arc.c revision 168696
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22168404Spjd * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23168404Spjd * Use is subject to license terms.
24168404Spjd */
25168404Spjd
26168404Spjd#pragma ident	"%Z%%M%	%I%	%E% SMI"
27168404Spjd
28168404Spjd/*
29168404Spjd * DVA-based Adjustable Replacement Cache
30168404Spjd *
31168404Spjd * While much of the theory of operation used here is
32168404Spjd * based on the self-tuning, low overhead replacement cache
33168404Spjd * presented by Megiddo and Modha at FAST 2003, there are some
34168404Spjd * significant differences:
35168404Spjd *
36168404Spjd * 1. The Megiddo and Modha model assumes any page is evictable.
37168404Spjd * Pages in its cache cannot be "locked" into memory.  This makes
38168404Spjd * the eviction algorithm simple: evict the last page in the list.
39168404Spjd * This also make the performance characteristics easy to reason
40168404Spjd * about.  Our cache is not so simple.  At any given moment, some
41168404Spjd * subset of the blocks in the cache are un-evictable because we
42168404Spjd * have handed out a reference to them.  Blocks are only evictable
43168404Spjd * when there are no external references active.  This makes
44168404Spjd * eviction far more problematic:  we choose to evict the evictable
45168404Spjd * blocks that are the "lowest" in the list.
46168404Spjd *
47168404Spjd * There are times when it is not possible to evict the requested
48168404Spjd * space.  In these circumstances we are unable to adjust the cache
49168404Spjd * size.  To prevent the cache growing unbounded at these times we
50168404Spjd * implement a "cache throttle" that slowes the flow of new data
51168404Spjd * into the cache until we can make space avaiable.
52168404Spjd *
53168404Spjd * 2. The Megiddo and Modha model assumes a fixed cache size.
54168404Spjd * Pages are evicted when the cache is full and there is a cache
55168404Spjd * miss.  Our model has a variable sized cache.  It grows with
56168404Spjd * high use, but also tries to react to memory preasure from the
57168404Spjd * operating system: decreasing its size when system memory is
58168404Spjd * tight.
59168404Spjd *
60168404Spjd * 3. The Megiddo and Modha model assumes a fixed page size. All
61168404Spjd * elements of the cache are therefor exactly the same size.  So
62168404Spjd * when adjusting the cache size following a cache miss, its simply
63168404Spjd * a matter of choosing a single page to evict.  In our model, we
64168404Spjd * have variable sized cache blocks (rangeing from 512 bytes to
65168404Spjd * 128K bytes).  We therefor choose a set of blocks to evict to make
66168404Spjd * space for a cache miss that approximates as closely as possible
67168404Spjd * the space used by the new block.
68168404Spjd *
69168404Spjd * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70168404Spjd * by N. Megiddo & D. Modha, FAST 2003
71168404Spjd */
72168404Spjd
73168404Spjd/*
74168404Spjd * The locking model:
75168404Spjd *
76168404Spjd * A new reference to a cache buffer can be obtained in two
77168404Spjd * ways: 1) via a hash table lookup using the DVA as a key,
78168404Spjd * or 2) via one of the ARC lists.  The arc_read() inerface
79168404Spjd * uses method 1, while the internal arc algorithms for
80168404Spjd * adjusting the cache use method 2.  We therefor provide two
81168404Spjd * types of locks: 1) the hash table lock array, and 2) the
82168404Spjd * arc list locks.
83168404Spjd *
84168404Spjd * Buffers do not have their own mutexs, rather they rely on the
85168404Spjd * hash table mutexs for the bulk of their protection (i.e. most
86168404Spjd * fields in the arc_buf_hdr_t are protected by these mutexs).
87168404Spjd *
88168404Spjd * buf_hash_find() returns the appropriate mutex (held) when it
89168404Spjd * locates the requested buffer in the hash table.  It returns
90168404Spjd * NULL for the mutex if the buffer was not in the table.
91168404Spjd *
92168404Spjd * buf_hash_remove() expects the appropriate hash mutex to be
93168404Spjd * already held before it is invoked.
94168404Spjd *
95168404Spjd * Each arc state also has a mutex which is used to protect the
96168404Spjd * buffer list associated with the state.  When attempting to
97168404Spjd * obtain a hash table lock while holding an arc list lock you
98168404Spjd * must use: mutex_tryenter() to avoid deadlock.  Also note that
99168404Spjd * the active state mutex must be held before the ghost state mutex.
100168404Spjd *
101168404Spjd * Arc buffers may have an associated eviction callback function.
102168404Spjd * This function will be invoked prior to removing the buffer (e.g.
103168404Spjd * in arc_do_user_evicts()).  Note however that the data associated
104168404Spjd * with the buffer may be evicted prior to the callback.  The callback
105168404Spjd * must be made with *no locks held* (to prevent deadlock).  Additionally,
106168404Spjd * the users of callbacks must ensure that their private data is
107168404Spjd * protected from simultaneous callbacks from arc_buf_evict()
108168404Spjd * and arc_do_user_evicts().
109168404Spjd *
110168404Spjd * Note that the majority of the performance stats are manipulated
111168404Spjd * with atomic operations.
112168404Spjd */
113168404Spjd
114168404Spjd#include <sys/spa.h>
115168404Spjd#include <sys/zio.h>
116168404Spjd#include <sys/zio_checksum.h>
117168404Spjd#include <sys/zfs_context.h>
118168404Spjd#include <sys/arc.h>
119168404Spjd#include <sys/refcount.h>
120168404Spjd#ifdef _KERNEL
121168404Spjd#include <sys/dnlc.h>
122168404Spjd#endif
123168404Spjd#include <sys/callb.h>
124168404Spjd#include <sys/kstat.h>
125168404Spjd#include <sys/sdt.h>
126168404Spjd
127168404Spjdstatic kmutex_t		arc_reclaim_thr_lock;
128168404Spjdstatic kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
129168404Spjdstatic uint8_t		arc_thread_exit;
130168404Spjd
131168404Spjd#define	ARC_REDUCE_DNLC_PERCENT	3
132168404Spjduint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
133168404Spjd
134168404Spjdtypedef enum arc_reclaim_strategy {
135168404Spjd	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
136168404Spjd	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
137168404Spjd} arc_reclaim_strategy_t;
138168404Spjd
139168404Spjd/* number of seconds before growing cache again */
140168404Spjdstatic int		arc_grow_retry = 60;
141168404Spjd
142168404Spjd/*
143168404Spjd * minimum lifespan of a prefetch block in clock ticks
144168404Spjd * (initialized in arc_init())
145168404Spjd */
146168404Spjdstatic int		arc_min_prefetch_lifespan;
147168404Spjd
148168404Spjdstatic int arc_dead;
149168404Spjd
150168404Spjd/*
151168404Spjd * These tunables are for performance analysis.
152168404Spjd */
153168473Spjdu_long zfs_arc_max;
154168473Spjdu_long zfs_arc_min;
155168473SpjdTUNABLE_ULONG("vfs.zfs.arc_max", &zfs_arc_max);
156168473SpjdTUNABLE_ULONG("vfs.zfs.arc_min", &zfs_arc_min);
157168473SpjdSYSCTL_DECL(_vfs_zfs);
158168473SpjdSYSCTL_ULONG(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RD, &zfs_arc_max, 0,
159168473Spjd    "Maximum ARC size");
160168473SpjdSYSCTL_ULONG(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RD, &zfs_arc_min, 0,
161168473Spjd    "Minimum ARC size");
162168404Spjd
163168404Spjd/*
164168404Spjd * Note that buffers can be on one of 5 states:
165168404Spjd *	ARC_anon	- anonymous (discussed below)
166168404Spjd *	ARC_mru		- recently used, currently cached
167168404Spjd *	ARC_mru_ghost	- recentely used, no longer in cache
168168404Spjd *	ARC_mfu		- frequently used, currently cached
169168404Spjd *	ARC_mfu_ghost	- frequently used, no longer in cache
170168404Spjd * When there are no active references to the buffer, they
171168404Spjd * are linked onto one of the lists in arc.  These are the
172168404Spjd * only buffers that can be evicted or deleted.
173168404Spjd *
174168404Spjd * Anonymous buffers are buffers that are not associated with
175168404Spjd * a DVA.  These are buffers that hold dirty block copies
176168404Spjd * before they are written to stable storage.  By definition,
177168404Spjd * they are "ref'd" and are considered part of arc_mru
178168404Spjd * that cannot be freed.  Generally, they will aquire a DVA
179168404Spjd * as they are written and migrate onto the arc_mru list.
