arc.c revision 212780
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * DVA-based Adjustable Replacement Cache
28 *
29 * While much of the theory of operation used here is
30 * based on the self-tuning, low overhead replacement cache
31 * presented by Megiddo and Modha at FAST 2003, there are some
32 * significant differences:
33 *
34 * 1. The Megiddo and Modha model assumes any page is evictable.
35 * Pages in its cache cannot be "locked" into memory.  This makes
36 * the eviction algorithm simple: evict the last page in the list.
37 * This also make the performance characteristics easy to reason
38 * about.  Our cache is not so simple.  At any given moment, some
39 * subset of the blocks in the cache are un-evictable because we
40 * have handed out a reference to them.  Blocks are only evictable
41 * when there are no external references active.  This makes
42 * eviction far more problematic:  we choose to evict the evictable
43 * blocks that are the "lowest" in the list.
44 *
45 * There are times when it is not possible to evict the requested
46 * space.  In these circumstances we are unable to adjust the cache
47 * size.  To prevent the cache growing unbounded at these times we
48 * implement a "cache throttle" that slows the flow of new data
49 * into the cache until we can make space available.
50 *
51 * 2. The Megiddo and Modha model assumes a fixed cache size.
52 * Pages are evicted when the cache is full and there is a cache
53 * miss.  Our model has a variable sized cache.  It grows with
54 * high use, but also tries to react to memory pressure from the
55 * operating system: decreasing its size when system memory is
56 * tight.
57 *
58 * 3. The Megiddo and Modha model assumes a fixed page size. All
59 * elements of the cache are therefor exactly the same size.  So
60 * when adjusting the cache size following a cache miss, its simply
61 * a matter of choosing a single page to evict.  In our model, we
62 * have variable sized cache blocks (rangeing from 512 bytes to
63 * 128K bytes).  We therefor choose a set of blocks to evict to make
64 * space for a cache miss that approximates as closely as possible
65 * the space used by the new block.
66 *
67 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68 * by N. Megiddo & D. Modha, FAST 2003
69 */
70
71/*
72 * The locking model:
73 *
74 * A new reference to a cache buffer can be obtained in two
75 * ways: 1) via a hash table lookup using the DVA as a key,
76 * or 2) via one of the ARC lists.  The arc_read() interface
77 * uses method 1, while the internal arc algorithms for
78 * adjusting the cache use method 2.  We therefor provide two
79 * types of locks: 1) the hash table lock array, and 2) the
80 * arc list locks.
81 *
82 * Buffers do not have their own mutexs, rather they rely on the
83 * hash table mutexs for the bulk of their protection (i.e. most
84 * fields in the arc_buf_hdr_t are protected by these mutexs).
85 *
86 * buf_hash_find() returns the appropriate mutex (held) when it
87 * locates the requested buffer in the hash table.  It returns
88 * NULL for the mutex if the buffer was not in the table.
89 *
90 * buf_hash_remove() expects the appropriate hash mutex to be
91 * already held before it is invoked.
92 *
93 * Each arc state also has a mutex which is used to protect the
94 * buffer list associated with the state.  When attempting to
95 * obtain a hash table lock while holding an arc list lock you
96 * must use: mutex_tryenter() to avoid deadlock.  Also note that
97 * the active state mutex must be held before the ghost state mutex.
98 *
99 * Arc buffers may have an associated eviction callback function.
100 * This function will be invoked prior to removing the buffer (e.g.
101 * in arc_do_user_evicts()).  Note however that the data associated
102 * with the buffer may be evicted prior to the callback.  The callback
103 * must be made with *no locks held* (to prevent deadlock).  Additionally,
104 * the users of callbacks must ensure that their private data is
105 * protected from simultaneous callbacks from arc_buf_evict()
106 * and arc_do_user_evicts().
107 *
108 * Note that the majority of the performance stats are manipulated
109 * with atomic operations.
110 *
111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112 *
113 *	- L2ARC buflist creation
114 *	- L2ARC buflist eviction
115 *	- L2ARC write completion, which walks L2ARC buflists
116 *	- ARC header destruction, as it removes from L2ARC buflists
117 *	- ARC header release, as it removes from L2ARC buflists
118 */
119
120#include <sys/spa.h>
121#include <sys/zio.h>
122#include <sys/zio_checksum.h>
123#include <sys/zfs_context.h>
124#include <sys/arc.h>
125#include <sys/refcount.h>
126#include <sys/vdev.h>
127#ifdef _KERNEL
128#include <sys/dnlc.h>
129#endif
130#include <sys/callb.h>
131#include <sys/kstat.h>
132#include <sys/sdt.h>
133
134#include <vm/vm_pageout.h>
135
136static kmutex_t		arc_reclaim_thr_lock;
137static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
138static uint8_t		arc_thread_exit;
139
140extern int zfs_write_limit_shift;
141extern uint64_t zfs_write_limit_max;
142extern kmutex_t zfs_write_limit_lock;
143
144#define	ARC_REDUCE_DNLC_PERCENT	3
145uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146
147typedef enum arc_reclaim_strategy {
148	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
149	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
150} arc_reclaim_strategy_t;
151
152/* number of seconds before growing cache again */
153static int		arc_grow_retry = 60;
154
155/* shift of arc_c for calculating both min and max arc_p */
156static int		arc_p_min_shift = 4;
157
158/* log2(fraction of arc to reclaim) */
159static int		arc_shrink_shift = 5;
160
161/*
162 * minimum lifespan of a prefetch block in clock ticks
163 * (initialized in arc_init())
164 */
165static int		arc_min_prefetch_lifespan;
166
167static int arc_dead;
168extern int zfs_prefetch_disable;
169
170/*
171 * The arc has filled available memory and has now warmed up.
172 */
173static boolean_t arc_warm;
174
175/*
176 * These tunables are for performance analysis.
177 */
178uint64_t zfs_arc_max;
179uint64_t zfs_arc_min;
180uint64_t zfs_arc_meta_limit = 0;
181int zfs_mdcomp_disable = 0;
182int zfs_arc_grow_retry = 0;
183int zfs_arc_shrink_shift = 0;
184int zfs_arc_p_min_shift = 0;
185
186TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
187TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
188TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
189TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
190SYSCTL_DECL(_vfs_zfs);
191SYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
192    "Maximum ARC size");
193SYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
194    "Minimum ARC size");
195SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RDTUN,
196    &zfs_mdcomp_disable, 0, "Disable metadata compression");
197
198/*
199 * Note that buffers can be in one of 6 states:
200 *	ARC_anon	- anonymous (discussed below)
201 *	ARC_mru		- recently used, currently cached
202 *	ARC_mru_ghost	- recentely used, no longer in cache
203 *	ARC_mfu		- frequently used, currently cached
204 *	ARC_mfu_ghost	- frequently used, no longer in cache
205 *	ARC_l2c_only	- exists in L2ARC but not other states
206 * When there are no active references to the buffer, they are
207 * are linked onto a list in one of these arc states.  These are
208 * the only buffers that can be evicted or deleted.  Within each
209 * state there are multiple lists, one for meta-data and one for
210 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
211 * etc.) is tracked separately so that it can be managed more
212 * explicitly: favored over data, limited explicitly.
213 *
214 * Anonymous buffers are buffers that are not associated with
215 * a DVA.  These are buffers that hold dirty block copies
216 * before they are written to stable storage.  By definition,
217 * they are "ref'd" and are considered part of arc_mru
218 * that cannot be freed.  Generally, they will aquire a DVA
219 * as they are written and migrate onto the arc_mru list.
220 *
221 * The ARC_l2c_only state is for buffers that are in the second
222 * level ARC but no longer in any of the ARC_m* lists.  The second
223 * level ARC itself may also contain buffers that are in any of
224 * the ARC_m* states - meaning that a buffer can exist in two
225 * places.  The reason for the ARC_l2c_only state is to keep the
226 * buffer header in the hash table, so that reads that hit the
227 * second level ARC benefit from these fast lookups.
228 */
229
230#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
231struct arcs_lock {
232	kmutex_t	arcs_lock;
233#ifdef _KERNEL
234	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
235#endif
236};
237
238/*
239 * must be power of two for mask use to work
240 *
241 */
242#define ARC_BUFC_NUMDATALISTS		16
243#define ARC_BUFC_NUMMETADATALISTS	16
244#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
245
246typedef struct arc_state {
247	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
248	uint64_t arcs_size;	/* total amount of data in this state */
249	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
250	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
251} arc_state_t;
252
253#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
254
255/* The 6 states: */
256static arc_state_t ARC_anon;
257static arc_state_t ARC_mru;
258static arc_state_t ARC_mru_ghost;
259static arc_state_t ARC_mfu;
260static arc_state_t ARC_mfu_ghost;
261static arc_state_t ARC_l2c_only;
262
263typedef struct arc_stats {
264	kstat_named_t arcstat_hits;
265	kstat_named_t arcstat_misses;
266	kstat_named_t arcstat_demand_data_hits;
267	kstat_named_t arcstat_demand_data_misses;
268	kstat_named_t arcstat_demand_metadata_hits;
269	kstat_named_t arcstat_demand_metadata_misses;
270	kstat_named_t arcstat_prefetch_data_hits;
271	kstat_named_t arcstat_prefetch_data_misses;
272	kstat_named_t arcstat_prefetch_metadata_hits;
273	kstat_named_t arcstat_prefetch_metadata_misses;
274	kstat_named_t arcstat_mru_hits;
275	kstat_named_t arcstat_mru_ghost_hits;
276	kstat_named_t arcstat_mfu_hits;
277	kstat_named_t arcstat_mfu_ghost_hits;
278	kstat_named_t arcstat_allocated;
279	kstat_named_t arcstat_deleted;
280	kstat_named_t arcstat_stolen;
281	kstat_named_t arcstat_recycle_miss;
282	kstat_named_t arcstat_mutex_miss;
283	kstat_named_t arcstat_evict_skip;
284	kstat_named_t arcstat_evict_l2_cached;
285	kstat_named_t arcstat_evict_l2_eligible;
286	kstat_named_t arcstat_evict_l2_ineligible;
287	kstat_named_t arcstat_hash_elements;
288	kstat_named_t arcstat_hash_elements_max;
289	kstat_named_t arcstat_hash_collisions;
290	kstat_named_t arcstat_hash_chains;
291	kstat_named_t arcstat_hash_chain_max;
292	kstat_named_t arcstat_p;
293	kstat_named_t arcstat_c;
294	kstat_named_t arcstat_c_min;
295	kstat_named_t arcstat_c_max;
296	kstat_named_t arcstat_size;
297	kstat_named_t arcstat_hdr_size;
298	kstat_named_t arcstat_data_size;
299	kstat_named_t arcstat_other_size;
300	kstat_named_t arcstat_l2_hits;
301	kstat_named_t arcstat_l2_misses;
302	kstat_named_t arcstat_l2_feeds;
303	kstat_named_t arcstat_l2_rw_clash;
304	kstat_named_t arcstat_l2_read_bytes;
305	kstat_named_t arcstat_l2_write_bytes;
306	kstat_named_t arcstat_l2_writes_sent;
307	kstat_named_t arcstat_l2_writes_done;
308	kstat_named_t arcstat_l2_writes_error;
309	kstat_named_t arcstat_l2_writes_hdr_miss;
310	kstat_named_t arcstat_l2_evict_lock_retry;
311	kstat_named_t arcstat_l2_evict_reading;
312	kstat_named_t arcstat_l2_free_on_write;
313	kstat_named_t arcstat_l2_abort_lowmem;
314	kstat_named_t arcstat_l2_cksum_bad;
315	kstat_named_t arcstat_l2_io_error;
316	kstat_named_t arcstat_l2_size;
317	kstat_named_t arcstat_l2_hdr_size;
318	kstat_named_t arcstat_memory_throttle_count;
319	kstat_named_t arcstat_l2_write_trylock_fail;
320	kstat_named_t arcstat_l2_write_passed_headroom;
321	kstat_named_t arcstat_l2_write_spa_mismatch;
322	kstat_named_t arcstat_l2_write_in_l2;
323	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
324	kstat_named_t arcstat_l2_write_not_cacheable;
325	kstat_named_t arcstat_l2_write_full;
326	kstat_named_t arcstat_l2_write_buffer_iter;
327	kstat_named_t arcstat_l2_write_pios;
328	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
329	kstat_named_t arcstat_l2_write_buffer_list_iter;
330	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
331} arc_stats_t;
332
333static arc_stats_t arc_stats = {
334	{ "hits",			KSTAT_DATA_UINT64 },
335	{ "misses",			KSTAT_DATA_UINT64 },
336	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
337	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
338	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
339	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
340	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
341	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
342	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
343	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
344	{ "mru_hits",			KSTAT_DATA_UINT64 },
345	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
346	{ "mfu_hits",			KSTAT_DATA_UINT64 },
347	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
348	{ "allocated",			KSTAT_DATA_UINT64 },
349	{ "deleted",			KSTAT_DATA_UINT64 },
350	{ "stolen",			KSTAT_DATA_UINT64 },
351	{ "recycle_miss",		KSTAT_DATA_UINT64 },
352	{ "mutex_miss",			KSTAT_DATA_UINT64 },
353	{ "evict_skip",			KSTAT_DATA_UINT64 },
354	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
355	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
356	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
357	{ "hash_elements",		KSTAT_DATA_UINT64 },
358	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
359	{ "hash_collisions",		KSTAT_DATA_UINT64 },
360	{ "hash_chains",		KSTAT_DATA_UINT64 },
361	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
362	{ "p",				KSTAT_DATA_UINT64 },
363	{ "c",				KSTAT_DATA_UINT64 },
364	{ "c_min",			KSTAT_DATA_UINT64 },
365	{ "c_max",			KSTAT_DATA_UINT64 },
366	{ "size",			KSTAT_DATA_UINT64 },
367	{ "hdr_size",			KSTAT_DATA_UINT64 },
368	{ "data_size",			KSTAT_DATA_UINT64 },
369	{ "other_size",			KSTAT_DATA_UINT64 },
370	{ "l2_hits",			KSTAT_DATA_UINT64 },
371	{ "l2_misses",			KSTAT_DATA_UINT64 },
372	{ "l2_feeds",			KSTAT_DATA_UINT64 },
373	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
374	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
375	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
376	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
377	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
378	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
379	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
380	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
381	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
382	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
383	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
384	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
385	{ "l2_io_error",		KSTAT_DATA_UINT64 },
386	{ "l2_size",			KSTAT_DATA_UINT64 },
387	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
388	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
389	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
390	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
391	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
392	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
393	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
394	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
395	{ "l2_write_full",		KSTAT_DATA_UINT64 },
396	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
397	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
398	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
399	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
400	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 }
401};
402
403#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
404
405#define	ARCSTAT_INCR(stat, val) \
406	atomic_add_64(&arc_stats.stat.value.ui64, (val));
407
408#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
409#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
410
411#define	ARCSTAT_MAX(stat, val) {					\
412	uint64_t m;							\
413	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
414	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
415		continue;						\
416}
417
418#define	ARCSTAT_MAXSTAT(stat) \
419	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
420
421/*
422 * We define a macro to allow ARC hits/misses to be easily broken down by
423 * two separate conditions, giving a total of four different subtypes for
424 * each of hits and misses (so eight statistics total).
425 */
426#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
427	if (cond1) {							\
428		if (cond2) {						\
429			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
430		} else {						\
431			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
432		}							\
433	} else {							\
434		if (cond2) {						\
435			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
436		} else {						\
437			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
438		}							\
439	}
440
441kstat_t			*arc_ksp;
442static arc_state_t	*arc_anon;
443static arc_state_t	*arc_mru;
444static arc_state_t	*arc_mru_ghost;
445static arc_state_t	*arc_mfu;
446static arc_state_t	*arc_mfu_ghost;
447static arc_state_t	*arc_l2c_only;
448
449/*
450 * There are several ARC variables that are critical to export as kstats --
451 * but we don't want to have to grovel around in the kstat whenever we wish to
452 * manipulate them.  For these variables, we therefore define them to be in
453 * terms of the statistic variable.  This assures that we are not introducing
454 * the possibility of inconsistency by having shadow copies of the variables,
455 * while still allowing the code to be readable.
456 */
457#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
458#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
459#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
460#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
461#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
462
463static int		arc_no_grow;	/* Don't try to grow cache size */
464static uint64_t		arc_tempreserve;
465static uint64_t		arc_loaned_bytes;
466static uint64_t		arc_meta_used;
467static uint64_t		arc_meta_limit;
468static uint64_t		arc_meta_max = 0;
469SYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RDTUN,
470    &arc_meta_used, 0, "ARC metadata used");
471SYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RDTUN,
472    &arc_meta_limit, 0, "ARC metadata limit");
473
474typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
475
476typedef struct arc_callback arc_callback_t;
477
478struct arc_callback {
479	void			*acb_private;
480	arc_done_func_t		*acb_done;
481	arc_buf_t		*acb_buf;
482	zio_t			*acb_zio_dummy;
483	arc_callback_t		*acb_next;
484};
485
486typedef struct arc_write_callback arc_write_callback_t;
487
488struct arc_write_callback {
489	void		*awcb_private;
490	arc_done_func_t	*awcb_ready;
491	arc_done_func_t	*awcb_done;
492	arc_buf_t	*awcb_buf;
493};
494
495struct arc_buf_hdr {
496	/* protected by hash lock */
497	dva_t			b_dva;
498	uint64_t		b_birth;
499	uint64_t		b_cksum0;
500
501	kmutex_t		b_freeze_lock;
502	zio_cksum_t		*b_freeze_cksum;
503
504	arc_buf_hdr_t		*b_hash_next;
505	arc_buf_t		*b_buf;
506	uint32_t		b_flags;
507	uint32_t		b_datacnt;
508
509	arc_callback_t		*b_acb;
510	kcondvar_t		b_cv;
511
512	/* immutable */
513	arc_buf_contents_t	b_type;
514	uint64_t		b_size;
515	uint64_t		b_spa;
516
517	/* protected by arc state mutex */
518	arc_state_t		*b_state;
519	list_node_t		b_arc_node;
520
521	/* updated atomically */
522	clock_t			b_arc_access;
523
524	/* self protecting */
525	refcount_t		b_refcnt;
526
527	l2arc_buf_hdr_t		*b_l2hdr;
528	list_node_t		b_l2node;
529};
530
531static arc_buf_t *arc_eviction_list;
532static kmutex_t arc_eviction_mtx;
533static arc_buf_hdr_t arc_eviction_hdr;
534static void arc_get_data_buf(arc_buf_t *buf);
535static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
536static int arc_evict_needed(arc_buf_contents_t type);
537static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
538
539static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
540
541#define	GHOST_STATE(state)	\
542	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
543	(state) == arc_l2c_only)
544
545/*
546 * Private ARC flags.  These flags are private ARC only flags that will show up
547 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
548 * be passed in as arc_flags in things like arc_read.  However, these flags
549 * should never be passed and should only be set by ARC code.  When adding new
550 * public flags, make sure not to smash the private ones.
