arc.c revision 191902
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22185029Spjd * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23168404Spjd * Use is subject to license terms.
24168404Spjd */
25168404Spjd
26168404Spjd/*
27168404Spjd * DVA-based Adjustable Replacement Cache
28168404Spjd *
29168404Spjd * While much of the theory of operation used here is
30168404Spjd * based on the self-tuning, low overhead replacement cache
31168404Spjd * presented by Megiddo and Modha at FAST 2003, there are some
32168404Spjd * significant differences:
33168404Spjd *
34168404Spjd * 1. The Megiddo and Modha model assumes any page is evictable.
35168404Spjd * Pages in its cache cannot be "locked" into memory.  This makes
36168404Spjd * the eviction algorithm simple: evict the last page in the list.
37168404Spjd * This also make the performance characteristics easy to reason
38168404Spjd * about.  Our cache is not so simple.  At any given moment, some
39168404Spjd * subset of the blocks in the cache are un-evictable because we
40168404Spjd * have handed out a reference to them.  Blocks are only evictable
41168404Spjd * when there are no external references active.  This makes
42168404Spjd * eviction far more problematic:  we choose to evict the evictable
43168404Spjd * blocks that are the "lowest" in the list.
44168404Spjd *
45168404Spjd * There are times when it is not possible to evict the requested
46168404Spjd * space.  In these circumstances we are unable to adjust the cache
47168404Spjd * size.  To prevent the cache growing unbounded at these times we
48185029Spjd * implement a "cache throttle" that slows the flow of new data
49185029Spjd * into the cache until we can make space available.
50168404Spjd *
51168404Spjd * 2. The Megiddo and Modha model assumes a fixed cache size.
52168404Spjd * Pages are evicted when the cache is full and there is a cache
53168404Spjd * miss.  Our model has a variable sized cache.  It grows with
54185029Spjd * high use, but also tries to react to memory pressure from the
55168404Spjd * operating system: decreasing its size when system memory is
56168404Spjd * tight.
57168404Spjd *
58168404Spjd * 3. The Megiddo and Modha model assumes a fixed page size. All
59168404Spjd * elements of the cache are therefor exactly the same size.  So
60168404Spjd * when adjusting the cache size following a cache miss, its simply
61168404Spjd * a matter of choosing a single page to evict.  In our model, we
62168404Spjd * have variable sized cache blocks (rangeing from 512 bytes to
63168404Spjd * 128K bytes).  We therefor choose a set of blocks to evict to make
64168404Spjd * space for a cache miss that approximates as closely as possible
65168404Spjd * the space used by the new block.
66168404Spjd *
67168404Spjd * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68168404Spjd * by N. Megiddo & D. Modha, FAST 2003
69168404Spjd */
70168404Spjd
71168404Spjd/*
72168404Spjd * The locking model:
73168404Spjd *
74168404Spjd * A new reference to a cache buffer can be obtained in two
75168404Spjd * ways: 1) via a hash table lookup using the DVA as a key,
76185029Spjd * or 2) via one of the ARC lists.  The arc_read() interface
77168404Spjd * uses method 1, while the internal arc algorithms for
78168404Spjd * adjusting the cache use method 2.  We therefor provide two
79168404Spjd * types of locks: 1) the hash table lock array, and 2) the
80168404Spjd * arc list locks.
81168404Spjd *
82168404Spjd * Buffers do not have their own mutexs, rather they rely on the
83168404Spjd * hash table mutexs for the bulk of their protection (i.e. most
84168404Spjd * fields in the arc_buf_hdr_t are protected by these mutexs).
85168404Spjd *
86168404Spjd * buf_hash_find() returns the appropriate mutex (held) when it
87168404Spjd * locates the requested buffer in the hash table.  It returns
88168404Spjd * NULL for the mutex if the buffer was not in the table.
89168404Spjd *
90168404Spjd * buf_hash_remove() expects the appropriate hash mutex to be
91168404Spjd * already held before it is invoked.
92168404Spjd *
93168404Spjd * Each arc state also has a mutex which is used to protect the
94168404Spjd * buffer list associated with the state.  When attempting to
95168404Spjd * obtain a hash table lock while holding an arc list lock you
96168404Spjd * must use: mutex_tryenter() to avoid deadlock.  Also note that
97168404Spjd * the active state mutex must be held before the ghost state mutex.
98168404Spjd *
99168404Spjd * Arc buffers may have an associated eviction callback function.
100168404Spjd * This function will be invoked prior to removing the buffer (e.g.
101168404Spjd * in arc_do_user_evicts()).  Note however that the data associated
102168404Spjd * with the buffer may be evicted prior to the callback.  The callback
103168404Spjd * must be made with *no locks held* (to prevent deadlock).  Additionally,
104168404Spjd * the users of callbacks must ensure that their private data is
105168404Spjd * protected from simultaneous callbacks from arc_buf_evict()
106168404Spjd * and arc_do_user_evicts().
107168404Spjd *
108168404Spjd * Note that the majority of the performance stats are manipulated
109168404Spjd * with atomic operations.
110185029Spjd *
111185029Spjd * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112185029Spjd *
113185029Spjd *	- L2ARC buflist creation
114185029Spjd *	- L2ARC buflist eviction
115185029Spjd *	- L2ARC write completion, which walks L2ARC buflists
116185029Spjd *	- ARC header destruction, as it removes from L2ARC buflists
117185029Spjd *	- ARC header release, as it removes from L2ARC buflists
118168404Spjd */
119168404Spjd
120168404Spjd#include <sys/spa.h>
121168404Spjd#include <sys/zio.h>
122168404Spjd#include <sys/zio_checksum.h>
123168404Spjd#include <sys/zfs_context.h>
124168404Spjd#include <sys/arc.h>
125168404Spjd#include <sys/refcount.h>
126185029Spjd#include <sys/vdev.h>
127168404Spjd#ifdef _KERNEL
128168404Spjd#include <sys/dnlc.h>
129168404Spjd#endif
130168404Spjd#include <sys/callb.h>
131168404Spjd#include <sys/kstat.h>
132168404Spjd#include <sys/sdt.h>
133168404Spjd
134191902Skmacy#include <vm/vm_pageout.h>
135191902Skmacy
136168404Spjdstatic kmutex_t		arc_reclaim_thr_lock;
137168404Spjdstatic kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
138168404Spjdstatic uint8_t		arc_thread_exit;
139168404Spjd
140185029Spjdextern int zfs_write_limit_shift;
141185029Spjdextern uint64_t zfs_write_limit_max;
142185029Spjdextern kmutex_t zfs_write_limit_lock;
143185029Spjd
144168404Spjd#define	ARC_REDUCE_DNLC_PERCENT	3
145168404Spjduint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146168404Spjd
147168404Spjdtypedef enum arc_reclaim_strategy {
148168404Spjd	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
149168404Spjd	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
150168404Spjd} arc_reclaim_strategy_t;
151168404Spjd
152168404Spjd/* number of seconds before growing cache again */
153168404Spjdstatic int		arc_grow_retry = 60;
154168404Spjd
155168404Spjd/*
156168404Spjd * minimum lifespan of a prefetch block in clock ticks
157168404Spjd * (initialized in arc_init())
158168404Spjd */
159168404Spjdstatic int		arc_min_prefetch_lifespan;
160168404Spjd
161168404Spjdstatic int arc_dead;
162168404Spjd
163168404Spjd/*
164185029Spjd * The arc has filled available memory and has now warmed up.
165185029Spjd */
166185029Spjdstatic boolean_t arc_warm;
167185029Spjd
168185029Spjd/*
169168404Spjd * These tunables are for performance analysis.
170168404Spjd */
171185029Spjduint64_t zfs_arc_max;
172185029Spjduint64_t zfs_arc_min;
173185029Spjduint64_t zfs_arc_meta_limit = 0;
174185029Spjdint zfs_mdcomp_disable = 0;
175185029Spjd
176185029SpjdTUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
177185029SpjdTUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
178185029SpjdTUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
179185029SpjdTUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
180168473SpjdSYSCTL_DECL(_vfs_zfs);
181185029SpjdSYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
182168473Spjd    "Maximum ARC size");
183185029SpjdSYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
184168473Spjd    "Minimum ARC size");
185185029SpjdSYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RDTUN,
186185029Spjd    &zfs_mdcomp_disable, 0, "Disable metadata compression");
187168404Spjd
188168404Spjd/*
189185029Spjd * Note that buffers can be in one of 6 states:
190168404Spjd *	ARC_anon	- anonymous (discussed below)
191168404Spjd *	ARC_mru		- recently used, currently cached
192168404Spjd *	ARC_mru_ghost	- recentely used, no longer in cache
193168404Spjd *	ARC_mfu		- frequently used, currently cached
194168404Spjd *	ARC_mfu_ghost	- frequently used, no longer in cache
195185029Spjd *	ARC_l2c_only	- exists in L2ARC but not other states
196185029Spjd * When there are no active references to the buffer, they are
197185029Spjd * are linked onto a list in one of these arc states.  These are
198185029Spjd * the only buffers that can be evicted or deleted.  Within each
199185029Spjd * state there are multiple lists, one for meta-data and one for
200185029Spjd * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
201185029Spjd * etc.) is tracked separately so that it can be managed more
202185029Spjd * explicitly: favored over data, limited explicitly.
203168404Spjd *
204168404Spjd * Anonymous buffers are buffers that are not associated with
205168404Spjd * a DVA.  These are buffers that hold dirty block copies
206168404Spjd * before they are written to stable storage.  By definition,
207168404Spjd * they are "ref'd" and are considered part of arc_mru
208168404Spjd * that cannot be freed.  Generally, they will aquire a DVA
209168404Spjd * as they are written and migrate onto the arc_mru list.
210185029Spjd *
211185029Spjd * The ARC_l2c_only state is for buffers that are in the second
212185029Spjd * level ARC but no longer in any of the ARC_m* lists.  The second
213185029Spjd * level ARC itself may also contain buffers that are in any of
214185029Spjd * the ARC_m* states - meaning that a buffer can exist in two
215185029Spjd * places.  The reason for the ARC_l2c_only state is to keep the
216185029Spjd * buffer header in the hash table, so that reads that hit the
217185029Spjd * second level ARC benefit from these fast lookups.
218168404Spjd */
219168404Spjd
220168404Spjdtypedef struct arc_state {
221185029Spjd	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
222185029Spjd	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
223185029Spjd	uint64_t arcs_size;	/* total amount of data in this state */
224168404Spjd	kmutex_t arcs_mtx;
225168404Spjd} arc_state_t;
226168404Spjd
227185029Spjd/* The 6 states: */
228168404Spjdstatic arc_state_t ARC_anon;
229168404Spjdstatic arc_state_t ARC_mru;
230168404Spjdstatic arc_state_t ARC_mru_ghost;
231168404Spjdstatic arc_state_t ARC_mfu;
232168404Spjdstatic arc_state_t ARC_mfu_ghost;
233185029Spjdstatic arc_state_t ARC_l2c_only;
234168404Spjd
235168404Spjdtypedef struct arc_stats {
236168404Spjd	kstat_named_t arcstat_hits;
237168404Spjd	kstat_named_t arcstat_misses;
238168404Spjd	kstat_named_t arcstat_demand_data_hits;
239168404Spjd	kstat_named_t arcstat_demand_data_misses;
240168404Spjd	kstat_named_t arcstat_demand_metadata_hits;
241168404Spjd	kstat_named_t arcstat_demand_metadata_misses;
242168404Spjd	kstat_named_t arcstat_prefetch_data_hits;
243168404Spjd	kstat_named_t arcstat_prefetch_data_misses;
244168404Spjd	kstat_named_t arcstat_prefetch_metadata_hits;
245168404Spjd	kstat_named_t arcstat_prefetch_metadata_misses;
246168404Spjd	kstat_named_t arcstat_mru_hits;
247168404Spjd	kstat_named_t arcstat_mru_ghost_hits;
248168404Spjd	kstat_named_t arcstat_mfu_hits;
249168404Spjd	kstat_named_t arcstat_mfu_ghost_hits;
250168404Spjd	kstat_named_t arcstat_deleted;
251168404Spjd	kstat_named_t arcstat_recycle_miss;
252168404Spjd	kstat_named_t arcstat_mutex_miss;
253168404Spjd	kstat_named_t arcstat_evict_skip;
254168404Spjd	kstat_named_t arcstat_hash_elements;
255168404Spjd	kstat_named_t arcstat_hash_elements_max;
256168404Spjd	kstat_named_t arcstat_hash_collisions;
257168404Spjd	kstat_named_t arcstat_hash_chains;
258168404Spjd	kstat_named_t arcstat_hash_chain_max;
259168404Spjd	kstat_named_t arcstat_p;
260168404Spjd	kstat_named_t arcstat_c;
261168404Spjd	kstat_named_t arcstat_c_min;
262168404Spjd	kstat_named_t arcstat_c_max;
263168404Spjd	kstat_named_t arcstat_size;
264185029Spjd	kstat_named_t arcstat_hdr_size;
265185029Spjd	kstat_named_t arcstat_l2_hits;
266185029Spjd	kstat_named_t arcstat_l2_misses;
267185029Spjd	kstat_named_t arcstat_l2_feeds;
268185029Spjd	kstat_named_t arcstat_l2_rw_clash;
269185029Spjd	kstat_named_t arcstat_l2_writes_sent;
270185029Spjd	kstat_named_t arcstat_l2_writes_done;
271185029Spjd	kstat_named_t arcstat_l2_writes_error;
272185029Spjd	kstat_named_t arcstat_l2_writes_hdr_miss;
273185029Spjd	kstat_named_t arcstat_l2_evict_lock_retry;
274185029Spjd	kstat_named_t arcstat_l2_evict_reading;
275185029Spjd	kstat_named_t arcstat_l2_free_on_write;
276185029Spjd	kstat_named_t arcstat_l2_abort_lowmem;
277185029Spjd	kstat_named_t arcstat_l2_cksum_bad;
278185029Spjd	kstat_named_t arcstat_l2_io_error;
279185029Spjd	kstat_named_t arcstat_l2_size;
280185029Spjd	kstat_named_t arcstat_l2_hdr_size;
281185029Spjd	kstat_named_t arcstat_memory_throttle_count;
282168404Spjd} arc_stats_t;
283168404Spjd
284168404Spjdstatic arc_stats_t arc_stats = {
285168404Spjd	{ "hits",			KSTAT_DATA_UINT64 },
286168404Spjd	{ "misses",			KSTAT_DATA_UINT64 },
287168404Spjd	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
288168404Spjd	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
289168404Spjd	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
290168404Spjd	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
291168404Spjd	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
292168404Spjd	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
293168404Spjd	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
294168404Spjd	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
295168404Spjd	{ "mru_hits",			KSTAT_DATA_UINT64 },
296168404Spjd	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
297168404Spjd	{ "mfu_hits",			KSTAT_DATA_UINT64 },
298168404Spjd	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
299168404Spjd	{ "deleted",			KSTAT_DATA_UINT64 },
300168404Spjd	{ "recycle_miss",		KSTAT_DATA_UINT64 },
301168404Spjd	{ "mutex_miss",			KSTAT_DATA_UINT64 },
302168404Spjd	{ "evict_skip",			KSTAT_DATA_UINT64 },
303168404Spjd	{ "hash_elements",		KSTAT_DATA_UINT64 },
304168404Spjd	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
305168404Spjd	{ "hash_collisions",		KSTAT_DATA_UINT64 },
306168404Spjd	{ "hash_chains",		KSTAT_DATA_UINT64 },
307168404Spjd	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
308168404Spjd	{ "p",				KSTAT_DATA_UINT64 },
309168404Spjd	{ "c",				KSTAT_DATA_UINT64 },
310168404Spjd	{ "c_min",			KSTAT_DATA_UINT64 },
311168404Spjd	{ "c_max",			KSTAT_DATA_UINT64 },
312185029Spjd	{ "size",			KSTAT_DATA_UINT64 },
313185029Spjd	{ "hdr_size",			KSTAT_DATA_UINT64 },
314185029Spjd	{ "l2_hits",			KSTAT_DATA_UINT64 },
315185029Spjd	{ "l2_misses",			KSTAT_DATA_UINT64 },
316185029Spjd	{ "l2_feeds",			KSTAT_DATA_UINT64 },
317185029Spjd	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
318185029Spjd	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
319185029Spjd	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
320185029Spjd	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
321185029Spjd	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
322185029Spjd	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
323185029Spjd	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
324185029Spjd	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
325185029Spjd	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
326185029Spjd	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
327185029Spjd	{ "l2_io_error",		KSTAT_DATA_UINT64 },
328185029Spjd	{ "l2_size",			KSTAT_DATA_UINT64 },
329185029Spjd	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
330185029Spjd	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
331168404Spjd};
332168404Spjd
333168404Spjd#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
334168404Spjd
335168404Spjd#define	ARCSTAT_INCR(stat, val) \
336168404Spjd	atomic_add_64(&arc_stats.stat.value.ui64, (val));
337168404Spjd
338168404Spjd#define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
339168404Spjd#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
340168404Spjd
341168404Spjd#define	ARCSTAT_MAX(stat, val) {					\
342168404Spjd	uint64_t m;							\
343168404Spjd	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
344168404Spjd	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
345168404Spjd		continue;						\
346168404Spjd}
347168404Spjd
348168404Spjd#define	ARCSTAT_MAXSTAT(stat) \
349168404Spjd	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
350168404Spjd
351168404Spjd/*
352168404Spjd * We define a macro to allow ARC hits/misses to be easily broken down by
353168404Spjd * two separate conditions, giving a total of four different subtypes for
354168404Spjd * each of hits and misses (so eight statistics total).
355168404Spjd */
356168404Spjd#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
357168404Spjd	if (cond1) {							\
358168404Spjd		if (cond2) {						\
359168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
360168404Spjd		} else {						\
361168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
362168404Spjd		}							\
363168404Spjd	} else {							\
364168404Spjd		if (cond2) {						\
365168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
366168404Spjd		} else {						\
367168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
368168404Spjd		}							\
369168404Spjd	}
370168404Spjd
371168404Spjdkstat_t			*arc_ksp;
372168404Spjdstatic arc_state_t 	*arc_anon;
373168404Spjdstatic arc_state_t	*arc_mru;
374168404Spjdstatic arc_state_t	*arc_mru_ghost;
375168404Spjdstatic arc_state_t	*arc_mfu;
376168404Spjdstatic arc_state_t	*arc_mfu_ghost;
377185029Spjdstatic arc_state_t	*arc_l2c_only;
378168404Spjd
379168404Spjd/*
380168404Spjd * There are several ARC variables that are critical to export as kstats --
381168404Spjd * but we don't want to have to grovel around in the kstat whenever we wish to
382168404Spjd * manipulate them.  For these variables, we therefore define them to be in
383168404Spjd * terms of the statistic variable.  This assures that we are not introducing
384168404Spjd * the possibility of inconsistency by having shadow copies of the variables,
385168404Spjd * while still allowing the code to be readable.
386168404Spjd */
387168404Spjd#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
388168404Spjd#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
389168404Spjd#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
390168404Spjd#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
391168404Spjd#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
392168404Spjd
393168404Spjdstatic int		arc_no_grow;	/* Don't try to grow cache size */
394168404Spjdstatic uint64_t		arc_tempreserve;
395185029Spjdstatic uint64_t		arc_meta_used;
396185029Spjdstatic uint64_t		arc_meta_limit;
397185029Spjdstatic uint64_t		arc_meta_max = 0;
398185029SpjdSYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RDTUN,
399185029Spjd    &arc_meta_used, 0, "ARC metadata used");
400185029SpjdSYSCTL_QUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RDTUN,
401185029Spjd    &arc_meta_limit, 0, "ARC metadata limit");
402168404Spjd
403185029Spjdtypedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
404185029Spjd
405168404Spjdtypedef struct arc_callback arc_callback_t;
406168404Spjd
407168404Spjdstruct arc_callback {
408168404Spjd	void			*acb_private;
409168404Spjd	arc_done_func_t		*acb_done;
410168404Spjd	arc_buf_t		*acb_buf;
411168404Spjd	zio_t			*acb_zio_dummy;
412168404Spjd	arc_callback_t		*acb_next;
413168404Spjd};
414168404Spjd
415168404Spjdtypedef struct arc_write_callback arc_write_callback_t;
416168404Spjd
417168404Spjdstruct arc_write_callback {
418168404Spjd	void		*awcb_private;
419168404Spjd	arc_done_func_t	*awcb_ready;
420168404Spjd	arc_done_func_t	*awcb_done;
421168404Spjd	arc_buf_t	*awcb_buf;
422168404Spjd};
423168404Spjd
424168404Spjdstruct arc_buf_hdr {
425168404Spjd	/* protected by hash lock */
426168404Spjd	dva_t			b_dva;
427168404Spjd	uint64_t		b_birth;
428168404Spjd	uint64_t		b_cksum0;
429168404Spjd
430168404Spjd	kmutex_t		b_freeze_lock;
431168404Spjd	zio_cksum_t		*b_freeze_cksum;
432168404Spjd
433168404Spjd	arc_buf_hdr_t		*b_hash_next;
434168404Spjd	arc_buf_t		*b_buf;
435168404Spjd	uint32_t		b_flags;
436168404Spjd	uint32_t		b_datacnt;
437168404Spjd
438168404Spjd	arc_callback_t		*b_acb;
439168404Spjd	kcondvar_t		b_cv;
440168404Spjd
441168404Spjd	/* immutable */
442168404Spjd	arc_buf_contents_t	b_type;
443168404Spjd	uint64_t		b_size;
444168404Spjd	spa_t			*b_spa;
445168404Spjd
446168404Spjd	/* protected by arc state mutex */
447168404Spjd	arc_state_t		*b_state;
448168404Spjd	list_node_t		b_arc_node;
449168404Spjd
450168404Spjd	/* updated atomically */
451168404Spjd	clock_t			b_arc_access;
452168404Spjd
453168404Spjd	/* self protecting */
454168404Spjd	refcount_t		b_refcnt;
455185029Spjd
456185029Spjd	l2arc_buf_hdr_t		*b_l2hdr;
457185029Spjd	list_node_t		b_l2node;
458168404Spjd};
459168404Spjd
460168404Spjdstatic arc_buf_t *arc_eviction_list;
461168404Spjdstatic kmutex_t arc_eviction_mtx;
462168404Spjdstatic arc_buf_hdr_t arc_eviction_hdr;
463168404Spjdstatic void arc_get_data_buf(arc_buf_t *buf);
464168404Spjdstatic void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
465185029Spjdstatic int arc_evict_needed(arc_buf_contents_t type);
466185029Spjdstatic void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
467168404Spjd
468168404Spjd#define	GHOST_STATE(state)	\
469185029Spjd	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
470185029Spjd	(state) == arc_l2c_only)
471168404Spjd
472168404Spjd/*
473168404Spjd * Private ARC flags.  These flags are private ARC only flags that will show up
474168404Spjd * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
475168404Spjd * be passed in as arc_flags in things like arc_read.  However, these flags
476168404Spjd * should never be passed and should only be set by ARC code.  When adding new
477168404Spjd * public flags, make sure not to smash the private ones.