180168404Spjd */
181168404Spjd
182168404Spjdtypedef struct arc_state {
183168404Spjd	list_t	arcs_list;	/* linked list of evictable buffer in state */
184168404Spjd	uint64_t arcs_lsize;	/* total size of buffers in the linked list */
185168404Spjd	uint64_t arcs_size;	/* total size of all buffers in this state */
186168404Spjd	kmutex_t arcs_mtx;
187168404Spjd} arc_state_t;
188168404Spjd
189168404Spjd/* The 5 states: */
190168404Spjdstatic arc_state_t ARC_anon;
191168404Spjdstatic arc_state_t ARC_mru;
192168404Spjdstatic arc_state_t ARC_mru_ghost;
193168404Spjdstatic arc_state_t ARC_mfu;
194168404Spjdstatic arc_state_t ARC_mfu_ghost;
195168404Spjd
196168404Spjdtypedef struct arc_stats {
197168404Spjd	kstat_named_t arcstat_hits;
198168404Spjd	kstat_named_t arcstat_misses;
199168404Spjd	kstat_named_t arcstat_demand_data_hits;
200168404Spjd	kstat_named_t arcstat_demand_data_misses;
201168404Spjd	kstat_named_t arcstat_demand_metadata_hits;
202168404Spjd	kstat_named_t arcstat_demand_metadata_misses;
203168404Spjd	kstat_named_t arcstat_prefetch_data_hits;
204168404Spjd	kstat_named_t arcstat_prefetch_data_misses;
205168404Spjd	kstat_named_t arcstat_prefetch_metadata_hits;
206168404Spjd	kstat_named_t arcstat_prefetch_metadata_misses;
207168404Spjd	kstat_named_t arcstat_mru_hits;
208168404Spjd	kstat_named_t arcstat_mru_ghost_hits;
209168404Spjd	kstat_named_t arcstat_mfu_hits;
210168404Spjd	kstat_named_t arcstat_mfu_ghost_hits;
211168404Spjd	kstat_named_t arcstat_deleted;
212168404Spjd	kstat_named_t arcstat_recycle_miss;
213168404Spjd	kstat_named_t arcstat_mutex_miss;
214168404Spjd	kstat_named_t arcstat_evict_skip;
215168404Spjd	kstat_named_t arcstat_hash_elements;
216168404Spjd	kstat_named_t arcstat_hash_elements_max;
217168404Spjd	kstat_named_t arcstat_hash_collisions;
218168404Spjd	kstat_named_t arcstat_hash_chains;
219168404Spjd	kstat_named_t arcstat_hash_chain_max;
220168404Spjd	kstat_named_t arcstat_p;
221168404Spjd	kstat_named_t arcstat_c;
222168404Spjd	kstat_named_t arcstat_c_min;
223168404Spjd	kstat_named_t arcstat_c_max;
224168404Spjd	kstat_named_t arcstat_size;
225168404Spjd} arc_stats_t;
226168404Spjd
227168404Spjdstatic arc_stats_t arc_stats = {
228168404Spjd	{ "hits",			KSTAT_DATA_UINT64 },
229168404Spjd	{ "misses",			KSTAT_DATA_UINT64 },
230168404Spjd	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
231168404Spjd	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
232168404Spjd	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
233168404Spjd	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
234168404Spjd	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
235168404Spjd	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
236168404Spjd	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
237168404Spjd	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
238168404Spjd	{ "mru_hits",			KSTAT_DATA_UINT64 },
239168404Spjd	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
240168404Spjd	{ "mfu_hits",			KSTAT_DATA_UINT64 },
241168404Spjd	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
242168404Spjd	{ "deleted",			KSTAT_DATA_UINT64 },
243168404Spjd	{ "recycle_miss",		KSTAT_DATA_UINT64 },
244168404Spjd	{ "mutex_miss",			KSTAT_DATA_UINT64 },
245168404Spjd	{ "evict_skip",			KSTAT_DATA_UINT64 },
246168404Spjd	{ "hash_elements",		KSTAT_DATA_UINT64 },
247168404Spjd	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
248168404Spjd	{ "hash_collisions",		KSTAT_DATA_UINT64 },
249168404Spjd	{ "hash_chains",		KSTAT_DATA_UINT64 },
250168404Spjd	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
251168404Spjd	{ "p",				KSTAT_DATA_UINT64 },
252168404Spjd	{ "c",				KSTAT_DATA_UINT64 },
253168404Spjd	{ "c_min",			KSTAT_DATA_UINT64 },
254168404Spjd	{ "c_max",			KSTAT_DATA_UINT64 },
255168404Spjd	{ "size",			KSTAT_DATA_UINT64 }
256168404Spjd};
257168404Spjd
258168404Spjd#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
259168404Spjd
260168404Spjd#define	ARCSTAT_INCR(stat, val) \
261168404Spjd	atomic_add_64(&arc_stats.stat.value.ui64, (val));
262168404Spjd
263168404Spjd#define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
264168404Spjd#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
265168404Spjd
266168404Spjd#define	ARCSTAT_MAX(stat, val) {					\
267168404Spjd	uint64_t m;							\
268168404Spjd	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
269168404Spjd	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
270168404Spjd		continue;						\
271168404Spjd}
272168404Spjd
273168404Spjd#define	ARCSTAT_MAXSTAT(stat) \
274168404Spjd	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
275168404Spjd
276168404Spjd/*
277168404Spjd * We define a macro to allow ARC hits/misses to be easily broken down by
278168404Spjd * two separate conditions, giving a total of four different subtypes for
279168404Spjd * each of hits and misses (so eight statistics total).
280168404Spjd */
281168404Spjd#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
282168404Spjd	if (cond1) {							\
283168404Spjd		if (cond2) {						\
284168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
285168404Spjd		} else {						\
286168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
287168404Spjd		}							\
288168404Spjd	} else {							\
289168404Spjd		if (cond2) {						\
290168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
291168404Spjd		} else {						\
292168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
293168404Spjd		}							\
294168404Spjd	}
295168404Spjd
296168404Spjdkstat_t			*arc_ksp;
297168404Spjdstatic arc_state_t 	*arc_anon;
298168404Spjdstatic arc_state_t	*arc_mru;
299168404Spjdstatic arc_state_t	*arc_mru_ghost;
300168404Spjdstatic arc_state_t	*arc_mfu;
301168404Spjdstatic arc_state_t	*arc_mfu_ghost;
302168404Spjd
303168404Spjd/*
304168404Spjd * There are several ARC variables that are critical to export as kstats --
305168404Spjd * but we don't want to have to grovel around in the kstat whenever we wish to
306168404Spjd * manipulate them.  For these variables, we therefore define them to be in
307168404Spjd * terms of the statistic variable.  This assures that we are not introducing
308168404Spjd * the possibility of inconsistency by having shadow copies of the variables,
309168404Spjd * while still allowing the code to be readable.
310168404Spjd */
311168404Spjd#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
312168404Spjd#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
313168404Spjd#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
314168404Spjd#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
315168404Spjd#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
316168404Spjd
317168404Spjdstatic int		arc_no_grow;	/* Don't try to grow cache size */
318168404Spjdstatic uint64_t		arc_tempreserve;
319168404Spjd
320168404Spjdtypedef struct arc_callback arc_callback_t;
321168404Spjd
322168404Spjdstruct arc_callback {
323168404Spjd	void			*acb_private;
324168404Spjd	arc_done_func_t		*acb_done;
325168404Spjd	arc_byteswap_func_t	*acb_byteswap;
326168404Spjd	arc_buf_t		*acb_buf;
327168404Spjd	zio_t			*acb_zio_dummy;
328168404Spjd	arc_callback_t		*acb_next;
329168404Spjd};
330168404Spjd
331168404Spjdtypedef struct arc_write_callback arc_write_callback_t;
332168404Spjd
333168404Spjdstruct arc_write_callback {
334168404Spjd	void		*awcb_private;
335168404Spjd	arc_done_func_t	*awcb_ready;
336168404Spjd	arc_done_func_t	*awcb_done;
337168404Spjd	arc_buf_t	*awcb_buf;
338168404Spjd};
339168404Spjd
340168404Spjdstruct arc_buf_hdr {
341168404Spjd	/* protected by hash lock */
342168404Spjd	dva_t			b_dva;
343168404Spjd	uint64_t		b_birth;
344168404Spjd	uint64_t		b_cksum0;
345168404Spjd
346168404Spjd	kmutex_t		b_freeze_lock;
347168404Spjd	zio_cksum_t		*b_freeze_cksum;
348168404Spjd
349168404Spjd	arc_buf_hdr_t		*b_hash_next;
350168404Spjd	arc_buf_t		*b_buf;
351168404Spjd	uint32_t		b_flags;
352168404Spjd	uint32_t		b_datacnt;
353168404Spjd
354168404Spjd	arc_callback_t		*b_acb;
355168404Spjd	kcondvar_t		b_cv;
356168404Spjd
357168404Spjd	/* immutable */
358168404Spjd	arc_buf_contents_t	b_type;
359168404Spjd	uint64_t		b_size;
360168404Spjd	spa_t			*b_spa;
361168404Spjd
362168404Spjd	/* protected by arc state mutex */
363168404Spjd	arc_state_t		*b_state;
364168404Spjd	list_node_t		b_arc_node;
365168404Spjd
366168404Spjd	/* updated atomically */
367168404Spjd	clock_t			b_arc_access;
368168404Spjd
369168404Spjd	/* self protecting */
370168404Spjd	refcount_t		b_refcnt;
371168404Spjd};
372168404Spjd
373168404Spjdstatic arc_buf_t *arc_eviction_list;
374168404Spjdstatic kmutex_t arc_eviction_mtx;
375168404Spjdstatic arc_buf_hdr_t arc_eviction_hdr;
376168404Spjdstatic void arc_get_data_buf(arc_buf_t *buf);
377168404Spjdstatic void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
378168404Spjd
379168404Spjd#define	GHOST_STATE(state)	\
380168404Spjd	((state) == arc_mru_ghost || (state) == arc_mfu_ghost)
381168404Spjd
382168404Spjd/*
383168404Spjd * Private ARC flags.  These flags are private ARC only flags that will show up
384168404Spjd * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
385168404Spjd * be passed in as arc_flags in things like arc_read.  However, these flags
386168404Spjd * should never be passed and should only be set by ARC code.  When adding new
387168404Spjd * public flags, make sure not to smash the private ones.
388168404Spjd */
389168404Spjd
390168404Spjd#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
391168404Spjd#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
392168404Spjd#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
393168404Spjd#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
394168404Spjd#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
395168404Spjd#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
396168404Spjd
397168404Spjd#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
398168404Spjd#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
399168404Spjd#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
400168404Spjd#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
401168404Spjd#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
402168404Spjd
403168404Spjd/*
404168404Spjd * Hash table routines
405168404Spjd */
406168404Spjd
407168404Spjd#define	HT_LOCK_PAD	128
408168404Spjd
409168404Spjdstruct ht_lock {
410168404Spjd	kmutex_t	ht_lock;
411168404Spjd#ifdef _KERNEL
412168404Spjd	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
413168404Spjd#endif
414168404Spjd};
415168404Spjd
416168404Spjd#define	BUF_LOCKS 256
417168404Spjdtypedef struct buf_hash_table {
418168404Spjd	uint64_t ht_mask;
419168404Spjd	arc_buf_hdr_t **ht_table;
420168404Spjd	struct ht_lock ht_locks[BUF_LOCKS];
421168404Spjd} buf_hash_table_t;
422168404Spjd
423168404Spjdstatic buf_hash_table_t buf_hash_table;
424168404Spjd
425168404Spjd#define	BUF_HASH_INDEX(spa, dva, birth) \
426168404Spjd	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
427168404Spjd#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
428168404Spjd#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
429168404Spjd#define	HDR_LOCK(buf) \
430168404Spjd	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
431168404Spjd
432168404Spjduint64_t zfs_crc64_table[256];
433168404Spjd
434168404Spjdstatic uint64_t
435168404Spjdbuf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
436168404Spjd{
437168404Spjd	uintptr_t spav = (uintptr_t)spa;
438168404Spjd	uint8_t *vdva = (uint8_t *)dva;
439168404Spjd	uint64_t crc = -1ULL;
440168404Spjd	int i;
441168404Spjd
442168404Spjd	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
443168404Spjd
444168404Spjd	for (i = 0; i < sizeof (dva_t); i++)
445168404Spjd		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
446168404Spjd
447168404Spjd	crc ^= (spav>>8) ^ birth;
448168404Spjd
449168404Spjd	return (crc);
450168404Spjd}
451168404Spjd
452168404Spjd#define	BUF_EMPTY(buf)						\
453168404Spjd	((buf)->b_dva.dva_word[0] == 0 &&			\
454168404Spjd	(buf)->b_dva.dva_word[1] == 0 &&			\
455168404Spjd	(buf)->b_birth == 0)
456168404Spjd
457168404Spjd#define	BUF_EQUAL(spa, dva, birth, buf)				\
458168404Spjd	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
459168404Spjd	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
460168404Spjd	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
461168404Spjd
462168404Spjdstatic arc_buf_hdr_t *
463168404Spjdbuf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
464168404Spjd{
465168404Spjd	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
466168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
467168404Spjd	arc_buf_hdr_t *buf;
468168404Spjd
469168404Spjd	mutex_enter(hash_lock);
470168404Spjd	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
471168404Spjd	    buf = buf->b_hash_next) {
472168404Spjd		if (BUF_EQUAL(spa, dva, birth, buf)) {
473168404Spjd			*lockp = hash_lock;
474168404Spjd			return (buf);
475168404Spjd		}
476168404Spjd	}
477168404Spjd	mutex_exit(hash_lock);
478168404Spjd	*lockp = NULL;
479168404Spjd	return (NULL);
480168404Spjd}
481168404Spjd
482168404Spjd/*
483168404Spjd * Insert an entry into the hash table.  If there is already an element
484168404Spjd * equal to elem in the hash table, then the already existing element
485168404Spjd * will be returned and the new element will not be inserted.
