |= ARC_INDIRECT;
3163		} else {
3164			/* this block is in the ghost cache */
3165			ASSERT(GHOST_STATE(hdr->b_state));
3166			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3167			ASSERT0(refcount_count(&hdr->b_refcnt));
3168			ASSERT(hdr->b_buf == NULL);
3169
3170			/* if this is a prefetch, we don't have a reference */
3171			if (*arc_flags & ARC_PREFETCH)
3172				hdr->b_flags |= ARC_PREFETCH;
3173			else
3174				add_reference(hdr, hash_lock, private);
3175			if (*arc_flags & ARC_L2CACHE)
3176				hdr->b_flags |= ARC_L2CACHE;
3177			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3178			buf->b_hdr = hdr;
3179			buf->b_data = NULL;
3180			buf->b_efunc = NULL;
3181			buf->b_private = NULL;
3182			buf->b_next = NULL;
3183			hdr->b_buf = buf;
3184			ASSERT(hdr->b_datacnt == 0);
3185			hdr->b_datacnt = 1;
3186			arc_get_data_buf(buf);
3187			arc_access(hdr, hash_lock);
3188		}
3189
3190		ASSERT(!GHOST_STATE(hdr->b_state));
3191
3192		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3193		acb->acb_done = done;
3194		acb->acb_private = private;
3195
3196		ASSERT(hdr->b_acb == NULL);
3197		hdr->b_acb = acb;
3198		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3199
3200		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3201		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3202			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3203			addr = hdr->b_l2hdr->b_daddr;
3204			/*
3205			 * Lock out device removal.
3206			 */
3207			if (vdev_is_dead(vd) ||
3208			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3209				vd = NULL;
3210		}
3211
3212		mutex_exit(hash_lock);
3213
3214		ASSERT3U(hdr->b_size, ==, size);
3215		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3216		    uint64_t, size, zbookmark_t *, zb);
3217		ARCSTAT_BUMP(arcstat_misses);
3218		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3219		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3220		    data, metadata, misses);
3221#ifdef _KERNEL
3222		curthread->td_ru.ru_inblock++;
3223#endif
3224
3225		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3226			/*
3227			 * Read from the L2ARC if the following are true:
3228			 * 1. The L2ARC vdev was previously cached.
3229			 * 2. This buffer still has L2ARC metadata.
3230			 * 3. This buffer isn't currently writing to the L2ARC.
3231			 * 4. The L2ARC entry wasn't evicted, which may
3232			 *    also have invalidated the vdev.
3233			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3234			 */
3235			if (hdr->b_l2hdr != NULL &&
3236			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3237			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3238				l2arc_read_callback_t *cb;
3239
3240				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3241				ARCSTAT_BUMP(arcstat_l2_hits);
3242
3243				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3244				    KM_SLEEP);
3245				cb->l2rcb_buf = buf;
3246				cb->l2rcb_spa = spa;
3247				cb->l2rcb_bp = *bp;
3248				cb->l2rcb_zb = *zb;
3249				cb->l2rcb_flags = zio_flags;
3250
3251				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3252				    addr + size < vd->vdev_psize -
3253				    VDEV_LABEL_END_SIZE);
3254
3255				/*
3256				 * l2arc read.  The SCL_L2ARC lock will be
3257				 * released by l2arc_read_done().
3258				 */
3259				rzio = zio_read_phys(pio, vd, addr, size,
3260				    buf->b_data, ZIO_CHECKSUM_OFF,
3261				    l2arc_read_done, cb, priority, zio_flags |
3262				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3263				    ZIO_FLAG_DONT_PROPAGATE |
3264				    ZIO_FLAG_DONT_RETRY, B_FALSE);
3265				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3266				    zio_t *, rzio);
3267				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3268
3269				if (*arc_flags & ARC_NOWAIT) {
3270					zio_nowait(rzio);
3271					return (0);
3272				}
3273
3274				ASSERT(*arc_flags & ARC_WAIT);
3275				if (zio_wait(rzio) == 0)
3276					return (0);
3277
3278				/* l2arc read error; goto zio_read() */
3279			} else {
3280				DTRACE_PROBE1(l2arc__miss,
3281				    arc_buf_hdr_t *, hdr);
3282				ARCSTAT_BUMP(arcstat_l2_misses);
3283				if (HDR_L2_WRITING(hdr))
3284					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3285				spa_config_exit(spa, SCL_L2ARC, vd);
3286			}
3287		} else {
3288			if (vd != NULL)
3289				spa_config_exit(spa, SCL_L2ARC, vd);
3290			if (l2arc_ndev != 0) {
3291				DTRACE_PROBE1(l2arc__miss,
3292				    arc_buf_hdr_t *, hdr);
3293				ARCSTAT_BUMP(arcstat_l2_misses);
3294			}
3295		}
3296
3297		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3298		    arc_read_done, buf, priority, zio_flags, zb);
3299
3300		if (*arc_flags & ARC_WAIT)
3301			return (zio_wait(rzio));
3302
3303		ASSERT(*arc_flags & ARC_NOWAIT);
3304		zio_nowait(rzio);
3305	}
3306	return (0);
3307}
3308
3309void
3310arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3311{
3312	ASSERT(buf->b_hdr != NULL);
3313	ASSERT(buf->b_hdr->b_state != arc_anon);
3314	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3315	ASSERT(buf->b_efunc == NULL);
3316	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3317
3318	buf->b_efunc = func;
3319	buf->b_private = private;
3320}
3321
3322/*
3323 * This is used by the DMU to let the ARC know that a buffer is
3324 * being evicted, so the ARC should clean up.  If this arc buf
3325 * is not yet in the evicted state, it will be put there.
3326 */
3327int
3328arc_buf_evict(arc_buf_t *buf)
3329{
3330	arc_buf_hdr_t *hdr;
3331	kmutex_t *hash_lock;
3332	arc_buf_t **bufp;
3333	list_t *list, *evicted_list;
3334	kmutex_t *lock, *evicted_lock;
3335
3336	mutex_enter(&buf->b_evict_lock);
3337	hdr = buf->b_hdr;
3338	if (hdr == NULL) {
3339		/*
3340		 * We are in arc_do_user_evicts().
3341		 */
3342		ASSERT(buf->b_data == NULL);
3343		mutex_exit(&buf->b_evict_lock);
3344		return (0);
3345	} else if (buf->b_data == NULL) {
3346		arc_buf_t copy = *buf; /* structure assignment */
3347		/*
3348		 * We are on the eviction list; process this buffer now
3349		 * but let arc_do_user_evicts() do the reaping.
3350		 */
3351		buf->b_efunc = NULL;
3352		mutex_exit(&buf->b_evict_lock);
3353		VERIFY(copy.b_efunc(&copy) == 0);
3354		return (1);
3355	}
3356	hash_lock = HDR_LOCK(hdr);
3357	mutex_enter(hash_lock);
3358	hdr = buf->b_hdr;
3359	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3360
3361	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3362	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3363
3364	/*
3365	 * Pull this buffer off of the hdr
3366	 */
3367	bufp = &hdr->b_buf;
3368	while (*bufp != buf)
3369		bufp = &(*bufp)->b_next;
3370	*bufp = buf->b_next;
3371
3372	ASSERT(buf->b_data != NULL);
3373	arc_buf_destroy(buf, FALSE, FALSE);
3374
3375	if (hdr->b_datacnt == 0) {
3376		arc_state_t *old_state = hdr->b_state;
3377		arc_state_t *evicted_state;
3378
3379		ASSERT(hdr->b_buf == NULL);
3380		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3381
3382		evicted_state =
3383		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3384
3385		get_buf_info(hdr, old_state, &list, &lock);
3386		get_buf_info(hdr, evicted_state, &evicted_list, &evicted_lock);
3387		mutex_enter(lock);
3388		mutex_enter(evicted_lock);
3389
3390		arc_change_state(evicted_state, hdr, hash_lock);
3391		ASSERT(HDR_IN_HASH_TABLE(hdr));
3392		hdr->b_flags |= ARC_IN_HASH_TABLE;
3393		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3394
3395		mutex_exit(evicted_lock);
3396		mutex_exit(lock);
3397	}
3398	mutex_exit(hash_lock);
3399	mutex_exit(&buf->b_evict_lock);
3400
3401	VERIFY(buf->b_efunc(buf) == 0);
3402	buf->b_efunc = NULL;
3403	buf->b_private = NULL;
3404	buf->b_hdr = NULL;
3405	buf->b_next = NULL;
3406	kmem_cache_free(buf_cache, buf);
3407	return (1);
3408}
3409
3410/*
3411 * Release this buffer from the cache.  This must be done
3412 * after a read and prior to modifying the buffer contents.
