arc.c revision 217367
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * DVA-based Adjustable Replacement Cache
28 *
29 * While much of the theory of operation used here is
30 * based on the self-tuning, low overhead replacement cache
31 * presented by Megiddo and Modha at FAST 2003, there are some
32 * significant differences:
33 *
34 * 1. The Megiddo and Modha model assumes any page is evictable.
35 * Pages in its cache cannot be "locked" into memory.  This makes
36 * the eviction algorithm simple: evict the last page in the list.
37 * This also make the performance characteristics easy to reason
38 * about.  Our cache is not so simple.  At any given moment, some
39 * subset of the blocks in the cache are un-evictable because we
40 * have handed out a reference to them.  Blocks are only evictable
41 * when there are no external references active.  This makes
42 * eviction far more problematic:  we choose to evict the evictable
43 * blocks that are the "lowest" in the list.
44 *
45 * There are times when it is not possible to evict the requested
46 * space.  In these circumstances we are unable to adjust the cache
47 * size.  To prevent the cache growing unbounded at these times we
48 * implement a "cache throttle" that slows the flow of new data
49 * into the cache until we can make space available.
50 *
51 * 2. The Megiddo and Modha model assumes a fixed cache size.
52 * Pages are evicted when the cache is full and there is a cache
53 * miss.  Our model has a variable sized cache.  It grows with
54 * high use, but also tries to react to memory pressure from the
55 * operating system: decreasing its size when system memory is
56 * tight.
57 *
58 * 3. The Megiddo and Modha model assumes a fixed page size. All
59 * elements of the cache are therefor exactly the same size.  So
60 * when adjusting the cache size following a cache miss, its simply
61 * a matter of choosing a single page to evict.  In our model, we
62 * have variable sized cache blocks (rangeing from 512 bytes to
63 * 128K bytes).  We therefor choose a set of blocks to evict to make
64 * space for a cache miss that approximates as closely as possible
65 * the space used by the new block.
66 *
67 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68 * by N. Megiddo & D. Modha, FAST 2003
69 */
70
71/*
72 * The locking model:
73 *
74 * A new reference to a cache buffer can be obtained in two
75 * ways: 1) via a hash table lookup using the DVA as a key,
76 * or 2) via one of the ARC lists.  The arc_read() interface
77 * uses method 1, while the internal arc algorithms for
78 * adjusting the cache use method 2.  We therefor provide two
79 * types of locks: 1) the hash table lock array, and 2) the
80 * arc list locks.
81 *
82 * Buffers do not have their own mutexs, rather they rely on the
83 * hash table mutexs for the bulk of their protection (i.e. most
84 * fields in the arc_buf_hdr_t are protected by these mutexs).
85 *
86 * buf_hash_find() returns the appropriate mutex (held) when it
87 * locates the requested buffer in the hash table.  It returns
88 * NULL for the mutex if the buffer was not in the table.
89 *
90 * buf_hash_remove() expects the appropriate hash mutex to be
91 * already held before it is invoked.
92 *
93 * Each arc state also has a mutex which is used to protect the
94 * buffer list associated with the state.  When attempting to
95 * obtain a hash table lock while holding an arc list lock you
96 * must use: mutex_tryenter() to avoid deadlock.  Also note that
97 * the active state mutex must be held before the ghost state mutex.
98 *
99 * Arc buffers may have an associated eviction callback function.
100 * This function will be invoked prior to removing the buffer (e.g.
101 * in arc_do_user_evicts()).  Note however that the data associated
102 * with the buffer may be evicted prior to the callback.  The callback
103 * must be made with *no locks held* (to prevent deadlock).  Additionally,
104 * the users of callbacks must ensure that their private data is
105 * protected from simultaneous callbacks from arc_buf_evict()
106 * and arc_do_user_evicts().
107 *
108 * Note that the majority of the performance stats are manipulated
109 * with atomic operations.
110 *
111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112 *
113 *	- L2ARC buflist creation
114 *	- L2ARC buflist eviction
115 *	- L2ARC write completion, which walks L2ARC buflists
116 *	- ARC header destruction, as it removes from L2ARC buflists
117 *	- ARC header release, as it removes from L2ARC buflists
118 */
119
120#include <sys/spa.h>
121#include <sys/zio.h>
122#include <sys/zio_checksum.h>
123#include <sys/zfs_context.h>
124#include <sys/arc.h>
125#include <sys/refcount.h>
126#include <sys/vdev.h>
127#ifdef _KERNEL
128#include <sys/dnlc.h>
129#endif
130#include <sys/callb.h>
131#include <sys/kstat.h>
132#include <sys/sdt.h>
133
134#include <vm/vm_pageout.h>
135
136static kmutex_t		arc_reclaim_thr_lock;
137static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
138static uint8_t		arc_thread_exit;
139
140extern int zfs_write_limit_shift;
141extern uint64_t zfs_write_limit_max;
142extern kmutex_t zfs_write_limit_lock;
143
144#define	ARC_REDUCE_DNLC_PERCENT	3
145uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146
147typedef enum arc_reclaim_strategy {
148	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
149	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
150} arc_reclaim_strategy_t;
151
152/* number of seconds before growing cache again */
153static int		arc_grow_retry = 60;
154
155/* shift of arc_c for calculating both min and max arc_p */
156static int		arc_p_min_shift = 4;
157
158/* log2(fraction of arc to reclaim) */
159static int		arc_shrink_shift = 5;
160
161/*
162 * minimum lifespan of a prefetch block in clock ticks
163 * (initialized in arc_init())
164 */
165static int		arc_min_prefetch_lifespan;
166
167static int arc_dead;
168extern int zfs_prefetch_disable;
169
170/*
171 * The arc has filled available memory and has now warmed up.
172 */
173static boolean_t arc_warm;
174
175/*
176 * These tunables are for performance analysis.
177 */
178uint64_t zfs_arc_max;
179uint64_t zfs_arc_min;
180uint64_t zfs_arc_meta_limit = 0;
181int zfs_mdcomp_disable = 0;
182int zfs_arc_grow_retry = 0;
183int zfs_arc_shrink_shift = 0;
184int zfs_arc_p_min_shift = 0;
185
186TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
187TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
188TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
189TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
190SYSCTL_DECL(_vfs_zfs);
191SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
192    "Maximum ARC size");
193SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
194    "Minimum ARC size");
195SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RDTUN,
196    &zfs_mdcomp_disable, 0, "Disable metadata compression");
197
198/*
199 * Note that buffers can be in one of 6 states:
200 *	ARC_anon	- anonymous (discussed below)
201 *	ARC_mru		- recently used, currently cached
202 *	ARC_mru_ghost	- recentely used, no longer in cache
203 *	ARC_mfu		- frequently used, currently cached
204 *	ARC_mfu_ghost	- frequently used, no longer in cache
205 *	ARC_l2c_only	- exists in L2ARC but not other states
206 * When there are no active references to the buffer, they are
207 * are linked onto a list in one of these arc states.  These are
208 * the only buffers that can be evicted or deleted.  Within each
209 * state there are multiple lists, one for meta-data and one for
210 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
211 * etc.) is tracked separately so that it can be managed more
212 * explicitly: favored over data, limited explicitly.
213 *
214 * Anonymous buffers are buffers that are not associated with
215 * a DVA.  These are buffers that hold dirty block copies
216 * before they are written to stable storage.  By definition,
217 * they are "ref'd" and are considered part of arc_mru
218 * that cannot be freed.  Generally, they will aquire a DVA
219 * as they are written and migrate onto the arc_mru list.
220 *
221 * The ARC_l2c_only state is for buffers that are in the second
222 * level ARC but no longer in any of the ARC_m* lists.  The second
223 * level ARC itself may also contain buffers that are in any of
224 * the ARC_m* states - meaning that a buffer can exist in two
225 * places.  The reason for the ARC_l2c_only state is to keep the
226 * buffer header in the hash table, so that reads that hit the
227 * second level ARC benefit from these fast lookups.
228 */
229
230#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
231struct arcs_lock {
232	kmutex_t	arcs_lock;
233#ifdef _KERNEL
234	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
235#endif
236};
237
238/*
239 * must be power of two for mask use to work
240 *
241 */
242#define ARC_BUFC_NUMDATALISTS		16
243#define ARC_BUFC_NUMMETADATALISTS	16
244#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
245
246typedef struct arc_state {
247	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
248	uint64_t arcs_size;	/* total amount of data in this state */
249	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
250	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
251} arc_state_t;
252
253#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
254
255/* The 6 states: */
256static arc_state_t ARC_anon;
257static arc_state_t ARC_mru;
258static arc_state_t ARC_mru_ghost;
259static arc_state_t ARC_mfu;
260static arc_state_t ARC_mfu_ghost;
261static arc_state_t ARC_l2c_only;
262
263typedef struct arc_stats {
264	kstat_named_t arcstat_hits;
265	kstat_named_t arcstat_misses;
266	kstat_named_t arcstat_demand_data_hits;
267	kstat_named_t arcstat_demand_data_misses;
268	kstat_named_t arcstat_demand_metadata_hits;
269	kstat_named_t arcstat_demand_metadata_misses;
270	kstat_named_t arcstat_prefetch_data_hits;
271	kstat_named_t arcstat_prefetch_data_misses;
272	kstat_named_t arcstat_prefetch_metadata_hits;
273	kstat_named_t arcstat_prefetch_metadata_misses;
274	kstat_named_t arcstat_mru_hits;
275	kstat_named_t arcstat_mru_ghost_hits;
276	kstat_named_t arcstat_mfu_hits;
277	kstat_named_t arcstat_mfu_ghost_hits;
278	kstat_named_t arcstat_allocated;
279	kstat_named_t arcstat_deleted;
280	kstat_named_t arcstat_stolen;
281	kstat_named_t arcstat_recycle_miss;
282	kstat_named_t arcstat_mutex_miss;
283	kstat_named_t arcstat_evict_skip;
284	kstat_named_t arcstat_evict_l2_cached;
285	kstat_named_t arcstat_evict_l2_eligible;
286	kstat_named_t arcstat_evict_l2_ineligible;
287	kstat_named_t arcstat_hash_elements;
288	kstat_named_t arcstat_hash_elements_max;
289	kstat_named_t arcstat_hash_collisions;
290	kstat_named_t arcstat_hash_chains;
291	kstat_named_t arcstat_hash_chain_max;
292	kstat_named_t arcstat_p;
293	kstat_named_t arcstat_c;
294	kstat_named_t arcstat_c_min;
295	kstat_named_t arcstat_c_max;
296	kstat_named_t arcstat_size;
297	kstat_named_t arcstat_hdr_size;
298	kstat_named_t arcstat_data_size;
299	kstat_named_t arcstat_other_size;
300	kstat_named_t arcstat_l2_hits;
301	kstat_named_t arcstat_l2_misses;
302	kstat_named_t arcstat_l2_feeds;
303	kstat_named_t arcstat_l2_rw_clash;
304	kstat_named_t arcstat_l2_read_bytes;
305	kstat_named_t arcstat_l2_write_bytes;
306	kstat_named_t arcstat_l2_writes_sent;
307	kstat_named_t arcstat_l2_writes_done;
308	kstat_named_t arcstat_l2_writes_error;
309	kstat_named_t arcstat_l2_writes_hdr_miss;
310	kstat_named_t arcstat_l2_evict_lock_retry;
311	kstat_named_t arcstat_l2_evict_reading;
312	kstat_named_t arcstat_l2_free_on_write;
313	kstat_named_t arcstat_l2_abort_lowmem;
314	kstat_named_t arcstat_l2_cksum_bad;
315	kstat_named_t arcstat_l2_io_error;
316	kstat_named_t arcstat_l2_size;
317	kstat_named_t arcstat_l2_hdr_size;
318	kstat_named_t arcstat_memory_throttle_count;
319	kstat_named_t arcstat_l2_write_trylock_fail;
320	kstat_named_t arcstat_l2_write_passed_headroom;
321	kstat_named_t arcstat_l2_write_spa_mismatch;
322	kstat_named_t arcstat_l2_write_in_l2;
323	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
324	kstat_named_t arcstat_l2_write_not_cacheable;
325	kstat_named_t arcstat_l2_write_full;
326	kstat_named_t arcstat_l2_write_buffer_iter;
327	kstat_named_t arcstat_l2_write_pios;
328	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
329	kstat_named_t arcstat_l2_write_buffer_list_iter;
330	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
331} arc_stats_t;
332
333static arc_stats_t arc_stats = {
334	{ "hits",			KSTAT_DATA_UINT64 },
335	{ "misses",			KSTAT_DATA_UINT64 },
336	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
337	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
338	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
339	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
340	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
341	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
342	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
343	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
344	{ "mru_hits",			KSTAT_DATA_UINT64 },
345	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
346	{ "mfu_hits",			KSTAT_DATA_UINT64 },
347	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
348	{ "allocated",			KSTAT_DATA_UINT64 },
349	{ "deleted",			KSTAT_DATA_UINT64 },
350	{ "stolen",			KSTAT_DATA_UINT64 },
351	{ "recycle_miss",		KSTAT_DATA_UINT64 },
352	{ "mutex_miss",			KSTAT_DATA_UINT64 },
353	{ "evict_skip",			KSTAT_DATA_UINT64 },
354	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
355	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
356	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
357	{ "hash_elements",		KSTAT_DATA_UINT64 },
358	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
359	{ "hash_collisions",		KSTAT_DATA_UINT64 },
360	{ "hash_chains",		KSTAT_DATA_UINT64 },
361	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
362	{ "p",				KSTAT_DATA_UINT64 },
363	{ "c",				KSTAT_DATA_UINT64 },
364	{ "c_min",			KSTAT_DATA_UINT64 },
365	{ "c_max",			KSTAT_DATA_UINT64 },
366	{ "size",			KSTAT_DATA_UINT64 },
367	{ "hdr_size",			KSTAT_DATA_UINT64 },
368	{ "data_size",			KSTAT_DATA_UINT64 },
369	{ "other_size",			KSTAT_DATA_UINT64 },
370	{ "l2_hits",			KSTAT_DATA_UINT64 },
371	{ "l2_misses",			KSTAT_DATA_UINT64 },
372	{ "l2_feeds",			KSTAT_DATA_UINT64 },
373	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
374	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
375	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
376	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
377	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
378	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
379	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
380	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
381	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
382	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
383	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
384	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
385	{ "l2_io_error",		KSTAT_DATA_UINT64 },
386	{ "l2_size",			KSTAT_DATA_UINT64 },
387	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
388	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
389	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
390	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
391	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
392	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
393	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
394	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
395	{ "l2_write_full",		KSTAT_DATA_UINT64 },
396	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
397	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
398	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
399	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
400	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 }
401};
402
403#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
404
405#define	ARCSTAT_INCR(stat, val) \
406	atomic_add_64(&arc_stats.stat.value.ui64, (val));
407
408#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
409#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
410
411#define	ARCSTAT_MAX(stat, val) {					\
412	uint64_t m;							\
413	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
414	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
415		continue;						\
416}
417
418#define	ARCSTAT_MAXSTAT(stat) \
419	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
420
421/*
422 * We define a macro to allow ARC hits/misses to be easily broken down by
423 * two separate conditions, giving a total of four different subtypes for
424 * each of hits and misses (so eight statistics total).
425 */
426#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
427	if (cond1) {							\
428		if (cond2) {						\
429			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
430		} else {						\
431			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
432		}							\
433	} else {							\
434		if (cond2) {						\
435			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
436		} else {						\
437			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
438		}							\
439	}
440
441kstat_t			*arc_ksp;
442static arc_state_t	*arc_anon;
443static arc_state_t	*arc_mru;
444static arc_state_t	*arc_mru_ghost;
445static arc_state_t	*arc_mfu;
446static arc_state_t	*arc_mfu_ghost;
447static arc_state_t	*arc_l2c_only;
448
449/*
450 * There are several ARC variables that are critical to export as kstats --
451 * but we don't want to have to grovel around in the kstat whenever we wish to
452 * manipulate them.  For these variables, we therefore define them to be in
453 * terms of the statistic variable.  This assures that we are not introducing
454 * the possibility of inconsistency by having shadow copies of the variables,
455 * while still allowing the code to be readable.
456 */
457#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
458#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
459#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
460#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
461#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
462
463static int		arc_no_grow;	/* Don't try to grow cache size */
464static uint64_t		arc_tempreserve;
465static uint64_t		arc_loaned_bytes;
466static uint64_t		arc_meta_used;
467static uint64_t		arc_meta_limit;
468static uint64_t		arc_meta_max = 0;
469SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RDTUN,
470    &arc_meta_used, 0, "ARC metadata used");
471SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RDTUN,
472    &arc_meta_limit, 0, "ARC metadata limit");
473
474typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
475
476typedef struct arc_callback arc_callback_t;
477
478struct arc_callback {
479	void			*acb_private;
480	arc_done_func_t		*acb_done;
481	arc_buf_t		*acb_buf;
482	zio_t			*acb_zio_dummy;
483	arc_callback_t		*acb_next;
484};
485
486typedef struct arc_write_callback arc_write_callback_t;
487
488struct arc_write_callback {
489	void		*awcb_private;
490	arc_done_func_t	*awcb_ready;
491	arc_done_func_t	*awcb_done;
492	arc_buf_t	*awcb_buf;
493};
494
495struct arc_buf_hdr {
496	/* protected by hash lock */
497	dva_t			b_dva;
498	uint64_t		b_birth;
499	uint64_t		b_cksum0;
500
501	kmutex_t		b_freeze_lock;
502	zio_cksum_t		*b_freeze_cksum;
503
504	arc_buf_hdr_t		*b_hash_next;
505	arc_buf_t		*b_buf;
506	uint32_t		b_flags;
507	uint32_t		b_datacnt;
508
509	arc_callback_t		*b_acb;
510	kcondvar_t		b_cv;
511
512	/* immutable */
513	arc_buf_contents_t	b_type;
514	uint64_t		b_size;
515	uint64_t		b_spa;
516
517	/* protected by arc state mutex */
518	arc_state_t		*b_state;
519	list_node_t		b_arc_node;
520
521	/* updated atomically */
522	clock_t			b_arc_access;
523
524	/* self protecting */
525	refcount_t		b_refcnt;
526
527	l2arc_buf_hdr_t		*b_l2hdr;
528	list_node_t		b_l2node;
529};
530
531static arc_buf_t *arc_eviction_list;
532static kmutex_t arc_eviction_mtx;
533static arc_buf_hdr_t arc_eviction_hdr;
534static void arc_get_data_buf(arc_buf_t *buf);
535static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
536static int arc_evict_needed(arc_buf_contents_t type);
537static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
538
539static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
540
541#define	GHOST_STATE(state)	\
542	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
543	(state) == arc_l2c_only)
544
545/*
546 * Private ARC flags.  These flags are private ARC only flags that will show up
547 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
548 * be passed in as arc_flags in things like arc_read.  However, these flags
549 * should never be passed and should only be set by ARC code.  When adding new
550 * public flags, make sure not to smash the private ones.