551 */
552
553#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
554#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
555#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
556#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
557#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
558#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
559#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
560#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
561#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
562#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
563#define	ARC_STORED		(1 << 19)	/* has been store()d to */
564
565#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
566#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
567#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
568#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
569#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
570#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
571#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
572#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
573#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
574				    (hdr)->b_l2hdr != NULL)
575#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
576#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
577#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
578
579/*
580 * Other sizes
581 */
582
583#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
584#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
585
586/*
587 * Hash table routines
588 */
589
590#define	HT_LOCK_PAD	CACHE_LINE_SIZE
591
592struct ht_lock {
593	kmutex_t	ht_lock;
594#ifdef _KERNEL
595	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
596#endif
597};
598
599#define	BUF_LOCKS 256
600typedef struct buf_hash_table {
601	uint64_t ht_mask;
602	arc_buf_hdr_t **ht_table;
603	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
604} buf_hash_table_t;
605
606static buf_hash_table_t buf_hash_table;
607
608#define	BUF_HASH_INDEX(spa, dva, birth) \
609	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
610#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
611#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
612#define	HDR_LOCK(buf) \
613	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
614
615uint64_t zfs_crc64_table[256];
616
617/*
618 * Level 2 ARC
619 */
620
621#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
622#define	L2ARC_HEADROOM		2		/* num of writes */
623#define	L2ARC_FEED_SECS		1		/* caching interval secs */
624#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
625
626#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
627#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
628
629/*
630 * L2ARC Performance Tunables
631 */
632uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
633uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
634uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
635uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
636uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
637boolean_t l2arc_noprefetch = B_FALSE;		/* don't cache prefetch bufs */
638boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
639boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
640
641SYSCTL_QUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
642    &l2arc_write_max, 0, "max write size");
643SYSCTL_QUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
644    &l2arc_write_boost, 0, "extra write during warmup");
645SYSCTL_QUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
646    &l2arc_headroom, 0, "number of dev writes");
647SYSCTL_QUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
648    &l2arc_feed_secs, 0, "interval seconds");
649SYSCTL_QUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
650    &l2arc_feed_min_ms, 0, "min interval milliseconds");
651
652SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
653    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
654SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
655    &l2arc_feed_again, 0, "turbo warmup");
656SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
657    &l2arc_norw, 0, "no reads during writes");
658
659SYSCTL_QUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
660    &ARC_anon.arcs_size, 0, "size of anonymous state");
661SYSCTL_QUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
662    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
663SYSCTL_QUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
664    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
665
666SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
667    &ARC_mru.arcs_size, 0, "size of mru state");
668SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
669    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
670SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
671    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
672
673SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
674    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
675SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
676    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
677    "size of metadata in mru ghost state");
678SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
679    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
680    "size of data in mru ghost state");
681
682SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
683    &ARC_mfu.arcs_size, 0, "size of mfu state");
684SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
685    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
686SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
687    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
688
689SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
690    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
691SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
692    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
693    "size of metadata in mfu ghost state");
694SYSCTL_QUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
695    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
696    "size of data in mfu ghost state");
697
698SYSCTL_QUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
699    &ARC_l2c_only.arcs_size, 0, "size of mru state");
700
701/*
702 * L2ARC Internals
703 */
704typedef struct l2arc_dev {
705	vdev_t			*l2ad_vdev;	/* vdev */
706	spa_t			*l2ad_spa;	/* spa */
707	uint64_t		l2ad_hand;	/* next write location */
708	uint64_t		l2ad_write;	/* desired write size, bytes */
709	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
710	uint64_t		l2ad_start;	/* first addr on device */
711	uint64_t		l2ad_end;	/* last addr on device */
712	uint64_t		l2ad_evict;	/* last addr eviction reached */
713	boolean_t		l2ad_first;	/* first sweep through */
714	boolean_t		l2ad_writing;	/* currently writing */
715	list_t			*l2ad_buflist;	/* buffer list */
716	list_node_t		l2ad_node;	/* device list node */
717} l2arc_dev_t;
718
719static list_t L2ARC_dev_list;			/* device list */
720static list_t *l2arc_dev_list;			/* device list pointer */
721static kmutex_t l2arc_dev_mtx;			/* device list mutex */
722static l2arc_dev_t *l2arc_dev_last;		/* last device used */
723static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
724static list_t L2ARC_free_on_write;		/* free after write buf list */
725static list_t *l2arc_free_on_write;		/* free after write list ptr */
726static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
727static uint64_t l2arc_ndev;			/* number of devices */
728
729typedef struct l2arc_read_callback {
730	arc_buf_t	*l2rcb_buf;		/* read buffer */
731	spa_t		*l2rcb_spa;		/* spa */
732	blkptr_t	l2rcb_bp;		/* original blkptr */
733	zbookmark_t	l2rcb_zb;		/* original bookmark */
734	int		l2rcb_flags;		/* original flags */
735} l2arc_read_callback_t;
736
737typedef struct l2arc_write_callback {
738	l2arc_dev_t	*l2wcb_dev;		/* device info */
739	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
740} l2arc_write_callback_t;
741
742struct l2arc_buf_hdr {
743	/* protected by arc_buf_hdr  mutex */
744	l2arc_dev_t	*b_dev;			/* L2ARC device */
745	uint64_t	b_daddr;		/* disk address, offset byte */
746};
747
748typedef struct l2arc_data_free {
749	/* protected by l2arc_free_on_write_mtx */
750	void		*l2df_data;
751	size_t		l2df_size;
752	void		(*l2df_func)(void *, size_t);
753	list_node_t	l2df_list_node;
754} l2arc_data_free_t;
755
756static kmutex_t l2arc_feed_thr_lock;
757static kcondvar_t l2arc_feed_thr_cv;
758static uint8_t l2arc_thread_exit;
759
760static void l2arc_read_done(zio_t *zio);
761static void l2arc_hdr_stat_add(void);
762static void l2arc_hdr_stat_remove(void);
763
764static uint64_t
765buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
766{
767	uint8_t *vdva = (uint8_t *)dva;
768	uint64_t crc = -1ULL;
769	int i;
770
771	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
772
773	for (i = 0; i < sizeof (dva_t); i++)
774		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
775
776	crc ^= (spa>>8) ^ birth;
777
778	return (crc);
779}
780
781#define	BUF_EMPTY(buf)						\
782	((buf)->b_dva.dva_word[0] == 0 &&			\
783	(buf)->b_dva.dva_word[1] == 0 &&			\
784	(buf)->b_birth == 0)
785
786#define	BUF_EQUAL(spa, dva, birth, buf)				\
787	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
788	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
789	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
790
791static arc_buf_hdr_t *
792buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
793{
794	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
795	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
796	arc_buf_hdr_t *buf;
797
798	mutex_enter(hash_lock);
799	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
800	    buf = buf->b_hash_next) {
801		if (BUF_EQUAL(spa, dva, birth, buf)) {
802			*lockp = hash_lock;
803			return (buf);
804		}
805	}
806	mutex_exit(hash_lock);
807	*lockp = NULL;
808	return (NULL);
809}
810
811/*
812 * Insert an entry into the hash table.  If there is already an element
813 * equal to elem in the hash table, then the already existing element
814 * will be returned and the new element will not be inserted.
815 * Otherwise returns NULL.
816 */
817static arc_buf_hdr_t *
818buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
819{
820	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
821	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
822	arc_buf_hdr_t *fbuf;
823	uint32_t i;
824
825	ASSERT(!HDR_IN_HASH_TABLE(buf));
826	*lockp = hash_lock;
827	mutex_enter(hash_lock);
828	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
829	    fbuf = fbuf->b_hash_next, i++) {
830		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
831			return (fbuf);
832	}
833
834	buf->b_hash_next = buf_hash_table.ht_table[idx];
835	buf_hash_table.ht_table[idx] = buf;
836	buf->b_flags |= ARC_IN_HASH_TABLE;
837
838	/* collect some hash table performance data */
839	if (i > 0) {
840		ARCSTAT_BUMP(arcstat_hash_collisions);
841		if (i == 1)
842			ARCSTAT_BUMP(arcstat_hash_chains);
843
844		ARCSTAT_MAX(arcstat_hash_chain_max, i);
845	}
846
847	ARCSTAT_BUMP(arcstat_hash_elements);
848	ARCSTAT_MAXSTAT(arcstat_hash_elements);
849
850	return (NULL);
851}
852
853static void
854buf_hash_remove(arc_buf_hdr_t *buf)
855{
856	arc_buf_hdr_t *fbuf, **bufp;
857	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
858
859	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
860	ASSERT(HDR_IN_HASH_TABLE(buf));
861
862	bufp = &buf_hash_table.ht_table[idx];
863	while ((fbuf = *bufp) != buf) {
864		ASSERT(fbuf != NULL);
865		bufp = &fbuf->b_hash_next;
866	}
867	*bufp = buf->b_hash_next;
868	buf->b_hash_next = NULL;
869	buf->b_flags &= ~ARC_IN_HASH_TABLE;
870
871	/* collect some hash table performance data */
872	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
873
874	if (buf_hash_table.ht_table[idx] &&
875	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
876		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
877}
878
879/*
880 * Global data structures and functions for the buf kmem cache.
881 */
882static kmem_cache_t *hdr_cache;
883static kmem_cache_t *buf_cache;
884
885static void
886buf_fini(void)
887{
888	int i;
889
890	kmem_free(buf_hash_table.ht_table,
891	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
892	for (i = 0; i < BUF_LOCKS; i++)
893		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
894	kmem_cache_destroy(hdr_cache);
895	kmem_cache_destroy(buf_cache);
896}
897
898/*
899 * Constructor callback - called when the cache is empty
900 * and a new buf is requested.
901 */
902/* ARGSUSED */
903static int
904hdr_cons(void *vbuf, void *unused, int kmflag)
905{
906	arc_buf_hdr_t *buf = vbuf;
907
908	bzero(buf, sizeof (arc_buf_hdr_t));
909	refcount_create(&buf->b_refcnt);
910	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
911	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
912	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
913
914	return (0);
915}
916
917/* ARGSUSED */
918static int
919buf_cons(void *vbuf, void *unused, int kmflag)
920{
921	arc_buf_t *buf = vbuf;
922
923	bzero(buf, sizeof (arc_buf_t));
924	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
925	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
926
927	return (0);
928}
929
930/*
931 * Destructor callback - called when a cached buf is
932 * no longer required.
933 */
934/* ARGSUSED */
935static void
936hdr_dest(void *vbuf, void *unused)
937{
938	arc_buf_hdr_t *buf = vbuf;
939
940	refcount_destroy(&buf->b_refcnt);
941	cv_destroy(&buf->b_cv);
942	mutex_destroy(&buf->b_freeze_lock);
943	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
944}
945
946/* ARGSUSED */
947static void
948buf_dest(void *vbuf, void *unused)
949{
950	arc_buf_t *buf = vbuf;
951
952	rw_destroy(&buf->b_lock);
953	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
954}
955
956/*
957 * Reclaim callback -- invoked when memory is low.
958 */
959/* ARGSUSED */
960static void
961hdr_recl(void *unused)
962{
963	dprintf("hdr_recl called\n");
964	/*
965	 * umem calls the reclaim func when we destroy the buf cache,
966	 * which is after we do arc_fini().
967	 */
968	if (!arc_dead)
969		cv_signal(&arc_reclaim_thr_cv);
970}
971
972static void
973buf_init(void)
974{
975	uint64_t *ct;
976	uint64_t hsize = 1ULL << 12;
977	int i, j;
978
979	/*
980	 * The hash table is big enough to fill all of physical memory
981	 * with an average 64K block size.  The table will take up
982	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
983	 */
984	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
985		hsize <<= 1;
986retry:
987	buf_hash_table.ht_mask = hsize - 1;
988	buf_hash_table.ht_table =
989	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
990	if (buf_hash_table.ht_table == NULL) {
991		ASSERT(hsize > (1ULL << 8));
992		hsize >>= 1;
993		goto retry;
994	}
995
996	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
997	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
998	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
999	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1000
1001	for (i = 0; i < 256; i++)
1002		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1003			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1004
1005	for (i = 0; i < BUF_LOCKS; i++) {
1006		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1007		    NULL, MUTEX_DEFAULT, NULL);
1008	}
1009}
1010
1011#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1012
1013static void
1014arc_cksum_verify(arc_buf_t *buf)
1015{
1016	zio_cksum_t zc;
1017
1018	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1019		return;
1020
1021	mutex_enter(&buf->b_hdr->b_freeze_lock);
1022	if (buf->b_hdr->b_freeze_cksum == NULL ||
1023	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1024		mutex_exit(&buf->b_hdr->b_freeze_lock);
1025		return;
1026	}
1027	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1028	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1029		panic("buffer modified while frozen!");
1030	mutex_exit(&buf->b_hdr->b_freeze_lock);
1031}
1032
1033static int
1034arc_cksum_equal(arc_buf_t *buf)
1035{
1036	zio_cksum_t zc;
1037	int equal;
1038
1039	mutex_enter(&buf->b_hdr->b_freeze_lock);
1040	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1041	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1042	mutex_exit(&buf->b_hdr->b_freeze_lock);
1043
1044	return (equal);
1045}
1046
1047static void
1048arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1049{
1050	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1051		return;
1052
1053	mutex_enter(&buf->b_hdr->b_freeze_lock);
1054	if (buf->b_hdr->b_freeze_cksum != NULL) {
1055		mutex_exit(&buf->b_hdr->b_freeze_lock);
1056		return;
1057	}
1058	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1059	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1060	    buf->b_hdr->b_freeze_cksum);
1061	mutex_exit(&buf->b_hdr->b_freeze_lock);
1062}
1063
1064void
1065arc_buf_thaw(arc_buf_t *buf)
1066{
1067	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1068		if (buf->b_hdr->b_state != arc_anon)
1069			panic("modifying non-anon buffer!");
1070		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1071			panic("modifying buffer while i/o in progress!");
1072		arc_cksum_verify(buf);
1073	}
1074
1075	mutex_enter(&buf->b_hdr->b_freeze_lock);
1076	if (buf->b_hdr->b_freeze_cksum != NULL) {
1077		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1078		buf->b_hdr->b_freeze_cksum = NULL;
1079	}
1080	mutex_exit(&buf->b_hdr->b_freeze_lock);
1081}
1082
1083void
1084arc_buf_freeze(arc_buf_t *buf)
1085{
1086	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1087		return;
1088
1089	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1090	    buf->b_hdr->b_state == arc_anon);
1091	arc_cksum_compute(buf, B_FALSE);
1092}
1093
1094static void
1095get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1096{
1097	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1098
1099	if (ab->b_type == ARC_BUFC_METADATA)
1100		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1101	else {
1102		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1103		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1104	}
1105
1106	*list = &state->arcs_lists[buf_hashid];
1107	*lock = ARCS_LOCK(state, buf_hashid);
1108}
1109
1110
1111static void
1112add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1113{
1114
1115	ASSERT(MUTEX_HELD(hash_lock));
1116
1117	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1118	    (ab->b_state != arc_anon)) {
1119		uint64_t delta = ab->b_size * ab->b_datacnt;
1120		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1121		list_t *list;
1122		kmutex_t *lock;
1123
1124		get_buf_info(ab, ab->b_state, &list, &lock);
1125		ASSERT(!MUTEX_HELD(lock));
1126		mutex_enter(lock);
1127		ASSERT(list_link_active(&ab->b_arc_node));
1128		list_remove(list, ab);
1129		if (GHOST_STATE(ab->b_state)) {
1130			ASSERT3U(ab->b_datacnt, ==, 0);
1131			ASSERT3P(ab->b_buf, ==, NULL);
1132			delta = ab->b_size;
1133		}
1134		ASSERT(delta > 0);
1135		ASSERT3U(*size, >=, delta);
1136		atomic_add_64(size, -delta);
1137		mutex_exit(lock);
1138		/* remove the prefetch flag if we get a reference */
1139		if (ab->b_flags & ARC_PREFETCH)
1140			ab->b_flags &= ~ARC_PREFETCH;
1141	}
1142}
1143
1144static int
1145remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1146{
1147	int cnt;
1148	arc_state_t *state = ab->b_state;
1149
1150	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1151	ASSERT(!GHOST_STATE(state));
1152
1153	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1154	    (state != arc_anon)) {
1155		uint64_t *size = &state->arcs_lsize[ab->b_type];
1156		list_t *list;
1157		kmutex_t *lock;
1158
1159		get_buf_info(ab, state, &list, &lock);
1160		ASSERT(!MUTEX_HELD(lock));
1161		mutex_enter(lock);
1162		ASSERT(!list_link_active(&ab->b_arc_node));
1163		list_insert_head(list, ab);
1164		ASSERT(ab->b_datacnt > 0);
1165		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1166		mutex_exit(lock);
1167	}
1168	return (cnt);
1169}
1170
1171/*
1172 * Move the supplied buffer to the indicated state.  The mutex
1173 * for the buffer must be held by the caller.
1174 */
1175static void
1176arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1177{
1178	arc_state_t *old_state = ab->b_state;
1179	int64_t refcnt = refcount_count(&ab->b_refcnt);
1180	uint64_t from_delta, to_delta;
1181	list_t *list;
1182	kmutex_t *lock;
1183
1184	ASSERT(MUTEX_HELD(hash_lock));
1185	ASSERT(new_state != old_state);
1186	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1187	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1188
1189	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1190
1191	/*
1192	 * If this buffer is evictable, transfer it from the
1193	 * old state list to the new state list.
1194	 */
1195	if (refcnt == 0) {
1196		if (old_state != arc_anon) {
1197			int use_mutex;
1198			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1199
1200			get_buf_info(ab, old_state, &list, &lock);
1201			use_mutex = !MUTEX_HELD(lock);
1202			if (use_mutex)
1203				mutex_enter(lock);
1204
1205			ASSERT(list_link_active(&ab->b_arc_node));
1206			list_remove(list, ab);
1207
1208			/*
1209			 * If prefetching out of the ghost cache,
1210			 * we will have a non-null datacnt.
1211			 */
1212			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1213				/* ghost elements have a ghost size */
1214				ASSERT(ab->b_buf == NULL);
1215				from_delta = ab->b_size;
1216			}
1217			ASSERT3U(*size, >=, from_delta);
1218			atomic_add_64(size, -from_delta);
1219
1220			if (use_mutex)
1221				mutex_exit(lock);
1222		}
1223		if (new_state != arc_anon) {
1224			int use_mutex;
1225			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1226
1227			get_buf_info(ab, new_state, &list, &lock);
1228			use_mutex = !MUTEX_HELD(lock);
1229			if (use_mutex)
1230				mutex_enter(lock);
1231
1232			list_insert_head(list, ab);
1233
1234			/* ghost elements have a ghost size */
1235			if (GHOST_STATE(new_state)) {
1236				ASSERT(ab->b_datacnt == 0);
1237				ASSERT(ab->b_buf == NULL);
1238				to_delta = ab->b_size;
1239			}
1240			atomic_add_64(size, to_delta);
1241
1242			if (use_mutex)
1243				mutex_exit(lock);
1244		}
1245	}
1246
1247	ASSERT(!BUF_EMPTY(ab));
1248	if (new_state == arc_anon) {
1249		buf_hash_remove(ab);
1250	}
1251
1252	/* adjust state sizes */
1253	if (to_delta)
1254		atomic_add_64(&new_state->arcs_size, to_delta);
1255	if (from_delta) {
1256		ASSERT3U(old_state->arcs_size, >=, from_delta);
1257		atomic_add_64(&old_state->arcs_size, -from_delta);
1258	}
1259	ab->b_state = new_state;
1260
1261	/* adjust l2arc hdr stats */
1262	if (new_state == arc_l2c_only)
1263		l2arc_hdr_stat_add();
1264	else if (old_state == arc_l2c_only)
1265		l2arc_hdr_stat_remove();
1266}
1267
1268void
1269arc_space_consume(uint64_t space, arc_space_type_t type)
1270{
1271	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1272
1273	switch (type) {
1274	case ARC_SPACE_DATA:
1275		ARCSTAT_INCR(arcstat_data_size, space);
1276		break;
1277	case ARC_SPACE_OTHER:
1278		ARCSTAT_INCR(arcstat_other_size, space);
1279		break;
1280	case ARC_SPACE_HDRS:
1281		ARCSTAT_INCR(arcstat_hdr_size, space);
1282		break;
1283	case ARC_SPACE_L2HDRS:
1284		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1285		break;
1286	}
1287
1288	atomic_add_64(&arc_meta_used, space);
1289	atomic_add_64(&arc_size, space);
1290}
1291
1292void
1293arc_space_return(uint64_t space, arc_space_type_t type)
1294{
1295	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1296
1297	switch (type) {
1298	case ARC_SPACE_DATA:
1299		ARCSTAT_INCR(arcstat_data_size, -space);
1300		break;
1301	case ARC_SPACE_OTHER:
1302		ARCSTAT_INCR(arcstat_other_size, -space);
1303		break;
1304	case ARC_SPACE_HDRS:
1305		ARCSTAT_INCR(arcstat_hdr_size, -space);
1306		break;
1307	case ARC_SPACE_L2HDRS:
1308		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1309		break;
1310	}
1311
1312	ASSERT(arc_meta_used >= space);
1313	if (arc_meta_max < arc_meta_used)
1314		arc_meta_max = arc_meta_used;
1315	atomic_add_64(&arc_meta_used, -space);
1316	ASSERT(arc_size >= space);
1317	atomic_add_64(&arc_size, -space);
1318}
1319
1320void *
1321arc_data_buf_alloc(uint64_t size)
1322{
1323	if (arc_evict_needed(ARC_BUFC_DATA))
1324		cv_signal(&arc_reclaim_thr_cv);
1325	atomic_add_64(&arc_size, size);
1326	return (zio_data_buf_alloc(size));
1327}
1328
1329void
1330arc_data_buf_free(void *buf, uint64_t size)
1331{
1332	zio_data_buf_free(buf, size);
1333	ASSERT(arc_size >= size);
1334	atomic_add_64(&arc_size, -size);
1335}
1336
1337arc_buf_t *
1338arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1339{
1340	arc_buf_hdr_t *hdr;
1341	arc_buf_t *buf;
1342
1343	ASSERT3U(size, >, 0);
1344	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1345	ASSERT(BUF_EMPTY(hdr));
1346	hdr->b_size = size;
1347	hdr->b_type = type;
1348	hdr->b_spa = spa_guid(spa);
1349	hdr->b_state = arc_anon;
1350	hdr->b_arc_access = 0;
1351	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1352	buf->b_hdr = hdr;
1353	buf->b_data = NULL;
1354	buf->b_efunc = NULL;
1355	buf->b_private = NULL;
1356	buf->b_next = NULL;
1357	hdr->b_buf = buf;
1358	arc_get_data_buf(buf);
1359	hdr->b_datacnt = 1;
1360	hdr->b_flags = 0;
1361	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1362	(void) refcount_add(&hdr->b_refcnt, tag);
1363
1364	return (buf);
1365}
1366
1367static char *arc_onloan_tag = "onloan";
1368
1369/*
1370 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1371 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1372 * buffers must be returned to the arc before they can be used by the DMU or
1373 * freed.