486168404Spjd * Otherwise returns NULL.
487168404Spjd */
488168404Spjdstatic arc_buf_hdr_t *
489168404Spjdbuf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
490168404Spjd{
491168404Spjd	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
492168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
493168404Spjd	arc_buf_hdr_t *fbuf;
494168404Spjd	uint32_t i;
495168404Spjd
496168404Spjd	ASSERT(!HDR_IN_HASH_TABLE(buf));
497168404Spjd	*lockp = hash_lock;
498168404Spjd	mutex_enter(hash_lock);
499168404Spjd	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
500168404Spjd	    fbuf = fbuf->b_hash_next, i++) {
501168404Spjd		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
502168404Spjd			return (fbuf);
503168404Spjd	}
504168404Spjd
505168404Spjd	buf->b_hash_next = buf_hash_table.ht_table[idx];
506168404Spjd	buf_hash_table.ht_table[idx] = buf;
507168404Spjd	buf->b_flags |= ARC_IN_HASH_TABLE;
508168404Spjd
509168404Spjd	/* collect some hash table performance data */
510168404Spjd	if (i > 0) {
511168404Spjd		ARCSTAT_BUMP(arcstat_hash_collisions);
512168404Spjd		if (i == 1)
513168404Spjd			ARCSTAT_BUMP(arcstat_hash_chains);
514168404Spjd
515168404Spjd		ARCSTAT_MAX(arcstat_hash_chain_max, i);
516168404Spjd	}
517168404Spjd
518168404Spjd	ARCSTAT_BUMP(arcstat_hash_elements);
519168404Spjd	ARCSTAT_MAXSTAT(arcstat_hash_elements);
520168404Spjd
521168404Spjd	return (NULL);
522168404Spjd}
523168404Spjd
524168404Spjdstatic void
525168404Spjdbuf_hash_remove(arc_buf_hdr_t *buf)
526168404Spjd{
527168404Spjd	arc_buf_hdr_t *fbuf, **bufp;
528168404Spjd	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
529168404Spjd
530168404Spjd	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
531168404Spjd	ASSERT(HDR_IN_HASH_TABLE(buf));
532168404Spjd
533168404Spjd	bufp = &buf_hash_table.ht_table[idx];
534168404Spjd	while ((fbuf = *bufp) != buf) {
535168404Spjd		ASSERT(fbuf != NULL);
536168404Spjd		bufp = &fbuf->b_hash_next;
537168404Spjd	}
538168404Spjd	*bufp = buf->b_hash_next;
539168404Spjd	buf->b_hash_next = NULL;
540168404Spjd	buf->b_flags &= ~ARC_IN_HASH_TABLE;
541168404Spjd
542168404Spjd	/* collect some hash table performance data */
543168404Spjd	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
544168404Spjd
545168404Spjd	if (buf_hash_table.ht_table[idx] &&
546168404Spjd	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
547168404Spjd		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
548168404Spjd}
549168404Spjd
550168404Spjd/*
551168404Spjd * Global data structures and functions for the buf kmem cache.
552168404Spjd */
553168404Spjdstatic kmem_cache_t *hdr_cache;
554168404Spjdstatic kmem_cache_t *buf_cache;
555168404Spjd
556168404Spjdstatic void
557168404Spjdbuf_fini(void)
558168404Spjd{
559168404Spjd	int i;
560168404Spjd
561168404Spjd	kmem_free(buf_hash_table.ht_table,
562168404Spjd	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
563168404Spjd	for (i = 0; i < BUF_LOCKS; i++)
564168404Spjd		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
565168404Spjd	kmem_cache_destroy(hdr_cache);
566168404Spjd	kmem_cache_destroy(buf_cache);
567168404Spjd}
568168404Spjd
569168404Spjd/*
570168404Spjd * Constructor callback - called when the cache is empty
571168404Spjd * and a new buf is requested.
572168404Spjd */
573168404Spjd/* ARGSUSED */
574168404Spjdstatic int
575168404Spjdhdr_cons(void *vbuf, void *unused, int kmflag)
576168404Spjd{
577168404Spjd	arc_buf_hdr_t *buf = vbuf;
578168404Spjd
579168404Spjd	bzero(buf, sizeof (arc_buf_hdr_t));
580168404Spjd	refcount_create(&buf->b_refcnt);
581168404Spjd	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
582168404Spjd	return (0);
583168404Spjd}
584168404Spjd
585168404Spjd/*
586168404Spjd * Destructor callback - called when a cached buf is
587168404Spjd * no longer required.
588168404Spjd */
589168404Spjd/* ARGSUSED */
590168404Spjdstatic void
591168404Spjdhdr_dest(void *vbuf, void *unused)
592168404Spjd{
593168404Spjd	arc_buf_hdr_t *buf = vbuf;
594168404Spjd
595168404Spjd	refcount_destroy(&buf->b_refcnt);
596168404Spjd	cv_destroy(&buf->b_cv);
597168404Spjd}
598168404Spjd
599168404Spjd/*
600168404Spjd * Reclaim callback -- invoked when memory is low.
601168404Spjd */
602168404Spjd/* ARGSUSED */
603168404Spjdstatic void
604168404Spjdhdr_recl(void *unused)
605168404Spjd{
606168404Spjd	dprintf("hdr_recl called\n");
607168404Spjd	/*
608168404Spjd	 * umem calls the reclaim func when we destroy the buf cache,
609168404Spjd	 * which is after we do arc_fini().
610168404Spjd	 */
611168404Spjd	if (!arc_dead)
612168404Spjd		cv_signal(&arc_reclaim_thr_cv);
613168404Spjd}
614168404Spjd
615168404Spjdstatic void
616168404Spjdbuf_init(void)
617168404Spjd{
618168404Spjd	uint64_t *ct;
619168404Spjd	uint64_t hsize = 1ULL << 12;
620168404Spjd	int i, j;
621168404Spjd
622168404Spjd	/*
623168404Spjd	 * The hash table is big enough to fill all of physical memory
624168404Spjd	 * with an average 64K block size.  The table will take up
625168404Spjd	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
626168404Spjd	 */
627168696Spjd	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
628168404Spjd		hsize <<= 1;
629168404Spjdretry:
630168404Spjd	buf_hash_table.ht_mask = hsize - 1;
631168404Spjd	buf_hash_table.ht_table =
632168404Spjd	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
633168404Spjd	if (buf_hash_table.ht_table == NULL) {
634168404Spjd		ASSERT(hsize > (1ULL << 8));
635168404Spjd		hsize >>= 1;
636168404Spjd		goto retry;
637168404Spjd	}
638168404Spjd
639168404Spjd	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
640168404Spjd	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
641168404Spjd	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
642168404Spjd	    0, NULL, NULL, NULL, NULL, NULL, 0);
643168404Spjd
644168404Spjd	for (i = 0; i < 256; i++)
645168404Spjd		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
646168404Spjd			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
647168404Spjd
648168404Spjd	for (i = 0; i < BUF_LOCKS; i++) {
649168404Spjd		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
650168404Spjd		    NULL, MUTEX_DEFAULT, NULL);
651168404Spjd	}
652168404Spjd}
653168404Spjd
654168404Spjd#define	ARC_MINTIME	(hz>>4) /* 62 ms */
655168404Spjd
656168404Spjdstatic void
657168404Spjdarc_cksum_verify(arc_buf_t *buf)
658168404Spjd{
659168404Spjd	zio_cksum_t zc;
660168404Spjd
661168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
662168404Spjd		return;
663168404Spjd
664168404Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
665168404Spjd	if (buf->b_hdr->b_freeze_cksum == NULL ||
666168404Spjd	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
667168404Spjd		mutex_exit(&buf->b_hdr->b_freeze_lock);
668168404Spjd		return;
669168404Spjd	}
670168404Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
671168404Spjd	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
672168404Spjd		panic("buffer modified while frozen!");
673168404Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
674168404Spjd}
675168404Spjd
676168404Spjdstatic void
677168404Spjdarc_cksum_compute(arc_buf_t *buf)
678168404Spjd{
679168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
680168404Spjd		return;
681168404Spjd
682168404Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
683168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
684168404Spjd		mutex_exit(&buf->b_hdr->b_freeze_lock);
685168404Spjd		return;
686168404Spjd	}
687168404Spjd	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
688168404Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
689168404Spjd	    buf->b_hdr->b_freeze_cksum);
690168404Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
691168404Spjd}
692168404Spjd
693168404Spjdvoid
694168404Spjdarc_buf_thaw(arc_buf_t *buf)
695168404Spjd{
696168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
697168404Spjd		return;
698168404Spjd
699168404Spjd	if (buf->b_hdr->b_state != arc_anon)
700168404Spjd		panic("modifying non-anon buffer!");
701168404Spjd	if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
702168404Spjd		panic("modifying buffer while i/o in progress!");
703168404Spjd	arc_cksum_verify(buf);
704168404Spjd	mutex_enter(&buf->b_hdr->b_freeze_lock);
705168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
706168404Spjd		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
707168404Spjd		buf->b_hdr->b_freeze_cksum = NULL;
708168404Spjd	}
709168404Spjd	mutex_exit(&buf->b_hdr->b_freeze_lock);
710168404Spjd}
711168404Spjd
712168404Spjdvoid
713168404Spjdarc_buf_freeze(arc_buf_t *buf)
714168404Spjd{
715168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
716168404Spjd		return;
717168404Spjd
718168404Spjd	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
719168404Spjd	    buf->b_hdr->b_state == arc_anon);
720168404Spjd	arc_cksum_compute(buf);
721168404Spjd}
722168404Spjd
723168404Spjdstatic void
724168404Spjdadd_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
725168404Spjd{
726168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
727168404Spjd
728168404Spjd	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
729168404Spjd	    (ab->b_state != arc_anon)) {
730168404Spjd		uint64_t delta = ab->b_size * ab->b_datacnt;
731168404Spjd
732168404Spjd		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
733168404Spjd		mutex_enter(&ab->b_state->arcs_mtx);
734168404Spjd		ASSERT(list_link_active(&ab->b_arc_node));
735168404Spjd		list_remove(&ab->b_state->arcs_list, ab);
736168404Spjd		if (GHOST_STATE(ab->b_state)) {
737168404Spjd			ASSERT3U(ab->b_datacnt, ==, 0);
738168404Spjd			ASSERT3P(ab->b_buf, ==, NULL);
739168404Spjd			delta = ab->b_size;
740168404Spjd		}
741168404Spjd		ASSERT(delta > 0);
742168404Spjd		ASSERT3U(ab->b_state->arcs_lsize, >=, delta);
743168404Spjd		atomic_add_64(&ab->b_state->arcs_lsize, -delta);
744168404Spjd		mutex_exit(&ab->b_state->arcs_mtx);
745168404Spjd		/* remove the prefetch flag is we get a reference */
746168404Spjd		if (ab->b_flags & ARC_PREFETCH)
747168404Spjd			ab->b_flags &= ~ARC_PREFETCH;
748168404Spjd	}
749168404Spjd}
750168404Spjd
751168404Spjdstatic int
752168404Spjdremove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
753168404Spjd{
754168404Spjd	int cnt;
755168404Spjd	arc_state_t *state = ab->b_state;
756168404Spjd
757168404Spjd	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
758168404Spjd	ASSERT(!GHOST_STATE(state));
759168404Spjd
760168404Spjd	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
761168404Spjd	    (state != arc_anon)) {
762168404Spjd		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
763168404Spjd		mutex_enter(&state->arcs_mtx);
764168404Spjd		ASSERT(!list_link_active(&ab->b_arc_node));
765168404Spjd		list_insert_head(&state->arcs_list, ab);
766168404Spjd		ASSERT(ab->b_datacnt > 0);
767168404Spjd		atomic_add_64(&state->arcs_lsize, ab->b_size * ab->b_datacnt);
768168404Spjd		ASSERT3U(state->arcs_size, >=, state->arcs_lsize);
769168404Spjd		mutex_exit(&state->arcs_mtx);
770168404Spjd	}
771168404Spjd	return (cnt);
772168404Spjd}
773168404Spjd
774168404Spjd/*
775168404Spjd * Move the supplied buffer to the indicated state.  The mutex
776168404Spjd * for the buffer must be held by the caller.