3413 * If the buffer has more than one reference, we must make
3414 * a new hdr for the buffer.
3415 */
3416void
3417arc_release(arc_buf_t *buf, void *tag)
3418{
3419	arc_buf_hdr_t *hdr;
3420	kmutex_t *hash_lock = NULL;
3421	l2arc_buf_hdr_t *l2hdr;
3422	uint64_t buf_size;
3423
3424	/*
3425	 * It would be nice to assert that if it's DMU metadata (level >
3426	 * 0 || it's the dnode file), then it must be syncing context.
3427	 * But we don't know that information at this level.
3428	 */
3429
3430	mutex_enter(&buf->b_evict_lock);
3431	hdr = buf->b_hdr;
3432
3433	/* this buffer is not on any list */
3434	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3435
3436	if (hdr->b_state == arc_anon) {
3437		/* this buffer is already released */
3438		ASSERT(buf->b_efunc == NULL);
3439	} else {
3440		hash_lock = HDR_LOCK(hdr);
3441		mutex_enter(hash_lock);
3442		hdr = buf->b_hdr;
3443		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3444	}
3445
3446	l2hdr = hdr->b_l2hdr;
3447	if (l2hdr) {
3448		mutex_enter(&l2arc_buflist_mtx);
3449		hdr->b_l2hdr = NULL;
3450	}
3451	buf_size = hdr->b_size;
3452
3453	/*
3454	 * Do we have more than one buf?
3455	 */
3456	if (hdr->b_datacnt > 1) {
3457		arc_buf_hdr_t *nhdr;
3458		arc_buf_t **bufp;
3459		uint64_t blksz = hdr->b_size;
3460		uint64_t spa = hdr->b_spa;
3461		arc_buf_contents_t type = hdr->b_type;
3462		uint32_t flags = hdr->b_flags;
3463
3464		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3465		/*
3466		 * Pull the data off of this hdr and attach it to
3467		 * a new anonymous hdr.
3468		 */
3469		(void) remove_reference(hdr, hash_lock, tag);
3470		bufp = &hdr->b_buf;
3471		while (*bufp != buf)
3472			bufp = &(*bufp)->b_next;
3473		*bufp = buf->b_next;
3474		buf->b_next = NULL;
3475
3476		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3477		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3478		if (refcount_is_zero(&hdr->b_refcnt)) {
3479			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3480			ASSERT3U(*size, >=, hdr->b_size);
3481			atomic_add_64(size, -hdr->b_size);
3482		}
3483
3484		/*
3485		 * We're releasing a duplicate user data buffer, update
3486		 * our statistics accordingly.
3487		 */
3488		if (hdr->b_type == ARC_BUFC_DATA) {
3489			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3490			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3491			    -hdr->b_size);
3492		}
3493		hdr->b_datacnt -= 1;
3494		arc_cksum_verify(buf);
3495#ifdef illumos
3496		arc_buf_unwatch(buf);
3497#endif /* illumos */
3498
3499		mutex_exit(hash_lock);
3500
3501		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3502		nhdr->b_size = blksz;
3503		nhdr->b_spa = spa;
3504		nhdr->b_type = type;
3505		nhdr->b_buf = buf;
3506		nhdr->b_state = arc_anon;
3507		nhdr->b_arc_access = 0;
3508		nhdr->b_flags = flags & ARC_L2_WRITING;
3509		nhdr->b_l2hdr = NULL;
3510		nhdr->b_datacnt = 1;
3511		nhdr->b_freeze_cksum = NULL;
3512		(void) refcount_add(&nhdr->b_refcnt, tag);
3513		buf->b_hdr = nhdr;
3514		mutex_exit(&buf->b_evict_lock);
3515		atomic_add_64(&arc_anon->arcs_size, blksz);
3516	} else {
3517		mutex_exit(&buf->b_evict_lock);
3518		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3519		ASSERT(!list_link_active(&hdr->b_arc_node));
3520		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3521		if (hdr->b_state != arc_anon)
3522			arc_change_state(arc_anon, hdr, hash_lock);
3523		hdr->b_arc_access = 0;
3524		if (hash_lock)
3525			mutex_exit(hash_lock);
3526
3527		buf_discard_identity(hdr);
3528		arc_buf_thaw(buf);
3529	}
3530	buf->b_efunc = NULL;
3531	buf->b_private = NULL;
3532
3533	if (l2hdr) {
3534		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3535		    hdr->b_size);
3536		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3537		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3538		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3539		mutex_exit(&l2arc_buflist_mtx);
3540	}
3541}
3542
3543int
3544arc_released(arc_buf_t *buf)
3545{
3546	int released;
3547
3548	mutex_enter(&buf->b_evict_lock);
3549	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3550	mutex_exit(&buf->b_evict_lock);
3551	return (released);
3552}
3553
3554int
3555arc_has_callback(arc_buf_t *buf)
3556{
3557	int callback;
3558
3559	mutex_enter(&buf->b_evict_lock);
3560	callback = (buf->b_efunc != NULL);
3561	mutex_exit(&buf->b_evict_lock);
3562	return (callback);
3563}
3564
3565#ifdef ZFS_DEBUG
3566int
3567arc_referenced(arc_buf_t *buf)
3568{
3569	int referenced;
3570
3571	mutex_enter(&buf->b_evict_lock);
3572	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3573	mutex_exit(&buf->b_evict_lock);
3574	return (referenced);
3575}
3576#endif
3577
3578static void
3579arc_write_ready(zio_t *zio)
3580{
3581	arc_write_callback_t *callback = zio->io_private;
3582	arc_buf_t *buf = callback->awcb_buf;
3583	arc_buf_hdr_t *hdr = buf->b_hdr;
3584
3585	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3586	callback->awcb_ready(zio, buf, callback->awcb_private);
3587
3588	/*
3589	 * If the IO is already in progress, then this is a re-write
3590	 * attempt, so we need to thaw and re-compute the cksum.
3591	 * It is the responsibility of the callback to handle the
3592	 * accounting for any re-write attempt.
3593	 */
3594	if (HDR_IO_IN_PROGRESS(hdr)) {
3595		mutex_enter(&hdr->b_freeze_lock);
3596		if (hdr->b_freeze_cksum != NULL) {
3597			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3598			hdr->b_freeze_cksum = NULL;
3599		}
3600		mutex_exit(&hdr->b_freeze_lock);
3601	}
3602	arc_cksum_compute(buf, B_FALSE);
3603	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3604}
3605
3606static void
3607arc_write_done(zio_t *zio)
3608{
3609	arc_write_callback_t *callback = zio->io_private;
3610	arc_buf_t *buf = callback->awcb_buf;
3611	arc_buf_hdr_t *hdr = buf->b_hdr;
3612
3613	ASSERT(hdr->b_acb == NULL);
3614
3615	if (zio->io_error == 0) {
3616		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3617		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3618		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3619	} else {
3620		ASSERT(BUF_EMPTY(hdr));
3621	}
3622
3623	/*
3624	 * If the block to be written was all-zero, we may have
3625	 * compressed it away.  In this case no write was performed
3626	 * so there will be no dva/birth/checksum.  The buffer must
3627	 * therefore remain anonymous (and uncached).
3628	 */
3629	if (!BUF_EMPTY(hdr)) {
3630		arc_buf_hdr_t *exists;
3631		kmutex_t *hash_lock;
3632
3633		ASSERT(zio->io_error == 0);
3634
3635		arc_cksum_verify(buf);
3636
3637		exists = buf_hash_insert(hdr, &hash_lock);
3638		if (exists) {
3639			/*
3640			 * This can only happen if we overwrite for
3641			 * sync-to-convergence, because we remove
3642			 * buffers from the hash table when we arc_free().