1374 */
1375arc_buf_t *
1376arc_loan_buf(spa_t *spa, int size)
1377{
1378	arc_buf_t *buf;
1379
1380	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1381
1382	atomic_add_64(&arc_loaned_bytes, size);
1383	return (buf);
1384}
1385
1386/*
1387 * Return a loaned arc buffer to the arc.
1388 */
1389void
1390arc_return_buf(arc_buf_t *buf, void *tag)
1391{
1392	arc_buf_hdr_t *hdr = buf->b_hdr;
1393
1394	ASSERT(hdr->b_state == arc_anon);
1395	ASSERT(buf->b_data != NULL);
1396	VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0);
1397	VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1);
1398
1399	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1400}
1401
1402static arc_buf_t *
1403arc_buf_clone(arc_buf_t *from)
1404{
1405	arc_buf_t *buf;
1406	arc_buf_hdr_t *hdr = from->b_hdr;
1407	uint64_t size = hdr->b_size;
1408
1409	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1410	buf->b_hdr = hdr;
1411	buf->b_data = NULL;
1412	buf->b_efunc = NULL;
1413	buf->b_private = NULL;
1414	buf->b_next = hdr->b_buf;
1415	hdr->b_buf = buf;
1416	arc_get_data_buf(buf);
1417	bcopy(from->b_data, buf->b_data, size);
1418	hdr->b_datacnt += 1;
1419	return (buf);
1420}
1421
1422void
1423arc_buf_add_ref(arc_buf_t *buf, void* tag)
1424{
1425	arc_buf_hdr_t *hdr;
1426	kmutex_t *hash_lock;
1427
1428	/*
1429	 * Check to see if this buffer is evicted.  Callers
1430	 * must verify b_data != NULL to know if the add_ref
1431	 * was successful.
1432	 */
1433	rw_enter(&buf->b_lock, RW_READER);
1434	if (buf->b_data == NULL) {
1435		rw_exit(&buf->b_lock);
1436		return;
1437	}
1438	hdr = buf->b_hdr;
1439	ASSERT(hdr != NULL);
1440	hash_lock = HDR_LOCK(hdr);
1441	mutex_enter(hash_lock);
1442	rw_exit(&buf->b_lock);
1443
1444	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1445	add_reference(hdr, hash_lock, tag);
1446	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1447	arc_access(hdr, hash_lock);
1448	mutex_exit(hash_lock);
1449	ARCSTAT_BUMP(arcstat_hits);
1450	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1451	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1452	    data, metadata, hits);
1453}
1454
1455/*
1456 * Free the arc data buffer.  If it is an l2arc write in progress,
1457 * the buffer is placed on l2arc_free_on_write to be freed later.
1458 */
1459static void
1460arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1461    void *data, size_t size)
1462{
1463	if (HDR_L2_WRITING(hdr)) {
1464		l2arc_data_free_t *df;
1465		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1466		df->l2df_data = data;
1467		df->l2df_size = size;
1468		df->l2df_func = free_func;
1469		mutex_enter(&l2arc_free_on_write_mtx);
1470		list_insert_head(l2arc_free_on_write, df);
1471		mutex_exit(&l2arc_free_on_write_mtx);
1472		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1473	} else {
1474		free_func(data, size);
1475	}
1476}
1477
1478static void
1479arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1480{
1481	arc_buf_t **bufp;
1482
1483	/* free up data associated with the buf */
1484	if (buf->b_data) {
1485		arc_state_t *state = buf->b_hdr->b_state;
1486		uint64_t size = buf->b_hdr->b_size;
1487		arc_buf_contents_t type = buf->b_hdr->b_type;
1488
1489		arc_cksum_verify(buf);
1490		if (!recycle) {
1491			if (type == ARC_BUFC_METADATA) {
1492				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1493				    buf->b_data, size);
1494				arc_space_return(size, ARC_SPACE_DATA);
1495			} else {
1496				ASSERT(type == ARC_BUFC_DATA);
1497				arc_buf_data_free(buf->b_hdr,
1498				    zio_data_buf_free, buf->b_data, size);
1499				ARCSTAT_INCR(arcstat_data_size, -size);
1500				atomic_add_64(&arc_size, -size);
1501			}
1502		}
1503		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1504			uint64_t *cnt = &state->arcs_lsize[type];
1505
1506			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1507			ASSERT(state != arc_anon);
1508
1509			ASSERT3U(*cnt, >=, size);
1510			atomic_add_64(cnt, -size);
1511		}
1512		ASSERT3U(state->arcs_size, >=, size);
1513		atomic_add_64(&state->arcs_size, -size);
1514		buf->b_data = NULL;
1515		ASSERT(buf->b_hdr->b_datacnt > 0);
1516		buf->b_hdr->b_datacnt -= 1;
1517	}
1518
1519	/* only remove the buf if requested */
1520	if (!all)
1521		return;
1522
1523	/* remove the buf from the hdr list */
1524	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1525		continue;
1526	*bufp = buf->b_next;
1527
1528	ASSERT(buf->b_efunc == NULL);
1529
1530	/* clean up the buf */
1531	buf->b_hdr = NULL;
1532	kmem_cache_free(buf_cache, buf);
1533}
1534
1535static void
1536arc_hdr_destroy(arc_buf_hdr_t *hdr)
1537{
1538	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1539	ASSERT3P(hdr->b_state, ==, arc_anon);
1540	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1541	ASSERT(!(hdr->b_flags & ARC_STORED));
1542
1543	if (hdr->b_l2hdr != NULL) {
1544		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1545			/*
1546			 * To prevent arc_free() and l2arc_evict() from
1547			 * attempting to free the same buffer at the same time,
1548			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1549			 * give it priority.  l2arc_evict() can't destroy this
1550			 * header while we are waiting on l2arc_buflist_mtx.
1551			 *
1552			 * The hdr may be removed from l2ad_buflist before we
1553			 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1554			 */
1555			mutex_enter(&l2arc_buflist_mtx);
1556			if (hdr->b_l2hdr != NULL) {
1557				list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
1558				    hdr);
1559			}
1560			mutex_exit(&l2arc_buflist_mtx);
1561		} else {
1562			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1563		}
1564		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1565		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1566		if (hdr->b_state == arc_l2c_only)
1567			l2arc_hdr_stat_remove();
1568		hdr->b_l2hdr = NULL;
1569	}
1570
1571	if (!BUF_EMPTY(hdr)) {
1572		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1573		bzero(&hdr->b_dva, sizeof (dva_t));
1574		hdr->b_birth = 0;
1575		hdr->b_cksum0 = 0;
1576	}
1577	while (hdr->b_buf) {
1578		arc_buf_t *buf = hdr->b_buf;
1579
1580		if (buf->b_efunc) {
1581			mutex_enter(&arc_eviction_mtx);
1582			rw_enter(&buf->b_lock, RW_WRITER);
1583			ASSERT(buf->b_hdr != NULL);
1584			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1585			hdr->b_buf = buf->b_next;
1586			buf->b_hdr = &arc_eviction_hdr;
1587			buf->b_next = arc_eviction_list;
1588			arc_eviction_list = buf;
1589			rw_exit(&buf->b_lock);
1590			mutex_exit(&arc_eviction_mtx);
1591		} else {
1592			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1593		}
1594	}
1595	if (hdr->b_freeze_cksum != NULL) {
1596		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1597		hdr->b_freeze_cksum = NULL;
1598	}
1599
1600	ASSERT(!list_link_active(&hdr->b_arc_node));
1601	ASSERT3P(hdr->b_hash_next, ==, NULL);
1602	ASSERT3P(hdr->b_acb, ==, NULL);
1603	kmem_cache_free(hdr_cache, hdr);
1604}
1605
1606void
1607arc_buf_free(arc_buf_t *buf, void *tag)
1608{
1609	arc_buf_hdr_t *hdr = buf->b_hdr;
1610	int hashed = hdr->b_state != arc_anon;
1611
1612	ASSERT(buf->b_efunc == NULL);
1613	ASSERT(buf->b_data != NULL);
1614
1615	if (hashed) {
1616		kmutex_t *hash_lock = HDR_LOCK(hdr);
1617
1618		mutex_enter(hash_lock);
1619		(void) remove_reference(hdr, hash_lock, tag);
1620		if (hdr->b_datacnt > 1)
1621			arc_buf_destroy(buf, FALSE, TRUE);
1622		else
1623			hdr->b_flags |= ARC_BUF_AVAILABLE;
1624		mutex_exit(hash_lock);
1625	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1626		int destroy_hdr;
1627		/*
1628		 * We are in the middle of an async write.  Don't destroy
1629		 * this buffer unless the write completes before we finish
1630		 * decrementing the reference count.
1631		 */
1632		mutex_enter(&arc_eviction_mtx);
1633		(void) remove_reference(hdr, NULL, tag);
1634		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1635		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1636		mutex_exit(&arc_eviction_mtx);
1637		if (destroy_hdr)
1638			arc_hdr_destroy(hdr);
1639	} else {
1640		if (remove_reference(hdr, NULL, tag) > 0) {
1641			ASSERT(HDR_IO_ERROR(hdr));
1642			arc_buf_destroy(buf, FALSE, TRUE);
1643		} else {
1644			arc_hdr_destroy(hdr);
1645		}
1646	}
1647}
1648
1649int
1650arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1651{
1652	arc_buf_hdr_t *hdr = buf->b_hdr;
1653	kmutex_t *hash_lock = HDR_LOCK(hdr);
1654	int no_callback = (buf->b_efunc == NULL);
1655
1656	if (hdr->b_state == arc_anon) {
1657		arc_buf_free(buf, tag);
1658		return (no_callback);
1659	}
1660
1661	mutex_enter(hash_lock);
1662	ASSERT(hdr->b_state != arc_anon);
1663	ASSERT(buf->b_data != NULL);
1664
1665	(void) remove_reference(hdr, hash_lock, tag);
1666	if (hdr->b_datacnt > 1) {
1667		if (no_callback)
1668			arc_buf_destroy(buf, FALSE, TRUE);
1669	} else if (no_callback) {
1670		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1671		hdr->b_flags |= ARC_BUF_AVAILABLE;
1672	}
1673	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1674	    refcount_is_zero(&hdr->b_refcnt));
1675	mutex_exit(hash_lock);
1676	return (no_callback);
1677}
1678
1679int
1680arc_buf_size(arc_buf_t *buf)
1681{
1682	return (buf->b_hdr->b_size);
1683}
1684
1685/*
1686 * Evict buffers from list until we've removed the specified number of
1687 * bytes.  Move the removed buffers to the appropriate evict state.
1688 * If the recycle flag is set, then attempt to "recycle" a buffer:
1689 * - look for a buffer to evict that is `bytes' long.
1690 * - return the data block from this buffer rather than freeing it.
1691 * This flag is used by callers that are trying to make space for a
1692 * new buffer in a full arc cache.
1693 *
1694 * This function makes a "best effort".  It skips over any buffers
1695 * it can't get a hash_lock on, and so may not catch all candidates.
1696 * It may also return without evicting as much space as requested.
1697 */
1698static void *
1699arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1700    arc_buf_contents_t type)
1701{
1702	arc_state_t *evicted_state;
1703	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1704	int64_t bytes_remaining;
1705	arc_buf_hdr_t *ab, *ab_prev = NULL;
1706	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1707	kmutex_t *lock, *evicted_lock;
1708	kmutex_t *hash_lock;
1709	boolean_t have_lock;
1710	void *stolen = NULL;
1711	static int evict_metadata_offset, evict_data_offset;
1712	int i, idx, offset, list_count, count;
1713
1714	ASSERT(state == arc_mru || state == arc_mfu);
1715
1716	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1717
1718	if (type == ARC_BUFC_METADATA) {
1719		offset = 0;
1720		list_count = ARC_BUFC_NUMMETADATALISTS;
1721		list_start = &state->arcs_lists[0];
1722		evicted_list_start = &evicted_state->arcs_lists[0];
1723		idx = evict_metadata_offset;
1724	} else {
1725		offset = ARC_BUFC_NUMMETADATALISTS;
1726		list_start = &state->arcs_lists[offset];
1727		evicted_list_start = &evicted_state->arcs_lists[offset];
1728		list_count = ARC_BUFC_NUMDATALISTS;
1729		idx = evict_data_offset;
1730	}
1731	bytes_remaining = evicted_state->arcs_lsize[type];
1732	count = 0;
1733
1734evict_start:
1735	list = &list_start[idx];
1736	evicted_list = &evicted_list_start[idx];
1737	lock = ARCS_LOCK(state, (offset + idx));
1738	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1739
1740	mutex_enter(lock);
1741	mutex_enter(evicted_lock);
1742
1743	for (ab = list_tail(list); ab; ab = ab_prev) {
1744		ab_prev = list_prev(list, ab);
1745		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1746		/* prefetch buffers have a minimum lifespan */
1747		if (HDR_IO_IN_PROGRESS(ab) ||
1748		    (spa && ab->b_spa != spa) ||
1749		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1750		    LBOLT - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1751			skipped++;
1752			continue;
1753		}
1754		/* "lookahead" for better eviction candidate */
1755		if (recycle && ab->b_size != bytes &&
1756		    ab_prev && ab_prev->b_size == bytes)
1757			continue;
1758		hash_lock = HDR_LOCK(ab);
1759		have_lock = MUTEX_HELD(hash_lock);
1760		if (have_lock || mutex_tryenter(hash_lock)) {
1761			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1762			ASSERT(ab->b_datacnt > 0);
1763			while (ab->b_buf) {
1764				arc_buf_t *buf = ab->b_buf;
1765				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1766					missed += 1;
1767					break;
1768				}
1769				if (buf->b_data) {
1770					bytes_evicted += ab->b_size;
1771					if (recycle && ab->b_type == type &&
1772					    ab->b_size == bytes &&
1773					    !HDR_L2_WRITING(ab)) {
1774						stolen = buf->b_data;
1775						recycle = FALSE;
1776					}
1777				}
1778				if (buf->b_efunc) {
1779					mutex_enter(&arc_eviction_mtx);
1780					arc_buf_destroy(buf,
1781					    buf->b_data == stolen, FALSE);
1782					ab->b_buf = buf->b_next;
1783					buf->b_hdr = &arc_eviction_hdr;
1784					buf->b_next = arc_eviction_list;
1785					arc_eviction_list = buf;
1786					mutex_exit(&arc_eviction_mtx);
1787					rw_exit(&buf->b_lock);
1788				} else {
1789					rw_exit(&buf->b_lock);
1790					arc_buf_destroy(buf,
1791					    buf->b_data == stolen, TRUE);
1792				}
1793			}
1794
1795			if (ab->b_l2hdr) {
1796				ARCSTAT_INCR(arcstat_evict_l2_cached,
1797				    ab->b_size);
1798			} else {
1799				if (l2arc_write_eligible(ab->b_spa, ab)) {
1800					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1801					    ab->b_size);
1802				} else {
1803					ARCSTAT_INCR(
1804					    arcstat_evict_l2_ineligible,
1805					    ab->b_size);
1806				}
1807			}
1808
1809			if (ab->b_datacnt == 0) {
1810				arc_change_state(evicted_state, ab, hash_lock);
1811				ASSERT(HDR_IN_HASH_TABLE(ab));
1812				ab->b_flags |= ARC_IN_HASH_TABLE;
1813				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1814				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1815			}
1816			if (!have_lock)
1817				mutex_exit(hash_lock);
1818			if (bytes >= 0 && bytes_evicted >= bytes)
1819				break;
1820			if (bytes_remaining > 0) {
1821				mutex_exit(evicted_lock);
1822				mutex_exit(lock);
1823				idx  = ((idx + 1) & (list_count - 1));
1824				count++;
1825				goto evict_start;
1826			}
1827		} else {
1828			missed += 1;
1829		}
1830	}
1831
1832	mutex_exit(evicted_lock);
1833	mutex_exit(lock);
1834
1835	idx  = ((idx + 1) & (list_count - 1));
1836	count++;
1837
1838	if (bytes_evicted < bytes) {
1839		if (count < list_count)
1840			goto evict_start;
1841		else
1842			dprintf("only evicted %lld bytes from %x",
1843			    (longlong_t)bytes_evicted, state);
1844	}
1845	if (type == ARC_BUFC_METADATA)
1846		evict_metadata_offset = idx;
1847	else
1848		evict_data_offset = idx;
1849
1850	if (skipped)
1851		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1852
1853	if (missed)
1854		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1855
1856	/*
1857	 * We have just evicted some date into the ghost state, make
1858	 * sure we also adjust the ghost state size if necessary.
1859	 */
1860	if (arc_no_grow &&
1861	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1862		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1863		    arc_mru_ghost->arcs_size - arc_c;
1864
1865		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1866			int64_t todelete =
1867			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1868			arc_evict_ghost(arc_mru_ghost, 0, todelete);
1869		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1870			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1871			    arc_mru_ghost->arcs_size +
1872			    arc_mfu_ghost->arcs_size - arc_c);
1873			arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1874		}
1875	}
1876	if (stolen)
1877		ARCSTAT_BUMP(arcstat_stolen);
1878
1879	return (stolen);
1880}
1881
1882/*
1883 * Remove buffers from list until we've removed the specified number of
1884 * bytes.  Destroy the buffers that are removed.
1885 */
1886static void
1887arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1888{
1889	arc_buf_hdr_t *ab, *ab_prev;
1890	list_t *list, *list_start;
1891	kmutex_t *hash_lock, *lock;
1892	uint64_t bytes_deleted = 0;
1893	uint64_t bufs_skipped = 0;
1894	static int evict_offset;
1895	int list_count, idx = evict_offset;
1896	int offset, count = 0;
1897
1898	ASSERT(GHOST_STATE(state));
1899
1900	/*
1901	 * data lists come after metadata lists
1902	 */
1903	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
1904	list_count = ARC_BUFC_NUMDATALISTS;
1905	offset = ARC_BUFC_NUMMETADATALISTS;
1906
1907evict_start:
1908	list = &list_start[idx];
1909	lock = ARCS_LOCK(state, idx + offset);
1910
1911	mutex_enter(lock);
1912	for (ab = list_tail(list); ab; ab = ab_prev) {
1913		ab_prev = list_prev(list, ab);
1914		if (spa && ab->b_spa != spa)
1915			continue;
1916		hash_lock = HDR_LOCK(ab);
1917		if (mutex_tryenter(hash_lock)) {
1918			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1919			ASSERT(ab->b_buf == NULL);
1920			ARCSTAT_BUMP(arcstat_deleted);
1921			bytes_deleted += ab->b_size;
1922
1923			if (ab->b_l2hdr != NULL) {
1924				/*
1925				 * This buffer is cached on the 2nd Level ARC;
1926				 * don't destroy the header.
