arc.c revision 240415
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
25 */
26
27/*
28 * DVA-based Adjustable Replacement Cache
29 *
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
34 *
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory.  This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about.  Our cache is not so simple.  At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them.  Blocks are only evictable
42 * when there are no external references active.  This makes
43 * eviction far more problematic:  we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
45 *
46 * There are times when it is not possible to evict the requested
47 * space.  In these circumstances we are unable to adjust the cache
48 * size.  To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
51 *
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss.  Our model has a variable sized cache.  It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
58 *
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size.  So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict.  In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes).  We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
67 *
68 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
70 */
71
72/*
73 * The locking model:
74 *
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists.  The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2.  We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
82 *
83 * Buffers do not have their own mutexs, rather they rely on the
84 * hash table mutexs for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexs).
86 *
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table.  It returns
89 * NULL for the mutex if the buffer was not in the table.
90 *
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
93 *
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state.  When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock.  Also note that
98 * the active state mutex must be held before the ghost state mutex.
99 *
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()).  Note however that the data associated
103 * with the buffer may be evicted prior to the callback.  The callback
104 * must be made with *no locks held* (to prevent deadlock).  Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
108 *
109 * Note that the majority of the performance stats are manipulated
110 * with atomic operations.
111 *
112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113 *
114 *	- L2ARC buflist creation
115 *	- L2ARC buflist eviction
116 *	- L2ARC write completion, which walks L2ARC buflists
117 *	- ARC header destruction, as it removes from L2ARC buflists
118 *	- ARC header release, as it removes from L2ARC buflists
119 */
120
121#include <sys/spa.h>
122#include <sys/zio.h>
123#include <sys/zfs_context.h>
124#include <sys/arc.h>
125#include <sys/refcount.h>
126#include <sys/vdev.h>
127#include <sys/vdev_impl.h>
128#ifdef _KERNEL
129#include <sys/dnlc.h>
130#endif
131#include <sys/callb.h>
132#include <sys/kstat.h>
133#include <zfs_fletcher.h>
134#include <sys/sdt.h>
135
136#include <vm/vm_pageout.h>
137
138#ifdef illumos
139#ifndef _KERNEL
140/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
141boolean_t arc_watch = B_FALSE;
142int arc_procfd;
143#endif
144#endif /* illumos */
145
146static kmutex_t		arc_reclaim_thr_lock;
147static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
148static uint8_t		arc_thread_exit;
149
150extern int zfs_write_limit_shift;
151extern uint64_t zfs_write_limit_max;
152extern kmutex_t zfs_write_limit_lock;
153
154#define	ARC_REDUCE_DNLC_PERCENT	3
155uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
156
157typedef enum arc_reclaim_strategy {
158	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
159	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
160} arc_reclaim_strategy_t;
161
162/* number of seconds before growing cache again */
163static int		arc_grow_retry = 60;
164
165/* shift of arc_c for calculating both min and max arc_p */
166static int		arc_p_min_shift = 4;
167
168/* log2(fraction of arc to reclaim) */
169static int		arc_shrink_shift = 5;
170
171/*
172 * minimum lifespan of a prefetch block in clock ticks
173 * (initialized in arc_init())
174 */
175static int		arc_min_prefetch_lifespan;
176
177static int arc_dead;
178extern int zfs_prefetch_disable;
179
180/*
181 * The arc has filled available memory and has now warmed up.
182 */
183static boolean_t arc_warm;
184
185/*
186 * These tunables are for performance analysis.
187 */
188uint64_t zfs_arc_max;
189uint64_t zfs_arc_min;
190uint64_t zfs_arc_meta_limit = 0;
191int zfs_arc_grow_retry = 0;
192int zfs_arc_shrink_shift = 0;
193int zfs_arc_p_min_shift = 0;
194
195TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
196TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
197TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
198SYSCTL_DECL(_vfs_zfs);
199SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
200    "Maximum ARC size");
201SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
202    "Minimum ARC size");
203
204/*
205 * Note that buffers can be in one of 6 states:
206 *	ARC_anon	- anonymous (discussed below)
207 *	ARC_mru		- recently used, currently cached
208 *	ARC_mru_ghost	- recentely used, no longer in cache
209 *	ARC_mfu		- frequently used, currently cached
210 *	ARC_mfu_ghost	- frequently used, no longer in cache
211 *	ARC_l2c_only	- exists in L2ARC but not other states
212 * When there are no active references to the buffer, they are
213 * are linked onto a list in one of these arc states.  These are
214 * the only buffers that can be evicted or deleted.  Within each
215 * state there are multiple lists, one for meta-data and one for
216 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
217 * etc.) is tracked separately so that it can be managed more
218 * explicitly: favored over data, limited explicitly.
219 *
220 * Anonymous buffers are buffers that are not associated with
221 * a DVA.  These are buffers that hold dirty block copies
222 * before they are written to stable storage.  By definition,
223 * they are "ref'd" and are considered part of arc_mru
224 * that cannot be freed.  Generally, they will aquire a DVA
225 * as they are written and migrate onto the arc_mru list.
226 *
227 * The ARC_l2c_only state is for buffers that are in the second
228 * level ARC but no longer in any of the ARC_m* lists.  The second
229 * level ARC itself may also contain buffers that are in any of
230 * the ARC_m* states - meaning that a buffer can exist in two
231 * places.  The reason for the ARC_l2c_only state is to keep the
232 * buffer header in the hash table, so that reads that hit the
233 * second level ARC benefit from these fast lookups.
234 */
235
236#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
237struct arcs_lock {
238	kmutex_t	arcs_lock;
239#ifdef _KERNEL
240	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
241#endif
242};
243
244/*
245 * must be power of two for mask use to work
246 *
247 */
248#define ARC_BUFC_NUMDATALISTS		16
249#define ARC_BUFC_NUMMETADATALISTS	16
250#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
251
252typedef struct arc_state {
253	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
254	uint64_t arcs_size;	/* total amount of data in this state */
255	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
256	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
257} arc_state_t;
258
259#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
260
261/* The 6 states: */
262static arc_state_t ARC_anon;
263static arc_state_t ARC_mru;
264static arc_state_t ARC_mru_ghost;
265static arc_state_t ARC_mfu;
266static arc_state_t ARC_mfu_ghost;
267static arc_state_t ARC_l2c_only;
268
269typedef struct arc_stats {
270	kstat_named_t arcstat_hits;
271	kstat_named_t arcstat_misses;
272	kstat_named_t arcstat_demand_data_hits;
273	kstat_named_t arcstat_demand_data_misses;
274	kstat_named_t arcstat_demand_metadata_hits;
275	kstat_named_t arcstat_demand_metadata_misses;
276	kstat_named_t arcstat_prefetch_data_hits;
277	kstat_named_t arcstat_prefetch_data_misses;
278	kstat_named_t arcstat_prefetch_metadata_hits;
279	kstat_named_t arcstat_prefetch_metadata_misses;
280	kstat_named_t arcstat_mru_hits;
281	kstat_named_t arcstat_mru_ghost_hits;
282	kstat_named_t arcstat_mfu_hits;
283	kstat_named_t arcstat_mfu_ghost_hits;
284	kstat_named_t arcstat_allocated;
285	kstat_named_t arcstat_deleted;
286	kstat_named_t arcstat_stolen;
287	kstat_named_t arcstat_recycle_miss;
288	kstat_named_t arcstat_mutex_miss;
289	kstat_named_t arcstat_evict_skip;
290	kstat_named_t arcstat_evict_l2_cached;
291	kstat_named_t arcstat_evict_l2_eligible;
292	kstat_named_t arcstat_evict_l2_ineligible;
293	kstat_named_t arcstat_hash_elements;
294	kstat_named_t arcstat_hash_elements_max;
295	kstat_named_t arcstat_hash_collisions;
296	kstat_named_t arcstat_hash_chains;
297	kstat_named_t arcstat_hash_chain_max;
298	kstat_named_t arcstat_p;
299	kstat_named_t arcstat_c;
300	kstat_named_t arcstat_c_min;
301	kstat_named_t arcstat_c_max;
302	kstat_named_t arcstat_size;
303	kstat_named_t arcstat_hdr_size;
304	kstat_named_t arcstat_data_size;
305	kstat_named_t arcstat_other_size;
306	kstat_named_t arcstat_l2_hits;
307	kstat_named_t arcstat_l2_misses;
308	kstat_named_t arcstat_l2_feeds;
309	kstat_named_t arcstat_l2_rw_clash;
310	kstat_named_t arcstat_l2_read_bytes;
311	kstat_named_t arcstat_l2_write_bytes;
312	kstat_named_t arcstat_l2_writes_sent;
313	kstat_named_t arcstat_l2_writes_done;
314	kstat_named_t arcstat_l2_writes_error;
315	kstat_named_t arcstat_l2_writes_hdr_miss;
316	kstat_named_t arcstat_l2_evict_lock_retry;
317	kstat_named_t arcstat_l2_evict_reading;
318	kstat_named_t arcstat_l2_free_on_write;
319	kstat_named_t arcstat_l2_abort_lowmem;
320	kstat_named_t arcstat_l2_cksum_bad;
321	kstat_named_t arcstat_l2_io_error;
322	kstat_named_t arcstat_l2_size;
323	kstat_named_t arcstat_l2_hdr_size;
324	kstat_named_t arcstat_memory_throttle_count;
325	kstat_named_t arcstat_l2_write_trylock_fail;
326	kstat_named_t arcstat_l2_write_passed_headroom;
327	kstat_named_t arcstat_l2_write_spa_mismatch;
328	kstat_named_t arcstat_l2_write_in_l2;
329	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
330	kstat_named_t arcstat_l2_write_not_cacheable;
331	kstat_named_t arcstat_l2_write_full;
332	kstat_named_t arcstat_l2_write_buffer_iter;
333	kstat_named_t arcstat_l2_write_pios;
334	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
335	kstat_named_t arcstat_l2_write_buffer_list_iter;
336	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
337} arc_stats_t;
338
339static arc_stats_t arc_stats = {
340	{ "hits",			KSTAT_DATA_UINT64 },
341	{ "misses",			KSTAT_DATA_UINT64 },
342	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
343	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
344	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
345	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
346	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
347	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
348	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
349	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
350	{ "mru_hits",			KSTAT_DATA_UINT64 },
351	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
352	{ "mfu_hits",			KSTAT_DATA_UINT64 },
353	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
354	{ "allocated",			KSTAT_DATA_UINT64 },
355	{ "deleted",			KSTAT_DATA_UINT64 },
356	{ "stolen",			KSTAT_DATA_UINT64 },
357	{ "recycle_miss",		KSTAT_DATA_UINT64 },
358	{ "mutex_miss",			KSTAT_DATA_UINT64 },
359	{ "evict_skip",			KSTAT_DATA_UINT64 },
360	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
361	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
362	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
363	{ "hash_elements",		KSTAT_DATA_UINT64 },
364	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
365	{ "hash_collisions",		KSTAT_DATA_UINT64 },
366	{ "hash_chains",		KSTAT_DATA_UINT64 },
367	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
368	{ "p",				KSTAT_DATA_UINT64 },
369	{ "c",				KSTAT_DATA_UINT64 },
370	{ "c_min",			KSTAT_DATA_UINT64 },
371	{ "c_max",			KSTAT_DATA_UINT64 },
372	{ "size",			KSTAT_DATA_UINT64 },
373	{ "hdr_size",			KSTAT_DATA_UINT64 },
374	{ "data_size",			KSTAT_DATA_UINT64 },
375	{ "other_size",			KSTAT_DATA_UINT64 },
376	{ "l2_hits",			KSTAT_DATA_UINT64 },
377	{ "l2_misses",			KSTAT_DATA_UINT64 },
378	{ "l2_feeds",			KSTAT_DATA_UINT64 },
379	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
380	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
381	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
382	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
383	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
384	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
385	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
386	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
387	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
388	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
389	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
390	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
391	{ "l2_io_error",		KSTAT_DATA_UINT64 },
392	{ "l2_size",			KSTAT_DATA_UINT64 },
393	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
394	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
395	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
396	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
397	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
398	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
399	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
400	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
401	{ "l2_write_full",		KSTAT_DATA_UINT64 },
402	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
403	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
404	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
405	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
406	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 }
407};
408
409#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
410
411#define	ARCSTAT_INCR(stat, val) \
412	atomic_add_64(&arc_stats.stat.value.ui64, (val));
413
414#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
415#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
416
417#define	ARCSTAT_MAX(stat, val) {					\
418	uint64_t m;							\
419	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
420	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
421		continue;						\
422}
423
424#define	ARCSTAT_MAXSTAT(stat) \
425	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
426
427/*
428 * We define a macro to allow ARC hits/misses to be easily broken down by
429 * two separate conditions, giving a total of four different subtypes for
430 * each of hits and misses (so eight statistics total).
431 */
432#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
433	if (cond1) {							\
434		if (cond2) {						\
435			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
436		} else {						\
437			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
438		}							\
439	} else {							\
440		if (cond2) {						\
441			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
442		} else {						\
443			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
444		}							\
445	}
446
447kstat_t			*arc_ksp;
448static arc_state_t	*arc_anon;
449static arc_state_t	*arc_mru;
450static arc_state_t	*arc_mru_ghost;
451static arc_state_t	*arc_mfu;
452static arc_state_t	*arc_mfu_ghost;
453static arc_state_t	*arc_l2c_only;
454
455/*
456 * There are several ARC variables that are critical to export as kstats --
457 * but we don't want to have to grovel around in the kstat whenever we wish to
458 * manipulate them.  For these variables, we therefore define them to be in
459 * terms of the statistic variable.  This assures that we are not introducing
460 * the possibility of inconsistency by having shadow copies of the variables,
461 * while still allowing the code to be readable.
462 */
463#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
464#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
465#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
466#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
467#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
468
469static int		arc_no_grow;	/* Don't try to grow cache size */
470static uint64_t		arc_tempreserve;
471static uint64_t		arc_loaned_bytes;
472static uint64_t		arc_meta_used;
473static uint64_t		arc_meta_limit;
474static uint64_t		arc_meta_max = 0;
475SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RD, &arc_meta_used, 0,
476    "ARC metadata used");
477SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RW, &arc_meta_limit, 0,
478    "ARC metadata limit");
479
480typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
481
482typedef struct arc_callback arc_callback_t;
483
484struct arc_callback {
485	void			*acb_private;
486	arc_done_func_t		*acb_done;
487	arc_buf_t		*acb_buf;
488	zio_t			*acb_zio_dummy;
489	arc_callback_t		*acb_next;
490};
491
492typedef struct arc_write_callback arc_write_callback_t;
493
494struct arc_write_callback {
495	void		*awcb_private;
496	arc_done_func_t	*awcb_ready;
497	arc_done_func_t	*awcb_done;
498	arc_buf_t	*awcb_buf;
499};
500
501struct arc_buf_hdr {
502	/* protected by hash lock */
503	dva_t			b_dva;
504	uint64_t		b_birth;
505	uint64_t		b_cksum0;
506
507	kmutex_t		b_freeze_lock;
508	zio_cksum_t		*b_freeze_cksum;
509	void			*b_thawed;
510
511	arc_buf_hdr_t		*b_hash_next;
512	arc_buf_t		*b_buf;
513	uint32_t		b_flags;
514	uint32_t		b_datacnt;
515
516	arc_callback_t		*b_acb;
517	kcondvar_t		b_cv;
518
519	/* immutable */
520	arc_buf_contents_t	b_type;
521	uint64_t		b_size;
522	uint64_t		b_spa;
523
524	/* protected by arc state mutex */
525	arc_state_t		*b_state;
526	list_node_t		b_arc_node;
527
528	/* updated atomically */
529	clock_t			b_arc_access;
530
531	/* self protecting */
532	refcount_t		b_refcnt;
533
534	l2arc_buf_hdr_t		*b_l2hdr;
535	list_node_t		b_l2node;
536};
537
538static arc_buf_t *arc_eviction_list;
539static kmutex_t arc_eviction_mtx;
540static arc_buf_hdr_t arc_eviction_hdr;
541static void arc_get_data_buf(arc_buf_t *buf);
542static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
543static int arc_evict_needed(arc_buf_contents_t type);
544static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
545#ifdef illumos
546static void arc_buf_watch(arc_buf_t *buf);
547#endif /* illumos */
548
549static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
550
551#define	GHOST_STATE(state)	\
552	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
553	(state) == arc_l2c_only)
554
555/*
556 * Private ARC flags.  These flags are private ARC only flags that will show up
557 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
558 * be passed in as arc_flags in things like arc_read.  However, these flags
559 * should never be passed and should only be set by ARC code.  When adding new
560 * public flags, make sure not to smash the private ones.