3643			 */
3644			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3645				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3646					panic("bad overwrite, hdr=%p exists=%p",
3647					    (void *)hdr, (void *)exists);
3648				ASSERT(refcount_is_zero(&exists->b_refcnt));
3649				arc_change_state(arc_anon, exists, hash_lock);
3650				mutex_exit(hash_lock);
3651				arc_hdr_destroy(exists);
3652				exists = buf_hash_insert(hdr, &hash_lock);
3653				ASSERT3P(exists, ==, NULL);
3654			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3655				/* nopwrite */
3656				ASSERT(zio->io_prop.zp_nopwrite);
3657				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3658					panic("bad nopwrite, hdr=%p exists=%p",
3659					    (void *)hdr, (void *)exists);
3660			} else {
3661				/* Dedup */
3662				ASSERT(hdr->b_datacnt == 1);
3663				ASSERT(hdr->b_state == arc_anon);
3664				ASSERT(BP_GET_DEDUP(zio->io_bp));
3665				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3666			}
3667		}
3668		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3669		/* if it's not anon, we are doing a scrub */
3670		if (!exists && hdr->b_state == arc_anon)
3671			arc_access(hdr, hash_lock);
3672		mutex_exit(hash_lock);
3673	} else {
3674		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3675	}
3676
3677	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3678	callback->awcb_done(zio, buf, callback->awcb_private);
3679
3680	kmem_free(callback, sizeof (arc_write_callback_t));
3681}
3682
3683zio_t *
3684arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3685    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3686    arc_done_func_t *ready, arc_done_func_t *done, void *private,
3687    int priority, int zio_flags, const zbookmark_t *zb)
3688{
3689	arc_buf_hdr_t *hdr = buf->b_hdr;
3690	arc_write_callback_t *callback;
3691	zio_t *zio;
3692
3693	ASSERT(ready != NULL);
3694	ASSERT(done != NULL);
3695	ASSERT(!HDR_IO_ERROR(hdr));
3696	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3697	ASSERT(hdr->b_acb == NULL);
3698	if (l2arc)
3699		hdr->b_flags |= ARC_L2CACHE;
3700	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3701	callback->awcb_ready = ready;
3702	callback->awcb_done = done;
3703	callback->awcb_private = private;
3704	callback->awcb_buf = buf;
3705
3706	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3707	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3708
3709	return (zio);
3710}
3711
3712static int
3713arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3714{
3715#ifdef _KERNEL
3716	uint64_t available_memory =
3717	    ptoa((uintmax_t)cnt.v_free_count + cnt.v_cache_count);
3718	static uint64_t page_load = 0;
3719	static uint64_t last_txg = 0;
3720
3721#ifdef sun
3722#if defined(__i386)
3723	available_memory =
3724	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3725#endif
3726#endif	/* sun */
3727	if (available_memory >= zfs_write_limit_max)
3728		return (0);
3729
3730	if (txg > last_txg) {
3731		last_txg = txg;
3732		page_load = 0;
3733	}
3734	/*
3735	 * If we are in pageout, we know that memory is already tight,
3736	 * the arc is already going to be evicting, so we just want to
3737	 * continue to let page writes occur as quickly as possible.
3738	 */
3739	if (curproc == pageproc) {
3740		if (page_load > available_memory / 4)
3741			return (ERESTART);
3742		/* Note: reserve is inflated, so we deflate */
3743		page_load += reserve / 8;
3744		return (0);
3745	} else if (page_load > 0 && arc_reclaim_needed()) {
3746		/* memory is low, delay before restarting */
3747		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3748		return (EAGAIN);
3749	}
3750	page_load = 0;
3751
3752	if (arc_size > arc_c_min) {
3753		uint64_t evictable_memory =
3754		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3755		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3756		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3757		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3758		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3759	}
3760
3761	if (inflight_data > available_memory / 4) {
3762		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3763		return (ERESTART);
3764	}
3765#endif
3766	return (0);
3767}
3768
3769void
3770arc_tempreserve_clear(uint64_t reserve)
3771{
3772	atomic_add_64(&arc_tempreserve, -reserve);
3773	ASSERT((int64_t)arc_tempreserve >= 0);
3774}
3775
3776int
3777arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3778{
3779	int error;
3780	uint64_t anon_size;
3781
3782#ifdef ZFS_DEBUG
3783	/*
3784	 * Once in a while, fail for no reason.  Everything should cope.
3785	 */
3786	if (spa_get_random(10000) == 0) {
3787		dprintf("forcing random failure\n");
3788		return (ERESTART);
3789	}
3790#endif
3791	if (reserve > arc_c/4 && !arc_no_grow)
3792		arc_c = MIN(arc_c_max, reserve * 4);
3793	if (reserve > arc_c)
3794		return (ENOMEM);
3795
3796	/*
3797	 * Don't count loaned bufs as in flight dirty data to prevent long
3798	 * network delays from blocking transactions that are ready to be
3799	 * assigned to a txg.
3800	 */
3801	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3802
3803	/*
3804	 * Writes will, almost always, require additional memory allocations
3805	 * in order to compress/encrypt/etc the data.  We therefor need to
3806	 * make sure that there is sufficient available memory for this.
3807	 */
3808	if (error = arc_memory_throttle(reserve, anon_size, txg))
3809		return (error);
3810
3811	/*
3812	 * Throttle writes when the amount of dirty data in the cache
3813	 * gets too large.  We try to keep the cache less than half full
3814	 * of dirty blocks so that our sync times don't grow too large.
3815	 * Note: if two requests come in concurrently, we might let them
3816	 * both succeed, when one of them should fail.  Not a huge deal.
3817	 */
3818
3819	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3820	    anon_size > arc_c / 4) {
3821		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3822		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3823		    arc_tempreserve>>10,
3824		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3825		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3826		    reserve>>10, arc_c>>10);
3827		return (ERESTART);
3828	}
3829	atomic_add_64(&arc_tempreserve, reserve);
3830	return (0);
3831}
3832
3833static kmutex_t arc_lowmem_lock;
3834#ifdef _KERNEL
3835static eventhandler_tag arc_event_lowmem = NULL;
3836
3837static void
3838arc_lowmem(void *arg __unused, int howto __unused)
3839{
3840
3841	/* Serialize access via arc_lowmem_lock. */
3842	mutex_enter(&arc_lowmem_lock);
3843	mutex_enter(&arc_reclaim_thr_lock);
3844	needfree = 1;
3845	cv_signal(&arc_reclaim_thr_cv);
3846
3847	/*
3848	 * It is unsafe to block here in arbitrary threads, because we can come
3849	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
3850	 * with ARC reclaim thread.
3851	 */
3852	if (curproc == pageproc) {
3853		while (needfree)
3854			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
3855	}
3856	mutex_exit(&arc_reclaim_thr_lock);
3857	mutex_exit(&arc_lowmem_lock);
3858}
3859#endif
3860
3861void
3862arc_init(void)
3863{
3864	int i, prefetch_tunable_set = 0;
3865
3866	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3867	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3868	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
3869
3870	/* Convert seconds to clock ticks */
3871	arc_min_prefetch_lifespan = 1 * hz;
3872
3873	/* Start out with 1/8 of all memory */
3874	arc_c = kmem_size() / 8;
3875
3876#ifdef sun
3877#ifdef _KERNEL
3878	/*
3879	 * On architectures where the physical memory can be larger
3880	 * than the addressable space (intel in 32-bit mode), we may
3881	 * need to limit the cache to 1/8 of VM size.