551 */
552
553#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
554#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
555#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
556#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
557#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
558#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
559#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
560#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
561#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
562#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
563#define	ARC_STORED		(1 << 19)	/* has been store()d to */
564
565#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
566#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
567#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
568#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
569#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
570#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
571#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
572#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
573#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
574				    (hdr)->b_l2hdr != NULL)
575#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
576#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
577#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
578
579/*
580 * Other sizes
581 */
582
583#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
584#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
585
586/*
587 * Hash table routines
588 */
589
590#define	HT_LOCK_PAD	CACHE_LINE_SIZE
591
592struct ht_lock {
593	kmutex_t	ht_lock;
594#ifdef _KERNEL
595	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
596#endif
597};
598
599#define	BUF_LOCKS 256
600typedef struct buf_hash_table {
601	uint64_t ht_mask;
602	arc_buf_hdr_t **ht_table;
603	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
604} buf_hash_table_t;
605
606static buf_hash_table_t buf_hash_table;
607
608#define	BUF_HASH_INDEX(spa, dva, birth) \
609	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
610#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
611#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
612#define	HDR_LOCK(buf) \
613	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
614
615uint64_t zfs_crc64_table[256];
616
617/*
618 * Level 2 ARC
619 */
620
621#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
622#define	L2ARC_HEADROOM		2		/* num of writes */
623#define	L2ARC_FEED_SECS		1		/* caching interval secs */
624#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
625
626#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
627#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
628
629/*
630 * L2ARC Performance Tunables
631 */
632uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
633uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
634uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
635uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
636uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
637boolean_t l2arc_noprefetch = B_FALSE;		/* don't cache prefetch bufs */
638boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
639boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
640
641SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
642    &l2arc_write_max, 0, "max write size");
643SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
644    &l2arc_write_boost, 0, "extra write during warmup");
645SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
646    &l2arc_headroom, 0, "number of dev writes");
647SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
648    &l2arc_feed_secs, 0, "interval seconds");
649SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
650    &l2arc_feed_min_ms, 0, "min interval milliseconds");
651
652SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
653    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
654SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
655    &l2arc_feed_again, 0, "turbo warmup");
656SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
657    &l2arc_norw, 0, "no reads during writes");
658
659SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
660    &ARC_anon.arcs_size, 0, "size of anonymous state");
661SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
662    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
663SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
664    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
665
666SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
667    &ARC_mru.arcs_size, 0, "size of mru state");
668SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
669    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
670SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
671    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
672
673SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
674    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
675SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
676    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
677    "size of metadata in mru ghost state");
678SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
679    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
680    "size of data in mru ghost state");
681
682SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
683    &ARC_mfu.arcs_size, 0, "size of mfu state");
684SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
685    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
686SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
687    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
688
689SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
690    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
691SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
692    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
693    "size of metadata in mfu ghost state");
694SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
695    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
696    "size of data in mfu ghost state");
697
698SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
699    &ARC_l2c_only.arcs_size, 0, "size of mru state");
700
701/*
702 * L2ARC Internals
703 */
704typedef struct l2arc_dev {
705	vdev_t			*l2ad_vdev;	/* vdev */
706	spa_t			*l2ad_spa;	/* spa */
707	uint64_t		l2ad_hand;	/* next write location */
708	uint64_t		l2ad_write;	/* desired write size, bytes */
709	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
710	uint64_t		l2ad_start;	/* first addr on device */
711	uint64_t		l2ad_end;	/* last addr on device */
712	uint64_t		l2ad_evict;	/* last addr eviction reached */
713	boolean_t		l2ad_first;	/* first sweep through */
714	boolean_t		l2ad_writing;	/* currently writing */
715	list_t			*l2ad_buflist;	/* buffer list */
716	list_node_t		l2ad_node;	/* device list node */
717} l2arc_dev_t;
718
719static list_t L2ARC_dev_list;			/* device list */
720static list_t *l2arc_dev_list;			/* device list pointer */
721static kmutex_t l2arc_dev_mtx;			/* device list mutex */
722static l2arc_dev_t *l2arc_dev_last;		/* last device used */
723static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
724static list_t L2ARC_free_on_write;		/* free after write buf list */
725static list_t *l2arc_free_on_write;		/* free after write list ptr */
726static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
727static uint64_t l2arc_ndev;			/* number of devices */
728
729typedef struct l2arc_read_callback {
730	arc_buf_t	*l2rcb_buf;		/* read buffer */
731	spa_t		*l2rcb_spa;		/* spa */
732	blkptr_t	l2rcb_bp;		/* original blkptr */
733	zbookmark_t	l2rcb_zb;		/* original bookmark */
734	int		l2rcb_flags;		/* original flags */
735} l2arc_read_callback_t;
736
737typedef struct l2arc_write_callback {
738	l2arc_dev_t	*l2wcb_dev;		/* device info */
739	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
740} l2arc_write_callback_t;
741
742struct l2arc_buf_hdr {
743	/* protected by arc_buf_hdr  mutex */
744	l2arc_dev_t	*b_dev;			/* L2ARC device */
745	uint64_t	b_daddr;		/* disk address, offset byte */
746};
747
748typedef struct l2arc_data_free {
749	/* protected by l2arc_free_on_write_mtx */
750	void		*l2df_data;
751	size_t		l2df_size;
752	void		(*l2df_func)(void *, size_t);
753	list_node_t	l2df_list_node;
754} l2arc_data_free_t;
755
756static kmutex_t l2arc_feed_thr_lock;
757static kcondvar_t l2arc_feed_thr_cv;
758static uint8_t l2arc_thread_exit;
759
760static void l2arc_read_done(zio_t *zio);
761static void l2arc_hdr_stat_add(void);
762static void l2arc_hdr_stat_remove(void);
763
764static uint64_t
765buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
766{
767	uint8_t *vdva = (uint8_t *)dva;
768	uint64_t crc = -1ULL;
769	int i;
770
771	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
772
773	for (i = 0; i < sizeof (dva_t); i++)
774		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
775
776	crc ^= (spa>>8) ^ birth;
777
778	return (crc);
779}
780
781#define	BUF_EMPTY(buf)						\
782	((buf)->b_dva.dva_word[0] == 0 &&			\
783	(buf)->b_dva.dva_word[1] == 0 &&			\
784	(buf)->b_birth == 0)
785
786#define	BUF_EQUAL(spa, dva, birth, buf)				\
787	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
788	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
789	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
790
791static arc_buf_hdr_t *
792buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
793{
794	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
795	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
796	arc_buf_hdr_t *buf;
797
798	mutex_enter(hash_lock);
799	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
800	    buf = buf->b_hash_next) {
801		if (BUF_EQUAL(spa, dva, birth, buf)) {
802			*lockp = hash_lock;
803			return (buf);
804		}
805	}
806	mutex_exit(hash_lock);
807	*lockp = NULL;
808	return (NULL);
809}
810
811/*
812 * Insert an entry into the hash table.  If there is already an element
813 * equal to elem in the hash table, then the already existing element
814 * will be returned and the new element will not be inserted.
815 * Otherwise returns NULL.
816 */
817static arc_buf_hdr_t *
818buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
819{
820	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
821	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
822	arc_buf_hdr_t *fbuf;
823	uint32_t i;
824
825	ASSERT(!HDR_IN_HASH_TABLE(buf));
826	*lockp = hash_lock;
827	mutex_enter(hash_lock);
828	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
829	    fbuf = fbuf->b_hash_next, i++) {
830		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
831			return (fbuf);
832	}
833
834	buf->b_hash_next = buf_hash_table.ht_table[idx];
835	buf_hash_table.ht_table[idx] = buf;
836	buf->b_flags |= ARC_IN_HASH_TABLE;
837
838	/* collect some hash table performance data */
839	if (i > 0) {
840		ARCSTAT_BUMP(arcstat_hash_collisions);
841		if (i == 1)
842			ARCSTAT_BUMP(arcstat_hash_chains);
843
844		ARCSTAT_MAX(arcstat_hash_chain_max, i);
845	}
846
847	ARCSTAT_BUMP(arcstat_hash_elements);
848	ARCSTAT_MAXSTAT(arcstat_hash_elements);
849
850	return (NULL);
851}
852
853static void
854buf_hash_remove(arc_buf_hdr_t *buf)
855{
856	arc_buf_hdr_t *fbuf, **bufp;
857	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
858
859	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
860	ASSERT(HDR_IN_HASH_TABLE(buf));
861
862	bufp = &buf_hash_table.ht_table[idx];
863	while ((fbuf = *bufp) != buf) {
864		ASSERT(fbuf != NULL);
865		bufp = &fbuf->b_hash_next;
866	}
867	*bufp = buf->b_hash_next;
868	buf->b_hash_next = NULL;
869	buf->b_flags &= ~ARC_IN_HASH_TABLE;
870
871	/* collect some hash table performance data */
872	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
873
874	if (buf_hash_table.ht_table[idx] &&
875	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
876		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
877}
878
879/*
880 * Global data structures and functions for the buf kmem cache.
881 */
882static kmem_cache_t *hdr_cache;
883static kmem_cache_t *buf_cache;
884
885static void
886buf_fini(void)
887{
888	int i;
889
890	kmem_free(buf_hash_table.ht_table,
891	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
892	for (i = 0; i < BUF_LOCKS; i++)
893		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
894	kmem_cache_destroy(hdr_cache);
895	kmem_cache_destroy(buf_cache);
896}
897
898/*
899 * Constructor callback - called when the cache is empty
900 * and a new buf is requested.
901 */
902/* ARGSUSED */
903static int
904hdr_cons(void *vbuf, void *unused, int kmflag)
905{
906	arc_buf_hdr_t *buf = vbuf;
907
908	bzero(buf, sizeof (arc_buf_hdr_t));
909	refcount_create(&buf->b_refcnt);
910	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
911	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
912	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
913
914	return (0);
915}
916
917/* ARGSUSED */
918static int
919buf_cons(void *vbuf, void *unused, int kmflag)
920{
921	arc_buf_t *buf = vbuf;
922
923	bzero(buf, sizeof (arc_buf_t));
924	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
925	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
926
927	return (0);
928}
929
930/*
931 * Destructor callback - called when a cached buf is
932 * no longer required.
933 */
934/* ARGSUSED */
935static void
936hdr_dest(void *vbuf, void *unused)
937{
938	arc_buf_hdr_t *buf = vbuf;
939
940	refcount_destroy(&buf->b_refcnt);
941	cv_destroy(&buf->b_cv);
942	mutex_destroy(&buf->b_freeze_lock);
943	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
944}
945
946/* ARGSUSED */
947static void
948buf_dest(void *vbuf, void *unused)
949{
950	arc_buf_t *buf = vbuf;
951
952	rw_destroy(&buf->b_lock);
953	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
954}
955
956/*
957 * Reclaim callback -- invoked when memory is low.
958 */
959/* ARGSUSED */
960static void
961hdr_recl(void *unused)
962{
963	dprintf("hdr_recl called\n");
964	/*
965	 * umem calls the reclaim func when we destroy the buf cache,
966	 * which is after we do arc_fini().
967	 */
968	if (!arc_dead)
969		cv_signal(&arc_reclaim_thr_cv);
970}
971
972static void
973buf_init(void)
974{
975	uint64_t *ct;
976	uint64_t hsize = 1ULL << 12;
977	int i, j;
978
979	/*
980	 * The hash table is big enough to fill all of physical memory
981	 * with an average 64K block size.  The table will take up
982	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
983	 */
984	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
985		hsize <<= 1;
986retry:
987	buf_hash_table.ht_mask = hsize - 1;
988	buf_hash_table.ht_table =
989	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
990	if (buf_hash_table.ht_table == NULL) {
991		ASSERT(hsize > (1ULL << 8));
992		hsize >>= 1;
993		goto retry;
994	}
995
996	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
997	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
998	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
999	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1000
1001	for (i = 0; i < 256; i++)
1002		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1003			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1004
1005	for (i = 0; i < BUF_LOCKS; i++) {
1006		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1007		    NULL, MUTEX_DEFAULT, NULL);
1008	}
1009}
1010
1011#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1012
1013static void
1014arc_cksum_verify(arc_buf_t *buf)
1015{
1016	zio_cksum_t zc;
1017
1018	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1019		return;
1020
1021	mutex_enter(&buf->b_hdr->b_freeze_lock);
1022	if (buf->b_hdr->b_freeze_cksum == NULL ||
1023	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1024		mutex_exit(&buf->b_hdr->b_freeze_lock);
1025		return;
1026	}
1027	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1028	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1029		panic("buffer modified while frozen!");
1030	mutex_exit(&buf->b_hdr->b_freeze_lock);
1031}
1032
1033static int
1034arc_cksum_equal(arc_buf_t *buf)
1035{
1036	zio_cksum_t zc;
1037	int equal;
1038
1039	mutex_enter(&buf->b_hdr->b_freeze_lock);
1040	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1041	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1042	mutex_exit(&buf->b_hdr->b_freeze_lock);
1043
1044	return (equal);
1045}
1046
1047static void
1048arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1049{
1050	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1051		return;
1052
1053	mutex_enter(&buf->b_hdr->b_freeze_lock);
1054	if (buf->b_hdr->b_freeze_cksum != NULL) {
1055		mutex_exit(&buf->b_hdr->b_freeze_lock);
1056		return;
1057	}
1058	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1059	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1060	    buf->b_hdr->b_freeze_cksum);
1061	mutex_exit(&buf->b_hdr->b_freeze_lock);
1062}
1063
1064void
1065arc_buf_thaw(arc_buf_t *buf)
1066{
1067	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1068		if (buf->b_hdr->b_state != arc_anon)
1069			panic("modifying non-anon buffer!");
1070		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1071			panic("modifying buffer while i/o in progress!");
1072		arc_cksum_verify(buf);
1073	}
1074
1075	mutex_enter(&buf->b_hdr->b_freeze_lock);
1076	if (buf->b_hdr->b_freeze_cksum != NULL) {
1077		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1078		buf->b_hdr->b_freeze_cksum = NULL;
1079	}
1080	mutex_exit(&buf->b_hdr->b_freeze_lock);
1081}
1082
1083void
1084arc_buf_freeze(arc_buf_t *buf)
1085{
1086	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1087		return;
1088
1089	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1090	    buf->b_hdr->b_state == arc_anon);
1091	arc_cksum_compute(buf, B_FALSE);
1092}
1093
1094static void
1095get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1096{
1097	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1098
1099	if (ab->b_type == ARC_BUFC_METADATA)
1100		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1101	else {
1102		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1103		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1104	}
1105
1106	*list = &state->arcs_lists[buf_hashid];
1107	*lock = ARCS_LOCK(state, buf_hashid);
1108}
1109
1110
1111static void
1112add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1113{
1114
1115	ASSERT(MUTEX_HELD(hash_lock));
1116
1117	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1118	    (ab->b_state != arc_anon)) {
1119		uint64_t delta = ab->b_size * ab->b_datacnt;
1120		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1121		list_t *list;
1122		kmutex_t *lock;
1123
1124		get_buf_info(ab, ab->b_state, &list, &lock);
1125		ASSERT(!MUTEX_HELD(lock));
1126		mutex_enter(lock);
1127		ASSERT(list_link_active(&ab->b_arc_node));
1128		list_remove(list, ab);
1129		if (GHOST_STATE(ab->b_state)) {
1130			ASSERT3U(ab->b_datacnt, ==, 0);
1131			ASSERT3P(ab->b_buf, ==, NULL);
1132			delta = ab->b_size;
1133		}
1134		ASSERT(delta > 0);
1135		ASSERT3U(*size, >=, delta);
1136		atomic_add_64(size, -delta);
1137		mutex_exit(lock);
1138		/* remove the prefetch flag if we get a reference */
1139		if (ab->b_flags & ARC_PREFETCH)
1140			ab->b_flags &= ~ARC_PREFETCH;
1141	}
1142}
1143
1144static int
1145remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1146{
1147	int cnt;
1148	arc_state_t *state = ab->b_state;
1149
1150	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1151	ASSERT(!GHOST_STATE(state));
1152
1153	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1154	    (state != arc_anon)) {
1155		uint64_t *size = &state->arcs_lsize[ab->b_type];
1156		list_t *list;
1157		kmutex_t *lock;
1158
1159		get_buf_info(ab, state, &list, &lock);
1160		ASSERT(!MUTEX_HELD(lock));
1161		mutex_enter(lock);
1162		ASSERT(!list_link_active(&ab->b_arc_node));
1163		list_insert_head(list, ab);
1164		ASSERT(ab->b_datacnt > 0);
1165		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1166		mutex_exit(lock);
1167	}
1168	return (cnt);
1169}
1170
1171/*
1172 * Move the supplied buffer to the indicated state.  The mutex
1173 * for the buffer must be held by the caller.
1174 */
1175static void
1176arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1177{
1178	arc_state_t *old_state = ab->b_state;
1179	int64_t refcnt = refcount_count(&ab->b_refcnt);
1180	uint64_t from_delta, to_delta;
1181	list_t *list;
1182	kmutex_t *lock;
1183
1184	ASSERT(MUTEX_HELD(hash_lock));
1185	ASSERT(new_state != old_state);
1186	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1187	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1188
1189	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1190
1191	/*
1192	 * If this buffer is evictable, transfer it from the
1193	 * old state list to the new state list.
1194	 */
1195	if (refcnt == 0) {
1196		if (old_state != arc_anon) {
1197			int use_mutex;
1198			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1199
1200			get_buf_info(ab, old_state, &list, &lock);
1201			use_mutex = !MUTEX_HELD(lock);
1202			if (use_mutex)
1203				mutex_enter(lock);
1204
1205			ASSERT(list_link_active(&ab->b_arc_node));
1206			list_remove(list, ab);
1207
1208			/*
1209			 * If prefetching out of the ghost cache,
1210			 * we will have a non-null datacnt.
1211			 */
1212			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1213				/* ghost elements have a ghost size */
1214				ASSERT(ab->b_buf == NULL);
1215				from_delta = ab->b_size;
1216			}
1217			ASSERT3U(*size, >=, from_delta);
1218			atomic_add_64(size, -from_delta);
1219
1220			if (use_mutex)
1221				mutex_exit(lock);
1222		}
1223		if (new_state != arc_anon) {
1224			int use_mutex;
1225			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1226
1227			get_buf_info(ab, new_state, &list, &lock);
1228			use_mutex = !MUTEX_HELD(lock);
1229			if (use_mutex)
1230				mutex_enter(lock);
1231
1232			list_insert_head(list, ab);
1233
1234			/* ghost elements have a ghost size */
1235			if (GHOST_STATE(new_state)) {
1236				ASSERT(ab->b_datacnt == 0);
1237				ASSERT(ab->b_buf == NULL);
1238				to_delta = ab->b_size;
1239			}
1240			atomic_add_64(size, to_delta);
1241
1242			if (use_mutex)
1243				mutex_exit(lock);
1244		}
1245	}
1246
1247	ASSERT(!BUF_EMPTY(ab));
1248	if (new_state == arc_anon) {
1249		buf_hash_remove(ab);
1250	}
1251
1252	/* adjust state sizes */
1253	if (to_delta)
1254		atomic_add_64(&new_state->arcs_size, to_delta);
1255	if (from_delta) {
1256		ASSERT3U(old_state->arcs_size, >=, from_delta);
1257		atomic_add_64(&old_state->arcs_size, -from_delta);
1258	}
1259	ab->b_state = new_state;
1260
1261	/* adjust l2arc hdr stats */
1262	if (new_state == arc_l2c_only)
1263		l2arc_hdr_stat_add();
1264	else if (old_state == arc_l2c_only)
1265		l2arc_hdr_stat_remove();
1266}
1267
1268void
1269arc_space_consume(uint64_t space, arc_space_type_t type)
1270{
1271	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1272
1273	switch (type) {
1274	case ARC_SPACE_DATA:
1275		ARCSTAT_INCR(arcstat_data_size, space);
1276		break;
1277	case ARC_SPACE_OTHER:
1278		ARCSTAT_INCR(arcstat_other_size, space);
1279		break;
1280	case ARC_SPACE_HDRS:
1281		ARCSTAT_INCR(arcstat_hdr_size, space);
1282		break;
1283	case ARC_SPACE_L2HDRS:
1284		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1285		break;
1286	}
1287
1288	atomic_add_64(&arc_meta_used, space);
1289	atomic_add_64(&arc_size, space);
1290}
1291
1292void
1293arc_space_return(uint64_t space, arc_space_type_t type)
1294{
1295	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1296
1297	switch (type) {
1298	case ARC_SPACE_DATA:
1299		ARCSTAT_INCR(arcstat_data_size, -space);
1300		break;
1301	case ARC_SPACE_OTHER:
1302		ARCSTAT_INCR(arcstat_other_size, -space);
1303		break;
1304	case ARC_SPACE_HDRS:
1305		ARCSTAT_INCR(arcstat_hdr_size, -space);
1306		break;
1307	case ARC_SPACE_L2HDRS:
1308		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1309		break;
1310	}
1311
1312	ASSERT(arc_meta_used >= space);
1313	if (arc_meta_max < arc_meta_used)
1314		arc_meta_max = arc_meta_used;
1315	atomic_add_64(&arc_meta_used, -space);
1316	ASSERT(arc_size >= space);
1317	atomic_add_64(&arc_size, -space);
1318}
1319
1320void *
1321arc_data_buf_alloc(uint64_t size)
1322{
1323	if (arc_evict_needed(ARC_BUFC_DATA))
1324		cv_signal(&arc_reclaim_thr_cv);
1325	atomic_add_64(&arc_size, size);
1326	return (zio_data_buf_alloc(size));
1327}
1328
1329void
1330arc_data_buf_free(void *buf, uint64_t size)
1331{
1332	zio_data_buf_free(buf, size);
1333	ASSERT(arc_size >= size);
1334	atomic_add_64(&arc_size, -size);
1335}
1336
1337arc_buf_t *
1338arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1339{
1340	arc_buf_hdr_t *hdr;
1341	arc_buf_t *buf;
1342
1343	ASSERT3U(size, >, 0);
1344	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1345	ASSERT(BUF_EMPTY(hdr));
1346	hdr->b_size = size;
1347	hdr->b_type = type;
1348	hdr->b_spa = spa_guid(spa);
1349	hdr->b_state = arc_anon;
1350	hdr->b_arc_access = 0;
1351	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1352	buf->b_hdr = hdr;
1353	buf->b_data = NULL;
1354	buf->b_efunc = NULL;
1355	buf->b_private = NULL;
1356	buf->b_next = NULL;
1357	hdr->b_buf = buf;
1358	arc_get_data_buf(buf);
1359	hdr->b_datacnt = 1;
1360	hdr->b_flags = 0;
1361	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1362	(void) refcount_add(&hdr->b_refcnt, tag);
1363
1364	return (buf);
1365}
1366
1367static char *arc_onloan_tag = "onloan";
1368
1369/*
1370 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1371 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1372 * buffers must be returned to the arc before they can be used by the DMU or
1373 * freed.