777168404Spjd */
778168404Spjdstatic void
779168404Spjdarc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
780168404Spjd{
781168404Spjd	arc_state_t *old_state = ab->b_state;
782168404Spjd	int64_t refcnt = refcount_count(&ab->b_refcnt);
783168404Spjd	uint64_t from_delta, to_delta;
784168404Spjd
785168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
786168404Spjd	ASSERT(new_state != old_state);
787168404Spjd	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
788168404Spjd	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
789168404Spjd
790168404Spjd	from_delta = to_delta = ab->b_datacnt * ab->b_size;
791168404Spjd
792168404Spjd	/*
793168404Spjd	 * If this buffer is evictable, transfer it from the
794168404Spjd	 * old state list to the new state list.
795168404Spjd	 */
796168404Spjd	if (refcnt == 0) {
797168404Spjd		if (old_state != arc_anon) {
798168404Spjd			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
799168404Spjd
800168404Spjd			if (use_mutex)
801168404Spjd				mutex_enter(&old_state->arcs_mtx);
802168404Spjd
803168404Spjd			ASSERT(list_link_active(&ab->b_arc_node));
804168404Spjd			list_remove(&old_state->arcs_list, ab);
805168404Spjd
806168404Spjd			/*
807168404Spjd			 * If prefetching out of the ghost cache,
808168404Spjd			 * we will have a non-null datacnt.
809168404Spjd			 */
810168404Spjd			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
811168404Spjd				/* ghost elements have a ghost size */
812168404Spjd				ASSERT(ab->b_buf == NULL);
813168404Spjd				from_delta = ab->b_size;
814168404Spjd			}
815168404Spjd			ASSERT3U(old_state->arcs_lsize, >=, from_delta);
816168404Spjd			atomic_add_64(&old_state->arcs_lsize, -from_delta);
817168404Spjd
818168404Spjd			if (use_mutex)
819168404Spjd				mutex_exit(&old_state->arcs_mtx);
820168404Spjd		}
821168404Spjd		if (new_state != arc_anon) {
822168404Spjd			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
823168404Spjd
824168404Spjd			if (use_mutex)
825168404Spjd				mutex_enter(&new_state->arcs_mtx);
826168404Spjd
827168404Spjd			list_insert_head(&new_state->arcs_list, ab);
828168404Spjd
829168404Spjd			/* ghost elements have a ghost size */
830168404Spjd			if (GHOST_STATE(new_state)) {
831168404Spjd				ASSERT(ab->b_datacnt == 0);
832168404Spjd				ASSERT(ab->b_buf == NULL);
833168404Spjd				to_delta = ab->b_size;
834168404Spjd			}
835168404Spjd			atomic_add_64(&new_state->arcs_lsize, to_delta);
836168404Spjd			ASSERT3U(new_state->arcs_size + to_delta, >=,
837168404Spjd			    new_state->arcs_lsize);
838168404Spjd
839168404Spjd			if (use_mutex)
840168404Spjd				mutex_exit(&new_state->arcs_mtx);
841168404Spjd		}
842168404Spjd	}
843168404Spjd
844168404Spjd	ASSERT(!BUF_EMPTY(ab));
845168404Spjd	if (new_state == arc_anon && old_state != arc_anon) {
846168404Spjd		buf_hash_remove(ab);
847168404Spjd	}
848168404Spjd
849168404Spjd	/* adjust state sizes */
850168404Spjd	if (to_delta)
851168404Spjd		atomic_add_64(&new_state->arcs_size, to_delta);
852168404Spjd	if (from_delta) {
853168404Spjd		ASSERT3U(old_state->arcs_size, >=, from_delta);
854168404Spjd		atomic_add_64(&old_state->arcs_size, -from_delta);
855168404Spjd	}
856168404Spjd	ab->b_state = new_state;
857168404Spjd}
858168404Spjd
859168404Spjdarc_buf_t *
860168404Spjdarc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
861168404Spjd{
862168404Spjd	arc_buf_hdr_t *hdr;
863168404Spjd	arc_buf_t *buf;
864168404Spjd
865168404Spjd	ASSERT3U(size, >, 0);
866168404Spjd	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
867168404Spjd	ASSERT(BUF_EMPTY(hdr));
868168404Spjd	hdr->b_size = size;
869168404Spjd	hdr->b_type = type;
870168404Spjd	hdr->b_spa = spa;
871168404Spjd	hdr->b_state = arc_anon;
872168404Spjd	hdr->b_arc_access = 0;
873168404Spjd	mutex_init(&hdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
874168404Spjd	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
875168404Spjd	buf->b_hdr = hdr;
876168404Spjd	buf->b_data = NULL;
877168404Spjd	buf->b_efunc = NULL;
878168404Spjd	buf->b_private = NULL;
879168404Spjd	buf->b_next = NULL;
880168404Spjd	hdr->b_buf = buf;
881168404Spjd	arc_get_data_buf(buf);
882168404Spjd	hdr->b_datacnt = 1;
883168404Spjd	hdr->b_flags = 0;
884168404Spjd	ASSERT(refcount_is_zero(&hdr->b_refcnt));
885168404Spjd	(void) refcount_add(&hdr->b_refcnt, tag);
886168404Spjd
887168404Spjd	return (buf);
888168404Spjd}
889168404Spjd
890168404Spjdstatic arc_buf_t *
891168404Spjdarc_buf_clone(arc_buf_t *from)
892168404Spjd{
893168404Spjd	arc_buf_t *buf;
894168404Spjd	arc_buf_hdr_t *hdr = from->b_hdr;
895168404Spjd	uint64_t size = hdr->b_size;
896168404Spjd
897168404Spjd	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
898168404Spjd	buf->b_hdr = hdr;
899168404Spjd	buf->b_data = NULL;
900168404Spjd	buf->b_efunc = NULL;
901168404Spjd	buf->b_private = NULL;
902168404Spjd	buf->b_next = hdr->b_buf;
903168404Spjd	hdr->b_buf = buf;
904168404Spjd	arc_get_data_buf(buf);
905168404Spjd	bcopy(from->b_data, buf->b_data, size);
906168404Spjd	hdr->b_datacnt += 1;
907168404Spjd	return (buf);
908168404Spjd}
909168404Spjd
910168404Spjdvoid
911168404Spjdarc_buf_add_ref(arc_buf_t *buf, void* tag)
912168404Spjd{
913168404Spjd	arc_buf_hdr_t *hdr;
914168404Spjd	kmutex_t *hash_lock;
915168404Spjd
916168404Spjd	/*
917168404Spjd	 * Check to see if this buffer is currently being evicted via
918168404Spjd	 * arc_do_user_evicts().
919168404Spjd	 */
920168404Spjd	mutex_enter(&arc_eviction_mtx);
921168404Spjd	hdr = buf->b_hdr;
922168404Spjd	if (hdr == NULL) {
923168404Spjd		mutex_exit(&arc_eviction_mtx);
924168404Spjd		return;
925168404Spjd	}
926168404Spjd	hash_lock = HDR_LOCK(hdr);
927168404Spjd	mutex_exit(&arc_eviction_mtx);
928168404Spjd
929168404Spjd	mutex_enter(hash_lock);
930168404Spjd	if (buf->b_data == NULL) {
931168404Spjd		/*
932168404Spjd		 * This buffer is evicted.