1927				 */
1928				arc_change_state(arc_l2c_only, ab, hash_lock);
1929				mutex_exit(hash_lock);
1930			} else {
1931				arc_change_state(arc_anon, ab, hash_lock);
1932				mutex_exit(hash_lock);
1933				arc_hdr_destroy(ab);
1934			}
1935
1936			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1937			if (bytes >= 0 && bytes_deleted >= bytes)
1938				break;
1939		} else {
1940			if (bytes < 0) {
1941				/*
1942				 * we're draining the ARC, retry
1943				 */
1944				mutex_exit(lock);
1945				mutex_enter(hash_lock);
1946				mutex_exit(hash_lock);
1947				goto evict_start;
1948			}
1949			bufs_skipped += 1;
1950		}
1951	}
1952	mutex_exit(lock);
1953	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
1954	count++;
1955
1956	if (count < list_count)
1957		goto evict_start;
1958
1959	evict_offset = idx;
1960	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
1961	    (bytes < 0 || bytes_deleted < bytes)) {
1962		list_start = &state->arcs_lists[0];
1963		list_count = ARC_BUFC_NUMMETADATALISTS;
1964		offset = count = 0;
1965		goto evict_start;
1966	}
1967
1968	if (bufs_skipped) {
1969		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1970		ASSERT(bytes >= 0);
1971	}
1972
1973	if (bytes_deleted < bytes)
1974		dprintf("only deleted %lld bytes from %p",
1975		    (longlong_t)bytes_deleted, state);
1976}
1977
1978static void
1979arc_adjust(void)
1980{
1981	int64_t adjustment, delta;
1982
1983	/*
1984	 * Adjust MRU size
1985	 */
1986
1987	adjustment = MIN((int64_t)(arc_size - arc_c),
1988	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1989	    arc_p));
1990
1991	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1992		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1993		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
1994		adjustment -= delta;
1995	}
1996
1997	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1998		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1999		(void) arc_evict(arc_mru, 0, delta, FALSE,
2000		    ARC_BUFC_METADATA);
2001	}
2002
2003	/*
2004	 * Adjust MFU size
2005	 */
2006
2007	adjustment = arc_size - arc_c;
2008
2009	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2010		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2011		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2012		adjustment -= delta;
2013	}
2014
2015	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2016		int64_t delta = MIN(adjustment,
2017		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2018		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2019		    ARC_BUFC_METADATA);
2020	}
2021
2022	/*
2023	 * Adjust ghost lists
2024	 */
2025
2026	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2027
2028	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2029		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2030		arc_evict_ghost(arc_mru_ghost, 0, delta);
2031	}
2032
2033	adjustment =
2034	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2035
2036	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2037		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2038		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2039	}
2040}
2041
2042static void
2043arc_do_user_evicts(void)
2044{
2045	static arc_buf_t *tmp_arc_eviction_list;
2046
2047	/*
2048	 * Move list over to avoid LOR
2049	 */
2050restart:
2051	mutex_enter(&arc_eviction_mtx);
2052	tmp_arc_eviction_list = arc_eviction_list;
2053	arc_eviction_list = NULL;
2054	mutex_exit(&arc_eviction_mtx);
2055
2056	while (tmp_arc_eviction_list != NULL) {
2057		arc_buf_t *buf = tmp_arc_eviction_list;
2058		tmp_arc_eviction_list = buf->b_next;
2059		rw_enter(&buf->b_lock, RW_WRITER);
2060		buf->b_hdr = NULL;
2061		rw_exit(&buf->b_lock);
2062
2063		if (buf->b_efunc != NULL)
2064			VERIFY(buf->b_efunc(buf) == 0);
2065
2066		buf->b_efunc = NULL;
2067		buf->b_private = NULL;
2068		kmem_cache_free(buf_cache, buf);
2069	}
2070
2071	if (arc_eviction_list != NULL)
2072		goto restart;
2073}
2074
2075/*
2076 * Flush all *evictable* data from the cache for the given spa.
2077 * NOTE: this will not touch "active" (i.e. referenced) data.
2078 */
2079void
2080arc_flush(spa_t *spa)
2081{
2082	uint64_t guid = 0;
2083
2084	if (spa)
2085		guid = spa_guid(spa);
2086
2087	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2088		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2089		if (spa)
2090			break;
2091	}
2092	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2093		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2094		if (spa)
2095			break;
2096	}
2097	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2098		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2099		if (spa)
2100			break;
2101	}
2102	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2103		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2104		if (spa)
2105			break;
2106	}
2107
2108	arc_evict_ghost(arc_mru_ghost, guid, -1);
2109	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2110
2111	mutex_enter(&arc_reclaim_thr_lock);
2112	arc_do_user_evicts();
2113	mutex_exit(&arc_reclaim_thr_lock);
2114	ASSERT(spa || arc_eviction_list == NULL);
2115}
2116
2117void
2118arc_shrink(void)
2119{
2120	if (arc_c > arc_c_min) {
2121		uint64_t to_free;
2122
2123#ifdef _KERNEL
2124		to_free = arc_c >> arc_shrink_shift;
2125#else
2126		to_free = arc_c >> arc_shrink_shift;
2127#endif
2128		if (arc_c > arc_c_min + to_free)
2129			atomic_add_64(&arc_c, -to_free);
2130		else
2131			arc_c = arc_c_min;
2132
2133		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2134		if (arc_c > arc_size)
2135			arc_c = MAX(arc_size, arc_c_min);
2136		if (arc_p > arc_c)
2137			arc_p = (arc_c >> 1);
2138		ASSERT(arc_c >= arc_c_min);
2139		ASSERT((int64_t)arc_p >= 0);
2140	}
2141
2142	if (arc_size > arc_c)
2143		arc_adjust();
2144}
2145
2146static int needfree = 0;
2147
2148static int
2149arc_reclaim_needed(void)
2150{
2151#if 0
2152	uint64_t extra;
2153#endif
2154
2155#ifdef _KERNEL
2156	if (needfree)
2157		return (1);
2158	if (arc_size > arc_c_max)
2159		return (1);
2160	if (arc_size <= arc_c_min)
2161		return (0);
2162
2163	/*
2164	 * Cooperate with pagedaemon when it's time for it to scan
2165	 * and reclaim some pages.
2166	 */
2167	if (vm_paging_need())
2168		return (1);
2169
2170#if 0
2171	/*
2172	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2173	 */
2174	extra = desfree;
2175
2176	/*
2177	 * check that we're out of range of the pageout scanner.  It starts to
2178	 * schedule paging if freemem is less than lotsfree and needfree.
2179	 * lotsfree is the high-water mark for pageout, and needfree is the
2180	 * number of needed free pages.  We add extra pages here to make sure
2181	 * the scanner doesn't start up while we're freeing memory.
2182	 */
2183	if (freemem < lotsfree + needfree + extra)
2184		return (1);
2185
2186	/*
2187	 * check to make sure that swapfs has enough space so that anon
2188	 * reservations can still succeed. anon_resvmem() checks that the
2189	 * availrmem is greater than swapfs_minfree, and the number of reserved
2190	 * swap pages.  We also add a bit of extra here just to prevent
2191	 * circumstances from getting really dire.
2192	 */
2193	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2194		return (1);
2195
2196#if defined(__i386)
2197	/*
2198	 * If we're on an i386 platform, it's possible that we'll exhaust the
2199	 * kernel heap space before we ever run out of available physical
2200	 * memory.  Most checks of the size of the heap_area compare against
2201	 * tune.t_minarmem, which is the minimum available real memory that we
2202	 * can have in the system.  However, this is generally fixed at 25 pages
2203	 * which is so low that it's useless.  In this comparison, we seek to
2204	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2205	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2206	 * free)
2207	 */
2208	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2209	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2210		return (1);
2211#endif
2212#else
2213	if (kmem_used() > (kmem_size() * 3) / 4)
2214		return (1);
2215#endif
2216
2217#else
2218	if (spa_get_random(100) == 0)
2219		return (1);
2220#endif
2221	return (0);
2222}
2223
2224extern kmem_cache_t	*zio_buf_cache[];
2225extern kmem_cache_t	*zio_data_buf_cache[];
2226
2227static void
2228arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2229{
2230	size_t			i;
2231	kmem_cache_t		*prev_cache = NULL;
2232	kmem_cache_t		*prev_data_cache = NULL;
2233
2234#ifdef _KERNEL
2235	if (arc_meta_used >= arc_meta_limit) {
2236		/*
2237		 * We are exceeding our meta-data cache limit.
2238		 * Purge some DNLC entries to release holds on meta-data.
2239		 */
2240		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2241	}
2242#if defined(__i386)
2243	/*
2244	 * Reclaim unused memory from all kmem caches.
2245	 */
2246	kmem_reap();
2247#endif
2248#endif
2249
2250	/*
2251	 * An aggressive reclamation will shrink the cache size as well as
2252	 * reap free buffers from the arc kmem caches.
2253	 */
2254	if (strat == ARC_RECLAIM_AGGR)
2255		arc_shrink();
2256
2257	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2258		if (zio_buf_cache[i] != prev_cache) {
2259			prev_cache = zio_buf_cache[i];
2260			kmem_cache_reap_now(zio_buf_cache[i]);
2261		}
2262		if (zio_data_buf_cache[i] != prev_data_cache) {
2263			prev_data_cache = zio_data_buf_cache[i];
2264			kmem_cache_reap_now(zio_data_buf_cache[i]);
2265		}
2266	}
2267	kmem_cache_reap_now(buf_cache);
2268	kmem_cache_reap_now(hdr_cache);
2269}
2270
2271static void
2272arc_reclaim_thread(void *dummy __unused)
2273{
2274	clock_t			growtime = 0;
2275	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2276	callb_cpr_t		cpr;
2277
2278	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2279
2280	mutex_enter(&arc_reclaim_thr_lock);
2281	while (arc_thread_exit == 0) {
2282		if (arc_reclaim_needed()) {
2283
2284			if (arc_no_grow) {
2285				if (last_reclaim == ARC_RECLAIM_CONS) {
2286					last_reclaim = ARC_RECLAIM_AGGR;
2287				} else {
2288					last_reclaim = ARC_RECLAIM_CONS;
2289				}
2290			} else {
2291				arc_no_grow = TRUE;
2292				last_reclaim = ARC_RECLAIM_AGGR;
2293				membar_producer();
2294			}
2295
2296			/* reset the growth delay for every reclaim */
2297			growtime = LBOLT + (arc_grow_retry * hz);
2298
2299			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2300				/*
2301				 * If needfree is TRUE our vm_lowmem hook
2302				 * was called and in that case we must free some
2303				 * memory, so switch to aggressive mode.
2304				 */
2305				arc_no_grow = TRUE;
2306				last_reclaim = ARC_RECLAIM_AGGR;
2307			}
2308			arc_kmem_reap_now(last_reclaim);
2309			arc_warm = B_TRUE;
2310
2311		} else if (arc_no_grow && LBOLT >= growtime) {
2312			arc_no_grow = FALSE;
2313		}
2314
2315		arc_adjust();
2316
2317		if (arc_eviction_list != NULL)
2318			arc_do_user_evicts();
2319
2320#ifdef _KERNEL
2321		if (needfree) {
2322			needfree = 0;
2323			wakeup(&needfree);
2324		}
2325#endif
2326
2327		/* block until needed, or one second, whichever is shorter */
2328		CALLB_CPR_SAFE_BEGIN(&cpr);
2329		(void) cv_timedwait(&arc_reclaim_thr_cv,
2330		    &arc_reclaim_thr_lock, hz);
2331		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2332	}
2333
2334	arc_thread_exit = 0;
2335	cv_broadcast(&arc_reclaim_thr_cv);
2336	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2337	thread_exit();
2338}
2339
2340/*
2341 * Adapt arc info given the number of bytes we are trying to add and
2342 * the state that we are comming from.  This function is only called
2343 * when we are adding new content to the cache.
2344 */
2345static void
2346arc_adapt(int bytes, arc_state_t *state)
2347{
2348	int mult;
2349	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2350
2351	if (state == arc_l2c_only)
2352		return;
2353
2354	ASSERT(bytes > 0);
2355	/*
2356	 * Adapt the target size of the MRU list:
2357	 *	- if we just hit in the MRU ghost list, then increase
2358	 *	  the target size of the MRU list.
2359	 *	- if we just hit in the MFU ghost list, then increase
2360	 *	  the target size of the MFU list by decreasing the
2361	 *	  target size of the MRU list.
2362	 */
2363	if (state == arc_mru_ghost) {
2364		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2365		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2366		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2367
2368		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2369	} else if (state == arc_mfu_ghost) {
2370		uint64_t delta;
2371
2372		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2373		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2374		mult = MIN(mult, 10);
2375
2376		delta = MIN(bytes * mult, arc_p);
2377		arc_p = MAX(arc_p_min, arc_p - delta);
2378	}
2379	ASSERT((int64_t)arc_p >= 0);
2380
2381	if (arc_reclaim_needed()) {
2382		cv_signal(&arc_reclaim_thr_cv);
2383		return;
2384	}
2385
2386	if (arc_no_grow)
2387		return;
2388
2389	if (arc_c >= arc_c_max)
2390		return;
2391
2392	/*
2393	 * If we're within (2 * maxblocksize) bytes of the target
2394	 * cache size, increment the target cache size
2395	 */
2396	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2397		atomic_add_64(&arc_c, (int64_t)bytes);
2398		if (arc_c > arc_c_max)
2399			arc_c = arc_c_max;
2400		else if (state == arc_anon)
2401			atomic_add_64(&arc_p, (int64_t)bytes);
2402		if (arc_p > arc_c)
2403			arc_p = arc_c;
2404	}
2405	ASSERT((int64_t)arc_p >= 0);
2406}
2407
2408/*
2409 * Check if the cache has reached its limits and eviction is required
2410 * prior to insert.
2411 */
2412static int
2413arc_evict_needed(arc_buf_contents_t type)
2414{
2415	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2416		return (1);
2417
2418#if 0
2419#ifdef _KERNEL
2420	/*
2421	 * If zio data pages are being allocated out of a separate heap segment,
2422	 * then enforce that the size of available vmem for this area remains
2423	 * above about 1/32nd free.
2424	 */
2425	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2426	    vmem_size(zio_arena, VMEM_FREE) <
2427	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2428		return (1);
2429#endif
2430#endif
2431
2432	if (arc_reclaim_needed())
2433		return (1);
2434
2435	return (arc_size > arc_c);
2436}
2437
2438/*
2439 * The buffer, supplied as the first argument, needs a data block.
2440 * So, if we are at cache max, determine which cache should be victimized.
2441 * We have the following cases:
2442 *
2443 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2444 * In this situation if we're out of space, but the resident size of the MFU is
2445 * under the limit, victimize the MFU cache to satisfy this insertion request.
2446 *
2447 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2448 * Here, we've used up all of the available space for the MRU, so we need to
2449 * evict from our own cache instead.  Evict from the set of resident MRU
2450 * entries.
2451 *
2452 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2453 * c minus p represents the MFU space in the cache, since p is the size of the
2454 * cache that is dedicated to the MRU.  In this situation there's still space on
2455 * the MFU side, so the MRU side needs to be victimized.
2456 *
2457 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2458 * MFU's resident set is consuming more space than it has been allotted.  In
2459 * this situation, we must victimize our own cache, the MFU, for this insertion.
2460 */
2461static void
2462arc_get_data_buf(arc_buf_t *buf)
2463{
2464	arc_state_t		*state = buf->b_hdr->b_state;
2465	uint64_t		size = buf->b_hdr->b_size;
2466	arc_buf_contents_t	type = buf->b_hdr->b_type;
2467
2468	arc_adapt(size, state);
2469
2470	/*
2471	 * We have not yet reached cache maximum size,
2472	 * just allocate a new buffer.
2473	 */
2474	if (!arc_evict_needed(type)) {
2475		if (type == ARC_BUFC_METADATA) {
2476			buf->b_data = zio_buf_alloc(size);
2477			arc_space_consume(size, ARC_SPACE_DATA);
2478		} else {
2479			ASSERT(type == ARC_BUFC_DATA);
2480			buf->b_data = zio_data_buf_alloc(size);
2481			ARCSTAT_INCR(arcstat_data_size, size);
2482			atomic_add_64(&arc_size, size);
2483		}
2484		goto out;
2485	}
2486
2487	/*
2488	 * If we are prefetching from the mfu ghost list, this buffer
2489	 * will end up on the mru list; so steal space from there.
2490	 */
2491	if (state == arc_mfu_ghost)
2492		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2493	else if (state == arc_mru_ghost)
2494		state = arc_mru;
2495
2496	if (state == arc_mru || state == arc_anon) {
2497		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2498		state = (arc_mfu->arcs_lsize[type] >= size &&
2499		    arc_p > mru_used) ? arc_mfu : arc_mru;
2500	} else {
2501		/* MFU cases */
2502		uint64_t mfu_space = arc_c - arc_p;
2503		state =  (arc_mru->arcs_lsize[type] >= size &&
2504		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2505	}
2506	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2507		if (type == ARC_BUFC_METADATA) {
2508			buf->b_data = zio_buf_alloc(size);
2509			arc_space_consume(size, ARC_SPACE_DATA);
2510		} else {
2511			ASSERT(type == ARC_BUFC_DATA);
2512			buf->b_data = zio_data_buf_alloc(size);
2513			ARCSTAT_INCR(arcstat_data_size, size);
2514			atomic_add_64(&arc_size, size);
2515		}
2516		ARCSTAT_BUMP(arcstat_recycle_miss);
2517	}
2518	ASSERT(buf->b_data != NULL);
2519out:
2520	/*
2521	 * Update the state size.  Note that ghost states have a
2522	 * "ghost size" and so don't need to be updated.
2523	 */
2524	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2525		arc_buf_hdr_t *hdr = buf->b_hdr;
2526
2527		atomic_add_64(&hdr->b_state->arcs_size, size);
2528		if (list_link_active(&hdr->b_arc_node)) {
2529			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2530			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2531		}
2532		/*
2533		 * If we are growing the cache, and we are adding anonymous
2534		 * data, and we have outgrown arc_p, update arc_p
2535		 */
2536		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2537		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2538			arc_p = MIN(arc_c, arc_p + size);
2539	}
2540	ARCSTAT_BUMP(arcstat_allocated);
2541}
2542
2543/*
2544 * This routine is called whenever a buffer is accessed.
2545 * NOTE: the hash lock is dropped in this function.
2546 */
2547static void
2548arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2549{
2550	ASSERT(MUTEX_HELD(hash_lock));
2551
2552	if (buf->b_state == arc_anon) {
2553		/*
2554		 * This buffer is not in the cache, and does not
2555		 * appear in our "ghost" list.  Add the new buffer
2556		 * to the MRU state.
2557		 */
2558
2559		ASSERT(buf->b_arc_access == 0);
2560		buf->b_arc_access = LBOLT;
2561		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2562		arc_change_state(arc_mru, buf, hash_lock);
2563
2564	} else if (buf->b_state == arc_mru) {
2565		/*
2566		 * If this buffer is here because of a prefetch, then either:
2567		 * - clear the flag if this is a "referencing" read
2568		 *   (any subsequent access will bump this into the MFU state).
2569		 * or
2570		 * - move the buffer to the head of the list if this is
2571		 *   another prefetch (to make it less likely to be evicted).
2572		 */
2573		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2574			if (refcount_count(&buf->b_refcnt) == 0) {
2575				ASSERT(list_link_active(&buf->b_arc_node));
2576			} else {
2577				buf->b_flags &= ~ARC_PREFETCH;
2578				ARCSTAT_BUMP(arcstat_mru_hits);
2579			}
2580			buf->b_arc_access = LBOLT;
2581			return;
2582		}
2583
2584		/*
2585		 * This buffer has been "accessed" only once so far,
2586		 * but it is still in the cache. Move it to the MFU
2587		 * state.