561 */
562
563#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
564#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
565#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
566#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
567#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
568#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
569#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
570#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
571#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
572#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
573
574#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
575#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
576#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
577#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
578#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
579#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
580#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
581#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
582#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
583				    (hdr)->b_l2hdr != NULL)
584#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
585#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
586#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
587
588/*
589 * Other sizes
590 */
591
592#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
593#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
594
595/*
596 * Hash table routines
597 */
598
599#define	HT_LOCK_PAD	CACHE_LINE_SIZE
600
601struct ht_lock {
602	kmutex_t	ht_lock;
603#ifdef _KERNEL
604	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
605#endif
606};
607
608#define	BUF_LOCKS 256
609typedef struct buf_hash_table {
610	uint64_t ht_mask;
611	arc_buf_hdr_t **ht_table;
612	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
613} buf_hash_table_t;
614
615static buf_hash_table_t buf_hash_table;
616
617#define	BUF_HASH_INDEX(spa, dva, birth) \
618	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
619#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
620#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
621#define	HDR_LOCK(hdr) \
622	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
623
624uint64_t zfs_crc64_table[256];
625
626/*
627 * Level 2 ARC
628 */
629
630#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
631#define	L2ARC_HEADROOM		2		/* num of writes */
632#define	L2ARC_FEED_SECS		1		/* caching interval secs */
633#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
634
635#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
636#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
637
638/*
639 * L2ARC Performance Tunables
640 */
641uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
642uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
643uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
644uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
645uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
646boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
647boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
648boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
649
650SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
651    &l2arc_write_max, 0, "max write size");
652SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
653    &l2arc_write_boost, 0, "extra write during warmup");
654SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
655    &l2arc_headroom, 0, "number of dev writes");
656SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
657    &l2arc_feed_secs, 0, "interval seconds");
658SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
659    &l2arc_feed_min_ms, 0, "min interval milliseconds");
660
661SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
662    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
663SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
664    &l2arc_feed_again, 0, "turbo warmup");
665SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
666    &l2arc_norw, 0, "no reads during writes");
667
668SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
669    &ARC_anon.arcs_size, 0, "size of anonymous state");
670SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
671    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
672SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
673    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
674
675SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
676    &ARC_mru.arcs_size, 0, "size of mru state");
677SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
678    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
679SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
680    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
681
682SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
683    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
684SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
685    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
686    "size of metadata in mru ghost state");
687SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
688    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
689    "size of data in mru ghost state");
690
691SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
692    &ARC_mfu.arcs_size, 0, "size of mfu state");
693SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
694    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
695SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
696    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
697
698SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
699    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
700SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
701    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
702    "size of metadata in mfu ghost state");
703SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
704    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
705    "size of data in mfu ghost state");
706
707SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
708    &ARC_l2c_only.arcs_size, 0, "size of mru state");
709
710/*
711 * L2ARC Internals
712 */
713typedef struct l2arc_dev {
714	vdev_t			*l2ad_vdev;	/* vdev */
715	spa_t			*l2ad_spa;	/* spa */
716	uint64_t		l2ad_hand;	/* next write location */
717	uint64_t		l2ad_write;	/* desired write size, bytes */
718	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
719	uint64_t		l2ad_start;	/* first addr on device */
720	uint64_t		l2ad_end;	/* last addr on device */
721	uint64_t		l2ad_evict;	/* last addr eviction reached */
722	boolean_t		l2ad_first;	/* first sweep through */
723	boolean_t		l2ad_writing;	/* currently writing */
724	list_t			*l2ad_buflist;	/* buffer list */
725	list_node_t		l2ad_node;	/* device list node */
726} l2arc_dev_t;
727
728static list_t L2ARC_dev_list;			/* device list */
729static list_t *l2arc_dev_list;			/* device list pointer */
730static kmutex_t l2arc_dev_mtx;			/* device list mutex */
731static l2arc_dev_t *l2arc_dev_last;		/* last device used */
732static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
733static list_t L2ARC_free_on_write;		/* free after write buf list */
734static list_t *l2arc_free_on_write;		/* free after write list ptr */
735static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
736static uint64_t l2arc_ndev;			/* number of devices */
737
738typedef struct l2arc_read_callback {
739	arc_buf_t	*l2rcb_buf;		/* read buffer */
740	spa_t		*l2rcb_spa;		/* spa */
741	blkptr_t	l2rcb_bp;		/* original blkptr */
742	zbookmark_t	l2rcb_zb;		/* original bookmark */
743	int		l2rcb_flags;		/* original flags */
744} l2arc_read_callback_t;
745
746typedef struct l2arc_write_callback {
747	l2arc_dev_t	*l2wcb_dev;		/* device info */
748	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
749} l2arc_write_callback_t;
750
751struct l2arc_buf_hdr {
752	/* protected by arc_buf_hdr  mutex */
753	l2arc_dev_t	*b_dev;			/* L2ARC device */
754	uint64_t	b_daddr;		/* disk address, offset byte */
755};
756
757typedef struct l2arc_data_free {
758	/* protected by l2arc_free_on_write_mtx */
759	void		*l2df_data;
760	size_t		l2df_size;
761	void		(*l2df_func)(void *, size_t);
762	list_node_t	l2df_list_node;
763} l2arc_data_free_t;
764
765static kmutex_t l2arc_feed_thr_lock;
766static kcondvar_t l2arc_feed_thr_cv;
767static uint8_t l2arc_thread_exit;
768
769static void l2arc_read_done(zio_t *zio);
770static void l2arc_hdr_stat_add(void);
771static void l2arc_hdr_stat_remove(void);
772
773static uint64_t
774buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
775{
776	uint8_t *vdva = (uint8_t *)dva;
777	uint64_t crc = -1ULL;
778	int i;
779
780	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
781
782	for (i = 0; i < sizeof (dva_t); i++)
783		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
784
785	crc ^= (spa>>8) ^ birth;
786
787	return (crc);
788}
789
790#define	BUF_EMPTY(buf)						\
791	((buf)->b_dva.dva_word[0] == 0 &&			\
792	(buf)->b_dva.dva_word[1] == 0 &&			\
793	(buf)->b_birth == 0)
794
795#define	BUF_EQUAL(spa, dva, birth, buf)				\
796	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
797	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
798	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
799
800static void
801buf_discard_identity(arc_buf_hdr_t *hdr)
802{
803	hdr->b_dva.dva_word[0] = 0;
804	hdr->b_dva.dva_word[1] = 0;
805	hdr->b_birth = 0;
806	hdr->b_cksum0 = 0;
807}
808
809static arc_buf_hdr_t *
810buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
811{
812	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
813	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
814	arc_buf_hdr_t *buf;
815
816	mutex_enter(hash_lock);
817	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
818	    buf = buf->b_hash_next) {
819		if (BUF_EQUAL(spa, dva, birth, buf)) {
820			*lockp = hash_lock;
821			return (buf);
822		}
823	}
824	mutex_exit(hash_lock);
825	*lockp = NULL;
826	return (NULL);
827}
828
829/*
830 * Insert an entry into the hash table.  If there is already an element
831 * equal to elem in the hash table, then the already existing element
832 * will be returned and the new element will not be inserted.
833 * Otherwise returns NULL.
834 */
835static arc_buf_hdr_t *
836buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
837{
838	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
839	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
840	arc_buf_hdr_t *fbuf;
841	uint32_t i;
842
843	ASSERT(!HDR_IN_HASH_TABLE(buf));
844	*lockp = hash_lock;
845	mutex_enter(hash_lock);
846	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
847	    fbuf = fbuf->b_hash_next, i++) {
848		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
849			return (fbuf);
850	}
851
852	buf->b_hash_next = buf_hash_table.ht_table[idx];
853	buf_hash_table.ht_table[idx] = buf;
854	buf->b_flags |= ARC_IN_HASH_TABLE;
855
856	/* collect some hash table performance data */
857	if (i > 0) {
858		ARCSTAT_BUMP(arcstat_hash_collisions);
859		if (i == 1)
860			ARCSTAT_BUMP(arcstat_hash_chains);
861
862		ARCSTAT_MAX(arcstat_hash_chain_max, i);
863	}
864
865	ARCSTAT_BUMP(arcstat_hash_elements);
866	ARCSTAT_MAXSTAT(arcstat_hash_elements);
867
868	return (NULL);
869}
870
871static void
872buf_hash_remove(arc_buf_hdr_t *buf)
873{
874	arc_buf_hdr_t *fbuf, **bufp;
875	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
876
877	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
878	ASSERT(HDR_IN_HASH_TABLE(buf));
879
880	bufp = &buf_hash_table.ht_table[idx];
881	while ((fbuf = *bufp) != buf) {
882		ASSERT(fbuf != NULL);
883		bufp = &fbuf->b_hash_next;
884	}
885	*bufp = buf->b_hash_next;
886	buf->b_hash_next = NULL;
887	buf->b_flags &= ~ARC_IN_HASH_TABLE;
888
889	/* collect some hash table performance data */
890	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
891
892	if (buf_hash_table.ht_table[idx] &&
893	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
894		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
895}
896
897/*
898 * Global data structures and functions for the buf kmem cache.
899 */
900static kmem_cache_t *hdr_cache;
901static kmem_cache_t *buf_cache;
902
903static void
904buf_fini(void)
905{
906	int i;
907
908	kmem_free(buf_hash_table.ht_table,
909	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
910	for (i = 0; i < BUF_LOCKS; i++)
911		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
912	kmem_cache_destroy(hdr_cache);
913	kmem_cache_destroy(buf_cache);
914}
915
916/*
917 * Constructor callback - called when the cache is empty
918 * and a new buf is requested.
919 */
920/* ARGSUSED */
921static int
922hdr_cons(void *vbuf, void *unused, int kmflag)
923{
924	arc_buf_hdr_t *buf = vbuf;
925
926	bzero(buf, sizeof (arc_buf_hdr_t));
927	refcount_create(&buf->b_refcnt);
928	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
929	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
930	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
931
932	return (0);
933}
934
935/* ARGSUSED */
936static int
937buf_cons(void *vbuf, void *unused, int kmflag)
938{
939	arc_buf_t *buf = vbuf;
940
941	bzero(buf, sizeof (arc_buf_t));
942	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
943	rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
944	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
945
946	return (0);
947}
948
949/*
950 * Destructor callback - called when a cached buf is
951 * no longer required.
952 */
953/* ARGSUSED */
954static void
955hdr_dest(void *vbuf, void *unused)
956{
957	arc_buf_hdr_t *buf = vbuf;
958
959	ASSERT(BUF_EMPTY(buf));
960	refcount_destroy(&buf->b_refcnt);
961	cv_destroy(&buf->b_cv);
962	mutex_destroy(&buf->b_freeze_lock);
963	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
964}
965
966/* ARGSUSED */
967static void
968buf_dest(void *vbuf, void *unused)
969{
970	arc_buf_t *buf = vbuf;
971
972	mutex_destroy(&buf->b_evict_lock);
973	rw_destroy(&buf->b_data_lock);
974	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
975}
976
977/*
978 * Reclaim callback -- invoked when memory is low.
979 */
980/* ARGSUSED */
981static void
982hdr_recl(void *unused)
983{
984	dprintf("hdr_recl called\n");
985	/*
986	 * umem calls the reclaim func when we destroy the buf cache,
987	 * which is after we do arc_fini().
988	 */
989	if (!arc_dead)
990		cv_signal(&arc_reclaim_thr_cv);
991}
992
993static void
994buf_init(void)
995{
996	uint64_t *ct;
997	uint64_t hsize = 1ULL << 12;
998	int i, j;
999
1000	/*
1001	 * The hash table is big enough to fill all of physical memory
1002	 * with an average 64K block size.  The table will take up
1003	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
1004	 */
1005	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
1006		hsize <<= 1;
1007retry:
1008	buf_hash_table.ht_mask = hsize - 1;
1009	buf_hash_table.ht_table =
1010	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1011	if (buf_hash_table.ht_table == NULL) {
1012		ASSERT(hsize > (1ULL << 8));
1013		hsize >>= 1;
1014		goto retry;
1015	}
1016
1017	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1018	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1019	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1020	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1021
1022	for (i = 0; i < 256; i++)
1023		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1024			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1025
1026	for (i = 0; i < BUF_LOCKS; i++) {
1027		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1028		    NULL, MUTEX_DEFAULT, NULL);
1029	}
1030}
1031
1032#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1033
1034static void
1035arc_cksum_verify(arc_buf_t *buf)
1036{
1037	zio_cksum_t zc;
1038
1039	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1040		return;
1041
1042	mutex_enter(&buf->b_hdr->b_freeze_lock);
1043	if (buf->b_hdr->b_freeze_cksum == NULL ||
1044	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1045		mutex_exit(&buf->b_hdr->b_freeze_lock);
1046		return;
1047	}
1048	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1049	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1050		panic("buffer modified while frozen!");
1051	mutex_exit(&buf->b_hdr->b_freeze_lock);
1052}
1053
1054static int
1055arc_cksum_equal(arc_buf_t *buf)
1056{
1057	zio_cksum_t zc;
1058	int equal;
1059
1060	mutex_enter(&buf->b_hdr->b_freeze_lock);
1061	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1062	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1063	mutex_exit(&buf->b_hdr->b_freeze_lock);
1064
1065	return (equal);
1066}
1067
1068static void
1069arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1070{
1071	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1072		return;
1073
1074	mutex_enter(&buf->b_hdr->b_freeze_lock);
1075	if (buf->b_hdr->b_freeze_cksum != NULL) {
1076		mutex_exit(&buf->b_hdr->b_freeze_lock);
1077		return;
1078	}
1079	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1080	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1081	    buf->b_hdr->b_freeze_cksum);
1082	mutex_exit(&buf->b_hdr->b_freeze_lock);
1083#ifdef illumos
1084	arc_buf_watch(buf);
1085#endif /* illumos */
1086}
1087
1088#ifdef illumos
1089#ifndef _KERNEL
1090typedef struct procctl {
1091	long cmd;
1092	prwatch_t prwatch;
1093} procctl_t;
1094#endif
1095
1096/* ARGSUSED */
1097static void
1098arc_buf_unwatch(arc_buf_t *buf)
1099{
1100#ifndef _KERNEL
1101	if (arc_watch) {
1102		int result;
1103		procctl_t ctl;
1104		ctl.cmd = PCWATCH;
1105		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1106		ctl.prwatch.pr_size = 0;
1107		ctl.prwatch.pr_wflags = 0;
1108		result = write(arc_procfd, &ctl, sizeof (ctl));
1109		ASSERT3U(result, ==, sizeof (ctl));
1110	}
1111#endif
1112}
1113
1114/* ARGSUSED */
1115static void
1116arc_buf_watch(arc_buf_t *buf)
1117{
1118#ifndef _KERNEL
1119	if (arc_watch) {
1120		int result;
1121		procctl_t ctl;
1122		ctl.cmd = PCWATCH;
1123		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1124		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1125		ctl.prwatch.pr_wflags = WA_WRITE;
1126		result = write(arc_procfd, &ctl, sizeof (ctl));
1127		ASSERT3U(result, ==, sizeof (ctl));
1128	}
1129#endif
1130}
1131#endif /* illumos */
1132
1133void
1134arc_buf_thaw(arc_buf_t *buf)
1135{
1136	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1137		if (buf->b_hdr->b_state != arc_anon)
1138			panic("modifying non-anon buffer!");
1139		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1140			panic("modifying buffer while i/o in progress!");
1141		arc_cksum_verify(buf);
1142	}
1143
1144	mutex_enter(&buf->b_hdr->b_freeze_lock);
1145	if (buf->b_hdr->b_freeze_cksum != NULL) {
1146		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1147		buf->b_hdr->b_freeze_cksum = NULL;
1148	}
1149
1150	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1151		if (buf->b_hdr->b_thawed)
1152			kmem_free(buf->b_hdr->b_thawed, 1);
1153		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1154	}
1155
1156	mutex_exit(&buf->b_hdr->b_freeze_lock);
1157
1158#ifdef illumos
1159	arc_buf_unwatch(buf);
1160#endif /* illumos */
1161}
1162
1163void
1164arc_buf_freeze(arc_buf_t *buf)
1165{
1166	kmutex_t *hash_lock;
1167
1168	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1169		return;
1170
1171	hash_lock = HDR_LOCK(buf->b_hdr);
1172	mutex_enter(hash_lock);
1173
1174	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1175	    buf->b_hdr->b_state == arc_anon);
1176	arc_cksum_compute(buf, B_FALSE);
1177	mutex_exit(hash_lock);
1178
1179}
1180
1181static void
1182get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1183{
1184	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1185
1186	if (ab->b_type == ARC_BUFC_METADATA)
1187		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1188	else {
1189		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1190		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1191	}
1192
1193	*list = &state->arcs_lists[buf_hashid];
1194	*lock = ARCS_LOCK(state, buf_hashid);
1195}
1196
1197
1198static void
1199add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1200{
1201	ASSERT(MUTEX_HELD(hash_lock));
1202
1203	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1204	    (ab->b_state != arc_anon)) {
1205		uint64_t delta = ab->b_size * ab->b_datacnt;
1206		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1207		list_t *list;
1208		kmutex_t *lock;
1209
1210		get_buf_info(ab, ab->b_state, &list, &lock);
1211		ASSERT(!MUTEX_HELD(lock));
1212		mutex_enter(lock);
1213		ASSERT(list_link_active(&ab->b_arc_node));
1214		list_remove(list, ab);
1215		if (GHOST_STATE(ab->b_state)) {
1216			ASSERT0(ab->b_datacnt);
1217			ASSERT3P(ab->b_buf, ==, NULL);
1218			delta = ab->b_size;
1219		}
1220		ASSERT(delta > 0);
1221		ASSERT3U(*size, >=, delta);
1222		atomic_add_64(size, -delta);
1223		mutex_exit(lock);
1224		/* remove the prefetch flag if we get a reference */
1225		if (ab->b_flags & ARC_PREFETCH)
1226			ab->b_flags &= ~ARC_PREFETCH;
1227	}
1228}
1229
1230static int
1231remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1232{
1233	int cnt;
1234	arc_state_t *state = ab->b_state;
1235
1236	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1237	ASSERT(!GHOST_STATE(state));
1238
1239	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1240	    (state != arc_anon)) {
1241		uint64_t *size = &state->arcs_lsize[ab->b_type];
1242		list_t *list;
1243		kmutex_t *lock;
1244
1245		get_buf_info(ab, state, &list, &lock);
1246		ASSERT(!MUTEX_HELD(lock));
1247		mutex_enter(lock);
1248		ASSERT(!list_link_active(&ab->b_arc_node));
1249		list_insert_head(list, ab);
1250		ASSERT(ab->b_datacnt > 0);
1251		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1252		mutex_exit(lock);
1253	}
1254	return (cnt);
1255}
1256
1257/*
1258 * Move the supplied buffer to the indicated state.  The mutex
1259 * for the buffer must be held by the caller.
1260 */
1261static void
1262arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1263{
1264	arc_state_t *old_state = ab->b_state;
1265	int64_t refcnt = refcount_count(&ab->b_refcnt);
1266	uint64_t from_delta, to_delta;
1267	list_t *list;
1268	kmutex_t *lock;
1269
1270	ASSERT(MUTEX_HELD(hash_lock));
1271	ASSERT(new_state != old_state);
1272	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1273	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1274	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1275
1276	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1277
1278	/*
1279	 * If this buffer is evictable, transfer it from the
1280	 * old state list to the new state list.
1281	 */
1282	if (refcnt == 0) {
1283		if (old_state != arc_anon) {
1284			int use_mutex;
1285			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1286
1287			get_buf_info(ab, old_state, &list, &lock);
1288			use_mutex = !MUTEX_HELD(lock);
1289			if (use_mutex)
1290				mutex_enter(lock);
1291
1292			ASSERT(list_link_active(&ab->b_arc_node));
1293			list_remove(list, ab);
1294
1295			/*
1296			 * If prefetching out of the ghost cache,
1297			 * we will have a non-zero datacnt.
1298			 */
1299			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1300				/* ghost elements have a ghost size */
1301				ASSERT(ab->b_buf == NULL);
1302				from_delta = ab->b_size;
1303			}
1304			ASSERT3U(*size, >=, from_delta);
1305			atomic_add_64(size, -from_delta);
1306
1307			if (use_mutex)
1308				mutex_exit(lock);
1309		}
1310		if (new_state != arc_anon) {
1311			int use_mutex;
1312			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1313
1314			get_buf_info(ab, new_state, &list, &lock);
1315			use_mutex = !MUTEX_HELD(lock);
1316			if (use_mutex)
1317				mutex_enter(lock);
1318
1319			list_insert_head(list, ab);
1320
1321			/* ghost elements have a ghost size */
1322			if (GHOST_STATE(new_state)) {
1323				ASSERT(ab->b_datacnt == 0);
1324				ASSERT(ab->b_buf == NULL);
1325				to_delta = ab->b_size;
1326			}
1327			atomic_add_64(size, to_delta);
1328
1329			if (use_mutex)
1330				mutex_exit(lock);
1331		}
1332	}
1333
1334	ASSERT(!BUF_EMPTY(ab));
1335	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1336		buf_hash_remove(ab);
1337
1338	/* adjust state sizes */
1339	if (to_delta)
1340		atomic_add_64(&new_state->arcs_size, to_delta);
1341	if (from_delta) {
1342		ASSERT3U(old_state->arcs_size, >=, from_delta);
1343		atomic_add_64(&old_state->arcs_size, -from_delta);
1344	}
1345	ab->b_state = new_state;
1346
1347	/* adjust l2arc hdr stats */
1348	if (new_state == arc_l2c_only)
1349		l2arc_hdr_stat_add();
1350	else if (old_state == arc_l2c_only)
1351		l2arc_hdr_stat_remove();
1352}
1353
1354void
1355arc_space_consume(uint64_t space, arc_space_type_t type)
1356{
1357	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1358
1359	switch (type) {
1360	case ARC_SPACE_DATA:
1361		ARCSTAT_INCR(arcstat_data_size, space);
1362		break;
1363	case ARC_SPACE_OTHER:
1364		ARCSTAT_INCR(arcstat_other_size, space);
1365		break;
1366	case ARC_SPACE_HDRS:
1367		ARCSTAT_INCR(arcstat_hdr_size, space);
1368		break;
1369	case ARC_SPACE_L2HDRS:
1370		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1371		break;
1372	}
1373
1374	atomic_add_64(&arc_meta_used, space);
1375	atomic_add_64(&arc_size, space);
1376}
1377
1378void
1379arc_space_return(uint64_t space, arc_space_type_t type)
1380{
1381	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1382
1383	switch (type) {
1384	case ARC_SPACE_DATA:
1385		ARCSTAT_INCR(arcstat_data_size, -space);
1386		break;
1387	case ARC_SPACE_OTHER:
1388		ARCSTAT_INCR(arcstat_other_size, -space);
1389		break;
1390	case ARC_SPACE_HDRS:
1391		ARCSTAT_INCR(arcstat_hdr_size, -space);
1392		break;
1393	case ARC_SPACE_L2HDRS:
1394		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1395		break;
1396	}
1397
1398	ASSERT(arc_meta_used >= space);
1399	if (arc_meta_max < arc_meta_used)
1400		arc_meta_max = arc_meta_used;
1401	atomic_add_64(&arc_meta_used, -space);
1402	ASSERT(arc_size >= space);
1403	atomic_add_64(&arc_size, -space);
1404}
1405
1406void *
1407arc_data_buf_alloc(uint64_t size)
1408{
1409	if (arc_evict_needed(ARC_BUFC_DATA))
1410		cv_signal(&arc_reclaim_thr_cv);
1411	atomic_add_64(&arc_size, size);
1412	return (zio_data_buf_alloc(size));
1413}
1414
1415void
1416arc_data_buf_free(void *buf, uint64_t size)
1417{
1418	zio_data_buf_free(buf, size);
1419	ASSERT(arc_size >= size);
1420	atomic_add_64(&arc_size, -size);
1421}
1422
1423arc_buf_t *
1424arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1425{
1426	arc_buf_hdr_t *hdr;
1427	arc_buf_t *buf;
1428
1429	ASSERT3U(size, >, 0);
1430	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1431	ASSERT(BUF_EMPTY(hdr));
1432	hdr->b_size = size;
1433	hdr->b_type = type;
1434	hdr->b_spa = spa_load_guid(spa);
1435	hdr->b_state = arc_anon;
1436	hdr->b_arc_access = 0;
1437	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1438	buf->b_hdr = hdr;
1439	buf->b_data = NULL;
1440	buf->b_efunc = NULL;
1441	buf->b_private = NULL;
1442	buf->b_next = NULL;
1443	hdr->b_buf = buf;
1444	arc_get_data_buf(buf);
1445	hdr->b_datacnt = 1;
1446	hdr->b_flags = 0;
1447	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1448	(void) refcount_add(&hdr->b_refcnt, tag);
1449
1450	return (buf);
1451}
1452
1453static char *arc_onloan_tag = "onloan";
1454
1455/*
1456 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1457 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1458 * buffers must be returned to the arc before they can be used by the DMU or
1459 * freed.