1374 */
1375arc_buf_t *
1376arc_loan_buf(spa_t *spa, int size)
1377{
1378	arc_buf_t *buf;
1379
1380	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1381
1382	atomic_add_64(&arc_loaned_bytes, size);
1383	return (buf);
1384}
1385
1386/*
1387 * Return a loaned arc buffer to the arc.
1388 */
1389void
1390arc_return_buf(arc_buf_t *buf, void *tag)
1391{
1392	arc_buf_hdr_t *hdr = buf->b_hdr;
1393
1394	ASSERT(hdr->b_state == arc_anon);
1395	ASSERT(buf->b_data != NULL);
1396	VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0);
1397	VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1);
1398
1399	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1400}
1401
1402static arc_buf_t *
1403arc_buf_clone(arc_buf_t *from)
1404{
1405	arc_buf_t *buf;
1406	arc_buf_hdr_t *hdr = from->b_hdr;
1407	uint64_t size = hdr->b_size;
1408
1409	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1410	buf->b_hdr = hdr;
1411	buf->b_data = NULL;
1412	buf->b_efunc = NULL;
1413	buf->b_private = NULL;
1414	buf->b_next = hdr->b_buf;
1415	hdr->b_buf = buf;
1416	arc_get_data_buf(buf);
1417	bcopy(from->b_data, buf->b_data, size);
1418	hdr->b_datacnt += 1;
1419	return (buf);
1420}
1421
1422void
1423arc_buf_add_ref(arc_buf_t *buf, void* tag)
1424{
1425	arc_buf_hdr_t *hdr;
1426	kmutex_t *hash_lock;
1427
1428	/*
1429	 * Check to see if this buffer is evicted.  Callers
1430	 * must verify b_data != NULL to know if the add_ref
1431	 * was successful.
1432	 */
1433	rw_enter(&buf->b_lock, RW_READER);
1434	if (buf->b_data == NULL) {
1435		rw_exit(&buf->b_lock);
1436		return;
1437	}
1438	hdr = buf->b_hdr;
1439	ASSERT(hdr != NULL);
1440	hash_lock = HDR_LOCK(hdr);
1441	mutex_enter(hash_lock);
1442	rw_exit(&buf->b_lock);
1443
1444	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1445	add_reference(hdr, hash_lock, tag);
1446	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1447	arc_access(hdr, hash_lock);
1448	mutex_exit(hash_lock);
1449	ARCSTAT_BUMP(arcstat_hits);
1450	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1451	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1452	    data, metadata, hits);
1453}
1454
1455/*
1456 * Free the arc data buffer.  If it is an l2arc write in progress,
1457 * the buffer is placed on l2arc_free_on_write to be freed later.
1458 */
1459static void
1460arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1461    void *data, size_t size)
1462{
1463	if (HDR_L2_WRITING(hdr)) {
1464		l2arc_data_free_t *df;
1465		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1466		df->l2df_data = data;
1467		df->l2df_size = size;
1468		df->l2df_func = free_func;
1469		mutex_enter(&l2arc_free_on_write_mtx);
1470		list_insert_head(l2arc_free_on_write, df);
1471		mutex_exit(&l2arc_free_on_write_mtx);
1472		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1473	} else {
1474		free_func(data, size);
1475	}
1476}
1477
1478static void
1479arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1480{
1481	arc_buf_t **bufp;
1482
1483	/* free up data associated with the buf */
1484	if (buf->b_data) {
1485		arc_state_t *state = buf->b_hdr->b_state;
1486		uint64_t size = buf->b_hdr->b_size;
1487		arc_buf_contents_t type = buf->b_hdr->b_type;
1488
1489		arc_cksum_verify(buf);
1490		if (!recycle) {
1491			if (type == ARC_BUFC_METADATA) {
1492				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1493				    buf->b_data, size);
1494				arc_space_return(size, ARC_SPACE_DATA);
1495			} else {
1496				ASSERT(type == ARC_BUFC_DATA);
1497				arc_buf_data_free(buf->b_hdr,
1498				    zio_data_buf_free, buf->b_data, size);
1499				ARCSTAT_INCR(arcstat_data_size, -size);
1500				atomic_add_64(&arc_size, -size);
1501			}
1502		}
1503		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1504			uint64_t *cnt = &state->arcs_lsize[type];
1505
1506			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1507			ASSERT(state != arc_anon);
1508
1509			ASSERT3U(*cnt, >=, size);
1510			atomic_add_64(cnt, -size);
1511		}
1512		ASSERT3U(state->arcs_size, >=, size);
1513		atomic_add_64(&state->arcs_size, -size);
1514		buf->b_data = NULL;
1515		ASSERT(buf->b_hdr->b_datacnt > 0);
1516		buf->b_hdr->b_datacnt -= 1;
1517	}
1518
1519	/* only remove the buf if requested */
1520	if (!all)
1521		return;
1522
1523	/* remove the buf from the hdr list */
1524	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1525		continue;
1526	*bufp = buf->b_next;
1527
1528	ASSERT(buf->b_efunc == NULL);
1529
1530	/* clean up the buf */
1531	buf->b_hdr = NULL;
1532	kmem_cache_free(buf_cache, buf);
1533}
1534
1535static void
1536arc_hdr_destroy(arc_buf_hdr_t *hdr)
1537{
1538	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1539	ASSERT3P(hdr->b_state, ==, arc_anon);
1540	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1541	ASSERT(!(hdr->b_flags & ARC_STORED));
1542
1543	if (hdr->b_l2hdr != NULL) {
1544		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1545			/*
1546			 * To prevent arc_free() and l2arc_evict() from
1547			 * attempting to free the same buffer at the same time,
1548			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1549			 * give it priority.  l2arc_evict() can't destroy this
1550			 * header while we are waiting on l2arc_buflist_mtx.
1551			 *
1552			 * The hdr may be removed from l2ad_buflist before we
1553			 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1554			 */
1555			mutex_enter(&l2arc_buflist_mtx);
1556			if (hdr->b_l2hdr != NULL) {
1557				list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
1558				    hdr);
1559			}
1560			mutex_exit(&l2arc_buflist_mtx);
1561		} else {
1562			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1563		}
1564		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1565		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1566		if (hdr->b_state == arc_l2c_only)
1567			l2arc_hdr_stat_remove();
1568		hdr->b_l2hdr = NULL;
1569	}
1570
1571	if (!BUF_EMPTY(hdr)) {
1572		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1573		bzero(&hdr->b_dva, sizeof (dva_t));
1574		hdr->b_birth = 0;
1575		hdr->b_cksum0 = 0;
1576	}
1577	while (hdr->b_buf) {
1578		arc_buf_t *buf = hdr->b_buf;
1579
1580		if (buf->b_efunc) {
1581			mutex_enter(&arc_eviction_mtx);
1582			rw_enter(&buf->b_lock, RW_WRITER);
1583			ASSERT(buf->b_hdr != NULL);
1584			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1585			hdr->b_buf = buf->b_next;
1586			buf->b_hdr = &arc_eviction_hdr;
1587			buf->b_next = arc_eviction_list;
1588			arc_eviction_list = buf;
1589			rw_exit(&buf->b_lock);
1590			mutex_exit(&arc_eviction_mtx);
1591		} else {
1592			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1593		}
1594	}
1595	if (hdr->b_freeze_cksum != NULL) {
1596		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1597		hdr->b_freeze_cksum = NULL;
1598	}
1599
1600	ASSERT(!list_link_active(&hdr->b_arc_node));
1601	ASSERT3P(hdr->b_hash_next, ==, NULL);
1602	ASSERT3P(hdr->b_acb, ==, NULL);
1603	kmem_cache_free(hdr_cache, hdr);
1604}
1605
1606void
1607arc_buf_free(arc_buf_t *buf, void *tag)
1608{
1609	arc_buf_hdr_t *hdr = buf->b_hdr;
1610	int hashed = hdr->b_state != arc_anon;
1611
1612	ASSERT(buf->b_efunc == NULL);
1613	ASSERT(buf->b_data != NULL);
1614
1615	if (hashed) {
1616		kmutex_t *hash_lock = HDR_LOCK(hdr);
1617
1618		mutex_enter(hash_lock);
1619		(void) remove_reference(hdr, hash_lock, tag);
1620		if (hdr->b_datacnt > 1)
1621			arc_buf_destroy(buf, FALSE, TRUE);
1622		else
1623			hdr->b_flags |= ARC_BUF_AVAILABLE;
1624		mutex_exit(hash_lock);
1625	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1626		int destroy_hdr;
1627		/*
1628		 * We are in the middle of an async write.  Don't destroy
1629		 * this buffer unless the write completes before we finish
1630		 * decrementing the reference count.
1631		 */
1632		mutex_enter(&arc_eviction_mtx);
1633		(void) remove_reference(hdr, NULL, tag);
1634		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1635		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1636		mutex_exit(&arc_eviction_mtx);
1637		if (destroy_hdr)
1638			arc_hdr_destroy(hdr);
1639	} else {
1640		if (remove_reference(hdr, NULL, tag) > 0) {
1641			ASSERT(HDR_IO_ERROR(hdr));
1642			arc_buf_destroy(buf, FALSE, TRUE);
1643		} else {
1644			arc_hdr_destroy(hdr);
1645		}
1646	}
1647}
1648
1649int
1650arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1651{
1652	arc_buf_hdr_t *hdr = buf->b_hdr;
1653	kmutex_t *hash_lock = HDR_LOCK(hdr);
1654	int no_callback = (buf->b_efunc == NULL);
1655
1656	if (hdr->b_state == arc_anon) {
1657		arc_buf_free(buf, tag);
1658		return (no_callback);
1659	}
1660
1661	mutex_enter(hash_lock);
1662	ASSERT(hdr->b_state != arc_anon);
1663	ASSERT(buf->b_data != NULL);
1664
1665	(void) remove_reference(hdr, hash_lock, tag);
1666	if (hdr->b_datacnt > 1) {
1667		if (no_callback)
1668			arc_buf_destroy(buf, FALSE, TRUE);
1669	} else if (no_callback) {
1670		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1671		hdr->b_flags |= ARC_BUF_AVAILABLE;
1672	}
1673	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1674	    refcount_is_zero(&hdr->b_refcnt));
1675	mutex_exit(hash_lock);
1676	return (no_callback);
1677}
1678
1679int
1680arc_buf_size(arc_buf_t *buf)
1681{
1682	return (buf->b_hdr->b_size);
1683}
1684
1685/*
1686 * Evict buffers from list until we've removed the specified number of
1687 * bytes.  Move the removed buffers to the appropriate evict state.
1688 * If the recycle flag is set, then attempt to "recycle" a buffer:
1689 * - look for a buffer to evict that is `bytes' long.
1690 * - return the data block from this buffer rather than freeing it.
1691 * This flag is used by callers that are trying to make space for a
1692 * new buffer in a full arc cache.
1693 *
1694 * This function makes a "best effort".  It skips over any buffers
1695 * it can't get a hash_lock on, and so may not catch all candidates.
1696 * It may also return without evicting as much space as requested.
1697 */
1698static void *
1699arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1700    arc_buf_contents_t type)
1701{
1702	arc_state_t *evicted_state;
1703	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1704	int64_t bytes_remaining;
1705	arc_buf_hdr_t *ab, *ab_prev = NULL;
1706	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1707	kmutex_t *lock, *evicted_lock;
1708	kmutex_t *hash_lock;
1709	boolean_t have_lock;
1710	void *stolen = NULL;
1711	static int evict_metadata_offset, evict_data_offset;
1712	int i, idx, offset, list_count, count;
1713
1714	ASSERT(state == arc_mru || state == arc_mfu);
1715
1716	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1717
1718	if (type == ARC_BUFC_METADATA) {
1719		offset = 0;
1720		list_count = ARC_BUFC_NUMMETADATALISTS;
1721		list_start = &state->arcs_lists[0];
1722		evicted_list_start = &evicted_state->arcs_lists[0];
1723		idx = evict_metadata_offset;
1724	} else {
1725		offset = ARC_BUFC_NUMMETADATALISTS;
1726		list_start = &state->arcs_lists[offset];
1727		evicted_list_start = &evicted_state->arcs_lists[offset];
1728		list_count = ARC_BUFC_NUMDATALISTS;
1729		idx = evict_data_offset;
1730	}
1731	bytes_remaining = evicted_state->arcs_lsize[type];
1732	count = 0;
1733
1734evict_start:
1735	list = &list_start[idx];
1736	evicted_list = &evicted_list_start[idx];
1737	lock = ARCS_LOCK(state, (offset + idx));
1738	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1739
1740	mutex_enter(lock);
1741	mutex_enter(evicted_lock);
1742
1743	for (ab = list_tail(list); ab; ab = ab_prev) {
1744		ab_prev = list_prev(list, ab);
1745		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1746		/* prefetch buffers have a minimum lifespan */
1747		if (HDR_IO_IN_PROGRESS(ab) ||
1748		    (spa && ab->b_spa != spa) ||
1749		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1750		    LBOLT - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1751			skipped++;
1752			continue;
1753		}
1754		/* "lookahead" for better eviction candidate */
1755		if (recycle && ab->b_size != bytes &&
1756		    ab_prev && ab_prev->b_size == bytes)
1757			continue;
1758		hash_lock = HDR_LOCK(ab);
1759		have_lock = MUTEX_HELD(hash_lock);
1760		if (have_lock || mutex_tryenter(hash_lock)) {
1761			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1762			ASSERT(ab->b_datacnt > 0);
1763			while (ab->b_buf) {
1764				arc_buf_t *buf = ab->b_buf;
1765				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1766					missed += 1;
1767					break;
1768				}
1769				if (buf->b_data) {
1770					bytes_evicted += ab->b_size;
1771					if (recycle && ab->b_type == type &&
1772					    ab->b_size == bytes &&
1773					    !HDR_L2_WRITING(ab)) {
1774						stolen = buf->b_data;
1775						recycle = FALSE;
1776					}
1777				}
1778				if (buf->b_efunc) {
1779					mutex_enter(&arc_eviction_mtx);
1780					arc_buf_destroy(buf,
1781					    buf->b_data == stolen, FALSE);
1782					ab->b_buf = buf->b_next;
1783					buf->b_hdr = &arc_eviction_hdr;
1784					buf->b_next = arc_eviction_list;
1785					arc_eviction_list = buf;
1786					mutex_exit(&arc_eviction_mtx);
1787					rw_exit(&buf->b_lock);
1788				} else {
1789					rw_exit(&buf->b_lock);
1790					arc_buf_destroy(buf,
1791					    buf->b_data == stolen, TRUE);
1792				}
1793			}
1794
1795			if (ab->b_l2hdr) {
1796				ARCSTAT_INCR(arcstat_evict_l2_cached,
1797				    ab->b_size);
1798			} else {
1799				if (l2arc_write_eligible(ab->b_spa, ab)) {
1800					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1801					    ab->b_size);
1802				} else {
1803					ARCSTAT_INCR(
1804					    arcstat_evict_l2_ineligible,
1805					    ab->b_size);
1806				}
1807			}
1808
1809			if (ab->b_datacnt == 0) {
1810				arc_change_state(evicted_state, ab, hash_lock);
1811				ASSERT(HDR_IN_HASH_TABLE(ab));
1812				ab->b_flags |= ARC_IN_HASH_TABLE;
1813				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1814				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1815			}
1816			if (!have_lock)
1817				mutex_exit(hash_lock);
1818			if (bytes >= 0 && bytes_evicted >= bytes)
1819				break;
1820			if (bytes_remaining > 0) {
1821				mutex_exit(evicted_lock);
1822				mutex_exit(lock);
1823				idx  = ((idx + 1) & (list_count - 1));
1824				count++;
1825				goto evict_start;
1826			}
1827		} else {
1828			missed += 1;
1829		}
1830	}
1831
1832	mutex_exit(evicted_lock);
1833	mutex_exit(lock);
1834
1835	idx  = ((idx + 1) & (list_count - 1));
1836	count++;
1837
1838	if (bytes_evicted < bytes) {
1839		if (count < list_count)
1840			goto evict_start;
1841		else
1842			dprintf("only evicted %lld bytes from %x",
1843			    (longlong_t)bytes_evicted, state);
1844	}
1845	if (type == ARC_BUFC_METADATA)
1846		evict_metadata_offset = idx;
1847	else
1848		evict_data_offset = idx;
1849
1850	if (skipped)
1851		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1852
1853	if (missed)
1854		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1855
1856	/*
1857	 * We have just evicted some date into the ghost state, make
1858	 * sure we also adjust the ghost state size if necessary.
1859	 */
1860	if (arc_no_grow &&
1861	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1862		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1863		    arc_mru_ghost->arcs_size - arc_c;
1864
1865		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1866			int64_t todelete =
1867			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1868			arc_evict_ghost(arc_mru_ghost, 0, todelete);
1869		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1870			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1871			    arc_mru_ghost->arcs_size +
1872			    arc_mfu_ghost->arcs_size - arc_c);
1873			arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1874		}
1875	}
1876	if (stolen)
1877		ARCSTAT_BUMP(arcstat_stolen);
1878
1879	return (stolen);
1880}
1881
1882/*
1883 * Remove buffers from list until we've removed the specified number of
1884 * bytes.  Destroy the buffers that are removed.
1885 */
1886static void
1887arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1888{
1889	arc_buf_hdr_t *ab, *ab_prev;
1890	list_t *list, *list_start;
1891	kmutex_t *hash_lock, *lock;
1892	uint64_t bytes_deleted = 0;
1893	uint64_t bufs_skipped = 0;
1894	static int evict_offset;
1895	int list_count, idx = evict_offset;
1896	int offset, count = 0;
1897
1898	ASSERT(GHOST_STATE(state));
1899
1900	/*
1901	 * data lists come after metadata lists
1902	 */
1903	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
1904	list_count = ARC_BUFC_NUMDATALISTS;
1905	offset = ARC_BUFC_NUMMETADATALISTS;
1906
1907evict_start:
1908	list = &list_start[idx];
1909	lock = ARCS_LOCK(state, idx + offset);
1910
1911	mutex_enter(lock);
1912	for (ab = list_tail(list); ab; ab = ab_prev) {
1913		ab_prev = list_prev(list, ab);
1914		if (spa && ab->b_spa != spa)
1915			continue;
1916		hash_lock = HDR_LOCK(ab);
1917		if (mutex_tryenter(hash_lock)) {
1918			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1919			ASSERT(ab->b_buf == NULL);
1920			ARCSTAT_BUMP(arcstat_deleted);
1921			bytes_deleted += ab->b_size;
1922
1923			if (ab->b_l2hdr != NULL) {
1924				/*
1925				 * This buffer is cached on the 2nd Level ARC;
1926				 * don't destroy the header.