2588		 */
2589		if (LBOLT > buf->b_arc_access + ARC_MINTIME) {
2590			/*
2591			 * More than 125ms have passed since we
2592			 * instantiated this buffer.  Move it to the
2593			 * most frequently used state.
2594			 */
2595			buf->b_arc_access = LBOLT;
2596			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2597			arc_change_state(arc_mfu, buf, hash_lock);
2598		}
2599		ARCSTAT_BUMP(arcstat_mru_hits);
2600	} else if (buf->b_state == arc_mru_ghost) {
2601		arc_state_t	*new_state;
2602		/*
2603		 * This buffer has been "accessed" recently, but
2604		 * was evicted from the cache.  Move it to the
2605		 * MFU state.
2606		 */
2607
2608		if (buf->b_flags & ARC_PREFETCH) {
2609			new_state = arc_mru;
2610			if (refcount_count(&buf->b_refcnt) > 0)
2611				buf->b_flags &= ~ARC_PREFETCH;
2612			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2613		} else {
2614			new_state = arc_mfu;
2615			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2616		}
2617
2618		buf->b_arc_access = LBOLT;
2619		arc_change_state(new_state, buf, hash_lock);
2620
2621		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2622	} else if (buf->b_state == arc_mfu) {
2623		/*
2624		 * This buffer has been accessed more than once and is
2625		 * still in the cache.  Keep it in the MFU state.
2626		 *
2627		 * NOTE: an add_reference() that occurred when we did
2628		 * the arc_read() will have kicked this off the list.
2629		 * If it was a prefetch, we will explicitly move it to
2630		 * the head of the list now.
2631		 */
2632		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2633			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2634			ASSERT(list_link_active(&buf->b_arc_node));
2635		}
2636		ARCSTAT_BUMP(arcstat_mfu_hits);
2637		buf->b_arc_access = LBOLT;
2638	} else if (buf->b_state == arc_mfu_ghost) {
2639		arc_state_t	*new_state = arc_mfu;
2640		/*
2641		 * This buffer has been accessed more than once but has
2642		 * been evicted from the cache.  Move it back to the
2643		 * MFU state.
2644		 */
2645
2646		if (buf->b_flags & ARC_PREFETCH) {
2647			/*
2648			 * This is a prefetch access...
2649			 * move this block back to the MRU state.
2650			 */
2651			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2652			new_state = arc_mru;
2653		}
2654
2655		buf->b_arc_access = LBOLT;
2656		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2657		arc_change_state(new_state, buf, hash_lock);
2658
2659		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2660	} else if (buf->b_state == arc_l2c_only) {
2661		/*
2662		 * This buffer is on the 2nd Level ARC.
2663		 */
2664
2665		buf->b_arc_access = LBOLT;
2666		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2667		arc_change_state(arc_mfu, buf, hash_lock);
2668	} else {
2669		ASSERT(!"invalid arc state");
2670	}
2671}
2672
2673/* a generic arc_done_func_t which you can use */
2674/* ARGSUSED */
2675void
2676arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2677{
2678	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2679	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2680}
2681
2682/* a generic arc_done_func_t */
2683void
2684arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2685{
2686	arc_buf_t **bufp = arg;
2687	if (zio && zio->io_error) {
2688		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2689		*bufp = NULL;
2690	} else {
2691		*bufp = buf;
2692	}
2693}
2694
2695static void
2696arc_read_done(zio_t *zio)
2697{
2698	arc_buf_hdr_t	*hdr, *found;
2699	arc_buf_t	*buf;
2700	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2701	kmutex_t	*hash_lock;
2702	arc_callback_t	*callback_list, *acb;
2703	int		freeable = FALSE;
2704
2705	buf = zio->io_private;
2706	hdr = buf->b_hdr;
2707
2708	/*
2709	 * The hdr was inserted into hash-table and removed from lists
2710	 * prior to starting I/O.  We should find this header, since
2711	 * it's in the hash table, and it should be legit since it's
2712	 * not possible to evict it during the I/O.  The only possible
2713	 * reason for it not to be found is if we were freed during the
2714	 * read.
2715	 */
2716	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2717	    &hash_lock);
2718
2719	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2720	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2721	    (found == hdr && HDR_L2_READING(hdr)));
2722
2723	hdr->b_flags &= ~ARC_L2_EVICTED;
2724	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2725		hdr->b_flags &= ~ARC_L2CACHE;
2726
2727	/* byteswap if necessary */
2728	callback_list = hdr->b_acb;
2729	ASSERT(callback_list != NULL);
2730	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2731		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2732		    byteswap_uint64_array :
2733		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2734		func(buf->b_data, hdr->b_size);
2735	}
2736
2737	arc_cksum_compute(buf, B_FALSE);
2738
2739	/* create copies of the data buffer for the callers */
2740	abuf = buf;
2741	for (acb = callback_list; acb; acb = acb->acb_next) {
2742		if (acb->acb_done) {
2743			if (abuf == NULL)
2744				abuf = arc_buf_clone(buf);
2745			acb->acb_buf = abuf;
2746			abuf = NULL;
2747		}
2748	}
2749	hdr->b_acb = NULL;
2750	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2751	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2752	if (abuf == buf)
2753		hdr->b_flags |= ARC_BUF_AVAILABLE;
2754
2755	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2756
2757	if (zio->io_error != 0) {
2758		hdr->b_flags |= ARC_IO_ERROR;
2759		if (hdr->b_state != arc_anon)
2760			arc_change_state(arc_anon, hdr, hash_lock);
2761		if (HDR_IN_HASH_TABLE(hdr))
2762			buf_hash_remove(hdr);
2763		freeable = refcount_is_zero(&hdr->b_refcnt);
2764	}
2765
2766	/*
2767	 * Broadcast before we drop the hash_lock to avoid the possibility
2768	 * that the hdr (and hence the cv) might be freed before we get to
2769	 * the cv_broadcast().
2770	 */
2771	cv_broadcast(&hdr->b_cv);
2772
2773	if (hash_lock) {
2774		/*
2775		 * Only call arc_access on anonymous buffers.  This is because
2776		 * if we've issued an I/O for an evicted buffer, we've already
2777		 * called arc_access (to prevent any simultaneous readers from
2778		 * getting confused).
2779		 */
2780		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2781			arc_access(hdr, hash_lock);
2782		mutex_exit(hash_lock);
2783	} else {
2784		/*
2785		 * This block was freed while we waited for the read to
2786		 * complete.  It has been removed from the hash table and
2787		 * moved to the anonymous state (so that it won't show up
2788		 * in the cache).
2789		 */
2790		ASSERT3P(hdr->b_state, ==, arc_anon);
2791		freeable = refcount_is_zero(&hdr->b_refcnt);
2792	}
2793
2794	/* execute each callback and free its structure */
2795	while ((acb = callback_list) != NULL) {
2796		if (acb->acb_done)
2797			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2798
2799		if (acb->acb_zio_dummy != NULL) {
2800			acb->acb_zio_dummy->io_error = zio->io_error;
2801			zio_nowait(acb->acb_zio_dummy);
2802		}
2803
2804		callback_list = acb->acb_next;
2805		kmem_free(acb, sizeof (arc_callback_t));
2806	}
2807
2808	if (freeable)
2809		arc_hdr_destroy(hdr);
2810}
2811
2812/*
2813 * "Read" the block block at the specified DVA (in bp) via the
2814 * cache.  If the block is found in the cache, invoke the provided
2815 * callback immediately and return.  Note that the `zio' parameter
2816 * in the callback will be NULL in this case, since no IO was
2817 * required.  If the block is not in the cache pass the read request
2818 * on to the spa with a substitute callback function, so that the
2819 * requested block will be added to the cache.
2820 *
2821 * If a read request arrives for a block that has a read in-progress,
2822 * either wait for the in-progress read to complete (and return the
2823 * results); or, if this is a read with a "done" func, add a record
2824 * to the read to invoke the "done" func when the read completes,
2825 * and return; or just return.
2826 *
2827 * arc_read_done() will invoke all the requested "done" functions
2828 * for readers of this block.
2829 *
2830 * Normal callers should use arc_read and pass the arc buffer and offset
2831 * for the bp.  But if you know you don't need locking, you can use
2832 * arc_read_bp.
2833 */
2834int
2835arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2836    arc_done_func_t *done, void *private, int priority, int zio_flags,
2837    uint32_t *arc_flags, const zbookmark_t *zb)
2838{
2839	int err;
2840
2841	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2842	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2843	rw_enter(&pbuf->b_lock, RW_READER);
2844
2845	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2846	    zio_flags, arc_flags, zb);
2847	rw_exit(&pbuf->b_lock);
2848	return (err);
2849}
2850
2851int
2852arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2853    arc_done_func_t *done, void *private, int priority, int zio_flags,
2854    uint32_t *arc_flags, const zbookmark_t *zb)
2855{
2856	arc_buf_hdr_t *hdr;
2857	arc_buf_t *buf;
2858	kmutex_t *hash_lock;
2859	zio_t *rzio;
2860	uint64_t guid = spa_guid(spa);
2861
2862top:
2863	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2864	if (hdr && hdr->b_datacnt > 0) {
2865
2866		*arc_flags |= ARC_CACHED;
2867
2868		if (HDR_IO_IN_PROGRESS(hdr)) {
2869
2870			if (*arc_flags & ARC_WAIT) {
2871				cv_wait(&hdr->b_cv, hash_lock);
2872				mutex_exit(hash_lock);
2873				goto top;
2874			}
2875			ASSERT(*arc_flags & ARC_NOWAIT);
2876
2877			if (done) {
2878				arc_callback_t	*acb = NULL;
2879
2880				acb = kmem_zalloc(sizeof (arc_callback_t),
2881				    KM_SLEEP);
2882				acb->acb_done = done;
2883				acb->acb_private = private;
2884				if (pio != NULL)
2885					acb->acb_zio_dummy = zio_null(pio,
2886					    spa, NULL, NULL, NULL, zio_flags);
2887
2888				ASSERT(acb->acb_done != NULL);
2889				acb->acb_next = hdr->b_acb;
2890				hdr->b_acb = acb;
2891				add_reference(hdr, hash_lock, private);
2892				mutex_exit(hash_lock);
2893				return (0);
2894			}
2895			mutex_exit(hash_lock);
2896			return (0);
2897		}
2898
2899		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2900
2901		if (done) {
2902			add_reference(hdr, hash_lock, private);
2903			/*
2904			 * If this block is already in use, create a new
2905			 * copy of the data so that we will be guaranteed
2906			 * that arc_release() will always succeed.
2907			 */
2908			buf = hdr->b_buf;
2909			ASSERT(buf);
2910			ASSERT(buf->b_data);
2911			if (HDR_BUF_AVAILABLE(hdr)) {
2912				ASSERT(buf->b_efunc == NULL);
2913				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2914			} else {
2915				buf = arc_buf_clone(buf);
2916			}
2917		} else if (*arc_flags & ARC_PREFETCH &&
2918		    refcount_count(&hdr->b_refcnt) == 0) {
2919			hdr->b_flags |= ARC_PREFETCH;
2920		}
2921		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2922		arc_access(hdr, hash_lock);
2923		if (*arc_flags & ARC_L2CACHE)
2924			hdr->b_flags |= ARC_L2CACHE;
2925		mutex_exit(hash_lock);
2926		ARCSTAT_BUMP(arcstat_hits);
2927		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2928		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2929		    data, metadata, hits);
2930
2931		if (done)
2932			done(NULL, buf, private);
2933	} else {
2934		uint64_t size = BP_GET_LSIZE(bp);
2935		arc_callback_t	*acb;
2936		vdev_t *vd = NULL;
2937		uint64_t addr;
2938		boolean_t devw = B_FALSE;
2939
2940		if (hdr == NULL) {
2941			/* this block is not in the cache */
2942			arc_buf_hdr_t	*exists;
2943			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2944			buf = arc_buf_alloc(spa, size, private, type);
2945			hdr = buf->b_hdr;
2946			hdr->b_dva = *BP_IDENTITY(bp);
2947			hdr->b_birth = bp->blk_birth;
2948			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2949			exists = buf_hash_insert(hdr, &hash_lock);
2950			if (exists) {
2951				/* somebody beat us to the hash insert */
2952				mutex_exit(hash_lock);
2953				bzero(&hdr->b_dva, sizeof (dva_t));
2954				hdr->b_birth = 0;
2955				hdr->b_cksum0 = 0;
2956				(void) arc_buf_remove_ref(buf, private);
2957				goto top; /* restart the IO request */
2958			}
2959			/* if this is a prefetch, we don't have a reference */
2960			if (*arc_flags & ARC_PREFETCH) {
2961				(void) remove_reference(hdr, hash_lock,
2962				    private);
2963				hdr->b_flags |= ARC_PREFETCH;
2964			}
2965			if (*arc_flags & ARC_L2CACHE)
2966				hdr->b_flags |= ARC_L2CACHE;
2967			if (BP_GET_LEVEL(bp) > 0)
2968				hdr->b_flags |= ARC_INDIRECT;
2969		} else {
2970			/* this block is in the ghost cache */
2971			ASSERT(GHOST_STATE(hdr->b_state));
2972			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2973			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2974			ASSERT(hdr->b_buf == NULL);
2975
2976			/* if this is a prefetch, we don't have a reference */
2977			if (*arc_flags & ARC_PREFETCH)
2978				hdr->b_flags |= ARC_PREFETCH;
2979			else
2980				add_reference(hdr, hash_lock, private);
2981			if (*arc_flags & ARC_L2CACHE)
2982				hdr->b_flags |= ARC_L2CACHE;
2983			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2984			buf->b_hdr = hdr;
2985			buf->b_data = NULL;
2986			buf->b_efunc = NULL;
2987			buf->b_private = NULL;
2988			buf->b_next = NULL;
2989			hdr->b_buf = buf;
2990			arc_get_data_buf(buf);
2991			ASSERT(hdr->b_datacnt == 0);
2992			hdr->b_datacnt = 1;
2993
2994		}
2995
2996		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2997		acb->acb_done = done;
2998		acb->acb_private = private;
2999
3000		ASSERT(hdr->b_acb == NULL);
3001		hdr->b_acb = acb;
3002		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3003
3004		/*
3005		 * If the buffer has been evicted, migrate it to a present state
3006		 * before issuing the I/O.  Once we drop the hash-table lock,
3007		 * the header will be marked as I/O in progress and have an
3008		 * attached buffer.  At this point, anybody who finds this
3009		 * buffer ought to notice that it's legit but has a pending I/O.
3010		 */
3011
3012		if (GHOST_STATE(hdr->b_state))
3013			arc_access(hdr, hash_lock);
3014
3015		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3016		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3017			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3018			addr = hdr->b_l2hdr->b_daddr;
3019			/*
3020			 * Lock out device removal.
3021			 */
3022			if (vdev_is_dead(vd) ||
3023			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3024				vd = NULL;
3025		}
3026
3027		mutex_exit(hash_lock);
3028
3029		ASSERT3U(hdr->b_size, ==, size);
3030		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
3031		    zbookmark_t *, zb);
3032		ARCSTAT_BUMP(arcstat_misses);
3033		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3034		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3035		    data, metadata, misses);
3036
3037		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3038			/*
3039			 * Read from the L2ARC if the following are true:
3040			 * 1. The L2ARC vdev was previously cached.
3041			 * 2. This buffer still has L2ARC metadata.
3042			 * 3. This buffer isn't currently writing to the L2ARC.
3043			 * 4. The L2ARC entry wasn't evicted, which may
3044			 *    also have invalidated the vdev.
3045			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3046			 */
3047			if (hdr->b_l2hdr != NULL &&
3048			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3049			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3050				l2arc_read_callback_t *cb;
3051
3052				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3053				ARCSTAT_BUMP(arcstat_l2_hits);
3054
3055				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3056				    KM_SLEEP);
3057				cb->l2rcb_buf = buf;
3058				cb->l2rcb_spa = spa;
3059				cb->l2rcb_bp = *bp;
3060				cb->l2rcb_zb = *zb;
3061				cb->l2rcb_flags = zio_flags;
3062
3063				/*
3064				 * l2arc read.  The SCL_L2ARC lock will be
3065				 * released by l2arc_read_done().
3066				 */
3067				rzio = zio_read_phys(pio, vd, addr, size,
3068				    buf->b_data, ZIO_CHECKSUM_OFF,
3069				    l2arc_read_done, cb, priority, zio_flags |
3070				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3071				    ZIO_FLAG_DONT_PROPAGATE |
3072				    ZIO_FLAG_DONT_RETRY, B_FALSE);
3073				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3074				    zio_t *, rzio);
3075				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3076
3077				if (*arc_flags & ARC_NOWAIT) {
3078					zio_nowait(rzio);
3079					return (0);
3080				}
3081
3082				ASSERT(*arc_flags & ARC_WAIT);
3083				if (zio_wait(rzio) == 0)
3084					return (0);
3085
3086				/* l2arc read error; goto zio_read() */
3087			} else {
3088				DTRACE_PROBE1(l2arc__miss,
3089				    arc_buf_hdr_t *, hdr);
3090				ARCSTAT_BUMP(arcstat_l2_misses);
3091				if (HDR_L2_WRITING(hdr))
3092					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3093				spa_config_exit(spa, SCL_L2ARC, vd);
3094			}
3095		} else {
3096			if (vd != NULL)
3097				spa_config_exit(spa, SCL_L2ARC, vd);
3098			if (l2arc_ndev != 0) {
3099				DTRACE_PROBE1(l2arc__miss,
3100				    arc_buf_hdr_t *, hdr);
3101				ARCSTAT_BUMP(arcstat_l2_misses);
3102			}
3103		}
3104
3105		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3106		    arc_read_done, buf, priority, zio_flags, zb);
3107
3108		if (*arc_flags & ARC_WAIT)
3109			return (zio_wait(rzio));
3110
3111		ASSERT(*arc_flags & ARC_NOWAIT);
3112		zio_nowait(rzio);
3113	}
3114	return (0);
3115}
3116
3117/*
3118 * arc_read() variant to support pool traversal.  If the block is already
3119 * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
3120 * The idea is that we don't want pool traversal filling up memory, but
3121 * if the ARC already has the data anyway, we shouldn't pay for the I/O.
3122 */
3123int
3124arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
3125{
3126	arc_buf_hdr_t *hdr;
3127	kmutex_t *hash_mtx;
3128	uint64_t guid = spa_guid(spa);
3129	int rc = 0;
3130
3131	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
3132
3133	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
3134		arc_buf_t *buf = hdr->b_buf;
3135
3136		ASSERT(buf);
3137		while (buf->b_data == NULL) {
3138			buf = buf->b_next;
3139			ASSERT(buf);
3140		}
3141		bcopy(buf->b_data, data, hdr->b_size);
3142	} else {
3143		rc = ENOENT;
3144	}
3145
3146	if (hash_mtx)
3147		mutex_exit(hash_mtx);
3148
3149	return (rc);
3150}
3151
3152void
3153arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3154{
3155	ASSERT(buf->b_hdr != NULL);
3156	ASSERT(buf->b_hdr->b_state != arc_anon);
3157	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3158	buf->b_efunc = func;
3159	buf->b_private = private;
3160}
3161
3162/*
3163 * This is used by the DMU to let the ARC know that a buffer is
3164 * being evicted, so the ARC should clean up.  If this arc buf
3165 * is not yet in the evicted state, it will be put there.
3166 */
3167int
3168arc_buf_evict(arc_buf_t *buf)
3169{
3170	arc_buf_hdr_t *hdr;
3171	kmutex_t *hash_lock;
3172	arc_buf_t **bufp;
3173	list_t *list, *evicted_list;
3174	kmutex_t *lock, *evicted_lock;
3175
3176	rw_enter(&buf->b_lock, RW_WRITER);
3177	hdr = buf->b_hdr;
3178	if (hdr == NULL) {
3179		/*
3180		 * We are in arc_do_user_evicts().