478168404Spjd */
479168404Spjd
480168404Spjd#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
481168404Spjd#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
482168404Spjd#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
483168404Spjd#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
484168404Spjd#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
485168404Spjd#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
486185029Spjd#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
487185029Spjd#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
488185029Spjd#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
489185029Spjd#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
490185029Spjd#define	ARC_STORED		(1 << 19)	/* has been store()d to */
491168404Spjd
492168404Spjd#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
493168404Spjd#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
494168404Spjd#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
495168404Spjd#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
496168404Spjd#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
497185029Spjd#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
498185029Spjd#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
499185029Spjd#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
500185029Spjd				    (hdr)->b_l2hdr != NULL)
501185029Spjd#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
502185029Spjd#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
503185029Spjd#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
504168404Spjd
505168404Spjd/*
506185029Spjd * Other sizes
507185029Spjd */
508185029Spjd
509185029Spjd#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
510185029Spjd#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
511185029Spjd
512185029Spjd/*
513168404Spjd * Hash table routines
514168404Spjd */
515168404Spjd
516168404Spjd#define	HT_LOCK_PAD	128
517168404Spjd
518168404Spjdstruct ht_lock {
519168404Spjd	kmutex_t	ht_lock;
520168404Spjd#ifdef _KERNEL
521168404Spjd	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
522168404Spjd#endif
523168404Spjd};
524168404Spjd
525168404Spjd#define	BUF_LOCKS 256
526168404Spjdtypedef struct buf_hash_table {
527168404Spjd	uint64_t ht_mask;
528168404Spjd	arc_buf_hdr_t **ht_table;
529168404Spjd	struct ht_lock ht_locks[BUF_LOCKS];
530168404Spjd} buf_hash_table_t;
531168404Spjd
532168404Spjdstatic buf_hash_table_t buf_hash_table;
533168404Spjd
534168404Spjd#define	BUF_HASH_INDEX(spa, dva, birth) \
535168404Spjd	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
536168404Spjd#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
537168404Spjd#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
538168404Spjd#define	HDR_LOCK(buf) \
539168404Spjd	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
540168404Spjd
541168404Spjduint64_t zfs_crc64_table[256];
542168404Spjd
543185029Spjd/*
544185029Spjd * Level 2 ARC
545185029Spjd */
546185029Spjd
547185029Spjd#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
548185029Spjd#define	L2ARC_HEADROOM		4		/* num of writes */
549185029Spjd#define	L2ARC_FEED_SECS		1		/* caching interval */
550185029Spjd
551185029Spjd#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
552185029Spjd#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
553185029Spjd
554185029Spjd/*
555185029Spjd * L2ARC Performance Tunables
556185029Spjd */
557185029Spjduint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
558185029Spjduint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
559185029Spjduint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
560185029Spjduint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
561185029Spjdboolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
562185029Spjd
563185029Spjd/*
564185029Spjd * L2ARC Internals
565185029Spjd */
566185029Spjdtypedef struct l2arc_dev {
567185029Spjd	vdev_t			*l2ad_vdev;	/* vdev */
568185029Spjd	spa_t			*l2ad_spa;	/* spa */
569185029Spjd	uint64_t		l2ad_hand;	/* next write location */
570185029Spjd	uint64_t		l2ad_write;	/* desired write size, bytes */
571185029Spjd	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
572185029Spjd	uint64_t		l2ad_start;	/* first addr on device */
573185029Spjd	uint64_t		l2ad_end;	/* last addr on device */
574185029Spjd	uint64_t		l2ad_evict;	/* last addr eviction reached */
575185029Spjd	boolean_t		l2ad_first;	/* first sweep through */
576185029Spjd	list_t			*l2ad_buflist;	/* buffer list */
577185029Spjd	list_node_t		l2ad_node;	/* device list node */
578185029Spjd} l2arc_dev_t;
579185029Spjd
580185029Spjdstatic list_t L2ARC_dev_list;			/* device list */
581185029Spjdstatic list_t *l2arc_dev_list;			/* device list pointer */
582185029Spjdstatic kmutex_t l2arc_dev_mtx;			/* device list mutex */
583185029Spjdstatic l2arc_dev_t *l2arc_dev_last;		/* last device used */
584185029Spjdstatic kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
585185029Spjdstatic list_t L2ARC_free_on_write;		/* free after write buf list */
586185029Spjdstatic list_t *l2arc_free_on_write;		/* free after write list ptr */
587185029Spjdstatic kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
588185029Spjdstatic uint64_t l2arc_ndev;			/* number of devices */
589185029Spjd
590185029Spjdtypedef struct l2arc_read_callback {
591185029Spjd	arc_buf_t	*l2rcb_buf;		/* read buffer */
592185029Spjd	spa_t		*l2rcb_spa;		/* spa */
593185029Spjd	blkptr_t	l2rcb_bp;		/* original blkptr */
594185029Spjd	zbookmark_t	l2rcb_zb;		/* original bookmark */
595185029Spjd	int		l2rcb_flags;		/* original flags */
596185029Spjd} l2arc_read_callback_t;
597185029Spjd
598185029Spjdtypedef struct l2arc_write_callback {
599185029Spjd	l2arc_dev_t	*l2wcb_dev;		/* device info */
600185029Spjd	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
601185029Spjd} l2arc_write_callback_t;
602185029Spjd
603185029Spjdstruct l2arc_buf_hdr {
604185029Spjd	/* protected by arc_buf_hdr  mutex */
605185029Spjd	l2arc_dev_t	*b_dev;			/* L2ARC device */
606185029Spjd	daddr_t		b_daddr;		/* disk address, offset byte */
607185029Spjd};
608185029Spjd
609185029Spjdtypedef struct l2arc_data_free {
610185029Spjd	/* protected by l2arc_free_on_write_mtx */
611185029Spjd	void		*l2df_data;
612185029Spjd	size_t		l2df_size;
613185029Spjd	void		(*l2df_func)(void *, size_t);
614185029Spjd	list_node_t	l2df_list_node;
615185029Spjd} l2arc_data_free_t;
616185029Spjd
617185029Spjdstatic kmutex_t l2arc_feed_thr_lock;
618185029Spjdstatic kcondvar_t l2arc_feed_thr_cv;
619185029Spjdstatic uint8_t l2arc_thread_exit;
620185029Spjd
621185029Spjdstatic void l2arc_read_done(zio_t *zio);
622185029Spjdstatic void l2arc_hdr_stat_add(void);
623185029Spjdstatic void l2arc_hdr_stat_remove(void);
624185029Spjd
625168404Spjdstatic uint64_t
626185029Spjdbuf_hash(spa_t *spa, const dva_t *dva, uint64_t birth)
627168404Spjd{
628168404Spjd	uintptr_t spav = (uintptr_t)spa;
629168404Spjd	uint8_t *vdva = (uint8_t *)dva;
630168404Spjd	uint64_t crc = -1ULL;
631168404Spjd	int i;
632168404Spjd
633168404Spjd	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
634168404Spjd
635168404Spjd	for (i = 0; i < sizeof (dva_t); i++)
636168404Spjd		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
637168404Spjd
638168404Spjd	crc ^= (spav>>8) ^ birth;
639168404Spjd
640168404Spjd	return (crc);
641168404Spjd}
642168404Spjd
643168404Spjd#define	BUF_EMPTY(buf)						\
644168404Spjd	((buf)->b_dva.dva_word[0] == 0 &&			\
645168404Spjd	(buf)->b_dva.dva_word[1] == 0 &&			\
646168404Spjd	(buf)->b_birth == 0)
647168404Spjd
648168404Spjd#define	BUF_EQUAL(spa, dva, birth, buf)				\
649168404Spjd	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
650168404Spjd	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
651168404Spjd	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
652168404Spjd
653168404Spjdstatic arc_buf_hdr_t *
654185029Spjdbuf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
655168404Spjd{
656168404Spjd	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
657168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
658168404Spjd	arc_buf_hdr_t *buf;
659168404Spjd
660168404Spjd	mutex_enter(hash_lock);
661168404Spjd	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
662168404Spjd	    buf = buf->b_hash_next) {
663168404Spjd		if (BUF_EQUAL(spa, dva, birth, buf)) {
664168404Spjd			*lockp = hash_lock;
665168404Spjd			return (buf);
666168404Spjd		}
667168404Spjd	}
668168404Spjd	mutex_exit(hash_lock);
669168404Spjd	*lockp = NULL;
670168404Spjd	return (NULL);
671168404Spjd}
672168404Spjd
673168404Spjd/*
674168404Spjd * Insert an entry into the hash table.  If there is already an element
675168404Spjd * equal to elem in the hash table, then the already existing element
676168404Spjd * will be returned and the new element will not be inserted.
677168404Spjd * Otherwise returns NULL.
678168404Spjd */
679168404Spjdstatic arc_buf_hdr_t *
680168404Spjdbuf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
681168404Spjd{
682168404Spjd	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
683168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
684168404Spjd	arc_buf_hdr_t *fbuf;
685168404Spjd	uint32_t i;
686168404Spjd
687168404Spjd	ASSERT(!HDR_IN_HASH_TABLE(buf));
688168404Spjd	*lockp = hash_lock;
689168404Spjd	mutex_enter(hash_lock);
690168404Spjd	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
691168404Spjd	    fbuf = fbuf->b_hash_next, i++) {
692168404Spjd		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
693168404Spjd			return (fbuf);
694168404Spjd	}
695168404Spjd
696168404Spjd	buf->b_hash_next = buf_hash_table.ht_table[idx];
697168404Spjd	buf_hash_table.ht_table[idx] = buf;
698168404Spjd	buf->b_flags |= ARC_IN_HASH_TABLE;
699168404Spjd
700168404Spjd	/* collect some hash table performance data */
701168404Spjd	if (i > 0) {
702168404Spjd		ARCSTAT_BUMP(arcstat_hash_collisions);
703168404Spjd		if (i == 1)
704168404Spjd			ARCSTAT_BUMP(arcstat_hash_chains);
705168404Spjd
706168404Spjd		ARCSTAT_MAX(arcstat_hash_chain_max, i);
707168404Spjd	}
708168404Spjd
709168404Spjd	ARCSTAT_BUMP(arcstat_hash_elements);
710168404Spjd	ARCSTAT_MAXSTAT(arcstat_hash_elements);
711168404Spjd
712168404Spjd	return (NULL);
713168404Spjd}
714168404Spjd
715168404Spjdstatic void
716168404Spjdbuf_hash_remove(arc_buf_hdr_t *buf)
717168404Spjd{
718168404Spjd	arc_buf_hdr_t *fbuf, **bufp;
719168404Spjd	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
720168404Spjd
721168404Spjd	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
722168404Spjd	ASSERT(HDR_IN_HASH_TABLE(buf));
723168404Spjd
724168404Spjd	bufp = &buf_hash_table.ht_table[idx];
725168404Spjd	while ((fbuf = *bufp) != buf) {
726168404Spjd		ASSERT(fbuf != NULL);
727168404Spjd		bufp = &fbuf->b_hash_next;
728168404Spjd	}
729168404Spjd	*bufp = buf->b_hash_next;
730168404Spjd	buf->b_hash_next = NULL;
731168404Spjd	buf->b_flags &= ~ARC_IN_HASH_TABLE;
732168404Spjd
733168404Spjd	/* collect some hash table performance data */
734168404Spjd	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
735168404Spjd
736168404Spjd	if (buf_hash_table.ht_table[idx] &&
737168404Spjd	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
738168404Spjd		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
739168404Spjd}
740168404Spjd
741168404Spjd/*
742168404Spjd * Global data structures and functions for the buf kmem cache.
743168404Spjd */
744168404Spjdstatic kmem_cache_t *hdr_cache;
745168404Spjdstatic kmem_cache_t *buf_cache;
746168404Spjd
747168404Spjdstatic void
748168404Spjdbuf_fini(void)
749168404Spjd{
750168404Spjd	int i;
751168404Spjd
752168404Spjd	kmem_free(buf_hash_table.ht_table,
753168404Spjd	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
754168404Spjd	for (i = 0; i < BUF_LOCKS; i++)
755168404Spjd		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
756168404Spjd	kmem_cache_destroy(hdr_cache);
757168404Spjd	kmem_cache_destroy(buf_cache);
758168404Spjd}
759168404Spjd
760168404Spjd/*
761168404Spjd * Constructor callback - called when the cache is empty
762168404Spjd * and a new buf is requested.
763168404Spjd */
764168404Spjd/* ARGSUSED */
765168404Spjdstatic int
766168404Spjdhdr_cons(void *vbuf, void *unused, int kmflag)
767168404Spjd{
768168404Spjd	arc_buf_hdr_t *buf = vbuf;
769168404Spjd
770168404Spjd	bzero(buf, sizeof (arc_buf_hdr_t));
771168404Spjd	refcount_create(&buf->b_refcnt);
772168404Spjd	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
773185029Spjd	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
774185029Spjd
775185029Spjd	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
776168404Spjd	return (0);
777168404Spjd}
778168404Spjd
779185029Spjd/* ARGSUSED */
780185029Spjdstatic int
781185029Spjdbuf_cons(void *vbuf, void *unused, int kmflag)
782185029Spjd{
783185029Spjd	arc_buf_t *buf = vbuf;
784185029Spjd
785185029Spjd	bzero(buf, sizeof (arc_buf_t));
786185029Spjd	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
787185029Spjd	return (0);
788185029Spjd}
789185029Spjd
790168404Spjd/*
791168404Spjd * Destructor callback - called when a cached buf is
792168404Spjd * no longer required.
793168404Spjd */
794168404Spjd/* ARGSUSED */
795168404Spjdstatic void
796168404Spjdhdr_dest(void *vbuf, void *unused)
797168404Spjd{
798168404Spjd	arc_buf_hdr_t *buf = vbuf;
799168404Spjd
800168404Spjd	refcount_destroy(&buf->b_refcnt);
801168404Spjd	cv_destroy(&buf->b_cv);
802185029Spjd	mutex_destroy(&buf->b_freeze_lock);
803185029Spjd
804185029Spjd	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
805168404Spjd}
806168404Spjd
807185029Spjd/* ARGSUSED */
808185029Spjdstatic void
809185029Spjdbuf_dest(void *vbuf, void *unused)
810185029Spjd{
811185029Spjd	arc_buf_t *buf = vbuf;
812185029Spjd
813185029Spjd	rw_destroy(&buf->b_lock);
814185029Spjd}
815185029Spjd
816168404Spjd/*
817168404Spjd * Reclaim callback -- invoked when memory is low.
818168404Spjd */
819168404Spjd/* ARGSUSED */
820168404Spjdstatic void
821168404Spjdhdr_recl(void *unused)
822168404Spjd{
823168404Spjd	dprintf("hdr_recl called\n");
824168404Spjd	/*
825168404Spjd	 * umem calls the reclaim func when we destroy the buf cache,
826168404Spjd	 * which is after we do arc_fini().
827168404Spjd	 */
828168404Spjd	if (!arc_dead)
829168404Spjd		cv_signal(&arc_reclaim_thr_cv);
830168404Spjd}
831168404Spjd
832168404Spjdstatic void
833168404Spjdbuf_init(void)
834168404Spjd{
835168404Spjd	uint64_t *ct;
836168404Spjd	uint64_t hsize = 1ULL << 12;
837168404Spjd	int i, j;
838168404Spjd
839168404Spjd	/*
840168404Spjd	 * The hash table is big enough to fill all of physical memory
841168404Spjd	 * with an average 64K block size.  The table will take up
842168404Spjd	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
843168404Spjd	 */
844168696Spjd	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
845168404Spjd		hsize <<= 1;
846168404Spjdretry:
847168404Spjd	buf_hash_table.ht_mask = hsize - 1;
848168404Spjd	buf_hash_table.ht_table =
849168404Spjd	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
850168404Spjd	if (buf_hash_table.ht_table == NULL) {
851168404Spjd		ASSERT(hsize > (1ULL << 8));
852168404Spjd		hsize >>= 1;
853168404Spjd		goto retry;
854168404Spjd	}
855168404Spjd
856168404Spjd	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
857168404Spjd	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
858168404Spjd	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
859185029Spjd	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
860168404Spjd
861168404Spjd	for (i = 0; i < 256; i++)
862168404Spjd		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
863168404Spjd			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
864168404Spjd
865168404Spjd	for (i = 0; i < BUF_LOCKS; i++) {
866168404Spjd		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
867168404Spjd		    NULL, MUTEX_DEFAULT, NULL);
868168404Spjd	}
869168404Spjd}
870168404Spjd
871168404Spjd#define	ARC_MINTIME	(hz>>4) /* 62 ms */
872168404Spjd
873168404Spjdstatic void
874168404Spjdarc_cksum_verify(arc_buf_t *buf)
875168404Spjd{
876168404Spjd	zio_cksum_t zc;
877168404Spjd
878168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
879168404Spjd		return;
880168404Spjd
881168404Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
882168404Spjd	if (buf->b_hdr->b_freeze_cksum == NULL ||
883168404Spjd	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
884168404Spjd		mutex_exit(&buf->b_hdr->b_freeze_lock);
885168404Spjd		return;
886168404Spjd	}
887168404Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
888168404Spjd	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
889168404Spjd		panic("buffer modified while frozen!");
890168404Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
891168404Spjd}
892168404Spjd
893185029Spjdstatic int
894185029Spjdarc_cksum_equal(arc_buf_t *buf)
895185029Spjd{
896185029Spjd	zio_cksum_t zc;
897185029Spjd	int equal;
898185029Spjd
899185029Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
900185029Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
901185029Spjd	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
902185029Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
903185029Spjd
904185029Spjd	return (equal);
905185029Spjd}
906185029Spjd
907168404Spjdstatic void
908185029Spjdarc_cksum_compute(arc_buf_t *buf, boolean_t force)
909168404Spjd{
910185029Spjd	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
911168404Spjd		return;
912168404Spjd
913168404Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
914168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
915168404Spjd		mutex_exit(&buf->b_hdr->b_freeze_lock);
916168404Spjd		return;
917168404Spjd	}
918168404Spjd	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
919168404Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
920168404Spjd	    buf->b_hdr->b_freeze_cksum);
921168404Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
922168404Spjd}
923168404Spjd
924168404Spjdvoid
925168404Spjdarc_buf_thaw(arc_buf_t *buf)
926168404Spjd{
927185029Spjd	if (zfs_flags & ZFS_DEBUG_MODIFY) {
928185029Spjd		if (buf->b_hdr->b_state != arc_anon)
929185029Spjd			panic("modifying non-anon buffer!");
930185029Spjd		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
931185029Spjd			panic("modifying buffer while i/o in progress!");
932185029Spjd		arc_cksum_verify(buf);
933185029Spjd	}
934168404Spjd
935168404Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
936168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
937168404Spjd		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
938168404Spjd		buf->b_hdr->b_freeze_cksum = NULL;
939168404Spjd	}
940168404Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
941168404Spjd}
942168404Spjd
943168404Spjdvoid
944168404Spjdarc_buf_freeze(arc_buf_t *buf)
945168404Spjd{
946168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
947168404Spjd		return;
948168404Spjd
949168404Spjd	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
950168404Spjd	    buf->b_hdr->b_state == arc_anon);
951185029Spjd	arc_cksum_compute(buf, B_FALSE);
952168404Spjd}
953168404Spjd
954168404Spjdstatic void
955168404Spjdadd_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
956168404Spjd{
957168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
958168404Spjd
959168404Spjd	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
960168404Spjd	    (ab->b_state != arc_anon)) {
961168404Spjd		uint64_t delta = ab->b_size * ab->b_datacnt;
962185029Spjd		list_t *list = &ab->b_state->arcs_list[ab->b_type];
963185029Spjd		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
964168404Spjd
965168404Spjd		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
966168404Spjd		mutex_enter(&ab->b_state->arcs_mtx);
967168404Spjd		ASSERT(list_link_active(&ab->b_arc_node));
968185029Spjd		list_remove(list, ab);
969168404Spjd		if (GHOST_STATE(ab->b_state)) {
970168404Spjd			ASSERT3U(ab->b_datacnt, ==, 0);
971168404Spjd			ASSERT3P(ab->b_buf, ==, NULL);
972168404Spjd			delta = ab->b_size;
973168404Spjd		}
974168404Spjd		ASSERT(delta > 0);
975185029Spjd		ASSERT3U(*size, >=, delta);
976185029Spjd		atomic_add_64(size, -delta);
977168404Spjd		mutex_exit(&ab->b_state->arcs_mtx);
978185029Spjd		/* remove the prefetch flag if we get a reference */
979168404Spjd		if (ab->b_flags & ARC_PREFETCH)
980168404Spjd			ab->b_flags &= ~ARC_PREFETCH;
981168404Spjd	}
982168404Spjd}
983168404Spjd
984168404Spjdstatic int
985168404Spjdremove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
986168404Spjd{
987168404Spjd	int cnt;
988168404Spjd	arc_state_t *state = ab->b_state;
989168404Spjd
990168404Spjd	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
991168404Spjd	ASSERT(!GHOST_STATE(state));
992168404Spjd
993168404Spjd	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
994168404Spjd	    (state != arc_anon)) {
995185029Spjd		uint64_t *size = &state->arcs_lsize[ab->b_type];
996185029Spjd
997168404Spjd		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
998168404Spjd		mutex_enter(&state->arcs_mtx);
999168404Spjd		ASSERT(!list_link_active(&ab->b_arc_node));
1000185029Spjd		list_insert_head(&state->arcs_list[ab->b_type], ab);
1001168404Spjd		ASSERT(ab->b_datacnt > 0);
1002185029Spjd		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1003168404Spjd		mutex_exit(&state->arcs_mtx);
1004168404Spjd	}
1005168404Spjd	return (cnt);
1006168404Spjd}
1007168404Spjd
1008168404Spjd/*
1009168404Spjd * Move the supplied buffer to the indicated state.  The mutex
1010168404Spjd * for the buffer must be held by the caller.
1011168404Spjd */
1012168404Spjdstatic void
1013168404Spjdarc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1014168404Spjd{
1015168404Spjd	arc_state_t *old_state = ab->b_state;
1016168404Spjd	int64_t refcnt = refcount_count(&ab->b_refcnt);
1017168404Spjd	uint64_t from_delta, to_delta;
1018168404Spjd
1019168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
1020168404Spjd	ASSERT(new_state != old_state);
1021168404Spjd	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1022168404Spjd	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1023168404Spjd
1024168404Spjd	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1025168404Spjd
1026168404Spjd	/*
1027168404Spjd	 * If this buffer is evictable, transfer it from the
1028168404Spjd	 * old state list to the new state list.
1029168404Spjd	 */
1030168404Spjd	if (refcnt == 0) {
1031168404Spjd		if (old_state != arc_anon) {
1032168404Spjd			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1033185029Spjd			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1034168404Spjd
1035168404Spjd			if (use_mutex)
1036168404Spjd				mutex_enter(&old_state->arcs_mtx);
1037168404Spjd
1038168404Spjd			ASSERT(list_link_active(&ab->b_arc_node));
1039185029Spjd			list_remove(&old_state->arcs_list[ab->b_type], ab);
1040168404Spjd
1041168404Spjd			/*
1042168404Spjd			 * If prefetching out of the ghost cache,
1043168404Spjd			 * we will have a non-null datacnt.
1044168404Spjd			 */
1045168404Spjd			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1046168404Spjd				/* ghost elements have a ghost size */
1047168404Spjd				ASSERT(ab->b_buf == NULL);
1048168404Spjd				from_delta = ab->b_size;
1049168404Spjd			}
1050185029Spjd			ASSERT3U(*size, >=, from_delta);
1051185029Spjd			atomic_add_64(size, -from_delta);
1052168404Spjd
1053168404Spjd			if (use_mutex)
1054168404Spjd				mutex_exit(&old_state->arcs_mtx);
1055168404Spjd		}
1056168404Spjd		if (new_state != arc_anon) {
1057168404Spjd			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1058185029Spjd			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1059168404Spjd
1060168404Spjd			if (use_mutex)
1061168404Spjd				mutex_enter(&new_state->arcs_mtx);
1062168404Spjd
1063185029Spjd			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1064168404Spjd
1065168404Spjd			/* ghost elements have a ghost size */
1066168404Spjd			if (GHOST_STATE(new_state)) {
1067168404Spjd				ASSERT(ab->b_datacnt == 0);
1068168404Spjd				ASSERT(ab->b_buf == NULL);
1069168404Spjd				to_delta = ab->b_size;
1070168404Spjd			}
1071185029Spjd			atomic_add_64(size, to_delta);
1072168404Spjd
1073168404Spjd			if (use_mutex)
1074168404Spjd				mutex_exit(&new_state->arcs_mtx);
1075168404Spjd		}
1076168404Spjd	}
1077168404Spjd
1078168404Spjd	ASSERT(!BUF_EMPTY(ab));
1079185029Spjd	if (new_state == arc_anon) {
1080168404Spjd		buf_hash_remove(ab);
1081168404Spjd	}
1082168404Spjd
1083168404Spjd	/* adjust state sizes */
1084168404Spjd	if (to_delta)
1085168404Spjd		atomic_add_64(&new_state->arcs_size, to_delta);
1086168404Spjd	if (from_delta) {
1087168404Spjd		ASSERT3U(old_state->arcs_size, >=, from_delta);
1088168404Spjd		atomic_add_64(&old_state->arcs_size, -from_delta);
1089168404Spjd	}
1090168404Spjd	ab->b_state = new_state;
1091185029Spjd
1092185029Spjd	/* adjust l2arc hdr stats */
1093185029Spjd	if (new_state == arc_l2c_only)
1094185029Spjd		l2arc_hdr_stat_add();
1095185029Spjd	else if (old_state == arc_l2c_only)
1096185029Spjd		l2arc_hdr_stat_remove();
1097168404Spjd}
1098168404Spjd
1099185029Spjdvoid
1100185029Spjdarc_space_consume(uint64_t space)
1101185029Spjd{
1102185029Spjd	atomic_add_64(&arc_meta_used, space);
1103185029Spjd	atomic_add_64(&arc_size, space);
1104185029Spjd}
1105185029Spjd
1106185029Spjdvoid
1107185029Spjdarc_space_return(uint64_t space)
1108185029Spjd{
1109185029Spjd	ASSERT(arc_meta_used >= space);
1110185029Spjd	if (arc_meta_max < arc_meta_used)
1111185029Spjd		arc_meta_max = arc_meta_used;
1112185029Spjd	atomic_add_64(&arc_meta_used, -space);
1113185029Spjd	ASSERT(arc_size >= space);
1114185029Spjd	atomic_add_64(&arc_size, -space);
1115185029Spjd}
1116185029Spjd
1117185029Spjdvoid *
1118185029Spjdarc_data_buf_alloc(uint64_t size)
1119185029Spjd{
1120185029Spjd	if (arc_evict_needed(ARC_BUFC_DATA))
1121185029Spjd		cv_signal(&arc_reclaim_thr_cv);
1122185029Spjd	atomic_add_64(&arc_size, size);
1123185029Spjd	return (zio_data_buf_alloc(size));
1124185029Spjd}
1125185029Spjd
1126185029Spjdvoid
1127185029Spjdarc_data_buf_free(void *buf, uint64_t size)
1128185029Spjd{
1129185029Spjd	zio_data_buf_free(buf, size);
1130185029Spjd	ASSERT(arc_size >= size);
1131185029Spjd	atomic_add_64(&arc_size, -size);
1132185029Spjd}
1133185029Spjd
1134168404Spjdarc_buf_t *
1135168404Spjdarc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1136168404Spjd{
1137168404Spjd	arc_buf_hdr_t *hdr;
1138168404Spjd	arc_buf_t *buf;
1139168404Spjd
1140168404Spjd	ASSERT3U(size, >, 0);
1141185029Spjd	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1142168404Spjd	ASSERT(BUF_EMPTY(hdr));
1143168404Spjd	hdr->b_size = size;
1144168404Spjd	hdr->b_type = type;
1145168404Spjd	hdr->b_spa = spa;
1146168404Spjd	hdr->b_state = arc_anon;
1147168404Spjd	hdr->b_arc_access = 0;
1148185029Spjd	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1149168404Spjd	buf->b_hdr = hdr;
1150168404Spjd	buf->b_data = NULL;
1151168404Spjd	buf->b_efunc = NULL;
1152168404Spjd	buf->b_private = NULL;
1153168404Spjd	buf->b_next = NULL;
1154168404Spjd	hdr->b_buf = buf;
1155168404Spjd	arc_get_data_buf(buf);
1156168404Spjd	hdr->b_datacnt = 1;
1157168404Spjd	hdr->b_flags = 0;
1158168404Spjd	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1159168404Spjd	(void) refcount_add(&hdr->b_refcnt, tag);
1160168404Spjd
1161168404Spjd	return (buf);
1162168404Spjd}
1163168404Spjd
1164168404Spjdstatic arc_buf_t *
1165168404Spjdarc_buf_clone(arc_buf_t *from)
1166168404Spjd{
1167168404Spjd	arc_buf_t *buf;
1168168404Spjd	arc_buf_hdr_t *hdr = from->b_hdr;
1169168404Spjd	uint64_t size = hdr->b_size;
1170168404Spjd
1171185029Spjd	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1172168404Spjd	buf->b_hdr = hdr;
1173168404Spjd	buf->b_data = NULL;
1174168404Spjd	buf->b_efunc = NULL;
1175168404Spjd	buf->b_private = NULL;
1176168404Spjd	buf->b_next = hdr->b_buf;
1177168404Spjd	hdr->b_buf = buf;
1178168404Spjd	arc_get_data_buf(buf);
1179168404Spjd	bcopy(from->b_data, buf->b_data, size);
1180168404Spjd	hdr->b_datacnt += 1;
1181168404Spjd	return (buf);
1182168404Spjd}
1183168404Spjd
1184168404Spjdvoid
1185168404Spjdarc_buf_add_ref(arc_buf_t *buf, void* tag)
1186168404Spjd{
1187168404Spjd	arc_buf_hdr_t *hdr;
1188168404Spjd	kmutex_t *hash_lock;
1189168404Spjd
1190168404Spjd	/*
1191185029Spjd	 * Check to see if this buffer is evicted.  Callers
1192185029Spjd	 * must verify b_data != NULL to know if the add_ref
1193185029Spjd	 * was successful.