1460 */
1461arc_buf_t *
1462arc_loan_buf(spa_t *spa, int size)
1463{
1464	arc_buf_t *buf;
1465
1466	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1467
1468	atomic_add_64(&arc_loaned_bytes, size);
1469	return (buf);
1470}
1471
1472/*
1473 * Return a loaned arc buffer to the arc.
1474 */
1475void
1476arc_return_buf(arc_buf_t *buf, void *tag)
1477{
1478	arc_buf_hdr_t *hdr = buf->b_hdr;
1479
1480	ASSERT(buf->b_data != NULL);
1481	(void) refcount_add(&hdr->b_refcnt, tag);
1482	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1483
1484	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1485}
1486
1487/* Detach an arc_buf from a dbuf (tag) */
1488void
1489arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1490{
1491	arc_buf_hdr_t *hdr;
1492
1493	ASSERT(buf->b_data != NULL);
1494	hdr = buf->b_hdr;
1495	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1496	(void) refcount_remove(&hdr->b_refcnt, tag);
1497	buf->b_efunc = NULL;
1498	buf->b_private = NULL;
1499
1500	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1501}
1502
1503static arc_buf_t *
1504arc_buf_clone(arc_buf_t *from)
1505{
1506	arc_buf_t *buf;
1507	arc_buf_hdr_t *hdr = from->b_hdr;
1508	uint64_t size = hdr->b_size;
1509
1510	ASSERT(hdr->b_state != arc_anon);
1511
1512	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1513	buf->b_hdr = hdr;
1514	buf->b_data = NULL;
1515	buf->b_efunc = NULL;
1516	buf->b_private = NULL;
1517	buf->b_next = hdr->b_buf;
1518	hdr->b_buf = buf;
1519	arc_get_data_buf(buf);
1520	bcopy(from->b_data, buf->b_data, size);
1521	hdr->b_datacnt += 1;
1522	return (buf);
1523}
1524
1525void
1526arc_buf_add_ref(arc_buf_t *buf, void* tag)
1527{
1528	arc_buf_hdr_t *hdr;
1529	kmutex_t *hash_lock;
1530
1531	/*
1532	 * Check to see if this buffer is evicted.  Callers
1533	 * must verify b_data != NULL to know if the add_ref
1534	 * was successful.
1535	 */
1536	mutex_enter(&buf->b_evict_lock);
1537	if (buf->b_data == NULL) {
1538		mutex_exit(&buf->b_evict_lock);
1539		return;
1540	}
1541	hash_lock = HDR_LOCK(buf->b_hdr);
1542	mutex_enter(hash_lock);
1543	hdr = buf->b_hdr;
1544	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1545	mutex_exit(&buf->b_evict_lock);
1546
1547	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1548	add_reference(hdr, hash_lock, tag);
1549	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1550	arc_access(hdr, hash_lock);
1551	mutex_exit(hash_lock);
1552	ARCSTAT_BUMP(arcstat_hits);
1553	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1554	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1555	    data, metadata, hits);
1556}
1557
1558/*
1559 * Free the arc data buffer.  If it is an l2arc write in progress,
1560 * the buffer is placed on l2arc_free_on_write to be freed later.
1561 */
1562static void
1563arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1564{
1565	arc_buf_hdr_t *hdr = buf->b_hdr;
1566
1567	if (HDR_L2_WRITING(hdr)) {
1568		l2arc_data_free_t *df;
1569		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1570		df->l2df_data = buf->b_data;
1571		df->l2df_size = hdr->b_size;
1572		df->l2df_func = free_func;
1573		mutex_enter(&l2arc_free_on_write_mtx);
1574		list_insert_head(l2arc_free_on_write, df);
1575		mutex_exit(&l2arc_free_on_write_mtx);
1576		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1577	} else {
1578		free_func(buf->b_data, hdr->b_size);
1579	}
1580}
1581
1582static void
1583arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1584{
1585	arc_buf_t **bufp;
1586
1587	/* free up data associated with the buf */
1588	if (buf->b_data) {
1589		arc_state_t *state = buf->b_hdr->b_state;
1590		uint64_t size = buf->b_hdr->b_size;
1591		arc_buf_contents_t type = buf->b_hdr->b_type;
1592
1593		arc_cksum_verify(buf);
1594#ifdef illumos
1595		arc_buf_unwatch(buf);
1596#endif /* illumos */
1597
1598		if (!recycle) {
1599			if (type == ARC_BUFC_METADATA) {
1600				arc_buf_data_free(buf, zio_buf_free);
1601				arc_space_return(size, ARC_SPACE_DATA);
1602			} else {
1603				ASSERT(type == ARC_BUFC_DATA);
1604				arc_buf_data_free(buf, zio_data_buf_free);
1605				ARCSTAT_INCR(arcstat_data_size, -size);
1606				atomic_add_64(&arc_size, -size);
1607			}
1608		}
1609		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1610			uint64_t *cnt = &state->arcs_lsize[type];
1611
1612			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1613			ASSERT(state != arc_anon);
1614
1615			ASSERT3U(*cnt, >=, size);
1616			atomic_add_64(cnt, -size);
1617		}
1618		ASSERT3U(state->arcs_size, >=, size);
1619		atomic_add_64(&state->arcs_size, -size);
1620		buf->b_data = NULL;
1621		ASSERT(buf->b_hdr->b_datacnt > 0);
1622		buf->b_hdr->b_datacnt -= 1;
1623	}
1624
1625	/* only remove the buf if requested */
1626	if (!all)
1627		return;
1628
1629	/* remove the buf from the hdr list */
1630	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1631		continue;
1632	*bufp = buf->b_next;
1633	buf->b_next = NULL;
1634
1635	ASSERT(buf->b_efunc == NULL);
1636
1637	/* clean up the buf */
1638	buf->b_hdr = NULL;
1639	kmem_cache_free(buf_cache, buf);
1640}
1641
1642static void
1643arc_hdr_destroy(arc_buf_hdr_t *hdr)
1644{
1645	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1646	ASSERT3P(hdr->b_state, ==, arc_anon);
1647	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1648	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1649
1650	if (l2hdr != NULL) {
1651		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1652		/*
1653		 * To prevent arc_free() and l2arc_evict() from
1654		 * attempting to free the same buffer at the same time,
1655		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1656		 * give it priority.  l2arc_evict() can't destroy this
1657		 * header while we are waiting on l2arc_buflist_mtx.
1658		 *
1659		 * The hdr may be removed from l2ad_buflist before we
1660		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1661		 */
1662		if (!buflist_held) {
1663			mutex_enter(&l2arc_buflist_mtx);
1664			l2hdr = hdr->b_l2hdr;
1665		}
1666
1667		if (l2hdr != NULL) {
1668			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1669			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1670			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1671			if (hdr->b_state == arc_l2c_only)
1672				l2arc_hdr_stat_remove();
1673			hdr->b_l2hdr = NULL;
1674		}
1675
1676		if (!buflist_held)
1677			mutex_exit(&l2arc_buflist_mtx);
1678	}
1679
1680	if (!BUF_EMPTY(hdr)) {
1681		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1682		buf_discard_identity(hdr);
1683	}
1684	while (hdr->b_buf) {
1685		arc_buf_t *buf = hdr->b_buf;
1686
1687		if (buf->b_efunc) {
1688			mutex_enter(&arc_eviction_mtx);
1689			mutex_enter(&buf->b_evict_lock);
1690			ASSERT(buf->b_hdr != NULL);
1691			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1692			hdr->b_buf = buf->b_next;
1693			buf->b_hdr = &arc_eviction_hdr;
1694			buf->b_next = arc_eviction_list;
1695			arc_eviction_list = buf;
1696			mutex_exit(&buf->b_evict_lock);
1697			mutex_exit(&arc_eviction_mtx);
1698		} else {
1699			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1700		}
1701	}
1702	if (hdr->b_freeze_cksum != NULL) {
1703		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1704		hdr->b_freeze_cksum = NULL;
1705	}
1706	if (hdr->b_thawed) {
1707		kmem_free(hdr->b_thawed, 1);
1708		hdr->b_thawed = NULL;
1709	}
1710
1711	ASSERT(!list_link_active(&hdr->b_arc_node));
1712	ASSERT3P(hdr->b_hash_next, ==, NULL);
1713	ASSERT3P(hdr->b_acb, ==, NULL);
1714	kmem_cache_free(hdr_cache, hdr);
1715}
1716
1717void
1718arc_buf_free(arc_buf_t *buf, void *tag)
1719{
1720	arc_buf_hdr_t *hdr = buf->b_hdr;
1721	int hashed = hdr->b_state != arc_anon;
1722
1723	ASSERT(buf->b_efunc == NULL);
1724	ASSERT(buf->b_data != NULL);
1725
1726	if (hashed) {
1727		kmutex_t *hash_lock = HDR_LOCK(hdr);
1728
1729		mutex_enter(hash_lock);
1730		hdr = buf->b_hdr;
1731		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1732
1733		(void) remove_reference(hdr, hash_lock, tag);
1734		if (hdr->b_datacnt > 1) {
1735			arc_buf_destroy(buf, FALSE, TRUE);
1736		} else {
1737			ASSERT(buf == hdr->b_buf);
1738			ASSERT(buf->b_efunc == NULL);
1739			hdr->b_flags |= ARC_BUF_AVAILABLE;
1740		}
1741		mutex_exit(hash_lock);
1742	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1743		int destroy_hdr;
1744		/*
1745		 * We are in the middle of an async write.  Don't destroy
1746		 * this buffer unless the write completes before we finish
1747		 * decrementing the reference count.
1748		 */
1749		mutex_enter(&arc_eviction_mtx);
1750		(void) remove_reference(hdr, NULL, tag);
1751		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1752		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1753		mutex_exit(&arc_eviction_mtx);
1754		if (destroy_hdr)
1755			arc_hdr_destroy(hdr);
1756	} else {
1757		if (remove_reference(hdr, NULL, tag) > 0)
1758			arc_buf_destroy(buf, FALSE, TRUE);
1759		else
1760			arc_hdr_destroy(hdr);
1761	}
1762}
1763
1764int
1765arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1766{
1767	arc_buf_hdr_t *hdr = buf->b_hdr;
1768	kmutex_t *hash_lock = HDR_LOCK(hdr);
1769	int no_callback = (buf->b_efunc == NULL);
1770
1771	if (hdr->b_state == arc_anon) {
1772		ASSERT(hdr->b_datacnt == 1);
1773		arc_buf_free(buf, tag);
1774		return (no_callback);
1775	}
1776
1777	mutex_enter(hash_lock);
1778	hdr = buf->b_hdr;
1779	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1780	ASSERT(hdr->b_state != arc_anon);
1781	ASSERT(buf->b_data != NULL);
1782
1783	(void) remove_reference(hdr, hash_lock, tag);
1784	if (hdr->b_datacnt > 1) {
1785		if (no_callback)
1786			arc_buf_destroy(buf, FALSE, TRUE);
1787	} else if (no_callback) {
1788		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1789		ASSERT(buf->b_efunc == NULL);
1790		hdr->b_flags |= ARC_BUF_AVAILABLE;
1791	}
1792	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1793	    refcount_is_zero(&hdr->b_refcnt));
1794	mutex_exit(hash_lock);
1795	return (no_callback);
1796}
1797
1798int
1799arc_buf_size(arc_buf_t *buf)
1800{
1801	return (buf->b_hdr->b_size);
1802}
1803
1804/*
1805 * Evict buffers from list until we've removed the specified number of
1806 * bytes.  Move the removed buffers to the appropriate evict state.
1807 * If the recycle flag is set, then attempt to "recycle" a buffer:
1808 * - look for a buffer to evict that is `bytes' long.
1809 * - return the data block from this buffer rather than freeing it.
1810 * This flag is used by callers that are trying to make space for a
1811 * new buffer in a full arc cache.
1812 *
1813 * This function makes a "best effort".  It skips over any buffers
1814 * it can't get a hash_lock on, and so may not catch all candidates.
1815 * It may also return without evicting as much space as requested.
1816 */
1817static void *
1818arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1819    arc_buf_contents_t type)
1820{
1821	arc_state_t *evicted_state;
1822	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1823	int64_t bytes_remaining;
1824	arc_buf_hdr_t *ab, *ab_prev = NULL;
1825	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1826	kmutex_t *lock, *evicted_lock;
1827	kmutex_t *hash_lock;
1828	boolean_t have_lock;
1829	void *stolen = NULL;
1830	static int evict_metadata_offset, evict_data_offset;
1831	int i, idx, offset, list_count, count;
1832
1833	ASSERT(state == arc_mru || state == arc_mfu);
1834
1835	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1836
1837	if (type == ARC_BUFC_METADATA) {
1838		offset = 0;
1839		list_count = ARC_BUFC_NUMMETADATALISTS;
1840		list_start = &state->arcs_lists[0];
1841		evicted_list_start = &evicted_state->arcs_lists[0];
1842		idx = evict_metadata_offset;
1843	} else {
1844		offset = ARC_BUFC_NUMMETADATALISTS;
1845		list_start = &state->arcs_lists[offset];
1846		evicted_list_start = &evicted_state->arcs_lists[offset];
1847		list_count = ARC_BUFC_NUMDATALISTS;
1848		idx = evict_data_offset;
1849	}
1850	bytes_remaining = evicted_state->arcs_lsize[type];
1851	count = 0;
1852
1853evict_start:
1854	list = &list_start[idx];
1855	evicted_list = &evicted_list_start[idx];
1856	lock = ARCS_LOCK(state, (offset + idx));
1857	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1858
1859	mutex_enter(lock);
1860	mutex_enter(evicted_lock);
1861
1862	for (ab = list_tail(list); ab; ab = ab_prev) {
1863		ab_prev = list_prev(list, ab);
1864		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1865		/* prefetch buffers have a minimum lifespan */
1866		if (HDR_IO_IN_PROGRESS(ab) ||
1867		    (spa && ab->b_spa != spa) ||
1868		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1869		    ddi_get_lbolt() - ab->b_arc_access <
1870		    arc_min_prefetch_lifespan)) {
1871			skipped++;
1872			continue;
1873		}
1874		/* "lookahead" for better eviction candidate */
1875		if (recycle && ab->b_size != bytes &&
1876		    ab_prev && ab_prev->b_size == bytes)
1877			continue;
1878		hash_lock = HDR_LOCK(ab);
1879		have_lock = MUTEX_HELD(hash_lock);
1880		if (have_lock || mutex_tryenter(hash_lock)) {
1881			ASSERT0(refcount_count(&ab->b_refcnt));
1882			ASSERT(ab->b_datacnt > 0);
1883			while (ab->b_buf) {
1884				arc_buf_t *buf = ab->b_buf;
1885				if (!mutex_tryenter(&buf->b_evict_lock)) {
1886					missed += 1;
1887					break;
1888				}
1889				if (buf->b_data) {
1890					bytes_evicted += ab->b_size;
1891					if (recycle && ab->b_type == type &&
1892					    ab->b_size == bytes &&
1893					    !HDR_L2_WRITING(ab)) {
1894						stolen = buf->b_data;
1895						recycle = FALSE;
1896					}
1897				}
1898				if (buf->b_efunc) {
1899					mutex_enter(&arc_eviction_mtx);
1900					arc_buf_destroy(buf,
1901					    buf->b_data == stolen, FALSE);
1902					ab->b_buf = buf->b_next;
1903					buf->b_hdr = &arc_eviction_hdr;
1904					buf->b_next = arc_eviction_list;
1905					arc_eviction_list = buf;
1906					mutex_exit(&arc_eviction_mtx);
1907					mutex_exit(&buf->b_evict_lock);
1908				} else {
1909					mutex_exit(&buf->b_evict_lock);
1910					arc_buf_destroy(buf,
1911					    buf->b_data == stolen, TRUE);
1912				}
1913			}
1914
1915			if (ab->b_l2hdr) {
1916				ARCSTAT_INCR(arcstat_evict_l2_cached,
1917				    ab->b_size);
1918			} else {
1919				if (l2arc_write_eligible(ab->b_spa, ab)) {
1920					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1921					    ab->b_size);
1922				} else {
1923					ARCSTAT_INCR(
1924					    arcstat_evict_l2_ineligible,
1925					    ab->b_size);
1926				}
1927			}
1928
1929			if (ab->b_datacnt == 0) {
1930				arc_change_state(evicted_state, ab, hash_lock);
1931				ASSERT(HDR_IN_HASH_TABLE(ab));
1932				ab->b_flags |= ARC_IN_HASH_TABLE;
1933				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1934				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1935			}
1936			if (!have_lock)
1937				mutex_exit(hash_lock);
1938			if (bytes >= 0 && bytes_evicted >= bytes)
1939				break;
1940			if (bytes_remaining > 0) {
1941				mutex_exit(evicted_lock);
1942				mutex_exit(lock);
1943				idx  = ((idx + 1) & (list_count - 1));
1944				count++;
1945				goto evict_start;
1946			}
1947		} else {
1948			missed += 1;
1949		}
1950	}
1951
1952	mutex_exit(evicted_lock);
1953	mutex_exit(lock);
1954
1955	idx  = ((idx + 1) & (list_count - 1));
1956	count++;
1957
1958	if (bytes_evicted < bytes) {
1959		if (count < list_count)
1960			goto evict_start;
1961		else
1962			dprintf("only evicted %lld bytes from %x",
1963			    (longlong_t)bytes_evicted, state);
1964	}
1965	if (type == ARC_BUFC_METADATA)
1966		evict_metadata_offset = idx;
1967	else
1968		evict_data_offset = idx;
1969
1970	if (skipped)
1971		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1972
1973	if (missed)
1974		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1975
1976	/*
1977	 * We have just evicted some date into the ghost state, make
1978	 * sure we also adjust the ghost state size if necessary.