3882	 */
3883	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3884#endif
3885#endif	/* sun */
3886	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
3887	arc_c_min = MAX(arc_c / 4, 64<<18);
3888	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
3889	if (arc_c * 8 >= 1<<30)
3890		arc_c_max = (arc_c * 8) - (1<<30);
3891	else
3892		arc_c_max = arc_c_min;
3893	arc_c_max = MAX(arc_c * 5, arc_c_max);
3894
3895#ifdef _KERNEL
3896	/*
3897	 * Allow the tunables to override our calculations if they are
3898	 * reasonable (ie. over 16MB)
3899	 */
3900	if (zfs_arc_max > 64<<18 && zfs_arc_max < kmem_size())
3901		arc_c_max = zfs_arc_max;
3902	if (zfs_arc_min > 64<<18 && zfs_arc_min <= arc_c_max)
3903		arc_c_min = zfs_arc_min;
3904#endif
3905
3906	arc_c = arc_c_max;
3907	arc_p = (arc_c >> 1);
3908
3909	/* limit meta-data to 1/4 of the arc capacity */
3910	arc_meta_limit = arc_c_max / 4;
3911
3912	/* Allow the tunable to override if it is reasonable */
3913	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3914		arc_meta_limit = zfs_arc_meta_limit;
3915
3916	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3917		arc_c_min = arc_meta_limit / 2;
3918
3919	if (zfs_arc_grow_retry > 0)
3920		arc_grow_retry = zfs_arc_grow_retry;
3921
3922	if (zfs_arc_shrink_shift > 0)
3923		arc_shrink_shift = zfs_arc_shrink_shift;
3924
3925	if (zfs_arc_p_min_shift > 0)
3926		arc_p_min_shift = zfs_arc_p_min_shift;
3927
3928	/* if kmem_flags are set, lets try to use less memory */
3929	if (kmem_debugging())
3930		arc_c = arc_c / 2;
3931	if (arc_c < arc_c_min)
3932		arc_c = arc_c_min;
3933
3934	zfs_arc_min = arc_c_min;
3935	zfs_arc_max = arc_c_max;
3936
3937	arc_anon = &ARC_anon;
3938	arc_mru = &ARC_mru;
3939	arc_mru_ghost = &ARC_mru_ghost;
3940	arc_mfu = &ARC_mfu;
3941	arc_mfu_ghost = &ARC_mfu_ghost;
3942	arc_l2c_only = &ARC_l2c_only;
3943	arc_size = 0;
3944
3945	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
3946		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
3947		    NULL, MUTEX_DEFAULT, NULL);
3948		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
3949		    NULL, MUTEX_DEFAULT, NULL);
3950		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
3951		    NULL, MUTEX_DEFAULT, NULL);
3952		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
3953		    NULL, MUTEX_DEFAULT, NULL);
3954		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
3955		    NULL, MUTEX_DEFAULT, NULL);
3956		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
3957		    NULL, MUTEX_DEFAULT, NULL);
3958
3959		list_create(&arc_mru->arcs_lists[i],
3960		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3961		list_create(&arc_mru_ghost->arcs_lists[i],
3962		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3963		list_create(&arc_mfu->arcs_lists[i],
3964		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3965		list_create(&arc_mfu_ghost->arcs_lists[i],
3966		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3967		list_create(&arc_mfu_ghost->arcs_lists[i],
3968		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3969		list_create(&arc_l2c_only->arcs_lists[i],
3970		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3971	}
3972
3973	buf_init();
3974
3975	arc_thread_exit = 0;
3976	arc_eviction_list = NULL;
3977	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3978	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3979
3980	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3981	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3982
3983	if (arc_ksp != NULL) {
3984		arc_ksp->ks_data = &arc_stats;
3985		kstat_install(arc_ksp);
3986	}
3987
3988	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3989	    TS_RUN, minclsyspri);
3990
3991#ifdef _KERNEL
3992	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
3993	    EVENTHANDLER_PRI_FIRST);
3994#endif
3995
3996	arc_dead = FALSE;
3997	arc_warm = B_FALSE;
3998
3999	if (zfs_write_limit_max == 0)
4000		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
4001	else
4002		zfs_write_limit_shift = 0;
4003	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
4004
4005#ifdef _KERNEL
4006	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4007		prefetch_tunable_set = 1;
4008
4009#ifdef __i386__
4010	if (prefetch_tunable_set == 0) {
4011		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4012		    "-- to enable,\n");
4013		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4014		    "to /boot/loader.conf.\n");
4015		zfs_prefetch_disable = 1;
4016	}
4017#else
4018	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4019	    prefetch_tunable_set == 0) {
4020		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4021		    "than 4GB of RAM is present;\n"
4022		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4023		    "to /boot/loader.conf.\n");
4024		zfs_prefetch_disable = 1;
4025	}
4026#endif
4027	/* Warn about ZFS memory and address space requirements. */
4028	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4029		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4030		    "expect unstable behavior.\n");
4031	}
4032	if (kmem_size() < 512 * (1 << 20)) {
4033		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4034		    "expect unstable behavior.\n");
4035		printf("             Consider tuning vm.kmem_size and "
4036		    "vm.kmem_size_max\n");
4037		printf("             in /boot/loader.conf.\n");
4038	}
4039#endif
4040}
4041
4042void
4043arc_fini(void)
4044{
4045	int i;
4046
4047	mutex_enter(&arc_reclaim_thr_lock);
4048	arc_thread_exit = 1;
4049	cv_signal(&arc_reclaim_thr_cv);
4050	while (arc_thread_exit != 0)
4051		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4052	mutex_exit(&arc_reclaim_thr_lock);
4053
4054	arc_flush(NULL);
4055
4056	arc_dead = TRUE;
4057
4058	if (arc_ksp != NULL) {
4059		kstat_delete(arc_ksp);
4060		arc_ksp = NULL;
4061	}
4062
4063	mutex_destroy(&arc_eviction_mtx);
4064	mutex_destroy(&arc_reclaim_thr_lock);
4065	cv_destroy(&arc_reclaim_thr_cv);
4066
4067	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4068		list_destroy(&arc_mru->arcs_lists[i]);
4069		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4070		list_destroy(&arc_mfu->arcs_lists[i]);
4071		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4072		list_destroy(&arc_l2c_only->arcs_lists[i]);
4073
4074		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4075		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4076		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4077		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4078		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4079		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4080	}
4081
4082	mutex_destroy(&zfs_write_limit_lock);
4083
4084	buf_fini();
4085
4086	ASSERT(arc_loaned_bytes == 0);
4087
4088	mutex_destroy(&arc_lowmem_lock);
4089#ifdef _KERNEL
4090	if (arc_event_lowmem != NULL)
4091		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4092#endif
4093}
4094
4095/*
4096 * Level 2 ARC
4097 *
4098 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4099 * It uses dedicated storage devices to hold cached data, which are populated
4100 * using large infrequent writes.  The main role of this cache is to boost
4101 * the performance of random read workloads.  The intended L2ARC devices
4102 * include short-stroked disks, solid state disks, and other media with
4103 * substantially faster read latency than disk.
4104 *
4105 *                 +-----------------------+
4106 *                 |         ARC           |
4107 *                 +-----------------------+
4108 *                    |         ^     ^
4109 *                    |         |     |
4110 *      l2arc_feed_thread()    arc_read()
4111 *                    |         |     |
4112 *                    |  l2arc read   |
4113 *                    V         |     |
4114 *               +---------------+    |
4115 *               |     L2ARC     |    |
4116 *               +---------------+    |
4117 *                   |    ^           |
4118 *          l2arc_write() |           |
4119 *                   |    |           |
4120 *                   V    |           |
4121 *                 +-------+      +-------+
4122 *                 | vdev  |      | vdev  |
4123 *                 | cache |      | cache |
4124 *                 +-------+      +-------+
4125 *                 +=========+     .-----.
4126 *                 :  L2ARC  :    |-_____-|
4127 *                 : devices :    | Disks |
4128 *                 +=========+    `-_____-'
4129 *
4130 * Read requests are satisfied from the following sources, in order:
4131 *
4132 *	1) ARC
4133 *	2) vdev cache of L2ARC devices
4134 *	3) L2ARC devices
4135 *	4) vdev cache of disks
4136 *	5) disks
4137 *
4138 * Some L2ARC device types exhibit extremely slow write performance.
4139 * To accommodate for this there are some significant differences between
4140 * the L2ARC and traditional cache design:
4141 *
4142 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4143 * the ARC behave as usual, freeing buffers and placing headers on ghost
4144 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4145 * this would add inflated write latencies for all ARC memory pressure.