1927				 */
1928				arc_change_state(arc_l2c_only, ab, hash_lock);
1929				mutex_exit(hash_lock);
1930			} else {
1931				arc_change_state(arc_anon, ab, hash_lock);
1932				mutex_exit(hash_lock);
1933				arc_hdr_destroy(ab);
1934			}
1935
1936			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1937			if (bytes >= 0 && bytes_deleted >= bytes)
1938				break;
1939		} else {
1940			if (bytes < 0) {
1941				/*
1942				 * we're draining the ARC, retry
1943				 */
1944				mutex_exit(lock);
1945				mutex_enter(hash_lock);
1946				mutex_exit(hash_lock);
1947				goto evict_start;
1948			}
1949			bufs_skipped += 1;
1950		}
1951	}
1952	mutex_exit(lock);
1953	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
1954	count++;
1955
1956	if (count < list_count)
1957		goto evict_start;
1958
1959	evict_offset = idx;
1960	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
1961	    (bytes < 0 || bytes_deleted < bytes)) {
1962		list_start = &state->arcs_lists[0];
1963		list_count = ARC_BUFC_NUMMETADATALISTS;
1964		offset = count = 0;
1965		goto evict_start;
1966	}
1967
1968	if (bufs_skipped) {
1969		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1970		ASSERT(bytes >= 0);
1971	}
1972
1973	if (bytes_deleted < bytes)
1974		dprintf("only deleted %lld bytes from %p",
1975		    (longlong_t)bytes_deleted, state);
1976}
1977
1978static void
1979arc_adjust(void)
1980{
1981	int64_t adjustment, delta;
1982
1983	/*
1984	 * Adjust MRU size
1985	 */
1986
1987	adjustment = MIN((int64_t)(arc_size - arc_c),
1988	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1989	    arc_p));
1990
1991	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1992		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1993		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
1994		adjustment -= delta;
1995	}
1996
1997	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1998		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1999		(void) arc_evict(arc_mru, 0, delta, FALSE,
2000		    ARC_BUFC_METADATA);
2001	}
2002
2003	/*
2004	 * Adjust MFU size
2005	 */
2006
2007	adjustment = arc_size - arc_c;
2008
2009	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2010		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2011		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2012		adjustment -= delta;
2013	}
2014
2015	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2016		int64_t delta = MIN(adjustment,
2017		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2018		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2019		    ARC_BUFC_METADATA);
2020	}
2021
2022	/*
2023	 * Adjust ghost lists
2024	 */
2025
2026	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2027
2028	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2029		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2030		arc_evict_ghost(arc_mru_ghost, 0, delta);
2031	}
2032
2033	adjustment =
2034	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2035
2036	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2037		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2038		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2039	}
2040}
2041
2042static void
2043arc_do_user_evicts(void)
2044{
2045	static arc_buf_t *tmp_arc_eviction_list;
2046
2047	/*
2048	 * Move list over to avoid LOR
2049	 */
2050restart:
2051	mutex_enter(&arc_eviction_mtx);
2052	tmp_arc_eviction_list = arc_eviction_list;
2053	arc_eviction_list = NULL;
2054	mutex_exit(&arc_eviction_mtx);
2055
2056	while (tmp_arc_eviction_list != NULL) {
2057		arc_buf_t *buf = tmp_arc_eviction_list;
2058		tmp_arc_eviction_list = buf->b_next;
2059		rw_enter(&buf->b_lock, RW_WRITER);
2060		buf->b_hdr = NULL;
2061		rw_exit(&buf->b_lock);
2062
2063		if (buf->b_efunc != NULL)
2064			VERIFY(buf->b_efunc(buf) == 0);
2065
2066		buf->b_efunc = NULL;
2067		buf->b_private = NULL;
2068		kmem_cache_free(buf_cache, buf);
2069	}
2070
2071	if (arc_eviction_list != NULL)
2072		goto restart;
2073}
2074
2075/*
2076 * Flush all *evictable* data from the cache for the given spa.
2077 * NOTE: this will not touch "active" (i.e. referenced) data.
2078 */
2079void
2080arc_flush(spa_t *spa)
2081{
2082	uint64_t guid = 0;
2083
2084	if (spa)
2085		guid = spa_guid(spa);
2086
2087	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2088		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2089		if (spa)
2090			break;
2091	}
2092	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2093		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2094		if (spa)
2095			break;
2096	}
2097	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2098		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2099		if (spa)
2100			break;
2101	}
2102	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2103		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2104		if (spa)
2105			break;
2106	}
2107
2108	arc_evict_ghost(arc_mru_ghost, guid, -1);
2109	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2110
2111	mutex_enter(&arc_reclaim_thr_lock);
2112	arc_do_user_evicts();
2113	mutex_exit(&arc_reclaim_thr_lock);
2114	ASSERT(spa || arc_eviction_list == NULL);
2115}
2116
2117void
2118arc_shrink(void)
2119{
2120	if (arc_c > arc_c_min) {
2121		uint64_t to_free;
2122
2123#ifdef _KERNEL
2124		to_free = arc_c >> arc_shrink_shift;
2125#else
2126		to_free = arc_c >> arc_shrink_shift;
2127#endif
2128		if (arc_c > arc_c_min + to_free)
2129			atomic_add_64(&arc_c, -to_free);
2130		else
2131			arc_c = arc_c_min;
2132
2133		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2134		if (arc_c > arc_size)
2135			arc_c = MAX(arc_size, arc_c_min);
2136		if (arc_p > arc_c)
2137			arc_p = (arc_c >> 1);
2138		ASSERT(arc_c >= arc_c_min);
2139		ASSERT((int64_t)arc_p >= 0);
2140	}
2141
2142	if (arc_size > arc_c)
2143		arc_adjust();
2144}
2145
2146static int needfree = 0;
2147
2148static int
2149arc_reclaim_needed(void)
2150{
2151#if 0
2152	uint64_t extra;
2153#endif
2154
2155#ifdef _KERNEL
2156	if (needfree)
2157		return (1);
2158
2159	/*
2160	 * Cooperate with pagedaemon when it's time for it to scan
2161	 * and reclaim some pages.
2162	 */
2163	if (vm_paging_needed())
2164		return (1);
2165
2166#if 0
2167	/*
2168	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2169	 */
2170	extra = desfree;
2171
2172	/*
2173	 * check that we're out of range of the pageout scanner.  It starts to
2174	 * schedule paging if freemem is less than lotsfree and needfree.
2175	 * lotsfree is the high-water mark for pageout, and needfree is the
2176	 * number of needed free pages.  We add extra pages here to make sure
2177	 * the scanner doesn't start up while we're freeing memory.
2178	 */
2179	if (freemem < lotsfree + needfree + extra)
2180		return (1);
2181
2182	/*
2183	 * check to make sure that swapfs has enough space so that anon
2184	 * reservations can still succeed. anon_resvmem() checks that the
2185	 * availrmem is greater than swapfs_minfree, and the number of reserved
2186	 * swap pages.  We also add a bit of extra here just to prevent
2187	 * circumstances from getting really dire.
2188	 */
2189	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2190		return (1);
2191
2192#if defined(__i386)
2193	/*
2194	 * If we're on an i386 platform, it's possible that we'll exhaust the
2195	 * kernel heap space before we ever run out of available physical
2196	 * memory.  Most checks of the size of the heap_area compare against
2197	 * tune.t_minarmem, which is the minimum available real memory that we
2198	 * can have in the system.  However, this is generally fixed at 25 pages
2199	 * which is so low that it's useless.  In this comparison, we seek to
2200	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2201	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2202	 * free)
2203	 */
2204	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2205	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2206		return (1);
2207#endif
2208#else
2209	if (kmem_used() > (kmem_size() * 3) / 4)
2210		return (1);
2211#endif
2212
2213#else
2214	if (spa_get_random(100) == 0)
2215		return (1);
2216#endif
2217	return (0);
2218}
2219
2220extern kmem_cache_t	*zio_buf_cache[];
2221extern kmem_cache_t	*zio_data_buf_cache[];
2222
2223static void
2224arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2225{
2226	size_t			i;
2227	kmem_cache_t		*prev_cache = NULL;
2228	kmem_cache_t		*prev_data_cache = NULL;
2229
2230#ifdef _KERNEL
2231	if (arc_meta_used >= arc_meta_limit) {
2232		/*
2233		 * We are exceeding our meta-data cache limit.
2234		 * Purge some DNLC entries to release holds on meta-data.
2235		 */
2236		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2237	}
2238#if defined(__i386)
2239	/*
2240	 * Reclaim unused memory from all kmem caches.
2241	 */
2242	kmem_reap();
2243#endif
2244#endif
2245
2246	/*
2247	 * An aggressive reclamation will shrink the cache size as well as
2248	 * reap free buffers from the arc kmem caches.
2249	 */
2250	if (strat == ARC_RECLAIM_AGGR)
2251		arc_shrink();
2252
2253	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2254		if (zio_buf_cache[i] != prev_cache) {
2255			prev_cache = zio_buf_cache[i];
2256			kmem_cache_reap_now(zio_buf_cache[i]);
2257		}
2258		if (zio_data_buf_cache[i] != prev_data_cache) {
2259			prev_data_cache = zio_data_buf_cache[i];
2260			kmem_cache_reap_now(zio_data_buf_cache[i]);
2261		}
2262	}
2263	kmem_cache_reap_now(buf_cache);
2264	kmem_cache_reap_now(hdr_cache);
2265}
2266
2267static void
2268arc_reclaim_thread(void *dummy __unused)
2269{
2270	clock_t			growtime = 0;
2271	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2272	callb_cpr_t		cpr;
2273
2274	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2275
2276	mutex_enter(&arc_reclaim_thr_lock);
2277	while (arc_thread_exit == 0) {
2278		if (arc_reclaim_needed()) {
2279
2280			if (arc_no_grow) {
2281				if (last_reclaim == ARC_RECLAIM_CONS) {
2282					last_reclaim = ARC_RECLAIM_AGGR;
2283				} else {
2284					last_reclaim = ARC_RECLAIM_CONS;
2285				}
2286			} else {
2287				arc_no_grow = TRUE;
2288				last_reclaim = ARC_RECLAIM_AGGR;
2289				membar_producer();
2290			}
2291
2292			/* reset the growth delay for every reclaim */
2293			growtime = LBOLT + (arc_grow_retry * hz);
2294
2295			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2296				/*
2297				 * If needfree is TRUE our vm_lowmem hook
2298				 * was called and in that case we must free some
2299				 * memory, so switch to aggressive mode.
2300				 */
2301				arc_no_grow = TRUE;
2302				last_reclaim = ARC_RECLAIM_AGGR;
2303			}
2304			arc_kmem_reap_now(last_reclaim);
2305			arc_warm = B_TRUE;
2306
2307		} else if (arc_no_grow && LBOLT >= growtime) {
2308			arc_no_grow = FALSE;
2309		}
2310
2311		arc_adjust();
2312
2313		if (arc_eviction_list != NULL)
2314			arc_do_user_evicts();
2315
2316#ifdef _KERNEL
2317		if (needfree) {
2318			needfree = 0;
2319			wakeup(&needfree);
2320		}
2321#endif
2322
2323		/* block until needed, or one second, whichever is shorter */
2324		CALLB_CPR_SAFE_BEGIN(&cpr);
2325		(void) cv_timedwait(&arc_reclaim_thr_cv,
2326		    &arc_reclaim_thr_lock, hz);
2327		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2328	}
2329
2330	arc_thread_exit = 0;
2331	cv_broadcast(&arc_reclaim_thr_cv);
2332	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2333	thread_exit();
2334}
2335
2336/*
2337 * Adapt arc info given the number of bytes we are trying to add and
2338 * the state that we are comming from.  This function is only called
2339 * when we are adding new content to the cache.
2340 */
2341static void
2342arc_adapt(int bytes, arc_state_t *state)
2343{
2344	int mult;
2345	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2346
2347	if (state == arc_l2c_only)
2348		return;
2349
2350	ASSERT(bytes > 0);
2351	/*
2352	 * Adapt the target size of the MRU list:
2353	 *	- if we just hit in the MRU ghost list, then increase
2354	 *	  the target size of the MRU list.
2355	 *	- if we just hit in the MFU ghost list, then increase
2356	 *	  the target size of the MFU list by decreasing the
2357	 *	  target size of the MRU list.
2358	 */
2359	if (state == arc_mru_ghost) {
2360		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2361		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2362		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2363
2364		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2365	} else if (state == arc_mfu_ghost) {
2366		uint64_t delta;
2367
2368		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2369		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2370		mult = MIN(mult, 10);
2371
2372		delta = MIN(bytes * mult, arc_p);
2373		arc_p = MAX(arc_p_min, arc_p - delta);
2374	}
2375	ASSERT((int64_t)arc_p >= 0);
2376
2377	if (arc_reclaim_needed()) {
2378		cv_signal(&arc_reclaim_thr_cv);
2379		return;
2380	}
2381
2382	if (arc_no_grow)
2383		return;
2384
2385	if (arc_c >= arc_c_max)
2386		return;
2387
2388	/*
2389	 * If we're within (2 * maxblocksize) bytes of the target
2390	 * cache size, increment the target cache size
2391	 */
2392	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2393		atomic_add_64(&arc_c, (int64_t)bytes);
2394		if (arc_c > arc_c_max)
2395			arc_c = arc_c_max;
2396		else if (state == arc_anon)
2397			atomic_add_64(&arc_p, (int64_t)bytes);
2398		if (arc_p > arc_c)
2399			arc_p = arc_c;
2400	}
2401	ASSERT((int64_t)arc_p >= 0);
2402}
2403
2404/*
2405 * Check if the cache has reached its limits and eviction is required
2406 * prior to insert.
2407 */
2408static int
2409arc_evict_needed(arc_buf_contents_t type)
2410{
2411	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2412		return (1);
2413
2414#if 0
2415#ifdef _KERNEL
2416	/*
2417	 * If zio data pages are being allocated out of a separate heap segment,
2418	 * then enforce that the size of available vmem for this area remains
2419	 * above about 1/32nd free.
2420	 */
2421	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2422	    vmem_size(zio_arena, VMEM_FREE) <
2423	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2424		return (1);
2425#endif
2426#endif
2427
2428	if (arc_reclaim_needed())
2429		return (1);
2430
2431	return (arc_size > arc_c);
2432}
2433
2434/*
2435 * The buffer, supplied as the first argument, needs a data block.
2436 * So, if we are at cache max, determine which cache should be victimized.
2437 * We have the following cases:
2438 *
2439 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2440 * In this situation if we're out of space, but the resident size of the MFU is
2441 * under the limit, victimize the MFU cache to satisfy this insertion request.
2442 *
2443 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2444 * Here, we've used up all of the available space for the MRU, so we need to
2445 * evict from our own cache instead.  Evict from the set of resident MRU
2446 * entries.
2447 *
2448 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2449 * c minus p represents the MFU space in the cache, since p is the size of the
2450 * cache that is dedicated to the MRU.  In this situation there's still space on
2451 * the MFU side, so the MRU side needs to be victimized.
2452 *
2453 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2454 * MFU's resident set is consuming more space than it has been allotted.  In
2455 * this situation, we must victimize our own cache, the MFU, for this insertion.
2456 */
2457static void
2458arc_get_data_buf(arc_buf_t *buf)
2459{
2460	arc_state_t		*state = buf->b_hdr->b_state;
2461	uint64_t		size = buf->b_hdr->b_size;
2462	arc_buf_contents_t	type = buf->b_hdr->b_type;
2463
2464	arc_adapt(size, state);
2465
2466	/*
2467	 * We have not yet reached cache maximum size,
2468	 * just allocate a new buffer.
2469	 */
2470	if (!arc_evict_needed(type)) {
2471		if (type == ARC_BUFC_METADATA) {
2472			buf->b_data = zio_buf_alloc(size);
2473			arc_space_consume(size, ARC_SPACE_DATA);
2474		} else {
2475			ASSERT(type == ARC_BUFC_DATA);
2476			buf->b_data = zio_data_buf_alloc(size);
2477			ARCSTAT_INCR(arcstat_data_size, size);
2478			atomic_add_64(&arc_size, size);
2479		}
2480		goto out;
2481	}
2482
2483	/*
2484	 * If we are prefetching from the mfu ghost list, this buffer
2485	 * will end up on the mru list; so steal space from there.
2486	 */
2487	if (state == arc_mfu_ghost)
2488		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2489	else if (state == arc_mru_ghost)
2490		state = arc_mru;
2491
2492	if (state == arc_mru || state == arc_anon) {
2493		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2494		state = (arc_mfu->arcs_lsize[type] >= size &&
2495		    arc_p > mru_used) ? arc_mfu : arc_mru;
2496	} else {
2497		/* MFU cases */
2498		uint64_t mfu_space = arc_c - arc_p;
2499		state =  (arc_mru->arcs_lsize[type] >= size &&
2500		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2501	}
2502	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2503		if (type == ARC_BUFC_METADATA) {
2504			buf->b_data = zio_buf_alloc(size);
2505			arc_space_consume(size, ARC_SPACE_DATA);
2506		} else {
2507			ASSERT(type == ARC_BUFC_DATA);
2508			buf->b_data = zio_data_buf_alloc(size);
2509			ARCSTAT_INCR(arcstat_data_size, size);
2510			atomic_add_64(&arc_size, size);
2511		}
2512		ARCSTAT_BUMP(arcstat_recycle_miss);
2513	}
2514	ASSERT(buf->b_data != NULL);
2515out:
2516	/*
2517	 * Update the state size.  Note that ghost states have a
2518	 * "ghost size" and so don't need to be updated.
2519	 */
2520	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2521		arc_buf_hdr_t *hdr = buf->b_hdr;
2522
2523		atomic_add_64(&hdr->b_state->arcs_size, size);
2524		if (list_link_active(&hdr->b_arc_node)) {
2525			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2526			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2527		}
2528		/*
2529		 * If we are growing the cache, and we are adding anonymous
2530		 * data, and we have outgrown arc_p, update arc_p
2531		 */
2532		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2533		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2534			arc_p = MIN(arc_c, arc_p + size);
2535	}
2536	ARCSTAT_BUMP(arcstat_allocated);
2537}
2538
2539/*
2540 * This routine is called whenever a buffer is accessed.
2541 * NOTE: the hash lock is dropped in this function.
2542 */
2543static void
2544arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2545{
2546	ASSERT(MUTEX_HELD(hash_lock));
2547
2548	if (buf->b_state == arc_anon) {
2549		/*
2550		 * This buffer is not in the cache, and does not
2551		 * appear in our "ghost" list.  Add the new buffer
2552		 * to the MRU state.
2553		 */
2554
2555		ASSERT(buf->b_arc_access == 0);
2556		buf->b_arc_access = LBOLT;
2557		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2558		arc_change_state(arc_mru, buf, hash_lock);
2559
2560	} else if (buf->b_state == arc_mru) {
2561		/*
2562		 * If this buffer is here because of a prefetch, then either:
2563		 * - clear the flag if this is a "referencing" read
2564		 *   (any subsequent access will bump this into the MFU state).
2565		 * or
2566		 * - move the buffer to the head of the list if this is
2567		 *   another prefetch (to make it less likely to be evicted).
2568		 */
2569		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2570			if (refcount_count(&buf->b_refcnt) == 0) {
2571				ASSERT(list_link_active(&buf->b_arc_node));
2572			} else {
2573				buf->b_flags &= ~ARC_PREFETCH;
2574				ARCSTAT_BUMP(arcstat_mru_hits);
2575			}
2576			buf->b_arc_access = LBOLT;
2577			return;
2578		}
2579
2580		/*
2581		 * This buffer has been "accessed" only once so far,
2582		 * but it is still in the cache. Move it to the MFU
2583		 * state.