3181		 */
3182		ASSERT(buf->b_data == NULL);
3183		rw_exit(&buf->b_lock);
3184		return (0);
3185	} else if (buf->b_data == NULL) {
3186		arc_buf_t copy = *buf; /* structure assignment */
3187		/*
3188		 * We are on the eviction list; process this buffer now
3189		 * but let arc_do_user_evicts() do the reaping.
3190		 */
3191		buf->b_efunc = NULL;
3192		rw_exit(&buf->b_lock);
3193		VERIFY(copy.b_efunc(&copy) == 0);
3194		return (1);
3195	}
3196	hash_lock = HDR_LOCK(hdr);
3197	mutex_enter(hash_lock);
3198
3199	ASSERT(buf->b_hdr == hdr);
3200	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3201	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3202
3203	/*
3204	 * Pull this buffer off of the hdr
3205	 */
3206	bufp = &hdr->b_buf;
3207	while (*bufp != buf)
3208		bufp = &(*bufp)->b_next;
3209	*bufp = buf->b_next;
3210
3211	ASSERT(buf->b_data != NULL);
3212	arc_buf_destroy(buf, FALSE, FALSE);
3213
3214	if (hdr->b_datacnt == 0) {
3215		arc_state_t *old_state = hdr->b_state;
3216		arc_state_t *evicted_state;
3217
3218		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3219
3220		evicted_state =
3221		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3222
3223		get_buf_info(hdr, old_state, &list, &lock);
3224		get_buf_info(hdr, evicted_state, &evicted_list, &evicted_lock);
3225		mutex_enter(lock);
3226		mutex_enter(evicted_lock);
3227
3228		arc_change_state(evicted_state, hdr, hash_lock);
3229		ASSERT(HDR_IN_HASH_TABLE(hdr));
3230		hdr->b_flags |= ARC_IN_HASH_TABLE;
3231		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3232
3233		mutex_exit(evicted_lock);
3234		mutex_exit(lock);
3235	}
3236	mutex_exit(hash_lock);
3237	rw_exit(&buf->b_lock);
3238
3239	VERIFY(buf->b_efunc(buf) == 0);
3240	buf->b_efunc = NULL;
3241	buf->b_private = NULL;
3242	buf->b_hdr = NULL;
3243	kmem_cache_free(buf_cache, buf);
3244	return (1);
3245}
3246
3247/*
3248 * Release this buffer from the cache.  This must be done
3249 * after a read and prior to modifying the buffer contents.
3250 * If the buffer has more than one reference, we must make
3251 * a new hdr for the buffer.
3252 */
3253void
3254arc_release(arc_buf_t *buf, void *tag)
3255{
3256	arc_buf_hdr_t *hdr;
3257	kmutex_t *hash_lock;
3258	l2arc_buf_hdr_t *l2hdr;
3259	uint64_t buf_size;
3260	boolean_t released = B_FALSE;
3261
3262	rw_enter(&buf->b_lock, RW_WRITER);
3263	hdr = buf->b_hdr;
3264
3265	/* this buffer is not on any list */
3266	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3267	ASSERT(!(hdr->b_flags & ARC_STORED));
3268
3269	if (hdr->b_state == arc_anon) {
3270		/* this buffer is already released */
3271		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
3272		ASSERT(BUF_EMPTY(hdr));
3273		ASSERT(buf->b_efunc == NULL);
3274		arc_buf_thaw(buf);
3275		rw_exit(&buf->b_lock);
3276		released = B_TRUE;
3277	} else {
3278		hash_lock = HDR_LOCK(hdr);
3279		mutex_enter(hash_lock);
3280	}
3281
3282	l2hdr = hdr->b_l2hdr;
3283	if (l2hdr) {
3284		mutex_enter(&l2arc_buflist_mtx);
3285		hdr->b_l2hdr = NULL;
3286		buf_size = hdr->b_size;
3287	}
3288
3289	if (released)
3290		goto out;
3291
3292	/*
3293	 * Do we have more than one buf?
3294	 */
3295	if (hdr->b_datacnt > 1) {
3296		arc_buf_hdr_t *nhdr;
3297		arc_buf_t **bufp;
3298		uint64_t blksz = hdr->b_size;
3299		uint64_t spa = hdr->b_spa;
3300		arc_buf_contents_t type = hdr->b_type;
3301		uint32_t flags = hdr->b_flags;
3302
3303		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3304		/*
3305		 * Pull the data off of this buf and attach it to
3306		 * a new anonymous buf.
3307		 */
3308		(void) remove_reference(hdr, hash_lock, tag);
3309		bufp = &hdr->b_buf;
3310		while (*bufp != buf)
3311			bufp = &(*bufp)->b_next;
3312		*bufp = (*bufp)->b_next;
3313		buf->b_next = NULL;
3314
3315		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3316		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3317		if (refcount_is_zero(&hdr->b_refcnt)) {
3318			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3319			ASSERT3U(*size, >=, hdr->b_size);
3320			atomic_add_64(size, -hdr->b_size);
3321		}
3322		hdr->b_datacnt -= 1;
3323		arc_cksum_verify(buf);
3324
3325		mutex_exit(hash_lock);
3326
3327		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3328		nhdr->b_size = blksz;
3329		nhdr->b_spa = spa;
3330		nhdr->b_type = type;
3331		nhdr->b_buf = buf;
3332		nhdr->b_state = arc_anon;
3333		nhdr->b_arc_access = 0;
3334		nhdr->b_flags = flags & ARC_L2_WRITING;
3335		nhdr->b_l2hdr = NULL;
3336		nhdr->b_datacnt = 1;
3337		nhdr->b_freeze_cksum = NULL;
3338		(void) refcount_add(&nhdr->b_refcnt, tag);
3339		buf->b_hdr = nhdr;
3340		rw_exit(&buf->b_lock);
3341		atomic_add_64(&arc_anon->arcs_size, blksz);
3342	} else {
3343		rw_exit(&buf->b_lock);
3344		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3345		ASSERT(!list_link_active(&hdr->b_arc_node));
3346		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3347		arc_change_state(arc_anon, hdr, hash_lock);
3348		hdr->b_arc_access = 0;
3349		mutex_exit(hash_lock);
3350
3351		bzero(&hdr->b_dva, sizeof (dva_t));
3352		hdr->b_birth = 0;
3353		hdr->b_cksum0 = 0;
3354		arc_buf_thaw(buf);
3355	}
3356	buf->b_efunc = NULL;
3357	buf->b_private = NULL;
3358
3359out:
3360	if (l2hdr) {
3361		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3362		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3363		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3364		mutex_exit(&l2arc_buflist_mtx);
3365	}
3366}
3367
3368int
3369arc_released(arc_buf_t *buf)
3370{
3371	int released;
3372
3373	rw_enter(&buf->b_lock, RW_READER);
3374	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3375	rw_exit(&buf->b_lock);
3376	return (released);
3377}
3378
3379int
3380arc_has_callback(arc_buf_t *buf)
3381{
3382	int callback;
3383
3384	rw_enter(&buf->b_lock, RW_READER);
3385	callback = (buf->b_efunc != NULL);
3386	rw_exit(&buf->b_lock);
3387	return (callback);
3388}
3389
3390#ifdef ZFS_DEBUG
3391int
3392arc_referenced(arc_buf_t *buf)
3393{
3394	int referenced;
3395
3396	rw_enter(&buf->b_lock, RW_READER);
3397	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3398	rw_exit(&buf->b_lock);
3399	return (referenced);
3400}
3401#endif
3402
3403static void
3404arc_write_ready(zio_t *zio)
3405{
3406	arc_write_callback_t *callback = zio->io_private;
3407	arc_buf_t *buf = callback->awcb_buf;
3408	arc_buf_hdr_t *hdr = buf->b_hdr;
3409
3410	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3411	callback->awcb_ready(zio, buf, callback->awcb_private);
3412
3413	/*
3414	 * If the IO is already in progress, then this is a re-write
3415	 * attempt, so we need to thaw and re-compute the cksum.
3416	 * It is the responsibility of the callback to handle the
3417	 * accounting for any re-write attempt.
3418	 */
3419	if (HDR_IO_IN_PROGRESS(hdr)) {
3420		mutex_enter(&hdr->b_freeze_lock);
3421		if (hdr->b_freeze_cksum != NULL) {
3422			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3423			hdr->b_freeze_cksum = NULL;
3424		}
3425		mutex_exit(&hdr->b_freeze_lock);
3426	}
3427	arc_cksum_compute(buf, B_FALSE);
3428	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3429}
3430
3431static void
3432arc_write_done(zio_t *zio)
3433{
3434	arc_write_callback_t *callback = zio->io_private;
3435	arc_buf_t *buf = callback->awcb_buf;
3436	arc_buf_hdr_t *hdr = buf->b_hdr;
3437
3438	hdr->b_acb = NULL;
3439
3440	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3441	hdr->b_birth = zio->io_bp->blk_birth;
3442	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3443	/*
3444	 * If the block to be written was all-zero, we may have
3445	 * compressed it away.  In this case no write was performed
3446	 * so there will be no dva/birth-date/checksum.  The buffer
3447	 * must therefor remain anonymous (and uncached).
3448	 */
3449	if (!BUF_EMPTY(hdr)) {
3450		arc_buf_hdr_t *exists;
3451		kmutex_t *hash_lock;
3452
3453		arc_cksum_verify(buf);
3454
3455		exists = buf_hash_insert(hdr, &hash_lock);
3456		if (exists) {
3457			/*
3458			 * This can only happen if we overwrite for
3459			 * sync-to-convergence, because we remove
3460			 * buffers from the hash table when we arc_free().
3461			 */
3462			ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
3463			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3464			    BP_IDENTITY(zio->io_bp)));
3465			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3466			    zio->io_bp->blk_birth);
3467
3468			ASSERT(refcount_is_zero(&exists->b_refcnt));
3469			arc_change_state(arc_anon, exists, hash_lock);
3470			mutex_exit(hash_lock);
3471			arc_hdr_destroy(exists);
3472			exists = buf_hash_insert(hdr, &hash_lock);
3473			ASSERT3P(exists, ==, NULL);
3474		}
3475		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3476		/* if it's not anon, we are doing a scrub */
3477		if (hdr->b_state == arc_anon)
3478			arc_access(hdr, hash_lock);
3479		mutex_exit(hash_lock);
3480	} else if (callback->awcb_done == NULL) {
3481		int destroy_hdr;
3482		/*
3483		 * This is an anonymous buffer with no user callback,
3484		 * destroy it if there are no active references.
3485		 */
3486		mutex_enter(&arc_eviction_mtx);
3487		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3488		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3489		mutex_exit(&arc_eviction_mtx);
3490		if (destroy_hdr)
3491			arc_hdr_destroy(hdr);
3492	} else {
3493		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3494	}
3495	hdr->b_flags &= ~ARC_STORED;
3496
3497	if (callback->awcb_done) {
3498		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3499		callback->awcb_done(zio, buf, callback->awcb_private);
3500	}
3501
3502	kmem_free(callback, sizeof (arc_write_callback_t));
3503}
3504
3505static void
3506write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
3507{
3508	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3509
3510	/* Determine checksum setting */
3511	if (ismd) {
3512		/*
3513		 * Metadata always gets checksummed.  If the data
3514		 * checksum is multi-bit correctable, and it's not a
3515		 * ZBT-style checksum, then it's suitable for metadata
3516		 * as well.  Otherwise, the metadata checksum defaults
3517		 * to fletcher4.
3518		 */
3519		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3520		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3521			zp->zp_checksum = wp->wp_oschecksum;
3522		else
3523			zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
3524	} else {
3525		zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
3526		    wp->wp_oschecksum);
3527	}
3528
3529	/* Determine compression setting */
3530	if (ismd) {
3531		/*
3532		 * XXX -- we should design a compression algorithm
3533		 * that specializes in arrays of bps.
3534		 */
3535		zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3536		    ZIO_COMPRESS_LZJB;
3537	} else {
3538		zp->zp_compress = zio_compress_select(wp->wp_dncompress,
3539		    wp->wp_oscompress);
3540	}
3541
3542	zp->zp_type = wp->wp_type;
3543	zp->zp_level = wp->wp_level;
3544	zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
3545}
3546
3547zio_t *
3548arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3549    boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3550    arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3551    int zio_flags, const zbookmark_t *zb)
3552{
3553	arc_buf_hdr_t *hdr = buf->b_hdr;
3554	arc_write_callback_t *callback;
3555	zio_t *zio;
3556	zio_prop_t zp;
3557
3558	ASSERT(ready != NULL);
3559	ASSERT(!HDR_IO_ERROR(hdr));
3560	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3561	ASSERT(hdr->b_acb == 0);
3562	if (l2arc)
3563		hdr->b_flags |= ARC_L2CACHE;
3564	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3565	callback->awcb_ready = ready;
3566	callback->awcb_done = done;
3567	callback->awcb_private = private;
3568	callback->awcb_buf = buf;
3569
3570	write_policy(spa, wp, &zp);
3571	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
3572	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3573
3574	return (zio);
3575}
3576
3577int
3578arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3579    zio_done_func_t *done, void *private, uint32_t arc_flags)
3580{
3581	arc_buf_hdr_t *ab;
3582	kmutex_t *hash_lock;
3583	zio_t	*zio;
3584	uint64_t guid = spa_guid(spa);
3585
3586	/*
3587	 * If this buffer is in the cache, release it, so it
3588	 * can be re-used.
3589	 */
3590	ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3591	if (ab != NULL) {
3592		/*
3593		 * The checksum of blocks to free is not always
3594		 * preserved (eg. on the deadlist).  However, if it is
3595		 * nonzero, it should match what we have in the cache.
3596		 */
3597		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3598		    bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
3599		    bp->blk_fill == BLK_FILL_ALREADY_FREED);
3600
3601		if (ab->b_state != arc_anon)
3602			arc_change_state(arc_anon, ab, hash_lock);
3603		if (HDR_IO_IN_PROGRESS(ab)) {
3604			/*
3605			 * This should only happen when we prefetch.
3606			 */
3607			ASSERT(ab->b_flags & ARC_PREFETCH);
3608			ASSERT3U(ab->b_datacnt, ==, 1);
3609			ab->b_flags |= ARC_FREED_IN_READ;
3610			if (HDR_IN_HASH_TABLE(ab))
3611				buf_hash_remove(ab);
3612			ab->b_arc_access = 0;
3613			bzero(&ab->b_dva, sizeof (dva_t));
3614			ab->b_birth = 0;
3615			ab->b_cksum0 = 0;
3616			ab->b_buf->b_efunc = NULL;
3617			ab->b_buf->b_private = NULL;
3618			mutex_exit(hash_lock);
3619		} else if (refcount_is_zero(&ab->b_refcnt)) {
3620			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3621			mutex_exit(hash_lock);
3622			arc_hdr_destroy(ab);
3623			ARCSTAT_BUMP(arcstat_deleted);
3624		} else {
3625			/*
3626			 * We still have an active reference on this
3627			 * buffer.  This can happen, e.g., from
3628			 * dbuf_unoverride().
3629			 */
3630			ASSERT(!HDR_IN_HASH_TABLE(ab));
3631			ab->b_arc_access = 0;
3632			bzero(&ab->b_dva, sizeof (dva_t));
3633			ab->b_birth = 0;
3634			ab->b_cksum0 = 0;
3635			ab->b_buf->b_efunc = NULL;
3636			ab->b_buf->b_private = NULL;
3637			mutex_exit(hash_lock);
3638		}
3639	}
3640
3641	zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
3642
3643	if (arc_flags & ARC_WAIT)
3644		return (zio_wait(zio));
3645
3646	ASSERT(arc_flags & ARC_NOWAIT);
3647	zio_nowait(zio);
3648
3649	return (0);
3650}
3651
3652static int
3653arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3654{
3655#ifdef _KERNEL
3656	uint64_t available_memory = ptoa((uintmax_t)cnt.v_free_count
3657	    + cnt.v_cache_count);
3658	static uint64_t page_load = 0;
3659	static uint64_t last_txg = 0;
3660
3661#if 0
3662#if defined(__i386)
3663	available_memory =
3664	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3665#endif
3666#endif
3667	if (available_memory >= zfs_write_limit_max)
3668		return (0);
3669
3670	if (txg > last_txg) {
3671		last_txg = txg;
3672		page_load = 0;
3673	}
3674	/*
3675	 * If we are in pageout, we know that memory is already tight,
3676	 * the arc is already going to be evicting, so we just want to
3677	 * continue to let page writes occur as quickly as possible.
3678	 */
3679	if (curproc == pageproc) {
3680		if (page_load > available_memory / 4)
3681			return (ERESTART);
3682		/* Note: reserve is inflated, so we deflate */
3683		page_load += reserve / 8;
3684		return (0);
3685	} else if (page_load > 0 && arc_reclaim_needed()) {
3686		/* memory is low, delay before restarting */
3687		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3688		return (EAGAIN);
3689	}
3690	page_load = 0;
3691
3692	if (arc_size > arc_c_min) {
3693		uint64_t evictable_memory =
3694		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3695		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3696		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3697		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3698		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3699	}
3700
3701	if (inflight_data > available_memory / 4) {
3702		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3703		return (ERESTART);
3704	}
3705#endif
3706	return (0);
3707}
3708
3709void
3710arc_tempreserve_clear(uint64_t reserve)
3711{
3712	atomic_add_64(&arc_tempreserve, -reserve);
3713	ASSERT((int64_t)arc_tempreserve >= 0);
3714}
3715
3716int
3717arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3718{
3719	int error;
3720	uint64_t anon_size;
3721
3722#ifdef ZFS_DEBUG
3723	/*
3724	 * Once in a while, fail for no reason.  Everything should cope.
3725	 */
3726	if (spa_get_random(10000) == 0) {
3727		dprintf("forcing random failure\n");
3728		return (ERESTART);
3729	}
3730#endif
3731	if (reserve > arc_c/4 && !arc_no_grow)
3732		arc_c = MIN(arc_c_max, reserve * 4);
3733	if (reserve > arc_c)
3734		return (ENOMEM);
3735
3736	/*
3737	 * Don't count loaned bufs as in flight dirty data to prevent long
3738	 * network delays from blocking transactions that are ready to be
3739	 * assigned to a txg.
3740	 */
3741	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3742
3743	/*
3744	 * Writes will, almost always, require additional memory allocations
3745	 * in order to compress/encrypt/etc the data.  We therefor need to
3746	 * make sure that there is sufficient available memory for this.
3747	 */
3748	if (error = arc_memory_throttle(reserve, anon_size, txg))
3749		return (error);
3750
3751	/*
3752	 * Throttle writes when the amount of dirty data in the cache
3753	 * gets too large.  We try to keep the cache less than half full
3754	 * of dirty blocks so that our sync times don't grow too large.
3755	 * Note: if two requests come in concurrently, we might let them
3756	 * both succeed, when one of them should fail.  Not a huge deal.
3757	 */
3758
3759	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3760	    anon_size > arc_c / 4) {
3761		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3762		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3763		    arc_tempreserve>>10,
3764		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3765		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3766		    reserve>>10, arc_c>>10);
3767		return (ERESTART);
3768	}
3769	atomic_add_64(&arc_tempreserve, reserve);
3770	return (0);
3771}
3772
3773static kmutex_t arc_lowmem_lock;
3774#ifdef _KERNEL
3775static eventhandler_tag arc_event_lowmem = NULL;
3776
3777static void
3778arc_lowmem(void *arg __unused, int howto __unused)
3779{
3780
3781	/* Serialize access via arc_lowmem_lock. */
3782	mutex_enter(&arc_lowmem_lock);
3783	needfree = 1;
3784	cv_signal(&arc_reclaim_thr_cv);
3785	while (needfree)
3786		tsleep(&needfree, 0, "zfs:lowmem", hz / 5);
3787	mutex_exit(&arc_lowmem_lock);
3788}
3789#endif
3790
3791void
3792arc_init(void)
3793{
3794	int prefetch_tunable_set = 0;
3795	int i;
3796
3797	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3798	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3799	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
3800
3801	/* Convert seconds to clock ticks */
3802	arc_min_prefetch_lifespan = 1 * hz;
3803
3804	/* Start out with 1/8 of all memory */
3805	arc_c = kmem_size() / 8;
3806#if 0
3807#ifdef _KERNEL
3808	/*
3809	 * On architectures where the physical memory can be larger
3810	 * than the addressable space (intel in 32-bit mode), we may
3811	 * need to limit the cache to 1/8 of VM size.