4146 *
4147 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4148 * It does this by periodically scanning buffers from the eviction-end of
4149 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4150 * not already there.  It scans until a headroom of buffers is satisfied,
4151 * which itself is a buffer for ARC eviction.  The thread that does this is
4152 * l2arc_feed_thread(), illustrated below; example sizes are included to
4153 * provide a better sense of ratio than this diagram:
4154 *
4155 *	       head -->                        tail
4156 *	        +---------------------+----------+
4157 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4158 *	        +---------------------+----------+   |   o L2ARC eligible
4159 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4160 *	        +---------------------+----------+   |
4161 *	             15.9 Gbytes      ^ 32 Mbytes    |
4162 *	                           headroom          |
4163 *	                                      l2arc_feed_thread()
4164 *	                                             |
4165 *	                 l2arc write hand <--[oooo]--'
4166 *	                         |           8 Mbyte
4167 *	                         |          write max
4168 *	                         V
4169 *		  +==============================+
4170 *	L2ARC dev |####|#|###|###|    |####| ... |
4171 *	          +==============================+
4172 *	                     32 Gbytes
4173 *
4174 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4175 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4176 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4177 * safe to say that this is an uncommon case, since buffers at the end of
4178 * the ARC lists have moved there due to inactivity.
4179 *
4180 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4181 * then the L2ARC simply misses copying some buffers.  This serves as a
4182 * pressure valve to prevent heavy read workloads from both stalling the ARC
4183 * with waits and clogging the L2ARC with writes.  This also helps prevent
4184 * the potential for the L2ARC to churn if it attempts to cache content too
4185 * quickly, such as during backups of the entire pool.
4186 *
4187 * 5. After system boot and before the ARC has filled main memory, there are
4188 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4189 * lists can remain mostly static.  Instead of searching from tail of these
4190 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4191 * for eligible buffers, greatly increasing its chance of finding them.
4192 *
4193 * The L2ARC device write speed is also boosted during this time so that
4194 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4195 * there are no L2ARC reads, and no fear of degrading read performance
4196 * through increased writes.
4197 *
4198 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4199 * the vdev queue can aggregate them into larger and fewer writes.  Each
4200 * device is written to in a rotor fashion, sweeping writes through
4201 * available space then repeating.
4202 *
4203 * 7. The L2ARC does not store dirty content.  It never needs to flush
4204 * write buffers back to disk based storage.
4205 *
4206 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4207 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4208 *
4209 * The performance of the L2ARC can be tweaked by a number of tunables, which
4210 * may be necessary for different workloads:
4211 *
4212 *	l2arc_write_max		max write bytes per interval
4213 *	l2arc_write_boost	extra write bytes during device warmup
4214 *	l2arc_noprefetch	skip caching prefetched buffers
4215 *	l2arc_headroom		number of max device writes to precache
4216 *	l2arc_feed_secs		seconds between L2ARC writing
4217 *
4218 * Tunables may be removed or added as future performance improvements are
4219 * integrated, and also may become zpool properties.
4220 *
4221 * There are three key functions that control how the L2ARC warms up:
4222 *
4223 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4224 *	l2arc_write_size()	calculate how much to write
4225 *	l2arc_write_interval()	calculate sleep delay between writes
4226 *
4227 * These three functions determine what to write, how much, and how quickly
4228 * to send writes.
4229 */
4230
4231static boolean_t
4232l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4233{
4234	/*
4235	 * A buffer is *not* eligible for the L2ARC if it:
4236	 * 1. belongs to a different spa.
4237	 * 2. is already cached on the L2ARC.
4238	 * 3. has an I/O in progress (it may be an incomplete read).
4239	 * 4. is flagged not eligible (zfs property).
4240	 */
4241	if (ab->b_spa != spa_guid) {
4242		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4243		return (B_FALSE);
4244	}
4245	if (ab->b_l2hdr != NULL) {
4246		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4247		return (B_FALSE);
4248	}
4249	if (HDR_IO_IN_PROGRESS(ab)) {
4250		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4251		return (B_FALSE);
4252	}
4253	if (!HDR_L2CACHE(ab)) {
4254		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4255		return (B_FALSE);
4256	}
4257
4258	return (B_TRUE);
4259}
4260
4261static uint64_t
4262l2arc_write_size(l2arc_dev_t *dev)
4263{
4264	uint64_t size;
4265
4266	size = dev->l2ad_write;
4267
4268	if (arc_warm == B_FALSE)
4269		size += dev->l2ad_boost;
4270
4271	return (size);
4272
4273}
4274
4275static clock_t
4276l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4277{
4278	clock_t interval, next, now;
4279
4280	/*
4281	 * If the ARC lists are busy, increase our write rate; if the
4282	 * lists are stale, idle back.  This is achieved by checking
4283	 * how much we previously wrote - if it was more than half of
4284	 * what we wanted, schedule the next write much sooner.
4285	 */
4286	if (l2arc_feed_again && wrote > (wanted / 2))
4287		interval = (hz * l2arc_feed_min_ms) / 1000;
4288	else
4289		interval = hz * l2arc_feed_secs;
4290
4291	now = ddi_get_lbolt();
4292	next = MAX(now, MIN(now + interval, began + interval));
4293
4294	return (next);
4295}
4296
4297static void
4298l2arc_hdr_stat_add(void)
4299{
4300	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4301	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4302}
4303
4304static void
4305l2arc_hdr_stat_remove(void)
4306{
4307	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4308	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4309}
4310
4311/*
4312 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4313 * If a device is returned, this also returns holding the spa config lock.
4314 */
4315static l2arc_dev_t *
4316l2arc_dev_get_next(void)
4317{
4318	l2arc_dev_t *first, *next = NULL;
4319
4320	/*
4321	 * Lock out the removal of spas (spa_namespace_lock), then removal
4322	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4323	 * both locks will be dropped and a spa config lock held instead.
4324	 */
4325	mutex_enter(&spa_namespace_lock);
4326	mutex_enter(&l2arc_dev_mtx);
4327
4328	/* if there are no vdevs, there is nothing to do */
4329	if (l2arc_ndev == 0)
4330		goto out;
4331
4332	first = NULL;
4333	next = l2arc_dev_last;
4334	do {
4335		/* loop around the list looking for a non-faulted vdev */
4336		if (next == NULL) {
4337			next = list_head(l2arc_dev_list);
4338		} else {
4339			next = list_next(l2arc_dev_list, next);
4340			if (next == NULL)
4341				next = list_head(l2arc_dev_list);
4342		}
4343
4344		/* if we have come back to the start, bail out */
4345		if (first == NULL)
4346			first = next;
4347		else if (next == first)
4348			break;
4349
4350	} while (vdev_is_dead(next->l2ad_vdev));
4351
4352	/* if we were unable to find any usable vdevs, return NULL */
4353	if (vdev_is_dead(next->l2ad_vdev))
4354		next = NULL;
4355
4356	l2arc_dev_last = next;
4357
4358out:
4359	mutex_exit(&l2arc_dev_mtx);
4360
4361	/*
4362	 * Grab the config lock to prevent the 'next' device from being
4363	 * removed while we are writing to it.
4364	 */
4365	if (next != NULL)
4366		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4367	mutex_exit(&spa_namespace_lock);
4368
4369	return (next);
4370}
4371
4372/*
4373 * Free buffers that were tagged for destruction.
4374 */
4375static void
4376l2arc_do_free_on_write()
4377{
4378	list_t *buflist;
4379	l2arc_data_free_t *df, *df_prev;
4380
4381	mutex_enter(&l2arc_free_on_write_mtx);
4382	buflist = l2arc_free_on_write;
4383
4384	for (df = list_tail(buflist); df; df = df_prev) {
4385		df_prev = list_prev(buflist, df);
4386		ASSERT(df->l2df_data != NULL);
4387		ASSERT(df->l2df_func != NULL);
4388		df->l2df_func(df->l2df_data, df->l2df_size);
4389		list_remove(buflist, df);
4390		kmem_free(df, sizeof (l2arc_data_free_t));
4391	}
4392
4393	mutex_exit(&l2arc_free_on_write_mtx);
4394}
4395
4396/*
4397 * A write to a cache device has completed.  Update all headers to allow
4398 * reads from these buffers to begin.