1979	 */
1980	if (arc_no_grow &&
1981	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1982		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1983		    arc_mru_ghost->arcs_size - arc_c;
1984
1985		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1986			int64_t todelete =
1987			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1988			arc_evict_ghost(arc_mru_ghost, 0, todelete);
1989		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1990			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1991			    arc_mru_ghost->arcs_size +
1992			    arc_mfu_ghost->arcs_size - arc_c);
1993			arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1994		}
1995	}
1996	if (stolen)
1997		ARCSTAT_BUMP(arcstat_stolen);
1998
1999	return (stolen);
2000}
2001
2002/*
2003 * Remove buffers from list until we've removed the specified number of
2004 * bytes.  Destroy the buffers that are removed.
2005 */
2006static void
2007arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2008{
2009	arc_buf_hdr_t *ab, *ab_prev;
2010	arc_buf_hdr_t marker = { 0 };
2011	list_t *list, *list_start;
2012	kmutex_t *hash_lock, *lock;
2013	uint64_t bytes_deleted = 0;
2014	uint64_t bufs_skipped = 0;
2015	static int evict_offset;
2016	int list_count, idx = evict_offset;
2017	int offset, count = 0;
2018
2019	ASSERT(GHOST_STATE(state));
2020
2021	/*
2022	 * data lists come after metadata lists
2023	 */
2024	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2025	list_count = ARC_BUFC_NUMDATALISTS;
2026	offset = ARC_BUFC_NUMMETADATALISTS;
2027
2028evict_start:
2029	list = &list_start[idx];
2030	lock = ARCS_LOCK(state, idx + offset);
2031
2032	mutex_enter(lock);
2033	for (ab = list_tail(list); ab; ab = ab_prev) {
2034		ab_prev = list_prev(list, ab);
2035		if (spa && ab->b_spa != spa)
2036			continue;
2037
2038		/* ignore markers */
2039		if (ab->b_spa == 0)
2040			continue;
2041
2042		hash_lock = HDR_LOCK(ab);
2043		/* caller may be trying to modify this buffer, skip it */
2044		if (MUTEX_HELD(hash_lock))
2045			continue;
2046		if (mutex_tryenter(hash_lock)) {
2047			ASSERT(!HDR_IO_IN_PROGRESS(ab));
2048			ASSERT(ab->b_buf == NULL);
2049			ARCSTAT_BUMP(arcstat_deleted);
2050			bytes_deleted += ab->b_size;
2051
2052			if (ab->b_l2hdr != NULL) {
2053				/*
2054				 * This buffer is cached on the 2nd Level ARC;
2055				 * don't destroy the header.
2056				 */
2057				arc_change_state(arc_l2c_only, ab, hash_lock);
2058				mutex_exit(hash_lock);
2059			} else {
2060				arc_change_state(arc_anon, ab, hash_lock);
2061				mutex_exit(hash_lock);
2062				arc_hdr_destroy(ab);
2063			}
2064
2065			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2066			if (bytes >= 0 && bytes_deleted >= bytes)
2067				break;
2068		} else if (bytes < 0) {
2069			/*
2070			 * Insert a list marker and then wait for the
2071			 * hash lock to become available. Once its
2072			 * available, restart from where we left off.
2073			 */
2074			list_insert_after(list, ab, &marker);
2075			mutex_exit(lock);
2076			mutex_enter(hash_lock);
2077			mutex_exit(hash_lock);
2078			mutex_enter(lock);
2079			ab_prev = list_prev(list, &marker);
2080			list_remove(list, &marker);
2081		} else
2082			bufs_skipped += 1;
2083	}
2084	mutex_exit(lock);
2085	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2086	count++;
2087
2088	if (count < list_count)
2089		goto evict_start;
2090
2091	evict_offset = idx;
2092	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2093	    (bytes < 0 || bytes_deleted < bytes)) {
2094		list_start = &state->arcs_lists[0];
2095		list_count = ARC_BUFC_NUMMETADATALISTS;
2096		offset = count = 0;
2097		goto evict_start;
2098	}
2099
2100	if (bufs_skipped) {
2101		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2102		ASSERT(bytes >= 0);
2103	}
2104
2105	if (bytes_deleted < bytes)
2106		dprintf("only deleted %lld bytes from %p",
2107		    (longlong_t)bytes_deleted, state);
2108}
2109
2110static void
2111arc_adjust(void)
2112{
2113	int64_t adjustment, delta;
2114
2115	/*
2116	 * Adjust MRU size
2117	 */
2118
2119	adjustment = MIN((int64_t)(arc_size - arc_c),
2120	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2121	    arc_p));
2122
2123	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2124		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2125		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2126		adjustment -= delta;
2127	}
2128
2129	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2130		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2131		(void) arc_evict(arc_mru, 0, delta, FALSE,
2132		    ARC_BUFC_METADATA);
2133	}
2134
2135	/*
2136	 * Adjust MFU size
2137	 */
2138
2139	adjustment = arc_size - arc_c;
2140
2141	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2142		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2143		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2144		adjustment -= delta;
2145	}
2146
2147	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2148		int64_t delta = MIN(adjustment,
2149		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2150		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2151		    ARC_BUFC_METADATA);
2152	}
2153
2154	/*
2155	 * Adjust ghost lists
2156	 */
2157
2158	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2159
2160	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2161		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2162		arc_evict_ghost(arc_mru_ghost, 0, delta);
2163	}
2164
2165	adjustment =
2166	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2167
2168	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2169		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2170		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2171	}
2172}
2173
2174static void
2175arc_do_user_evicts(void)
2176{
2177	static arc_buf_t *tmp_arc_eviction_list;
2178
2179	/*
2180	 * Move list over to avoid LOR
2181	 */
2182restart:
2183	mutex_enter(&arc_eviction_mtx);
2184	tmp_arc_eviction_list = arc_eviction_list;
2185	arc_eviction_list = NULL;
2186	mutex_exit(&arc_eviction_mtx);
2187
2188	while (tmp_arc_eviction_list != NULL) {
2189		arc_buf_t *buf = tmp_arc_eviction_list;
2190		tmp_arc_eviction_list = buf->b_next;
2191		mutex_enter(&buf->b_evict_lock);
2192		buf->b_hdr = NULL;
2193		mutex_exit(&buf->b_evict_lock);
2194
2195		if (buf->b_efunc != NULL)
2196			VERIFY(buf->b_efunc(buf) == 0);
2197
2198		buf->b_efunc = NULL;
2199		buf->b_private = NULL;
2200		kmem_cache_free(buf_cache, buf);
2201	}
2202
2203	if (arc_eviction_list != NULL)
2204		goto restart;
2205}
2206
2207/*
2208 * Flush all *evictable* data from the cache for the given spa.
2209 * NOTE: this will not touch "active" (i.e. referenced) data.
2210 */
2211void
2212arc_flush(spa_t *spa)
2213{
2214	uint64_t guid = 0;
2215
2216	if (spa)
2217		guid = spa_load_guid(spa);
2218
2219	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2220		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2221		if (spa)
2222			break;
2223	}
2224	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2225		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2226		if (spa)
2227			break;
2228	}
2229	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2230		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2231		if (spa)
2232			break;
2233	}
2234	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2235		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2236		if (spa)
2237			break;
2238	}
2239
2240	arc_evict_ghost(arc_mru_ghost, guid, -1);
2241	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2242
2243	mutex_enter(&arc_reclaim_thr_lock);
2244	arc_do_user_evicts();
2245	mutex_exit(&arc_reclaim_thr_lock);
2246	ASSERT(spa || arc_eviction_list == NULL);
2247}
2248
2249void
2250arc_shrink(void)
2251{
2252	if (arc_c > arc_c_min) {
2253		uint64_t to_free;
2254
2255#ifdef _KERNEL
2256		to_free = arc_c >> arc_shrink_shift;
2257#else
2258		to_free = arc_c >> arc_shrink_shift;
2259#endif
2260		if (arc_c > arc_c_min + to_free)
2261			atomic_add_64(&arc_c, -to_free);
2262		else
2263			arc_c = arc_c_min;
2264
2265		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2266		if (arc_c > arc_size)
2267			arc_c = MAX(arc_size, arc_c_min);
2268		if (arc_p > arc_c)
2269			arc_p = (arc_c >> 1);
2270		ASSERT(arc_c >= arc_c_min);
2271		ASSERT((int64_t)arc_p >= 0);
2272	}
2273
2274	if (arc_size > arc_c)
2275		arc_adjust();
2276}
2277
2278static int needfree = 0;
2279
2280static int
2281arc_reclaim_needed(void)
2282{
2283
2284#ifdef _KERNEL
2285
2286	if (needfree)
2287		return (1);
2288
2289	/*
2290	 * Cooperate with pagedaemon when it's time for it to scan
2291	 * and reclaim some pages.
2292	 */
2293	if (vm_paging_needed())
2294		return (1);
2295
2296#ifdef sun
2297	/*
2298	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2299	 */
2300	extra = desfree;
2301
2302	/*
2303	 * check that we're out of range of the pageout scanner.  It starts to
2304	 * schedule paging if freemem is less than lotsfree and needfree.
2305	 * lotsfree is the high-water mark for pageout, and needfree is the
2306	 * number of needed free pages.  We add extra pages here to make sure
2307	 * the scanner doesn't start up while we're freeing memory.
2308	 */
2309	if (freemem < lotsfree + needfree + extra)
2310		return (1);
2311
2312	/*
2313	 * check to make sure that swapfs has enough space so that anon
2314	 * reservations can still succeed. anon_resvmem() checks that the
2315	 * availrmem is greater than swapfs_minfree, and the number of reserved
2316	 * swap pages.  We also add a bit of extra here just to prevent
2317	 * circumstances from getting really dire.
2318	 */
2319	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2320		return (1);
2321
2322#if defined(__i386)
2323	/*
2324	 * If we're on an i386 platform, it's possible that we'll exhaust the
2325	 * kernel heap space before we ever run out of available physical
2326	 * memory.  Most checks of the size of the heap_area compare against
2327	 * tune.t_minarmem, which is the minimum available real memory that we
2328	 * can have in the system.  However, this is generally fixed at 25 pages
2329	 * which is so low that it's useless.  In this comparison, we seek to
2330	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2331	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2332	 * free)
2333	 */
2334	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2335	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2336		return (1);
2337#endif
2338#else	/* !sun */
2339	if (kmem_used() > (kmem_size() * 3) / 4)
2340		return (1);
2341#endif	/* sun */
2342
2343#else
2344	if (spa_get_random(100) == 0)
2345		return (1);
2346#endif
2347	return (0);
2348}
2349
2350extern kmem_cache_t	*zio_buf_cache[];
2351extern kmem_cache_t	*zio_data_buf_cache[];
2352
2353static void
2354arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2355{
2356	size_t			i;
2357	kmem_cache_t		*prev_cache = NULL;
2358	kmem_cache_t		*prev_data_cache = NULL;
2359
2360#ifdef _KERNEL
2361	if (arc_meta_used >= arc_meta_limit) {
2362		/*
2363		 * We are exceeding our meta-data cache limit.
2364		 * Purge some DNLC entries to release holds on meta-data.
2365		 */
2366		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2367	}
2368#if defined(__i386)
2369	/*
2370	 * Reclaim unused memory from all kmem caches.
2371	 */
2372	kmem_reap();
2373#endif
2374#endif
2375
2376	/*
2377	 * An aggressive reclamation will shrink the cache size as well as
2378	 * reap free buffers from the arc kmem caches.
2379	 */
2380	if (strat == ARC_RECLAIM_AGGR)
2381		arc_shrink();
2382
2383	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2384		if (zio_buf_cache[i] != prev_cache) {
2385			prev_cache = zio_buf_cache[i];
2386			kmem_cache_reap_now(zio_buf_cache[i]);
2387		}
2388		if (zio_data_buf_cache[i] != prev_data_cache) {
2389			prev_data_cache = zio_data_buf_cache[i];
2390			kmem_cache_reap_now(zio_data_buf_cache[i]);
2391		}
2392	}
2393	kmem_cache_reap_now(buf_cache);
2394	kmem_cache_reap_now(hdr_cache);
2395}
2396
2397static void
2398arc_reclaim_thread(void *dummy __unused)
2399{
2400	clock_t			growtime = 0;
2401	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2402	callb_cpr_t		cpr;
2403
2404	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2405
2406	mutex_enter(&arc_reclaim_thr_lock);
2407	while (arc_thread_exit == 0) {
2408		if (arc_reclaim_needed()) {
2409
2410			if (arc_no_grow) {
2411				if (last_reclaim == ARC_RECLAIM_CONS) {
2412					last_reclaim = ARC_RECLAIM_AGGR;
2413				} else {
2414					last_reclaim = ARC_RECLAIM_CONS;
2415				}
2416			} else {
2417				arc_no_grow = TRUE;
2418				last_reclaim = ARC_RECLAIM_AGGR;
2419				membar_producer();
2420			}
2421
2422			/* reset the growth delay for every reclaim */
2423			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2424
2425			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2426				/*
2427				 * If needfree is TRUE our vm_lowmem hook
2428				 * was called and in that case we must free some
2429				 * memory, so switch to aggressive mode.
2430				 */
2431				arc_no_grow = TRUE;
2432				last_reclaim = ARC_RECLAIM_AGGR;
2433			}
2434			arc_kmem_reap_now(last_reclaim);
2435			arc_warm = B_TRUE;
2436
2437		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2438			arc_no_grow = FALSE;
2439		}
2440
2441		arc_adjust();
2442
2443		if (arc_eviction_list != NULL)
2444			arc_do_user_evicts();
2445
2446#ifdef _KERNEL
2447		if (needfree) {
2448			needfree = 0;
2449			wakeup(&needfree);
2450		}
2451#endif
2452
2453		/* block until needed, or one second, whichever is shorter */
2454		CALLB_CPR_SAFE_BEGIN(&cpr);
2455		(void) cv_timedwait(&arc_reclaim_thr_cv,
2456		    &arc_reclaim_thr_lock, hz);
2457		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2458	}
2459
2460	arc_thread_exit = 0;
2461	cv_broadcast(&arc_reclaim_thr_cv);
2462	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2463	thread_exit();
2464}
2465
2466/*
2467 * Adapt arc info given the number of bytes we are trying to add and
2468 * the state that we are comming from.  This function is only called
2469 * when we are adding new content to the cache.
2470 */
2471static void
2472arc_adapt(int bytes, arc_state_t *state)
2473{
2474	int mult;
2475	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2476
2477	if (state == arc_l2c_only)
2478		return;
2479
2480	ASSERT(bytes > 0);
2481	/*
2482	 * Adapt the target size of the MRU list:
2483	 *	- if we just hit in the MRU ghost list, then increase
2484	 *	  the target size of the MRU list.
2485	 *	- if we just hit in the MFU ghost list, then increase
2486	 *	  the target size of the MFU list by decreasing the
2487	 *	  target size of the MRU list.
2488	 */
2489	if (state == arc_mru_ghost) {
2490		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2491		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2492		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2493
2494		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2495	} else if (state == arc_mfu_ghost) {
2496		uint64_t delta;
2497
2498		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2499		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2500		mult = MIN(mult, 10);
2501
2502		delta = MIN(bytes * mult, arc_p);
2503		arc_p = MAX(arc_p_min, arc_p - delta);
2504	}
2505	ASSERT((int64_t)arc_p >= 0);
2506
2507	if (arc_reclaim_needed()) {
2508		cv_signal(&arc_reclaim_thr_cv);
2509		return;
2510	}
2511
2512	if (arc_no_grow)
2513		return;
2514
2515	if (arc_c >= arc_c_max)
2516		return;
2517
2518	/*
2519	 * If we're within (2 * maxblocksize) bytes of the target
2520	 * cache size, increment the target cache size
2521	 */
2522	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2523		atomic_add_64(&arc_c, (int64_t)bytes);
2524		if (arc_c > arc_c_max)
2525			arc_c = arc_c_max;
2526		else if (state == arc_anon)
2527			atomic_add_64(&arc_p, (int64_t)bytes);
2528		if (arc_p > arc_c)
2529			arc_p = arc_c;
2530	}
2531	ASSERT((int64_t)arc_p >= 0);
2532}
2533
2534/*
2535 * Check if the cache has reached its limits and eviction is required
2536 * prior to insert.
2537 */
2538static int
2539arc_evict_needed(arc_buf_contents_t type)
2540{
2541	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2542		return (1);
2543
2544#ifdef sun
2545#ifdef _KERNEL
2546	/*
2547	 * If zio data pages are being allocated out of a separate heap segment,
2548	 * then enforce that the size of available vmem for this area remains
2549	 * above about 1/32nd free.
2550	 */
2551	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2552	    vmem_size(zio_arena, VMEM_FREE) <
2553	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2554		return (1);
2555#endif
2556#endif	/* sun */
2557
2558	if (arc_reclaim_needed())
2559		return (1);
2560
2561	return (arc_size > arc_c);
2562}
2563
2564/*
2565 * The buffer, supplied as the first argument, needs a data block.
2566 * So, if we are at cache max, determine which cache should be victimized.
2567 * We have the following cases:
2568 *
2569 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2570 * In this situation if we're out of space, but the resident size of the MFU is
2571 * under the limit, victimize the MFU cache to satisfy this insertion request.
2572 *
2573 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2574 * Here, we've used up all of the available space for the MRU, so we need to
2575 * evict from our own cache instead.  Evict from the set of resident MRU
2576 * entries.
2577 *
2578 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2579 * c minus p represents the MFU space in the cache, since p is the size of the
2580 * cache that is dedicated to the MRU.  In this situation there's still space on
2581 * the MFU side, so the MRU side needs to be victimized.
2582 *
2583 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2584 * MFU's resident set is consuming more space than it has been allotted.  In
2585 * this situation, we must victimize our own cache, the MFU, for this insertion.
2586 */
2587static void
2588arc_get_data_buf(arc_buf_t *buf)
2589{
2590	arc_state_t		*state = buf->b_hdr->b_state;
2591	uint64_t		size = buf->b_hdr->b_size;
2592	arc_buf_contents_t	type = buf->b_hdr->b_type;
2593
2594	arc_adapt(size, state);
2595
2596	/*
2597	 * We have not yet reached cache maximum size,
2598	 * just allocate a new buffer.
2599	 */
2600	if (!arc_evict_needed(type)) {
2601		if (type == ARC_BUFC_METADATA) {
2602			buf->b_data = zio_buf_alloc(size);
2603			arc_space_consume(size, ARC_SPACE_DATA);
2604		} else {
2605			ASSERT(type == ARC_BUFC_DATA);
2606			buf->b_data = zio_data_buf_alloc(size);
2607			ARCSTAT_INCR(arcstat_data_size, size);
2608			atomic_add_64(&arc_size, size);
2609		}
2610		goto out;
2611	}
2612
2613	/*
2614	 * If we are prefetching from the mfu ghost list, this buffer
2615	 * will end up on the mru list; so steal space from there.
2616	 */
2617	if (state == arc_mfu_ghost)
2618		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2619	else if (state == arc_mru_ghost)
2620		state = arc_mru;
2621
2622	if (state == arc_mru || state == arc_anon) {
2623		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2624		state = (arc_mfu->arcs_lsize[type] >= size &&
2625		    arc_p > mru_used) ? arc_mfu : arc_mru;
2626	} else {
2627		/* MFU cases */
2628		uint64_t mfu_space = arc_c - arc_p;
2629		state =  (arc_mru->arcs_lsize[type] >= size &&
2630		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2631	}
2632	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2633		if (type == ARC_BUFC_METADATA) {
2634			buf->b_data = zio_buf_alloc(size);
2635			arc_space_consume(size, ARC_SPACE_DATA);
2636		} else {
2637			ASSERT(type == ARC_BUFC_DATA);
2638			buf->b_data = zio_data_buf_alloc(size);
2639			ARCSTAT_INCR(arcstat_data_size, size);
2640			atomic_add_64(&arc_size, size);
2641		}
2642		ARCSTAT_BUMP(arcstat_recycle_miss);
2643	}
2644	ASSERT(buf->b_data != NULL);
2645out:
2646	/*
2647	 * Update the state size.  Note that ghost states have a
2648	 * "ghost size" and so don't need to be updated.