3812	 */
3813	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3814#endif
3815#endif
3816	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
3817	arc_c_min = MAX(arc_c / 4, 64<<18);
3818	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
3819	if (arc_c * 8 >= 1<<30)
3820		arc_c_max = (arc_c * 8) - (1<<30);
3821	else
3822		arc_c_max = arc_c_min;
3823	arc_c_max = MAX(arc_c * 5, arc_c_max);
3824#ifdef _KERNEL
3825	/*
3826	 * Allow the tunables to override our calculations if they are
3827	 * reasonable (ie. over 16MB)
3828	 */
3829	if (zfs_arc_max >= 64<<18 && zfs_arc_max < kmem_size())
3830		arc_c_max = zfs_arc_max;
3831	if (zfs_arc_min >= 64<<18 && zfs_arc_min <= arc_c_max)
3832		arc_c_min = zfs_arc_min;
3833#endif
3834	arc_c = arc_c_max;
3835	arc_p = (arc_c >> 1);
3836
3837	/* limit meta-data to 1/4 of the arc capacity */
3838	arc_meta_limit = arc_c_max / 4;
3839
3840	/* Allow the tunable to override if it is reasonable */
3841	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3842		arc_meta_limit = zfs_arc_meta_limit;
3843
3844	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3845		arc_c_min = arc_meta_limit / 2;
3846
3847	if (zfs_arc_grow_retry > 0)
3848		arc_grow_retry = zfs_arc_grow_retry;
3849
3850	if (zfs_arc_shrink_shift > 0)
3851		arc_shrink_shift = zfs_arc_shrink_shift;
3852
3853	if (zfs_arc_p_min_shift > 0)
3854		arc_p_min_shift = zfs_arc_p_min_shift;
3855
3856	/* if kmem_flags are set, lets try to use less memory */
3857	if (kmem_debugging())
3858		arc_c = arc_c / 2;
3859	if (arc_c < arc_c_min)
3860		arc_c = arc_c_min;
3861
3862	zfs_arc_min = arc_c_min;
3863	zfs_arc_max = arc_c_max;
3864
3865	arc_anon = &ARC_anon;
3866	arc_mru = &ARC_mru;
3867	arc_mru_ghost = &ARC_mru_ghost;
3868	arc_mfu = &ARC_mfu;
3869	arc_mfu_ghost = &ARC_mfu_ghost;
3870	arc_l2c_only = &ARC_l2c_only;
3871	arc_size = 0;
3872
3873	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
3874		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
3875		    NULL, MUTEX_DEFAULT, NULL);
3876		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
3877		    NULL, MUTEX_DEFAULT, NULL);
3878		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
3879		    NULL, MUTEX_DEFAULT, NULL);
3880		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
3881		    NULL, MUTEX_DEFAULT, NULL);
3882		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
3883		    NULL, MUTEX_DEFAULT, NULL);
3884		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
3885		    NULL, MUTEX_DEFAULT, NULL);
3886
3887		list_create(&arc_mru->arcs_lists[i],
3888		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3889		list_create(&arc_mru_ghost->arcs_lists[i],
3890		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3891		list_create(&arc_mfu->arcs_lists[i],
3892		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3893		list_create(&arc_mfu_ghost->arcs_lists[i],
3894		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3895		list_create(&arc_mfu_ghost->arcs_lists[i],
3896		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3897		list_create(&arc_l2c_only->arcs_lists[i],
3898		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3899	}
3900
3901	buf_init();
3902
3903	arc_thread_exit = 0;
3904	arc_eviction_list = NULL;
3905	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3906	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3907
3908	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3909	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3910
3911	if (arc_ksp != NULL) {
3912		arc_ksp->ks_data = &arc_stats;
3913		kstat_install(arc_ksp);
3914	}
3915
3916	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3917	    TS_RUN, minclsyspri);
3918
3919#ifdef _KERNEL
3920	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
3921	    EVENTHANDLER_PRI_FIRST);
3922#endif
3923
3924	arc_dead = FALSE;
3925	arc_warm = B_FALSE;
3926
3927	if (zfs_write_limit_max == 0)
3928		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3929	else
3930		zfs_write_limit_shift = 0;
3931	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3932
3933#ifdef _KERNEL
3934	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
3935		prefetch_tunable_set = 1;
3936
3937#ifdef __i386__
3938	if (prefetch_tunable_set == 0) {
3939		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
3940		    "-- to enable,\n");
3941		printf("            add \"vfs.zfs.prefetch_disable=0\" "
3942		    "to /boot/loader.conf.\n");
3943		zfs_prefetch_disable=1;
3944	}
3945#else
3946	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
3947	    prefetch_tunable_set == 0) {
3948		printf("ZFS NOTICE: Prefetch is disabled by default if less "
3949		    "than 4GB of RAM is present;\n"
3950		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
3951		    "to /boot/loader.conf.\n");
3952		zfs_prefetch_disable=1;
3953	}
3954#endif
3955	/* Warn about ZFS memory and address space requirements. */
3956	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
3957		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
3958		    "expect unstable behavior.\n");
3959	}
3960	if (kmem_size() < 512 * (1 << 20)) {
3961		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
3962		    "expect unstable behavior.\n");
3963		printf("             Consider tuning vm.kmem_size and "
3964		    "vm.kmem_size_max\n");
3965		printf("             in /boot/loader.conf.\n");
3966	}
3967#endif
3968}
3969
3970void
3971arc_fini(void)
3972{
3973	int i;
3974
3975	mutex_enter(&arc_reclaim_thr_lock);
3976	arc_thread_exit = 1;
3977	cv_signal(&arc_reclaim_thr_cv);
3978	while (arc_thread_exit != 0)
3979		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3980	mutex_exit(&arc_reclaim_thr_lock);
3981
3982	arc_flush(NULL);
3983
3984	arc_dead = TRUE;
3985
3986	if (arc_ksp != NULL) {
3987		kstat_delete(arc_ksp);
3988		arc_ksp = NULL;
3989	}
3990
3991	mutex_destroy(&arc_eviction_mtx);
3992	mutex_destroy(&arc_reclaim_thr_lock);
3993	cv_destroy(&arc_reclaim_thr_cv);
3994
3995	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
3996		list_destroy(&arc_mru->arcs_lists[i]);
3997		list_destroy(&arc_mru_ghost->arcs_lists[i]);
3998		list_destroy(&arc_mfu->arcs_lists[i]);
3999		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4000		list_destroy(&arc_l2c_only->arcs_lists[i]);
4001
4002		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4003		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4004		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4005		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4006		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4007		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4008	}
4009
4010	mutex_destroy(&zfs_write_limit_lock);
4011
4012	buf_fini();
4013
4014	ASSERT(arc_loaned_bytes == 0);
4015
4016	mutex_destroy(&arc_lowmem_lock);
4017#ifdef _KERNEL
4018	if (arc_event_lowmem != NULL)
4019		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4020#endif
4021}
4022
4023/*
4024 * Level 2 ARC
4025 *
4026 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4027 * It uses dedicated storage devices to hold cached data, which are populated
4028 * using large infrequent writes.  The main role of this cache is to boost
4029 * the performance of random read workloads.  The intended L2ARC devices
4030 * include short-stroked disks, solid state disks, and other media with
4031 * substantially faster read latency than disk.
4032 *
4033 *                 +-----------------------+
4034 *                 |         ARC           |
4035 *                 +-----------------------+
4036 *                    |         ^     ^
4037 *                    |         |     |
4038 *      l2arc_feed_thread()    arc_read()
4039 *                    |         |     |
4040 *                    |  l2arc read   |
4041 *                    V         |     |
4042 *               +---------------+    |
4043 *               |     L2ARC     |    |
4044 *               +---------------+    |
4045 *                   |    ^           |
4046 *          l2arc_write() |           |
4047 *                   |    |           |
4048 *                   V    |           |
4049 *                 +-------+      +-------+
4050 *                 | vdev  |      | vdev  |
4051 *                 | cache |      | cache |
4052 *                 +-------+      +-------+
4053 *                 +=========+     .-----.
4054 *                 :  L2ARC  :    |-_____-|
4055 *                 : devices :    | Disks |
4056 *                 +=========+    `-_____-'
4057 *
4058 * Read requests are satisfied from the following sources, in order:
4059 *
4060 *	1) ARC
4061 *	2) vdev cache of L2ARC devices
4062 *	3) L2ARC devices
4063 *	4) vdev cache of disks
4064 *	5) disks
4065 *
4066 * Some L2ARC device types exhibit extremely slow write performance.
4067 * To accommodate for this there are some significant differences between
4068 * the L2ARC and traditional cache design:
4069 *
4070 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4071 * the ARC behave as usual, freeing buffers and placing headers on ghost
4072 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4073 * this would add inflated write latencies for all ARC memory pressure.
4074 *
4075 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4076 * It does this by periodically scanning buffers from the eviction-end of
4077 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4078 * not already there.  It scans until a headroom of buffers is satisfied,
4079 * which itself is a buffer for ARC eviction.  The thread that does this is
4080 * l2arc_feed_thread(), illustrated below; example sizes are included to
4081 * provide a better sense of ratio than this diagram:
4082 *
4083 *	       head -->                        tail
4084 *	        +---------------------+----------+
4085 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4086 *	        +---------------------+----------+   |   o L2ARC eligible
4087 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4088 *	        +---------------------+----------+   |
4089 *	             15.9 Gbytes      ^ 32 Mbytes    |
4090 *	                           headroom          |
4091 *	                                      l2arc_feed_thread()
4092 *	                                             |
4093 *	                 l2arc write hand <--[oooo]--'
4094 *	                         |           8 Mbyte
4095 *	                         |          write max
4096 *	                         V
4097 *		  +==============================+
4098 *	L2ARC dev |####|#|###|###|    |####| ... |
4099 *	          +==============================+
4100 *	                     32 Gbytes
4101 *
4102 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4103 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4104 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4105 * safe to say that this is an uncommon case, since buffers at the end of
4106 * the ARC lists have moved there due to inactivity.
4107 *
4108 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4109 * then the L2ARC simply misses copying some buffers.  This serves as a
4110 * pressure valve to prevent heavy read workloads from both stalling the ARC
4111 * with waits and clogging the L2ARC with writes.  This also helps prevent
4112 * the potential for the L2ARC to churn if it attempts to cache content too
4113 * quickly, such as during backups of the entire pool.
4114 *
4115 * 5. After system boot and before the ARC has filled main memory, there are
4116 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4117 * lists can remain mostly static.  Instead of searching from tail of these
4118 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4119 * for eligible buffers, greatly increasing its chance of finding them.
4120 *
4121 * The L2ARC device write speed is also boosted during this time so that
4122 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4123 * there are no L2ARC reads, and no fear of degrading read performance
4124 * through increased writes.
4125 *
4126 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4127 * the vdev queue can aggregate them into larger and fewer writes.  Each
4128 * device is written to in a rotor fashion, sweeping writes through
4129 * available space then repeating.
4130 *
4131 * 7. The L2ARC does not store dirty content.  It never needs to flush
4132 * write buffers back to disk based storage.
4133 *
4134 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4135 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4136 *
4137 * The performance of the L2ARC can be tweaked by a number of tunables, which
4138 * may be necessary for different workloads:
4139 *
4140 *	l2arc_write_max		max write bytes per interval
4141 *	l2arc_write_boost	extra write bytes during device warmup
4142 *	l2arc_noprefetch	skip caching prefetched buffers
4143 *	l2arc_headroom		number of max device writes to precache
4144 *	l2arc_feed_secs		seconds between L2ARC writing
4145 *
4146 * Tunables may be removed or added as future performance improvements are
4147 * integrated, and also may become zpool properties.
4148 *
4149 * There are three key functions that control how the L2ARC warms up:
4150 *
4151 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4152 *	l2arc_write_size()	calculate how much to write
4153 *	l2arc_write_interval()	calculate sleep delay between writes
4154 *
4155 * These three functions determine what to write, how much, and how quickly
4156 * to send writes.
4157 */
4158
4159static boolean_t
4160l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4161{
4162	/*
4163	 * A buffer is *not* eligible for the L2ARC if it:
4164	 * 1. belongs to a different spa.
4165	 * 2. is already cached on the L2ARC.
4166	 * 3. has an I/O in progress (it may be an incomplete read).
4167	 * 4. is flagged not eligible (zfs property).
4168	 */
4169	if (ab->b_spa != spa_guid) {
4170		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4171		return (B_FALSE);
4172	}
4173	if (ab->b_l2hdr != NULL) {
4174		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4175		return (B_FALSE);
4176	}
4177	if (HDR_IO_IN_PROGRESS(ab)) {
4178		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4179		return (B_FALSE);
4180	}
4181	if (!HDR_L2CACHE(ab)) {
4182		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4183		return (B_FALSE);
4184	}
4185
4186	return (B_TRUE);
4187}
4188
4189static uint64_t
4190l2arc_write_size(l2arc_dev_t *dev)
4191{
4192	uint64_t size;
4193
4194	size = dev->l2ad_write;
4195
4196	if (arc_warm == B_FALSE)
4197		size += dev->l2ad_boost;
4198
4199	return (size);
4200
4201}
4202
4203static clock_t
4204l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4205{
4206	clock_t interval, next;
4207
4208	/*
4209	 * If the ARC lists are busy, increase our write rate; if the
4210	 * lists are stale, idle back.  This is achieved by checking
4211	 * how much we previously wrote - if it was more than half of
4212	 * what we wanted, schedule the next write much sooner.
4213	 */
4214	if (l2arc_feed_again && wrote > (wanted / 2))
4215		interval = (hz * l2arc_feed_min_ms) / 1000;
4216	else
4217		interval = hz * l2arc_feed_secs;
4218
4219	next = MAX(LBOLT, MIN(LBOLT + interval, began + interval));
4220
4221	return (next);
4222}
4223
4224static void
4225l2arc_hdr_stat_add(void)
4226{
4227	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4228	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4229}
4230
4231static void
4232l2arc_hdr_stat_remove(void)
4233{
4234	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4235	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4236}
4237
4238/*
4239 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4240 * If a device is returned, this also returns holding the spa config lock.
4241 */
4242static l2arc_dev_t *
4243l2arc_dev_get_next(void)
4244{
4245	l2arc_dev_t *first, *next = NULL;
4246
4247	/*
4248	 * Lock out the removal of spas (spa_namespace_lock), then removal
4249	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4250	 * both locks will be dropped and a spa config lock held instead.
4251	 */
4252	mutex_enter(&spa_namespace_lock);
4253	mutex_enter(&l2arc_dev_mtx);
4254
4255	/* if there are no vdevs, there is nothing to do */
4256	if (l2arc_ndev == 0)
4257		goto out;
4258
4259	first = NULL;
4260	next = l2arc_dev_last;
4261	do {
4262		/* loop around the list looking for a non-faulted vdev */
4263		if (next == NULL) {
4264			next = list_head(l2arc_dev_list);
4265		} else {
4266			next = list_next(l2arc_dev_list, next);
4267			if (next == NULL)
4268				next = list_head(l2arc_dev_list);
4269		}
4270
4271		/* if we have come back to the start, bail out */
4272		if (first == NULL)
4273			first = next;
4274		else if (next == first)
4275			break;
4276
4277	} while (vdev_is_dead(next->l2ad_vdev));
4278
4279	/* if we were unable to find any usable vdevs, return NULL */
4280	if (vdev_is_dead(next->l2ad_vdev))
4281		next = NULL;
4282
4283	l2arc_dev_last = next;
4284
4285out:
4286	mutex_exit(&l2arc_dev_mtx);
4287
4288	/*
4289	 * Grab the config lock to prevent the 'next' device from being
4290	 * removed while we are writing to it.
4291	 */
4292	if (next != NULL)
4293		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4294	mutex_exit(&spa_namespace_lock);
4295
4296	return (next);
4297}
4298
4299/*
4300 * Free buffers that were tagged for destruction.
4301 */
4302static void
4303l2arc_do_free_on_write()
4304{
4305	list_t *buflist;
4306	l2arc_data_free_t *df, *df_prev;
4307
4308	mutex_enter(&l2arc_free_on_write_mtx);
4309	buflist = l2arc_free_on_write;
4310
4311	for (df = list_tail(buflist); df; df = df_prev) {
4312		df_prev = list_prev(buflist, df);
4313		ASSERT(df->l2df_data != NULL);
4314		ASSERT(df->l2df_func != NULL);
4315		df->l2df_func(df->l2df_data, df->l2df_size);
4316		list_remove(buflist, df);
4317		kmem_free(df, sizeof (l2arc_data_free_t));
4318	}
4319
4320	mutex_exit(&l2arc_free_on_write_mtx);
4321}
4322
4323/*
4324 * A write to a cache device has completed.  Update all headers to allow
4325 * reads from these buffers to begin.
4326 */
4327static void
4328l2arc_write_done(zio_t *zio)
4329{
4330	l2arc_write_callback_t *cb;
4331	l2arc_dev_t *dev;
4332	list_t *buflist;
4333	arc_buf_hdr_t *head, *ab, *ab_prev;
4334	l2arc_buf_hdr_t *abl2;
4335	kmutex_t *hash_lock;
4336
4337	cb = zio->io_private;
4338	ASSERT(cb != NULL);
4339	dev = cb->l2wcb_dev;
4340	ASSERT(dev != NULL);
4341	head = cb->l2wcb_head;
4342	ASSERT(head != NULL);
4343	buflist = dev->l2ad_buflist;
4344	ASSERT(buflist != NULL);
4345	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4346	    l2arc_write_callback_t *, cb);
4347
4348	if (zio->io_error != 0)
4349		ARCSTAT_BUMP(arcstat_l2_writes_error);
4350
4351	mutex_enter(&l2arc_buflist_mtx);
4352
4353	/*
4354	 * All writes completed, or an error was hit.
4355	 */
4356	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4357		ab_prev = list_prev(buflist, ab);
4358
4359		hash_lock = HDR_LOCK(ab);
4360		if (!mutex_tryenter(hash_lock)) {
4361			/*
4362			 * This buffer misses out.  It may be in a stage
4363			 * of eviction.  Its ARC_L2_WRITING flag will be
4364			 * left set, denying reads to this buffer.
4365			 */
4366			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4367			continue;
4368		}
4369
4370		if (zio->io_error != 0) {
4371			/*
4372			 * Error - drop L2ARC entry.
4373			 */
4374			list_remove(buflist, ab);
4375			abl2 = ab->b_l2hdr;
4376			ab->b_l2hdr = NULL;
4377			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4378			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4379		}
4380
4381		/*
4382		 * Allow ARC to begin reads to this L2ARC entry.
4383		 */
4384		ab->b_flags &= ~ARC_L2_WRITING;
4385
4386		mutex_exit(hash_lock);
4387	}
4388
4389	atomic_inc_64(&l2arc_writes_done);
4390	list_remove(buflist, head);
4391	kmem_cache_free(hdr_cache, head);
4392	mutex_exit(&l2arc_buflist_mtx);
4393
4394	l2arc_do_free_on_write();
4395
4396	kmem_free(cb, sizeof (l2arc_write_callback_t));
4397}
4398
4399/*
4400 * A read to a cache device completed.  Validate buffer contents before
4401 * handing over to the regular ARC routines.
4402 */
4403static void
4404l2arc_read_done(zio_t *zio)
4405{
4406	l2arc_read_callback_t *cb;
4407	arc_buf_hdr_t *hdr;
4408	arc_buf_t *buf;
4409	kmutex_t *hash_lock;
4410	int equal;
4411
4412	ASSERT(zio->io_vd != NULL);
4413	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4414
4415	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4416
4417	cb = zio->io_private;
4418	ASSERT(cb != NULL);
4419	buf = cb->l2rcb_buf;
4420	ASSERT(buf != NULL);
4421	hdr = buf->b_hdr;
4422	ASSERT(hdr != NULL);
4423
4424	hash_lock = HDR_LOCK(hdr);
4425	mutex_enter(hash_lock);
4426
4427	/*
4428	 * Check this survived the L2ARC journey.