4399 */
4400static void
4401l2arc_write_done(zio_t *zio)
4402{
4403	l2arc_write_callback_t *cb;
4404	l2arc_dev_t *dev;
4405	list_t *buflist;
4406	arc_buf_hdr_t *head, *ab, *ab_prev;
4407	l2arc_buf_hdr_t *abl2;
4408	kmutex_t *hash_lock;
4409
4410	cb = zio->io_private;
4411	ASSERT(cb != NULL);
4412	dev = cb->l2wcb_dev;
4413	ASSERT(dev != NULL);
4414	head = cb->l2wcb_head;
4415	ASSERT(head != NULL);
4416	buflist = dev->l2ad_buflist;
4417	ASSERT(buflist != NULL);
4418	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4419	    l2arc_write_callback_t *, cb);
4420
4421	if (zio->io_error != 0)
4422		ARCSTAT_BUMP(arcstat_l2_writes_error);
4423
4424	mutex_enter(&l2arc_buflist_mtx);
4425
4426	/*
4427	 * All writes completed, or an error was hit.
4428	 */
4429	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4430		ab_prev = list_prev(buflist, ab);
4431
4432		hash_lock = HDR_LOCK(ab);
4433		if (!mutex_tryenter(hash_lock)) {
4434			/*
4435			 * This buffer misses out.  It may be in a stage
4436			 * of eviction.  Its ARC_L2_WRITING flag will be
4437			 * left set, denying reads to this buffer.
4438			 */
4439			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4440			continue;
4441		}
4442
4443		if (zio->io_error != 0) {
4444			/*
4445			 * Error - drop L2ARC entry.
4446			 */
4447			list_remove(buflist, ab);
4448			abl2 = ab->b_l2hdr;
4449			ab->b_l2hdr = NULL;
4450			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4451			    ab->b_size);
4452			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4453			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4454		}
4455
4456		/*
4457		 * Allow ARC to begin reads to this L2ARC entry.
4458		 */
4459		ab->b_flags &= ~ARC_L2_WRITING;
4460
4461		mutex_exit(hash_lock);
4462	}
4463
4464	atomic_inc_64(&l2arc_writes_done);
4465	list_remove(buflist, head);
4466	kmem_cache_free(hdr_cache, head);
4467	mutex_exit(&l2arc_buflist_mtx);
4468
4469	l2arc_do_free_on_write();
4470
4471	kmem_free(cb, sizeof (l2arc_write_callback_t));
4472}
4473
4474/*
4475 * A read to a cache device completed.  Validate buffer contents before
4476 * handing over to the regular ARC routines.
4477 */
4478static void
4479l2arc_read_done(zio_t *zio)
4480{
4481	l2arc_read_callback_t *cb;
4482	arc_buf_hdr_t *hdr;
4483	arc_buf_t *buf;
4484	kmutex_t *hash_lock;
4485	int equal;
4486
4487	ASSERT(zio->io_vd != NULL);
4488	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4489
4490	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4491
4492	cb = zio->io_private;
4493	ASSERT(cb != NULL);
4494	buf = cb->l2rcb_buf;
4495	ASSERT(buf != NULL);
4496
4497	hash_lock = HDR_LOCK(buf->b_hdr);
4498	mutex_enter(hash_lock);
4499	hdr = buf->b_hdr;
4500	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4501
4502	/*
4503	 * Check this survived the L2ARC journey.
4504	 */
4505	equal = arc_cksum_equal(buf);
4506	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4507		mutex_exit(hash_lock);
4508		zio->io_private = buf;
4509		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4510		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4511		arc_read_done(zio);
4512	} else {
4513		mutex_exit(hash_lock);
4514		/*
4515		 * Buffer didn't survive caching.  Increment stats and
4516		 * reissue to the original storage device.
4517		 */
4518		if (zio->io_error != 0) {
4519			ARCSTAT_BUMP(arcstat_l2_io_error);
4520		} else {
4521			zio->io_error = EIO;
4522		}
4523		if (!equal)
4524			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4525
4526		/*
4527		 * If there's no waiter, issue an async i/o to the primary
4528		 * storage now.  If there *is* a waiter, the caller must
4529		 * issue the i/o in a context where it's OK to block.
4530		 */
4531		if (zio->io_waiter == NULL) {
4532			zio_t *pio = zio_unique_parent(zio);
4533
4534			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4535
4536			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4537			    buf->b_data, zio->io_size, arc_read_done, buf,
4538			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4539		}
4540	}
4541
4542	kmem_free(cb, sizeof (l2arc_read_callback_t));
4543}
4544
4545/*
4546 * This is the list priority from which the L2ARC will search for pages to
4547 * cache.  This is used within loops (0..3) to cycle through lists in the
4548 * desired order.  This order can have a significant effect on cache
4549 * performance.
4550 *
4551 * Currently the metadata lists are hit first, MFU then MRU, followed by
4552 * the data lists.  This function returns a locked list, and also returns
4553 * the lock pointer.
4554 */
4555static list_t *
4556l2arc_list_locked(int list_num, kmutex_t **lock)
4557{
4558	list_t *list = NULL;
4559	int idx;
4560
4561	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4562
4563	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4564		idx = list_num;
4565		list = &arc_mfu->arcs_lists[idx];
4566		*lock = ARCS_LOCK(arc_mfu, idx);
4567	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4568		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4569		list = &arc_mru->arcs_lists[idx];
4570		*lock = ARCS_LOCK(arc_mru, idx);
4571	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4572		ARC_BUFC_NUMDATALISTS)) {
4573		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4574		list = &arc_mfu->arcs_lists[idx];
4575		*lock = ARCS_LOCK(arc_mfu, idx);
4576	} else {
4577		idx = list_num - ARC_BUFC_NUMLISTS;
4578		list = &arc_mru->arcs_lists[idx];
4579		*lock = ARCS_LOCK(arc_mru, idx);
4580	}
4581
4582	ASSERT(!(MUTEX_HELD(*lock)));
4583	mutex_enter(*lock);
4584	return (list);
4585}
4586
4587/*
4588 * Evict buffers from the device write hand to the distance specified in
4589 * bytes.  This distance may span populated buffers, it may span nothing.
4590 * This is clearing a region on the L2ARC device ready for writing.
4591 * If the 'all' boolean is set, every buffer is evicted.
4592 */
4593static void
4594l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4595{
4596	list_t *buflist;
4597	l2arc_buf_hdr_t *abl2;
4598	arc_buf_hdr_t *ab, *ab_prev;
4599	kmutex_t *hash_lock;
4600	uint64_t taddr;
4601
4602	buflist = dev->l2ad_buflist;
4603
4604	if (buflist == NULL)
4605		return;
4606
4607	if (!all && dev->l2ad_first) {
4608		/*
4609		 * This is the first sweep through the device.  There is
4610		 * nothing to evict.
4611		 */
4612		return;
4613	}
4614
4615	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4616		/*
4617		 * When nearing the end of the device, evict to the end
4618		 * before the device write hand jumps to the start.
4619		 */
4620		taddr = dev->l2ad_end;
4621	} else {
4622		taddr = dev->l2ad_hand + distance;
4623	}
4624	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4625	    uint64_t, taddr, boolean_t, all);
4626
4627top:
4628	mutex_enter(&l2arc_buflist_mtx);
4629	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4630		ab_prev = list_prev(buflist, ab);
4631
4632		hash_lock = HDR_LOCK(ab);
4633		if (!mutex_tryenter(hash_lock)) {
4634			/*
4635			 * Missed the hash lock.  Retry.
4636			 */
4637			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4638			mutex_exit(&l2arc_buflist_mtx);
4639			mutex_enter(hash_lock);
4640			mutex_exit(hash_lock);
4641			goto top;
4642		}
4643
4644		if (HDR_L2_WRITE_HEAD(ab)) {
4645			/*
4646			 * We hit a write head node.  Leave it for
4647			 * l2arc_write_done().