2584		 */
2585		if (LBOLT > buf->b_arc_access + ARC_MINTIME) {
2586			/*
2587			 * More than 125ms have passed since we
2588			 * instantiated this buffer.  Move it to the
2589			 * most frequently used state.
2590			 */
2591			buf->b_arc_access = LBOLT;
2592			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2593			arc_change_state(arc_mfu, buf, hash_lock);
2594		}
2595		ARCSTAT_BUMP(arcstat_mru_hits);
2596	} else if (buf->b_state == arc_mru_ghost) {
2597		arc_state_t	*new_state;
2598		/*
2599		 * This buffer has been "accessed" recently, but
2600		 * was evicted from the cache.  Move it to the
2601		 * MFU state.
2602		 */
2603
2604		if (buf->b_flags & ARC_PREFETCH) {
2605			new_state = arc_mru;
2606			if (refcount_count(&buf->b_refcnt) > 0)
2607				buf->b_flags &= ~ARC_PREFETCH;
2608			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2609		} else {
2610			new_state = arc_mfu;
2611			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2612		}
2613
2614		buf->b_arc_access = LBOLT;
2615		arc_change_state(new_state, buf, hash_lock);
2616
2617		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2618	} else if (buf->b_state == arc_mfu) {
2619		/*
2620		 * This buffer has been accessed more than once and is
2621		 * still in the cache.  Keep it in the MFU state.
2622		 *
2623		 * NOTE: an add_reference() that occurred when we did
2624		 * the arc_read() will have kicked this off the list.
2625		 * If it was a prefetch, we will explicitly move it to
2626		 * the head of the list now.
2627		 */
2628		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2629			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2630			ASSERT(list_link_active(&buf->b_arc_node));
2631		}
2632		ARCSTAT_BUMP(arcstat_mfu_hits);
2633		buf->b_arc_access = LBOLT;
2634	} else if (buf->b_state == arc_mfu_ghost) {
2635		arc_state_t	*new_state = arc_mfu;
2636		/*
2637		 * This buffer has been accessed more than once but has
2638		 * been evicted from the cache.  Move it back to the
2639		 * MFU state.
2640		 */
2641
2642		if (buf->b_flags & ARC_PREFETCH) {
2643			/*
2644			 * This is a prefetch access...
2645			 * move this block back to the MRU state.
2646			 */
2647			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2648			new_state = arc_mru;
2649		}
2650
2651		buf->b_arc_access = LBOLT;
2652		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2653		arc_change_state(new_state, buf, hash_lock);
2654
2655		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2656	} else if (buf->b_state == arc_l2c_only) {
2657		/*
2658		 * This buffer is on the 2nd Level ARC.
2659		 */
2660
2661		buf->b_arc_access = LBOLT;
2662		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2663		arc_change_state(arc_mfu, buf, hash_lock);
2664	} else {
2665		ASSERT(!"invalid arc state");
2666	}
2667}
2668
2669/* a generic arc_done_func_t which you can use */
2670/* ARGSUSED */
2671void
2672arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2673{
2674	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2675	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2676}
2677
2678/* a generic arc_done_func_t */
2679void
2680arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2681{
2682	arc_buf_t **bufp = arg;
2683	if (zio && zio->io_error) {
2684		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2685		*bufp = NULL;
2686	} else {
2687		*bufp = buf;
2688	}
2689}
2690
2691static void
2692arc_read_done(zio_t *zio)
2693{
2694	arc_buf_hdr_t	*hdr, *found;
2695	arc_buf_t	*buf;
2696	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2697	kmutex_t	*hash_lock;
2698	arc_callback_t	*callback_list, *acb;
2699	int		freeable = FALSE;
2700
2701	buf = zio->io_private;
2702	hdr = buf->b_hdr;
2703
2704	/*
2705	 * The hdr was inserted into hash-table and removed from lists
2706	 * prior to starting I/O.  We should find this header, since
2707	 * it's in the hash table, and it should be legit since it's
2708	 * not possible to evict it during the I/O.  The only possible
2709	 * reason for it not to be found is if we were freed during the
2710	 * read.
2711	 */
2712	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2713	    &hash_lock);
2714
2715	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2716	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2717	    (found == hdr && HDR_L2_READING(hdr)));
2718
2719	hdr->b_flags &= ~ARC_L2_EVICTED;
2720	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2721		hdr->b_flags &= ~ARC_L2CACHE;
2722
2723	/* byteswap if necessary */
2724	callback_list = hdr->b_acb;
2725	ASSERT(callback_list != NULL);
2726	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2727		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2728		    byteswap_uint64_array :
2729		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2730		func(buf->b_data, hdr->b_size);
2731	}
2732
2733	arc_cksum_compute(buf, B_FALSE);
2734
2735	/* create copies of the data buffer for the callers */
2736	abuf = buf;
2737	for (acb = callback_list; acb; acb = acb->acb_next) {
2738		if (acb->acb_done) {
2739			if (abuf == NULL)
2740				abuf = arc_buf_clone(buf);
2741			acb->acb_buf = abuf;
2742			abuf = NULL;
2743		}
2744	}
2745	hdr->b_acb = NULL;
2746	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2747	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2748	if (abuf == buf)
2749		hdr->b_flags |= ARC_BUF_AVAILABLE;
2750
2751	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2752
2753	if (zio->io_error != 0) {
2754		hdr->b_flags |= ARC_IO_ERROR;
2755		if (hdr->b_state != arc_anon)
2756			arc_change_state(arc_anon, hdr, hash_lock);
2757		if (HDR_IN_HASH_TABLE(hdr))
2758			buf_hash_remove(hdr);
2759		freeable = refcount_is_zero(&hdr->b_refcnt);
2760	}
2761
2762	/*
2763	 * Broadcast before we drop the hash_lock to avoid the possibility
2764	 * that the hdr (and hence the cv) might be freed before we get to
2765	 * the cv_broadcast().
2766	 */
2767	cv_broadcast(&hdr->b_cv);
2768
2769	if (hash_lock) {
2770		/*
2771		 * Only call arc_access on anonymous buffers.  This is because
2772		 * if we've issued an I/O for an evicted buffer, we've already
2773		 * called arc_access (to prevent any simultaneous readers from
2774		 * getting confused).
2775		 */
2776		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2777			arc_access(hdr, hash_lock);
2778		mutex_exit(hash_lock);
2779	} else {
2780		/*
2781		 * This block was freed while we waited for the read to
2782		 * complete.  It has been removed from the hash table and
2783		 * moved to the anonymous state (so that it won't show up
2784		 * in the cache).
2785		 */
2786		ASSERT3P(hdr->b_state, ==, arc_anon);
2787		freeable = refcount_is_zero(&hdr->b_refcnt);
2788	}
2789
2790	/* execute each callback and free its structure */
2791	while ((acb = callback_list) != NULL) {
2792		if (acb->acb_done)
2793			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2794
2795		if (acb->acb_zio_dummy != NULL) {
2796			acb->acb_zio_dummy->io_error = zio->io_error;
2797			zio_nowait(acb->acb_zio_dummy);
2798		}
2799
2800		callback_list = acb->acb_next;
2801		kmem_free(acb, sizeof (arc_callback_t));
2802	}
2803
2804	if (freeable)
2805		arc_hdr_destroy(hdr);
2806}
2807
2808/*
2809 * "Read" the block block at the specified DVA (in bp) via the
2810 * cache.  If the block is found in the cache, invoke the provided
2811 * callback immediately and return.  Note that the `zio' parameter
2812 * in the callback will be NULL in this case, since no IO was
2813 * required.  If the block is not in the cache pass the read request
2814 * on to the spa with a substitute callback function, so that the
2815 * requested block will be added to the cache.
2816 *
2817 * If a read request arrives for a block that has a read in-progress,
2818 * either wait for the in-progress read to complete (and return the
2819 * results); or, if this is a read with a "done" func, add a record
2820 * to the read to invoke the "done" func when the read completes,
2821 * and return; or just return.
2822 *
2823 * arc_read_done() will invoke all the requested "done" functions
2824 * for readers of this block.
2825 *
2826 * Normal callers should use arc_read and pass the arc buffer and offset
2827 * for the bp.  But if you know you don't need locking, you can use
2828 * arc_read_bp.
2829 */
2830int
2831arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2832    arc_done_func_t *done, void *private, int priority, int zio_flags,
2833    uint32_t *arc_flags, const zbookmark_t *zb)
2834{
2835	int err;
2836
2837	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2838	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2839	rw_enter(&pbuf->b_lock, RW_READER);
2840
2841	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2842	    zio_flags, arc_flags, zb);
2843	rw_exit(&pbuf->b_lock);
2844	return (err);
2845}
2846
2847int
2848arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2849    arc_done_func_t *done, void *private, int priority, int zio_flags,
2850    uint32_t *arc_flags, const zbookmark_t *zb)
2851{
2852	arc_buf_hdr_t *hdr;
2853	arc_buf_t *buf;
2854	kmutex_t *hash_lock;
2855	zio_t *rzio;
2856	uint64_t guid = spa_guid(spa);
2857
2858top:
2859	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2860	if (hdr && hdr->b_datacnt > 0) {
2861
2862		*arc_flags |= ARC_CACHED;
2863
2864		if (HDR_IO_IN_PROGRESS(hdr)) {
2865
2866			if (*arc_flags & ARC_WAIT) {
2867				cv_wait(&hdr->b_cv, hash_lock);
2868				mutex_exit(hash_lock);
2869				goto top;
2870			}
2871			ASSERT(*arc_flags & ARC_NOWAIT);
2872
2873			if (done) {
2874				arc_callback_t	*acb = NULL;
2875
2876				acb = kmem_zalloc(sizeof (arc_callback_t),
2877				    KM_SLEEP);
2878				acb->acb_done = done;
2879				acb->acb_private = private;
2880				if (pio != NULL)
2881					acb->acb_zio_dummy = zio_null(pio,
2882					    spa, NULL, NULL, NULL, zio_flags);
2883
2884				ASSERT(acb->acb_done != NULL);
2885				acb->acb_next = hdr->b_acb;
2886				hdr->b_acb = acb;
2887				add_reference(hdr, hash_lock, private);
2888				mutex_exit(hash_lock);
2889				return (0);
2890			}
2891			mutex_exit(hash_lock);
2892			return (0);
2893		}
2894
2895		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2896
2897		if (done) {
2898			add_reference(hdr, hash_lock, private);
2899			/*
2900			 * If this block is already in use, create a new
2901			 * copy of the data so that we will be guaranteed
2902			 * that arc_release() will always succeed.
2903			 */
2904			buf = hdr->b_buf;
2905			ASSERT(buf);
2906			ASSERT(buf->b_data);
2907			if (HDR_BUF_AVAILABLE(hdr)) {
2908				ASSERT(buf->b_efunc == NULL);
2909				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2910			} else {
2911				buf = arc_buf_clone(buf);
2912			}
2913		} else if (*arc_flags & ARC_PREFETCH &&
2914		    refcount_count(&hdr->b_refcnt) == 0) {
2915			hdr->b_flags |= ARC_PREFETCH;
2916		}
2917		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2918		arc_access(hdr, hash_lock);
2919		if (*arc_flags & ARC_L2CACHE)
2920			hdr->b_flags |= ARC_L2CACHE;
2921		mutex_exit(hash_lock);
2922		ARCSTAT_BUMP(arcstat_hits);
2923		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2924		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2925		    data, metadata, hits);
2926
2927		if (done)
2928			done(NULL, buf, private);
2929	} else {
2930		uint64_t size = BP_GET_LSIZE(bp);
2931		arc_callback_t	*acb;
2932		vdev_t *vd = NULL;
2933		uint64_t addr;
2934		boolean_t devw = B_FALSE;
2935
2936		if (hdr == NULL) {
2937			/* this block is not in the cache */
2938			arc_buf_hdr_t	*exists;
2939			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2940			buf = arc_buf_alloc(spa, size, private, type);
2941			hdr = buf->b_hdr;
2942			hdr->b_dva = *BP_IDENTITY(bp);
2943			hdr->b_birth = bp->blk_birth;
2944			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2945			exists = buf_hash_insert(hdr, &hash_lock);
2946			if (exists) {
2947				/* somebody beat us to the hash insert */
2948				mutex_exit(hash_lock);
2949				bzero(&hdr->b_dva, sizeof (dva_t));
2950				hdr->b_birth = 0;
2951				hdr->b_cksum0 = 0;
2952				(void) arc_buf_remove_ref(buf, private);
2953				goto top; /* restart the IO request */
2954			}
2955			/* if this is a prefetch, we don't have a reference */
2956			if (*arc_flags & ARC_PREFETCH) {
2957				(void) remove_reference(hdr, hash_lock,
2958				    private);
2959				hdr->b_flags |= ARC_PREFETCH;
2960			}
2961			if (*arc_flags & ARC_L2CACHE)
2962				hdr->b_flags |= ARC_L2CACHE;
2963			if (BP_GET_LEVEL(bp) > 0)
2964				hdr->b_flags |= ARC_INDIRECT;
2965		} else {
2966			/* this block is in the ghost cache */
2967			ASSERT(GHOST_STATE(hdr->b_state));
2968			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2969			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2970			ASSERT(hdr->b_buf == NULL);
2971
2972			/* if this is a prefetch, we don't have a reference */
2973			if (*arc_flags & ARC_PREFETCH)
2974				hdr->b_flags |= ARC_PREFETCH;
2975			else
2976				add_reference(hdr, hash_lock, private);
2977			if (*arc_flags & ARC_L2CACHE)
2978				hdr->b_flags |= ARC_L2CACHE;
2979			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2980			buf->b_hdr = hdr;
2981			buf->b_data = NULL;
2982			buf->b_efunc = NULL;
2983			buf->b_private = NULL;
2984			buf->b_next = NULL;
2985			hdr->b_buf = buf;
2986			arc_get_data_buf(buf);
2987			ASSERT(hdr->b_datacnt == 0);
2988			hdr->b_datacnt = 1;
2989
2990		}
2991
2992		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2993		acb->acb_done = done;
2994		acb->acb_private = private;
2995
2996		ASSERT(hdr->b_acb == NULL);
2997		hdr->b_acb = acb;
2998		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2999
3000		/*
3001		 * If the buffer has been evicted, migrate it to a present state
3002		 * before issuing the I/O.  Once we drop the hash-table lock,
3003		 * the header will be marked as I/O in progress and have an
3004		 * attached buffer.  At this point, anybody who finds this
3005		 * buffer ought to notice that it's legit but has a pending I/O.
3006		 */
3007
3008		if (GHOST_STATE(hdr->b_state))
3009			arc_access(hdr, hash_lock);
3010
3011		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3012		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3013			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3014			addr = hdr->b_l2hdr->b_daddr;
3015			/*
3016			 * Lock out device removal.
3017			 */
3018			if (vdev_is_dead(vd) ||
3019			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3020				vd = NULL;
3021		}
3022
3023		mutex_exit(hash_lock);
3024
3025		ASSERT3U(hdr->b_size, ==, size);
3026		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
3027		    zbookmark_t *, zb);
3028		ARCSTAT_BUMP(arcstat_misses);
3029		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3030		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3031		    data, metadata, misses);
3032
3033		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3034			/*
3035			 * Read from the L2ARC if the following are true:
3036			 * 1. The L2ARC vdev was previously cached.
3037			 * 2. This buffer still has L2ARC metadata.
3038			 * 3. This buffer isn't currently writing to the L2ARC.
3039			 * 4. The L2ARC entry wasn't evicted, which may
3040			 *    also have invalidated the vdev.
3041			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3042			 */
3043			if (hdr->b_l2hdr != NULL &&
3044			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3045			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3046				l2arc_read_callback_t *cb;
3047
3048				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3049				ARCSTAT_BUMP(arcstat_l2_hits);
3050
3051				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3052				    KM_SLEEP);
3053				cb->l2rcb_buf = buf;
3054				cb->l2rcb_spa = spa;
3055				cb->l2rcb_bp = *bp;
3056				cb->l2rcb_zb = *zb;
3057				cb->l2rcb_flags = zio_flags;
3058
3059				/*
3060				 * l2arc read.  The SCL_L2ARC lock will be
3061				 * released by l2arc_read_done().
3062				 */
3063				rzio = zio_read_phys(pio, vd, addr, size,
3064				    buf->b_data, ZIO_CHECKSUM_OFF,
3065				    l2arc_read_done, cb, priority, zio_flags |
3066				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3067				    ZIO_FLAG_DONT_PROPAGATE |
3068				    ZIO_FLAG_DONT_RETRY, B_FALSE);
3069				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3070				    zio_t *, rzio);
3071				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3072
3073				if (*arc_flags & ARC_NOWAIT) {
3074					zio_nowait(rzio);
3075					return (0);
3076				}
3077
3078				ASSERT(*arc_flags & ARC_WAIT);
3079				if (zio_wait(rzio) == 0)
3080					return (0);
3081
3082				/* l2arc read error; goto zio_read() */
3083			} else {
3084				DTRACE_PROBE1(l2arc__miss,
3085				    arc_buf_hdr_t *, hdr);
3086				ARCSTAT_BUMP(arcstat_l2_misses);
3087				if (HDR_L2_WRITING(hdr))
3088					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3089				spa_config_exit(spa, SCL_L2ARC, vd);
3090			}
3091		} else {
3092			if (vd != NULL)
3093				spa_config_exit(spa, SCL_L2ARC, vd);
3094			if (l2arc_ndev != 0) {
3095				DTRACE_PROBE1(l2arc__miss,
3096				    arc_buf_hdr_t *, hdr);
3097				ARCSTAT_BUMP(arcstat_l2_misses);
3098			}
3099		}
3100
3101		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3102		    arc_read_done, buf, priority, zio_flags, zb);
3103
3104		if (*arc_flags & ARC_WAIT)
3105			return (zio_wait(rzio));
3106
3107		ASSERT(*arc_flags & ARC_NOWAIT);
3108		zio_nowait(rzio);
3109	}
3110	return (0);
3111}
3112
3113/*
3114 * arc_read() variant to support pool traversal.  If the block is already
3115 * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
3116 * The idea is that we don't want pool traversal filling up memory, but
3117 * if the ARC already has the data anyway, we shouldn't pay for the I/O.
3118 */
3119int
3120arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
3121{
3122	arc_buf_hdr_t *hdr;
3123	kmutex_t *hash_mtx;
3124	uint64_t guid = spa_guid(spa);
3125	int rc = 0;
3126
3127	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
3128
3129	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
3130		arc_buf_t *buf = hdr->b_buf;
3131
3132		ASSERT(buf);
3133		while (buf->b_data == NULL) {
3134			buf = buf->b_next;
3135			ASSERT(buf);
3136		}
3137		bcopy(buf->b_data, data, hdr->b_size);
3138	} else {
3139		rc = ENOENT;
3140	}
3141
3142	if (hash_mtx)
3143		mutex_exit(hash_mtx);
3144
3145	return (rc);
3146}
3147
3148void
3149arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3150{
3151	ASSERT(buf->b_hdr != NULL);
3152	ASSERT(buf->b_hdr->b_state != arc_anon);
3153	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3154	buf->b_efunc = func;
3155	buf->b_private = private;
3156}
3157
3158/*
3159 * This is used by the DMU to let the ARC know that a buffer is
3160 * being evicted, so the ARC should clean up.  If this arc buf
3161 * is not yet in the evicted state, it will be put there.
3162 */
3163int
3164arc_buf_evict(arc_buf_t *buf)
3165{
3166	arc_buf_hdr_t *hdr;
3167	kmutex_t *hash_lock;
3168	arc_buf_t **bufp;
3169	list_t *list, *evicted_list;
3170	kmutex_t *lock, *evicted_lock;
3171
3172	rw_enter(&buf->b_lock, RW_WRITER);
3173	hdr = buf->b_hdr;
3174	if (hdr == NULL) {
3175		/*
3176		 * We are in arc_do_user_evicts().
3177		 */
3178		ASSERT(buf->b_data == NULL);
3179		rw_exit(&buf->b_lock);
3180		return (0);
3181	} else if (buf->b_data == NULL) {
3182		arc_buf_t copy = *buf; /* structure assignment */
3183		/*
3184		 * We are on the eviction list; process this buffer now
3185		 * but let arc_do_user_evicts() do the reaping.