1194168404Spjd	 */
1195185029Spjd	rw_enter(&buf->b_lock, RW_READER);
1196185029Spjd	if (buf->b_data == NULL) {
1197185029Spjd		rw_exit(&buf->b_lock);
1198168404Spjd		return;
1199168404Spjd	}
1200185029Spjd	hdr = buf->b_hdr;
1201185029Spjd	ASSERT(hdr != NULL);
1202168404Spjd	hash_lock = HDR_LOCK(hdr);
1203168404Spjd	mutex_enter(hash_lock);
1204185029Spjd	rw_exit(&buf->b_lock);
1205168404Spjd
1206168404Spjd	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1207168404Spjd	add_reference(hdr, hash_lock, tag);
1208168404Spjd	arc_access(hdr, hash_lock);
1209168404Spjd	mutex_exit(hash_lock);
1210168404Spjd	ARCSTAT_BUMP(arcstat_hits);
1211168404Spjd	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1212168404Spjd	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1213168404Spjd	    data, metadata, hits);
1214168404Spjd}
1215168404Spjd
1216185029Spjd/*
1217185029Spjd * Free the arc data buffer.  If it is an l2arc write in progress,
1218185029Spjd * the buffer is placed on l2arc_free_on_write to be freed later.
1219185029Spjd */
1220168404Spjdstatic void
1221185029Spjdarc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1222185029Spjd    void *data, size_t size)
1223185029Spjd{
1224185029Spjd	if (HDR_L2_WRITING(hdr)) {
1225185029Spjd		l2arc_data_free_t *df;
1226185029Spjd		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1227185029Spjd		df->l2df_data = data;
1228185029Spjd		df->l2df_size = size;
1229185029Spjd		df->l2df_func = free_func;
1230185029Spjd		mutex_enter(&l2arc_free_on_write_mtx);
1231185029Spjd		list_insert_head(l2arc_free_on_write, df);
1232185029Spjd		mutex_exit(&l2arc_free_on_write_mtx);
1233185029Spjd		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1234185029Spjd	} else {
1235185029Spjd		free_func(data, size);
1236185029Spjd	}
1237185029Spjd}
1238185029Spjd
1239185029Spjdstatic void
1240168404Spjdarc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1241168404Spjd{
1242168404Spjd	arc_buf_t **bufp;
1243168404Spjd
1244168404Spjd	/* free up data associated with the buf */
1245168404Spjd	if (buf->b_data) {
1246168404Spjd		arc_state_t *state = buf->b_hdr->b_state;
1247168404Spjd		uint64_t size = buf->b_hdr->b_size;
1248168404Spjd		arc_buf_contents_t type = buf->b_hdr->b_type;
1249168404Spjd
1250168404Spjd		arc_cksum_verify(buf);
1251168404Spjd		if (!recycle) {
1252168404Spjd			if (type == ARC_BUFC_METADATA) {
1253185029Spjd				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1254185029Spjd				    buf->b_data, size);
1255185029Spjd				arc_space_return(size);
1256168404Spjd			} else {
1257168404Spjd				ASSERT(type == ARC_BUFC_DATA);
1258185029Spjd				arc_buf_data_free(buf->b_hdr,
1259185029Spjd				    zio_data_buf_free, buf->b_data, size);
1260185029Spjd				atomic_add_64(&arc_size, -size);
1261168404Spjd			}
1262168404Spjd		}
1263168404Spjd		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1264185029Spjd			uint64_t *cnt = &state->arcs_lsize[type];
1265185029Spjd
1266168404Spjd			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1267168404Spjd			ASSERT(state != arc_anon);
1268185029Spjd
1269185029Spjd			ASSERT3U(*cnt, >=, size);
1270185029Spjd			atomic_add_64(cnt, -size);
1271168404Spjd		}
1272168404Spjd		ASSERT3U(state->arcs_size, >=, size);
1273168404Spjd		atomic_add_64(&state->arcs_size, -size);
1274168404Spjd		buf->b_data = NULL;
1275168404Spjd		ASSERT(buf->b_hdr->b_datacnt > 0);
1276168404Spjd		buf->b_hdr->b_datacnt -= 1;
1277168404Spjd	}
1278168404Spjd
1279168404Spjd	/* only remove the buf if requested */
1280168404Spjd	if (!all)
1281168404Spjd		return;
1282168404Spjd
1283168404Spjd	/* remove the buf from the hdr list */
1284168404Spjd	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1285168404Spjd		continue;
1286168404Spjd	*bufp = buf->b_next;
1287168404Spjd
1288168404Spjd	ASSERT(buf->b_efunc == NULL);
1289168404Spjd
1290168404Spjd	/* clean up the buf */
1291168404Spjd	buf->b_hdr = NULL;
1292168404Spjd	kmem_cache_free(buf_cache, buf);
1293168404Spjd}
1294168404Spjd
1295168404Spjdstatic void
1296168404Spjdarc_hdr_destroy(arc_buf_hdr_t *hdr)
1297168404Spjd{
1298168404Spjd	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1299168404Spjd	ASSERT3P(hdr->b_state, ==, arc_anon);
1300168404Spjd	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1301185029Spjd	ASSERT(!(hdr->b_flags & ARC_STORED));
1302168404Spjd
1303185029Spjd	if (hdr->b_l2hdr != NULL) {
1304185029Spjd		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1305185029Spjd			/*
1306185029Spjd			 * To prevent arc_free() and l2arc_evict() from
1307185029Spjd			 * attempting to free the same buffer at the same time,
1308185029Spjd			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1309185029Spjd			 * give it priority.  l2arc_evict() can't destroy this
1310185029Spjd			 * header while we are waiting on l2arc_buflist_mtx.
1311185029Spjd			 *
1312185029Spjd			 * The hdr may be removed from l2ad_buflist before we
1313185029Spjd			 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1314185029Spjd			 */
1315185029Spjd			mutex_enter(&l2arc_buflist_mtx);
1316185029Spjd			if (hdr->b_l2hdr != NULL) {
1317185029Spjd				list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
1318185029Spjd				    hdr);
1319185029Spjd			}
1320185029Spjd			mutex_exit(&l2arc_buflist_mtx);
1321185029Spjd		} else {
1322185029Spjd			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1323185029Spjd		}
1324185029Spjd		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1325185029Spjd		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1326185029Spjd		if (hdr->b_state == arc_l2c_only)
1327185029Spjd			l2arc_hdr_stat_remove();
1328185029Spjd		hdr->b_l2hdr = NULL;
1329185029Spjd	}
1330185029Spjd
1331168404Spjd	if (!BUF_EMPTY(hdr)) {
1332168404Spjd		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1333168404Spjd		bzero(&hdr->b_dva, sizeof (dva_t));
1334168404Spjd		hdr->b_birth = 0;
1335168404Spjd		hdr->b_cksum0 = 0;
1336168404Spjd	}
1337168404Spjd	while (hdr->b_buf) {
1338168404Spjd		arc_buf_t *buf = hdr->b_buf;
1339168404Spjd
1340168404Spjd		if (buf->b_efunc) {
1341168404Spjd			mutex_enter(&arc_eviction_mtx);
1342185029Spjd			rw_enter(&buf->b_lock, RW_WRITER);
1343168404Spjd			ASSERT(buf->b_hdr != NULL);
1344168404Spjd			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1345168404Spjd			hdr->b_buf = buf->b_next;
1346168404Spjd			buf->b_hdr = &arc_eviction_hdr;
1347168404Spjd			buf->b_next = arc_eviction_list;
1348168404Spjd			arc_eviction_list = buf;
1349185029Spjd			rw_exit(&buf->b_lock);
1350168404Spjd			mutex_exit(&arc_eviction_mtx);
1351168404Spjd		} else {
1352168404Spjd			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1353168404Spjd		}
1354168404Spjd	}
1355168404Spjd	if (hdr->b_freeze_cksum != NULL) {
1356168404Spjd		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1357168404Spjd		hdr->b_freeze_cksum = NULL;
1358168404Spjd	}
1359168404Spjd
1360168404Spjd	ASSERT(!list_link_active(&hdr->b_arc_node));
1361168404Spjd	ASSERT3P(hdr->b_hash_next, ==, NULL);
1362168404Spjd	ASSERT3P(hdr->b_acb, ==, NULL);
1363168404Spjd	kmem_cache_free(hdr_cache, hdr);
1364168404Spjd}
1365168404Spjd
1366168404Spjdvoid
1367168404Spjdarc_buf_free(arc_buf_t *buf, void *tag)
1368168404Spjd{
1369168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
1370168404Spjd	int hashed = hdr->b_state != arc_anon;
1371168404Spjd
1372168404Spjd	ASSERT(buf->b_efunc == NULL);
1373168404Spjd	ASSERT(buf->b_data != NULL);
1374168404Spjd
1375168404Spjd	if (hashed) {
1376168404Spjd		kmutex_t *hash_lock = HDR_LOCK(hdr);
1377168404Spjd
1378168404Spjd		mutex_enter(hash_lock);
1379168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
1380168404Spjd		if (hdr->b_datacnt > 1)
1381168404Spjd			arc_buf_destroy(buf, FALSE, TRUE);
1382168404Spjd		else
1383168404Spjd			hdr->b_flags |= ARC_BUF_AVAILABLE;
1384168404Spjd		mutex_exit(hash_lock);
1385168404Spjd	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1386168404Spjd		int destroy_hdr;
1387168404Spjd		/*
1388168404Spjd		 * We are in the middle of an async write.  Don't destroy
1389168404Spjd		 * this buffer unless the write completes before we finish
1390168404Spjd		 * decrementing the reference count.
1391168404Spjd		 */
1392168404Spjd		mutex_enter(&arc_eviction_mtx);
1393168404Spjd		(void) remove_reference(hdr, NULL, tag);
1394168404Spjd		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1395168404Spjd		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1396168404Spjd		mutex_exit(&arc_eviction_mtx);
1397168404Spjd		if (destroy_hdr)
1398168404Spjd			arc_hdr_destroy(hdr);
1399168404Spjd	} else {
1400168404Spjd		if (remove_reference(hdr, NULL, tag) > 0) {
1401168404Spjd			ASSERT(HDR_IO_ERROR(hdr));
1402168404Spjd			arc_buf_destroy(buf, FALSE, TRUE);
1403168404Spjd		} else {
1404168404Spjd			arc_hdr_destroy(hdr);
1405168404Spjd		}
1406168404Spjd	}
1407168404Spjd}
1408168404Spjd
1409168404Spjdint
1410168404Spjdarc_buf_remove_ref(arc_buf_t *buf, void* tag)
1411168404Spjd{
1412168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
1413168404Spjd	kmutex_t *hash_lock = HDR_LOCK(hdr);
1414168404Spjd	int no_callback = (buf->b_efunc == NULL);
1415168404Spjd
1416168404Spjd	if (hdr->b_state == arc_anon) {
1417168404Spjd		arc_buf_free(buf, tag);
1418168404Spjd		return (no_callback);
1419168404Spjd	}
1420168404Spjd
1421168404Spjd	mutex_enter(hash_lock);
1422168404Spjd	ASSERT(hdr->b_state != arc_anon);
1423168404Spjd	ASSERT(buf->b_data != NULL);
1424168404Spjd
1425168404Spjd	(void) remove_reference(hdr, hash_lock, tag);
1426168404Spjd	if (hdr->b_datacnt > 1) {
1427168404Spjd		if (no_callback)
1428168404Spjd			arc_buf_destroy(buf, FALSE, TRUE);
1429168404Spjd	} else if (no_callback) {
1430168404Spjd		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1431168404Spjd		hdr->b_flags |= ARC_BUF_AVAILABLE;
1432168404Spjd	}
1433168404Spjd	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1434168404Spjd	    refcount_is_zero(&hdr->b_refcnt));
1435168404Spjd	mutex_exit(hash_lock);
1436168404Spjd	return (no_callback);
1437168404Spjd}
1438168404Spjd
1439168404Spjdint
1440168404Spjdarc_buf_size(arc_buf_t *buf)
1441168404Spjd{
1442168404Spjd	return (buf->b_hdr->b_size);
1443168404Spjd}
1444168404Spjd
1445168404Spjd/*
1446168404Spjd * Evict buffers from list until we've removed the specified number of
1447168404Spjd * bytes.  Move the removed buffers to the appropriate evict state.
1448168404Spjd * If the recycle flag is set, then attempt to "recycle" a buffer:
1449168404Spjd * - look for a buffer to evict that is `bytes' long.
1450168404Spjd * - return the data block from this buffer rather than freeing it.
1451168404Spjd * This flag is used by callers that are trying to make space for a
1452168404Spjd * new buffer in a full arc cache.
1453185029Spjd *
1454185029Spjd * This function makes a "best effort".  It skips over any buffers
1455185029Spjd * it can't get a hash_lock on, and so may not catch all candidates.
1456185029Spjd * It may also return without evicting as much space as requested.
1457168404Spjd */
1458168404Spjdstatic void *
1459185029Spjdarc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1460168404Spjd    arc_buf_contents_t type)
1461168404Spjd{
1462168404Spjd	arc_state_t *evicted_state;
1463168404Spjd	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1464168404Spjd	arc_buf_hdr_t *ab, *ab_prev = NULL;
1465185029Spjd	list_t *list = &state->arcs_list[type];
1466168404Spjd	kmutex_t *hash_lock;
1467168404Spjd	boolean_t have_lock;
1468168404Spjd	void *stolen = NULL;
1469168404Spjd
1470168404Spjd	ASSERT(state == arc_mru || state == arc_mfu);
1471168404Spjd
1472168404Spjd	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1473168404Spjd
1474168404Spjd	mutex_enter(&state->arcs_mtx);
1475168404Spjd	mutex_enter(&evicted_state->arcs_mtx);
1476168404Spjd
1477185029Spjd	for (ab = list_tail(list); ab; ab = ab_prev) {
1478185029Spjd		ab_prev = list_prev(list, ab);
1479168404Spjd		/* prefetch buffers have a minimum lifespan */
1480168404Spjd		if (HDR_IO_IN_PROGRESS(ab) ||
1481185029Spjd		    (spa && ab->b_spa != spa) ||
1482168404Spjd		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1483174049Sjb		    LBOLT - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1484168404Spjd			skipped++;
1485168404Spjd			continue;
1486168404Spjd		}
1487168404Spjd		/* "lookahead" for better eviction candidate */
1488168404Spjd		if (recycle && ab->b_size != bytes &&
1489168404Spjd		    ab_prev && ab_prev->b_size == bytes)
1490168404Spjd			continue;
1491168404Spjd		hash_lock = HDR_LOCK(ab);
1492168404Spjd		have_lock = MUTEX_HELD(hash_lock);
1493168404Spjd		if (have_lock || mutex_tryenter(hash_lock)) {
1494168404Spjd			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1495168404Spjd			ASSERT(ab->b_datacnt > 0);
1496168404Spjd			while (ab->b_buf) {
1497168404Spjd				arc_buf_t *buf = ab->b_buf;
1498185029Spjd				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1499185029Spjd					missed += 1;
1500185029Spjd					break;
1501185029Spjd				}
1502168404Spjd				if (buf->b_data) {
1503168404Spjd					bytes_evicted += ab->b_size;
1504168404Spjd					if (recycle && ab->b_type == type &&
1505185029Spjd					    ab->b_size == bytes &&
1506185029Spjd					    !HDR_L2_WRITING(ab)) {
1507168404Spjd						stolen = buf->b_data;
1508168404Spjd						recycle = FALSE;
1509168404Spjd					}
1510168404Spjd				}
1511168404Spjd				if (buf->b_efunc) {
1512168404Spjd					mutex_enter(&arc_eviction_mtx);
1513168404Spjd					arc_buf_destroy(buf,
1514168404Spjd					    buf->b_data == stolen, FALSE);
1515168404Spjd					ab->b_buf = buf->b_next;
1516168404Spjd					buf->b_hdr = &arc_eviction_hdr;
1517168404Spjd					buf->b_next = arc_eviction_list;
1518168404Spjd					arc_eviction_list = buf;
1519168404Spjd					mutex_exit(&arc_eviction_mtx);
1520185029Spjd					rw_exit(&buf->b_lock);
1521168404Spjd				} else {
1522185029Spjd					rw_exit(&buf->b_lock);
1523168404Spjd					arc_buf_destroy(buf,
1524168404Spjd					    buf->b_data == stolen, TRUE);
1525168404Spjd				}
1526168404Spjd			}
1527185029Spjd			if (ab->b_datacnt == 0) {
1528185029Spjd				arc_change_state(evicted_state, ab, hash_lock);
1529185029Spjd				ASSERT(HDR_IN_HASH_TABLE(ab));
1530185029Spjd				ab->b_flags |= ARC_IN_HASH_TABLE;
1531185029Spjd				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1532185029Spjd				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1533185029Spjd			}
1534168404Spjd			if (!have_lock)
1535168404Spjd				mutex_exit(hash_lock);
1536168404Spjd			if (bytes >= 0 && bytes_evicted >= bytes)
1537168404Spjd				break;
1538168404Spjd		} else {
1539168404Spjd			missed += 1;
1540168404Spjd		}
1541168404Spjd	}
1542168404Spjd
1543168404Spjd	mutex_exit(&evicted_state->arcs_mtx);
1544168404Spjd	mutex_exit(&state->arcs_mtx);
1545168404Spjd
1546168404Spjd	if (bytes_evicted < bytes)
1547168404Spjd		dprintf("only evicted %lld bytes from %x",
1548168404Spjd		    (longlong_t)bytes_evicted, state);
1549168404Spjd
1550168404Spjd	if (skipped)
1551168404Spjd		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1552168404Spjd
1553168404Spjd	if (missed)
1554168404Spjd		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1555168404Spjd
1556185029Spjd	/*
1557185029Spjd	 * We have just evicted some date into the ghost state, make
1558185029Spjd	 * sure we also adjust the ghost state size if necessary.
1559185029Spjd	 */
1560185029Spjd	if (arc_no_grow &&
1561185029Spjd	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1562185029Spjd		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1563185029Spjd		    arc_mru_ghost->arcs_size - arc_c;
1564185029Spjd
1565185029Spjd		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1566185029Spjd			int64_t todelete =
1567185029Spjd			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1568185029Spjd			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1569185029Spjd		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1570185029Spjd			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1571185029Spjd			    arc_mru_ghost->arcs_size +
1572185029Spjd			    arc_mfu_ghost->arcs_size - arc_c);
1573185029Spjd			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1574185029Spjd		}
1575185029Spjd	}
1576185029Spjd
1577168404Spjd	return (stolen);
1578168404Spjd}
1579168404Spjd
1580168404Spjd/*
1581168404Spjd * Remove buffers from list until we've removed the specified number of
1582168404Spjd * bytes.  Destroy the buffers that are removed.
1583168404Spjd */
1584168404Spjdstatic void
1585185029Spjdarc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1586168404Spjd{
1587168404Spjd	arc_buf_hdr_t *ab, *ab_prev;
1588185029Spjd	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1589168404Spjd	kmutex_t *hash_lock;
1590168404Spjd	uint64_t bytes_deleted = 0;
1591168404Spjd	uint64_t bufs_skipped = 0;
1592168404Spjd
1593168404Spjd	ASSERT(GHOST_STATE(state));
1594168404Spjdtop:
1595168404Spjd	mutex_enter(&state->arcs_mtx);
1596185029Spjd	for (ab = list_tail(list); ab; ab = ab_prev) {
1597185029Spjd		ab_prev = list_prev(list, ab);
1598185029Spjd		if (spa && ab->b_spa != spa)
1599185029Spjd			continue;
1600168404Spjd		hash_lock = HDR_LOCK(ab);
1601168404Spjd		if (mutex_tryenter(hash_lock)) {
1602168404Spjd			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1603168404Spjd			ASSERT(ab->b_buf == NULL);
1604168404Spjd			ARCSTAT_BUMP(arcstat_deleted);
1605168404Spjd			bytes_deleted += ab->b_size;
1606185029Spjd
1607185029Spjd			if (ab->b_l2hdr != NULL) {
1608185029Spjd				/*
1609185029Spjd				 * This buffer is cached on the 2nd Level ARC;
1610185029Spjd				 * don't destroy the header.
1611185029Spjd				 */
1612185029Spjd				arc_change_state(arc_l2c_only, ab, hash_lock);
1613185029Spjd				mutex_exit(hash_lock);
1614185029Spjd			} else {
1615185029Spjd				arc_change_state(arc_anon, ab, hash_lock);
1616185029Spjd				mutex_exit(hash_lock);
1617185029Spjd				arc_hdr_destroy(ab);
1618185029Spjd			}
1619185029Spjd
1620168404Spjd			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1621168404Spjd			if (bytes >= 0 && bytes_deleted >= bytes)
1622168404Spjd				break;
1623168404Spjd		} else {
1624168404Spjd			if (bytes < 0) {
1625168404Spjd				mutex_exit(&state->arcs_mtx);
1626168404Spjd				mutex_enter(hash_lock);
1627168404Spjd				mutex_exit(hash_lock);
1628168404Spjd				goto top;
1629168404Spjd			}
1630168404Spjd			bufs_skipped += 1;
1631168404Spjd		}
1632168404Spjd	}
1633168404Spjd	mutex_exit(&state->arcs_mtx);
1634168404Spjd
1635185029Spjd	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1636185029Spjd	    (bytes < 0 || bytes_deleted < bytes)) {
1637185029Spjd		list = &state->arcs_list[ARC_BUFC_METADATA];
1638185029Spjd		goto top;
1639185029Spjd	}
1640185029Spjd
1641168404Spjd	if (bufs_skipped) {
1642168404Spjd		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1643168404Spjd		ASSERT(bytes >= 0);
1644168404Spjd	}
1645168404Spjd
1646168404Spjd	if (bytes_deleted < bytes)
1647168404Spjd		dprintf("only deleted %lld bytes from %p",
1648168404Spjd		    (longlong_t)bytes_deleted, state);
1649168404Spjd}
1650168404Spjd
1651168404Spjdstatic void
1652168404Spjdarc_adjust(void)
1653168404Spjd{
1654168404Spjd	int64_t top_sz, mru_over, arc_over, todelete;
1655168404Spjd
1656185029Spjd	top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1657168404Spjd
1658185029Spjd	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1659185029Spjd		int64_t toevict =
1660185029Spjd		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1661185029Spjd		(void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1662168404Spjd		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1663168404Spjd	}
1664168404Spjd
1665185029Spjd	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1666185029Spjd		int64_t toevict =
1667185029Spjd		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1668185029Spjd		(void) arc_evict(arc_mru, NULL, toevict, FALSE,
1669185029Spjd		    ARC_BUFC_METADATA);
1670185029Spjd		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1671185029Spjd	}
1672185029Spjd
1673168404Spjd	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1674168404Spjd
1675168404Spjd	if (mru_over > 0) {
1676185029Spjd		if (arc_mru_ghost->arcs_size > 0) {
1677185029Spjd			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1678185029Spjd			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1679168404Spjd		}
1680168404Spjd	}
1681168404Spjd
1682168404Spjd	if ((arc_over = arc_size - arc_c) > 0) {
1683168404Spjd		int64_t tbl_over;
1684168404Spjd
1685185029Spjd		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1686185029Spjd			int64_t toevict =
1687185029Spjd			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1688185029Spjd			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1689185029Spjd			    ARC_BUFC_DATA);
1690185029Spjd			arc_over = arc_size - arc_c;
1691168404Spjd		}
1692168404Spjd
1693185029Spjd		if (arc_over > 0 &&
1694185029Spjd		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1695185029Spjd			int64_t toevict =
1696185029Spjd			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1697185029Spjd			    arc_over);
1698185029Spjd			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1699185029Spjd			    ARC_BUFC_METADATA);
1700185029Spjd		}
1701168404Spjd
1702185029Spjd		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1703185029Spjd		    arc_mfu_ghost->arcs_size - arc_c * 2;
1704185029Spjd
1705185029Spjd		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1706185029Spjd			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1707185029Spjd			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1708168404Spjd		}
1709168404Spjd	}
1710168404Spjd}
1711168404Spjd
1712168404Spjdstatic void
1713168404Spjdarc_do_user_evicts(void)
1714168404Spjd{
1715168404Spjd	mutex_enter(&arc_eviction_mtx);
1716168404Spjd	while (arc_eviction_list != NULL) {
1717168404Spjd		arc_buf_t *buf = arc_eviction_list;
1718168404Spjd		arc_eviction_list = buf->b_next;
1719185029Spjd		rw_enter(&buf->b_lock, RW_WRITER);
1720168404Spjd		buf->b_hdr = NULL;
1721185029Spjd		rw_exit(&buf->b_lock);
1722168404Spjd		mutex_exit(&arc_eviction_mtx);
1723168404Spjd
1724168404Spjd		if (buf->b_efunc != NULL)
1725168404Spjd			VERIFY(buf->b_efunc(buf) == 0);
1726168404Spjd
1727168404Spjd		buf->b_efunc = NULL;
1728168404Spjd		buf->b_private = NULL;
1729168404Spjd		kmem_cache_free(buf_cache, buf);
1730168404Spjd		mutex_enter(&arc_eviction_mtx);
1731168404Spjd	}
1732168404Spjd	mutex_exit(&arc_eviction_mtx);
1733168404Spjd}
1734168404Spjd
1735168404Spjd/*
1736185029Spjd * Flush all *evictable* data from the cache for the given spa.
1737168404Spjd * NOTE: this will not touch "active" (i.e. referenced) data.