2649	 */
2650	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2651		arc_buf_hdr_t *hdr = buf->b_hdr;
2652
2653		atomic_add_64(&hdr->b_state->arcs_size, size);
2654		if (list_link_active(&hdr->b_arc_node)) {
2655			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2656			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2657		}
2658		/*
2659		 * If we are growing the cache, and we are adding anonymous
2660		 * data, and we have outgrown arc_p, update arc_p
2661		 */
2662		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2663		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2664			arc_p = MIN(arc_c, arc_p + size);
2665	}
2666	ARCSTAT_BUMP(arcstat_allocated);
2667}
2668
2669/*
2670 * This routine is called whenever a buffer is accessed.
2671 * NOTE: the hash lock is dropped in this function.
2672 */
2673static void
2674arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2675{
2676	clock_t now;
2677
2678	ASSERT(MUTEX_HELD(hash_lock));
2679
2680	if (buf->b_state == arc_anon) {
2681		/*
2682		 * This buffer is not in the cache, and does not
2683		 * appear in our "ghost" list.  Add the new buffer
2684		 * to the MRU state.
2685		 */
2686
2687		ASSERT(buf->b_arc_access == 0);
2688		buf->b_arc_access = ddi_get_lbolt();
2689		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2690		arc_change_state(arc_mru, buf, hash_lock);
2691
2692	} else if (buf->b_state == arc_mru) {
2693		now = ddi_get_lbolt();
2694
2695		/*
2696		 * If this buffer is here because of a prefetch, then either:
2697		 * - clear the flag if this is a "referencing" read
2698		 *   (any subsequent access will bump this into the MFU state).
2699		 * or
2700		 * - move the buffer to the head of the list if this is
2701		 *   another prefetch (to make it less likely to be evicted).
2702		 */
2703		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2704			if (refcount_count(&buf->b_refcnt) == 0) {
2705				ASSERT(list_link_active(&buf->b_arc_node));
2706			} else {
2707				buf->b_flags &= ~ARC_PREFETCH;
2708				ARCSTAT_BUMP(arcstat_mru_hits);
2709			}
2710			buf->b_arc_access = now;
2711			return;
2712		}
2713
2714		/*
2715		 * This buffer has been "accessed" only once so far,
2716		 * but it is still in the cache. Move it to the MFU
2717		 * state.
2718		 */
2719		if (now > buf->b_arc_access + ARC_MINTIME) {
2720			/*
2721			 * More than 125ms have passed since we
2722			 * instantiated this buffer.  Move it to the
2723			 * most frequently used state.
2724			 */
2725			buf->b_arc_access = now;
2726			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2727			arc_change_state(arc_mfu, buf, hash_lock);
2728		}
2729		ARCSTAT_BUMP(arcstat_mru_hits);
2730	} else if (buf->b_state == arc_mru_ghost) {
2731		arc_state_t	*new_state;
2732		/*
2733		 * This buffer has been "accessed" recently, but
2734		 * was evicted from the cache.  Move it to the
2735		 * MFU state.
2736		 */
2737
2738		if (buf->b_flags & ARC_PREFETCH) {
2739			new_state = arc_mru;
2740			if (refcount_count(&buf->b_refcnt) > 0)
2741				buf->b_flags &= ~ARC_PREFETCH;
2742			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2743		} else {
2744			new_state = arc_mfu;
2745			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2746		}
2747
2748		buf->b_arc_access = ddi_get_lbolt();
2749		arc_change_state(new_state, buf, hash_lock);
2750
2751		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2752	} else if (buf->b_state == arc_mfu) {
2753		/*
2754		 * This buffer has been accessed more than once and is
2755		 * still in the cache.  Keep it in the MFU state.
2756		 *
2757		 * NOTE: an add_reference() that occurred when we did
2758		 * the arc_read() will have kicked this off the list.
2759		 * If it was a prefetch, we will explicitly move it to
2760		 * the head of the list now.
2761		 */
2762		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2763			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2764			ASSERT(list_link_active(&buf->b_arc_node));
2765		}
2766		ARCSTAT_BUMP(arcstat_mfu_hits);
2767		buf->b_arc_access = ddi_get_lbolt();
2768	} else if (buf->b_state == arc_mfu_ghost) {
2769		arc_state_t	*new_state = arc_mfu;
2770		/*
2771		 * This buffer has been accessed more than once but has
2772		 * been evicted from the cache.  Move it back to the
2773		 * MFU state.
2774		 */
2775
2776		if (buf->b_flags & ARC_PREFETCH) {
2777			/*
2778			 * This is a prefetch access...
2779			 * move this block back to the MRU state.
2780			 */
2781			ASSERT0(refcount_count(&buf->b_refcnt));
2782			new_state = arc_mru;
2783		}
2784
2785		buf->b_arc_access = ddi_get_lbolt();
2786		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2787		arc_change_state(new_state, buf, hash_lock);
2788
2789		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2790	} else if (buf->b_state == arc_l2c_only) {
2791		/*
2792		 * This buffer is on the 2nd Level ARC.
2793		 */
2794
2795		buf->b_arc_access = ddi_get_lbolt();
2796		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2797		arc_change_state(arc_mfu, buf, hash_lock);
2798	} else {
2799		ASSERT(!"invalid arc state");
2800	}
2801}
2802
2803/* a generic arc_done_func_t which you can use */
2804/* ARGSUSED */
2805void
2806arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2807{
2808	if (zio == NULL || zio->io_error == 0)
2809		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2810	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2811}
2812
2813/* a generic arc_done_func_t */
2814void
2815arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2816{
2817	arc_buf_t **bufp = arg;
2818	if (zio && zio->io_error) {
2819		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2820		*bufp = NULL;
2821	} else {
2822		*bufp = buf;
2823		ASSERT(buf->b_data);
2824	}
2825}
2826
2827static void
2828arc_read_done(zio_t *zio)
2829{
2830	arc_buf_hdr_t	*hdr, *found;
2831	arc_buf_t	*buf;
2832	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2833	kmutex_t	*hash_lock;
2834	arc_callback_t	*callback_list, *acb;
2835	int		freeable = FALSE;
2836
2837	buf = zio->io_private;
2838	hdr = buf->b_hdr;
2839
2840	/*
2841	 * The hdr was inserted into hash-table and removed from lists
2842	 * prior to starting I/O.  We should find this header, since
2843	 * it's in the hash table, and it should be legit since it's
2844	 * not possible to evict it during the I/O.  The only possible
2845	 * reason for it not to be found is if we were freed during the
2846	 * read.
2847	 */
2848	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2849	    &hash_lock);
2850
2851	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2852	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2853	    (found == hdr && HDR_L2_READING(hdr)));
2854
2855	hdr->b_flags &= ~ARC_L2_EVICTED;
2856	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2857		hdr->b_flags &= ~ARC_L2CACHE;
2858
2859	/* byteswap if necessary */
2860	callback_list = hdr->b_acb;
2861	ASSERT(callback_list != NULL);
2862	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2863		dmu_object_byteswap_t bswap =
2864		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2865		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2866		    byteswap_uint64_array :
2867		    dmu_ot_byteswap[bswap].ob_func;
2868		func(buf->b_data, hdr->b_size);
2869	}
2870
2871	arc_cksum_compute(buf, B_FALSE);
2872#ifdef illumos
2873	arc_buf_watch(buf);
2874#endif /* illumos */
2875
2876	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2877		/*
2878		 * Only call arc_access on anonymous buffers.  This is because
2879		 * if we've issued an I/O for an evicted buffer, we've already
2880		 * called arc_access (to prevent any simultaneous readers from
2881		 * getting confused).
2882		 */
2883		arc_access(hdr, hash_lock);
2884	}
2885
2886	/* create copies of the data buffer for the callers */
2887	abuf = buf;
2888	for (acb = callback_list; acb; acb = acb->acb_next) {
2889		if (acb->acb_done) {
2890			if (abuf == NULL)
2891				abuf = arc_buf_clone(buf);
2892			acb->acb_buf = abuf;
2893			abuf = NULL;
2894		}
2895	}
2896	hdr->b_acb = NULL;
2897	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2898	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2899	if (abuf == buf) {
2900		ASSERT(buf->b_efunc == NULL);
2901		ASSERT(hdr->b_datacnt == 1);
2902		hdr->b_flags |= ARC_BUF_AVAILABLE;
2903	}
2904
2905	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2906
2907	if (zio->io_error != 0) {
2908		hdr->b_flags |= ARC_IO_ERROR;
2909		if (hdr->b_state != arc_anon)
2910			arc_change_state(arc_anon, hdr, hash_lock);
2911		if (HDR_IN_HASH_TABLE(hdr))
2912			buf_hash_remove(hdr);
2913		freeable = refcount_is_zero(&hdr->b_refcnt);
2914	}
2915
2916	/*
2917	 * Broadcast before we drop the hash_lock to avoid the possibility
2918	 * that the hdr (and hence the cv) might be freed before we get to
2919	 * the cv_broadcast().
2920	 */
2921	cv_broadcast(&hdr->b_cv);
2922
2923	if (hash_lock) {
2924		mutex_exit(hash_lock);
2925	} else {
2926		/*
2927		 * This block was freed while we waited for the read to
2928		 * complete.  It has been removed from the hash table and
2929		 * moved to the anonymous state (so that it won't show up
2930		 * in the cache).
2931		 */
2932		ASSERT3P(hdr->b_state, ==, arc_anon);
2933		freeable = refcount_is_zero(&hdr->b_refcnt);
2934	}
2935
2936	/* execute each callback and free its structure */
2937	while ((acb = callback_list) != NULL) {
2938		if (acb->acb_done)
2939			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2940
2941		if (acb->acb_zio_dummy != NULL) {
2942			acb->acb_zio_dummy->io_error = zio->io_error;
2943			zio_nowait(acb->acb_zio_dummy);
2944		}
2945
2946		callback_list = acb->acb_next;
2947		kmem_free(acb, sizeof (arc_callback_t));
2948	}
2949
2950	if (freeable)
2951		arc_hdr_destroy(hdr);
2952}
2953
2954/*
2955 * "Read" the block block at the specified DVA (in bp) via the
2956 * cache.  If the block is found in the cache, invoke the provided
2957 * callback immediately and return.  Note that the `zio' parameter
2958 * in the callback will be NULL in this case, since no IO was
2959 * required.  If the block is not in the cache pass the read request
2960 * on to the spa with a substitute callback function, so that the
2961 * requested block will be added to the cache.
2962 *
2963 * If a read request arrives for a block that has a read in-progress,
2964 * either wait for the in-progress read to complete (and return the
2965 * results); or, if this is a read with a "done" func, add a record
2966 * to the read to invoke the "done" func when the read completes,
2967 * and return; or just return.
2968 *
2969 * arc_read_done() will invoke all the requested "done" functions
2970 * for readers of this block.
2971 *
2972 * Normal callers should use arc_read and pass the arc buffer and offset
2973 * for the bp.  But if you know you don't need locking, you can use
2974 * arc_read_nolock.
2975 */
2976int
2977arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2978    arc_done_func_t *done, void *private, int priority, int zio_flags,
2979    uint32_t *arc_flags, const zbookmark_t *zb)
2980{
2981	int err;
2982
2983	if (pbuf == NULL) {
2984		/*
2985		 * XXX This happens from traverse callback funcs, for
2986		 * the objset_phys_t block.
2987		 */
2988		return (arc_read_nolock(pio, spa, bp, done, private, priority,
2989		    zio_flags, arc_flags, zb));
2990	}
2991
2992	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2993	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2994	rw_enter(&pbuf->b_data_lock, RW_READER);
2995
2996	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2997	    zio_flags, arc_flags, zb);
2998	rw_exit(&pbuf->b_data_lock);
2999
3000	return (err);
3001}
3002
3003int
3004arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
3005    arc_done_func_t *done, void *private, int priority, int zio_flags,
3006    uint32_t *arc_flags, const zbookmark_t *zb)
3007{
3008	arc_buf_hdr_t *hdr;
3009	arc_buf_t *buf;
3010	kmutex_t *hash_lock;
3011	zio_t *rzio;
3012	uint64_t guid = spa_load_guid(spa);
3013
3014top:
3015	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3016	    &hash_lock);
3017	if (hdr && hdr->b_datacnt > 0) {
3018
3019		*arc_flags |= ARC_CACHED;
3020
3021		if (HDR_IO_IN_PROGRESS(hdr)) {
3022
3023			if (*arc_flags & ARC_WAIT) {
3024				cv_wait(&hdr->b_cv, hash_lock);
3025				mutex_exit(hash_lock);
3026				goto top;
3027			}
3028			ASSERT(*arc_flags & ARC_NOWAIT);
3029
3030			if (done) {
3031				arc_callback_t	*acb = NULL;
3032
3033				acb = kmem_zalloc(sizeof (arc_callback_t),
3034				    KM_SLEEP);
3035				acb->acb_done = done;
3036				acb->acb_private = private;
3037				if (pio != NULL)
3038					acb->acb_zio_dummy = zio_null(pio,
3039					    spa, NULL, NULL, NULL, zio_flags);
3040
3041				ASSERT(acb->acb_done != NULL);
3042				acb->acb_next = hdr->b_acb;
3043				hdr->b_acb = acb;
3044				add_reference(hdr, hash_lock, private);
3045				mutex_exit(hash_lock);
3046				return (0);
3047			}
3048			mutex_exit(hash_lock);
3049			return (0);
3050		}
3051
3052		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3053
3054		if (done) {
3055			add_reference(hdr, hash_lock, private);
3056			/*
3057			 * If this block is already in use, create a new
3058			 * copy of the data so that we will be guaranteed
3059			 * that arc_release() will always succeed.
3060			 */
3061			buf = hdr->b_buf;
3062			ASSERT(buf);
3063			ASSERT(buf->b_data);
3064			if (HDR_BUF_AVAILABLE(hdr)) {
3065				ASSERT(buf->b_efunc == NULL);
3066				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3067			} else {
3068				buf = arc_buf_clone(buf);
3069			}
3070
3071		} else if (*arc_flags & ARC_PREFETCH &&
3072		    refcount_count(&hdr->b_refcnt) == 0) {
3073			hdr->b_flags |= ARC_PREFETCH;
3074		}
3075		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3076		arc_access(hdr, hash_lock);
3077		if (*arc_flags & ARC_L2CACHE)
3078			hdr->b_flags |= ARC_L2CACHE;
3079		mutex_exit(hash_lock);
3080		ARCSTAT_BUMP(arcstat_hits);
3081		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3082		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3083		    data, metadata, hits);
3084
3085		if (done)
3086			done(NULL, buf, private);
3087	} else {
3088		uint64_t size = BP_GET_LSIZE(bp);
3089		arc_callback_t	*acb;
3090		vdev_t *vd = NULL;
3091		uint64_t addr;
3092		boolean_t devw = B_FALSE;
3093
3094		if (hdr == NULL) {
3095			/* this block is not in the cache */
3096			arc_buf_hdr_t	*exists;
3097			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3098			buf = arc_buf_alloc(spa, size, private, type);
3099			hdr = buf->b_hdr;
3100			hdr->b_dva = *BP_IDENTITY(bp);
3101			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3102			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3103			exists = buf_hash_insert(hdr, &hash_lock);
3104			if (exists) {
3105				/* somebody beat us to the hash insert */
3106				mutex_exit(hash_lock);
3107				buf_discard_identity(hdr);
3108				(void) arc_buf_remove_ref(buf, private);
3109				goto top; /* restart the IO request */
3110			}
3111			/* if this is a prefetch, we don't have a reference */
3112			if (*arc_flags & ARC_PREFETCH) {
3113				(void) remove_reference(hdr, hash_lock,
3114				    private);
3115				hdr->b_flags |= ARC_PREFETCH;
3116			}
3117			if (*arc_flags & ARC_L2CACHE)
3118				hdr->b_flags |= ARC_L2CACHE;
3119			if (BP_GET_LEVEL(bp) > 0)
3120				hdr->b_flags |= ARC_INDIRECT;
3121		} else {
3122			/* this block is in the ghost cache */
3123			ASSERT(GHOST_STATE(hdr->b_state));
3124			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3125			ASSERT0(refcount_count(&hdr->b_refcnt));
3126			ASSERT(hdr->b_buf == NULL);
3127
3128			/* if this is a prefetch, we don't have a reference */
3129			if (*arc_flags & ARC_PREFETCH)
3130				hdr->b_flags |= ARC_PREFETCH;
3131			else
3132				add_reference(hdr, hash_lock, private);
3133			if (*arc_flags & ARC_L2CACHE)
3134				hdr->b_flags |= ARC_L2CACHE;
3135			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3136			buf->b_hdr = hdr;
3137			buf->b_data = NULL;
3138			buf->b_efunc = NULL;
3139			buf->b_private = NULL;
3140			buf->b_next = NULL;
3141			hdr->b_buf = buf;
3142			ASSERT(hdr->b_datacnt == 0);
3143			hdr->b_datacnt = 1;
3144			arc_get_data_buf(buf);
3145			arc_access(hdr, hash_lock);
3146		}
3147
3148		ASSERT(!GHOST_STATE(hdr->b_state));
3149
3150		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3151		acb->acb_done = done;
3152		acb->acb_private = private;
3153
3154		ASSERT(hdr->b_acb == NULL);
3155		hdr->b_acb = acb;
3156		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3157
3158		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3159		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3160			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3161			addr = hdr->b_l2hdr->b_daddr;
3162			/*
3163			 * Lock out device removal.
3164			 */
3165			if (vdev_is_dead(vd) ||
3166			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3167				vd = NULL;
3168		}
3169
3170		mutex_exit(hash_lock);
3171
3172		ASSERT3U(hdr->b_size, ==, size);
3173		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3174		    uint64_t, size, zbookmark_t *, zb);
3175		ARCSTAT_BUMP(arcstat_misses);
3176		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3177		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3178		    data, metadata, misses);
3179#ifdef _KERNEL
3180		curthread->td_ru.ru_inblock++;
3181#endif
3182
3183		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3184			/*
3185			 * Read from the L2ARC if the following are true:
3186			 * 1. The L2ARC vdev was previously cached.
3187			 * 2. This buffer still has L2ARC metadata.
3188			 * 3. This buffer isn't currently writing to the L2ARC.
3189			 * 4. The L2ARC entry wasn't evicted, which may
3190			 *    also have invalidated the vdev.
3191			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3192			 */
3193			if (hdr->b_l2hdr != NULL &&
3194			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3195			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3196				l2arc_read_callback_t *cb;
3197
3198				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3199				ARCSTAT_BUMP(arcstat_l2_hits);
3200
3201				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3202				    KM_SLEEP);
3203				cb->l2rcb_buf = buf;
3204				cb->l2rcb_spa = spa;
3205				cb->l2rcb_bp = *bp;
3206				cb->l2rcb_zb = *zb;
3207				cb->l2rcb_flags = zio_flags;
3208
3209				/*
3210				 * l2arc read.  The SCL_L2ARC lock will be
3211				 * released by l2arc_read_done().