3186		 */
3187		buf->b_efunc = NULL;
3188		rw_exit(&buf->b_lock);
3189		VERIFY(copy.b_efunc(&copy) == 0);
3190		return (1);
3191	}
3192	hash_lock = HDR_LOCK(hdr);
3193	mutex_enter(hash_lock);
3194
3195	ASSERT(buf->b_hdr == hdr);
3196	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3197	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3198
3199	/*
3200	 * Pull this buffer off of the hdr
3201	 */
3202	bufp = &hdr->b_buf;
3203	while (*bufp != buf)
3204		bufp = &(*bufp)->b_next;
3205	*bufp = buf->b_next;
3206
3207	ASSERT(buf->b_data != NULL);
3208	arc_buf_destroy(buf, FALSE, FALSE);
3209
3210	if (hdr->b_datacnt == 0) {
3211		arc_state_t *old_state = hdr->b_state;
3212		arc_state_t *evicted_state;
3213
3214		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3215
3216		evicted_state =
3217		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3218
3219		get_buf_info(hdr, old_state, &list, &lock);
3220		get_buf_info(hdr, evicted_state, &evicted_list, &evicted_lock);
3221		mutex_enter(lock);
3222		mutex_enter(evicted_lock);
3223
3224		arc_change_state(evicted_state, hdr, hash_lock);
3225		ASSERT(HDR_IN_HASH_TABLE(hdr));
3226		hdr->b_flags |= ARC_IN_HASH_TABLE;
3227		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3228
3229		mutex_exit(evicted_lock);
3230		mutex_exit(lock);
3231	}
3232	mutex_exit(hash_lock);
3233	rw_exit(&buf->b_lock);
3234
3235	VERIFY(buf->b_efunc(buf) == 0);
3236	buf->b_efunc = NULL;
3237	buf->b_private = NULL;
3238	buf->b_hdr = NULL;
3239	kmem_cache_free(buf_cache, buf);
3240	return (1);
3241}
3242
3243/*
3244 * Release this buffer from the cache.  This must be done
3245 * after a read and prior to modifying the buffer contents.
3246 * If the buffer has more than one reference, we must make
3247 * a new hdr for the buffer.
3248 */
3249void
3250arc_release(arc_buf_t *buf, void *tag)
3251{
3252	arc_buf_hdr_t *hdr;
3253	kmutex_t *hash_lock;
3254	l2arc_buf_hdr_t *l2hdr;
3255	uint64_t buf_size;
3256	boolean_t released = B_FALSE;
3257
3258	rw_enter(&buf->b_lock, RW_WRITER);
3259	hdr = buf->b_hdr;
3260
3261	/* this buffer is not on any list */
3262	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3263	ASSERT(!(hdr->b_flags & ARC_STORED));
3264
3265	if (hdr->b_state == arc_anon) {
3266		/* this buffer is already released */
3267		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
3268		ASSERT(BUF_EMPTY(hdr));
3269		ASSERT(buf->b_efunc == NULL);
3270		arc_buf_thaw(buf);
3271		rw_exit(&buf->b_lock);
3272		released = B_TRUE;
3273	} else {
3274		hash_lock = HDR_LOCK(hdr);
3275		mutex_enter(hash_lock);
3276	}
3277
3278	l2hdr = hdr->b_l2hdr;
3279	if (l2hdr) {
3280		mutex_enter(&l2arc_buflist_mtx);
3281		hdr->b_l2hdr = NULL;
3282		buf_size = hdr->b_size;
3283	}
3284
3285	if (released)
3286		goto out;
3287
3288	/*
3289	 * Do we have more than one buf?
3290	 */
3291	if (hdr->b_datacnt > 1) {
3292		arc_buf_hdr_t *nhdr;
3293		arc_buf_t **bufp;
3294		uint64_t blksz = hdr->b_size;
3295		uint64_t spa = hdr->b_spa;
3296		arc_buf_contents_t type = hdr->b_type;
3297		uint32_t flags = hdr->b_flags;
3298
3299		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3300		/*
3301		 * Pull the data off of this buf and attach it to
3302		 * a new anonymous buf.
3303		 */
3304		(void) remove_reference(hdr, hash_lock, tag);
3305		bufp = &hdr->b_buf;
3306		while (*bufp != buf)
3307			bufp = &(*bufp)->b_next;
3308		*bufp = (*bufp)->b_next;
3309		buf->b_next = NULL;
3310
3311		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3312		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3313		if (refcount_is_zero(&hdr->b_refcnt)) {
3314			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3315			ASSERT3U(*size, >=, hdr->b_size);
3316			atomic_add_64(size, -hdr->b_size);
3317		}
3318		hdr->b_datacnt -= 1;
3319		arc_cksum_verify(buf);
3320
3321		mutex_exit(hash_lock);
3322
3323		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3324		nhdr->b_size = blksz;
3325		nhdr->b_spa = spa;
3326		nhdr->b_type = type;
3327		nhdr->b_buf = buf;
3328		nhdr->b_state = arc_anon;
3329		nhdr->b_arc_access = 0;
3330		nhdr->b_flags = flags & ARC_L2_WRITING;
3331		nhdr->b_l2hdr = NULL;
3332		nhdr->b_datacnt = 1;
3333		nhdr->b_freeze_cksum = NULL;
3334		(void) refcount_add(&nhdr->b_refcnt, tag);
3335		buf->b_hdr = nhdr;
3336		rw_exit(&buf->b_lock);
3337		atomic_add_64(&arc_anon->arcs_size, blksz);
3338	} else {
3339		rw_exit(&buf->b_lock);
3340		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3341		ASSERT(!list_link_active(&hdr->b_arc_node));
3342		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3343		arc_change_state(arc_anon, hdr, hash_lock);
3344		hdr->b_arc_access = 0;
3345		mutex_exit(hash_lock);
3346
3347		bzero(&hdr->b_dva, sizeof (dva_t));
3348		hdr->b_birth = 0;
3349		hdr->b_cksum0 = 0;
3350		arc_buf_thaw(buf);
3351	}
3352	buf->b_efunc = NULL;
3353	buf->b_private = NULL;
3354
3355out:
3356	if (l2hdr) {
3357		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3358		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3359		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3360		mutex_exit(&l2arc_buflist_mtx);
3361	}
3362}
3363
3364int
3365arc_released(arc_buf_t *buf)
3366{
3367	int released;
3368
3369	rw_enter(&buf->b_lock, RW_READER);
3370	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3371	rw_exit(&buf->b_lock);
3372	return (released);
3373}
3374
3375int
3376arc_has_callback(arc_buf_t *buf)
3377{
3378	int callback;
3379
3380	rw_enter(&buf->b_lock, RW_READER);
3381	callback = (buf->b_efunc != NULL);
3382	rw_exit(&buf->b_lock);
3383	return (callback);
3384}
3385
3386#ifdef ZFS_DEBUG
3387int
3388arc_referenced(arc_buf_t *buf)
3389{
3390	int referenced;
3391
3392	rw_enter(&buf->b_lock, RW_READER);
3393	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3394	rw_exit(&buf->b_lock);
3395	return (referenced);
3396}
3397#endif
3398
3399static void
3400arc_write_ready(zio_t *zio)
3401{
3402	arc_write_callback_t *callback = zio->io_private;
3403	arc_buf_t *buf = callback->awcb_buf;
3404	arc_buf_hdr_t *hdr = buf->b_hdr;
3405
3406	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3407	callback->awcb_ready(zio, buf, callback->awcb_private);
3408
3409	/*
3410	 * If the IO is already in progress, then this is a re-write
3411	 * attempt, so we need to thaw and re-compute the cksum.
3412	 * It is the responsibility of the callback to handle the
3413	 * accounting for any re-write attempt.
3414	 */
3415	if (HDR_IO_IN_PROGRESS(hdr)) {
3416		mutex_enter(&hdr->b_freeze_lock);
3417		if (hdr->b_freeze_cksum != NULL) {
3418			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3419			hdr->b_freeze_cksum = NULL;
3420		}
3421		mutex_exit(&hdr->b_freeze_lock);
3422	}
3423	arc_cksum_compute(buf, B_FALSE);
3424	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3425}
3426
3427static void
3428arc_write_done(zio_t *zio)
3429{
3430	arc_write_callback_t *callback = zio->io_private;
3431	arc_buf_t *buf = callback->awcb_buf;
3432	arc_buf_hdr_t *hdr = buf->b_hdr;
3433
3434	hdr->b_acb = NULL;
3435
3436	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3437	hdr->b_birth = zio->io_bp->blk_birth;
3438	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3439	/*
3440	 * If the block to be written was all-zero, we may have
3441	 * compressed it away.  In this case no write was performed
3442	 * so there will be no dva/birth-date/checksum.  The buffer
3443	 * must therefor remain anonymous (and uncached).
3444	 */
3445	if (!BUF_EMPTY(hdr)) {
3446		arc_buf_hdr_t *exists;
3447		kmutex_t *hash_lock;
3448
3449		arc_cksum_verify(buf);
3450
3451		exists = buf_hash_insert(hdr, &hash_lock);
3452		if (exists) {
3453			/*
3454			 * This can only happen if we overwrite for
3455			 * sync-to-convergence, because we remove
3456			 * buffers from the hash table when we arc_free().
3457			 */
3458			ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
3459			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3460			    BP_IDENTITY(zio->io_bp)));
3461			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3462			    zio->io_bp->blk_birth);
3463
3464			ASSERT(refcount_is_zero(&exists->b_refcnt));
3465			arc_change_state(arc_anon, exists, hash_lock);
3466			mutex_exit(hash_lock);
3467			arc_hdr_destroy(exists);
3468			exists = buf_hash_insert(hdr, &hash_lock);
3469			ASSERT3P(exists, ==, NULL);
3470		}
3471		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3472		/* if it's not anon, we are doing a scrub */
3473		if (hdr->b_state == arc_anon)
3474			arc_access(hdr, hash_lock);
3475		mutex_exit(hash_lock);
3476	} else if (callback->awcb_done == NULL) {
3477		int destroy_hdr;
3478		/*
3479		 * This is an anonymous buffer with no user callback,
3480		 * destroy it if there are no active references.
3481		 */
3482		mutex_enter(&arc_eviction_mtx);
3483		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3484		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3485		mutex_exit(&arc_eviction_mtx);
3486		if (destroy_hdr)
3487			arc_hdr_destroy(hdr);
3488	} else {
3489		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3490	}
3491	hdr->b_flags &= ~ARC_STORED;
3492
3493	if (callback->awcb_done) {
3494		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3495		callback->awcb_done(zio, buf, callback->awcb_private);
3496	}
3497
3498	kmem_free(callback, sizeof (arc_write_callback_t));
3499}
3500
3501static void
3502write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
3503{
3504	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3505
3506	/* Determine checksum setting */
3507	if (ismd) {
3508		/*
3509		 * Metadata always gets checksummed.  If the data
3510		 * checksum is multi-bit correctable, and it's not a
3511		 * ZBT-style checksum, then it's suitable for metadata
3512		 * as well.  Otherwise, the metadata checksum defaults
3513		 * to fletcher4.
3514		 */
3515		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3516		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3517			zp->zp_checksum = wp->wp_oschecksum;
3518		else
3519			zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
3520	} else {
3521		zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
3522		    wp->wp_oschecksum);
3523	}
3524
3525	/* Determine compression setting */
3526	if (ismd) {
3527		/*
3528		 * XXX -- we should design a compression algorithm
3529		 * that specializes in arrays of bps.
3530		 */
3531		zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3532		    ZIO_COMPRESS_LZJB;
3533	} else {
3534		zp->zp_compress = zio_compress_select(wp->wp_dncompress,
3535		    wp->wp_oscompress);
3536	}
3537
3538	zp->zp_type = wp->wp_type;
3539	zp->zp_level = wp->wp_level;
3540	zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
3541}
3542
3543zio_t *
3544arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3545    boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3546    arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3547    int zio_flags, const zbookmark_t *zb)
3548{
3549	arc_buf_hdr_t *hdr = buf->b_hdr;
3550	arc_write_callback_t *callback;
3551	zio_t *zio;
3552	zio_prop_t zp;
3553
3554	ASSERT(ready != NULL);
3555	ASSERT(!HDR_IO_ERROR(hdr));
3556	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3557	ASSERT(hdr->b_acb == 0);
3558	if (l2arc)
3559		hdr->b_flags |= ARC_L2CACHE;
3560	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3561	callback->awcb_ready = ready;
3562	callback->awcb_done = done;
3563	callback->awcb_private = private;
3564	callback->awcb_buf = buf;
3565
3566	write_policy(spa, wp, &zp);
3567	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
3568	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3569
3570	return (zio);
3571}
3572
3573int
3574arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3575    zio_done_func_t *done, void *private, uint32_t arc_flags)
3576{
3577	arc_buf_hdr_t *ab;
3578	kmutex_t *hash_lock;
3579	zio_t	*zio;
3580	uint64_t guid = spa_guid(spa);
3581
3582	/*
3583	 * If this buffer is in the cache, release it, so it
3584	 * can be re-used.
3585	 */
3586	ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3587	if (ab != NULL) {
3588		/*
3589		 * The checksum of blocks to free is not always
3590		 * preserved (eg. on the deadlist).  However, if it is
3591		 * nonzero, it should match what we have in the cache.
3592		 */
3593		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3594		    bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
3595		    bp->blk_fill == BLK_FILL_ALREADY_FREED);
3596
3597		if (ab->b_state != arc_anon)
3598			arc_change_state(arc_anon, ab, hash_lock);
3599		if (HDR_IO_IN_PROGRESS(ab)) {
3600			/*
3601			 * This should only happen when we prefetch.
3602			 */
3603			ASSERT(ab->b_flags & ARC_PREFETCH);
3604			ASSERT3U(ab->b_datacnt, ==, 1);
3605			ab->b_flags |= ARC_FREED_IN_READ;
3606			if (HDR_IN_HASH_TABLE(ab))
3607				buf_hash_remove(ab);
3608			ab->b_arc_access = 0;
3609			bzero(&ab->b_dva, sizeof (dva_t));
3610			ab->b_birth = 0;
3611			ab->b_cksum0 = 0;
3612			ab->b_buf->b_efunc = NULL;
3613			ab->b_buf->b_private = NULL;
3614			mutex_exit(hash_lock);
3615		} else if (refcount_is_zero(&ab->b_refcnt)) {
3616			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3617			mutex_exit(hash_lock);
3618			arc_hdr_destroy(ab);
3619			ARCSTAT_BUMP(arcstat_deleted);
3620		} else {
3621			/*
3622			 * We still have an active reference on this
3623			 * buffer.  This can happen, e.g., from
3624			 * dbuf_unoverride().
3625			 */
3626			ASSERT(!HDR_IN_HASH_TABLE(ab));
3627			ab->b_arc_access = 0;
3628			bzero(&ab->b_dva, sizeof (dva_t));
3629			ab->b_birth = 0;
3630			ab->b_cksum0 = 0;
3631			ab->b_buf->b_efunc = NULL;
3632			ab->b_buf->b_private = NULL;
3633			mutex_exit(hash_lock);
3634		}
3635	}
3636
3637	zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
3638
3639	if (arc_flags & ARC_WAIT)
3640		return (zio_wait(zio));
3641
3642	ASSERT(arc_flags & ARC_NOWAIT);
3643	zio_nowait(zio);
3644
3645	return (0);
3646}
3647
3648static int
3649arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3650{
3651#ifdef _KERNEL
3652	uint64_t available_memory = ptoa((uintmax_t)cnt.v_free_count
3653	    + cnt.v_cache_count);
3654	static uint64_t page_load = 0;
3655	static uint64_t last_txg = 0;
3656
3657#if 0
3658#if defined(__i386)
3659	available_memory =
3660	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3661#endif
3662#endif
3663	if (available_memory >= zfs_write_limit_max)
3664		return (0);
3665
3666	if (txg > last_txg) {
3667		last_txg = txg;
3668		page_load = 0;
3669	}
3670	/*
3671	 * If we are in pageout, we know that memory is already tight,
3672	 * the arc is already going to be evicting, so we just want to
3673	 * continue to let page writes occur as quickly as possible.
3674	 */
3675	if (curproc == pageproc) {
3676		if (page_load > available_memory / 4)
3677			return (ERESTART);
3678		/* Note: reserve is inflated, so we deflate */
3679		page_load += reserve / 8;
3680		return (0);
3681	} else if (page_load > 0 && arc_reclaim_needed()) {
3682		/* memory is low, delay before restarting */
3683		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3684		return (EAGAIN);
3685	}
3686	page_load = 0;
3687
3688	if (arc_size > arc_c_min) {
3689		uint64_t evictable_memory =
3690		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3691		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3692		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3693		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3694		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3695	}
3696
3697	if (inflight_data > available_memory / 4) {
3698		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3699		return (ERESTART);
3700	}
3701#endif
3702	return (0);
3703}
3704
3705void
3706arc_tempreserve_clear(uint64_t reserve)
3707{
3708	atomic_add_64(&arc_tempreserve, -reserve);
3709	ASSERT((int64_t)arc_tempreserve >= 0);
3710}
3711
3712int
3713arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3714{
3715	int error;
3716	uint64_t anon_size;
3717
3718#ifdef ZFS_DEBUG
3719	/*
3720	 * Once in a while, fail for no reason.  Everything should cope.
3721	 */
3722	if (spa_get_random(10000) == 0) {
3723		dprintf("forcing random failure\n");
3724		return (ERESTART);
3725	}
3726#endif
3727	if (reserve > arc_c/4 && !arc_no_grow)
3728		arc_c = MIN(arc_c_max, reserve * 4);
3729	if (reserve > arc_c)
3730		return (ENOMEM);
3731
3732	/*
3733	 * Don't count loaned bufs as in flight dirty data to prevent long
3734	 * network delays from blocking transactions that are ready to be
3735	 * assigned to a txg.
3736	 */
3737	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3738
3739	/*
3740	 * Writes will, almost always, require additional memory allocations
3741	 * in order to compress/encrypt/etc the data.  We therefor need to
3742	 * make sure that there is sufficient available memory for this.
3743	 */
3744	if (error = arc_memory_throttle(reserve, anon_size, txg))
3745		return (error);
3746
3747	/*
3748	 * Throttle writes when the amount of dirty data in the cache
3749	 * gets too large.  We try to keep the cache less than half full
3750	 * of dirty blocks so that our sync times don't grow too large.
3751	 * Note: if two requests come in concurrently, we might let them
3752	 * both succeed, when one of them should fail.  Not a huge deal.
3753	 */
3754
3755	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3756	    anon_size > arc_c / 4) {
3757		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3758		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3759		    arc_tempreserve>>10,
3760		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3761		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3762		    reserve>>10, arc_c>>10);
3763		return (ERESTART);
3764	}
3765	atomic_add_64(&arc_tempreserve, reserve);
3766	return (0);
3767}
3768
3769static kmutex_t arc_lowmem_lock;
3770#ifdef _KERNEL
3771static eventhandler_tag arc_event_lowmem = NULL;
3772
3773static void
3774arc_lowmem(void *arg __unused, int howto __unused)
3775{
3776
3777	/* Serialize access via arc_lowmem_lock. */
3778	mutex_enter(&arc_lowmem_lock);
3779	needfree = 1;
3780	cv_signal(&arc_reclaim_thr_cv);
3781	while (needfree)
3782		tsleep(&needfree, 0, "zfs:lowmem", hz / 5);
3783	mutex_exit(&arc_lowmem_lock);
3784}
3785#endif
3786
3787void
3788arc_init(void)
3789{
3790	int prefetch_tunable_set = 0;
3791	int i;
3792
3793	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3794	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3795	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
3796
3797	/* Convert seconds to clock ticks */
3798	arc_min_prefetch_lifespan = 1 * hz;
3799
3800	/* Start out with 1/8 of all memory */
3801	arc_c = kmem_size() / 8;
3802#if 0
3803#ifdef _KERNEL
3804	/*
3805	 * On architectures where the physical memory can be larger
3806	 * than the addressable space (intel in 32-bit mode), we may
3807	 * need to limit the cache to 1/8 of VM size.