4648			 */
4649			list_remove(buflist, ab);
4650			mutex_exit(hash_lock);
4651			continue;
4652		}
4653
4654		if (!all && ab->b_l2hdr != NULL &&
4655		    (ab->b_l2hdr->b_daddr > taddr ||
4656		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4657			/*
4658			 * We've evicted to the target address,
4659			 * or the end of the device.
4660			 */
4661			mutex_exit(hash_lock);
4662			break;
4663		}
4664
4665		if (HDR_FREE_IN_PROGRESS(ab)) {
4666			/*
4667			 * Already on the path to destruction.
4668			 */
4669			mutex_exit(hash_lock);
4670			continue;
4671		}
4672
4673		if (ab->b_state == arc_l2c_only) {
4674			ASSERT(!HDR_L2_READING(ab));
4675			/*
4676			 * This doesn't exist in the ARC.  Destroy.
4677			 * arc_hdr_destroy() will call list_remove()
4678			 * and decrement arcstat_l2_size.
4679			 */
4680			arc_change_state(arc_anon, ab, hash_lock);
4681			arc_hdr_destroy(ab);
4682		} else {
4683			/*
4684			 * Invalidate issued or about to be issued
4685			 * reads, since we may be about to write
4686			 * over this location.
4687			 */
4688			if (HDR_L2_READING(ab)) {
4689				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4690				ab->b_flags |= ARC_L2_EVICTED;
4691			}
4692
4693			/*
4694			 * Tell ARC this no longer exists in L2ARC.
4695			 */
4696			if (ab->b_l2hdr != NULL) {
4697				abl2 = ab->b_l2hdr;
4698				ab->b_l2hdr = NULL;
4699				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4700				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4701			}
4702			list_remove(buflist, ab);
4703
4704			/*
4705			 * This may have been leftover after a
4706			 * failed write.
4707			 */
4708			ab->b_flags &= ~ARC_L2_WRITING;
4709		}
4710		mutex_exit(hash_lock);
4711	}
4712	mutex_exit(&l2arc_buflist_mtx);
4713
4714	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4715	dev->l2ad_evict = taddr;
4716}
4717
4718/*
4719 * Find and write ARC buffers to the L2ARC device.
4720 *
4721 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4722 * for reading until they have completed writing.
4723 */
4724static uint64_t
4725l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4726{
4727	arc_buf_hdr_t *ab, *ab_prev, *head;
4728	l2arc_buf_hdr_t *hdrl2;
4729	list_t *list;
4730	uint64_t passed_sz, write_sz, buf_sz, headroom;
4731	void *buf_data;
4732	kmutex_t *hash_lock, *list_lock;
4733	boolean_t have_lock, full;
4734	l2arc_write_callback_t *cb;
4735	zio_t *pio, *wzio;
4736	uint64_t guid = spa_load_guid(spa);
4737	int try;
4738
4739	ASSERT(dev->l2ad_vdev != NULL);
4740
4741	pio = NULL;
4742	write_sz = 0;
4743	full = B_FALSE;
4744	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4745	head->b_flags |= ARC_L2_WRITE_HEAD;
4746
4747	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4748	/*
4749	 * Copy buffers for L2ARC writing.
4750	 */
4751	mutex_enter(&l2arc_buflist_mtx);
4752	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4753		list = l2arc_list_locked(try, &list_lock);
4754		passed_sz = 0;
4755		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4756
4757		/*
4758		 * L2ARC fast warmup.
4759		 *
4760		 * Until the ARC is warm and starts to evict, read from the
4761		 * head of the ARC lists rather than the tail.
4762		 */
4763		headroom = target_sz * l2arc_headroom;
4764		if (arc_warm == B_FALSE)
4765			ab = list_head(list);
4766		else
4767			ab = list_tail(list);
4768		if (ab == NULL)
4769			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4770
4771		for (; ab; ab = ab_prev) {
4772			if (arc_warm == B_FALSE)
4773				ab_prev = list_next(list, ab);
4774			else
4775				ab_prev = list_prev(list, ab);
4776			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
4777
4778			hash_lock = HDR_LOCK(ab);
4779			have_lock = MUTEX_HELD(hash_lock);
4780			if (!have_lock && !mutex_tryenter(hash_lock)) {
4781				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
4782				/*
4783				 * Skip this buffer rather than waiting.
4784				 */
4785				continue;
4786			}
4787
4788			passed_sz += ab->b_size;
4789			if (passed_sz > headroom) {
4790				/*
4791				 * Searched too far.
4792				 */
4793				mutex_exit(hash_lock);
4794				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
4795				break;
4796			}
4797
4798			if (!l2arc_write_eligible(guid, ab)) {
4799				mutex_exit(hash_lock);
4800				continue;
4801			}
4802
4803			if ((write_sz + ab->b_size) > target_sz) {
4804				full = B_TRUE;
4805				mutex_exit(hash_lock);
4806				ARCSTAT_BUMP(arcstat_l2_write_full);
4807				break;
4808			}
4809
4810			if (pio == NULL) {
4811				/*
4812				 * Insert a dummy header on the buflist so
4813				 * l2arc_write_done() can find where the
4814				 * write buffers begin without searching.
4815				 */
4816				list_insert_head(dev->l2ad_buflist, head);
4817
4818				cb = kmem_alloc(
4819				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4820				cb->l2wcb_dev = dev;
4821				cb->l2wcb_head = head;
4822				pio = zio_root(spa, l2arc_write_done, cb,
4823				    ZIO_FLAG_CANFAIL);
4824				ARCSTAT_BUMP(arcstat_l2_write_pios);
4825			}
4826
4827			/*
4828			 * Create and add a new L2ARC header.
4829			 */
4830			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4831			hdrl2->b_dev = dev;
4832			hdrl2->b_daddr = dev->l2ad_hand;
4833
4834			ab->b_flags |= ARC_L2_WRITING;
4835			ab->b_l2hdr = hdrl2;
4836			list_insert_head(dev->l2ad_buflist, ab);
4837			buf_data = ab->b_buf->b_data;
4838			buf_sz = ab->b_size;
4839
4840			/*
4841			 * Compute and store the buffer cksum before
4842			 * writing.  On debug the cksum is verified first.
4843			 */
4844			arc_cksum_verify(ab->b_buf);
4845			arc_cksum_compute(ab->b_buf, B_TRUE);
4846
4847			mutex_exit(hash_lock);
4848
4849			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4850			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4851			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4852			    ZIO_FLAG_CANFAIL, B_FALSE);
4853
4854			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4855			    zio_t *, wzio);
4856			(void) zio_nowait(wzio);
4857
4858			/*
4859			 * Keep the clock hand suitably device-aligned.
4860			 */
4861			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4862
4863			write_sz += buf_sz;
4864			dev->l2ad_hand += buf_sz;
4865		}
4866
4867		mutex_exit(list_lock);
4868
4869		if (full == B_TRUE)
4870			break;
4871	}
4872	mutex_exit(&l2arc_buflist_mtx);
4873
4874	if (pio == NULL) {
4875		ASSERT0(write_sz);
4876		kmem_cache_free(hdr_cache, head);
4877		return (0);
4878	}
4879
4880	ASSERT3U(write_sz, <=, target_sz);
4881	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4882	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4883	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4884	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4885
4886	/*
4887	 * Bump device hand to the device start if it is approaching the end.
4888	 * l2arc_evict() will already have evicted ahead for this case.
4889	 */
4890	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4891		vdev_space_update(dev->l2ad_vdev,
4892		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4893		dev->l2ad_hand = dev->l2ad_start;
4894		dev->l2ad_evict = dev->l2ad_start;
4895		dev->l2ad_first = B_FALSE;
4896	}
4897
4898	dev->l2ad_writing = B_TRUE;
4899	(void) zio_wait(pio);
4900	dev->l2ad_writing = B_FALSE;
4901
4902	return (write_sz);
4903}
4904
4905/*
4906 * This thread feeds the L2ARC at regular intervals.  This is the beating
4907 * heart of the L2ARC.