3212				 */
3213				rzio = zio_read_phys(pio, vd, addr, size,
3214				    buf->b_data, ZIO_CHECKSUM_OFF,
3215				    l2arc_read_done, cb, priority, zio_flags |
3216				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3217				    ZIO_FLAG_DONT_PROPAGATE |
3218				    ZIO_FLAG_DONT_RETRY, B_FALSE);
3219				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3220				    zio_t *, rzio);
3221				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3222
3223				if (*arc_flags & ARC_NOWAIT) {
3224					zio_nowait(rzio);
3225					return (0);
3226				}
3227
3228				ASSERT(*arc_flags & ARC_WAIT);
3229				if (zio_wait(rzio) == 0)
3230					return (0);
3231
3232				/* l2arc read error; goto zio_read() */
3233			} else {
3234				DTRACE_PROBE1(l2arc__miss,
3235				    arc_buf_hdr_t *, hdr);
3236				ARCSTAT_BUMP(arcstat_l2_misses);
3237				if (HDR_L2_WRITING(hdr))
3238					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3239				spa_config_exit(spa, SCL_L2ARC, vd);
3240			}
3241		} else {
3242			if (vd != NULL)
3243				spa_config_exit(spa, SCL_L2ARC, vd);
3244			if (l2arc_ndev != 0) {
3245				DTRACE_PROBE1(l2arc__miss,
3246				    arc_buf_hdr_t *, hdr);
3247				ARCSTAT_BUMP(arcstat_l2_misses);
3248			}
3249		}
3250
3251		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3252		    arc_read_done, buf, priority, zio_flags, zb);
3253
3254		if (*arc_flags & ARC_WAIT)
3255			return (zio_wait(rzio));
3256
3257		ASSERT(*arc_flags & ARC_NOWAIT);
3258		zio_nowait(rzio);
3259	}
3260	return (0);
3261}
3262
3263void
3264arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3265{
3266	ASSERT(buf->b_hdr != NULL);
3267	ASSERT(buf->b_hdr->b_state != arc_anon);
3268	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3269	ASSERT(buf->b_efunc == NULL);
3270	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3271
3272	buf->b_efunc = func;
3273	buf->b_private = private;
3274}
3275
3276/*
3277 * This is used by the DMU to let the ARC know that a buffer is
3278 * being evicted, so the ARC should clean up.  If this arc buf
3279 * is not yet in the evicted state, it will be put there.
3280 */
3281int
3282arc_buf_evict(arc_buf_t *buf)
3283{
3284	arc_buf_hdr_t *hdr;
3285	kmutex_t *hash_lock;
3286	arc_buf_t **bufp;
3287	list_t *list, *evicted_list;
3288	kmutex_t *lock, *evicted_lock;
3289
3290	mutex_enter(&buf->b_evict_lock);
3291	hdr = buf->b_hdr;
3292	if (hdr == NULL) {
3293		/*
3294		 * We are in arc_do_user_evicts().
3295		 */
3296		ASSERT(buf->b_data == NULL);
3297		mutex_exit(&buf->b_evict_lock);
3298		return (0);
3299	} else if (buf->b_data == NULL) {
3300		arc_buf_t copy = *buf; /* structure assignment */
3301		/*
3302		 * We are on the eviction list; process this buffer now
3303		 * but let arc_do_user_evicts() do the reaping.
3304		 */
3305		buf->b_efunc = NULL;
3306		mutex_exit(&buf->b_evict_lock);
3307		VERIFY(copy.b_efunc(&copy) == 0);
3308		return (1);
3309	}
3310	hash_lock = HDR_LOCK(hdr);
3311	mutex_enter(hash_lock);
3312	hdr = buf->b_hdr;
3313	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3314
3315	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3316	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3317
3318	/*
3319	 * Pull this buffer off of the hdr
3320	 */
3321	bufp = &hdr->b_buf;
3322	while (*bufp != buf)
3323		bufp = &(*bufp)->b_next;
3324	*bufp = buf->b_next;
3325
3326	ASSERT(buf->b_data != NULL);
3327	arc_buf_destroy(buf, FALSE, FALSE);
3328
3329	if (hdr->b_datacnt == 0) {
3330		arc_state_t *old_state = hdr->b_state;
3331		arc_state_t *evicted_state;
3332
3333		ASSERT(hdr->b_buf == NULL);
3334		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3335
3336		evicted_state =
3337		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3338
3339		get_buf_info(hdr, old_state, &list, &lock);
3340		get_buf_info(hdr, evicted_state, &evicted_list, &evicted_lock);
3341		mutex_enter(lock);
3342		mutex_enter(evicted_lock);
3343
3344		arc_change_state(evicted_state, hdr, hash_lock);
3345		ASSERT(HDR_IN_HASH_TABLE(hdr));
3346		hdr->b_flags |= ARC_IN_HASH_TABLE;
3347		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3348
3349		mutex_exit(evicted_lock);
3350		mutex_exit(lock);
3351	}
3352	mutex_exit(hash_lock);
3353	mutex_exit(&buf->b_evict_lock);
3354
3355	VERIFY(buf->b_efunc(buf) == 0);
3356	buf->b_efunc = NULL;
3357	buf->b_private = NULL;
3358	buf->b_hdr = NULL;
3359	buf->b_next = NULL;
3360	kmem_cache_free(buf_cache, buf);
3361	return (1);
3362}
3363
3364/*
3365 * Release this buffer from the cache.  This must be done
3366 * after a read and prior to modifying the buffer contents.
3367 * If the buffer has more than one reference, we must make
3368 * a new hdr for the buffer.
3369 */
3370void
3371arc_release(arc_buf_t *buf, void *tag)
3372{
3373	arc_buf_hdr_t *hdr;
3374	kmutex_t *hash_lock = NULL;
3375	l2arc_buf_hdr_t *l2hdr;
3376	uint64_t buf_size;
3377
3378	/*
3379	 * It would be nice to assert that if it's DMU metadata (level >
3380	 * 0 || it's the dnode file), then it must be syncing context.
3381	 * But we don't know that information at this level.
3382	 */
3383
3384	mutex_enter(&buf->b_evict_lock);
3385	hdr = buf->b_hdr;
3386
3387	/* this buffer is not on any list */
3388	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3389
3390	if (hdr->b_state == arc_anon) {
3391		/* this buffer is already released */
3392		ASSERT(buf->b_efunc == NULL);
3393	} else {
3394		hash_lock = HDR_LOCK(hdr);
3395		mutex_enter(hash_lock);
3396		hdr = buf->b_hdr;
3397		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3398	}
3399
3400	l2hdr = hdr->b_l2hdr;
3401	if (l2hdr) {
3402		mutex_enter(&l2arc_buflist_mtx);
3403		hdr->b_l2hdr = NULL;
3404		buf_size = hdr->b_size;
3405	}
3406
3407	/*
3408	 * Do we have more than one buf?
3409	 */
3410	if (hdr->b_datacnt > 1) {
3411		arc_buf_hdr_t *nhdr;
3412		arc_buf_t **bufp;
3413		uint64_t blksz = hdr->b_size;
3414		uint64_t spa = hdr->b_spa;
3415		arc_buf_contents_t type = hdr->b_type;
3416		uint32_t flags = hdr->b_flags;
3417
3418		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3419		/*
3420		 * Pull the data off of this hdr and attach it to
3421		 * a new anonymous hdr.
3422		 */
3423		(void) remove_reference(hdr, hash_lock, tag);
3424		bufp = &hdr->b_buf;
3425		while (*bufp != buf)
3426			bufp = &(*bufp)->b_next;
3427		*bufp = buf->b_next;
3428		buf->b_next = NULL;
3429
3430		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3431		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3432		if (refcount_is_zero(&hdr->b_refcnt)) {
3433			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3434			ASSERT3U(*size, >=, hdr->b_size);
3435			atomic_add_64(size, -hdr->b_size);
3436		}
3437		hdr->b_datacnt -= 1;
3438		arc_cksum_verify(buf);
3439#ifdef illumos
3440		arc_buf_unwatch(buf);
3441#endif /* illumos */
3442
3443		mutex_exit(hash_lock);
3444
3445		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3446		nhdr->b_size = blksz;
3447		nhdr->b_spa = spa;
3448		nhdr->b_type = type;
3449		nhdr->b_buf = buf;
3450		nhdr->b_state = arc_anon;
3451		nhdr->b_arc_access = 0;
3452		nhdr->b_flags = flags & ARC_L2_WRITING;
3453		nhdr->b_l2hdr = NULL;
3454		nhdr->b_datacnt = 1;
3455		nhdr->b_freeze_cksum = NULL;
3456		(void) refcount_add(&nhdr->b_refcnt, tag);
3457		buf->b_hdr = nhdr;
3458		mutex_exit(&buf->b_evict_lock);
3459		atomic_add_64(&arc_anon->arcs_size, blksz);
3460	} else {
3461		mutex_exit(&buf->b_evict_lock);
3462		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3463		ASSERT(!list_link_active(&hdr->b_arc_node));
3464		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3465		if (hdr->b_state != arc_anon)
3466			arc_change_state(arc_anon, hdr, hash_lock);
3467		hdr->b_arc_access = 0;
3468		if (hash_lock)
3469			mutex_exit(hash_lock);
3470
3471		buf_discard_identity(hdr);
3472		arc_buf_thaw(buf);
3473	}
3474	buf->b_efunc = NULL;
3475	buf->b_private = NULL;
3476
3477	if (l2hdr) {
3478		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3479		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3480		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3481		mutex_exit(&l2arc_buflist_mtx);
3482	}
3483}
3484
3485/*
3486 * Release this buffer.  If it does not match the provided BP, fill it
3487 * with that block's contents.
3488 */
3489/* ARGSUSED */
3490int
3491arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3492    zbookmark_t *zb)
3493{
3494	arc_release(buf, tag);
3495	return (0);
3496}
3497
3498int
3499arc_released(arc_buf_t *buf)
3500{
3501	int released;
3502
3503	mutex_enter(&buf->b_evict_lock);
3504	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3505	mutex_exit(&buf->b_evict_lock);
3506	return (released);
3507}
3508
3509int
3510arc_has_callback(arc_buf_t *buf)
3511{
3512	int callback;
3513
3514	mutex_enter(&buf->b_evict_lock);
3515	callback = (buf->b_efunc != NULL);
3516	mutex_exit(&buf->b_evict_lock);
3517	return (callback);
3518}
3519
3520#ifdef ZFS_DEBUG
3521int
3522arc_referenced(arc_buf_t *buf)
3523{
3524	int referenced;
3525
3526	mutex_enter(&buf->b_evict_lock);
3527	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3528	mutex_exit(&buf->b_evict_lock);
3529	return (referenced);
3530}
3531#endif
3532
3533static void
3534arc_write_ready(zio_t *zio)
3535{
3536	arc_write_callback_t *callback = zio->io_private;
3537	arc_buf_t *buf = callback->awcb_buf;
3538	arc_buf_hdr_t *hdr = buf->b_hdr;
3539
3540	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3541	callback->awcb_ready(zio, buf, callback->awcb_private);
3542
3543	/*
3544	 * If the IO is already in progress, then this is a re-write
3545	 * attempt, so we need to thaw and re-compute the cksum.
3546	 * It is the responsibility of the callback to handle the
3547	 * accounting for any re-write attempt.
3548	 */
3549	if (HDR_IO_IN_PROGRESS(hdr)) {
3550		mutex_enter(&hdr->b_freeze_lock);
3551		if (hdr->b_freeze_cksum != NULL) {
3552			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3553			hdr->b_freeze_cksum = NULL;
3554		}
3555		mutex_exit(&hdr->b_freeze_lock);
3556	}
3557	arc_cksum_compute(buf, B_FALSE);
3558	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3559}
3560
3561static void
3562arc_write_done(zio_t *zio)
3563{
3564	arc_write_callback_t *callback = zio->io_private;
3565	arc_buf_t *buf = callback->awcb_buf;
3566	arc_buf_hdr_t *hdr = buf->b_hdr;
3567
3568	ASSERT(hdr->b_acb == NULL);
3569
3570	if (zio->io_error == 0) {
3571		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3572		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3573		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3574	} else {
3575		ASSERT(BUF_EMPTY(hdr));
3576	}
3577
3578	/*
3579	 * If the block to be written was all-zero, we may have
3580	 * compressed it away.  In this case no write was performed
3581	 * so there will be no dva/birth/checksum.  The buffer must
3582	 * therefore remain anonymous (and uncached).
3583	 */
3584	if (!BUF_EMPTY(hdr)) {
3585		arc_buf_hdr_t *exists;
3586		kmutex_t *hash_lock;
3587
3588		ASSERT(zio->io_error == 0);
3589
3590		arc_cksum_verify(buf);
3591
3592		exists = buf_hash_insert(hdr, &hash_lock);
3593		if (exists) {
3594			/*
3595			 * This can only happen if we overwrite for
3596			 * sync-to-convergence, because we remove
3597			 * buffers from the hash table when we arc_free().
3598			 */
3599			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3600				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3601					panic("bad overwrite, hdr=%p exists=%p",
3602					    (void *)hdr, (void *)exists);
3603				ASSERT(refcount_is_zero(&exists->b_refcnt));
3604				arc_change_state(arc_anon, exists, hash_lock);
3605				mutex_exit(hash_lock);
3606				arc_hdr_destroy(exists);
3607				exists = buf_hash_insert(hdr, &hash_lock);
3608				ASSERT3P(exists, ==, NULL);
3609			} else {
3610				/* Dedup */
3611				ASSERT(hdr->b_datacnt == 1);
3612				ASSERT(hdr->b_state == arc_anon);
3613				ASSERT(BP_GET_DEDUP(zio->io_bp));
3614				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3615			}
3616		}
3617		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3618		/* if it's not anon, we are doing a scrub */
3619		if (!exists && hdr->b_state == arc_anon)
3620			arc_access(hdr, hash_lock);
3621		mutex_exit(hash_lock);
3622	} else {
3623		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3624	}
3625
3626	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3627	callback->awcb_done(zio, buf, callback->awcb_private);
3628
3629	kmem_free(callback, sizeof (arc_write_callback_t));
3630}
3631
3632zio_t *
3633arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3634    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3635    arc_done_func_t *ready, arc_done_func_t *done, void *private,
3636    int priority, int zio_flags, const zbookmark_t *zb)
3637{
3638	arc_buf_hdr_t *hdr = buf->b_hdr;
3639	arc_write_callback_t *callback;
3640	zio_t *zio;
3641
3642	ASSERT(ready != NULL);
3643	ASSERT(done != NULL);
3644	ASSERT(!HDR_IO_ERROR(hdr));
3645	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3646	ASSERT(hdr->b_acb == NULL);
3647	if (l2arc)
3648		hdr->b_flags |= ARC_L2CACHE;
3649	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3650	callback->awcb_ready = ready;
3651	callback->awcb_done = done;
3652	callback->awcb_private = private;
3653	callback->awcb_buf = buf;
3654
3655	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3656	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3657
3658	return (zio);
3659}
3660
3661static int
3662arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3663{
3664#ifdef _KERNEL
3665	uint64_t available_memory =
3666	    ptoa((uintmax_t)cnt.v_free_count + cnt.v_cache_count);
3667	static uint64_t page_load = 0;
3668	static uint64_t last_txg = 0;
3669
3670#ifdef sun
3671#if defined(__i386)
3672	available_memory =
3673	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3674#endif
3675#endif	/* sun */
3676	if (available_memory >= zfs_write_limit_max)
3677		return (0);
3678
3679	if (txg > last_txg) {
3680		last_txg = txg;
3681		page_load = 0;
3682	}
3683	/*
3684	 * If we are in pageout, we know that memory is already tight,
3685	 * the arc is already going to be evicting, so we just want to
3686	 * continue to let page writes occur as quickly as possible.
3687	 */
3688	if (curproc == pageproc) {
3689		if (page_load > available_memory / 4)
3690			return (ERESTART);
3691		/* Note: reserve is inflated, so we deflate */
3692		page_load += reserve / 8;
3693		return (0);
3694	} else if (page_load > 0 && arc_reclaim_needed()) {
3695		/* memory is low, delay before restarting */
3696		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3697		return (EAGAIN);
3698	}
3699	page_load = 0;
3700
3701	if (arc_size > arc_c_min) {
3702		uint64_t evictable_memory =
3703		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3704		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3705		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3706		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3707		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3708	}
3709
3710	if (inflight_data > available_memory / 4) {
3711		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3712		return (ERESTART);
3713	}
3714#endif
3715	return (0);
3716}
3717
3718void
3719arc_tempreserve_clear(uint64_t reserve)
3720{
3721	atomic_add_64(&arc_tempreserve, -reserve);
3722	ASSERT((int64_t)arc_tempreserve >= 0);
3723}
3724
3725int
3726arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3727{
3728	int error;
3729	uint64_t anon_size;
3730
3731#ifdef ZFS_DEBUG
3732	/*
3733	 * Once in a while, fail for no reason.  Everything should cope.
3734	 */
3735	if (spa_get_random(10000) == 0) {
3736		dprintf("forcing random failure\n");
3737		return (ERESTART);
3738	}
3739#endif
3740	if (reserve > arc_c/4 && !arc_no_grow)
3741		arc_c = MIN(arc_c_max, reserve * 4);
3742	if (reserve > arc_c)
3743		return (ENOMEM);
3744
3745	/*
3746	 * Don't count loaned bufs as in flight dirty data to prevent long
3747	 * network delays from blocking transactions that are ready to be
3748	 * assigned to a txg.
3749	 */
3750	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3751
3752	/*
3753	 * Writes will, almost always, require additional memory allocations
3754	 * in order to compress/encrypt/etc the data.  We therefor need to
3755	 * make sure that there is sufficient available memory for this.
3756	 */
3757	if (error = arc_memory_throttle(reserve, anon_size, txg))
3758		return (error);
3759
3760	/*
3761	 * Throttle writes when the amount of dirty data in the cache
3762	 * gets too large.  We try to keep the cache less than half full
3763	 * of dirty blocks so that our sync times don't grow too large.
3764	 * Note: if two requests come in concurrently, we might let them
3765	 * both succeed, when one of them should fail.  Not a huge deal.
3766	 */
3767
3768	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3769	    anon_size > arc_c / 4) {
3770		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3771		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3772		    arc_tempreserve>>10,
3773		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3774		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3775		    reserve>>10, arc_c>>10);
3776		return (ERESTART);
3777	}
3778	atomic_add_64(&arc_tempreserve, reserve);
3779	return (0);
3780}
3781
3782static kmutex_t arc_lowmem_lock;
3783#ifdef _KERNEL
3784static eventhandler_tag arc_event_lowmem = NULL;
3785
3786static void
3787arc_lowmem(void *arg __unused, int howto __unused)
3788{
3789
3790	/* Serialize access via arc_lowmem_lock. */
3791	mutex_enter(&arc_lowmem_lock);
3792	mutex_enter(&arc_reclaim_thr_lock);
3793	needfree = 1;
3794	cv_signal(&arc_reclaim_thr_cv);
3795	while (needfree)
3796		msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
3797	mutex_exit(&arc_reclaim_thr_lock);
3798	mutex_exit(&arc_lowmem_lock);
3799}
3800#endif
3801
3802void
3803arc_init(void)
3804{
3805	int i, prefetch_tunable_set = 0;
3806
3807	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3808	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3809	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
3810
3811	/* Convert seconds to clock ticks */
3812	arc_min_prefetch_lifespan = 1 * hz;
3813
3814	/* Start out with 1/8 of all memory */
3815	arc_c = kmem_size() / 8;
3816
3817#ifdef sun
3818#ifdef _KERNEL
3819	/*
3820	 * On architectures where the physical memory can be larger
3821	 * than the addressable space (intel in 32-bit mode), we may
3822	 * need to limit the cache to 1/8 of VM size.