1738168404Spjd */
1739168404Spjdvoid
1740185029Spjdarc_flush(spa_t *spa)
1741168404Spjd{
1742185029Spjd	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1743185029Spjd		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1744185029Spjd		if (spa)
1745185029Spjd			break;
1746185029Spjd	}
1747185029Spjd	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1748185029Spjd		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1749185029Spjd		if (spa)
1750185029Spjd			break;
1751185029Spjd	}
1752185029Spjd	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1753185029Spjd		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1754185029Spjd		if (spa)
1755185029Spjd			break;
1756185029Spjd	}
1757185029Spjd	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1758185029Spjd		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1759185029Spjd		if (spa)
1760185029Spjd			break;
1761185029Spjd	}
1762168404Spjd
1763185029Spjd	arc_evict_ghost(arc_mru_ghost, spa, -1);
1764185029Spjd	arc_evict_ghost(arc_mfu_ghost, spa, -1);
1765168404Spjd
1766168404Spjd	mutex_enter(&arc_reclaim_thr_lock);
1767168404Spjd	arc_do_user_evicts();
1768168404Spjd	mutex_exit(&arc_reclaim_thr_lock);
1769185029Spjd	ASSERT(spa || arc_eviction_list == NULL);
1770168404Spjd}
1771168404Spjd
1772168404Spjdint arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1773168404Spjd
1774168404Spjdvoid
1775168404Spjdarc_shrink(void)
1776168404Spjd{
1777168404Spjd	if (arc_c > arc_c_min) {
1778168404Spjd		uint64_t to_free;
1779168404Spjd
1780168404Spjd#ifdef _KERNEL
1781168404Spjd		to_free = arc_c >> arc_shrink_shift;
1782168404Spjd#else
1783168404Spjd		to_free = arc_c >> arc_shrink_shift;
1784168404Spjd#endif
1785168404Spjd		if (arc_c > arc_c_min + to_free)
1786168404Spjd			atomic_add_64(&arc_c, -to_free);
1787168404Spjd		else
1788168404Spjd			arc_c = arc_c_min;
1789168404Spjd
1790168404Spjd		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1791168404Spjd		if (arc_c > arc_size)
1792168404Spjd			arc_c = MAX(arc_size, arc_c_min);
1793168404Spjd		if (arc_p > arc_c)
1794168404Spjd			arc_p = (arc_c >> 1);
1795168404Spjd		ASSERT(arc_c >= arc_c_min);
1796168404Spjd		ASSERT((int64_t)arc_p >= 0);
1797168404Spjd	}
1798168404Spjd
1799168404Spjd	if (arc_size > arc_c)
1800168404Spjd		arc_adjust();
1801168404Spjd}
1802168404Spjd
1803185029Spjdstatic int needfree = 0;
1804168404Spjd
1805168404Spjdstatic int
1806168404Spjdarc_reclaim_needed(void)
1807168404Spjd{
1808168404Spjd#if 0
1809168404Spjd	uint64_t extra;
1810168404Spjd#endif
1811168404Spjd
1812168404Spjd#ifdef _KERNEL
1813168404Spjd
1814191902Skmacy	/*
1815191902Skmacy	 * If pages are needed or we're within 2048 pages
1816191902Skmacy	 * of needing to page need to reclaim
1817191902Skmacy	 */
1818191902Skmacy	if (vm_pages_needed || (vm_paging_target() > -2048))
1819191902Skmacy		return (1);
1820191902Skmacy
1821185029Spjd	if (needfree)
1822168404Spjd		return (1);
1823168404Spjd
1824168404Spjd#if 0
1825168404Spjd	/*
1826185029Spjd	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1827185029Spjd	 */
1828185029Spjd	extra = desfree;
1829185029Spjd
1830185029Spjd	/*
1831185029Spjd	 * check that we're out of range of the pageout scanner.  It starts to
1832185029Spjd	 * schedule paging if freemem is less than lotsfree and needfree.
1833185029Spjd	 * lotsfree is the high-water mark for pageout, and needfree is the
1834185029Spjd	 * number of needed free pages.  We add extra pages here to make sure
1835185029Spjd	 * the scanner doesn't start up while we're freeing memory.
1836185029Spjd	 */
1837185029Spjd	if (freemem < lotsfree + needfree + extra)
1838185029Spjd		return (1);
1839185029Spjd
1840185029Spjd	/*
1841168404Spjd	 * check to make sure that swapfs has enough space so that anon
1842185029Spjd	 * reservations can still succeed. anon_resvmem() checks that the
1843168404Spjd	 * availrmem is greater than swapfs_minfree, and the number of reserved
1844168404Spjd	 * swap pages.  We also add a bit of extra here just to prevent
1845168404Spjd	 * circumstances from getting really dire.
1846168404Spjd	 */
1847168404Spjd	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1848168404Spjd		return (1);
1849168404Spjd
1850168404Spjd#if defined(__i386)
1851168404Spjd	/*
1852168404Spjd	 * If we're on an i386 platform, it's possible that we'll exhaust the
1853168404Spjd	 * kernel heap space before we ever run out of available physical
1854168404Spjd	 * memory.  Most checks of the size of the heap_area compare against
1855168404Spjd	 * tune.t_minarmem, which is the minimum available real memory that we
1856168404Spjd	 * can have in the system.  However, this is generally fixed at 25 pages
1857168404Spjd	 * which is so low that it's useless.  In this comparison, we seek to
1858168404Spjd	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1859185029Spjd	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1860168404Spjd	 * free)
1861168404Spjd	 */
1862168404Spjd	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1863168404Spjd	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1864168404Spjd		return (1);
1865168404Spjd#endif
1866168404Spjd#else
1867175633Spjd	if (kmem_used() > (kmem_size() * 3) / 4)
1868168404Spjd		return (1);
1869168404Spjd#endif
1870168404Spjd
1871168404Spjd#else
1872168404Spjd	if (spa_get_random(100) == 0)
1873168404Spjd		return (1);
1874168404Spjd#endif
1875168404Spjd	return (0);
1876168404Spjd}
1877168404Spjd
1878168404Spjdstatic void
1879168404Spjdarc_kmem_reap_now(arc_reclaim_strategy_t strat)
1880168404Spjd{
1881168404Spjd#ifdef ZIO_USE_UMA
1882168404Spjd	size_t			i;
1883168404Spjd	kmem_cache_t		*prev_cache = NULL;
1884168404Spjd	kmem_cache_t		*prev_data_cache = NULL;
1885168404Spjd	extern kmem_cache_t	*zio_buf_cache[];
1886168404Spjd	extern kmem_cache_t	*zio_data_buf_cache[];
1887168404Spjd#endif
1888168404Spjd
1889168404Spjd#ifdef _KERNEL
1890185029Spjd	if (arc_meta_used >= arc_meta_limit) {
1891185029Spjd		/*
1892185029Spjd		 * We are exceeding our meta-data cache limit.
1893185029Spjd		 * Purge some DNLC entries to release holds on meta-data.
1894185029Spjd		 */
1895185029Spjd		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1896185029Spjd	}
1897168404Spjd#if defined(__i386)
1898168404Spjd	/*
1899168404Spjd	 * Reclaim unused memory from all kmem caches.
1900168404Spjd	 */
1901168404Spjd	kmem_reap();
1902168404Spjd#endif
1903168404Spjd#endif
1904168404Spjd
1905168404Spjd	/*
1906185029Spjd	 * An aggressive reclamation will shrink the cache size as well as
1907168404Spjd	 * reap free buffers from the arc kmem caches.
1908168404Spjd	 */
1909168404Spjd	if (strat == ARC_RECLAIM_AGGR)
1910168404Spjd		arc_shrink();
1911168404Spjd
1912168404Spjd#ifdef ZIO_USE_UMA
1913168404Spjd	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1914168404Spjd		if (zio_buf_cache[i] != prev_cache) {
1915168404Spjd			prev_cache = zio_buf_cache[i];
1916168404Spjd			kmem_cache_reap_now(zio_buf_cache[i]);
1917168404Spjd		}
1918168404Spjd		if (zio_data_buf_cache[i] != prev_data_cache) {
1919168404Spjd			prev_data_cache = zio_data_buf_cache[i];
1920168404Spjd			kmem_cache_reap_now(zio_data_buf_cache[i]);
1921168404Spjd		}
1922168404Spjd	}
1923168404Spjd#endif
1924168404Spjd	kmem_cache_reap_now(buf_cache);
1925168404Spjd	kmem_cache_reap_now(hdr_cache);
1926168404Spjd}
1927168404Spjd
1928168404Spjdstatic void
1929168404Spjdarc_reclaim_thread(void *dummy __unused)
1930168404Spjd{
1931168404Spjd	clock_t			growtime = 0;
1932168404Spjd	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1933168404Spjd	callb_cpr_t		cpr;
1934168404Spjd
1935168404Spjd	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1936168404Spjd
1937168404Spjd	mutex_enter(&arc_reclaim_thr_lock);
1938168404Spjd	while (arc_thread_exit == 0) {
1939168404Spjd		if (arc_reclaim_needed()) {
1940168404Spjd
1941168404Spjd			if (arc_no_grow) {
1942168404Spjd				if (last_reclaim == ARC_RECLAIM_CONS) {
1943168404Spjd					last_reclaim = ARC_RECLAIM_AGGR;
1944168404Spjd				} else {
1945168404Spjd					last_reclaim = ARC_RECLAIM_CONS;
1946168404Spjd				}
1947168404Spjd			} else {
1948168404Spjd				arc_no_grow = TRUE;
1949168404Spjd				last_reclaim = ARC_RECLAIM_AGGR;
1950168404Spjd				membar_producer();
1951168404Spjd			}
1952168404Spjd
1953168404Spjd			/* reset the growth delay for every reclaim */
1954174049Sjb			growtime = LBOLT + (arc_grow_retry * hz);
1955168404Spjd
1956185029Spjd			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
1957168404Spjd				/*
1958185029Spjd				 * If needfree is TRUE our vm_lowmem hook
1959168404Spjd				 * was called and in that case we must free some
1960168404Spjd				 * memory, so switch to aggressive mode.
1961168404Spjd				 */
1962168404Spjd				arc_no_grow = TRUE;
1963168404Spjd				last_reclaim = ARC_RECLAIM_AGGR;
1964168404Spjd			}
1965168404Spjd			arc_kmem_reap_now(last_reclaim);
1966185029Spjd			arc_warm = B_TRUE;
1967185029Spjd
1968185029Spjd		} else if (arc_no_grow && LBOLT >= growtime) {
1969168404Spjd			arc_no_grow = FALSE;
1970168404Spjd		}
1971168404Spjd
1972185029Spjd		if (needfree ||
1973168404Spjd		    (2 * arc_c < arc_size +
1974168404Spjd		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size))
1975168404Spjd			arc_adjust();
1976168404Spjd
1977168404Spjd		if (arc_eviction_list != NULL)
1978168404Spjd			arc_do_user_evicts();
1979168404Spjd
1980168404Spjd		if (arc_reclaim_needed()) {
1981185029Spjd			needfree = 0;
1982168404Spjd#ifdef _KERNEL
1983185029Spjd			wakeup(&needfree);
1984168404Spjd#endif
1985168404Spjd		}
1986168404Spjd
1987168404Spjd		/* block until needed, or one second, whichever is shorter */
1988168404Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
1989168404Spjd		(void) cv_timedwait(&arc_reclaim_thr_cv,
1990168404Spjd		    &arc_reclaim_thr_lock, hz);
1991168404Spjd		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1992168404Spjd	}
1993168404Spjd
1994168404Spjd	arc_thread_exit = 0;
1995168404Spjd	cv_broadcast(&arc_reclaim_thr_cv);
1996168404Spjd	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1997168404Spjd	thread_exit();
1998168404Spjd}
1999168404Spjd
2000168404Spjd/*
2001168404Spjd * Adapt arc info given the number of bytes we are trying to add and
2002168404Spjd * the state that we are comming from.  This function is only called
2003168404Spjd * when we are adding new content to the cache.
2004168404Spjd */
2005168404Spjdstatic void
2006168404Spjdarc_adapt(int bytes, arc_state_t *state)
2007168404Spjd{
2008168404Spjd	int mult;
2009168404Spjd
2010185029Spjd	if (state == arc_l2c_only)
2011185029Spjd		return;
2012185029Spjd
2013168404Spjd	ASSERT(bytes > 0);
2014168404Spjd	/*
2015168404Spjd	 * Adapt the target size of the MRU list:
2016168404Spjd	 *	- if we just hit in the MRU ghost list, then increase
2017168404Spjd	 *	  the target size of the MRU list.
2018168404Spjd	 *	- if we just hit in the MFU ghost list, then increase
2019168404Spjd	 *	  the target size of the MFU list by decreasing the
2020168404Spjd	 *	  target size of the MRU list.
2021168404Spjd	 */
2022168404Spjd	if (state == arc_mru_ghost) {
2023168404Spjd		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2024168404Spjd		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2025168404Spjd
2026168404Spjd		arc_p = MIN(arc_c, arc_p + bytes * mult);
2027168404Spjd	} else if (state == arc_mfu_ghost) {
2028168404Spjd		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2029168404Spjd		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2030168404Spjd
2031168404Spjd		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
2032168404Spjd	}
2033168404Spjd	ASSERT((int64_t)arc_p >= 0);
2034168404Spjd
2035168404Spjd	if (arc_reclaim_needed()) {
2036168404Spjd		cv_signal(&arc_reclaim_thr_cv);
2037168404Spjd		return;
2038168404Spjd	}
2039168404Spjd
2040168404Spjd	if (arc_no_grow)
2041168404Spjd		return;
2042168404Spjd
2043168404Spjd	if (arc_c >= arc_c_max)
2044168404Spjd		return;
2045168404Spjd
2046168404Spjd	/*
2047168404Spjd	 * If we're within (2 * maxblocksize) bytes of the target
2048168404Spjd	 * cache size, increment the target cache size
2049168404Spjd	 */
2050168404Spjd	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2051168404Spjd		atomic_add_64(&arc_c, (int64_t)bytes);
2052168404Spjd		if (arc_c > arc_c_max)
2053168404Spjd			arc_c = arc_c_max;
2054168404Spjd		else if (state == arc_anon)
2055168404Spjd			atomic_add_64(&arc_p, (int64_t)bytes);
2056168404Spjd		if (arc_p > arc_c)
2057168404Spjd			arc_p = arc_c;
2058168404Spjd	}
2059168404Spjd	ASSERT((int64_t)arc_p >= 0);
2060168404Spjd}
2061168404Spjd
2062168404Spjd/*
2063168404Spjd * Check if the cache has reached its limits and eviction is required
2064168404Spjd * prior to insert.
2065168404Spjd */
2066168404Spjdstatic int
2067185029Spjdarc_evict_needed(arc_buf_contents_t type)
2068168404Spjd{
2069185029Spjd	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2070185029Spjd		return (1);
2071185029Spjd
2072185029Spjd#if 0
2073185029Spjd#ifdef _KERNEL
2074185029Spjd	/*
2075185029Spjd	 * If zio data pages are being allocated out of a separate heap segment,
2076185029Spjd	 * then enforce that the size of available vmem for this area remains
2077185029Spjd	 * above about 1/32nd free.
2078185029Spjd	 */
2079185029Spjd	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2080185029Spjd	    vmem_size(zio_arena, VMEM_FREE) <
2081185029Spjd	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2082185029Spjd		return (1);
2083185029Spjd#endif
2084185029Spjd#endif
2085185029Spjd
2086168404Spjd	if (arc_reclaim_needed())
2087168404Spjd		return (1);
2088168404Spjd
2089168404Spjd	return (arc_size > arc_c);
2090168404Spjd}
2091168404Spjd
2092168404Spjd/*
2093168404Spjd * The buffer, supplied as the first argument, needs a data block.
2094168404Spjd * So, if we are at cache max, determine which cache should be victimized.
2095168404Spjd * We have the following cases:
2096168404Spjd *
2097168404Spjd * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2098168404Spjd * In this situation if we're out of space, but the resident size of the MFU is
2099168404Spjd * under the limit, victimize the MFU cache to satisfy this insertion request.
2100168404Spjd *
2101168404Spjd * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2102168404Spjd * Here, we've used up all of the available space for the MRU, so we need to
2103168404Spjd * evict from our own cache instead.  Evict from the set of resident MRU
2104168404Spjd * entries.
2105168404Spjd *
2106168404Spjd * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2107168404Spjd * c minus p represents the MFU space in the cache, since p is the size of the
2108168404Spjd * cache that is dedicated to the MRU.  In this situation there's still space on
2109168404Spjd * the MFU side, so the MRU side needs to be victimized.
2110168404Spjd *
2111168404Spjd * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2112168404Spjd * MFU's resident set is consuming more space than it has been allotted.  In
2113168404Spjd * this situation, we must victimize our own cache, the MFU, for this insertion.
2114168404Spjd */
2115168404Spjdstatic void
2116168404Spjdarc_get_data_buf(arc_buf_t *buf)
2117168404Spjd{
2118168404Spjd	arc_state_t		*state = buf->b_hdr->b_state;
2119168404Spjd	uint64_t		size = buf->b_hdr->b_size;
2120168404Spjd	arc_buf_contents_t	type = buf->b_hdr->b_type;
2121168404Spjd
2122168404Spjd	arc_adapt(size, state);
2123168404Spjd
2124168404Spjd	/*
2125168404Spjd	 * We have not yet reached cache maximum size,
2126168404Spjd	 * just allocate a new buffer.
2127168404Spjd	 */
2128185029Spjd	if (!arc_evict_needed(type)) {
2129168404Spjd		if (type == ARC_BUFC_METADATA) {
2130168404Spjd			buf->b_data = zio_buf_alloc(size);
2131185029Spjd			arc_space_consume(size);
2132168404Spjd		} else {
2133168404Spjd			ASSERT(type == ARC_BUFC_DATA);
2134168404Spjd			buf->b_data = zio_data_buf_alloc(size);
2135185029Spjd			atomic_add_64(&arc_size, size);
2136168404Spjd		}
2137168404Spjd		goto out;
2138168404Spjd	}
2139168404Spjd
2140168404Spjd	/*
2141168404Spjd	 * If we are prefetching from the mfu ghost list, this buffer
2142168404Spjd	 * will end up on the mru list; so steal space from there.
2143168404Spjd	 */
2144168404Spjd	if (state == arc_mfu_ghost)
2145168404Spjd		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2146168404Spjd	else if (state == arc_mru_ghost)
2147168404Spjd		state = arc_mru;
2148168404Spjd
2149168404Spjd	if (state == arc_mru || state == arc_anon) {
2150168404Spjd		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2151185029Spjd		state = (arc_mfu->arcs_lsize[type] > 0 &&
2152185029Spjd		    arc_p > mru_used) ? arc_mfu : arc_mru;
2153168404Spjd	} else {
2154168404Spjd		/* MFU cases */
2155168404Spjd		uint64_t mfu_space = arc_c - arc_p;
2156185029Spjd		state =  (arc_mru->arcs_lsize[type] > 0 &&
2157185029Spjd		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2158168404Spjd	}
2159185029Spjd	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2160168404Spjd		if (type == ARC_BUFC_METADATA) {
2161168404Spjd			buf->b_data = zio_buf_alloc(size);
2162185029Spjd			arc_space_consume(size);
2163168404Spjd		} else {
2164168404Spjd			ASSERT(type == ARC_BUFC_DATA);
2165168404Spjd			buf->b_data = zio_data_buf_alloc(size);
2166185029Spjd			atomic_add_64(&arc_size, size);
2167168404Spjd		}
2168168404Spjd		ARCSTAT_BUMP(arcstat_recycle_miss);
2169168404Spjd	}
2170168404Spjd	ASSERT(buf->b_data != NULL);
2171168404Spjdout:
2172168404Spjd	/*
2173168404Spjd	 * Update the state size.  Note that ghost states have a
2174168404Spjd	 * "ghost size" and so don't need to be updated.
2175168404Spjd	 */
2176168404Spjd	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2177168404Spjd		arc_buf_hdr_t *hdr = buf->b_hdr;
2178168404Spjd
2179168404Spjd		atomic_add_64(&hdr->b_state->arcs_size, size);
2180168404Spjd		if (list_link_active(&hdr->b_arc_node)) {
2181168404Spjd			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2182185029Spjd			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2183168404Spjd		}
2184168404Spjd		/*
2185168404Spjd		 * If we are growing the cache, and we are adding anonymous
2186168404Spjd		 * data, and we have outgrown arc_p, update arc_p
2187168404Spjd		 */
2188168404Spjd		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2189168404Spjd		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2190168404Spjd			arc_p = MIN(arc_c, arc_p + size);
2191168404Spjd	}
2192168404Spjd}
2193168404Spjd
2194168404Spjd/*
2195168404Spjd * This routine is called whenever a buffer is accessed.
2196168404Spjd * NOTE: the hash lock is dropped in this function.
2197168404Spjd */
2198168404Spjdstatic void
2199168404Spjdarc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2200168404Spjd{
2201168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
2202168404Spjd
2203168404Spjd	if (buf->b_state == arc_anon) {
2204168404Spjd		/*
2205168404Spjd		 * This buffer is not in the cache, and does not
2206168404Spjd		 * appear in our "ghost" list.  Add the new buffer
2207168404Spjd		 * to the MRU state.
2208168404Spjd		 */
2209168404Spjd
2210168404Spjd		ASSERT(buf->b_arc_access == 0);
2211174049Sjb		buf->b_arc_access = LBOLT;
2212168404Spjd		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2213168404Spjd		arc_change_state(arc_mru, buf, hash_lock);
2214168404Spjd
2215168404Spjd	} else if (buf->b_state == arc_mru) {
2216168404Spjd		/*
2217168404Spjd		 * If this buffer is here because of a prefetch, then either:
2218168404Spjd		 * - clear the flag if this is a "referencing" read
2219168404Spjd		 *   (any subsequent access will bump this into the MFU state).
2220168404Spjd		 * or
2221168404Spjd		 * - move the buffer to the head of the list if this is
2222168404Spjd		 *   another prefetch (to make it less likely to be evicted).
2223168404Spjd		 */
2224168404Spjd		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2225168404Spjd			if (refcount_count(&buf->b_refcnt) == 0) {
2226168404Spjd				ASSERT(list_link_active(&buf->b_arc_node));
2227168404Spjd			} else {
2228168404Spjd				buf->b_flags &= ~ARC_PREFETCH;
2229168404Spjd				ARCSTAT_BUMP(arcstat_mru_hits);
2230168404Spjd			}
2231174049Sjb			buf->b_arc_access = LBOLT;
2232168404Spjd			return;
2233168404Spjd		}
2234168404Spjd
2235168404Spjd		/*
2236168404Spjd		 * This buffer has been "accessed" only once so far,
2237168404Spjd		 * but it is still in the cache. Move it to the MFU
2238168404Spjd		 * state.
2239168404Spjd		 */
2240174049Sjb		if (LBOLT > buf->b_arc_access + ARC_MINTIME) {
2241168404Spjd			/*
2242168404Spjd			 * More than 125ms have passed since we
2243168404Spjd			 * instantiated this buffer.  Move it to the
2244168404Spjd			 * most frequently used state.
2245168404Spjd			 */
2246174049Sjb			buf->b_arc_access = LBOLT;
2247168404Spjd			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2248168404Spjd			arc_change_state(arc_mfu, buf, hash_lock);
2249168404Spjd		}
2250168404Spjd		ARCSTAT_BUMP(arcstat_mru_hits);
2251168404Spjd	} else if (buf->b_state == arc_mru_ghost) {
2252168404Spjd		arc_state_t	*new_state;
2253168404Spjd		/*
2254168404Spjd		 * This buffer has been "accessed" recently, but
2255168404Spjd		 * was evicted from the cache.  Move it to the
2256168404Spjd		 * MFU state.
2257168404Spjd		 */
2258168404Spjd
2259168404Spjd		if (buf->b_flags & ARC_PREFETCH) {
2260168404Spjd			new_state = arc_mru;
2261168404Spjd			if (refcount_count(&buf->b_refcnt) > 0)
2262168404Spjd				buf->b_flags &= ~ARC_PREFETCH;
2263168404Spjd			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2264168404Spjd		} else {
2265168404Spjd			new_state = arc_mfu;
2266168404Spjd			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2267168404Spjd		}
2268168404Spjd
2269174049Sjb		buf->b_arc_access = LBOLT;
2270168404Spjd		arc_change_state(new_state, buf, hash_lock);
2271168404Spjd
2272168404Spjd		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2273168404Spjd	} else if (buf->b_state == arc_mfu) {
2274168404Spjd		/*
2275168404Spjd		 * This buffer has been accessed more than once and is
2276168404Spjd		 * still in the cache.  Keep it in the MFU state.
2277168404Spjd		 *
2278168404Spjd		 * NOTE: an add_reference() that occurred when we did
2279168404Spjd		 * the arc_read() will have kicked this off the list.
2280168404Spjd		 * If it was a prefetch, we will explicitly move it to
2281168404Spjd		 * the head of the list now.
2282168404Spjd		 */
2283168404Spjd		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2284168404Spjd			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2285168404Spjd			ASSERT(list_link_active(&buf->b_arc_node));
2286168404Spjd		}
2287168404Spjd		ARCSTAT_BUMP(arcstat_mfu_hits);
2288174049Sjb		buf->b_arc_access = LBOLT;
2289168404Spjd	} else if (buf->b_state == arc_mfu_ghost) {
2290168404Spjd		arc_state_t	*new_state = arc_mfu;
2291168404Spjd		/*
2292168404Spjd		 * This buffer has been accessed more than once but has
2293168404Spjd		 * been evicted from the cache.  Move it back to the
2294168404Spjd		 * MFU state.
2295168404Spjd		 */
2296168404Spjd
2297168404Spjd		if (buf->b_flags & ARC_PREFETCH) {
2298168404Spjd			/*
2299168404Spjd			 * This is a prefetch access...
2300168404Spjd			 * move this block back to the MRU state.
2301168404Spjd			 */
2302168404Spjd			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2303168404Spjd			new_state = arc_mru;
2304168404Spjd		}
2305168404Spjd
2306174049Sjb		buf->b_arc_access = LBOLT;
2307168404Spjd		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2308168404Spjd		arc_change_state(new_state, buf, hash_lock);
2309168404Spjd
2310168404Spjd		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2311185029Spjd	} else if (buf->b_state == arc_l2c_only) {
2312185029Spjd		/*
2313185029Spjd		 * This buffer is on the 2nd Level ARC.