3808	 */
3809	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3810#endif
3811#endif
3812	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
3813	arc_c_min = MAX(arc_c / 4, 64<<18);
3814	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
3815	if (arc_c * 8 >= 1<<30)
3816		arc_c_max = (arc_c * 8) - (1<<30);
3817	else
3818		arc_c_max = arc_c_min;
3819	arc_c_max = MAX(arc_c * 5, arc_c_max);
3820#ifdef _KERNEL
3821	/*
3822	 * Allow the tunables to override our calculations if they are
3823	 * reasonable (ie. over 16MB)
3824	 */
3825	if (zfs_arc_max >= 64<<18 && zfs_arc_max < kmem_size())
3826		arc_c_max = zfs_arc_max;
3827	if (zfs_arc_min >= 64<<18 && zfs_arc_min <= arc_c_max)
3828		arc_c_min = zfs_arc_min;
3829#endif
3830	arc_c = arc_c_max;
3831	arc_p = (arc_c >> 1);
3832
3833	/* limit meta-data to 1/4 of the arc capacity */
3834	arc_meta_limit = arc_c_max / 4;
3835
3836	/* Allow the tunable to override if it is reasonable */
3837	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3838		arc_meta_limit = zfs_arc_meta_limit;
3839
3840	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3841		arc_c_min = arc_meta_limit / 2;
3842
3843	if (zfs_arc_grow_retry > 0)
3844		arc_grow_retry = zfs_arc_grow_retry;
3845
3846	if (zfs_arc_shrink_shift > 0)
3847		arc_shrink_shift = zfs_arc_shrink_shift;
3848
3849	if (zfs_arc_p_min_shift > 0)
3850		arc_p_min_shift = zfs_arc_p_min_shift;
3851
3852	/* if kmem_flags are set, lets try to use less memory */
3853	if (kmem_debugging())
3854		arc_c = arc_c / 2;
3855	if (arc_c < arc_c_min)
3856		arc_c = arc_c_min;
3857
3858	zfs_arc_min = arc_c_min;
3859	zfs_arc_max = arc_c_max;
3860
3861	arc_anon = &ARC_anon;
3862	arc_mru = &ARC_mru;
3863	arc_mru_ghost = &ARC_mru_ghost;
3864	arc_mfu = &ARC_mfu;
3865	arc_mfu_ghost = &ARC_mfu_ghost;
3866	arc_l2c_only = &ARC_l2c_only;
3867	arc_size = 0;
3868
3869	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
3870		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
3871		    NULL, MUTEX_DEFAULT, NULL);
3872		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
3873		    NULL, MUTEX_DEFAULT, NULL);
3874		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
3875		    NULL, MUTEX_DEFAULT, NULL);
3876		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
3877		    NULL, MUTEX_DEFAULT, NULL);
3878		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
3879		    NULL, MUTEX_DEFAULT, NULL);
3880		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
3881		    NULL, MUTEX_DEFAULT, NULL);
3882
3883		list_create(&arc_mru->arcs_lists[i],
3884		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3885		list_create(&arc_mru_ghost->arcs_lists[i],
3886		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3887		list_create(&arc_mfu->arcs_lists[i],
3888		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3889		list_create(&arc_mfu_ghost->arcs_lists[i],
3890		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3891		list_create(&arc_mfu_ghost->arcs_lists[i],
3892		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3893		list_create(&arc_l2c_only->arcs_lists[i],
3894		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3895	}
3896
3897	buf_init();
3898
3899	arc_thread_exit = 0;
3900	arc_eviction_list = NULL;
3901	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3902	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3903
3904	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3905	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3906
3907	if (arc_ksp != NULL) {
3908		arc_ksp->ks_data = &arc_stats;
3909		kstat_install(arc_ksp);
3910	}
3911
3912	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3913	    TS_RUN, minclsyspri);
3914
3915#ifdef _KERNEL
3916	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
3917	    EVENTHANDLER_PRI_FIRST);
3918#endif
3919
3920	arc_dead = FALSE;
3921	arc_warm = B_FALSE;
3922
3923	if (zfs_write_limit_max == 0)
3924		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3925	else
3926		zfs_write_limit_shift = 0;
3927	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3928
3929#ifdef _KERNEL
3930	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
3931		prefetch_tunable_set = 1;
3932
3933#ifdef __i386__
3934	if (prefetch_tunable_set == 0) {
3935		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
3936		    "-- to enable,\n");
3937		printf("            add \"vfs.zfs.prefetch_disable=0\" "
3938		    "to /boot/loader.conf.\n");
3939		zfs_prefetch_disable=1;
3940	}
3941#else
3942	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
3943	    prefetch_tunable_set == 0) {
3944		printf("ZFS NOTICE: Prefetch is disabled by default if less "
3945		    "than 4GB of RAM is present;\n"
3946		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
3947		    "to /boot/loader.conf.\n");
3948		zfs_prefetch_disable=1;
3949	}
3950#endif
3951	/* Warn about ZFS memory and address space requirements. */
3952	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
3953		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
3954		    "expect unstable behavior.\n");
3955	}
3956	if (kmem_size() < 512 * (1 << 20)) {
3957		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
3958		    "expect unstable behavior.\n");
3959		printf("             Consider tuning vm.kmem_size and "
3960		    "vm.kmem_size_max\n");
3961		printf("             in /boot/loader.conf.\n");
3962	}
3963#endif
3964}
3965
3966void
3967arc_fini(void)
3968{
3969	int i;
3970
3971	mutex_enter(&arc_reclaim_thr_lock);
3972	arc_thread_exit = 1;
3973	cv_signal(&arc_reclaim_thr_cv);
3974	while (arc_thread_exit != 0)
3975		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3976	mutex_exit(&arc_reclaim_thr_lock);
3977
3978	arc_flush(NULL);
3979
3980	arc_dead = TRUE;
3981
3982	if (arc_ksp != NULL) {
3983		kstat_delete(arc_ksp);
3984		arc_ksp = NULL;
3985	}
3986
3987	mutex_destroy(&arc_eviction_mtx);
3988	mutex_destroy(&arc_reclaim_thr_lock);
3989	cv_destroy(&arc_reclaim_thr_cv);
3990
3991	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
3992		list_destroy(&arc_mru->arcs_lists[i]);
3993		list_destroy(&arc_mru_ghost->arcs_lists[i]);
3994		list_destroy(&arc_mfu->arcs_lists[i]);
3995		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
3996		list_destroy(&arc_l2c_only->arcs_lists[i]);
3997
3998		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
3999		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4000		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4001		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4002		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4003		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4004	}
4005
4006	mutex_destroy(&zfs_write_limit_lock);
4007
4008	buf_fini();
4009
4010	ASSERT(arc_loaned_bytes == 0);
4011
4012	mutex_destroy(&arc_lowmem_lock);
4013#ifdef _KERNEL
4014	if (arc_event_lowmem != NULL)
4015		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4016#endif
4017}
4018
4019/*
4020 * Level 2 ARC
4021 *
4022 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4023 * It uses dedicated storage devices to hold cached data, which are populated
4024 * using large infrequent writes.  The main role of this cache is to boost
4025 * the performance of random read workloads.  The intended L2ARC devices
4026 * include short-stroked disks, solid state disks, and other media with
4027 * substantially faster read latency than disk.
4028 *
4029 *                 +-----------------------+
4030 *                 |         ARC           |
4031 *                 +-----------------------+
4032 *                    |         ^     ^
4033 *                    |         |     |
4034 *      l2arc_feed_thread()    arc_read()
4035 *                    |         |     |
4036 *                    |  l2arc read   |
4037 *                    V         |     |
4038 *               +---------------+    |
4039 *               |     L2ARC     |    |
4040 *               +---------------+    |
4041 *                   |    ^           |
4042 *          l2arc_write() |           |
4043 *                   |    |           |
4044 *                   V    |           |
4045 *                 +-------+      +-------+
4046 *                 | vdev  |      | vdev  |
4047 *                 | cache |      | cache |
4048 *                 +-------+      +-------+
4049 *                 +=========+     .-----.
4050 *                 :  L2ARC  :    |-_____-|
4051 *                 : devices :    | Disks |
4052 *                 +=========+    `-_____-'
4053 *
4054 * Read requests are satisfied from the following sources, in order:
4055 *
4056 *	1) ARC
4057 *	2) vdev cache of L2ARC devices
4058 *	3) L2ARC devices
4059 *	4) vdev cache of disks
4060 *	5) disks
4061 *
4062 * Some L2ARC device types exhibit extremely slow write performance.
4063 * To accommodate for this there are some significant differences between
4064 * the L2ARC and traditional cache design:
4065 *
4066 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4067 * the ARC behave as usual, freeing buffers and placing headers on ghost
4068 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4069 * this would add inflated write latencies for all ARC memory pressure.
4070 *
4071 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4072 * It does this by periodically scanning buffers from the eviction-end of
4073 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4074 * not already there.  It scans until a headroom of buffers is satisfied,
4075 * which itself is a buffer for ARC eviction.  The thread that does this is
4076 * l2arc_feed_thread(), illustrated below; example sizes are included to
4077 * provide a better sense of ratio than this diagram:
4078 *
4079 *	       head -->                        tail
4080 *	        +---------------------+----------+
4081 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4082 *	        +---------------------+----------+   |   o L2ARC eligible
4083 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4084 *	        +---------------------+----------+   |
4085 *	             15.9 Gbytes      ^ 32 Mbytes    |
4086 *	                           headroom          |
4087 *	                                      l2arc_feed_thread()
4088 *	                                             |
4089 *	                 l2arc write hand <--[oooo]--'
4090 *	                         |           8 Mbyte
4091 *	                         |          write max
4092 *	                         V
4093 *		  +==============================+
4094 *	L2ARC dev |####|#|###|###|    |####| ... |
4095 *	          +==============================+
4096 *	                     32 Gbytes
4097 *
4098 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4099 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4100 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4101 * safe to say that this is an uncommon case, since buffers at the end of
4102 * the ARC lists have moved there due to inactivity.
4103 *
4104 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4105 * then the L2ARC simply misses copying some buffers.  This serves as a
4106 * pressure valve to prevent heavy read workloads from both stalling the ARC
4107 * with waits and clogging the L2ARC with writes.  This also helps prevent
4108 * the potential for the L2ARC to churn if it attempts to cache content too
4109 * quickly, such as during backups of the entire pool.
4110 *
4111 * 5. After system boot and before the ARC has filled main memory, there are
4112 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4113 * lists can remain mostly static.  Instead of searching from tail of these
4114 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4115 * for eligible buffers, greatly increasing its chance of finding them.
4116 *
4117 * The L2ARC device write speed is also boosted during this time so that
4118 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4119 * there are no L2ARC reads, and no fear of degrading read performance
4120 * through increased writes.
4121 *
4122 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4123 * the vdev queue can aggregate them into larger and fewer writes.  Each
4124 * device is written to in a rotor fashion, sweeping writes through
4125 * available space then repeating.
4126 *
4127 * 7. The L2ARC does not store dirty content.  It never needs to flush
4128 * write buffers back to disk based storage.
4129 *
4130 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4131 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4132 *
4133 * The performance of the L2ARC can be tweaked by a number of tunables, which
4134 * may be necessary for different workloads:
4135 *
4136 *	l2arc_write_max		max write bytes per interval
4137 *	l2arc_write_boost	extra write bytes during device warmup
4138 *	l2arc_noprefetch	skip caching prefetched buffers
4139 *	l2arc_headroom		number of max device writes to precache
4140 *	l2arc_feed_secs		seconds between L2ARC writing
4141 *
4142 * Tunables may be removed or added as future performance improvements are
4143 * integrated, and also may become zpool properties.
4144 *
4145 * There are three key functions that control how the L2ARC warms up:
4146 *
4147 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4148 *	l2arc_write_size()	calculate how much to write
4149 *	l2arc_write_interval()	calculate sleep delay between writes
4150 *
4151 * These three functions determine what to write, how much, and how quickly
4152 * to send writes.
4153 */
4154
4155static boolean_t
4156l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4157{
4158	/*
4159	 * A buffer is *not* eligible for the L2ARC if it:
4160	 * 1. belongs to a different spa.
4161	 * 2. is already cached on the L2ARC.
4162	 * 3. has an I/O in progress (it may be an incomplete read).
4163	 * 4. is flagged not eligible (zfs property).
4164	 */
4165	if (ab->b_spa != spa_guid) {
4166		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4167		return (B_FALSE);
4168	}
4169	if (ab->b_l2hdr != NULL) {
4170		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4171		return (B_FALSE);
4172	}
4173	if (HDR_IO_IN_PROGRESS(ab)) {
4174		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4175		return (B_FALSE);
4176	}
4177	if (!HDR_L2CACHE(ab)) {
4178		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4179		return (B_FALSE);
4180	}
4181
4182	return (B_TRUE);
4183}
4184
4185static uint64_t
4186l2arc_write_size(l2arc_dev_t *dev)
4187{
4188	uint64_t size;
4189
4190	size = dev->l2ad_write;
4191
4192	if (arc_warm == B_FALSE)
4193		size += dev->l2ad_boost;
4194
4195	return (size);
4196
4197}
4198
4199static clock_t
4200l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4201{
4202	clock_t interval, next;
4203
4204	/*
4205	 * If the ARC lists are busy, increase our write rate; if the
4206	 * lists are stale, idle back.  This is achieved by checking
4207	 * how much we previously wrote - if it was more than half of
4208	 * what we wanted, schedule the next write much sooner.
4209	 */
4210	if (l2arc_feed_again && wrote > (wanted / 2))
4211		interval = (hz * l2arc_feed_min_ms) / 1000;
4212	else
4213		interval = hz * l2arc_feed_secs;
4214
4215	next = MAX(LBOLT, MIN(LBOLT + interval, began + interval));
4216
4217	return (next);
4218}
4219
4220static void
4221l2arc_hdr_stat_add(void)
4222{
4223	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4224	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4225}
4226
4227static void
4228l2arc_hdr_stat_remove(void)
4229{
4230	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4231	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4232}
4233
4234/*
4235 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4236 * If a device is returned, this also returns holding the spa config lock.
4237 */
4238static l2arc_dev_t *
4239l2arc_dev_get_next(void)
4240{
4241	l2arc_dev_t *first, *next = NULL;
4242
4243	/*
4244	 * Lock out the removal of spas (spa_namespace_lock), then removal
4245	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4246	 * both locks will be dropped and a spa config lock held instead.
4247	 */
4248	mutex_enter(&spa_namespace_lock);
4249	mutex_enter(&l2arc_dev_mtx);
4250
4251	/* if there are no vdevs, there is nothing to do */
4252	if (l2arc_ndev == 0)
4253		goto out;
4254
4255	first = NULL;
4256	next = l2arc_dev_last;
4257	do {
4258		/* loop around the list looking for a non-faulted vdev */
4259		if (next == NULL) {
4260			next = list_head(l2arc_dev_list);
4261		} else {
4262			next = list_next(l2arc_dev_list, next);
4263			if (next == NULL)
4264				next = list_head(l2arc_dev_list);
4265		}
4266
4267		/* if we have come back to the start, bail out */
4268		if (first == NULL)
4269			first = next;
4270		else if (next == first)
4271			break;
4272
4273	} while (vdev_is_dead(next->l2ad_vdev));
4274
4275	/* if we were unable to find any usable vdevs, return NULL */
4276	if (vdev_is_dead(next->l2ad_vdev))
4277		next = NULL;
4278
4279	l2arc_dev_last = next;
4280
4281out:
4282	mutex_exit(&l2arc_dev_mtx);
4283
4284	/*
4285	 * Grab the config lock to prevent the 'next' device from being
4286	 * removed while we are writing to it.
4287	 */
4288	if (next != NULL)
4289		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4290	mutex_exit(&spa_namespace_lock);
4291
4292	return (next);
4293}
4294
4295/*
4296 * Free buffers that were tagged for destruction.
4297 */
4298static void
4299l2arc_do_free_on_write()
4300{
4301	list_t *buflist;
4302	l2arc_data_free_t *df, *df_prev;
4303
4304	mutex_enter(&l2arc_free_on_write_mtx);
4305	buflist = l2arc_free_on_write;
4306
4307	for (df = list_tail(buflist); df; df = df_prev) {
4308		df_prev = list_prev(buflist, df);
4309		ASSERT(df->l2df_data != NULL);
4310		ASSERT(df->l2df_func != NULL);
4311		df->l2df_func(df->l2df_data, df->l2df_size);
4312		list_remove(buflist, df);
4313		kmem_free(df, sizeof (l2arc_data_free_t));
4314	}
4315
4316	mutex_exit(&l2arc_free_on_write_mtx);
4317}
4318
4319/*
4320 * A write to a cache device has completed.  Update all headers to allow
4321 * reads from these buffers to begin.
4322 */
4323static void
4324l2arc_write_done(zio_t *zio)
4325{
4326	l2arc_write_callback_t *cb;
4327	l2arc_dev_t *dev;
4328	list_t *buflist;
4329	arc_buf_hdr_t *head, *ab, *ab_prev;
4330	l2arc_buf_hdr_t *abl2;
4331	kmutex_t *hash_lock;
4332
4333	cb = zio->io_private;
4334	ASSERT(cb != NULL);
4335	dev = cb->l2wcb_dev;
4336	ASSERT(dev != NULL);
4337	head = cb->l2wcb_head;
4338	ASSERT(head != NULL);
4339	buflist = dev->l2ad_buflist;
4340	ASSERT(buflist != NULL);
4341	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4342	    l2arc_write_callback_t *, cb);
4343
4344	if (zio->io_error != 0)
4345		ARCSTAT_BUMP(arcstat_l2_writes_error);
4346
4347	mutex_enter(&l2arc_buflist_mtx);
4348
4349	/*
4350	 * All writes completed, or an error was hit.
4351	 */
4352	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4353		ab_prev = list_prev(buflist, ab);
4354
4355		hash_lock = HDR_LOCK(ab);
4356		if (!mutex_tryenter(hash_lock)) {
4357			/*
4358			 * This buffer misses out.  It may be in a stage
4359			 * of eviction.  Its ARC_L2_WRITING flag will be
4360			 * left set, denying reads to this buffer.
4361			 */
4362			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4363			continue;
4364		}
4365
4366		if (zio->io_error != 0) {
4367			/*
4368			 * Error - drop L2ARC entry.
4369			 */
4370			list_remove(buflist, ab);
4371			abl2 = ab->b_l2hdr;
4372			ab->b_l2hdr = NULL;
4373			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4374			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4375		}
4376
4377		/*
4378		 * Allow ARC to begin reads to this L2ARC entry.
4379		 */
4380		ab->b_flags &= ~ARC_L2_WRITING;
4381
4382		mutex_exit(hash_lock);
4383	}
4384
4385	atomic_inc_64(&l2arc_writes_done);
4386	list_remove(buflist, head);
4387	kmem_cache_free(hdr_cache, head);
4388	mutex_exit(&l2arc_buflist_mtx);
4389
4390	l2arc_do_free_on_write();
4391
4392	kmem_free(cb, sizeof (l2arc_write_callback_t));
4393}
4394
4395/*
4396 * A read to a cache device completed.  Validate buffer contents before
4397 * handing over to the regular ARC routines.
4398 */
4399static void
4400l2arc_read_done(zio_t *zio)
4401{
4402	l2arc_read_callback_t *cb;
4403	arc_buf_hdr_t *hdr;
4404	arc_buf_t *buf;
4405	kmutex_t *hash_lock;
4406	int equal;
4407
4408	ASSERT(zio->io_vd != NULL);
4409	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4410
4411	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4412
4413	cb = zio->io_private;
4414	ASSERT(cb != NULL);
4415	buf = cb->l2rcb_buf;
4416	ASSERT(buf != NULL);
4417	hdr = buf->b_hdr;
4418	ASSERT(hdr != NULL);
4419
4420	hash_lock = HDR_LOCK(hdr);
4421	mutex_enter(hash_lock);
4422
4423	/*
4424	 * Check this survived the L2ARC journey.