3823	 */
3824	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3825#endif
3826#endif	/* sun */
3827	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
3828	arc_c_min = MAX(arc_c / 4, 64<<18);
3829	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
3830	if (arc_c * 8 >= 1<<30)
3831		arc_c_max = (arc_c * 8) - (1<<30);
3832	else
3833		arc_c_max = arc_c_min;
3834	arc_c_max = MAX(arc_c * 5, arc_c_max);
3835
3836#ifdef _KERNEL
3837	/*
3838	 * Allow the tunables to override our calculations if they are
3839	 * reasonable (ie. over 16MB)
3840	 */
3841	if (zfs_arc_max > 64<<18 && zfs_arc_max < kmem_size())
3842		arc_c_max = zfs_arc_max;
3843	if (zfs_arc_min > 64<<18 && zfs_arc_min <= arc_c_max)
3844		arc_c_min = zfs_arc_min;
3845#endif
3846
3847	arc_c = arc_c_max;
3848	arc_p = (arc_c >> 1);
3849
3850	/* limit meta-data to 1/4 of the arc capacity */
3851	arc_meta_limit = arc_c_max / 4;
3852
3853	/* Allow the tunable to override if it is reasonable */
3854	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3855		arc_meta_limit = zfs_arc_meta_limit;
3856
3857	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3858		arc_c_min = arc_meta_limit / 2;
3859
3860	if (zfs_arc_grow_retry > 0)
3861		arc_grow_retry = zfs_arc_grow_retry;
3862
3863	if (zfs_arc_shrink_shift > 0)
3864		arc_shrink_shift = zfs_arc_shrink_shift;
3865
3866	if (zfs_arc_p_min_shift > 0)
3867		arc_p_min_shift = zfs_arc_p_min_shift;
3868
3869	/* if kmem_flags are set, lets try to use less memory */
3870	if (kmem_debugging())
3871		arc_c = arc_c / 2;
3872	if (arc_c < arc_c_min)
3873		arc_c = arc_c_min;
3874
3875	zfs_arc_min = arc_c_min;
3876	zfs_arc_max = arc_c_max;
3877
3878	arc_anon = &ARC_anon;
3879	arc_mru = &ARC_mru;
3880	arc_mru_ghost = &ARC_mru_ghost;
3881	arc_mfu = &ARC_mfu;
3882	arc_mfu_ghost = &ARC_mfu_ghost;
3883	arc_l2c_only = &ARC_l2c_only;
3884	arc_size = 0;
3885
3886	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
3887		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
3888		    NULL, MUTEX_DEFAULT, NULL);
3889		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
3890		    NULL, MUTEX_DEFAULT, NULL);
3891		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
3892		    NULL, MUTEX_DEFAULT, NULL);
3893		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
3894		    NULL, MUTEX_DEFAULT, NULL);
3895		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
3896		    NULL, MUTEX_DEFAULT, NULL);
3897		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
3898		    NULL, MUTEX_DEFAULT, NULL);
3899
3900		list_create(&arc_mru->arcs_lists[i],
3901		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3902		list_create(&arc_mru_ghost->arcs_lists[i],
3903		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3904		list_create(&arc_mfu->arcs_lists[i],
3905		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3906		list_create(&arc_mfu_ghost->arcs_lists[i],
3907		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3908		list_create(&arc_mfu_ghost->arcs_lists[i],
3909		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3910		list_create(&arc_l2c_only->arcs_lists[i],
3911		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3912	}
3913
3914	buf_init();
3915
3916	arc_thread_exit = 0;
3917	arc_eviction_list = NULL;
3918	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3919	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3920
3921	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3922	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3923
3924	if (arc_ksp != NULL) {
3925		arc_ksp->ks_data = &arc_stats;
3926		kstat_install(arc_ksp);
3927	}
3928
3929	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3930	    TS_RUN, minclsyspri);
3931
3932#ifdef _KERNEL
3933	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
3934	    EVENTHANDLER_PRI_FIRST);
3935#endif
3936
3937	arc_dead = FALSE;
3938	arc_warm = B_FALSE;
3939
3940	if (zfs_write_limit_max == 0)
3941		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3942	else
3943		zfs_write_limit_shift = 0;
3944	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3945
3946#ifdef _KERNEL
3947	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
3948		prefetch_tunable_set = 1;
3949
3950#ifdef __i386__
3951	if (prefetch_tunable_set == 0) {
3952		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
3953		    "-- to enable,\n");
3954		printf("            add \"vfs.zfs.prefetch_disable=0\" "
3955		    "to /boot/loader.conf.\n");
3956		zfs_prefetch_disable = 1;
3957	}
3958#else
3959	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
3960	    prefetch_tunable_set == 0) {
3961		printf("ZFS NOTICE: Prefetch is disabled by default if less "
3962		    "than 4GB of RAM is present;\n"
3963		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
3964		    "to /boot/loader.conf.\n");
3965		zfs_prefetch_disable = 1;
3966	}
3967#endif
3968	/* Warn about ZFS memory and address space requirements. */
3969	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
3970		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
3971		    "expect unstable behavior.\n");
3972	}
3973	if (kmem_size() < 512 * (1 << 20)) {
3974		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
3975		    "expect unstable behavior.\n");
3976		printf("             Consider tuning vm.kmem_size and "
3977		    "vm.kmem_size_max\n");
3978		printf("             in /boot/loader.conf.\n");
3979	}
3980#endif
3981}
3982
3983void
3984arc_fini(void)
3985{
3986	int i;
3987
3988	mutex_enter(&arc_reclaim_thr_lock);
3989	arc_thread_exit = 1;
3990	cv_signal(&arc_reclaim_thr_cv);
3991	while (arc_thread_exit != 0)
3992		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3993	mutex_exit(&arc_reclaim_thr_lock);
3994
3995	arc_flush(NULL);
3996
3997	arc_dead = TRUE;
3998
3999	if (arc_ksp != NULL) {
4000		kstat_delete(arc_ksp);
4001		arc_ksp = NULL;
4002	}
4003
4004	mutex_destroy(&arc_eviction_mtx);
4005	mutex_destroy(&arc_reclaim_thr_lock);
4006	cv_destroy(&arc_reclaim_thr_cv);
4007
4008	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4009		list_destroy(&arc_mru->arcs_lists[i]);
4010		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4011		list_destroy(&arc_mfu->arcs_lists[i]);
4012		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4013		list_destroy(&arc_l2c_only->arcs_lists[i]);
4014
4015		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4016		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4017		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4018		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4019		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4020		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4021	}
4022
4023	mutex_destroy(&zfs_write_limit_lock);
4024
4025	buf_fini();
4026
4027	ASSERT(arc_loaned_bytes == 0);
4028
4029	mutex_destroy(&arc_lowmem_lock);
4030#ifdef _KERNEL
4031	if (arc_event_lowmem != NULL)
4032		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4033#endif
4034}
4035
4036/*
4037 * Level 2 ARC
4038 *
4039 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4040 * It uses dedicated storage devices to hold cached data, which are populated
4041 * using large infrequent writes.  The main role of this cache is to boost
4042 * the performance of random read workloads.  The intended L2ARC devices
4043 * include short-stroked disks, solid state disks, and other media with
4044 * substantially faster read latency than disk.
4045 *
4046 *                 +-----------------------+
4047 *                 |         ARC           |
4048 *                 +-----------------------+
4049 *                    |         ^     ^
4050 *                    |         |     |
4051 *      l2arc_feed_thread()    arc_read()
4052 *                    |         |     |
4053 *                    |  l2arc read   |
4054 *                    V         |     |
4055 *               +---------------+    |
4056 *               |     L2ARC     |    |
4057 *               +---------------+    |
4058 *                   |    ^           |
4059 *          l2arc_write() |           |
4060 *                   |    |           |
4061 *                   V    |           |
4062 *                 +-------+      +-------+
4063 *                 | vdev  |      | vdev  |
4064 *                 | cache |      | cache |
4065 *                 +-------+      +-------+
4066 *                 +=========+     .-----.
4067 *                 :  L2ARC  :    |-_____-|
4068 *                 : devices :    | Disks |
4069 *                 +=========+    `-_____-'
4070 *
4071 * Read requests are satisfied from the following sources, in order:
4072 *
4073 *	1) ARC
4074 *	2) vdev cache of L2ARC devices
4075 *	3) L2ARC devices
4076 *	4) vdev cache of disks
4077 *	5) disks
4078 *
4079 * Some L2ARC device types exhibit extremely slow write performance.
4080 * To accommodate for this there are some significant differences between
4081 * the L2ARC and traditional cache design:
4082 *
4083 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4084 * the ARC behave as usual, freeing buffers and placing headers on ghost
4085 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4086 * this would add inflated write latencies for all ARC memory pressure.
4087 *
4088 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4089 * It does this by periodically scanning buffers from the eviction-end of
4090 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4091 * not already there.  It scans until a headroom of buffers is satisfied,
4092 * which itself is a buffer for ARC eviction.  The thread that does this is
4093 * l2arc_feed_thread(), illustrated below; example sizes are included to
4094 * provide a better sense of ratio than this diagram:
4095 *
4096 *	       head -->                        tail
4097 *	        +---------------------+----------+
4098 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4099 *	        +---------------------+----------+   |   o L2ARC eligible
4100 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4101 *	        +---------------------+----------+   |
4102 *	             15.9 Gbytes      ^ 32 Mbytes    |
4103 *	                           headroom          |
4104 *	                                      l2arc_feed_thread()
4105 *	                                             |
4106 *	                 l2arc write hand <--[oooo]--'
4107 *	                         |           8 Mbyte
4108 *	                         |          write max
4109 *	                         V
4110 *		  +==============================+
4111 *	L2ARC dev |####|#|###|###|    |####| ... |
4112 *	          +==============================+
4113 *	                     32 Gbytes
4114 *
4115 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4116 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4117 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4118 * safe to say that this is an uncommon case, since buffers at the end of
4119 * the ARC lists have moved there due to inactivity.
4120 *
4121 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4122 * then the L2ARC simply misses copying some buffers.  This serves as a
4123 * pressure valve to prevent heavy read workloads from both stalling the ARC
4124 * with waits and clogging the L2ARC with writes.  This also helps prevent
4125 * the potential for the L2ARC to churn if it attempts to cache content too
4126 * quickly, such as during backups of the entire pool.
4127 *
4128 * 5. After system boot and before the ARC has filled main memory, there are
4129 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4130 * lists can remain mostly static.  Instead of searching from tail of these
4131 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4132 * for eligible buffers, greatly increasing its chance of finding them.
4133 *
4134 * The L2ARC device write speed is also boosted during this time so that
4135 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4136 * there are no L2ARC reads, and no fear of degrading read performance
4137 * through increased writes.
4138 *
4139 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4140 * the vdev queue can aggregate them into larger and fewer writes.  Each
4141 * device is written to in a rotor fashion, sweeping writes through
4142 * available space then repeating.
4143 *
4144 * 7. The L2ARC does not store dirty content.  It never needs to flush
4145 * write buffers back to disk based storage.
4146 *
4147 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4148 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4149 *
4150 * The performance of the L2ARC can be tweaked by a number of tunables, which
4151 * may be necessary for different workloads:
4152 *
4153 *	l2arc_write_max		max write bytes per interval
4154 *	l2arc_write_boost	extra write bytes during device warmup
4155 *	l2arc_noprefetch	skip caching prefetched buffers
4156 *	l2arc_headroom		number of max device writes to precache
4157 *	l2arc_feed_secs		seconds between L2ARC writing
4158 *
4159 * Tunables may be removed or added as future performance improvements are
4160 * integrated, and also may become zpool properties.
4161 *
4162 * There are three key functions that control how the L2ARC warms up:
4163 *
4164 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4165 *	l2arc_write_size()	calculate how much to write
4166 *	l2arc_write_interval()	calculate sleep delay between writes
4167 *
4168 * These three functions determine what to write, how much, and how quickly
4169 * to send writes.
4170 */
4171
4172static boolean_t
4173l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4174{
4175	/*
4176	 * A buffer is *not* eligible for the L2ARC if it:
4177	 * 1. belongs to a different spa.
4178	 * 2. is already cached on the L2ARC.
4179	 * 3. has an I/O in progress (it may be an incomplete read).
4180	 * 4. is flagged not eligible (zfs property).
4181	 */
4182	if (ab->b_spa != spa_guid) {
4183		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4184		return (B_FALSE);
4185	}
4186	if (ab->b_l2hdr != NULL) {
4187		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4188		return (B_FALSE);
4189	}
4190	if (HDR_IO_IN_PROGRESS(ab)) {
4191		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4192		return (B_FALSE);
4193	}
4194	if (!HDR_L2CACHE(ab)) {
4195		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4196		return (B_FALSE);
4197	}
4198
4199	return (B_TRUE);
4200}
4201
4202static uint64_t
4203l2arc_write_size(l2arc_dev_t *dev)
4204{
4205	uint64_t size;
4206
4207	size = dev->l2ad_write;
4208
4209	if (arc_warm == B_FALSE)
4210		size += dev->l2ad_boost;
4211
4212	return (size);
4213
4214}
4215
4216static clock_t
4217l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4218{
4219	clock_t interval, next, now;
4220
4221	/*
4222	 * If the ARC lists are busy, increase our write rate; if the
4223	 * lists are stale, idle back.  This is achieved by checking
4224	 * how much we previously wrote - if it was more than half of
4225	 * what we wanted, schedule the next write much sooner.
4226	 */
4227	if (l2arc_feed_again && wrote > (wanted / 2))
4228		interval = (hz * l2arc_feed_min_ms) / 1000;
4229	else
4230		interval = hz * l2arc_feed_secs;
4231
4232	now = ddi_get_lbolt();
4233	next = MAX(now, MIN(now + interval, began + interval));
4234
4235	return (next);
4236}
4237
4238static void
4239l2arc_hdr_stat_add(void)
4240{
4241	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4242	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4243}
4244
4245static void
4246l2arc_hdr_stat_remove(void)
4247{
4248	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4249	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4250}
4251
4252/*
4253 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4254 * If a device is returned, this also returns holding the spa config lock.
4255 */
4256static l2arc_dev_t *
4257l2arc_dev_get_next(void)
4258{
4259	l2arc_dev_t *first, *next = NULL;
4260
4261	/*
4262	 * Lock out the removal of spas (spa_namespace_lock), then removal
4263	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4264	 * both locks will be dropped and a spa config lock held instead.
4265	 */
4266	mutex_enter(&spa_namespace_lock);
4267	mutex_enter(&l2arc_dev_mtx);
4268
4269	/* if there are no vdevs, there is nothing to do */
4270	if (l2arc_ndev == 0)
4271		goto out;
4272
4273	first = NULL;
4274	next = l2arc_dev_last;
4275	do {
4276		/* loop around the list looking for a non-faulted vdev */
4277		if (next == NULL) {
4278			next = list_head(l2arc_dev_list);
4279		} else {
4280			next = list_next(l2arc_dev_list, next);
4281			if (next == NULL)
4282				next = list_head(l2arc_dev_list);
4283		}
4284
4285		/* if we have come back to the start, bail out */
4286		if (first == NULL)
4287			first = next;
4288		else if (next == first)
4289			break;
4290
4291	} while (vdev_is_dead(next->l2ad_vdev));
4292
4293	/* if we were unable to find any usable vdevs, return NULL */
4294	if (vdev_is_dead(next->l2ad_vdev))
4295		next = NULL;
4296
4297	l2arc_dev_last = next;
4298
4299out:
4300	mutex_exit(&l2arc_dev_mtx);
4301
4302	/*
4303	 * Grab the config lock to prevent the 'next' device from being
4304	 * removed while we are writing to it.
4305	 */
4306	if (next != NULL)
4307		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4308	mutex_exit(&spa_namespace_lock);
4309
4310	return (next);
4311}
4312
4313/*
4314 * Free buffers that were tagged for destruction.
4315 */
4316static void
4317l2arc_do_free_on_write()
4318{
4319	list_t *buflist;
4320	l2arc_data_free_t *df, *df_prev;
4321
4322	mutex_enter(&l2arc_free_on_write_mtx);
4323	buflist = l2arc_free_on_write;
4324
4325	for (df = list_tail(buflist); df; df = df_prev) {
4326		df_prev = list_prev(buflist, df);
4327		ASSERT(df->l2df_data != NULL);
4328		ASSERT(df->l2df_func != NULL);
4329		df->l2df_func(df->l2df_data, df->l2df_size);
4330		list_remove(buflist, df);
4331		kmem_free(df, sizeof (l2arc_data_free_t));
4332	}
4333
4334	mutex_exit(&l2arc_free_on_write_mtx);
4335}
4336
4337/*
4338 * A write to a cache device has completed.  Update all headers to allow
4339 * reads from these buffers to begin.
4340 */
4341static void
4342l2arc_write_done(zio_t *zio)
4343{
4344	l2arc_write_callback_t *cb;
4345	l2arc_dev_t *dev;
4346	list_t *buflist;
4347	arc_buf_hdr_t *head, *ab, *ab_prev;
4348	l2arc_buf_hdr_t *abl2;
4349	kmutex_t *hash_lock;
4350
4351	cb = zio->io_private;
4352	ASSERT(cb != NULL);
4353	dev = cb->l2wcb_dev;
4354	ASSERT(dev != NULL);
4355	head = cb->l2wcb_head;
4356	ASSERT(head != NULL);
4357	buflist = dev->l2ad_buflist;
4358	ASSERT(buflist != NULL);
4359	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4360	    l2arc_write_callback_t *, cb);
4361
4362	if (zio->io_error != 0)
4363		ARCSTAT_BUMP(arcstat_l2_writes_error);
4364
4365	mutex_enter(&l2arc_buflist_mtx);
4366
4367	/*
4368	 * All writes completed, or an error was hit.
4369	 */
4370	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4371		ab_prev = list_prev(buflist, ab);
4372
4373		hash_lock = HDR_LOCK(ab);
4374		if (!mutex_tryenter(hash_lock)) {
4375			/*
4376			 * This buffer misses out.  It may be in a stage
4377			 * of eviction.  Its ARC_L2_WRITING flag will be
4378			 * left set, denying reads to this buffer.
4379			 */
4380			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4381			continue;
4382		}
4383
4384		if (zio->io_error != 0) {
4385			/*
4386			 * Error - drop L2ARC entry.
4387			 */
4388			list_remove(buflist, ab);
4389			abl2 = ab->b_l2hdr;
4390			ab->b_l2hdr = NULL;
4391			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4392			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4393		}
4394
4395		/*
4396		 * Allow ARC to begin reads to this L2ARC entry.
4397		 */
4398		ab->b_flags &= ~ARC_L2_WRITING;
4399
4400		mutex_exit(hash_lock);
4401	}
4402
4403	atomic_inc_64(&l2arc_writes_done);
4404	list_remove(buflist, head);
4405	kmem_cache_free(hdr_cache, head);
4406	mutex_exit(&l2arc_buflist_mtx);
4407
4408	l2arc_do_free_on_write();
4409
4410	kmem_free(cb, sizeof (l2arc_write_callback_t));
4411}
4412
4413/*
4414 * A read to a cache device completed.  Validate buffer contents before
4415 * handing over to the regular ARC routines.
4416 */
4417static void
4418l2arc_read_done(zio_t *zio)
4419{
4420	l2arc_read_callback_t *cb;
4421	arc_buf_hdr_t *hdr;
4422	arc_buf_t *buf;
4423	kmutex_t *hash_lock;
4424	int equal;
4425
4426	ASSERT(zio->io_vd != NULL);
4427	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4428
4429	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4430
4431	cb = zio->io_private;
4432	ASSERT(cb != NULL);
4433	buf = cb->l2rcb_buf;
4434	ASSERT(buf != NULL);
4435
4436	hash_lock = HDR_LOCK(buf->b_hdr);
4437	mutex_enter(hash_lock);
4438	hdr = buf->b_hdr;
4439	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4440
4441	/*
4442	 * Check this survived the L2ARC journey.
4443	 */
4444	equal = arc_cksum_equal(buf);
4445	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4446		mutex_exit(hash_lock);
4447		zio->io_private = buf;
4448		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4449		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4450		arc_read_done(zio);
4451	} else {
4452		mutex_exit(hash_lock);
4453		/*
4454		 * Buffer didn't survive caching.  Increment stats and
4455		 * reissue to the original storage device.