2314185029Spjd		 */
2315185029Spjd
2316185029Spjd		buf->b_arc_access = LBOLT;
2317185029Spjd		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2318185029Spjd		arc_change_state(arc_mfu, buf, hash_lock);
2319168404Spjd	} else {
2320168404Spjd		ASSERT(!"invalid arc state");
2321168404Spjd	}
2322168404Spjd}
2323168404Spjd
2324168404Spjd/* a generic arc_done_func_t which you can use */
2325168404Spjd/* ARGSUSED */
2326168404Spjdvoid
2327168404Spjdarc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2328168404Spjd{
2329168404Spjd	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2330168404Spjd	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2331168404Spjd}
2332168404Spjd
2333185029Spjd/* a generic arc_done_func_t */
2334168404Spjdvoid
2335168404Spjdarc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2336168404Spjd{
2337168404Spjd	arc_buf_t **bufp = arg;
2338168404Spjd	if (zio && zio->io_error) {
2339168404Spjd		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2340168404Spjd		*bufp = NULL;
2341168404Spjd	} else {
2342168404Spjd		*bufp = buf;
2343168404Spjd	}
2344168404Spjd}
2345168404Spjd
2346168404Spjdstatic void
2347168404Spjdarc_read_done(zio_t *zio)
2348168404Spjd{
2349168404Spjd	arc_buf_hdr_t	*hdr, *found;
2350168404Spjd	arc_buf_t	*buf;
2351168404Spjd	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2352168404Spjd	kmutex_t	*hash_lock;
2353168404Spjd	arc_callback_t	*callback_list, *acb;
2354168404Spjd	int		freeable = FALSE;
2355168404Spjd
2356168404Spjd	buf = zio->io_private;
2357168404Spjd	hdr = buf->b_hdr;
2358168404Spjd
2359168404Spjd	/*
2360168404Spjd	 * The hdr was inserted into hash-table and removed from lists
2361168404Spjd	 * prior to starting I/O.  We should find this header, since
2362168404Spjd	 * it's in the hash table, and it should be legit since it's
2363168404Spjd	 * not possible to evict it during the I/O.  The only possible
2364168404Spjd	 * reason for it not to be found is if we were freed during the
2365168404Spjd	 * read.
2366168404Spjd	 */
2367168404Spjd	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2368168404Spjd	    &hash_lock);
2369168404Spjd
2370168404Spjd	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2371185029Spjd	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2372185029Spjd	    (found == hdr && HDR_L2_READING(hdr)));
2373168404Spjd
2374185029Spjd	hdr->b_flags &= ~ARC_L2_EVICTED;
2375185029Spjd	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2376185029Spjd		hdr->b_flags &= ~ARC_L2CACHE;
2377185029Spjd
2378168404Spjd	/* byteswap if necessary */
2379168404Spjd	callback_list = hdr->b_acb;
2380168404Spjd	ASSERT(callback_list != NULL);
2381185029Spjd	if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
2382185029Spjd		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2383185029Spjd		    byteswap_uint64_array :
2384185029Spjd		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2385185029Spjd		func(buf->b_data, hdr->b_size);
2386185029Spjd	}
2387168404Spjd
2388185029Spjd	arc_cksum_compute(buf, B_FALSE);
2389168404Spjd
2390168404Spjd	/* create copies of the data buffer for the callers */
2391168404Spjd	abuf = buf;
2392168404Spjd	for (acb = callback_list; acb; acb = acb->acb_next) {
2393168404Spjd		if (acb->acb_done) {
2394168404Spjd			if (abuf == NULL)
2395168404Spjd				abuf = arc_buf_clone(buf);
2396168404Spjd			acb->acb_buf = abuf;
2397168404Spjd			abuf = NULL;
2398168404Spjd		}
2399168404Spjd	}
2400168404Spjd	hdr->b_acb = NULL;
2401168404Spjd	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2402168404Spjd	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2403168404Spjd	if (abuf == buf)
2404168404Spjd		hdr->b_flags |= ARC_BUF_AVAILABLE;
2405168404Spjd
2406168404Spjd	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2407168404Spjd
2408168404Spjd	if (zio->io_error != 0) {
2409168404Spjd		hdr->b_flags |= ARC_IO_ERROR;
2410168404Spjd		if (hdr->b_state != arc_anon)
2411168404Spjd			arc_change_state(arc_anon, hdr, hash_lock);
2412168404Spjd		if (HDR_IN_HASH_TABLE(hdr))
2413168404Spjd			buf_hash_remove(hdr);
2414168404Spjd		freeable = refcount_is_zero(&hdr->b_refcnt);
2415168404Spjd	}
2416168404Spjd
2417168404Spjd	/*
2418168404Spjd	 * Broadcast before we drop the hash_lock to avoid the possibility
2419168404Spjd	 * that the hdr (and hence the cv) might be freed before we get to
2420168404Spjd	 * the cv_broadcast().
2421168404Spjd	 */
2422168404Spjd	cv_broadcast(&hdr->b_cv);
2423168404Spjd
2424168404Spjd	if (hash_lock) {
2425168404Spjd		/*
2426168404Spjd		 * Only call arc_access on anonymous buffers.  This is because
2427168404Spjd		 * if we've issued an I/O for an evicted buffer, we've already
2428168404Spjd		 * called arc_access (to prevent any simultaneous readers from
2429168404Spjd		 * getting confused).
2430168404Spjd		 */
2431168404Spjd		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2432168404Spjd			arc_access(hdr, hash_lock);
2433168404Spjd		mutex_exit(hash_lock);
2434168404Spjd	} else {
2435168404Spjd		/*
2436168404Spjd		 * This block was freed while we waited for the read to
2437168404Spjd		 * complete.  It has been removed from the hash table and
2438168404Spjd		 * moved to the anonymous state (so that it won't show up
2439168404Spjd		 * in the cache).
2440168404Spjd		 */
2441168404Spjd		ASSERT3P(hdr->b_state, ==, arc_anon);
2442168404Spjd		freeable = refcount_is_zero(&hdr->b_refcnt);
2443168404Spjd	}
2444168404Spjd
2445168404Spjd	/* execute each callback and free its structure */
2446168404Spjd	while ((acb = callback_list) != NULL) {
2447168404Spjd		if (acb->acb_done)
2448168404Spjd			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2449168404Spjd
2450168404Spjd		if (acb->acb_zio_dummy != NULL) {
2451168404Spjd			acb->acb_zio_dummy->io_error = zio->io_error;
2452168404Spjd			zio_nowait(acb->acb_zio_dummy);
2453168404Spjd		}
2454168404Spjd
2455168404Spjd		callback_list = acb->acb_next;
2456168404Spjd		kmem_free(acb, sizeof (arc_callback_t));
2457168404Spjd	}
2458168404Spjd
2459168404Spjd	if (freeable)
2460168404Spjd		arc_hdr_destroy(hdr);
2461168404Spjd}
2462168404Spjd
2463168404Spjd/*
2464168404Spjd * "Read" the block block at the specified DVA (in bp) via the
2465168404Spjd * cache.  If the block is found in the cache, invoke the provided
2466168404Spjd * callback immediately and return.  Note that the `zio' parameter
2467168404Spjd * in the callback will be NULL in this case, since no IO was
2468168404Spjd * required.  If the block is not in the cache pass the read request
2469168404Spjd * on to the spa with a substitute callback function, so that the
2470168404Spjd * requested block will be added to the cache.
2471168404Spjd *
2472168404Spjd * If a read request arrives for a block that has a read in-progress,
2473168404Spjd * either wait for the in-progress read to complete (and return the
2474168404Spjd * results); or, if this is a read with a "done" func, add a record
2475168404Spjd * to the read to invoke the "done" func when the read completes,
2476168404Spjd * and return; or just return.
2477168404Spjd *
2478168404Spjd * arc_read_done() will invoke all the requested "done" functions
2479168404Spjd * for readers of this block.
2480185029Spjd *
2481185029Spjd * Normal callers should use arc_read and pass the arc buffer and offset
2482185029Spjd * for the bp.  But if you know you don't need locking, you can use
2483185029Spjd * arc_read_bp.
2484168404Spjd */
2485168404Spjdint
2486185029Spjdarc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2487185029Spjd    arc_done_func_t *done, void *private, int priority, int zio_flags,
2488185029Spjd    uint32_t *arc_flags, const zbookmark_t *zb)
2489168404Spjd{
2490185029Spjd	int err;
2491185029Spjd	arc_buf_hdr_t *hdr = pbuf->b_hdr;
2492185029Spjd
2493185029Spjd	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2494185029Spjd	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2495185029Spjd	rw_enter(&pbuf->b_lock, RW_READER);
2496185029Spjd
2497185029Spjd	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2498185029Spjd	    zio_flags, arc_flags, zb);
2499185029Spjd
2500185029Spjd	ASSERT3P(hdr, ==, pbuf->b_hdr);
2501185029Spjd	rw_exit(&pbuf->b_lock);
2502185029Spjd	return (err);
2503185029Spjd}
2504185029Spjd
2505185029Spjdint
2506185029Spjdarc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2507185029Spjd    arc_done_func_t *done, void *private, int priority, int zio_flags,
2508185029Spjd    uint32_t *arc_flags, const zbookmark_t *zb)
2509185029Spjd{
2510168404Spjd	arc_buf_hdr_t *hdr;
2511168404Spjd	arc_buf_t *buf;
2512168404Spjd	kmutex_t *hash_lock;
2513185029Spjd	zio_t *rzio;
2514168404Spjd
2515168404Spjdtop:
2516168404Spjd	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2517168404Spjd	if (hdr && hdr->b_datacnt > 0) {
2518168404Spjd
2519168404Spjd		*arc_flags |= ARC_CACHED;
2520168404Spjd
2521168404Spjd		if (HDR_IO_IN_PROGRESS(hdr)) {
2522168404Spjd
2523168404Spjd			if (*arc_flags & ARC_WAIT) {
2524168404Spjd				cv_wait(&hdr->b_cv, hash_lock);
2525168404Spjd				mutex_exit(hash_lock);
2526168404Spjd				goto top;
2527168404Spjd			}
2528168404Spjd			ASSERT(*arc_flags & ARC_NOWAIT);
2529168404Spjd
2530168404Spjd			if (done) {
2531168404Spjd				arc_callback_t	*acb = NULL;
2532168404Spjd
2533168404Spjd				acb = kmem_zalloc(sizeof (arc_callback_t),
2534168404Spjd				    KM_SLEEP);
2535168404Spjd				acb->acb_done = done;
2536168404Spjd				acb->acb_private = private;
2537168404Spjd				if (pio != NULL)
2538168404Spjd					acb->acb_zio_dummy = zio_null(pio,
2539185029Spjd					    spa, NULL, NULL, zio_flags);
2540168404Spjd
2541168404Spjd				ASSERT(acb->acb_done != NULL);
2542168404Spjd				acb->acb_next = hdr->b_acb;
2543168404Spjd				hdr->b_acb = acb;
2544168404Spjd				add_reference(hdr, hash_lock, private);
2545168404Spjd				mutex_exit(hash_lock);
2546168404Spjd				return (0);
2547168404Spjd			}
2548168404Spjd			mutex_exit(hash_lock);
2549168404Spjd			return (0);
2550168404Spjd		}
2551168404Spjd
2552168404Spjd		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2553168404Spjd
2554168404Spjd		if (done) {
2555168404Spjd			add_reference(hdr, hash_lock, private);
2556168404Spjd			/*
2557168404Spjd			 * If this block is already in use, create a new
2558168404Spjd			 * copy of the data so that we will be guaranteed
2559168404Spjd			 * that arc_release() will always succeed.
2560168404Spjd			 */
2561168404Spjd			buf = hdr->b_buf;
2562168404Spjd			ASSERT(buf);
2563168404Spjd			ASSERT(buf->b_data);
2564168404Spjd			if (HDR_BUF_AVAILABLE(hdr)) {
2565168404Spjd				ASSERT(buf->b_efunc == NULL);
2566168404Spjd				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2567168404Spjd			} else {
2568168404Spjd				buf = arc_buf_clone(buf);
2569168404Spjd			}
2570168404Spjd		} else if (*arc_flags & ARC_PREFETCH &&
2571168404Spjd		    refcount_count(&hdr->b_refcnt) == 0) {
2572168404Spjd			hdr->b_flags |= ARC_PREFETCH;
2573168404Spjd		}
2574168404Spjd		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2575168404Spjd		arc_access(hdr, hash_lock);
2576185029Spjd		if (*arc_flags & ARC_L2CACHE)
2577185029Spjd			hdr->b_flags |= ARC_L2CACHE;
2578168404Spjd		mutex_exit(hash_lock);
2579168404Spjd		ARCSTAT_BUMP(arcstat_hits);
2580168404Spjd		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2581168404Spjd		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2582168404Spjd		    data, metadata, hits);
2583168404Spjd
2584168404Spjd		if (done)
2585168404Spjd			done(NULL, buf, private);
2586168404Spjd	} else {
2587168404Spjd		uint64_t size = BP_GET_LSIZE(bp);
2588168404Spjd		arc_callback_t	*acb;
2589185029Spjd		vdev_t *vd = NULL;
2590185029Spjd		daddr_t addr;
2591168404Spjd
2592168404Spjd		if (hdr == NULL) {
2593168404Spjd			/* this block is not in the cache */
2594168404Spjd			arc_buf_hdr_t	*exists;
2595168404Spjd			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2596168404Spjd			buf = arc_buf_alloc(spa, size, private, type);
2597168404Spjd			hdr = buf->b_hdr;
2598168404Spjd			hdr->b_dva = *BP_IDENTITY(bp);
2599168404Spjd			hdr->b_birth = bp->blk_birth;
2600168404Spjd			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2601168404Spjd			exists = buf_hash_insert(hdr, &hash_lock);
2602168404Spjd			if (exists) {
2603168404Spjd				/* somebody beat us to the hash insert */
2604168404Spjd				mutex_exit(hash_lock);
2605168404Spjd				bzero(&hdr->b_dva, sizeof (dva_t));
2606168404Spjd				hdr->b_birth = 0;
2607168404Spjd				hdr->b_cksum0 = 0;
2608168404Spjd				(void) arc_buf_remove_ref(buf, private);
2609168404Spjd				goto top; /* restart the IO request */
2610168404Spjd			}
2611168404Spjd			/* if this is a prefetch, we don't have a reference */
2612168404Spjd			if (*arc_flags & ARC_PREFETCH) {
2613168404Spjd				(void) remove_reference(hdr, hash_lock,
2614168404Spjd				    private);
2615168404Spjd				hdr->b_flags |= ARC_PREFETCH;
2616168404Spjd			}
2617185029Spjd			if (*arc_flags & ARC_L2CACHE)
2618185029Spjd				hdr->b_flags |= ARC_L2CACHE;
2619168404Spjd			if (BP_GET_LEVEL(bp) > 0)
2620168404Spjd				hdr->b_flags |= ARC_INDIRECT;
2621168404Spjd		} else {
2622168404Spjd			/* this block is in the ghost cache */
2623168404Spjd			ASSERT(GHOST_STATE(hdr->b_state));
2624168404Spjd			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2625168404Spjd			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2626168404Spjd			ASSERT(hdr->b_buf == NULL);
2627168404Spjd
2628168404Spjd			/* if this is a prefetch, we don't have a reference */
2629168404Spjd			if (*arc_flags & ARC_PREFETCH)
2630168404Spjd				hdr->b_flags |= ARC_PREFETCH;
2631168404Spjd			else
2632168404Spjd				add_reference(hdr, hash_lock, private);
2633185029Spjd			if (*arc_flags & ARC_L2CACHE)
2634185029Spjd				hdr->b_flags |= ARC_L2CACHE;
2635185029Spjd			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2636168404Spjd			buf->b_hdr = hdr;
2637168404Spjd			buf->b_data = NULL;
2638168404Spjd			buf->b_efunc = NULL;
2639168404Spjd			buf->b_private = NULL;
2640168404Spjd			buf->b_next = NULL;
2641168404Spjd			hdr->b_buf = buf;
2642168404Spjd			arc_get_data_buf(buf);
2643168404Spjd			ASSERT(hdr->b_datacnt == 0);
2644168404Spjd			hdr->b_datacnt = 1;
2645168404Spjd
2646168404Spjd		}
2647168404Spjd
2648168404Spjd		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2649168404Spjd		acb->acb_done = done;
2650168404Spjd		acb->acb_private = private;
2651168404Spjd
2652168404Spjd		ASSERT(hdr->b_acb == NULL);
2653168404Spjd		hdr->b_acb = acb;
2654168404Spjd		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2655168404Spjd
2656168404Spjd		/*
2657168404Spjd		 * If the buffer has been evicted, migrate it to a present state
2658168404Spjd		 * before issuing the I/O.  Once we drop the hash-table lock,
2659168404Spjd		 * the header will be marked as I/O in progress and have an
2660168404Spjd		 * attached buffer.  At this point, anybody who finds this
2661168404Spjd		 * buffer ought to notice that it's legit but has a pending I/O.
2662168404Spjd		 */
2663168404Spjd
2664168404Spjd		if (GHOST_STATE(hdr->b_state))
2665168404Spjd			arc_access(hdr, hash_lock);
2666185029Spjd
2667185029Spjd		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2668185029Spjd		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2669185029Spjd			addr = hdr->b_l2hdr->b_daddr;
2670185029Spjd			/*
2671185029Spjd			 * Lock out device removal.
2672185029Spjd			 */
2673185029Spjd			if (vdev_is_dead(vd) ||
2674185029Spjd			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2675185029Spjd				vd = NULL;
2676185029Spjd		}
2677185029Spjd
2678168404Spjd		mutex_exit(hash_lock);
2679168404Spjd
2680168404Spjd		ASSERT3U(hdr->b_size, ==, size);
2681168404Spjd		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2682168404Spjd		    zbookmark_t *, zb);
2683168404Spjd		ARCSTAT_BUMP(arcstat_misses);
2684168404Spjd		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2685168404Spjd		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2686168404Spjd		    data, metadata, misses);
2687168404Spjd
2688185029Spjd		if (vd != NULL) {
2689185029Spjd			/*
2690185029Spjd			 * Read from the L2ARC if the following are true:
2691185029Spjd			 * 1. The L2ARC vdev was previously cached.
2692185029Spjd			 * 2. This buffer still has L2ARC metadata.
2693185029Spjd			 * 3. This buffer isn't currently writing to the L2ARC.
2694185029Spjd			 * 4. The L2ARC entry wasn't evicted, which may
2695185029Spjd			 *    also have invalidated the vdev.
2696185029Spjd			 */
2697185029Spjd			if (hdr->b_l2hdr != NULL &&
2698185029Spjd			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
2699185029Spjd				l2arc_read_callback_t *cb;
2700185029Spjd
2701185029Spjd				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2702185029Spjd				ARCSTAT_BUMP(arcstat_l2_hits);
2703185029Spjd
2704185029Spjd				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2705185029Spjd				    KM_SLEEP);
2706185029Spjd				cb->l2rcb_buf = buf;
2707185029Spjd				cb->l2rcb_spa = spa;
2708185029Spjd				cb->l2rcb_bp = *bp;
2709185029Spjd				cb->l2rcb_zb = *zb;
2710185029Spjd				cb->l2rcb_flags = zio_flags;
2711185029Spjd
2712185029Spjd				/*
2713185029Spjd				 * l2arc read.  The SCL_L2ARC lock will be
2714185029Spjd				 * released by l2arc_read_done().
2715185029Spjd				 */
2716185029Spjd				rzio = zio_read_phys(pio, vd, addr, size,
2717185029Spjd				    buf->b_data, ZIO_CHECKSUM_OFF,
2718185029Spjd				    l2arc_read_done, cb, priority, zio_flags |
2719185029Spjd				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2720185029Spjd				    ZIO_FLAG_DONT_PROPAGATE |
2721185029Spjd				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2722185029Spjd				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2723185029Spjd				    zio_t *, rzio);
2724185029Spjd
2725185029Spjd				if (*arc_flags & ARC_NOWAIT) {
2726185029Spjd					zio_nowait(rzio);
2727185029Spjd					return (0);
2728185029Spjd				}
2729185029Spjd
2730185029Spjd				ASSERT(*arc_flags & ARC_WAIT);
2731185029Spjd				if (zio_wait(rzio) == 0)
2732185029Spjd					return (0);
2733185029Spjd
2734185029Spjd				/* l2arc read error; goto zio_read() */
2735185029Spjd			} else {
2736185029Spjd				DTRACE_PROBE1(l2arc__miss,
2737185029Spjd				    arc_buf_hdr_t *, hdr);
2738185029Spjd				ARCSTAT_BUMP(arcstat_l2_misses);
2739185029Spjd				if (HDR_L2_WRITING(hdr))
2740185029Spjd					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2741185029Spjd				spa_config_exit(spa, SCL_L2ARC, vd);
2742185029Spjd			}
2743185029Spjd		}
2744185029Spjd
2745168404Spjd		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2746185029Spjd		    arc_read_done, buf, priority, zio_flags, zb);
2747168404Spjd
2748168404Spjd		if (*arc_flags & ARC_WAIT)
2749168404Spjd			return (zio_wait(rzio));
2750168404Spjd
2751168404Spjd		ASSERT(*arc_flags & ARC_NOWAIT);
2752168404Spjd		zio_nowait(rzio);
2753168404Spjd	}
2754168404Spjd	return (0);
2755168404Spjd}
2756168404Spjd
2757168404Spjd/*
2758168404Spjd * arc_read() variant to support pool traversal.  If the block is already
2759168404Spjd * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2760168404Spjd * The idea is that we don't want pool traversal filling up memory, but
2761168404Spjd * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2762168404Spjd */
2763168404Spjdint
2764168404Spjdarc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2765168404Spjd{
2766168404Spjd	arc_buf_hdr_t *hdr;
2767168404Spjd	kmutex_t *hash_mtx;
2768168404Spjd	int rc = 0;
2769168404Spjd
2770168404Spjd	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2771168404Spjd
2772168404Spjd	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2773168404Spjd		arc_buf_t *buf = hdr->b_buf;
2774168404Spjd
2775168404Spjd		ASSERT(buf);
2776168404Spjd		while (buf->b_data == NULL) {
2777168404Spjd			buf = buf->b_next;
2778168404Spjd			ASSERT(buf);
2779168404Spjd		}
2780168404Spjd		bcopy(buf->b_data, data, hdr->b_size);
2781168404Spjd	} else {
2782168404Spjd		rc = ENOENT;
2783168404Spjd	}
2784168404Spjd
2785168404Spjd	if (hash_mtx)
2786168404Spjd		mutex_exit(hash_mtx);
2787168404Spjd
2788168404Spjd	return (rc);
2789168404Spjd}
2790168404Spjd
2791168404Spjdvoid
2792168404Spjdarc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2793168404Spjd{
2794168404Spjd	ASSERT(buf->b_hdr != NULL);
2795168404Spjd	ASSERT(buf->b_hdr->b_state != arc_anon);
2796168404Spjd	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2797168404Spjd	buf->b_efunc = func;
2798168404Spjd	buf->b_private = private;
2799168404Spjd}
2800168404Spjd
2801168404Spjd/*
2802168404Spjd * This is used by the DMU to let the ARC know that a buffer is
2803168404Spjd * being evicted, so the ARC should clean up.  If this arc buf
2804168404Spjd * is not yet in the evicted state, it will be put there.
2805168404Spjd */
2806168404Spjdint
2807168404Spjdarc_buf_evict(arc_buf_t *buf)
2808168404Spjd{
2809168404Spjd	arc_buf_hdr_t *hdr;
2810168404Spjd	kmutex_t *hash_lock;
2811168404Spjd	arc_buf_t **bufp;
2812168404Spjd
2813185029Spjd	rw_enter(&buf->b_lock, RW_WRITER);
2814168404Spjd	hdr = buf->b_hdr;
2815168404Spjd	if (hdr == NULL) {
2816168404Spjd		/*
2817168404Spjd		 * We are in arc_do_user_evicts().
2818168404Spjd		 */
2819168404Spjd		ASSERT(buf->b_data == NULL);
2820185029Spjd		rw_exit(&buf->b_lock);
2821168404Spjd		return (0);
2822185029Spjd	} else if (buf->b_data == NULL) {
2823185029Spjd		arc_buf_t copy = *buf; /* structure assignment */
2824185029Spjd		/*
2825185029Spjd		 * We are on the eviction list; process this buffer now
2826185029Spjd		 * but let arc_do_user_evicts() do the reaping.
2827185029Spjd		 */
2828185029Spjd		buf->b_efunc = NULL;
2829185029Spjd		rw_exit(&buf->b_lock);
2830185029Spjd		VERIFY(copy.b_efunc(&copy) == 0);
2831185029Spjd		return (1);
2832168404Spjd	}
2833168404Spjd	hash_lock = HDR_LOCK(hdr);
2834168404Spjd	mutex_enter(hash_lock);
2835168404Spjd
2836168404Spjd	ASSERT(buf->b_hdr == hdr);
2837168404Spjd	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2838168404Spjd	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2839168404Spjd
2840168404Spjd	/*
2841168404Spjd	 * Pull this buffer off of the hdr
2842168404Spjd	 */
2843168404Spjd	bufp = &hdr->b_buf;
2844168404Spjd	while (*bufp != buf)
2845168404Spjd		bufp = &(*bufp)->b_next;
2846168404Spjd	*bufp = buf->b_next;
2847168404Spjd
2848168404Spjd	ASSERT(buf->b_data != NULL);
2849168404Spjd	arc_buf_destroy(buf, FALSE, FALSE);
2850168404Spjd
2851168404Spjd	if (hdr->b_datacnt == 0) {
2852168404Spjd		arc_state_t *old_state = hdr->b_state;
2853168404Spjd		arc_state_t *evicted_state;
2854168404Spjd
2855168404Spjd		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2856168404Spjd
2857168404Spjd		evicted_state =
2858168404Spjd		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2859168404Spjd
2860168404Spjd		mutex_enter(&old_state->arcs_mtx);
2861168404Spjd		mutex_enter(&evicted_state->arcs_mtx);
2862168404Spjd
2863168404Spjd		arc_change_state(evicted_state, hdr, hash_lock);
2864168404Spjd		ASSERT(HDR_IN_HASH_TABLE(hdr));
2865185029Spjd		hdr->b_flags |= ARC_IN_HASH_TABLE;
2866185029Spjd		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2867168404Spjd
2868168404Spjd		mutex_exit(&evicted_state->arcs_mtx);
2869168404Spjd		mutex_exit(&old_state->arcs_mtx);
2870168404Spjd	}
2871168404Spjd	mutex_exit(hash_lock);
2872185029Spjd	rw_exit(&buf->b_lock);
2873168404Spjd
2874168404Spjd	VERIFY(buf->b_efunc(buf) == 0);
2875168404Spjd	buf->b_efunc = NULL;
2876168404Spjd	buf->b_private = NULL;
2877168404Spjd	buf->b_hdr = NULL;
2878168404Spjd	kmem_cache_free(buf_cache, buf);
2879168404Spjd	return (1);
2880168404Spjd}
2881168404Spjd
2882168404Spjd/*
2883168404Spjd * Release this buffer from the cache.  This must be done
2884168404Spjd * after a read and prior to modifying the buffer contents.