4425	 */
4426	equal = arc_cksum_equal(buf);
4427	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4428		mutex_exit(hash_lock);
4429		zio->io_private = buf;
4430		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4431		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4432		arc_read_done(zio);
4433	} else {
4434		mutex_exit(hash_lock);
4435		/*
4436		 * Buffer didn't survive caching.  Increment stats and
4437		 * reissue to the original storage device.
4438		 */
4439		if (zio->io_error != 0) {
4440			ARCSTAT_BUMP(arcstat_l2_io_error);
4441		} else {
4442			zio->io_error = EIO;
4443		}
4444		if (!equal)
4445			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4446
4447		/*
4448		 * If there's no waiter, issue an async i/o to the primary
4449		 * storage now.  If there *is* a waiter, the caller must
4450		 * issue the i/o in a context where it's OK to block.
4451		 */
4452		if (zio->io_waiter == NULL) {
4453			zio_t *pio = zio_unique_parent(zio);
4454
4455			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4456
4457			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4458			    buf->b_data, zio->io_size, arc_read_done, buf,
4459			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4460		}
4461	}
4462
4463	kmem_free(cb, sizeof (l2arc_read_callback_t));
4464}
4465
4466/*
4467 * This is the list priority from which the L2ARC will search for pages to
4468 * cache.  This is used within loops (0..3) to cycle through lists in the
4469 * desired order.  This order can have a significant effect on cache
4470 * performance.
4471 *
4472 * Currently the metadata lists are hit first, MFU then MRU, followed by
4473 * the data lists.  This function returns a locked list, and also returns
4474 * the lock pointer.
4475 */
4476static list_t *
4477l2arc_list_locked(int list_num, kmutex_t **lock)
4478{
4479	list_t *list;
4480	int idx;
4481
4482	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4483
4484	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4485		idx = list_num;
4486		list = &arc_mfu->arcs_lists[idx];
4487		*lock = ARCS_LOCK(arc_mfu, idx);
4488	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4489		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4490		list = &arc_mru->arcs_lists[idx];
4491		*lock = ARCS_LOCK(arc_mru, idx);
4492	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4493		ARC_BUFC_NUMDATALISTS)) {
4494		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4495		list = &arc_mfu->arcs_lists[idx];
4496		*lock = ARCS_LOCK(arc_mfu, idx);
4497	} else {
4498		idx = list_num - ARC_BUFC_NUMLISTS;
4499		list = &arc_mru->arcs_lists[idx];
4500		*lock = ARCS_LOCK(arc_mru, idx);
4501	}
4502
4503	ASSERT(!(MUTEX_HELD(*lock)));
4504	mutex_enter(*lock);
4505	return (list);
4506}
4507
4508/*
4509 * Evict buffers from the device write hand to the distance specified in
4510 * bytes.  This distance may span populated buffers, it may span nothing.
4511 * This is clearing a region on the L2ARC device ready for writing.
4512 * If the 'all' boolean is set, every buffer is evicted.
4513 */
4514static void
4515l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4516{
4517	list_t *buflist;
4518	l2arc_buf_hdr_t *abl2;
4519	arc_buf_hdr_t *ab, *ab_prev;
4520	kmutex_t *hash_lock;
4521	uint64_t taddr;
4522
4523	buflist = dev->l2ad_buflist;
4524
4525	if (buflist == NULL)
4526		return;
4527
4528	if (!all && dev->l2ad_first) {
4529		/*
4530		 * This is the first sweep through the device.  There is
4531		 * nothing to evict.
4532		 */
4533		return;
4534	}
4535
4536	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4537		/*
4538		 * When nearing the end of the device, evict to the end
4539		 * before the device write hand jumps to the start.
4540		 */
4541		taddr = dev->l2ad_end;
4542	} else {
4543		taddr = dev->l2ad_hand + distance;
4544	}
4545	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4546	    uint64_t, taddr, boolean_t, all);
4547
4548top:
4549	mutex_enter(&l2arc_buflist_mtx);
4550	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4551		ab_prev = list_prev(buflist, ab);
4552
4553		hash_lock = HDR_LOCK(ab);
4554		if (!mutex_tryenter(hash_lock)) {
4555			/*
4556			 * Missed the hash lock.  Retry.
4557			 */
4558			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4559			mutex_exit(&l2arc_buflist_mtx);
4560			mutex_enter(hash_lock);
4561			mutex_exit(hash_lock);
4562			goto top;
4563		}
4564
4565		if (HDR_L2_WRITE_HEAD(ab)) {
4566			/*
4567			 * We hit a write head node.  Leave it for
4568			 * l2arc_write_done().
4569			 */
4570			list_remove(buflist, ab);
4571			mutex_exit(hash_lock);
4572			continue;
4573		}
4574
4575		if (!all && ab->b_l2hdr != NULL &&
4576		    (ab->b_l2hdr->b_daddr > taddr ||
4577		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4578			/*
4579			 * We've evicted to the target address,
4580			 * or the end of the device.
4581			 */
4582			mutex_exit(hash_lock);
4583			break;
4584		}
4585
4586		if (HDR_FREE_IN_PROGRESS(ab)) {
4587			/*
4588			 * Already on the path to destruction.
4589			 */
4590			mutex_exit(hash_lock);
4591			continue;
4592		}
4593
4594		if (ab->b_state == arc_l2c_only) {
4595			ASSERT(!HDR_L2_READING(ab));
4596			/*
4597			 * This doesn't exist in the ARC.  Destroy.
4598			 * arc_hdr_destroy() will call list_remove()
4599			 * and decrement arcstat_l2_size.
4600			 */
4601			arc_change_state(arc_anon, ab, hash_lock);
4602			arc_hdr_destroy(ab);
4603		} else {
4604			/*
4605			 * Invalidate issued or about to be issued
4606			 * reads, since we may be about to write
4607			 * over this location.
4608			 */
4609			if (HDR_L2_READING(ab)) {
4610				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4611				ab->b_flags |= ARC_L2_EVICTED;
4612			}
4613
4614			/*
4615			 * Tell ARC this no longer exists in L2ARC.
4616			 */
4617			if (ab->b_l2hdr != NULL) {
4618				abl2 = ab->b_l2hdr;
4619				ab->b_l2hdr = NULL;
4620				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4621				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4622			}
4623			list_remove(buflist, ab);
4624
4625			/*
4626			 * This may have been leftover after a
4627			 * failed write.
4628			 */
4629			ab->b_flags &= ~ARC_L2_WRITING;
4630		}
4631		mutex_exit(hash_lock);
4632	}
4633	mutex_exit(&l2arc_buflist_mtx);
4634
4635	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4636	dev->l2ad_evict = taddr;
4637}
4638
4639/*
4640 * Find and write ARC buffers to the L2ARC device.
4641 *
4642 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4643 * for reading until they have completed writing.
4644 */
4645static uint64_t
4646l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4647{
4648	arc_buf_hdr_t *ab, *ab_prev, *head;
4649	l2arc_buf_hdr_t *hdrl2;
4650	list_t *list;
4651	uint64_t passed_sz, write_sz, buf_sz, headroom;
4652	void *buf_data;
4653	kmutex_t *hash_lock, *list_lock;
4654	boolean_t have_lock, full;
4655	l2arc_write_callback_t *cb;
4656	zio_t *pio, *wzio;
4657	uint64_t guid = spa_guid(spa);
4658	int try;
4659
4660	ASSERT(dev->l2ad_vdev != NULL);
4661
4662	pio = NULL;
4663	write_sz = 0;
4664	full = B_FALSE;
4665	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4666	head->b_flags |= ARC_L2_WRITE_HEAD;
4667
4668	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4669	/*
4670	 * Copy buffers for L2ARC writing.
4671	 */
4672	mutex_enter(&l2arc_buflist_mtx);
4673	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4674		list = l2arc_list_locked(try, &list_lock);
4675		passed_sz = 0;
4676		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4677
4678		/*
4679		 * L2ARC fast warmup.
4680		 *
4681		 * Until the ARC is warm and starts to evict, read from the
4682		 * head of the ARC lists rather than the tail.
4683		 */
4684		headroom = target_sz * l2arc_headroom;
4685		if (arc_warm == B_FALSE)
4686			ab = list_head(list);
4687		else
4688			ab = list_tail(list);
4689		if (ab == NULL)
4690			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4691
4692		for (; ab; ab = ab_prev) {
4693			if (arc_warm == B_FALSE)
4694				ab_prev = list_next(list, ab);
4695			else
4696				ab_prev = list_prev(list, ab);
4697			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
4698
4699			hash_lock = HDR_LOCK(ab);
4700			have_lock = MUTEX_HELD(hash_lock);
4701			if (!have_lock && !mutex_tryenter(hash_lock)) {
4702				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
4703				/*
4704				 * Skip this buffer rather than waiting.
4705				 */
4706				continue;
4707			}
4708
4709			passed_sz += ab->b_size;
4710			if (passed_sz > headroom) {
4711				/*
4712				 * Searched too far.
4713				 */
4714				mutex_exit(hash_lock);
4715				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
4716				break;
4717			}
4718
4719			if (!l2arc_write_eligible(guid, ab)) {
4720				mutex_exit(hash_lock);
4721				continue;
4722			}
4723
4724			if ((write_sz + ab->b_size) > target_sz) {
4725				full = B_TRUE;
4726				mutex_exit(hash_lock);
4727				ARCSTAT_BUMP(arcstat_l2_write_full);
4728				break;
4729			}
4730
4731			if (pio == NULL) {
4732				/*
4733				 * Insert a dummy header on the buflist so
4734				 * l2arc_write_done() can find where the
4735				 * write buffers begin without searching.
4736				 */
4737				list_insert_head(dev->l2ad_buflist, head);
4738
4739				cb = kmem_alloc(
4740				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4741				cb->l2wcb_dev = dev;
4742				cb->l2wcb_head = head;
4743				pio = zio_root(spa, l2arc_write_done, cb,
4744				    ZIO_FLAG_CANFAIL);
4745				ARCSTAT_BUMP(arcstat_l2_write_pios);
4746			}
4747
4748			/*
4749			 * Create and add a new L2ARC header.
4750			 */
4751			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4752			hdrl2->b_dev = dev;
4753			hdrl2->b_daddr = dev->l2ad_hand;
4754
4755			ab->b_flags |= ARC_L2_WRITING;
4756			ab->b_l2hdr = hdrl2;
4757			list_insert_head(dev->l2ad_buflist, ab);
4758			buf_data = ab->b_buf->b_data;
4759			buf_sz = ab->b_size;
4760
4761			/*
4762			 * Compute and store the buffer cksum before
4763			 * writing.  On debug the cksum is verified first.
4764			 */
4765			arc_cksum_verify(ab->b_buf);
4766			arc_cksum_compute(ab->b_buf, B_TRUE);
4767
4768			mutex_exit(hash_lock);
4769
4770			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4771			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4772			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4773			    ZIO_FLAG_CANFAIL, B_FALSE);
4774
4775			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4776			    zio_t *, wzio);
4777			(void) zio_nowait(wzio);
4778
4779			/*
4780			 * Keep the clock hand suitably device-aligned.
4781			 */
4782			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4783
4784			write_sz += buf_sz;
4785			dev->l2ad_hand += buf_sz;
4786		}
4787
4788		mutex_exit(list_lock);
4789
4790		if (full == B_TRUE)
4791			break;
4792	}
4793	mutex_exit(&l2arc_buflist_mtx);
4794
4795	if (pio == NULL) {
4796		ASSERT3U(write_sz, ==, 0);
4797		kmem_cache_free(hdr_cache, head);
4798		return (0);
4799	}
4800
4801	ASSERT3U(write_sz, <=, target_sz);
4802	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4803	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4804	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4805	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4806
4807	/*
4808	 * Bump device hand to the device start if it is approaching the end.
4809	 * l2arc_evict() will already have evicted ahead for this case.
4810	 */
4811	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4812		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4813		    dev->l2ad_end - dev->l2ad_hand);
4814		dev->l2ad_hand = dev->l2ad_start;
4815		dev->l2ad_evict = dev->l2ad_start;
4816		dev->l2ad_first = B_FALSE;
4817	}
4818
4819	dev->l2ad_writing = B_TRUE;
4820	(void) zio_wait(pio);
4821	dev->l2ad_writing = B_FALSE;
4822
4823	return (write_sz);
4824}
4825
4826/*
4827 * This thread feeds the L2ARC at regular intervals.  This is the beating
4828 * heart of the L2ARC.
4829 */
4830static void
4831l2arc_feed_thread(void *dummy __unused)
4832{
4833	callb_cpr_t cpr;
4834	l2arc_dev_t *dev;
4835	spa_t *spa;
4836	uint64_t size, wrote;
4837	clock_t begin, next = LBOLT;
4838
4839	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4840
4841	mutex_enter(&l2arc_feed_thr_lock);
4842
4843	while (l2arc_thread_exit == 0) {
4844		CALLB_CPR_SAFE_BEGIN(&cpr);
4845		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4846		    next - LBOLT);
4847		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4848		next = LBOLT + hz;
4849
4850		/*
4851		 * Quick check for L2ARC devices.
4852		 */
4853		mutex_enter(&l2arc_dev_mtx);
4854		if (l2arc_ndev == 0) {
4855			mutex_exit(&l2arc_dev_mtx);
4856			continue;
4857		}
4858		mutex_exit(&l2arc_dev_mtx);
4859		begin = LBOLT;
4860
4861		/*
4862		 * This selects the next l2arc device to write to, and in
4863		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4864		 * will return NULL if there are now no l2arc devices or if
4865		 * they are all faulted.
4866		 *
4867		 * If a device is returned, its spa's config lock is also
4868		 * held to prevent device removal.  l2arc_dev_get_next()
4869		 * will grab and release l2arc_dev_mtx.
4870		 */
4871		if ((dev = l2arc_dev_get_next()) == NULL)
4872			continue;
4873
4874		spa = dev->l2ad_spa;
4875		ASSERT(spa != NULL);
4876
4877		/*
4878		 * Avoid contributing to memory pressure.
4879		 */
4880		if (arc_reclaim_needed()) {
4881			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4882			spa_config_exit(spa, SCL_L2ARC, dev);
4883			continue;
4884		}
4885
4886		ARCSTAT_BUMP(arcstat_l2_feeds);
4887
4888		size = l2arc_write_size(dev);
4889
4890		/*
4891		 * Evict L2ARC buffers that will be overwritten.
4892		 */
4893		l2arc_evict(dev, size, B_FALSE);
4894
4895		/*
4896		 * Write ARC buffers.
4897		 */
4898		wrote = l2arc_write_buffers(spa, dev, size);
4899
4900		/*
4901		 * Calculate interval between writes.
4902		 */
4903		next = l2arc_write_interval(begin, size, wrote);
4904		spa_config_exit(spa, SCL_L2ARC, dev);
4905	}
4906
4907	l2arc_thread_exit = 0;
4908	cv_broadcast(&l2arc_feed_thr_cv);
4909	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4910	thread_exit();
4911}
4912
4913boolean_t
4914l2arc_vdev_present(vdev_t *vd)
4915{
4916	l2arc_dev_t *dev;
4917
4918	mutex_enter(&l2arc_dev_mtx);
4919	for (dev = list_head(l2arc_dev_list); dev != NULL;
4920	    dev = list_next(l2arc_dev_list, dev)) {
4921		if (dev->l2ad_vdev == vd)
4922			break;
4923	}
4924	mutex_exit(&l2arc_dev_mtx);
4925
4926	return (dev != NULL);
4927}
4928
4929/*
4930 * Add a vdev for use by the L2ARC.  By this point the spa has already
4931 * validated the vdev and opened it.
4932 */
4933void
4934l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4935{
4936	l2arc_dev_t *adddev;
4937
4938	ASSERT(!l2arc_vdev_present(vd));
4939
4940	/*
4941	 * Create a new l2arc device entry.
4942	 */
4943	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4944	adddev->l2ad_spa = spa;
4945	adddev->l2ad_vdev = vd;
4946	adddev->l2ad_write = l2arc_write_max;
4947	adddev->l2ad_boost = l2arc_write_boost;
4948	adddev->l2ad_start = start;
4949	adddev->l2ad_end = end;
4950	adddev->l2ad_hand = adddev->l2ad_start;
4951	adddev->l2ad_evict = adddev->l2ad_start;
4952	adddev->l2ad_first = B_TRUE;
4953	adddev->l2ad_writing = B_FALSE;
4954	ASSERT3U(adddev->l2ad_write, >, 0);
4955
4956	/*
4957	 * This is a list of all ARC buffers that are still valid on the
4958	 * device.
4959	 */
4960	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4961	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4962	    offsetof(arc_buf_hdr_t, b_l2node));
4963
4964	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4965
4966	/*
4967	 * Add device to global list
4968	 */
4969	mutex_enter(&l2arc_dev_mtx);
4970	list_insert_head(l2arc_dev_list, adddev);
4971	atomic_inc_64(&l2arc_ndev);
4972	mutex_exit(&l2arc_dev_mtx);
4973}
4974
4975/*
4976 * Remove a vdev from the L2ARC.
4977 */
4978void
4979l2arc_remove_vdev(vdev_t *vd)
4980{
4981	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4982
4983	/*
4984	 * Find the device by vdev
4985	 */
4986	mutex_enter(&l2arc_dev_mtx);
4987	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4988		nextdev = list_next(l2arc_dev_list, dev);
4989		if (vd == dev->l2ad_vdev) {
4990			remdev = dev;
4991			break;
4992		}
4993	}
4994	ASSERT(remdev != NULL);
4995
4996	/*
4997	 * Remove device from global list
4998	 */
4999	list_remove(l2arc_dev_list, remdev);
5000	l2arc_dev_last = NULL;		/* may have been invalidated */
5001	atomic_dec_64(&l2arc_ndev);
5002	mutex_exit(&l2arc_dev_mtx);
5003
5004	/*
5005	 * Clear all buflists and ARC references.  L2ARC device flush.
5006	 */
5007	l2arc_evict(remdev, 0, B_TRUE);
5008	list_destroy(remdev->l2ad_buflist);
5009	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5010	kmem_free(remdev, sizeof (l2arc_dev_t));
5011}
5012
5013void
5014l2arc_init(void)
5015{
5016	l2arc_thread_exit = 0;
5017	l2arc_ndev = 0;
5018	l2arc_writes_sent = 0;
5019	l2arc_writes_done = 0;
5020
5021	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5022	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5023	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5024	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5025	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5026
5027	l2arc_dev_list = &L2ARC_dev_list;
5028	l2arc_free_on_write = &L2ARC_free_on_write;
5029	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5030	    offsetof(l2arc_dev_t, l2ad_node));
5031	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5032	    offsetof(l2arc_data_free_t, l2df_list_node));
5033}
5034
5035void
5036l2arc_fini(void)
5037{
5038	/*
5039	 * This is called from dmu_fini(), which is called from spa_fini();
5040	 * Because of this, we can assume that all l2arc devices have
5041	 * already been removed when the pools themselves were removed.
5042	 */
5043
5044	l2arc_do_free_on_write();
5045
5046	mutex_destroy(&l2arc_feed_thr_lock);
5047	cv_destroy(&l2arc_feed_thr_cv);
5048	mutex_destroy(&l2arc_dev_mtx);
5049	mutex_destroy(&l2arc_buflist_mtx);
5050	mutex_destroy(&l2arc_free_on_write_mtx);
5051
5052	list_destroy(l2arc_dev_list);
5053	list_destroy(l2arc_free_on_write);
5054}
5055
5056void
5057l2arc_start(void)
5058{
5059	if (!(spa_mode_global & FWRITE))
5060		return;
5061
5062	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5063	    TS_RUN, minclsyspri);
5064}
5065
5066void
5067l2arc_stop(void)
5068{
5069	if (!(spa_mode_global & FWRITE))
5070		return;
5071
5072	mutex_enter(&l2arc_feed_thr_lock);
5073	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5074	l2arc_thread_exit = 1;
5075	while (l2arc_thread_exit != 0)
5076		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5077	mutex_exit(&l2arc_feed_thr_lock);
5078}
5079