4429	 */
4430	equal = arc_cksum_equal(buf);
4431	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4432		mutex_exit(hash_lock);
4433		zio->io_private = buf;
4434		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4435		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4436		arc_read_done(zio);
4437	} else {
4438		mutex_exit(hash_lock);
4439		/*
4440		 * Buffer didn't survive caching.  Increment stats and
4441		 * reissue to the original storage device.
4442		 */
4443		if (zio->io_error != 0) {
4444			ARCSTAT_BUMP(arcstat_l2_io_error);
4445		} else {
4446			zio->io_error = EIO;
4447		}
4448		if (!equal)
4449			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4450
4451		/*
4452		 * If there's no waiter, issue an async i/o to the primary
4453		 * storage now.  If there *is* a waiter, the caller must
4454		 * issue the i/o in a context where it's OK to block.
4455		 */
4456		if (zio->io_waiter == NULL) {
4457			zio_t *pio = zio_unique_parent(zio);
4458
4459			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4460
4461			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4462			    buf->b_data, zio->io_size, arc_read_done, buf,
4463			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4464		}
4465	}
4466
4467	kmem_free(cb, sizeof (l2arc_read_callback_t));
4468}
4469
4470/*
4471 * This is the list priority from which the L2ARC will search for pages to
4472 * cache.  This is used within loops (0..3) to cycle through lists in the
4473 * desired order.  This order can have a significant effect on cache
4474 * performance.
4475 *
4476 * Currently the metadata lists are hit first, MFU then MRU, followed by
4477 * the data lists.  This function returns a locked list, and also returns
4478 * the lock pointer.
4479 */
4480static list_t *
4481l2arc_list_locked(int list_num, kmutex_t **lock)
4482{
4483	list_t *list;
4484	int idx;
4485
4486	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4487
4488	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4489		idx = list_num;
4490		list = &arc_mfu->arcs_lists[idx];
4491		*lock = ARCS_LOCK(arc_mfu, idx);
4492	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4493		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4494		list = &arc_mru->arcs_lists[idx];
4495		*lock = ARCS_LOCK(arc_mru, idx);
4496	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4497		ARC_BUFC_NUMDATALISTS)) {
4498		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4499		list = &arc_mfu->arcs_lists[idx];
4500		*lock = ARCS_LOCK(arc_mfu, idx);
4501	} else {
4502		idx = list_num - ARC_BUFC_NUMLISTS;
4503		list = &arc_mru->arcs_lists[idx];
4504		*lock = ARCS_LOCK(arc_mru, idx);
4505	}
4506
4507	ASSERT(!(MUTEX_HELD(*lock)));
4508	mutex_enter(*lock);
4509	return (list);
4510}
4511
4512/*
4513 * Evict buffers from the device write hand to the distance specified in
4514 * bytes.  This distance may span populated buffers, it may span nothing.
4515 * This is clearing a region on the L2ARC device ready for writing.
4516 * If the 'all' boolean is set, every buffer is evicted.
4517 */
4518static void
4519l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4520{
4521	list_t *buflist;
4522	l2arc_buf_hdr_t *abl2;
4523	arc_buf_hdr_t *ab, *ab_prev;
4524	kmutex_t *hash_lock;
4525	uint64_t taddr;
4526
4527	buflist = dev->l2ad_buflist;
4528
4529	if (buflist == NULL)
4530		return;
4531
4532	if (!all && dev->l2ad_first) {
4533		/*
4534		 * This is the first sweep through the device.  There is
4535		 * nothing to evict.
4536		 */
4537		return;
4538	}
4539
4540	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4541		/*
4542		 * When nearing the end of the device, evict to the end
4543		 * before the device write hand jumps to the start.
4544		 */
4545		taddr = dev->l2ad_end;
4546	} else {
4547		taddr = dev->l2ad_hand + distance;
4548	}
4549	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4550	    uint64_t, taddr, boolean_t, all);
4551
4552top:
4553	mutex_enter(&l2arc_buflist_mtx);
4554	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4555		ab_prev = list_prev(buflist, ab);
4556
4557		hash_lock = HDR_LOCK(ab);
4558		if (!mutex_tryenter(hash_lock)) {
4559			/*
4560			 * Missed the hash lock.  Retry.
4561			 */
4562			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4563			mutex_exit(&l2arc_buflist_mtx);
4564			mutex_enter(hash_lock);
4565			mutex_exit(hash_lock);
4566			goto top;
4567		}
4568
4569		if (HDR_L2_WRITE_HEAD(ab)) {
4570			/*
4571			 * We hit a write head node.  Leave it for
4572			 * l2arc_write_done().
4573			 */
4574			list_remove(buflist, ab);
4575			mutex_exit(hash_lock);
4576			continue;
4577		}
4578
4579		if (!all && ab->b_l2hdr != NULL &&
4580		    (ab->b_l2hdr->b_daddr > taddr ||
4581		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4582			/*
4583			 * We've evicted to the target address,
4584			 * or the end of the device.
4585			 */
4586			mutex_exit(hash_lock);
4587			break;
4588		}
4589
4590		if (HDR_FREE_IN_PROGRESS(ab)) {
4591			/*
4592			 * Already on the path to destruction.
4593			 */
4594			mutex_exit(hash_lock);
4595			continue;
4596		}
4597
4598		if (ab->b_state == arc_l2c_only) {
4599			ASSERT(!HDR_L2_READING(ab));
4600			/*
4601			 * This doesn't exist in the ARC.  Destroy.
4602			 * arc_hdr_destroy() will call list_remove()
4603			 * and decrement arcstat_l2_size.
4604			 */
4605			arc_change_state(arc_anon, ab, hash_lock);
4606			arc_hdr_destroy(ab);
4607		} else {
4608			/*
4609			 * Invalidate issued or about to be issued
4610			 * reads, since we may be about to write
4611			 * over this location.
4612			 */
4613			if (HDR_L2_READING(ab)) {
4614				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4615				ab->b_flags |= ARC_L2_EVICTED;
4616			}
4617
4618			/*
4619			 * Tell ARC this no longer exists in L2ARC.
4620			 */
4621			if (ab->b_l2hdr != NULL) {
4622				abl2 = ab->b_l2hdr;
4623				ab->b_l2hdr = NULL;
4624				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4625				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4626			}
4627			list_remove(buflist, ab);
4628
4629			/*
4630			 * This may have been leftover after a
4631			 * failed write.
4632			 */
4633			ab->b_flags &= ~ARC_L2_WRITING;
4634		}
4635		mutex_exit(hash_lock);
4636	}
4637	mutex_exit(&l2arc_buflist_mtx);
4638
4639	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4640	dev->l2ad_evict = taddr;
4641}
4642
4643/*
4644 * Find and write ARC buffers to the L2ARC device.
4645 *
4646 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4647 * for reading until they have completed writing.
4648 */
4649static uint64_t
4650l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4651{
4652	arc_buf_hdr_t *ab, *ab_prev, *head;
4653	l2arc_buf_hdr_t *hdrl2;
4654	list_t *list;
4655	uint64_t passed_sz, write_sz, buf_sz, headroom;
4656	void *buf_data;
4657	kmutex_t *hash_lock, *list_lock;
4658	boolean_t have_lock, full;
4659	l2arc_write_callback_t *cb;
4660	zio_t *pio, *wzio;
4661	uint64_t guid = spa_guid(spa);
4662	int try;
4663
4664	ASSERT(dev->l2ad_vdev != NULL);
4665
4666	pio = NULL;
4667	write_sz = 0;
4668	full = B_FALSE;
4669	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4670	head->b_flags |= ARC_L2_WRITE_HEAD;
4671
4672	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4673	/*
4674	 * Copy buffers for L2ARC writing.
4675	 */
4676	mutex_enter(&l2arc_buflist_mtx);
4677	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4678		list = l2arc_list_locked(try, &list_lock);
4679		passed_sz = 0;
4680		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4681
4682		/*
4683		 * L2ARC fast warmup.
4684		 *
4685		 * Until the ARC is warm and starts to evict, read from the
4686		 * head of the ARC lists rather than the tail.
4687		 */
4688		headroom = target_sz * l2arc_headroom;
4689		if (arc_warm == B_FALSE)
4690			ab = list_head(list);
4691		else
4692			ab = list_tail(list);
4693		if (ab == NULL)
4694			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4695
4696		for (; ab; ab = ab_prev) {
4697			if (arc_warm == B_FALSE)
4698				ab_prev = list_next(list, ab);
4699			else
4700				ab_prev = list_prev(list, ab);
4701			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
4702
4703			hash_lock = HDR_LOCK(ab);
4704			have_lock = MUTEX_HELD(hash_lock);
4705			if (!have_lock && !mutex_tryenter(hash_lock)) {
4706				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
4707				/*
4708				 * Skip this buffer rather than waiting.
4709				 */
4710				continue;
4711			}
4712
4713			passed_sz += ab->b_size;
4714			if (passed_sz > headroom) {
4715				/*
4716				 * Searched too far.
4717				 */
4718				mutex_exit(hash_lock);
4719				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
4720				break;
4721			}
4722
4723			if (!l2arc_write_eligible(guid, ab)) {
4724				mutex_exit(hash_lock);
4725				continue;
4726			}
4727
4728			if ((write_sz + ab->b_size) > target_sz) {
4729				full = B_TRUE;
4730				mutex_exit(hash_lock);
4731				ARCSTAT_BUMP(arcstat_l2_write_full);
4732				break;
4733			}
4734
4735			if (pio == NULL) {
4736				/*
4737				 * Insert a dummy header on the buflist so
4738				 * l2arc_write_done() can find where the
4739				 * write buffers begin without searching.
4740				 */
4741				list_insert_head(dev->l2ad_buflist, head);
4742
4743				cb = kmem_alloc(
4744				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4745				cb->l2wcb_dev = dev;
4746				cb->l2wcb_head = head;
4747				pio = zio_root(spa, l2arc_write_done, cb,
4748				    ZIO_FLAG_CANFAIL);
4749				ARCSTAT_BUMP(arcstat_l2_write_pios);
4750			}
4751
4752			/*
4753			 * Create and add a new L2ARC header.
4754			 */
4755			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4756			hdrl2->b_dev = dev;
4757			hdrl2->b_daddr = dev->l2ad_hand;
4758
4759			ab->b_flags |= ARC_L2_WRITING;
4760			ab->b_l2hdr = hdrl2;
4761			list_insert_head(dev->l2ad_buflist, ab);
4762			buf_data = ab->b_buf->b_data;
4763			buf_sz = ab->b_size;
4764
4765			/*
4766			 * Compute and store the buffer cksum before
4767			 * writing.  On debug the cksum is verified first.
4768			 */
4769			arc_cksum_verify(ab->b_buf);
4770			arc_cksum_compute(ab->b_buf, B_TRUE);
4771
4772			mutex_exit(hash_lock);
4773
4774			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4775			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4776			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4777			    ZIO_FLAG_CANFAIL, B_FALSE);
4778
4779			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4780			    zio_t *, wzio);
4781			(void) zio_nowait(wzio);
4782
4783			/*
4784			 * Keep the clock hand suitably device-aligned.
4785			 */
4786			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4787
4788			write_sz += buf_sz;
4789			dev->l2ad_hand += buf_sz;
4790		}
4791
4792		mutex_exit(list_lock);
4793
4794		if (full == B_TRUE)
4795			break;
4796	}
4797	mutex_exit(&l2arc_buflist_mtx);
4798
4799	if (pio == NULL) {
4800		ASSERT3U(write_sz, ==, 0);
4801		kmem_cache_free(hdr_cache, head);
4802		return (0);
4803	}
4804
4805	ASSERT3U(write_sz, <=, target_sz);
4806	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4807	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4808	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4809	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4810
4811	/*
4812	 * Bump device hand to the device start if it is approaching the end.
4813	 * l2arc_evict() will already have evicted ahead for this case.
4814	 */
4815	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4816		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4817		    dev->l2ad_end - dev->l2ad_hand);
4818		dev->l2ad_hand = dev->l2ad_start;
4819		dev->l2ad_evict = dev->l2ad_start;
4820		dev->l2ad_first = B_FALSE;
4821	}
4822
4823	dev->l2ad_writing = B_TRUE;
4824	(void) zio_wait(pio);
4825	dev->l2ad_writing = B_FALSE;
4826
4827	return (write_sz);
4828}
4829
4830/*
4831 * This thread feeds the L2ARC at regular intervals.  This is the beating
4832 * heart of the L2ARC.
4833 */
4834static void
4835l2arc_feed_thread(void *dummy __unused)
4836{
4837	callb_cpr_t cpr;
4838	l2arc_dev_t *dev;
4839	spa_t *spa;
4840	uint64_t size, wrote;
4841	clock_t begin, next = LBOLT;
4842
4843	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4844
4845	mutex_enter(&l2arc_feed_thr_lock);
4846
4847	while (l2arc_thread_exit == 0) {
4848		CALLB_CPR_SAFE_BEGIN(&cpr);
4849		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4850		    next - LBOLT);
4851		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4852		next = LBOLT + hz;
4853
4854		/*
4855		 * Quick check for L2ARC devices.
4856		 */
4857		mutex_enter(&l2arc_dev_mtx);
4858		if (l2arc_ndev == 0) {
4859			mutex_exit(&l2arc_dev_mtx);
4860			continue;
4861		}
4862		mutex_exit(&l2arc_dev_mtx);
4863		begin = LBOLT;
4864
4865		/*
4866		 * This selects the next l2arc device to write to, and in
4867		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4868		 * will return NULL if there are now no l2arc devices or if
4869		 * they are all faulted.
4870		 *
4871		 * If a device is returned, its spa's config lock is also
4872		 * held to prevent device removal.  l2arc_dev_get_next()
4873		 * will grab and release l2arc_dev_mtx.
4874		 */
4875		if ((dev = l2arc_dev_get_next()) == NULL)
4876			continue;
4877
4878		spa = dev->l2ad_spa;
4879		ASSERT(spa != NULL);
4880
4881		/*
4882		 * Avoid contributing to memory pressure.
4883		 */
4884		if (arc_reclaim_needed()) {
4885			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4886			spa_config_exit(spa, SCL_L2ARC, dev);
4887			continue;
4888		}
4889
4890		ARCSTAT_BUMP(arcstat_l2_feeds);
4891
4892		size = l2arc_write_size(dev);
4893
4894		/*
4895		 * Evict L2ARC buffers that will be overwritten.
4896		 */
4897		l2arc_evict(dev, size, B_FALSE);
4898
4899		/*
4900		 * Write ARC buffers.
4901		 */
4902		wrote = l2arc_write_buffers(spa, dev, size);
4903
4904		/*
4905		 * Calculate interval between writes.
4906		 */
4907		next = l2arc_write_interval(begin, size, wrote);
4908		spa_config_exit(spa, SCL_L2ARC, dev);
4909	}
4910
4911	l2arc_thread_exit = 0;
4912	cv_broadcast(&l2arc_feed_thr_cv);
4913	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4914	thread_exit();
4915}
4916
4917boolean_t
4918l2arc_vdev_present(vdev_t *vd)
4919{
4920	l2arc_dev_t *dev;
4921
4922	mutex_enter(&l2arc_dev_mtx);
4923	for (dev = list_head(l2arc_dev_list); dev != NULL;
4924	    dev = list_next(l2arc_dev_list, dev)) {
4925		if (dev->l2ad_vdev == vd)
4926			break;
4927	}
4928	mutex_exit(&l2arc_dev_mtx);
4929
4930	return (dev != NULL);
4931}
4932
4933/*
4934 * Add a vdev for use by the L2ARC.  By this point the spa has already
4935 * validated the vdev and opened it.
4936 */
4937void
4938l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4939{
4940	l2arc_dev_t *adddev;
4941
4942	ASSERT(!l2arc_vdev_present(vd));
4943
4944	/*
4945	 * Create a new l2arc device entry.
4946	 */
4947	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4948	adddev->l2ad_spa = spa;
4949	adddev->l2ad_vdev = vd;
4950	adddev->l2ad_write = l2arc_write_max;
4951	adddev->l2ad_boost = l2arc_write_boost;
4952	adddev->l2ad_start = start;
4953	adddev->l2ad_end = end;
4954	adddev->l2ad_hand = adddev->l2ad_start;
4955	adddev->l2ad_evict = adddev->l2ad_start;
4956	adddev->l2ad_first = B_TRUE;
4957	adddev->l2ad_writing = B_FALSE;
4958	ASSERT3U(adddev->l2ad_write, >, 0);
4959
4960	/*
4961	 * This is a list of all ARC buffers that are still valid on the
4962	 * device.
4963	 */
4964	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4965	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4966	    offsetof(arc_buf_hdr_t, b_l2node));
4967
4968	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4969
4970	/*
4971	 * Add device to global list
4972	 */
4973	mutex_enter(&l2arc_dev_mtx);
4974	list_insert_head(l2arc_dev_list, adddev);
4975	atomic_inc_64(&l2arc_ndev);
4976	mutex_exit(&l2arc_dev_mtx);
4977}
4978
4979/*
4980 * Remove a vdev from the L2ARC.
4981 */
4982void
4983l2arc_remove_vdev(vdev_t *vd)
4984{
4985	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4986
4987	/*
4988	 * Find the device by vdev
4989	 */
4990	mutex_enter(&l2arc_dev_mtx);
4991	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4992		nextdev = list_next(l2arc_dev_list, dev);
4993		if (vd == dev->l2ad_vdev) {
4994			remdev = dev;
4995			break;
4996		}
4997	}
4998	ASSERT(remdev != NULL);
4999
5000	/*
5001	 * Remove device from global list
5002	 */
5003	list_remove(l2arc_dev_list, remdev);
5004	l2arc_dev_last = NULL;		/* may have been invalidated */
5005	atomic_dec_64(&l2arc_ndev);
5006	mutex_exit(&l2arc_dev_mtx);
5007
5008	/*
5009	 * Clear all buflists and ARC references.  L2ARC device flush.
5010	 */
5011	l2arc_evict(remdev, 0, B_TRUE);
5012	list_destroy(remdev->l2ad_buflist);
5013	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5014	kmem_free(remdev, sizeof (l2arc_dev_t));
5015}
5016
5017void
5018l2arc_init(void)
5019{
5020	l2arc_thread_exit = 0;
5021	l2arc_ndev = 0;
5022	l2arc_writes_sent = 0;
5023	l2arc_writes_done = 0;
5024
5025	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5026	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5027	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5028	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5029	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5030
5031	l2arc_dev_list = &L2ARC_dev_list;
5032	l2arc_free_on_write = &L2ARC_free_on_write;
5033	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5034	    offsetof(l2arc_dev_t, l2ad_node));
5035	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5036	    offsetof(l2arc_data_free_t, l2df_list_node));
5037}
5038
5039void
5040l2arc_fini(void)
5041{
5042	/*
5043	 * This is called from dmu_fini(), which is called from spa_fini();
5044	 * Because of this, we can assume that all l2arc devices have
5045	 * already been removed when the pools themselves were removed.
5046	 */
5047
5048	l2arc_do_free_on_write();
5049
5050	mutex_destroy(&l2arc_feed_thr_lock);
5051	cv_destroy(&l2arc_feed_thr_cv);
5052	mutex_destroy(&l2arc_dev_mtx);
5053	mutex_destroy(&l2arc_buflist_mtx);
5054	mutex_destroy(&l2arc_free_on_write_mtx);
5055
5056	list_destroy(l2arc_dev_list);
5057	list_destroy(l2arc_free_on_write);
5058}
5059
5060void
5061l2arc_start(void)
5062{
5063	if (!(spa_mode_global & FWRITE))
5064		return;
5065
5066	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5067	    TS_RUN, minclsyspri);
5068}
5069
5070void
5071l2arc_stop(void)
5072{
5073	if (!(spa_mode_global & FWRITE))
5074		return;
5075
5076	mutex_enter(&l2arc_feed_thr_lock);
5077	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5078	l2arc_thread_exit = 1;
5079	while (l2arc_thread_exit != 0)
5080		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5081	mutex_exit(&l2arc_feed_thr_lock);
5082}
5083