2885168404Spjd * If the buffer has more than one reference, we must make
2886185029Spjd * a new hdr for the buffer.
2887168404Spjd */
2888168404Spjdvoid
2889168404Spjdarc_release(arc_buf_t *buf, void *tag)
2890168404Spjd{
2891185029Spjd	arc_buf_hdr_t *hdr;
2892185029Spjd	kmutex_t *hash_lock;
2893185029Spjd	l2arc_buf_hdr_t *l2hdr;
2894185029Spjd	uint64_t buf_size;
2895168404Spjd
2896185029Spjd	rw_enter(&buf->b_lock, RW_WRITER);
2897185029Spjd	hdr = buf->b_hdr;
2898185029Spjd
2899168404Spjd	/* this buffer is not on any list */
2900168404Spjd	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2901185029Spjd	ASSERT(!(hdr->b_flags & ARC_STORED));
2902168404Spjd
2903168404Spjd	if (hdr->b_state == arc_anon) {
2904168404Spjd		/* this buffer is already released */
2905168404Spjd		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2906168404Spjd		ASSERT(BUF_EMPTY(hdr));
2907168404Spjd		ASSERT(buf->b_efunc == NULL);
2908168404Spjd		arc_buf_thaw(buf);
2909185029Spjd		rw_exit(&buf->b_lock);
2910168404Spjd		return;
2911168404Spjd	}
2912168404Spjd
2913185029Spjd	hash_lock = HDR_LOCK(hdr);
2914168404Spjd	mutex_enter(hash_lock);
2915168404Spjd
2916185029Spjd	l2hdr = hdr->b_l2hdr;
2917185029Spjd	if (l2hdr) {
2918185029Spjd		mutex_enter(&l2arc_buflist_mtx);
2919185029Spjd		hdr->b_l2hdr = NULL;
2920185029Spjd		buf_size = hdr->b_size;
2921185029Spjd	}
2922185029Spjd
2923168404Spjd	/*
2924168404Spjd	 * Do we have more than one buf?
2925168404Spjd	 */
2926185029Spjd	if (hdr->b_datacnt > 1) {
2927168404Spjd		arc_buf_hdr_t *nhdr;
2928168404Spjd		arc_buf_t **bufp;
2929168404Spjd		uint64_t blksz = hdr->b_size;
2930168404Spjd		spa_t *spa = hdr->b_spa;
2931168404Spjd		arc_buf_contents_t type = hdr->b_type;
2932185029Spjd		uint32_t flags = hdr->b_flags;
2933168404Spjd
2934185029Spjd		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
2935168404Spjd		/*
2936168404Spjd		 * Pull the data off of this buf and attach it to
2937168404Spjd		 * a new anonymous buf.
2938168404Spjd		 */
2939168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
2940168404Spjd		bufp = &hdr->b_buf;
2941168404Spjd		while (*bufp != buf)
2942168404Spjd			bufp = &(*bufp)->b_next;
2943168404Spjd		*bufp = (*bufp)->b_next;
2944168404Spjd		buf->b_next = NULL;
2945168404Spjd
2946168404Spjd		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2947168404Spjd		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2948168404Spjd		if (refcount_is_zero(&hdr->b_refcnt)) {
2949185029Spjd			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2950185029Spjd			ASSERT3U(*size, >=, hdr->b_size);
2951185029Spjd			atomic_add_64(size, -hdr->b_size);
2952168404Spjd		}
2953168404Spjd		hdr->b_datacnt -= 1;
2954168404Spjd		arc_cksum_verify(buf);
2955168404Spjd
2956168404Spjd		mutex_exit(hash_lock);
2957168404Spjd
2958185029Spjd		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2959168404Spjd		nhdr->b_size = blksz;
2960168404Spjd		nhdr->b_spa = spa;
2961168404Spjd		nhdr->b_type = type;
2962168404Spjd		nhdr->b_buf = buf;
2963168404Spjd		nhdr->b_state = arc_anon;
2964168404Spjd		nhdr->b_arc_access = 0;
2965185029Spjd		nhdr->b_flags = flags & ARC_L2_WRITING;
2966185029Spjd		nhdr->b_l2hdr = NULL;
2967168404Spjd		nhdr->b_datacnt = 1;
2968168404Spjd		nhdr->b_freeze_cksum = NULL;
2969168404Spjd		(void) refcount_add(&nhdr->b_refcnt, tag);
2970168404Spjd		buf->b_hdr = nhdr;
2971185029Spjd		rw_exit(&buf->b_lock);
2972168404Spjd		atomic_add_64(&arc_anon->arcs_size, blksz);
2973168404Spjd	} else {
2974185029Spjd		rw_exit(&buf->b_lock);
2975168404Spjd		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2976168404Spjd		ASSERT(!list_link_active(&hdr->b_arc_node));
2977168404Spjd		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2978168404Spjd		arc_change_state(arc_anon, hdr, hash_lock);
2979168404Spjd		hdr->b_arc_access = 0;
2980168404Spjd		mutex_exit(hash_lock);
2981185029Spjd
2982168404Spjd		bzero(&hdr->b_dva, sizeof (dva_t));
2983168404Spjd		hdr->b_birth = 0;
2984168404Spjd		hdr->b_cksum0 = 0;
2985168404Spjd		arc_buf_thaw(buf);
2986168404Spjd	}
2987168404Spjd	buf->b_efunc = NULL;
2988168404Spjd	buf->b_private = NULL;
2989185029Spjd
2990185029Spjd	if (l2hdr) {
2991185029Spjd		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2992185029Spjd		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2993185029Spjd		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2994185029Spjd		mutex_exit(&l2arc_buflist_mtx);
2995185029Spjd	}
2996168404Spjd}
2997168404Spjd
2998168404Spjdint
2999168404Spjdarc_released(arc_buf_t *buf)
3000168404Spjd{
3001185029Spjd	int released;
3002185029Spjd
3003185029Spjd	rw_enter(&buf->b_lock, RW_READER);
3004185029Spjd	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3005185029Spjd	rw_exit(&buf->b_lock);
3006185029Spjd	return (released);
3007168404Spjd}
3008168404Spjd
3009168404Spjdint
3010168404Spjdarc_has_callback(arc_buf_t *buf)
3011168404Spjd{
3012185029Spjd	int callback;
3013185029Spjd
3014185029Spjd	rw_enter(&buf->b_lock, RW_READER);
3015185029Spjd	callback = (buf->b_efunc != NULL);
3016185029Spjd	rw_exit(&buf->b_lock);
3017185029Spjd	return (callback);
3018168404Spjd}
3019168404Spjd
3020168404Spjd#ifdef ZFS_DEBUG
3021168404Spjdint
3022168404Spjdarc_referenced(arc_buf_t *buf)
3023168404Spjd{
3024185029Spjd	int referenced;
3025185029Spjd
3026185029Spjd	rw_enter(&buf->b_lock, RW_READER);
3027185029Spjd	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3028185029Spjd	rw_exit(&buf->b_lock);
3029185029Spjd	return (referenced);
3030168404Spjd}
3031168404Spjd#endif
3032168404Spjd
3033168404Spjdstatic void
3034168404Spjdarc_write_ready(zio_t *zio)
3035168404Spjd{
3036168404Spjd	arc_write_callback_t *callback = zio->io_private;
3037168404Spjd	arc_buf_t *buf = callback->awcb_buf;
3038185029Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
3039168404Spjd
3040185029Spjd	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3041185029Spjd	callback->awcb_ready(zio, buf, callback->awcb_private);
3042185029Spjd
3043185029Spjd	/*
3044185029Spjd	 * If the IO is already in progress, then this is a re-write
3045185029Spjd	 * attempt, so we need to thaw and re-compute the cksum.
3046185029Spjd	 * It is the responsibility of the callback to handle the
3047185029Spjd	 * accounting for any re-write attempt.
3048185029Spjd	 */
3049185029Spjd	if (HDR_IO_IN_PROGRESS(hdr)) {
3050185029Spjd		mutex_enter(&hdr->b_freeze_lock);
3051185029Spjd		if (hdr->b_freeze_cksum != NULL) {
3052185029Spjd			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3053185029Spjd			hdr->b_freeze_cksum = NULL;
3054185029Spjd		}
3055185029Spjd		mutex_exit(&hdr->b_freeze_lock);
3056168404Spjd	}
3057185029Spjd	arc_cksum_compute(buf, B_FALSE);
3058185029Spjd	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3059168404Spjd}
3060168404Spjd
3061168404Spjdstatic void
3062168404Spjdarc_write_done(zio_t *zio)
3063168404Spjd{
3064168404Spjd	arc_write_callback_t *callback = zio->io_private;
3065168404Spjd	arc_buf_t *buf = callback->awcb_buf;
3066168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
3067168404Spjd
3068168404Spjd	hdr->b_acb = NULL;
3069168404Spjd
3070168404Spjd	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3071168404Spjd	hdr->b_birth = zio->io_bp->blk_birth;
3072168404Spjd	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3073168404Spjd	/*
3074168404Spjd	 * If the block to be written was all-zero, we may have
3075168404Spjd	 * compressed it away.  In this case no write was performed
3076168404Spjd	 * so there will be no dva/birth-date/checksum.  The buffer
3077168404Spjd	 * must therefor remain anonymous (and uncached).
3078168404Spjd	 */
3079168404Spjd	if (!BUF_EMPTY(hdr)) {
3080168404Spjd		arc_buf_hdr_t *exists;
3081168404Spjd		kmutex_t *hash_lock;
3082168404Spjd
3083168404Spjd		arc_cksum_verify(buf);
3084168404Spjd
3085168404Spjd		exists = buf_hash_insert(hdr, &hash_lock);
3086168404Spjd		if (exists) {
3087168404Spjd			/*
3088168404Spjd			 * This can only happen if we overwrite for
3089168404Spjd			 * sync-to-convergence, because we remove
3090168404Spjd			 * buffers from the hash table when we arc_free().
3091168404Spjd			 */
3092185029Spjd			ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
3093168404Spjd			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3094168404Spjd			    BP_IDENTITY(zio->io_bp)));
3095168404Spjd			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3096168404Spjd			    zio->io_bp->blk_birth);
3097168404Spjd
3098168404Spjd			ASSERT(refcount_is_zero(&exists->b_refcnt));
3099168404Spjd			arc_change_state(arc_anon, exists, hash_lock);
3100168404Spjd			mutex_exit(hash_lock);
3101168404Spjd			arc_hdr_destroy(exists);
3102168404Spjd			exists = buf_hash_insert(hdr, &hash_lock);
3103168404Spjd			ASSERT3P(exists, ==, NULL);
3104168404Spjd		}
3105168404Spjd		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3106185029Spjd		/* if it's not anon, we are doing a scrub */
3107185029Spjd		if (hdr->b_state == arc_anon)
3108185029Spjd			arc_access(hdr, hash_lock);
3109168404Spjd		mutex_exit(hash_lock);
3110168404Spjd	} else if (callback->awcb_done == NULL) {
3111168404Spjd		int destroy_hdr;
3112168404Spjd		/*
3113168404Spjd		 * This is an anonymous buffer with no user callback,
3114168404Spjd		 * destroy it if there are no active references.
3115168404Spjd		 */
3116168404Spjd		mutex_enter(&arc_eviction_mtx);
3117168404Spjd		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3118168404Spjd		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3119168404Spjd		mutex_exit(&arc_eviction_mtx);
3120168404Spjd		if (destroy_hdr)
3121168404Spjd			arc_hdr_destroy(hdr);
3122168404Spjd	} else {
3123168404Spjd		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3124168404Spjd	}
3125185029Spjd	hdr->b_flags &= ~ARC_STORED;
3126168404Spjd
3127168404Spjd	if (callback->awcb_done) {
3128168404Spjd		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3129168404Spjd		callback->awcb_done(zio, buf, callback->awcb_private);
3130168404Spjd	}
3131168404Spjd
3132168404Spjd	kmem_free(callback, sizeof (arc_write_callback_t));
3133168404Spjd}
3134168404Spjd
3135185029Spjdstatic void
3136185029Spjdwrite_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
3137185029Spjd{
3138185029Spjd	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3139185029Spjd
3140185029Spjd	/* Determine checksum setting */
3141185029Spjd	if (ismd) {
3142185029Spjd		/*
3143185029Spjd		 * Metadata always gets checksummed.  If the data
3144185029Spjd		 * checksum is multi-bit correctable, and it's not a
3145185029Spjd		 * ZBT-style checksum, then it's suitable for metadata
3146185029Spjd		 * as well.  Otherwise, the metadata checksum defaults
3147185029Spjd		 * to fletcher4.
3148185029Spjd		 */
3149185029Spjd		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3150185029Spjd		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3151185029Spjd			zp->zp_checksum = wp->wp_oschecksum;
3152185029Spjd		else
3153185029Spjd			zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
3154185029Spjd	} else {
3155185029Spjd		zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
3156185029Spjd		    wp->wp_oschecksum);
3157185029Spjd	}
3158185029Spjd
3159185029Spjd	/* Determine compression setting */
3160185029Spjd	if (ismd) {
3161185029Spjd		/*
3162185029Spjd		 * XXX -- we should design a compression algorithm
3163185029Spjd		 * that specializes in arrays of bps.
3164185029Spjd		 */
3165185029Spjd		zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3166185029Spjd		    ZIO_COMPRESS_LZJB;
3167185029Spjd	} else {
3168185029Spjd		zp->zp_compress = zio_compress_select(wp->wp_dncompress,
3169185029Spjd		    wp->wp_oscompress);
3170185029Spjd	}
3171185029Spjd
3172185029Spjd	zp->zp_type = wp->wp_type;
3173185029Spjd	zp->zp_level = wp->wp_level;
3174185029Spjd	zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
3175185029Spjd}
3176185029Spjd
3177168404Spjdzio_t *
3178185029Spjdarc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3179185029Spjd    boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3180168404Spjd    arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3181185029Spjd    int zio_flags, const zbookmark_t *zb)
3182168404Spjd{
3183168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
3184168404Spjd	arc_write_callback_t *callback;
3185185029Spjd	zio_t *zio;
3186185029Spjd	zio_prop_t zp;
3187168404Spjd
3188185029Spjd	ASSERT(ready != NULL);
3189168404Spjd	ASSERT(!HDR_IO_ERROR(hdr));
3190168404Spjd	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3191168404Spjd	ASSERT(hdr->b_acb == 0);
3192185029Spjd	if (l2arc)
3193185029Spjd		hdr->b_flags |= ARC_L2CACHE;
3194168404Spjd	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3195168404Spjd	callback->awcb_ready = ready;
3196168404Spjd	callback->awcb_done = done;
3197168404Spjd	callback->awcb_private = private;
3198168404Spjd	callback->awcb_buf = buf;
3199168404Spjd
3200185029Spjd	write_policy(spa, wp, &zp);
3201185029Spjd	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
3202185029Spjd	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3203185029Spjd
3204168404Spjd	return (zio);
3205168404Spjd}
3206168404Spjd
3207168404Spjdint
3208168404Spjdarc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3209168404Spjd    zio_done_func_t *done, void *private, uint32_t arc_flags)
3210168404Spjd{
3211168404Spjd	arc_buf_hdr_t *ab;
3212168404Spjd	kmutex_t *hash_lock;
3213168404Spjd	zio_t	*zio;
3214168404Spjd
3215168404Spjd	/*
3216168404Spjd	 * If this buffer is in the cache, release it, so it
3217168404Spjd	 * can be re-used.
3218168404Spjd	 */
3219168404Spjd	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3220168404Spjd	if (ab != NULL) {
3221168404Spjd		/*
3222168404Spjd		 * The checksum of blocks to free is not always
3223168404Spjd		 * preserved (eg. on the deadlist).  However, if it is
3224168404Spjd		 * nonzero, it should match what we have in the cache.
3225168404Spjd		 */
3226168404Spjd		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3227185029Spjd		    bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
3228185029Spjd		    bp->blk_fill == BLK_FILL_ALREADY_FREED);
3229185029Spjd
3230168404Spjd		if (ab->b_state != arc_anon)
3231168404Spjd			arc_change_state(arc_anon, ab, hash_lock);
3232168404Spjd		if (HDR_IO_IN_PROGRESS(ab)) {
3233168404Spjd			/*
3234168404Spjd			 * This should only happen when we prefetch.
3235168404Spjd			 */
3236168404Spjd			ASSERT(ab->b_flags & ARC_PREFETCH);
3237168404Spjd			ASSERT3U(ab->b_datacnt, ==, 1);
3238168404Spjd			ab->b_flags |= ARC_FREED_IN_READ;
3239168404Spjd			if (HDR_IN_HASH_TABLE(ab))
3240168404Spjd				buf_hash_remove(ab);
3241168404Spjd			ab->b_arc_access = 0;
3242168404Spjd			bzero(&ab->b_dva, sizeof (dva_t));
3243168404Spjd			ab->b_birth = 0;
3244168404Spjd			ab->b_cksum0 = 0;
3245168404Spjd			ab->b_buf->b_efunc = NULL;
3246168404Spjd			ab->b_buf->b_private = NULL;
3247168404Spjd			mutex_exit(hash_lock);
3248168404Spjd		} else if (refcount_is_zero(&ab->b_refcnt)) {
3249185029Spjd			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3250168404Spjd			mutex_exit(hash_lock);
3251168404Spjd			arc_hdr_destroy(ab);
3252168404Spjd			ARCSTAT_BUMP(arcstat_deleted);
3253168404Spjd		} else {
3254168404Spjd			/*
3255168404Spjd			 * We still have an active reference on this
3256168404Spjd			 * buffer.  This can happen, e.g., from
3257168404Spjd			 * dbuf_unoverride().
3258168404Spjd			 */
3259168404Spjd			ASSERT(!HDR_IN_HASH_TABLE(ab));
3260168404Spjd			ab->b_arc_access = 0;
3261168404Spjd			bzero(&ab->b_dva, sizeof (dva_t));
3262168404Spjd			ab->b_birth = 0;
3263168404Spjd			ab->b_cksum0 = 0;
3264168404Spjd			ab->b_buf->b_efunc = NULL;
3265168404Spjd			ab->b_buf->b_private = NULL;
3266168404Spjd			mutex_exit(hash_lock);
3267168404Spjd		}
3268168404Spjd	}
3269168404Spjd
3270185029Spjd	zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
3271168404Spjd
3272168404Spjd	if (arc_flags & ARC_WAIT)
3273168404Spjd		return (zio_wait(zio));
3274168404Spjd
3275168404Spjd	ASSERT(arc_flags & ARC_NOWAIT);
3276168404Spjd	zio_nowait(zio);
3277168404Spjd
3278168404Spjd	return (0);
3279168404Spjd}
3280168404Spjd
3281185029Spjdstatic int
3282185029Spjdarc_memory_throttle(uint64_t reserve, uint64_t txg)
3283185029Spjd{
3284185029Spjd#ifdef _KERNEL
3285185029Spjd	uint64_t inflight_data = arc_anon->arcs_size;
3286185029Spjd	uint64_t available_memory = ptoa((uintmax_t)cnt.v_free_count);
3287185029Spjd	static uint64_t page_load = 0;
3288185029Spjd	static uint64_t last_txg = 0;
3289185029Spjd
3290185029Spjd#if 0
3291185029Spjd#if defined(__i386)
3292185029Spjd	available_memory =
3293185029Spjd	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3294185029Spjd#endif
3295185029Spjd#endif
3296185029Spjd	if (available_memory >= zfs_write_limit_max)
3297185029Spjd		return (0);
3298185029Spjd
3299185029Spjd	if (txg > last_txg) {
3300185029Spjd		last_txg = txg;
3301185029Spjd		page_load = 0;
3302185029Spjd	}
3303185029Spjd	/*
3304185029Spjd	 * If we are in pageout, we know that memory is already tight,
3305185029Spjd	 * the arc is already going to be evicting, so we just want to
3306185029Spjd	 * continue to let page writes occur as quickly as possible.
3307185029Spjd	 */
3308185029Spjd	if (curproc == pageproc) {
3309185029Spjd		if (page_load > available_memory / 4)
3310185029Spjd			return (ERESTART);
3311185029Spjd		/* Note: reserve is inflated, so we deflate */
3312185029Spjd		page_load += reserve / 8;
3313185029Spjd		return (0);
3314185029Spjd	} else if (page_load > 0 && arc_reclaim_needed()) {
3315185029Spjd		/* memory is low, delay before restarting */
3316185029Spjd		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3317185029Spjd		return (EAGAIN);
3318185029Spjd	}
3319185029Spjd	page_load = 0;
3320185029Spjd
3321185029Spjd	if (arc_size > arc_c_min) {
3322185029Spjd		uint64_t evictable_memory =
3323185029Spjd		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3324185029Spjd		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3325185029Spjd		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3326185029Spjd		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3327185029Spjd		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3328185029Spjd	}
3329185029Spjd
3330185029Spjd	if (inflight_data > available_memory / 4) {
3331185029Spjd		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3332185029Spjd		return (ERESTART);
3333185029Spjd	}
3334185029Spjd#endif
3335185029Spjd	return (0);
3336185029Spjd}
3337185029Spjd
3338168404Spjdvoid
3339185029Spjdarc_tempreserve_clear(uint64_t reserve)
3340168404Spjd{
3341185029Spjd	atomic_add_64(&arc_tempreserve, -reserve);
3342168404Spjd	ASSERT((int64_t)arc_tempreserve >= 0);
3343168404Spjd}
3344168404Spjd
3345168404Spjdint
3346185029Spjdarc_tempreserve_space(uint64_t reserve, uint64_t txg)
3347168404Spjd{
3348185029Spjd	int error;
3349185029Spjd
3350168404Spjd#ifdef ZFS_DEBUG
3351168404Spjd	/*
3352168404Spjd	 * Once in a while, fail for no reason.  Everything should cope.
3353168404Spjd	 */
3354168404Spjd	if (spa_get_random(10000) == 0) {
3355168404Spjd		dprintf("forcing random failure\n");
3356168404Spjd		return (ERESTART);
3357168404Spjd	}
3358168404Spjd#endif
3359185029Spjd	if (reserve > arc_c/4 && !arc_no_grow)
3360185029Spjd		arc_c = MIN(arc_c_max, reserve * 4);
3361185029Spjd	if (reserve > arc_c)
3362168404Spjd		return (ENOMEM);
3363168404Spjd
3364168404Spjd	/*
3365185029Spjd	 * Writes will, almost always, require additional memory allocations
3366185029Spjd	 * in order to compress/encrypt/etc the data.  We therefor need to
3367185029Spjd	 * make sure that there is sufficient available memory for this.
3368185029Spjd	 */
3369185029Spjd	if (error = arc_memory_throttle(reserve, txg))
3370185029Spjd		return (error);
3371185029Spjd
3372185029Spjd	/*
3373168404Spjd	 * Throttle writes when the amount of dirty data in the cache
3374168404Spjd	 * gets too large.  We try to keep the cache less than half full
3375168404Spjd	 * of dirty blocks so that our sync times don't grow too large.
3376168404Spjd	 * Note: if two requests come in concurrently, we might let them
3377168404Spjd	 * both succeed, when one of them should fail.  Not a huge deal.
3378168404Spjd	 */
3379185029Spjd	if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3380185029Spjd	    arc_anon->arcs_size > arc_c / 4) {
3381185029Spjd		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3382185029Spjd		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3383185029Spjd		    arc_tempreserve>>10,
3384185029Spjd		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3385185029Spjd		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3386185029Spjd		    reserve>>10, arc_c>>10);
3387168404Spjd		return (ERESTART);
3388168404Spjd	}
3389185029Spjd	atomic_add_64(&arc_tempreserve, reserve);
3390168404Spjd	return (0);
3391168404Spjd}
3392168404Spjd
3393168582Spjdstatic kmutex_t arc_lowmem_lock;
3394168404Spjd#ifdef _KERNEL
3395168566Spjdstatic eventhandler_tag arc_event_lowmem = NULL;
3396168404Spjd
3397168404Spjdstatic void
3398168566Spjdarc_lowmem(void *arg __unused, int howto __unused)
3399168404Spjd{
3400168404Spjd
3401168566Spjd	/* Serialize access via arc_lowmem_lock. */
3402168566Spjd	mutex_enter(&arc_lowmem_lock);
3403185029Spjd	needfree = 1;
3404168404Spjd	cv_signal(&arc_reclaim_thr_cv);
3405185029Spjd	while (needfree)
3406185029Spjd		tsleep(&needfree, 0, "zfs:lowmem", hz / 5);
3407168566Spjd	mutex_exit(&arc_lowmem_lock);
3408168404Spjd}
3409168404Spjd#endif
3410168404Spjd
3411168404Spjdvoid
3412168404Spjdarc_init(void)
3413168404Spjd{
3414168404Spjd	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3415168404Spjd	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3416168566Spjd	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
3417168404Spjd
3418168404Spjd	/* Convert seconds to clock ticks */
3419168404Spjd	arc_min_prefetch_lifespan = 1 * hz;
3420168404Spjd
3421168404Spjd	/* Start out with 1/8 of all memory */
3422168566Spjd	arc_c = kmem_size() / 8;
3423168404Spjd#if 0
3424168404Spjd#ifdef _KERNEL
3425168404Spjd	/*
3426168404Spjd	 * On architectures where the physical memory can be larger
3427168404Spjd	 * than the addressable space (intel in 32-bit mode), we may
3428168404Spjd	 * need to limit the cache to 1/8 of VM size.