4456		 */
4457		if (zio->io_error != 0) {
4458			ARCSTAT_BUMP(arcstat_l2_io_error);
4459		} else {
4460			zio->io_error = EIO;
4461		}
4462		if (!equal)
4463			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4464
4465		/*
4466		 * If there's no waiter, issue an async i/o to the primary
4467		 * storage now.  If there *is* a waiter, the caller must
4468		 * issue the i/o in a context where it's OK to block.
4469		 */
4470		if (zio->io_waiter == NULL) {
4471			zio_t *pio = zio_unique_parent(zio);
4472
4473			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4474
4475			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4476			    buf->b_data, zio->io_size, arc_read_done, buf,
4477			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4478		}
4479	}
4480
4481	kmem_free(cb, sizeof (l2arc_read_callback_t));
4482}
4483
4484/*
4485 * This is the list priority from which the L2ARC will search for pages to
4486 * cache.  This is used within loops (0..3) to cycle through lists in the
4487 * desired order.  This order can have a significant effect on cache
4488 * performance.
4489 *
4490 * Currently the metadata lists are hit first, MFU then MRU, followed by
4491 * the data lists.  This function returns a locked list, and also returns
4492 * the lock pointer.
4493 */
4494static list_t *
4495l2arc_list_locked(int list_num, kmutex_t **lock)
4496{
4497	list_t *list;
4498	int idx;
4499
4500	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4501
4502	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4503		idx = list_num;
4504		list = &arc_mfu->arcs_lists[idx];
4505		*lock = ARCS_LOCK(arc_mfu, idx);
4506	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4507		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4508		list = &arc_mru->arcs_lists[idx];
4509		*lock = ARCS_LOCK(arc_mru, idx);
4510	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4511		ARC_BUFC_NUMDATALISTS)) {
4512		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4513		list = &arc_mfu->arcs_lists[idx];
4514		*lock = ARCS_LOCK(arc_mfu, idx);
4515	} else {
4516		idx = list_num - ARC_BUFC_NUMLISTS;
4517		list = &arc_mru->arcs_lists[idx];
4518		*lock = ARCS_LOCK(arc_mru, idx);
4519	}
4520
4521	ASSERT(!(MUTEX_HELD(*lock)));
4522	mutex_enter(*lock);
4523	return (list);
4524}
4525
4526/*
4527 * Evict buffers from the device write hand to the distance specified in
4528 * bytes.  This distance may span populated buffers, it may span nothing.
4529 * This is clearing a region on the L2ARC device ready for writing.
4530 * If the 'all' boolean is set, every buffer is evicted.
4531 */
4532static void
4533l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4534{
4535	list_t *buflist;
4536	l2arc_buf_hdr_t *abl2;
4537	arc_buf_hdr_t *ab, *ab_prev;
4538	kmutex_t *hash_lock;
4539	uint64_t taddr;
4540
4541	buflist = dev->l2ad_buflist;
4542
4543	if (buflist == NULL)
4544		return;
4545
4546	if (!all && dev->l2ad_first) {
4547		/*
4548		 * This is the first sweep through the device.  There is
4549		 * nothing to evict.
4550		 */
4551		return;
4552	}
4553
4554	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4555		/*
4556		 * When nearing the end of the device, evict to the end
4557		 * before the device write hand jumps to the start.
4558		 */
4559		taddr = dev->l2ad_end;
4560	} else {
4561		taddr = dev->l2ad_hand + distance;
4562	}
4563	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4564	    uint64_t, taddr, boolean_t, all);
4565
4566top:
4567	mutex_enter(&l2arc_buflist_mtx);
4568	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4569		ab_prev = list_prev(buflist, ab);
4570
4571		hash_lock = HDR_LOCK(ab);
4572		if (!mutex_tryenter(hash_lock)) {
4573			/*
4574			 * Missed the hash lock.  Retry.
4575			 */
4576			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4577			mutex_exit(&l2arc_buflist_mtx);
4578			mutex_enter(hash_lock);
4579			mutex_exit(hash_lock);
4580			goto top;
4581		}
4582
4583		if (HDR_L2_WRITE_HEAD(ab)) {
4584			/*
4585			 * We hit a write head node.  Leave it for
4586			 * l2arc_write_done().
4587			 */
4588			list_remove(buflist, ab);
4589			mutex_exit(hash_lock);
4590			continue;
4591		}
4592
4593		if (!all && ab->b_l2hdr != NULL &&
4594		    (ab->b_l2hdr->b_daddr > taddr ||
4595		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4596			/*
4597			 * We've evicted to the target address,
4598			 * or the end of the device.
4599			 */
4600			mutex_exit(hash_lock);
4601			break;
4602		}
4603
4604		if (HDR_FREE_IN_PROGRESS(ab)) {
4605			/*
4606			 * Already on the path to destruction.
4607			 */
4608			mutex_exit(hash_lock);
4609			continue;
4610		}
4611
4612		if (ab->b_state == arc_l2c_only) {
4613			ASSERT(!HDR_L2_READING(ab));
4614			/*
4615			 * This doesn't exist in the ARC.  Destroy.
4616			 * arc_hdr_destroy() will call list_remove()
4617			 * and decrement arcstat_l2_size.
4618			 */
4619			arc_change_state(arc_anon, ab, hash_lock);
4620			arc_hdr_destroy(ab);
4621		} else {
4622			/*
4623			 * Invalidate issued or about to be issued
4624			 * reads, since we may be about to write
4625			 * over this location.
4626			 */
4627			if (HDR_L2_READING(ab)) {
4628				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4629				ab->b_flags |= ARC_L2_EVICTED;
4630			}
4631
4632			/*
4633			 * Tell ARC this no longer exists in L2ARC.
4634			 */
4635			if (ab->b_l2hdr != NULL) {
4636				abl2 = ab->b_l2hdr;
4637				ab->b_l2hdr = NULL;
4638				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4639				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4640			}
4641			list_remove(buflist, ab);
4642
4643			/*
4644			 * This may have been leftover after a
4645			 * failed write.
4646			 */
4647			ab->b_flags &= ~ARC_L2_WRITING;
4648		}
4649		mutex_exit(hash_lock);
4650	}
4651	mutex_exit(&l2arc_buflist_mtx);
4652
4653	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4654	dev->l2ad_evict = taddr;
4655}
4656
4657/*
4658 * Find and write ARC buffers to the L2ARC device.
4659 *
4660 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4661 * for reading until they have completed writing.
4662 */
4663static uint64_t
4664l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4665{
4666	arc_buf_hdr_t *ab, *ab_prev, *head;
4667	l2arc_buf_hdr_t *hdrl2;
4668	list_t *list;
4669	uint64_t passed_sz, write_sz, buf_sz, headroom;
4670	void *buf_data;
4671	kmutex_t *hash_lock, *list_lock;
4672	boolean_t have_lock, full;
4673	l2arc_write_callback_t *cb;
4674	zio_t *pio, *wzio;
4675	uint64_t guid = spa_load_guid(spa);
4676	int try;
4677
4678	ASSERT(dev->l2ad_vdev != NULL);
4679
4680	pio = NULL;
4681	write_sz = 0;
4682	full = B_FALSE;
4683	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4684	head->b_flags |= ARC_L2_WRITE_HEAD;
4685
4686	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4687	/*
4688	 * Copy buffers for L2ARC writing.
4689	 */
4690	mutex_enter(&l2arc_buflist_mtx);
4691	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4692		list = l2arc_list_locked(try, &list_lock);
4693		passed_sz = 0;
4694		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4695
4696		/*
4697		 * L2ARC fast warmup.
4698		 *
4699		 * Until the ARC is warm and starts to evict, read from the
4700		 * head of the ARC lists rather than the tail.
4701		 */
4702		headroom = target_sz * l2arc_headroom;
4703		if (arc_warm == B_FALSE)
4704			ab = list_head(list);
4705		else
4706			ab = list_tail(list);
4707		if (ab == NULL)
4708			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4709
4710		for (; ab; ab = ab_prev) {
4711			if (arc_warm == B_FALSE)
4712				ab_prev = list_next(list, ab);
4713			else
4714				ab_prev = list_prev(list, ab);
4715			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
4716
4717			hash_lock = HDR_LOCK(ab);
4718			have_lock = MUTEX_HELD(hash_lock);
4719			if (!have_lock && !mutex_tryenter(hash_lock)) {
4720				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
4721				/*
4722				 * Skip this buffer rather than waiting.
4723				 */
4724				continue;
4725			}
4726
4727			passed_sz += ab->b_size;
4728			if (passed_sz > headroom) {
4729				/*
4730				 * Searched too far.
4731				 */
4732				mutex_exit(hash_lock);
4733				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
4734				break;
4735			}
4736
4737			if (!l2arc_write_eligible(guid, ab)) {
4738				mutex_exit(hash_lock);
4739				continue;
4740			}
4741
4742			if ((write_sz + ab->b_size) > target_sz) {
4743				full = B_TRUE;
4744				mutex_exit(hash_lock);
4745				ARCSTAT_BUMP(arcstat_l2_write_full);
4746				break;
4747			}
4748
4749			if (pio == NULL) {
4750				/*
4751				 * Insert a dummy header on the buflist so
4752				 * l2arc_write_done() can find where the
4753				 * write buffers begin without searching.
4754				 */
4755				list_insert_head(dev->l2ad_buflist, head);
4756
4757				cb = kmem_alloc(
4758				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4759				cb->l2wcb_dev = dev;
4760				cb->l2wcb_head = head;
4761				pio = zio_root(spa, l2arc_write_done, cb,
4762				    ZIO_FLAG_CANFAIL);
4763				ARCSTAT_BUMP(arcstat_l2_write_pios);
4764			}
4765
4766			/*
4767			 * Create and add a new L2ARC header.
4768			 */
4769			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4770			hdrl2->b_dev = dev;
4771			hdrl2->b_daddr = dev->l2ad_hand;
4772
4773			ab->b_flags |= ARC_L2_WRITING;
4774			ab->b_l2hdr = hdrl2;
4775			list_insert_head(dev->l2ad_buflist, ab);
4776			buf_data = ab->b_buf->b_data;
4777			buf_sz = ab->b_size;
4778
4779			/*
4780			 * Compute and store the buffer cksum before
4781			 * writing.  On debug the cksum is verified first.
4782			 */
4783			arc_cksum_verify(ab->b_buf);
4784			arc_cksum_compute(ab->b_buf, B_TRUE);
4785
4786			mutex_exit(hash_lock);
4787
4788			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4789			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4790			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4791			    ZIO_FLAG_CANFAIL, B_FALSE);
4792
4793			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4794			    zio_t *, wzio);
4795			(void) zio_nowait(wzio);
4796
4797			/*
4798			 * Keep the clock hand suitably device-aligned.
4799			 */
4800			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4801
4802			write_sz += buf_sz;
4803			dev->l2ad_hand += buf_sz;
4804		}
4805
4806		mutex_exit(list_lock);
4807
4808		if (full == B_TRUE)
4809			break;
4810	}
4811	mutex_exit(&l2arc_buflist_mtx);
4812
4813	if (pio == NULL) {
4814		ASSERT0(write_sz);
4815		kmem_cache_free(hdr_cache, head);
4816		return (0);
4817	}
4818
4819	ASSERT3U(write_sz, <=, target_sz);
4820	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4821	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4822	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4823	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4824
4825	/*
4826	 * Bump device hand to the device start if it is approaching the end.
4827	 * l2arc_evict() will already have evicted ahead for this case.
4828	 */
4829	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4830		vdev_space_update(dev->l2ad_vdev,
4831		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4832		dev->l2ad_hand = dev->l2ad_start;
4833		dev->l2ad_evict = dev->l2ad_start;
4834		dev->l2ad_first = B_FALSE;
4835	}
4836
4837	dev->l2ad_writing = B_TRUE;
4838	(void) zio_wait(pio);
4839	dev->l2ad_writing = B_FALSE;
4840
4841	return (write_sz);
4842}
4843
4844/*
4845 * This thread feeds the L2ARC at regular intervals.  This is the beating
4846 * heart of the L2ARC.
4847 */
4848static void
4849l2arc_feed_thread(void *dummy __unused)
4850{
4851	callb_cpr_t cpr;
4852	l2arc_dev_t *dev;
4853	spa_t *spa;
4854	uint64_t size, wrote;
4855	clock_t begin, next = ddi_get_lbolt();
4856
4857	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4858
4859	mutex_enter(&l2arc_feed_thr_lock);
4860
4861	while (l2arc_thread_exit == 0) {
4862		CALLB_CPR_SAFE_BEGIN(&cpr);
4863		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4864		    next - ddi_get_lbolt());
4865		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4866		next = ddi_get_lbolt() + hz;
4867
4868		/*
4869		 * Quick check for L2ARC devices.
4870		 */
4871		mutex_enter(&l2arc_dev_mtx);
4872		if (l2arc_ndev == 0) {
4873			mutex_exit(&l2arc_dev_mtx);
4874			continue;
4875		}
4876		mutex_exit(&l2arc_dev_mtx);
4877		begin = ddi_get_lbolt();
4878
4879		/*
4880		 * This selects the next l2arc device to write to, and in
4881		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4882		 * will return NULL if there are now no l2arc devices or if
4883		 * they are all faulted.
4884		 *
4885		 * If a device is returned, its spa's config lock is also
4886		 * held to prevent device removal.  l2arc_dev_get_next()
4887		 * will grab and release l2arc_dev_mtx.
4888		 */
4889		if ((dev = l2arc_dev_get_next()) == NULL)
4890			continue;
4891
4892		spa = dev->l2ad_spa;
4893		ASSERT(spa != NULL);
4894
4895		/*
4896		 * If the pool is read-only then force the feed thread to
4897		 * sleep a little longer.
4898		 */
4899		if (!spa_writeable(spa)) {
4900			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4901			spa_config_exit(spa, SCL_L2ARC, dev);
4902			continue;
4903		}
4904
4905		/*
4906		 * Avoid contributing to memory pressure.
4907		 */
4908		if (arc_reclaim_needed()) {
4909			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4910			spa_config_exit(spa, SCL_L2ARC, dev);
4911			continue;
4912		}
4913
4914		ARCSTAT_BUMP(arcstat_l2_feeds);
4915
4916		size = l2arc_write_size(dev);
4917
4918		/*
4919		 * Evict L2ARC buffers that will be overwritten.
4920		 */
4921		l2arc_evict(dev, size, B_FALSE);
4922
4923		/*
4924		 * Write ARC buffers.
4925		 */
4926		wrote = l2arc_write_buffers(spa, dev, size);
4927
4928		/*
4929		 * Calculate interval between writes.
4930		 */
4931		next = l2arc_write_interval(begin, size, wrote);
4932		spa_config_exit(spa, SCL_L2ARC, dev);
4933	}
4934
4935	l2arc_thread_exit = 0;
4936	cv_broadcast(&l2arc_feed_thr_cv);
4937	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4938	thread_exit();
4939}
4940
4941boolean_t
4942l2arc_vdev_present(vdev_t *vd)
4943{
4944	l2arc_dev_t *dev;
4945
4946	mutex_enter(&l2arc_dev_mtx);
4947	for (dev = list_head(l2arc_dev_list); dev != NULL;
4948	    dev = list_next(l2arc_dev_list, dev)) {
4949		if (dev->l2ad_vdev == vd)
4950			break;
4951	}
4952	mutex_exit(&l2arc_dev_mtx);
4953
4954	return (dev != NULL);
4955}
4956
4957/*
4958 * Add a vdev for use by the L2ARC.  By this point the spa has already
4959 * validated the vdev and opened it.
4960 */
4961void
4962l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4963{
4964	l2arc_dev_t *adddev;
4965
4966	ASSERT(!l2arc_vdev_present(vd));
4967
4968	/*
4969	 * Create a new l2arc device entry.
4970	 */
4971	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4972	adddev->l2ad_spa = spa;
4973	adddev->l2ad_vdev = vd;
4974	adddev->l2ad_write = l2arc_write_max;
4975	adddev->l2ad_boost = l2arc_write_boost;
4976	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4977	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4978	adddev->l2ad_hand = adddev->l2ad_start;
4979	adddev->l2ad_evict = adddev->l2ad_start;
4980	adddev->l2ad_first = B_TRUE;
4981	adddev->l2ad_writing = B_FALSE;
4982	ASSERT3U(adddev->l2ad_write, >, 0);
4983
4984	/*
4985	 * This is a list of all ARC buffers that are still valid on the
4986	 * device.
4987	 */
4988	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4989	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4990	    offsetof(arc_buf_hdr_t, b_l2node));
4991
4992	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4993
4994	/*
4995	 * Add device to global list
4996	 */
4997	mutex_enter(&l2arc_dev_mtx);
4998	list_insert_head(l2arc_dev_list, adddev);
4999	atomic_inc_64(&l2arc_ndev);
5000	mutex_exit(&l2arc_dev_mtx);
5001}
5002
5003/*
5004 * Remove a vdev from the L2ARC.
5005 */
5006void
5007l2arc_remove_vdev(vdev_t *vd)
5008{
5009	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5010
5011	/*
5012	 * Find the device by vdev
5013	 */
5014	mutex_enter(&l2arc_dev_mtx);
5015	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5016		nextdev = list_next(l2arc_dev_list, dev);
5017		if (vd == dev->l2ad_vdev) {
5018			remdev = dev;
5019			break;
5020		}
5021	}
5022	ASSERT(remdev != NULL);
5023
5024	/*
5025	 * Remove device from global list
5026	 */
5027	list_remove(l2arc_dev_list, remdev);
5028	l2arc_dev_last = NULL;		/* may have been invalidated */
5029	atomic_dec_64(&l2arc_ndev);
5030	mutex_exit(&l2arc_dev_mtx);
5031
5032	/*
5033	 * Clear all buflists and ARC references.  L2ARC device flush.
5034	 */
5035	l2arc_evict(remdev, 0, B_TRUE);
5036	list_destroy(remdev->l2ad_buflist);
5037	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5038	kmem_free(remdev, sizeof (l2arc_dev_t));
5039}
5040
5041void
5042l2arc_init(void)
5043{
5044	l2arc_thread_exit = 0;
5045	l2arc_ndev = 0;
5046	l2arc_writes_sent = 0;
5047	l2arc_writes_done = 0;
5048
5049	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5050	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5051	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5052	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5053	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5054
5055	l2arc_dev_list = &L2ARC_dev_list;
5056	l2arc_free_on_write = &L2ARC_free_on_write;
5057	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5058	    offsetof(l2arc_dev_t, l2ad_node));
5059	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5060	    offsetof(l2arc_data_free_t, l2df_list_node));
5061}
5062
5063void
5064l2arc_fini(void)
5065{
5066	/*
5067	 * This is called from dmu_fini(), which is called from spa_fini();
5068	 * Because of this, we can assume that all l2arc devices have
5069	 * already been removed when the pools themselves were removed.
5070	 */
5071
5072	l2arc_do_free_on_write();
5073
5074	mutex_destroy(&l2arc_feed_thr_lock);
5075	cv_destroy(&l2arc_feed_thr_cv);
5076	mutex_destroy(&l2arc_dev_mtx);
5077	mutex_destroy(&l2arc_buflist_mtx);
5078	mutex_destroy(&l2arc_free_on_write_mtx);
5079
5080	list_destroy(l2arc_dev_list);
5081	list_destroy(l2arc_free_on_write);
5082}
5083
5084void
5085l2arc_start(void)
5086{
5087	if (!(spa_mode_global & FWRITE))
5088		return;
5089
5090	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5091	    TS_RUN, minclsyspri);
5092}
5093
5094void
5095l2arc_stop(void)
5096{
5097	if (!(spa_mode_global & FWRITE))
5098		return;
5099
5100	mutex_enter(&l2arc_feed_thr_lock);
5101	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5102	l2arc_thread_exit = 1;
5103	while (l2arc_thread_exit != 0)
5104		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5105	mutex_exit(&l2arc_feed_thr_lock);
5106}
5107