933168404Spjd		 */
934168404Spjd		mutex_exit(hash_lock);
935168404Spjd		return;
936168404Spjd	}
937168404Spjd
938168404Spjd	ASSERT(buf->b_hdr == hdr);
939168404Spjd	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
940168404Spjd	add_reference(hdr, hash_lock, tag);
941168404Spjd	arc_access(hdr, hash_lock);
942168404Spjd	mutex_exit(hash_lock);
943168404Spjd	ARCSTAT_BUMP(arcstat_hits);
944168404Spjd	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
945168404Spjd	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
946168404Spjd	    data, metadata, hits);
947168404Spjd}
948168404Spjd
949168404Spjdstatic void
950168404Spjdarc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
951168404Spjd{
952168404Spjd	arc_buf_t **bufp;
953168404Spjd
954168404Spjd	/* free up data associated with the buf */
955168404Spjd	if (buf->b_data) {
956168404Spjd		arc_state_t *state = buf->b_hdr->b_state;
957168404Spjd		uint64_t size = buf->b_hdr->b_size;
958168404Spjd		arc_buf_contents_t type = buf->b_hdr->b_type;
959168404Spjd
960168404Spjd		arc_cksum_verify(buf);
961168404Spjd		if (!recycle) {
962168404Spjd			if (type == ARC_BUFC_METADATA) {
963168404Spjd				zio_buf_free(buf->b_data, size);
964168404Spjd			} else {
965168404Spjd				ASSERT(type == ARC_BUFC_DATA);
966168404Spjd				zio_data_buf_free(buf->b_data, size);
967168404Spjd			}
968168404Spjd			atomic_add_64(&arc_size, -size);
969168404Spjd		}
970168404Spjd		if (list_link_active(&buf->b_hdr->b_arc_node)) {
971168404Spjd			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
972168404Spjd			ASSERT(state != arc_anon);
973168404Spjd			ASSERT3U(state->arcs_lsize, >=, size);
974168404Spjd			atomic_add_64(&state->arcs_lsize, -size);
975168404Spjd		}
976168404Spjd		ASSERT3U(state->arcs_size, >=, size);
977168404Spjd		atomic_add_64(&state->arcs_size, -size);
978168404Spjd		buf->b_data = NULL;
979168404Spjd		ASSERT(buf->b_hdr->b_datacnt > 0);
980168404Spjd		buf->b_hdr->b_datacnt -= 1;
981168404Spjd	}
982168404Spjd
983168404Spjd	/* only remove the buf if requested */
984168404Spjd	if (!all)
985168404Spjd		return;
986168404Spjd
987168404Spjd	/* remove the buf from the hdr list */
988168404Spjd	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
989168404Spjd		continue;
990168404Spjd	*bufp = buf->b_next;
991168404Spjd
992168404Spjd	ASSERT(buf->b_efunc == NULL);
993168404Spjd
994168404Spjd	/* clean up the buf */
995168404Spjd	buf->b_hdr = NULL;
996168404Spjd	kmem_cache_free(buf_cache, buf);
997168404Spjd}
998168404Spjd
999168404Spjdstatic void
1000168404Spjdarc_hdr_destroy(arc_buf_hdr_t *hdr)
1001168404Spjd{
1002168404Spjd	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1003168404Spjd	ASSERT3P(hdr->b_state, ==, arc_anon);
1004168404Spjd	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1005168404Spjd
1006168404Spjd	if (!BUF_EMPTY(hdr)) {
1007168404Spjd		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1008168404Spjd		bzero(&hdr->b_dva, sizeof (dva_t));
1009168404Spjd		hdr->b_birth = 0;
1010168404Spjd		hdr->b_cksum0 = 0;
1011168404Spjd	}
1012168404Spjd	while (hdr->b_buf) {
1013168404Spjd		arc_buf_t *buf = hdr->b_buf;
1014168404Spjd
1015168404Spjd		if (buf->b_efunc) {
1016168404Spjd			mutex_enter(&arc_eviction_mtx);
1017168404Spjd			ASSERT(buf->b_hdr != NULL);
1018168404Spjd			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1019168404Spjd			hdr->b_buf = buf->b_next;
1020168404Spjd			buf->b_hdr = &arc_eviction_hdr;
1021168404Spjd			buf->b_next = arc_eviction_list;
1022168404Spjd			arc_eviction_list = buf;
1023168404Spjd			mutex_exit(&arc_eviction_mtx);
1024168404Spjd		} else {
1025168404Spjd			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1026168404Spjd		}
1027168404Spjd	}
1028168404Spjd	if (hdr->b_freeze_cksum != NULL) {
1029168404Spjd		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1030168404Spjd		hdr->b_freeze_cksum = NULL;
1031168404Spjd	}
1032168404Spjd	mutex_destroy(&hdr->b_freeze_lock);
1033168404Spjd
1034168404Spjd	ASSERT(!list_link_active(&hdr->b_arc_node));
1035168404Spjd	ASSERT3P(hdr->b_hash_next, ==, NULL);
1036168404Spjd	ASSERT3P(hdr->b_acb, ==, NULL);
1037168404Spjd	kmem_cache_free(hdr_cache, hdr);
1038168404Spjd}
1039168404Spjd
1040168404Spjdvoid
1041168404Spjdarc_buf_free(arc_buf_t *buf, void *tag)
1042168404Spjd{
1043168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
1044168404Spjd	int hashed = hdr->b_state != arc_anon;
1045168404Spjd
1046168404Spjd	ASSERT(buf->b_efunc == NULL);
1047168404Spjd	ASSERT(buf->b_data != NULL);
1048168404Spjd
1049168404Spjd	if (hashed) {
1050168404Spjd		kmutex_t *hash_lock = HDR_LOCK(hdr);
1051168404Spjd
1052168404Spjd		mutex_enter(hash_lock);
1053168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
1054168404Spjd		if (hdr->b_datacnt > 1)
1055168404Spjd			arc_buf_destroy(buf, FALSE, TRUE);
1056168404Spjd		else
1057168404Spjd			hdr->b_flags |= ARC_BUF_AVAILABLE;
1058168404Spjd		mutex_exit(hash_lock);
1059168404Spjd	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1060168404Spjd		int destroy_hdr;
1061168404Spjd		/*
1062168404Spjd		 * We are in the middle of an async write.  Don't destroy
1063168404Spjd		 * this buffer unless the write completes before we finish
1064168404Spjd		 * decrementing the reference count.
1065168404Spjd		 */
1066168404Spjd		mutex_enter(&arc_eviction_mtx);
1067168404Spjd		(void) remove_reference(hdr, NULL, tag);
1068168404Spjd		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1069168404Spjd		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1070168404Spjd		mutex_exit(&arc_eviction_mtx);
1071168404Spjd		if (destroy_hdr)
1072168404Spjd			arc_hdr_destroy(hdr);
1073168404Spjd	} else {
1074168404Spjd		if (remove_reference(hdr, NULL, tag) > 0) {
1075168404Spjd			ASSERT(HDR_IO_ERROR(hdr));
1076168404Spjd			arc_buf_destroy(buf, FALSE, TRUE);
1077168404Spjd		} else {
1078168404Spjd			arc_hdr_destroy(hdr);
1079168404Spjd		}
1080168404Spjd	}
1081168404Spjd}
1082168404Spjd
1083168404Spjdint
1084168404Spjdarc_buf_remove_ref(arc_buf_t *buf, void* tag)
1085168404Spjd{
1086168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
1087168404Spjd	kmutex_t *hash_lock = HDR_LOCK(hdr);
1088168404Spjd	int no_callback = (buf->b_efunc == NULL);
1089168404Spjd
1090168404Spjd	if (hdr->b_state == arc_anon) {
1091168404Spjd		arc_buf_free(buf, tag);
1092168404Spjd		return (no_callback);
1093168404Spjd	}
1094168404Spjd
1095168404Spjd	mutex_enter(hash_lock);
1096168404Spjd	ASSERT(hdr->b_state != arc_anon);
1097168404Spjd	ASSERT(buf->b_data != NULL);
1098168404Spjd
1099168404Spjd	(void) remove_reference(hdr, hash_lock, tag);
1100168404Spjd	if (hdr->b_datacnt > 1) {
1101168404Spjd		if (no_callback)
1102168404Spjd			arc_buf_destroy(buf, FALSE, TRUE);
1103168404Spjd	} else if (no_callback) {
1104168404Spjd		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1105168404Spjd		hdr->b_flags |= ARC_BUF_AVAILABLE;
1106168404Spjd	}
1107168404Spjd	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1108168404Spjd	    refcount_is_zero(&hdr->b_refcnt));
1109168404Spjd	mutex_exit(hash_lock);
1110168404Spjd	return (no_callback);
1111168404Spjd}
1112168404Spjd
1113168404Spjdint
1114168404Spjdarc_buf_size(arc_buf_t *buf)
1115168404Spjd{
1116168404Spjd	return (buf->b_hdr->b_size);
1117168404Spjd}
1118168404Spjd
1119168404Spjd/*
1120168404Spjd * Evict buffers from list until we've removed the specified number of
1121168404Spjd * bytes.  Move the removed buffers to the appropriate evict state.
1122168404Spjd * If the recycle flag is set, then attempt to "recycle" a buffer:
1123168404Spjd * - look for a buffer to evict that is `bytes' long.
1124168404Spjd * - return the data block from this buffer rather than freeing it.
1125168404Spjd * This flag is used by callers that are trying to make space for a
1126168404Spjd * new buffer in a full arc cache.