4908 */
4909static void
4910l2arc_feed_thread(void *dummy __unused)
4911{
4912	callb_cpr_t cpr;
4913	l2arc_dev_t *dev;
4914	spa_t *spa;
4915	uint64_t size, wrote;
4916	clock_t begin, next = ddi_get_lbolt();
4917
4918	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4919
4920	mutex_enter(&l2arc_feed_thr_lock);
4921
4922	while (l2arc_thread_exit == 0) {
4923		CALLB_CPR_SAFE_BEGIN(&cpr);
4924		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4925		    next - ddi_get_lbolt());
4926		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4927		next = ddi_get_lbolt() + hz;
4928
4929		/*
4930		 * Quick check for L2ARC devices.
4931		 */
4932		mutex_enter(&l2arc_dev_mtx);
4933		if (l2arc_ndev == 0) {
4934			mutex_exit(&l2arc_dev_mtx);
4935			continue;
4936		}
4937		mutex_exit(&l2arc_dev_mtx);
4938		begin = ddi_get_lbolt();
4939
4940		/*
4941		 * This selects the next l2arc device to write to, and in
4942		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4943		 * will return NULL if there are now no l2arc devices or if
4944		 * they are all faulted.
4945		 *
4946		 * If a device is returned, its spa's config lock is also
4947		 * held to prevent device removal.  l2arc_dev_get_next()
4948		 * will grab and release l2arc_dev_mtx.
4949		 */
4950		if ((dev = l2arc_dev_get_next()) == NULL)
4951			continue;
4952
4953		spa = dev->l2ad_spa;
4954		ASSERT(spa != NULL);
4955
4956		/*
4957		 * If the pool is read-only then force the feed thread to
4958		 * sleep a little longer.
4959		 */
4960		if (!spa_writeable(spa)) {
4961			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4962			spa_config_exit(spa, SCL_L2ARC, dev);
4963			continue;
4964		}
4965
4966		/*
4967		 * Avoid contributing to memory pressure.
4968		 */
4969		if (arc_reclaim_needed()) {
4970			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4971			spa_config_exit(spa, SCL_L2ARC, dev);
4972			continue;
4973		}
4974
4975		ARCSTAT_BUMP(arcstat_l2_feeds);
4976
4977		size = l2arc_write_size(dev);
4978
4979		/*
4980		 * Evict L2ARC buffers that will be overwritten.
4981		 */
4982		l2arc_evict(dev, size, B_FALSE);
4983
4984		/*
4985		 * Write ARC buffers.
4986		 */
4987		wrote = l2arc_write_buffers(spa, dev, size);
4988
4989		/*
4990		 * Calculate interval between writes.
4991		 */
4992		next = l2arc_write_interval(begin, size, wrote);
4993		spa_config_exit(spa, SCL_L2ARC, dev);
4994	}
4995
4996	l2arc_thread_exit = 0;
4997	cv_broadcast(&l2arc_feed_thr_cv);
4998	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4999	thread_exit();
5000}
5001
5002boolean_t
5003l2arc_vdev_present(vdev_t *vd)
5004{
5005	l2arc_dev_t *dev;
5006
5007	mutex_enter(&l2arc_dev_mtx);
5008	for (dev = list_head(l2arc_dev_list); dev != NULL;
5009	    dev = list_next(l2arc_dev_list, dev)) {
5010		if (dev->l2ad_vdev == vd)
5011			break;
5012	}
5013	mutex_exit(&l2arc_dev_mtx);
5014
5015	return (dev != NULL);
5016}
5017
5018/*
5019 * Add a vdev for use by the L2ARC.  By this point the spa has already
5020 * validated the vdev and opened it.
5021 */
5022void
5023l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5024{
5025	l2arc_dev_t *adddev;
5026
5027	ASSERT(!l2arc_vdev_present(vd));
5028
5029	/*
5030	 * Create a new l2arc device entry.
5031	 */
5032	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5033	adddev->l2ad_spa = spa;
5034	adddev->l2ad_vdev = vd;
5035	adddev->l2ad_write = l2arc_write_max;
5036	adddev->l2ad_boost = l2arc_write_boost;
5037	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5038	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5039	adddev->l2ad_hand = adddev->l2ad_start;
5040	adddev->l2ad_evict = adddev->l2ad_start;
5041	adddev->l2ad_first = B_TRUE;
5042	adddev->l2ad_writing = B_FALSE;
5043	ASSERT3U(adddev->l2ad_write, >, 0);
5044
5045	/*
5046	 * This is a list of all ARC buffers that are still valid on the
5047	 * device.
5048	 */
5049	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5050	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5051	    offsetof(arc_buf_hdr_t, b_l2node));
5052
5053	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5054
5055	/*
5056	 * Add device to global list
5057	 */
5058	mutex_enter(&l2arc_dev_mtx);
5059	list_insert_head(l2arc_dev_list, adddev);
5060	atomic_inc_64(&l2arc_ndev);
5061	mutex_exit(&l2arc_dev_mtx);
5062}
5063
5064/*
5065 * Remove a vdev from the L2ARC.
5066 */
5067void
5068l2arc_remove_vdev(vdev_t *vd)
5069{
5070	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5071
5072	/*
5073	 * Find the device by vdev
5074	 */
5075	mutex_enter(&l2arc_dev_mtx);
5076	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5077		nextdev = list_next(l2arc_dev_list, dev);
5078		if (vd == dev->l2ad_vdev) {
5079			remdev = dev;
5080			break;
5081		}
5082	}
5083	ASSERT(remdev != NULL);
5084
5085	/*
5086	 * Remove device from global list
5087	 */
5088	list_remove(l2arc_dev_list, remdev);
5089	l2arc_dev_last = NULL;		/* may have been invalidated */
5090	atomic_dec_64(&l2arc_ndev);
5091	mutex_exit(&l2arc_dev_mtx);
5092
5093	/*
5094	 * Clear all buflists and ARC references.  L2ARC device flush.
5095	 */
5096	l2arc_evict(remdev, 0, B_TRUE);
5097	list_destroy(remdev->l2ad_buflist);
5098	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5099	kmem_free(remdev, sizeof (l2arc_dev_t));
5100}
5101
5102void
5103l2arc_init(void)
5104{
5105	l2arc_thread_exit = 0;
5106	l2arc_ndev = 0;
5107	l2arc_writes_sent = 0;
5108	l2arc_writes_done = 0;
5109
5110	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5111	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5112	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5113	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5114	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5115
5116	l2arc_dev_list = &L2ARC_dev_list;
5117	l2arc_free_on_write = &L2ARC_free_on_write;
5118	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5119	    offsetof(l2arc_dev_t, l2ad_node));
5120	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5121	    offsetof(l2arc_data_free_t, l2df_list_node));
5122}
5123
5124void
5125l2arc_fini(void)
5126{
5127	/*
5128	 * This is called from dmu_fini(), which is called from spa_fini();
5129	 * Because of this, we can assume that all l2arc devices have
5130	 * already been removed when the pools themselves were removed.
5131	 */
5132
5133	l2arc_do_free_on_write();
5134
5135	mutex_destroy(&l2arc_feed_thr_lock);
5136	cv_destroy(&l2arc_feed_thr_cv);
5137	mutex_destroy(&l2arc_dev_mtx);
5138	mutex_destroy(&l2arc_buflist_mtx);
5139	mutex_destroy(&l2arc_free_on_write_mtx);
5140
5141	list_destroy(l2arc_dev_list);
5142	list_destroy(l2arc_free_on_write);
5143}
5144
5145void
5146l2arc_start(void)
5147{
5148	if (!(spa_mode_global & FWRITE))
5149		return;
5150
5151	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5152	    TS_RUN, minclsyspri);
5153}
5154
5155void
5156l2arc_stop(void)
5157{
5158	if (!(spa_mode_global & FWRITE))
5159		return;
5160
5161	mutex_enter(&l2arc_feed_thr_lock);
5162	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5163	l2arc_thread_exit = 1;
5164	while (l2arc_thread_exit != 0)
5165		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5166	mutex_exit(&l2arc_feed_thr_lock);
5167}
5168