3429168404Spjd	 */
3430168404Spjd	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3431168404Spjd#endif
3432168404Spjd#endif
3433168566Spjd	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
3434168566Spjd	arc_c_min = MAX(arc_c / 4, 64<<18);
3435168566Spjd	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
3436168404Spjd	if (arc_c * 8 >= 1<<30)
3437168404Spjd		arc_c_max = (arc_c * 8) - (1<<30);
3438168404Spjd	else
3439168404Spjd		arc_c_max = arc_c_min;
3440175633Spjd	arc_c_max = MAX(arc_c * 5, arc_c_max);
3441168481Spjd#ifdef _KERNEL
3442168404Spjd	/*
3443168404Spjd	 * Allow the tunables to override our calculations if they are
3444168566Spjd	 * reasonable (ie. over 16MB)
3445168404Spjd	 */
3446168566Spjd	if (zfs_arc_max >= 64<<18 && zfs_arc_max < kmem_size())
3447168404Spjd		arc_c_max = zfs_arc_max;
3448168566Spjd	if (zfs_arc_min >= 64<<18 && zfs_arc_min <= arc_c_max)
3449168404Spjd		arc_c_min = zfs_arc_min;
3450168481Spjd#endif
3451168404Spjd	arc_c = arc_c_max;
3452168404Spjd	arc_p = (arc_c >> 1);
3453168404Spjd
3454185029Spjd	/* limit meta-data to 1/4 of the arc capacity */
3455185029Spjd	arc_meta_limit = arc_c_max / 4;
3456185029Spjd
3457185029Spjd	/* Allow the tunable to override if it is reasonable */
3458185029Spjd	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3459185029Spjd		arc_meta_limit = zfs_arc_meta_limit;
3460185029Spjd
3461185029Spjd	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3462185029Spjd		arc_c_min = arc_meta_limit / 2;
3463185029Spjd
3464168404Spjd	/* if kmem_flags are set, lets try to use less memory */
3465168404Spjd	if (kmem_debugging())
3466168404Spjd		arc_c = arc_c / 2;
3467168404Spjd	if (arc_c < arc_c_min)
3468168404Spjd		arc_c = arc_c_min;
3469168404Spjd
3470168473Spjd	zfs_arc_min = arc_c_min;
3471168473Spjd	zfs_arc_max = arc_c_max;
3472168473Spjd
3473168404Spjd	arc_anon = &ARC_anon;
3474168404Spjd	arc_mru = &ARC_mru;
3475168404Spjd	arc_mru_ghost = &ARC_mru_ghost;
3476168404Spjd	arc_mfu = &ARC_mfu;
3477168404Spjd	arc_mfu_ghost = &ARC_mfu_ghost;
3478185029Spjd	arc_l2c_only = &ARC_l2c_only;
3479168404Spjd	arc_size = 0;
3480168404Spjd
3481168404Spjd	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3482168404Spjd	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3483168404Spjd	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3484168404Spjd	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3485168404Spjd	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3486185029Spjd	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3487168404Spjd
3488185029Spjd	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3489185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3490185029Spjd	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3491185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3492185029Spjd	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3493185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3494185029Spjd	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3495185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3496185029Spjd	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3497185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3498185029Spjd	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3499185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3500185029Spjd	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3501185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3502185029Spjd	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3503185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3504185029Spjd	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3505185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3506185029Spjd	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3507185029Spjd	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3508168404Spjd
3509168404Spjd	buf_init();
3510168404Spjd
3511168404Spjd	arc_thread_exit = 0;
3512168404Spjd	arc_eviction_list = NULL;
3513168404Spjd	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3514168404Spjd	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3515168404Spjd
3516168404Spjd	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3517168404Spjd	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3518168404Spjd
3519168404Spjd	if (arc_ksp != NULL) {
3520168404Spjd		arc_ksp->ks_data = &arc_stats;
3521168404Spjd		kstat_install(arc_ksp);
3522168404Spjd	}
3523168404Spjd
3524168404Spjd	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3525168404Spjd	    TS_RUN, minclsyspri);
3526168404Spjd
3527168404Spjd#ifdef _KERNEL
3528168566Spjd	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
3529168404Spjd	    EVENTHANDLER_PRI_FIRST);
3530168404Spjd#endif
3531168404Spjd
3532168404Spjd	arc_dead = FALSE;
3533185029Spjd	arc_warm = B_FALSE;
3534168566Spjd
3535185029Spjd	if (zfs_write_limit_max == 0)
3536185029Spjd		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3537185029Spjd	else
3538185029Spjd		zfs_write_limit_shift = 0;
3539185029Spjd	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3540185029Spjd
3541168566Spjd#ifdef _KERNEL
3542175633Spjd	/* Warn about ZFS memory and address space requirements. */
3543168696Spjd	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
3544168987Sbmah		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
3545168987Sbmah		    "expect unstable behavior.\n");
3546175633Spjd	}
3547175633Spjd	if (kmem_size() < 512 * (1 << 20)) {
3548173419Spjd		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
3549168987Sbmah		    "expect unstable behavior.\n");
3550185029Spjd		printf("             Consider tuning vm.kmem_size and "
3551173419Spjd		    "vm.kmem_size_max\n");
3552185029Spjd		printf("             in /boot/loader.conf.\n");
3553168566Spjd	}
3554168566Spjd#endif
3555168404Spjd}
3556168404Spjd
3557168404Spjdvoid
3558168404Spjdarc_fini(void)
3559168404Spjd{
3560185029Spjd
3561168404Spjd	mutex_enter(&arc_reclaim_thr_lock);
3562168404Spjd	arc_thread_exit = 1;
3563168404Spjd	cv_signal(&arc_reclaim_thr_cv);
3564168404Spjd	while (arc_thread_exit != 0)
3565168404Spjd		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3566168404Spjd	mutex_exit(&arc_reclaim_thr_lock);
3567168404Spjd
3568185029Spjd	arc_flush(NULL);
3569168404Spjd
3570168404Spjd	arc_dead = TRUE;
3571168404Spjd
3572168404Spjd	if (arc_ksp != NULL) {
3573168404Spjd		kstat_delete(arc_ksp);
3574168404Spjd		arc_ksp = NULL;
3575168404Spjd	}
3576168404Spjd
3577168404Spjd	mutex_destroy(&arc_eviction_mtx);
3578168404Spjd	mutex_destroy(&arc_reclaim_thr_lock);
3579168404Spjd	cv_destroy(&arc_reclaim_thr_cv);
3580168404Spjd
3581185029Spjd	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3582185029Spjd	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3583185029Spjd	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3584185029Spjd	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3585185029Spjd	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3586185029Spjd	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3587185029Spjd	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3588185029Spjd	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3589168404Spjd
3590168404Spjd	mutex_destroy(&arc_anon->arcs_mtx);
3591168404Spjd	mutex_destroy(&arc_mru->arcs_mtx);
3592168404Spjd	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3593168404Spjd	mutex_destroy(&arc_mfu->arcs_mtx);
3594168404Spjd	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3595168404Spjd
3596185029Spjd	mutex_destroy(&zfs_write_limit_lock);
3597185029Spjd
3598168404Spjd	buf_fini();
3599168404Spjd
3600168582Spjd	mutex_destroy(&arc_lowmem_lock);
3601168404Spjd#ifdef _KERNEL
3602168566Spjd	if (arc_event_lowmem != NULL)
3603168566Spjd		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
3604168404Spjd#endif
3605168404Spjd}
3606185029Spjd
3607185029Spjd/*
3608185029Spjd * Level 2 ARC
3609185029Spjd *
3610185029Spjd * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3611185029Spjd * It uses dedicated storage devices to hold cached data, which are populated
3612185029Spjd * using large infrequent writes.  The main role of this cache is to boost
3613185029Spjd * the performance of random read workloads.  The intended L2ARC devices
3614185029Spjd * include short-stroked disks, solid state disks, and other media with
3615185029Spjd * substantially faster read latency than disk.
3616185029Spjd *
3617185029Spjd *                 +-----------------------+
3618185029Spjd *                 |         ARC           |
3619185029Spjd *                 +-----------------------+
3620185029Spjd *                    |         ^     ^
3621185029Spjd *                    |         |     |
3622185029Spjd *      l2arc_feed_thread()    arc_read()
3623185029Spjd *                    |         |     |
3624185029Spjd *                    |  l2arc read   |
3625185029Spjd *                    V         |     |
3626185029Spjd *               +---------------+    |
3627185029Spjd *               |     L2ARC     |    |
3628185029Spjd *               +---------------+    |
3629185029Spjd *                   |    ^           |
3630185029Spjd *          l2arc_write() |           |
3631185029Spjd *                   |    |           |
3632185029Spjd *                   V    |           |
3633185029Spjd *                 +-------+      +-------+
3634185029Spjd *                 | vdev  |      | vdev  |
3635185029Spjd *                 | cache |      | cache |
3636185029Spjd *                 +-------+      +-------+
3637185029Spjd *                 +=========+     .-----.
3638185029Spjd *                 :  L2ARC  :    |-_____-|
3639185029Spjd *                 : devices :    | Disks |
3640185029Spjd *                 +=========+    `-_____-'
3641185029Spjd *
3642185029Spjd * Read requests are satisfied from the following sources, in order:
3643185029Spjd *
3644185029Spjd *	1) ARC
3645185029Spjd *	2) vdev cache of L2ARC devices
3646185029Spjd *	3) L2ARC devices
3647185029Spjd *	4) vdev cache of disks
3648185029Spjd *	5) disks
3649185029Spjd *
3650185029Spjd * Some L2ARC device types exhibit extremely slow write performance.
3651185029Spjd * To accommodate for this there are some significant differences between
3652185029Spjd * the L2ARC and traditional cache design:
3653185029Spjd *
3654185029Spjd * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3655185029Spjd * the ARC behave as usual, freeing buffers and placing headers on ghost
3656185029Spjd * lists.  The ARC does not send buffers to the L2ARC during eviction as
3657185029Spjd * this would add inflated write latencies for all ARC memory pressure.
3658185029Spjd *
3659185029Spjd * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3660185029Spjd * It does this by periodically scanning buffers from the eviction-end of
3661185029Spjd * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3662185029Spjd * not already there.  It scans until a headroom of buffers is satisfied,
3663185029Spjd * which itself is a buffer for ARC eviction.  The thread that does this is
3664185029Spjd * l2arc_feed_thread(), illustrated below; example sizes are included to
3665185029Spjd * provide a better sense of ratio than this diagram:
3666185029Spjd *
3667185029Spjd *	       head -->                        tail
3668185029Spjd *	        +---------------------+----------+
3669185029Spjd *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3670185029Spjd *	        +---------------------+----------+   |   o L2ARC eligible
3671185029Spjd *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3672185029Spjd *	        +---------------------+----------+   |
3673185029Spjd *	             15.9 Gbytes      ^ 32 Mbytes    |
3674185029Spjd *	                           headroom          |
3675185029Spjd *	                                      l2arc_feed_thread()
3676185029Spjd *	                                             |
3677185029Spjd *	                 l2arc write hand <--[oooo]--'
3678185029Spjd *	                         |           8 Mbyte
3679185029Spjd *	                         |          write max
3680185029Spjd *	                         V
3681185029Spjd *		  +==============================+
3682185029Spjd *	L2ARC dev |####|#|###|###|    |####| ... |
3683185029Spjd *	          +==============================+
3684185029Spjd *	                     32 Gbytes
3685185029Spjd *
3686185029Spjd * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3687185029Spjd * evicted, then the L2ARC has cached a buffer much sooner than it probably
3688185029Spjd * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3689185029Spjd * safe to say that this is an uncommon case, since buffers at the end of
3690185029Spjd * the ARC lists have moved there due to inactivity.
3691185029Spjd *
3692185029Spjd * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3693185029Spjd * then the L2ARC simply misses copying some buffers.  This serves as a
3694185029Spjd * pressure valve to prevent heavy read workloads from both stalling the ARC
3695185029Spjd * with waits and clogging the L2ARC with writes.  This also helps prevent
3696185029Spjd * the potential for the L2ARC to churn if it attempts to cache content too
3697185029Spjd * quickly, such as during backups of the entire pool.
3698185029Spjd *
3699185029Spjd * 5. After system boot and before the ARC has filled main memory, there are
3700185029Spjd * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3701185029Spjd * lists can remain mostly static.  Instead of searching from tail of these
3702185029Spjd * lists as pictured, the l2arc_feed_thread() will search from the list heads
3703185029Spjd * for eligible buffers, greatly increasing its chance of finding them.
3704185029Spjd *
3705185029Spjd * The L2ARC device write speed is also boosted during this time so that
3706185029Spjd * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3707185029Spjd * there are no L2ARC reads, and no fear of degrading read performance
3708185029Spjd * through increased writes.
3709185029Spjd *
3710185029Spjd * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3711185029Spjd * the vdev queue can aggregate them into larger and fewer writes.  Each
3712185029Spjd * device is written to in a rotor fashion, sweeping writes through
3713185029Spjd * available space then repeating.
3714185029Spjd *
3715185029Spjd * 7. The L2ARC does not store dirty content.  It never needs to flush
3716185029Spjd * write buffers back to disk based storage.
3717185029Spjd *
3718185029Spjd * 8. If an ARC buffer is written (and dirtied) which also exists in the
3719185029Spjd * L2ARC, the now stale L2ARC buffer is immediately dropped.
3720185029Spjd *
3721185029Spjd * The performance of the L2ARC can be tweaked by a number of tunables, which
3722185029Spjd * may be necessary for different workloads:
3723185029Spjd *
3724185029Spjd *	l2arc_write_max		max write bytes per interval
3725185029Spjd *	l2arc_write_boost	extra write bytes during device warmup
3726185029Spjd *	l2arc_noprefetch	skip caching prefetched buffers
3727185029Spjd *	l2arc_headroom		number of max device writes to precache
3728185029Spjd *	l2arc_feed_secs		seconds between L2ARC writing
3729185029Spjd *
3730185029Spjd * Tunables may be removed or added as future performance improvements are
3731185029Spjd * integrated, and also may become zpool properties.
3732185029Spjd */
3733185029Spjd
3734185029Spjdstatic void
3735185029Spjdl2arc_hdr_stat_add(void)
3736185029Spjd{
3737185029Spjd	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3738185029Spjd	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3739185029Spjd}
3740185029Spjd
3741185029Spjdstatic void
3742185029Spjdl2arc_hdr_stat_remove(void)
3743185029Spjd{
3744185029Spjd	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3745185029Spjd	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3746185029Spjd}
3747185029Spjd
3748185029Spjd/*
3749185029Spjd * Cycle through L2ARC devices.  This is how L2ARC load balances.
3750185029Spjd * If a device is returned, this also returns holding the spa config lock.
3751185029Spjd */
3752185029Spjdstatic l2arc_dev_t *
3753185029Spjdl2arc_dev_get_next(void)
3754185029Spjd{
3755185029Spjd	l2arc_dev_t *first, *next = NULL;
3756185029Spjd
3757185029Spjd	/*
3758185029Spjd	 * Lock out the removal of spas (spa_namespace_lock), then removal
3759185029Spjd	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3760185029Spjd	 * both locks will be dropped and a spa config lock held instead.
3761185029Spjd	 */
3762185029Spjd	mutex_enter(&spa_namespace_lock);
3763185029Spjd	mutex_enter(&l2arc_dev_mtx);
3764185029Spjd
3765185029Spjd	/* if there are no vdevs, there is nothing to do */
3766185029Spjd	if (l2arc_ndev == 0)
3767185029Spjd		goto out;
3768185029Spjd
3769185029Spjd	first = NULL;
3770185029Spjd	next = l2arc_dev_last;
3771185029Spjd	do {
3772185029Spjd		/* loop around the list looking for a non-faulted vdev */
3773185029Spjd		if (next == NULL) {
3774185029Spjd			next = list_head(l2arc_dev_list);
3775185029Spjd		} else {
3776185029Spjd			next = list_next(l2arc_dev_list, next);
3777185029Spjd			if (next == NULL)
3778185029Spjd				next = list_head(l2arc_dev_list);
3779185029Spjd		}
3780185029Spjd
3781185029Spjd		/* if we have come back to the start, bail out */
3782185029Spjd		if (first == NULL)
3783185029Spjd			first = next;
3784185029Spjd		else if (next == first)
3785185029Spjd			break;
3786185029Spjd
3787185029Spjd	} while (vdev_is_dead(next->l2ad_vdev));
3788185029Spjd
3789185029Spjd	/* if we were unable to find any usable vdevs, return NULL */
3790185029Spjd	if (vdev_is_dead(next->l2ad_vdev))
3791185029Spjd		next = NULL;
3792185029Spjd
3793185029Spjd	l2arc_dev_last = next;
3794185029Spjd
3795185029Spjdout:
3796185029Spjd	mutex_exit(&l2arc_dev_mtx);
3797185029Spjd
3798185029Spjd	/*
3799185029Spjd	 * Grab the config lock to prevent the 'next' device from being
3800185029Spjd	 * removed while we are writing to it.
3801185029Spjd	 */
3802185029Spjd	if (next != NULL)
3803185029Spjd		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3804185029Spjd	mutex_exit(&spa_namespace_lock);
3805185029Spjd
3806185029Spjd	return (next);
3807185029Spjd}
3808185029Spjd
3809185029Spjd/*
3810185029Spjd * Free buffers that were tagged for destruction.
3811185029Spjd */
3812185029Spjdstatic void
3813185029Spjdl2arc_do_free_on_write()
3814185029Spjd{
3815185029Spjd	list_t *buflist;
3816185029Spjd	l2arc_data_free_t *df, *df_prev;
3817185029Spjd
3818185029Spjd	mutex_enter(&l2arc_free_on_write_mtx);
3819185029Spjd	buflist = l2arc_free_on_write;
3820185029Spjd
3821185029Spjd	for (df = list_tail(buflist); df; df = df_prev) {
3822185029Spjd		df_prev = list_prev(buflist, df);
3823185029Spjd		ASSERT(df->l2df_data != NULL);
3824185029Spjd		ASSERT(df->l2df_func != NULL);
3825185029Spjd		df->l2df_func(df->l2df_data, df->l2df_size);
3826185029Spjd		list_remove(buflist, df);
3827185029Spjd		kmem_free(df, sizeof (l2arc_data_free_t));
3828185029Spjd	}
3829185029Spjd
3830185029Spjd	mutex_exit(&l2arc_free_on_write_mtx);
3831185029Spjd}
3832185029Spjd
3833185029Spjd/*
3834185029Spjd * A write to a cache device has completed.  Update all headers to allow
3835185029Spjd * reads from these buffers to begin.
3836185029Spjd */
3837185029Spjdstatic void
3838185029Spjdl2arc_write_done(zio_t *zio)
3839185029Spjd{
3840185029Spjd	l2arc_write_callback_t *cb;
3841185029Spjd	l2arc_dev_t *dev;
3842185029Spjd	list_t *buflist;
3843185029Spjd	arc_buf_hdr_t *head, *ab, *ab_prev;
3844185029Spjd	l2arc_buf_hdr_t *abl2;
3845185029Spjd	kmutex_t *hash_lock;
3846185029Spjd
3847185029Spjd	cb = zio->io_private;
3848185029Spjd	ASSERT(cb != NULL);
3849185029Spjd	dev = cb->l2wcb_dev;
3850185029Spjd	ASSERT(dev != NULL);
3851185029Spjd	head = cb->l2wcb_head;
3852185029Spjd	ASSERT(head != NULL);
3853185029Spjd	buflist = dev->l2ad_buflist;
3854185029Spjd	ASSERT(buflist != NULL);
3855185029Spjd	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3856185029Spjd	    l2arc_write_callback_t *, cb);
3857185029Spjd
3858185029Spjd	if (zio->io_error != 0)
3859185029Spjd		ARCSTAT_BUMP(arcstat_l2_writes_error);
3860185029Spjd
3861185029Spjd	mutex_enter(&l2arc_buflist_mtx);
3862185029Spjd
3863185029Spjd	/*
3864185029Spjd	 * All writes completed, or an error was hit.
3865185029Spjd	 */
3866185029Spjd	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3867185029Spjd		ab_prev = list_prev(buflist, ab);
3868185029Spjd
3869185029Spjd		hash_lock = HDR_LOCK(ab);
3870185029Spjd		if (!mutex_tryenter(hash_lock)) {
3871185029Spjd			/*
3872185029Spjd			 * This buffer misses out.  It may be in a stage
3873185029Spjd			 * of eviction.  Its ARC_L2_WRITING flag will be
3874185029Spjd			 * left set, denying reads to this buffer.
3875185029Spjd			 */
3876185029Spjd			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3877185029Spjd			continue;
3878185029Spjd		}
3879185029Spjd
3880185029Spjd		if (zio->io_error != 0) {
3881185029Spjd			/*
3882185029Spjd			 * Error - drop L2ARC entry.
3883185029Spjd			 */
3884185029Spjd			list_remove(buflist, ab);
3885185029Spjd			abl2 = ab->b_l2hdr;
3886185029Spjd			ab->b_l2hdr = NULL;
3887185029Spjd			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3888185029Spjd			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3889185029Spjd		}
3890185029Spjd
3891185029Spjd		/*
3892185029Spjd		 * Allow ARC to begin reads to this L2ARC entry.
3893185029Spjd		 */
3894185029Spjd		ab->b_flags &= ~ARC_L2_WRITING;
3895185029Spjd
3896185029Spjd		mutex_exit(hash_lock);
3897185029Spjd	}
3898185029Spjd
3899185029Spjd	atomic_inc_64(&l2arc_writes_done);
3900185029Spjd	list_remove(buflist, head);
3901185029Spjd	kmem_cache_free(hdr_cache, head);
3902185029Spjd	mutex_exit(&l2arc_buflist_mtx);
3903185029Spjd
3904185029Spjd	l2arc_do_free_on_write();
3905185029Spjd
3906185029Spjd	kmem_free(cb, sizeof (l2arc_write_callback_t));
3907185029Spjd}
3908185029Spjd
3909185029Spjd/*
3910185029Spjd * A read to a cache device completed.  Validate buffer contents before
3911185029Spjd * handing over to the regular ARC routines.
3912185029Spjd */
3913185029Spjdstatic void
3914185029Spjdl2arc_read_done(zio_t *zio)
3915185029Spjd{
3916185029Spjd	l2arc_read_callback_t *cb;
3917185029Spjd	arc_buf_hdr_t *hdr;
3918185029Spjd	arc_buf_t *buf;
3919185029Spjd	kmutex_t *hash_lock;
3920185029Spjd	int equal;
3921185029Spjd
3922185029Spjd	ASSERT(zio->io_vd != NULL);
3923185029Spjd	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3924185029Spjd
3925185029Spjd	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3926185029Spjd
3927185029Spjd	cb = zio->io_private;
3928185029Spjd	ASSERT(cb != NULL);
3929185029Spjd	buf = cb->l2rcb_buf;
3930185029Spjd	ASSERT(buf != NULL);
3931185029Spjd	hdr = buf->b_hdr;
3932185029Spjd	ASSERT(hdr != NULL);
3933185029Spjd
3934185029Spjd	hash_lock = HDR_LOCK(hdr);
3935185029Spjd	mutex_enter(hash_lock);
3936185029Spjd
3937185029Spjd	/*
3938185029Spjd	 * Check this survived the L2ARC journey.
3939185029Spjd	 */
3940185029Spjd	equal = arc_cksum_equal(buf);
3941185029Spjd	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3942185029Spjd		mutex_exit(hash_lock);
3943185029Spjd		zio->io_private = buf;
3944185029Spjd		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
3945185029Spjd		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
3946185029Spjd		arc_read_done(zio);
3947185029Spjd	} else {
3948185029Spjd		mutex_exit(hash_lock);
3949185029Spjd		/*
3950185029Spjd		 * Buffer didn't survive caching.  Increment stats and
3951185029Spjd		 * reissue to the original storage device.
3952185029Spjd		 */
3953185029Spjd		if (zio->io_error != 0) {
3954185029Spjd			ARCSTAT_BUMP(arcstat_l2_io_error);
3955185029Spjd		} else {
3956185029Spjd			zio->io_error = EIO;
3957185029Spjd		}
3958185029Spjd		if (!equal)
3959185029Spjd			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3960185029Spjd
3961185029Spjd		/*
3962185029Spjd		 * If there's no waiter, issue an async i/o to the primary
3963185029Spjd		 * storage now.  If there *is* a waiter, the caller must
3964185029Spjd		 * issue the i/o in a context where it's OK to block.
3965185029Spjd		 */
3966185029Spjd		if (zio->io_waiter == NULL)
3967185029Spjd			zio_nowait(zio_read(zio->io_parent,
3968185029Spjd			    cb->l2rcb_spa, &cb->l2rcb_bp,
3969185029Spjd			    buf->b_data, zio->io_size, arc_read_done, buf,
3970185029Spjd			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
3971185029Spjd	}
3972185029Spjd
3973185029Spjd	kmem_free(cb, sizeof (l2arc_read_callback_t));
3974185029Spjd}
3975185029Spjd
3976185029Spjd/*
3977185029Spjd * This is the list priority from which the L2ARC will search for pages to
3978185029Spjd * cache.  This is used within loops (0..3) to cycle through lists in the
3979185029Spjd * desired order.  This order can have a significant effect on cache
3980185029Spjd * performance.
3981185029Spjd *
3982185029Spjd * Currently the metadata lists are hit first, MFU then MRU, followed by
3983185029Spjd * the data lists.  This function returns a locked list, and also returns
3984185029Spjd * the lock pointer.