1127168404Spjd */
1128168404Spjdstatic void *
1129168404Spjdarc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle,
1130168404Spjd    arc_buf_contents_t type)
1131168404Spjd{
1132168404Spjd	arc_state_t *evicted_state;
1133168404Spjd	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1134168404Spjd	arc_buf_hdr_t *ab, *ab_prev = NULL;
1135168404Spjd	kmutex_t *hash_lock;
1136168404Spjd	boolean_t have_lock;
1137168404Spjd	void *stolen = NULL;
1138168404Spjd
1139168404Spjd	ASSERT(state == arc_mru || state == arc_mfu);
1140168404Spjd
1141168404Spjd	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1142168404Spjd
1143168404Spjd	mutex_enter(&state->arcs_mtx);
1144168404Spjd	mutex_enter(&evicted_state->arcs_mtx);
1145168404Spjd
1146168404Spjd	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
1147168404Spjd		ab_prev = list_prev(&state->arcs_list, ab);
1148168404Spjd		/* prefetch buffers have a minimum lifespan */
1149168404Spjd		if (HDR_IO_IN_PROGRESS(ab) ||
1150168404Spjd		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1151168404Spjd		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1152168404Spjd			skipped++;
1153168404Spjd			continue;
1154168404Spjd		}
1155168404Spjd		/* "lookahead" for better eviction candidate */
1156168404Spjd		if (recycle && ab->b_size != bytes &&
1157168404Spjd		    ab_prev && ab_prev->b_size == bytes)
1158168404Spjd			continue;
1159168404Spjd		hash_lock = HDR_LOCK(ab);
1160168404Spjd		have_lock = MUTEX_HELD(hash_lock);
1161168404Spjd		if (have_lock || mutex_tryenter(hash_lock)) {
1162168404Spjd			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1163168404Spjd			ASSERT(ab->b_datacnt > 0);
1164168404Spjd			while (ab->b_buf) {
1165168404Spjd				arc_buf_t *buf = ab->b_buf;
1166168404Spjd				if (buf->b_data) {
1167168404Spjd					bytes_evicted += ab->b_size;
1168168404Spjd					if (recycle && ab->b_type == type &&
1169168404Spjd					    ab->b_size == bytes) {
1170168404Spjd						stolen = buf->b_data;
1171168404Spjd						recycle = FALSE;
1172168404Spjd					}
1173168404Spjd				}
1174168404Spjd				if (buf->b_efunc) {
1175168404Spjd					mutex_enter(&arc_eviction_mtx);
1176168404Spjd					arc_buf_destroy(buf,
1177168404Spjd					    buf->b_data == stolen, FALSE);
1178168404Spjd					ab->b_buf = buf->b_next;
1179168404Spjd					buf->b_hdr = &arc_eviction_hdr;
1180168404Spjd					buf->b_next = arc_eviction_list;
1181168404Spjd					arc_eviction_list = buf;
1182168404Spjd					mutex_exit(&arc_eviction_mtx);
1183168404Spjd				} else {
1184168404Spjd					arc_buf_destroy(buf,
1185168404Spjd					    buf->b_data == stolen, TRUE);
1186168404Spjd				}
1187168404Spjd			}
1188168404Spjd			ASSERT(ab->b_datacnt == 0);
1189168404Spjd			arc_change_state(evicted_state, ab, hash_lock);
1190168404Spjd			ASSERT(HDR_IN_HASH_TABLE(ab));
1191168404Spjd			ab->b_flags = ARC_IN_HASH_TABLE;
1192168404Spjd			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1193168404Spjd			if (!have_lock)
1194168404Spjd				mutex_exit(hash_lock);
1195168404Spjd			if (bytes >= 0 && bytes_evicted >= bytes)
1196168404Spjd				break;
1197168404Spjd		} else {
1198168404Spjd			missed += 1;
1199168404Spjd		}
1200168404Spjd	}
1201168404Spjd
1202168404Spjd	mutex_exit(&evicted_state->arcs_mtx);
1203168404Spjd	mutex_exit(&state->arcs_mtx);
1204168404Spjd
1205168404Spjd	if (bytes_evicted < bytes)
1206168404Spjd		dprintf("only evicted %lld bytes from %x",
1207168404Spjd		    (longlong_t)bytes_evicted, state);
1208168404Spjd
1209168404Spjd	if (skipped)
1210168404Spjd		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1211168404Spjd
1212168404Spjd	if (missed)
1213168404Spjd		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1214168404Spjd
1215168404Spjd	return (stolen);
1216168404Spjd}
1217168404Spjd
1218168404Spjd/*
1219168404Spjd * Remove buffers from list until we've removed the specified number of
1220168404Spjd * bytes.  Destroy the buffers that are removed.
1221168404Spjd */
1222168404Spjdstatic void
1223168404Spjdarc_evict_ghost(arc_state_t *state, int64_t bytes)
1224168404Spjd{
1225168404Spjd	arc_buf_hdr_t *ab, *ab_prev;
1226168404Spjd	kmutex_t *hash_lock;
1227168404Spjd	uint64_t bytes_deleted = 0;
1228168404Spjd	uint64_t bufs_skipped = 0;
1229168404Spjd
1230168404Spjd	ASSERT(GHOST_STATE(state));
1231168404Spjdtop:
1232168404Spjd	mutex_enter(&state->arcs_mtx);
1233168404Spjd	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
1234168404Spjd		ab_prev = list_prev(&state->arcs_list, ab);
1235168404Spjd		hash_lock = HDR_LOCK(ab);
1236168404Spjd		if (mutex_tryenter(hash_lock)) {
1237168404Spjd			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1238168404Spjd			ASSERT(ab->b_buf == NULL);
1239168404Spjd			arc_change_state(arc_anon, ab, hash_lock);
1240168404Spjd			mutex_exit(hash_lock);
1241168404Spjd			ARCSTAT_BUMP(arcstat_deleted);
1242168404Spjd			bytes_deleted += ab->b_size;
1243168404Spjd			arc_hdr_destroy(ab);
1244168404Spjd			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1245168404Spjd			if (bytes >= 0 && bytes_deleted >= bytes)
1246168404Spjd				break;
1247168404Spjd		} else {
1248168404Spjd			if (bytes < 0) {
1249168404Spjd				mutex_exit(&state->arcs_mtx);
1250168404Spjd				mutex_enter(hash_lock);
1251168404Spjd				mutex_exit(hash_lock);
1252168404Spjd				goto top;
1253168404Spjd			}
1254168404Spjd			bufs_skipped += 1;
1255168404Spjd		}
1256168404Spjd	}
1257168404Spjd	mutex_exit(&state->arcs_mtx);
1258168404Spjd
1259168404Spjd	if (bufs_skipped) {
1260168404Spjd		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1261168404Spjd		ASSERT(bytes >= 0);
1262168404Spjd	}
1263168404Spjd
1264168404Spjd	if (bytes_deleted < bytes)
1265168404Spjd		dprintf("only deleted %lld bytes from %p",
1266168404Spjd		    (longlong_t)bytes_deleted, state);
1267168404Spjd}
1268168404Spjd
1269168404Spjdstatic void
1270168404Spjdarc_adjust(void)
1271168404Spjd{
1272168404Spjd	int64_t top_sz, mru_over, arc_over, todelete;
1273168404Spjd
1274168404Spjd	top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1275168404Spjd
1276168404Spjd	if (top_sz > arc_p && arc_mru->arcs_lsize > 0) {
1277168404Spjd		int64_t toevict = MIN(arc_mru->arcs_lsize, top_sz - arc_p);
1278168404Spjd		(void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_UNDEF);
1279168404Spjd		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1280168404Spjd	}
1281168404Spjd
1282168404Spjd	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1283168404Spjd
1284168404Spjd	if (mru_over > 0) {
1285168404Spjd		if (arc_mru_ghost->arcs_lsize > 0) {
1286168404Spjd			todelete = MIN(arc_mru_ghost->arcs_lsize, mru_over);
1287168404Spjd			arc_evict_ghost(arc_mru_ghost, todelete);
1288168404Spjd		}
1289168404Spjd	}
1290168404Spjd
1291168404Spjd	if ((arc_over = arc_size - arc_c) > 0) {
1292168404Spjd		int64_t tbl_over;
1293168404Spjd
1294168404Spjd		if (arc_mfu->arcs_lsize > 0) {
1295168404Spjd			int64_t toevict = MIN(arc_mfu->arcs_lsize, arc_over);
1296168404Spjd			(void) arc_evict(arc_mfu, toevict, FALSE,
1297168404Spjd			    ARC_BUFC_UNDEF);
1298168404Spjd		}
1299168404Spjd
1300168404Spjd		tbl_over = arc_size + arc_mru_ghost->arcs_lsize +
1301168404Spjd		    arc_mfu_ghost->arcs_lsize - arc_c*2;
1302168404Spjd
1303168404Spjd		if (tbl_over > 0 && arc_mfu_ghost->arcs_lsize > 0) {
1304168404Spjd			todelete = MIN(arc_mfu_ghost->arcs_lsize, tbl_over);
1305168404Spjd			arc_evict_ghost(arc_mfu_ghost, todelete);
1306168404Spjd		}
1307168404Spjd	}
1308168404Spjd}
1309168404Spjd
1310168404Spjdstatic void
1311168404Spjdarc_do_user_evicts(void)
1312168404Spjd{
1313168404Spjd	mutex_enter(&arc_eviction_mtx);
1314168404Spjd	while (arc_eviction_list != NULL) {
1315168404Spjd		arc_buf_t *buf = arc_eviction_list;
1316168404Spjd		arc_eviction_list = buf->b_next;
1317168404Spjd		buf->b_hdr = NULL;
1318168404Spjd		mutex_exit(&arc_eviction_mtx);
1319168404Spjd
1320168404Spjd		if (buf->b_efunc != NULL)
1321168404Spjd			VERIFY(buf->b_efunc(buf) == 0);
1322168404Spjd
1323168404Spjd		buf->b_efunc = NULL;
1324168404Spjd		buf->b_private = NULL;
1325168404Spjd		kmem_cache_free(buf_cache, buf);
1326168404Spjd		mutex_enter(&arc_eviction_mtx);
1327168404Spjd	}
1328168404Spjd	mutex_exit(&arc_eviction_mtx);
1329168404Spjd}
1330168404Spjd
1331168404Spjd/*
1332168404Spjd * Flush all *evictable* data from the cache.
1333168404Spjd * NOTE: this will not touch "active" (i.e. referenced) data.
1334168404Spjd */
1335168404Spjdvoid
1336168404Spjdarc_flush(void)
1337168404Spjd{
1338168404Spjd	while (list_head(&arc_mru->arcs_list))
1339168404Spjd		(void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_UNDEF);
1340168404Spjd	while (list_head(&arc_mfu->arcs_list))
1341168404Spjd		(void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_UNDEF);
1342168404Spjd
1343168404Spjd	arc_evict_ghost(arc_mru_ghost, -1);
1344168404Spjd	arc_evict_ghost(arc_mfu_ghost, -1);
1345168404Spjd
1346168404Spjd	mutex_enter(&arc_reclaim_thr_lock);
1347168404Spjd	arc_do_user_evicts();
1348168404Spjd	mutex_exit(&arc_reclaim_thr_lock);
1349168404Spjd	ASSERT(arc_eviction_list == NULL);
1350168404Spjd}
1351168404Spjd
1352168404Spjdint arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1353168404Spjd
1354168404Spjdvoid
1355168404Spjdarc_shrink(void)
1356168404Spjd{
1357168404Spjd	if (arc_c > arc_c_min) {
1358168404Spjd		uint64_t to_free;
1359168404Spjd
1360168404Spjd#ifdef _KERNEL
1361168404Spjd		to_free = arc_c >> arc_shrink_shift;
1362168404Spjd#else
1363168404Spjd		to_free = arc_c >> arc_shrink_shift;
1364168404Spjd#endif
1365168404Spjd		if (arc_c > arc_c_min + to_free)
1366168404Spjd			atomic_add_64(&arc_c, -to_free);
1367168404Spjd		else
1368168404Spjd			arc_c = arc_c_min;
1369168404Spjd
1370168404Spjd		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1371168404Spjd		if (arc_c > arc_size)
1372168404Spjd			arc_c = MAX(arc_size, arc_c_min);
1373168404Spjd		if (arc_p > arc_c)
1374168404Spjd			arc_p = (arc_c >> 1);
1375168404Spjd		ASSERT(arc_c >= arc_c_min);
1376168404Spjd		ASSERT((int64_t)arc_p >= 0);
1377168404Spjd	}
1378168404Spjd
1379168404Spjd	if (arc_size > arc_c)
1380168404Spjd		arc_adjust();
1381168404Spjd}
1382168404Spjd
1383168404Spjdstatic int zfs_needfree = 0;
1384168404Spjd
1385168404Spjdstatic int
1386168404Spjdarc_reclaim_needed(void)
1387168404Spjd{
1388168404Spjd#if 0
1389168404Spjd	uint64_t extra;
1390168404Spjd#endif
1391168404Spjd
1392168404Spjd#ifdef _KERNEL
1393168404Spjd
1394168404Spjd	if (zfs_needfree)
1395168404Spjd		return (1);
1396168404Spjd
1397168404Spjd#if 0
1398168404Spjd	/*
1399168404Spjd	 * check to make sure that swapfs has enough space so that anon
1400168404Spjd	 * reservations can still succeeed. anon_resvmem() checks that the
1401168404Spjd	 * availrmem is greater than swapfs_minfree, and the number of reserved
1402168404Spjd	 * swap pages.  We also add a bit of extra here just to prevent
1403168404Spjd	 * circumstances from getting really dire.