3985185029Spjd */
3986185029Spjdstatic list_t *
3987185029Spjdl2arc_list_locked(int list_num, kmutex_t **lock)
3988185029Spjd{
3989185029Spjd	list_t *list;
3990185029Spjd
3991185029Spjd	ASSERT(list_num >= 0 && list_num <= 3);
3992185029Spjd
3993185029Spjd	switch (list_num) {
3994185029Spjd	case 0:
3995185029Spjd		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3996185029Spjd		*lock = &arc_mfu->arcs_mtx;
3997185029Spjd		break;
3998185029Spjd	case 1:
3999185029Spjd		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4000185029Spjd		*lock = &arc_mru->arcs_mtx;
4001185029Spjd		break;
4002185029Spjd	case 2:
4003185029Spjd		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4004185029Spjd		*lock = &arc_mfu->arcs_mtx;
4005185029Spjd		break;
4006185029Spjd	case 3:
4007185029Spjd		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4008185029Spjd		*lock = &arc_mru->arcs_mtx;
4009185029Spjd		break;
4010185029Spjd	}
4011185029Spjd
4012185029Spjd	ASSERT(!(MUTEX_HELD(*lock)));
4013185029Spjd	mutex_enter(*lock);
4014185029Spjd	return (list);
4015185029Spjd}
4016185029Spjd
4017185029Spjd/*
4018185029Spjd * Evict buffers from the device write hand to the distance specified in
4019185029Spjd * bytes.  This distance may span populated buffers, it may span nothing.
4020185029Spjd * This is clearing a region on the L2ARC device ready for writing.
4021185029Spjd * If the 'all' boolean is set, every buffer is evicted.
4022185029Spjd */
4023185029Spjdstatic void
4024185029Spjdl2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4025185029Spjd{
4026185029Spjd	list_t *buflist;
4027185029Spjd	l2arc_buf_hdr_t *abl2;
4028185029Spjd	arc_buf_hdr_t *ab, *ab_prev;
4029185029Spjd	kmutex_t *hash_lock;
4030185029Spjd	uint64_t taddr;
4031185029Spjd
4032185029Spjd	buflist = dev->l2ad_buflist;
4033185029Spjd
4034185029Spjd	if (buflist == NULL)
4035185029Spjd		return;
4036185029Spjd
4037185029Spjd	if (!all && dev->l2ad_first) {
4038185029Spjd		/*
4039185029Spjd		 * This is the first sweep through the device.  There is
4040185029Spjd		 * nothing to evict.
4041185029Spjd		 */
4042185029Spjd		return;
4043185029Spjd	}
4044185029Spjd
4045185029Spjd	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4046185029Spjd		/*
4047185029Spjd		 * When nearing the end of the device, evict to the end
4048185029Spjd		 * before the device write hand jumps to the start.
4049185029Spjd		 */
4050185029Spjd		taddr = dev->l2ad_end;
4051185029Spjd	} else {
4052185029Spjd		taddr = dev->l2ad_hand + distance;
4053185029Spjd	}
4054185029Spjd	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4055185029Spjd	    uint64_t, taddr, boolean_t, all);
4056185029Spjd
4057185029Spjdtop:
4058185029Spjd	mutex_enter(&l2arc_buflist_mtx);
4059185029Spjd	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4060185029Spjd		ab_prev = list_prev(buflist, ab);
4061185029Spjd
4062185029Spjd		hash_lock = HDR_LOCK(ab);
4063185029Spjd		if (!mutex_tryenter(hash_lock)) {
4064185029Spjd			/*
4065185029Spjd			 * Missed the hash lock.  Retry.
4066185029Spjd			 */
4067185029Spjd			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4068185029Spjd			mutex_exit(&l2arc_buflist_mtx);
4069185029Spjd			mutex_enter(hash_lock);
4070185029Spjd			mutex_exit(hash_lock);
4071185029Spjd			goto top;
4072185029Spjd		}
4073185029Spjd
4074185029Spjd		if (HDR_L2_WRITE_HEAD(ab)) {
4075185029Spjd			/*
4076185029Spjd			 * We hit a write head node.  Leave it for
4077185029Spjd			 * l2arc_write_done().
4078185029Spjd			 */
4079185029Spjd			list_remove(buflist, ab);
4080185029Spjd			mutex_exit(hash_lock);
4081185029Spjd			continue;
4082185029Spjd		}
4083185029Spjd
4084185029Spjd		if (!all && ab->b_l2hdr != NULL &&
4085185029Spjd		    (ab->b_l2hdr->b_daddr > taddr ||
4086185029Spjd		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4087185029Spjd			/*
4088185029Spjd			 * We've evicted to the target address,
4089185029Spjd			 * or the end of the device.
4090185029Spjd			 */
4091185029Spjd			mutex_exit(hash_lock);
4092185029Spjd			break;
4093185029Spjd		}
4094185029Spjd
4095185029Spjd		if (HDR_FREE_IN_PROGRESS(ab)) {
4096185029Spjd			/*
4097185029Spjd			 * Already on the path to destruction.
4098185029Spjd			 */
4099185029Spjd			mutex_exit(hash_lock);
4100185029Spjd			continue;
4101185029Spjd		}
4102185029Spjd
4103185029Spjd		if (ab->b_state == arc_l2c_only) {
4104185029Spjd			ASSERT(!HDR_L2_READING(ab));
4105185029Spjd			/*
4106185029Spjd			 * This doesn't exist in the ARC.  Destroy.
4107185029Spjd			 * arc_hdr_destroy() will call list_remove()
4108185029Spjd			 * and decrement arcstat_l2_size.
4109185029Spjd			 */
4110185029Spjd			arc_change_state(arc_anon, ab, hash_lock);
4111185029Spjd			arc_hdr_destroy(ab);
4112185029Spjd		} else {
4113185029Spjd			/*
4114185029Spjd			 * Invalidate issued or about to be issued
4115185029Spjd			 * reads, since we may be about to write
4116185029Spjd			 * over this location.
4117185029Spjd			 */
4118185029Spjd			if (HDR_L2_READING(ab)) {
4119185029Spjd				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4120185029Spjd				ab->b_flags |= ARC_L2_EVICTED;
4121185029Spjd			}
4122185029Spjd
4123185029Spjd			/*
4124185029Spjd			 * Tell ARC this no longer exists in L2ARC.
4125185029Spjd			 */
4126185029Spjd			if (ab->b_l2hdr != NULL) {
4127185029Spjd				abl2 = ab->b_l2hdr;
4128185029Spjd				ab->b_l2hdr = NULL;
4129185029Spjd				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4130185029Spjd				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4131185029Spjd			}
4132185029Spjd			list_remove(buflist, ab);
4133185029Spjd
4134185029Spjd			/*
4135185029Spjd			 * This may have been leftover after a
4136185029Spjd			 * failed write.
4137185029Spjd			 */
4138185029Spjd			ab->b_flags &= ~ARC_L2_WRITING;
4139185029Spjd		}
4140185029Spjd		mutex_exit(hash_lock);
4141185029Spjd	}
4142185029Spjd	mutex_exit(&l2arc_buflist_mtx);
4143185029Spjd
4144185029Spjd	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4145185029Spjd	dev->l2ad_evict = taddr;
4146185029Spjd}
4147185029Spjd
4148185029Spjd/*
4149185029Spjd * Find and write ARC buffers to the L2ARC device.
4150185029Spjd *
4151185029Spjd * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4152185029Spjd * for reading until they have completed writing.
4153185029Spjd */
4154185029Spjdstatic void
4155185029Spjdl2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4156185029Spjd{
4157185029Spjd	arc_buf_hdr_t *ab, *ab_prev, *head;
4158185029Spjd	l2arc_buf_hdr_t *hdrl2;
4159185029Spjd	list_t *list;
4160185029Spjd	uint64_t passed_sz, write_sz, buf_sz, headroom;
4161185029Spjd	void *buf_data;
4162185029Spjd	kmutex_t *hash_lock, *list_lock;
4163185029Spjd	boolean_t have_lock, full;
4164185029Spjd	l2arc_write_callback_t *cb;
4165185029Spjd	zio_t *pio, *wzio;
4166185029Spjd	int try;
4167185029Spjd
4168185029Spjd	ASSERT(dev->l2ad_vdev != NULL);
4169185029Spjd
4170185029Spjd	pio = NULL;
4171185029Spjd	write_sz = 0;
4172185029Spjd	full = B_FALSE;
4173185029Spjd	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4174185029Spjd	head->b_flags |= ARC_L2_WRITE_HEAD;
4175185029Spjd
4176185029Spjd	/*
4177185029Spjd	 * Copy buffers for L2ARC writing.
4178185029Spjd	 */
4179185029Spjd	mutex_enter(&l2arc_buflist_mtx);
4180185029Spjd	for (try = 0; try <= 3; try++) {
4181185029Spjd		list = l2arc_list_locked(try, &list_lock);
4182185029Spjd		passed_sz = 0;
4183185029Spjd
4184185029Spjd		/*
4185185029Spjd		 * L2ARC fast warmup.
4186185029Spjd		 *
4187185029Spjd		 * Until the ARC is warm and starts to evict, read from the
4188185029Spjd		 * head of the ARC lists rather than the tail.
4189185029Spjd		 */
4190185029Spjd		headroom = target_sz * l2arc_headroom;
4191185029Spjd		if (arc_warm == B_FALSE)
4192185029Spjd			ab = list_head(list);
4193185029Spjd		else
4194185029Spjd			ab = list_tail(list);
4195185029Spjd
4196185029Spjd		for (; ab; ab = ab_prev) {
4197185029Spjd			if (arc_warm == B_FALSE)
4198185029Spjd				ab_prev = list_next(list, ab);
4199185029Spjd			else
4200185029Spjd				ab_prev = list_prev(list, ab);
4201185029Spjd
4202185029Spjd			hash_lock = HDR_LOCK(ab);
4203185029Spjd			have_lock = MUTEX_HELD(hash_lock);
4204185029Spjd			if (!have_lock && !mutex_tryenter(hash_lock)) {
4205185029Spjd				/*
4206185029Spjd				 * Skip this buffer rather than waiting.
4207185029Spjd				 */
4208185029Spjd				continue;
4209185029Spjd			}
4210185029Spjd
4211185029Spjd			passed_sz += ab->b_size;
4212185029Spjd			if (passed_sz > headroom) {
4213185029Spjd				/*
4214185029Spjd				 * Searched too far.
4215185029Spjd				 */
4216185029Spjd				mutex_exit(hash_lock);
4217185029Spjd				break;
4218185029Spjd			}
4219185029Spjd
4220185029Spjd			if (ab->b_spa != spa) {
4221185029Spjd				mutex_exit(hash_lock);
4222185029Spjd				continue;
4223185029Spjd			}
4224185029Spjd
4225185029Spjd			if (ab->b_l2hdr != NULL) {
4226185029Spjd				/*
4227185029Spjd				 * Already in L2ARC.
4228185029Spjd				 */
4229185029Spjd				mutex_exit(hash_lock);
4230185029Spjd				continue;
4231185029Spjd			}
4232185029Spjd
4233185029Spjd			if (HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) {
4234185029Spjd				mutex_exit(hash_lock);
4235185029Spjd				continue;
4236185029Spjd			}
4237185029Spjd
4238185029Spjd			if ((write_sz + ab->b_size) > target_sz) {
4239185029Spjd				full = B_TRUE;
4240185029Spjd				mutex_exit(hash_lock);
4241185029Spjd				break;
4242185029Spjd			}
4243185029Spjd
4244185029Spjd			if (ab->b_buf == NULL) {
4245185029Spjd				DTRACE_PROBE1(l2arc__buf__null, void *, ab);
4246185029Spjd				mutex_exit(hash_lock);
4247185029Spjd				continue;
4248185029Spjd			}
4249185029Spjd
4250185029Spjd			if (pio == NULL) {
4251185029Spjd				/*
4252185029Spjd				 * Insert a dummy header on the buflist so
4253185029Spjd				 * l2arc_write_done() can find where the
4254185029Spjd				 * write buffers begin without searching.
4255185029Spjd				 */
4256185029Spjd				list_insert_head(dev->l2ad_buflist, head);
4257185029Spjd
4258185029Spjd				cb = kmem_alloc(
4259185029Spjd				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4260185029Spjd				cb->l2wcb_dev = dev;
4261185029Spjd				cb->l2wcb_head = head;
4262185029Spjd				pio = zio_root(spa, l2arc_write_done, cb,
4263185029Spjd				    ZIO_FLAG_CANFAIL);
4264185029Spjd			}
4265185029Spjd
4266185029Spjd			/*
4267185029Spjd			 * Create and add a new L2ARC header.
4268185029Spjd			 */
4269185029Spjd			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4270185029Spjd			hdrl2->b_dev = dev;
4271185029Spjd			hdrl2->b_daddr = dev->l2ad_hand;
4272185029Spjd
4273185029Spjd			ab->b_flags |= ARC_L2_WRITING;
4274185029Spjd			ab->b_l2hdr = hdrl2;
4275185029Spjd			list_insert_head(dev->l2ad_buflist, ab);
4276185029Spjd			buf_data = ab->b_buf->b_data;
4277185029Spjd			buf_sz = ab->b_size;
4278185029Spjd
4279185029Spjd			/*
4280185029Spjd			 * Compute and store the buffer cksum before
4281185029Spjd			 * writing.  On debug the cksum is verified first.
4282185029Spjd			 */
4283185029Spjd			arc_cksum_verify(ab->b_buf);
4284185029Spjd			arc_cksum_compute(ab->b_buf, B_TRUE);
4285185029Spjd
4286185029Spjd			mutex_exit(hash_lock);
4287185029Spjd
4288185029Spjd			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4289185029Spjd			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4290185029Spjd			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4291185029Spjd			    ZIO_FLAG_CANFAIL, B_FALSE);
4292185029Spjd
4293185029Spjd			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4294185029Spjd			    zio_t *, wzio);
4295185029Spjd			(void) zio_nowait(wzio);
4296185029Spjd
4297185029Spjd			/*
4298185029Spjd			 * Keep the clock hand suitably device-aligned.
4299185029Spjd			 */
4300185029Spjd			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4301185029Spjd
4302185029Spjd			write_sz += buf_sz;
4303185029Spjd			dev->l2ad_hand += buf_sz;
4304185029Spjd		}
4305185029Spjd
4306185029Spjd		mutex_exit(list_lock);
4307185029Spjd
4308185029Spjd		if (full == B_TRUE)
4309185029Spjd			break;
4310185029Spjd	}
4311185029Spjd	mutex_exit(&l2arc_buflist_mtx);
4312185029Spjd
4313185029Spjd	if (pio == NULL) {
4314185029Spjd		ASSERT3U(write_sz, ==, 0);
4315185029Spjd		kmem_cache_free(hdr_cache, head);
4316185029Spjd		return;
4317185029Spjd	}
4318185029Spjd
4319185029Spjd	ASSERT3U(write_sz, <=, target_sz);
4320185029Spjd	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4321185029Spjd	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4322185029Spjd	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4323185029Spjd
4324185029Spjd	/*
4325185029Spjd	 * Bump device hand to the device start if it is approaching the end.
4326185029Spjd	 * l2arc_evict() will already have evicted ahead for this case.
4327185029Spjd	 */
4328185029Spjd	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4329185029Spjd		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4330185029Spjd		    dev->l2ad_end - dev->l2ad_hand);
4331185029Spjd		dev->l2ad_hand = dev->l2ad_start;
4332185029Spjd		dev->l2ad_evict = dev->l2ad_start;
4333185029Spjd		dev->l2ad_first = B_FALSE;
4334185029Spjd	}
4335185029Spjd
4336185029Spjd	(void) zio_wait(pio);
4337185029Spjd}
4338185029Spjd
4339185029Spjd/*
4340185029Spjd * This thread feeds the L2ARC at regular intervals.  This is the beating
4341185029Spjd * heart of the L2ARC.
4342185029Spjd */
4343185029Spjdstatic void
4344185029Spjdl2arc_feed_thread(void *dummy __unused)
4345185029Spjd{
4346185029Spjd	callb_cpr_t cpr;
4347185029Spjd	l2arc_dev_t *dev;
4348185029Spjd	spa_t *spa;
4349185029Spjd	uint64_t size;
4350185029Spjd
4351185029Spjd	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4352185029Spjd
4353185029Spjd	mutex_enter(&l2arc_feed_thr_lock);
4354185029Spjd
4355185029Spjd	while (l2arc_thread_exit == 0) {
4356185029Spjd		/*
4357185029Spjd		 * Pause for l2arc_feed_secs seconds between writes.
4358185029Spjd		 */
4359185029Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
4360185029Spjd		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4361185029Spjd		    hz * l2arc_feed_secs);
4362185029Spjd		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4363185029Spjd
4364185029Spjd		/*
4365185029Spjd		 * Quick check for L2ARC devices.
4366185029Spjd		 */
4367185029Spjd		mutex_enter(&l2arc_dev_mtx);
4368185029Spjd		if (l2arc_ndev == 0) {
4369185029Spjd			mutex_exit(&l2arc_dev_mtx);
4370185029Spjd			continue;
4371185029Spjd		}
4372185029Spjd		mutex_exit(&l2arc_dev_mtx);
4373185029Spjd
4374185029Spjd		/*
4375185029Spjd		 * This selects the next l2arc device to write to, and in
4376185029Spjd		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4377185029Spjd		 * will return NULL if there are now no l2arc devices or if
4378185029Spjd		 * they are all faulted.
4379185029Spjd		 *
4380185029Spjd		 * If a device is returned, its spa's config lock is also
4381185029Spjd		 * held to prevent device removal.  l2arc_dev_get_next()
4382185029Spjd		 * will grab and release l2arc_dev_mtx.
4383185029Spjd		 */
4384185029Spjd		if ((dev = l2arc_dev_get_next()) == NULL)
4385185029Spjd			continue;
4386185029Spjd
4387185029Spjd		spa = dev->l2ad_spa;
4388185029Spjd		ASSERT(spa != NULL);
4389185029Spjd
4390185029Spjd		/*
4391185029Spjd		 * Avoid contributing to memory pressure.
4392185029Spjd		 */
4393185029Spjd		if (arc_reclaim_needed()) {
4394185029Spjd			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4395185029Spjd			spa_config_exit(spa, SCL_L2ARC, dev);
4396185029Spjd			continue;
4397185029Spjd		}
4398185029Spjd
4399185029Spjd		ARCSTAT_BUMP(arcstat_l2_feeds);
4400185029Spjd
4401185029Spjd		size = dev->l2ad_write;
4402185029Spjd		if (arc_warm == B_FALSE)
4403185029Spjd			size += dev->l2ad_boost;
4404185029Spjd
4405185029Spjd		/*
4406185029Spjd		 * Evict L2ARC buffers that will be overwritten.
4407185029Spjd		 */
4408185029Spjd		l2arc_evict(dev, size, B_FALSE);
4409185029Spjd
4410185029Spjd		/*
4411185029Spjd		 * Write ARC buffers.
4412185029Spjd		 */
4413185029Spjd		l2arc_write_buffers(spa, dev, size);
4414185029Spjd		spa_config_exit(spa, SCL_L2ARC, dev);
4415185029Spjd	}
4416185029Spjd
4417185029Spjd	l2arc_thread_exit = 0;
4418185029Spjd	cv_broadcast(&l2arc_feed_thr_cv);
4419185029Spjd	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4420185029Spjd	thread_exit();
4421185029Spjd}
4422185029Spjd
4423185029Spjdboolean_t
4424185029Spjdl2arc_vdev_present(vdev_t *vd)
4425185029Spjd{
4426185029Spjd	l2arc_dev_t *dev;
4427185029Spjd
4428185029Spjd	mutex_enter(&l2arc_dev_mtx);
4429185029Spjd	for (dev = list_head(l2arc_dev_list); dev != NULL;
4430185029Spjd	    dev = list_next(l2arc_dev_list, dev)) {
4431185029Spjd		if (dev->l2ad_vdev == vd)
4432185029Spjd			break;
4433185029Spjd	}
4434185029Spjd	mutex_exit(&l2arc_dev_mtx);
4435185029Spjd
4436185029Spjd	return (dev != NULL);
4437185029Spjd}
4438185029Spjd
4439185029Spjd/*
4440185029Spjd * Add a vdev for use by the L2ARC.  By this point the spa has already
4441185029Spjd * validated the vdev and opened it.
4442185029Spjd */
4443185029Spjdvoid
4444185029Spjdl2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4445185029Spjd{
4446185029Spjd	l2arc_dev_t *adddev;
4447185029Spjd
4448185029Spjd	ASSERT(!l2arc_vdev_present(vd));
4449185029Spjd
4450185029Spjd	/*
4451185029Spjd	 * Create a new l2arc device entry.
4452185029Spjd	 */
4453185029Spjd	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4454185029Spjd	adddev->l2ad_spa = spa;
4455185029Spjd	adddev->l2ad_vdev = vd;
4456185029Spjd	adddev->l2ad_write = l2arc_write_max;
4457185029Spjd	adddev->l2ad_boost = l2arc_write_boost;
4458185029Spjd	adddev->l2ad_start = start;
4459185029Spjd	adddev->l2ad_end = end;
4460185029Spjd	adddev->l2ad_hand = adddev->l2ad_start;
4461185029Spjd	adddev->l2ad_evict = adddev->l2ad_start;
4462185029Spjd	adddev->l2ad_first = B_TRUE;
4463185029Spjd	ASSERT3U(adddev->l2ad_write, >, 0);
4464185029Spjd
4465185029Spjd	/*
4466185029Spjd	 * This is a list of all ARC buffers that are still valid on the
4467185029Spjd	 * device.
4468185029Spjd	 */
4469185029Spjd	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4470185029Spjd	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4471185029Spjd	    offsetof(arc_buf_hdr_t, b_l2node));
4472185029Spjd
4473185029Spjd	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4474185029Spjd
4475185029Spjd	/*
4476185029Spjd	 * Add device to global list
4477185029Spjd	 */
4478185029Spjd	mutex_enter(&l2arc_dev_mtx);
4479185029Spjd	list_insert_head(l2arc_dev_list, adddev);
4480185029Spjd	atomic_inc_64(&l2arc_ndev);
4481185029Spjd	mutex_exit(&l2arc_dev_mtx);
4482185029Spjd}
4483185029Spjd
4484185029Spjd/*
4485185029Spjd * Remove a vdev from the L2ARC.
4486185029Spjd */
4487185029Spjdvoid
4488185029Spjdl2arc_remove_vdev(vdev_t *vd)
4489185029Spjd{
4490185029Spjd	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4491185029Spjd
4492185029Spjd	/*
4493185029Spjd	 * Find the device by vdev
4494185029Spjd	 */
4495185029Spjd	mutex_enter(&l2arc_dev_mtx);
4496185029Spjd	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4497185029Spjd		nextdev = list_next(l2arc_dev_list, dev);
4498185029Spjd		if (vd == dev->l2ad_vdev) {
4499185029Spjd			remdev = dev;
4500185029Spjd			break;
4501185029Spjd		}
4502185029Spjd	}
4503185029Spjd	ASSERT(remdev != NULL);
4504185029Spjd
4505185029Spjd	/*
4506185029Spjd	 * Remove device from global list
4507185029Spjd	 */
4508185029Spjd	list_remove(l2arc_dev_list, remdev);
4509185029Spjd	l2arc_dev_last = NULL;		/* may have been invalidated */
4510185029Spjd	atomic_dec_64(&l2arc_ndev);
4511185029Spjd	mutex_exit(&l2arc_dev_mtx);
4512185029Spjd
4513185029Spjd	/*
4514185029Spjd	 * Clear all buflists and ARC references.  L2ARC device flush.
4515185029Spjd	 */
4516185029Spjd	l2arc_evict(remdev, 0, B_TRUE);
4517185029Spjd	list_destroy(remdev->l2ad_buflist);
4518185029Spjd	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4519185029Spjd	kmem_free(remdev, sizeof (l2arc_dev_t));
4520185029Spjd}
4521185029Spjd
4522185029Spjdvoid
4523185029Spjdl2arc_init(void)
4524185029Spjd{
4525185029Spjd	l2arc_thread_exit = 0;
4526185029Spjd	l2arc_ndev = 0;
4527185029Spjd	l2arc_writes_sent = 0;
4528185029Spjd	l2arc_writes_done = 0;
4529185029Spjd
4530185029Spjd	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4531185029Spjd	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4532185029Spjd	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4533185029Spjd	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4534185029Spjd	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4535185029Spjd
4536185029Spjd	l2arc_dev_list = &L2ARC_dev_list;
4537185029Spjd	l2arc_free_on_write = &L2ARC_free_on_write;
4538185029Spjd	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4539185029Spjd	    offsetof(l2arc_dev_t, l2ad_node));
4540185029Spjd	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4541185029Spjd	    offsetof(l2arc_data_free_t, l2df_list_node));
4542185029Spjd}
4543185029Spjd
4544185029Spjdvoid
4545185029Spjdl2arc_fini(void)
4546185029Spjd{
4547185029Spjd	/*
4548185029Spjd	 * This is called from dmu_fini(), which is called from spa_fini();
4549185029Spjd	 * Because of this, we can assume that all l2arc devices have
4550185029Spjd	 * already been removed when the pools themselves were removed.
4551185029Spjd	 */
4552185029Spjd
4553185029Spjd	l2arc_do_free_on_write();
4554185029Spjd
4555185029Spjd	mutex_destroy(&l2arc_feed_thr_lock);
4556185029Spjd	cv_destroy(&l2arc_feed_thr_cv);
4557185029Spjd	mutex_destroy(&l2arc_dev_mtx);
4558185029Spjd	mutex_destroy(&l2arc_buflist_mtx);
4559185029Spjd	mutex_destroy(&l2arc_free_on_write_mtx);
4560185029Spjd
4561185029Spjd	list_destroy(l2arc_dev_list);
4562185029Spjd	list_destroy(l2arc_free_on_write);
4563185029Spjd}
4564185029Spjd
4565185029Spjdvoid
4566185029Spjdl2arc_start(void)
4567185029Spjd{
4568185029Spjd	if (!(spa_mode & FWRITE))
4569185029Spjd		return;
4570185029Spjd
4571185029Spjd	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4572185029Spjd	    TS_RUN, minclsyspri);
4573185029Spjd}
4574185029Spjd
4575185029Spjdvoid
4576185029Spjdl2arc_stop(void)
4577185029Spjd{
4578185029Spjd	if (!(spa_mode & FWRITE))
4579185029Spjd		return;
4580185029Spjd
4581185029Spjd	mutex_enter(&l2arc_feed_thr_lock);
4582185029Spjd	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4583185029Spjd	l2arc_thread_exit = 1;
4584185029Spjd	while (l2arc_thread_exit != 0)
4585185029Spjd		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4586185029Spjd	mutex_exit(&l2arc_feed_thr_lock);
4587185029Spjd}
4588