1404168404Spjd	 */
1405168404Spjd	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1406168404Spjd		return (1);
1407168404Spjd
1408168404Spjd	/*
1409168404Spjd	 * If zio data pages are being allocated out of a separate heap segment,
1410168404Spjd	 * then check that the size of available vmem for this area remains
1411168404Spjd	 * above 1/4th free.  This needs to be done when the size of the
1412168404Spjd	 * non-default segment is smaller than physical memory, so we could
1413168404Spjd	 * conceivably run out of VA in that segment before running out of
1414168404Spjd	 * physical memory.
1415168404Spjd	 */
1416168404Spjd	if (zio_arena != NULL) {
1417168404Spjd		size_t arc_ziosize =
1418168404Spjd		    btop(vmem_size(zio_arena, VMEM_FREE | VMEM_ALLOC));
1419168404Spjd
1420168404Spjd		if ((physmem > arc_ziosize) &&
1421168404Spjd		    (btop(vmem_size(zio_arena, VMEM_FREE)) < arc_ziosize >> 2))
1422168404Spjd			return (1);
1423168404Spjd	}
1424168404Spjd
1425168404Spjd#if defined(__i386)
1426168404Spjd	/*
1427168404Spjd	 * If we're on an i386 platform, it's possible that we'll exhaust the
1428168404Spjd	 * kernel heap space before we ever run out of available physical
1429168404Spjd	 * memory.  Most checks of the size of the heap_area compare against
1430168404Spjd	 * tune.t_minarmem, which is the minimum available real memory that we
1431168404Spjd	 * can have in the system.  However, this is generally fixed at 25 pages
1432168404Spjd	 * which is so low that it's useless.  In this comparison, we seek to
1433168404Spjd	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1434168404Spjd	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1435168404Spjd	 * free)
1436168404Spjd	 */
1437168404Spjd	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1438168404Spjd	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1439168404Spjd		return (1);
1440168404Spjd#endif
1441168404Spjd#else
1442168566Spjd	if (kmem_used() > kmem_size() / 2)
1443168404Spjd		return (1);
1444168404Spjd#endif
1445168404Spjd
1446168404Spjd#else
1447168404Spjd	if (spa_get_random(100) == 0)
1448168404Spjd		return (1);
1449168404Spjd#endif
1450168404Spjd	return (0);
1451168404Spjd}
1452168404Spjd
1453168404Spjdstatic void
1454168404Spjdarc_kmem_reap_now(arc_reclaim_strategy_t strat)
1455168404Spjd{
1456168404Spjd#ifdef ZIO_USE_UMA
1457168404Spjd	size_t			i;
1458168404Spjd	kmem_cache_t		*prev_cache = NULL;
1459168404Spjd	kmem_cache_t		*prev_data_cache = NULL;
1460168404Spjd	extern kmem_cache_t	*zio_buf_cache[];
1461168404Spjd	extern kmem_cache_t	*zio_data_buf_cache[];
1462168404Spjd#endif
1463168404Spjd
1464168404Spjd#ifdef _KERNEL
1465168404Spjd	/*
1466168404Spjd	 * First purge some DNLC entries, in case the DNLC is using
1467168404Spjd	 * up too much memory.
1468168404Spjd	 */
1469168404Spjd	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1470168404Spjd
1471168404Spjd#if defined(__i386)
1472168404Spjd	/*
1473168404Spjd	 * Reclaim unused memory from all kmem caches.
1474168404Spjd	 */
1475168404Spjd	kmem_reap();
1476168404Spjd#endif
1477168404Spjd#endif
1478168404Spjd
1479168404Spjd	/*
1480168404Spjd	 * An agressive reclamation will shrink the cache size as well as
1481168404Spjd	 * reap free buffers from the arc kmem caches.
1482168404Spjd	 */
1483168404Spjd	if (strat == ARC_RECLAIM_AGGR)
1484168404Spjd		arc_shrink();
1485168404Spjd
1486168404Spjd#ifdef ZIO_USE_UMA
1487168404Spjd	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1488168404Spjd		if (zio_buf_cache[i] != prev_cache) {
1489168404Spjd			prev_cache = zio_buf_cache[i];
1490168404Spjd			kmem_cache_reap_now(zio_buf_cache[i]);
1491168404Spjd		}
1492168404Spjd		if (zio_data_buf_cache[i] != prev_data_cache) {
1493168404Spjd			prev_data_cache = zio_data_buf_cache[i];
1494168404Spjd			kmem_cache_reap_now(zio_data_buf_cache[i]);
1495168404Spjd		}
1496168404Spjd	}
1497168404Spjd#endif
1498168404Spjd	kmem_cache_reap_now(buf_cache);
1499168404Spjd	kmem_cache_reap_now(hdr_cache);
1500168404Spjd}
1501168404Spjd
1502168404Spjdstatic void
1503168404Spjdarc_reclaim_thread(void *dummy __unused)
1504168404Spjd{
1505168404Spjd	clock_t			growtime = 0;
1506168404Spjd	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1507168404Spjd	callb_cpr_t		cpr;
1508168404Spjd
1509168404Spjd	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1510168404Spjd
1511168404Spjd	mutex_enter(&arc_reclaim_thr_lock);
1512168404Spjd	while (arc_thread_exit == 0) {
1513168404Spjd		if (arc_reclaim_needed()) {
1514168404Spjd
1515168404Spjd			if (arc_no_grow) {
1516168404Spjd				if (last_reclaim == ARC_RECLAIM_CONS) {
1517168404Spjd					last_reclaim = ARC_RECLAIM_AGGR;
1518168404Spjd				} else {
1519168404Spjd					last_reclaim = ARC_RECLAIM_CONS;
1520168404Spjd				}
1521168404Spjd			} else {
1522168404Spjd				arc_no_grow = TRUE;
1523168404Spjd				last_reclaim = ARC_RECLAIM_AGGR;
1524168404Spjd				membar_producer();
1525168404Spjd			}
1526168404Spjd
1527168404Spjd			/* reset the growth delay for every reclaim */
1528168404Spjd			growtime = lbolt + (arc_grow_retry * hz);
1529168404Spjd			ASSERT(growtime > 0);
1530168404Spjd
1531168404Spjd			if (zfs_needfree && last_reclaim == ARC_RECLAIM_CONS) {
1532168404Spjd				/*
1533168404Spjd				 * If zfs_needfree is TRUE our vm_lowmem hook
1534168404Spjd				 * was called and in that case we must free some
1535168404Spjd				 * memory, so switch to aggressive mode.
1536168404Spjd				 */
1537168404Spjd				arc_no_grow = TRUE;
1538168404Spjd				last_reclaim = ARC_RECLAIM_AGGR;
1539168404Spjd			}
1540168404Spjd			arc_kmem_reap_now(last_reclaim);
1541168404Spjd		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1542168404Spjd			arc_no_grow = FALSE;
1543168404Spjd		}
1544168404Spjd
1545168404Spjd		if (zfs_needfree ||
1546168404Spjd		    (2 * arc_c < arc_size +
1547168404Spjd		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size))
1548168404Spjd			arc_adjust();
1549168404Spjd
1550168404Spjd		if (arc_eviction_list != NULL)
1551168404Spjd			arc_do_user_evicts();
1552168404Spjd
1553168404Spjd		if (arc_reclaim_needed()) {
1554168404Spjd			zfs_needfree = 0;
1555168404Spjd#ifdef _KERNEL
1556168404Spjd			wakeup(&zfs_needfree);
1557168404Spjd#endif
1558168404Spjd		}
1559168404Spjd
1560168404Spjd		/* block until needed, or one second, whichever is shorter */
1561168404Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
1562168404Spjd		(void) cv_timedwait(&arc_reclaim_thr_cv,
1563168404Spjd		    &arc_reclaim_thr_lock, hz);
1564168404Spjd		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1565168404Spjd	}
1566168404Spjd
1567168404Spjd	arc_thread_exit = 0;
1568168404Spjd	cv_broadcast(&arc_reclaim_thr_cv);
1569168404Spjd	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1570168404Spjd	thread_exit();
1571168404Spjd}
1572168404Spjd
1573168404Spjd/*
1574168404Spjd * Adapt arc info given the number of bytes we are trying to add and
1575168404Spjd * the state that we are comming from.  This function is only called
1576168404Spjd * when we are adding new content to the cache.
1577168404Spjd */
1578168404Spjdstatic void
1579168404Spjdarc_adapt(int bytes, arc_state_t *state)
1580168404Spjd{
1581168404Spjd	int mult;
1582168404Spjd
1583168404Spjd	ASSERT(bytes > 0);
1584168404Spjd	/*
1585168404Spjd	 * Adapt the target size of the MRU list:
1586168404Spjd	 *	- if we just hit in the MRU ghost list, then increase
1587168404Spjd	 *	  the target size of the MRU list.
1588168404Spjd	 *	- if we just hit in the MFU ghost list, then increase
1589168404Spjd	 *	  the target size of the MFU list by decreasing the
1590168404Spjd	 *	  target size of the MRU list.
1591168404Spjd	 */
1592168404Spjd	if (state == arc_mru_ghost) {
1593168404Spjd		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1594168404Spjd		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1595168404Spjd
1596168404Spjd		arc_p = MIN(arc_c, arc_p + bytes * mult);
1597168404Spjd	} else if (state == arc_mfu_ghost) {
1598168404Spjd		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1599168404Spjd		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1600168404Spjd
1601168404Spjd		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1602168404Spjd	}
1603168404Spjd	ASSERT((int64_t)arc_p >= 0);
1604168404Spjd
1605168404Spjd	if (arc_reclaim_needed()) {
1606168404Spjd		cv_signal(&arc_reclaim_thr_cv);
1607168404Spjd		return;
1608168404Spjd	}
1609168404Spjd
1610168404Spjd	if (arc_no_grow)
1611168404Spjd		return;
1612168404Spjd
1613168404Spjd	if (arc_c >= arc_c_max)
1614168404Spjd		return;
1615168404Spjd
1616168404Spjd	/*
1617168404Spjd	 * If we're within (2 * maxblocksize) bytes of the target
1618168404Spjd	 * cache size, increment the target cache size
1619168404Spjd	 */
1620168404Spjd	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1621168404Spjd		atomic_add_64(&arc_c, (int64_t)bytes);
1622168404Spjd		if (arc_c > arc_c_max)
1623168404Spjd			arc_c = arc_c_max;
1624168404Spjd		else if (state == arc_anon)
1625168404Spjd			atomic_add_64(&arc_p, (int64_t)bytes);
1626168404Spjd		if (arc_p > arc_c)
1627168404Spjd			arc_p = arc_c;
1628168404Spjd	}
1629168404Spjd	ASSERT((int64_t)arc_p >= 0);
1630168404Spjd}
1631168404Spjd
1632168404Spjd/*
1633168404Spjd * Check if the cache has reached its limits and eviction is required
1634168404Spjd * prior to insert.
1635168404Spjd */
1636168404Spjdstatic int
1637168404Spjdarc_evict_needed()
1638168404Spjd{
1639168404Spjd	if (arc_reclaim_needed())
1640168404Spjd		return (1);
1641168404Spjd
1642168404Spjd	return (arc_size > arc_c);
1643168404Spjd}
1644168404Spjd
1645168404Spjd/*
1646168404Spjd * The buffer, supplied as the first argument, needs a data block.
1647168404Spjd * So, if we are at cache max, determine which cache should be victimized.
1648168404Spjd * We have the following cases:
1649168404Spjd *
1650168404Spjd * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
1651168404Spjd * In this situation if we're out of space, but the resident size of the MFU is
1652168404Spjd * under the limit, victimize the MFU cache to satisfy this insertion request.
1653168404Spjd *
1654168404Spjd * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
1655168404Spjd * Here, we've used up all of the available space for the MRU, so we need to
1656168404Spjd * evict from our own cache instead.  Evict from the set of resident MRU
1657168404Spjd * entries.
1658168404Spjd *
1659168404Spjd * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
1660168404Spjd * c minus p represents the MFU space in the cache, since p is the size of the
1661168404Spjd * cache that is dedicated to the MRU.  In this situation there's still space on
1662168404Spjd * the MFU side, so the MRU side needs to be victimized.
1663168404Spjd *
1664168404Spjd * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
1665168404Spjd * MFU's resident set is consuming more space than it has been allotted.  In
1666168404Spjd * this situation, we must victimize our own cache, the MFU, for this insertion.
1667168404Spjd */
1668168404Spjdstatic void
1669168404Spjdarc_get_data_buf(arc_buf_t *buf)
1670168404Spjd{
1671168404Spjd	arc_state_t		*state = buf->b_hdr->b_state;
1672168404Spjd	uint64_t		size = buf->b_hdr->b_size;
1673168404Spjd	arc_buf_contents_t	type = buf->b_hdr->b_type;
1674168404Spjd
1675168404Spjd	arc_adapt(size, state);
1676168404Spjd
1677168404Spjd	/*
1678168404Spjd	 * We have not yet reached cache maximum size,
1679168404Spjd	 * just allocate a new buffer.
1680168404Spjd	 */
1681168404Spjd	if (!arc_evict_needed()) {
1682168404Spjd		if (type == ARC_BUFC_METADATA) {
1683168404Spjd			buf->b_data = zio_buf_alloc(size);
1684168404Spjd		} else {
1685168404Spjd			ASSERT(type == ARC_BUFC_DATA);
1686168404Spjd			buf->b_data = zio_data_buf_alloc(size);
1687168404Spjd		}
1688168404Spjd		atomic_add_64(&arc_size, size);
1689168404Spjd		goto out;
1690168404Spjd	}
1691168404Spjd
1692168404Spjd	/*
1693168404Spjd	 * If we are prefetching from the mfu ghost list, this buffer
1694168404Spjd	 * will end up on the mru list; so steal space from there.
1695168404Spjd	 */
1696168404Spjd	if (state == arc_mfu_ghost)
1697168404Spjd		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
1698168404Spjd	else if (state == arc_mru_ghost)
1699168404Spjd		state = arc_mru;
1700168404Spjd
1701168404Spjd	if (state == arc_mru || state == arc_anon) {
1702168404Spjd		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
1703168404Spjd		state = (arc_p > mru_used) ? arc_mfu : arc_mru;
1704168404Spjd	} else {
1705168404Spjd		/* MFU cases */
1706168404Spjd		uint64_t mfu_space = arc_c - arc_p;
1707168404Spjd		state =  (mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
1708168404Spjd	}
1709168404Spjd	if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) {
1710168404Spjd		if (type == ARC_BUFC_METADATA) {
1711168404Spjd			buf->b_data = zio_buf_alloc(size);
1712168404Spjd		} else {
1713168404Spjd			ASSERT(type == ARC_BUFC_DATA);
1714168404Spjd			buf->b_data = zio_data_buf_alloc(size);
1715168404Spjd		}
1716168404Spjd		atomic_add_64(&arc_size, size);
1717168404Spjd		ARCSTAT_BUMP(arcstat_recycle_miss);
1718168404Spjd	}
1719168404Spjd	ASSERT(buf->b_data != NULL);
1720168404Spjdout:
1721168404Spjd	/*
1722168404Spjd	 * Update the state size.  Note that ghost states have a
1723168404Spjd	 * "ghost size" and so don't need to be updated.
1724168404Spjd	 */
1725168404Spjd	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1726168404Spjd		arc_buf_hdr_t *hdr = buf->b_hdr;
1727168404Spjd
1728168404Spjd		atomic_add_64(&hdr->b_state->arcs_size, size);
1729168404Spjd		if (list_link_active(&hdr->b_arc_node)) {
1730168404Spjd			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1731168404Spjd			atomic_add_64(&hdr->b_state->arcs_lsize, size);
1732168404Spjd		}
1733168404Spjd		/*
1734168404Spjd		 * If we are growing the cache, and we are adding anonymous
1735168404Spjd		 * data, and we have outgrown arc_p, update arc_p
1736168404Spjd		 */
1737168404Spjd		if (arc_size < arc_c && hdr->b_state == arc_anon &&
1738168404Spjd		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
1739168404Spjd			arc_p = MIN(arc_c, arc_p + size);
1740168404Spjd	}
1741168404Spjd}
1742168404Spjd
1743168404Spjd/*
1744168404Spjd * This routine is called whenever a buffer is accessed.
1745168404Spjd * NOTE: the hash lock is dropped in this function.
1746168404Spjd */
1747168404Spjdstatic void
1748168404Spjdarc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1749168404Spjd{
1750168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
1751168404Spjd
1752168404Spjd	if (buf->b_state == arc_anon) {
1753168404Spjd		/*
1754168404Spjd		 * This buffer is not in the cache, and does not
1755168404Spjd		 * appear in our "ghost" list.  Add the new buffer
1756168404Spjd		 * to the MRU state.
1757168404Spjd		 */
1758168404Spjd
1759168404Spjd		ASSERT(buf->b_arc_access == 0);
1760168404Spjd		buf->b_arc_access = lbolt;
1761168404Spjd		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1762168404Spjd		arc_change_state(arc_mru, buf, hash_lock);
1763168404Spjd
1764168404Spjd	} else if (buf->b_state == arc_mru) {
1765168404Spjd		/*
1766168404Spjd		 * If this buffer is here because of a prefetch, then either:
1767168404Spjd		 * - clear the flag if this is a "referencing" read
1768168404Spjd		 *   (any subsequent access will bump this into the MFU state).
1769168404Spjd		 * or
1770168404Spjd		 * - move the buffer to the head of the list if this is
1771168404Spjd		 *   another prefetch (to make it less likely to be evicted).
1772168404Spjd		 */
1773168404Spjd		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1774168404Spjd			if (refcount_count(&buf->b_refcnt) == 0) {
1775168404Spjd				ASSERT(list_link_active(&buf->b_arc_node));
1776168404Spjd				mutex_enter(&arc_mru->arcs_mtx);
1777168404Spjd				list_remove(&arc_mru->arcs_list, buf);
1778168404Spjd				list_insert_head(&arc_mru->arcs_list, buf);
1779168404Spjd				mutex_exit(&arc_mru->arcs_mtx);
1780168404Spjd			} else {
1781168404Spjd				buf->b_flags &= ~ARC_PREFETCH;
1782168404Spjd				ARCSTAT_BUMP(arcstat_mru_hits);
1783168404Spjd			}
1784168404Spjd			buf->b_arc_access = lbolt;
1785168404Spjd			return;
1786168404Spjd		}
1787168404Spjd
1788168404Spjd		/*
1789168404Spjd		 * This buffer has been "accessed" only once so far,
1790168404Spjd		 * but it is still in the cache. Move it to the MFU
1791168404Spjd		 * state.
1792168404Spjd		 */
1793168404Spjd		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1794168404Spjd			/*
1795168404Spjd			 * More than 125ms have passed since we
1796168404Spjd			 * instantiated this buffer.  Move it to the
1797168404Spjd			 * most frequently used state.
1798168404Spjd			 */
1799168404Spjd			buf->b_arc_access = lbolt;
1800168404Spjd			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1801168404Spjd			arc_change_state(arc_mfu, buf, hash_lock);
1802168404Spjd		}
1803168404Spjd		ARCSTAT_BUMP(arcstat_mru_hits);
1804168404Spjd	} else if (buf->b_state == arc_mru_ghost) {
1805168404Spjd		arc_state_t	*new_state;
1806168404Spjd		/*
1807168404Spjd		 * This buffer has been "accessed" recently, but
1808168404Spjd		 * was evicted from the cache.  Move it to the
1809168404Spjd		 * MFU state.
1810168404Spjd		 */
1811168404Spjd
1812168404Spjd		if (buf->b_flags & ARC_PREFETCH) {
1813168404Spjd			new_state = arc_mru;
1814168404Spjd			if (refcount_count(&buf->b_refcnt) > 0)
1815168404Spjd				buf->b_flags &= ~ARC_PREFETCH;
1816168404Spjd			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1817168404Spjd		} else {
1818168404Spjd			new_state = arc_mfu;
1819168404Spjd			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1820168404Spjd		}
1821168404Spjd
1822168404Spjd		buf->b_arc_access = lbolt;
1823168404Spjd		arc_change_state(new_state, buf, hash_lock);
1824168404Spjd
1825168404Spjd		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
1826168404Spjd	} else if (buf->b_state == arc_mfu) {
1827168404Spjd		/*
1828168404Spjd		 * This buffer has been accessed more than once and is
1829168404Spjd		 * still in the cache.  Keep it in the MFU state.
1830168404Spjd		 *
1831168404Spjd		 * NOTE: an add_reference() that occurred when we did
1832168404Spjd		 * the arc_read() will have kicked this off the list.
1833168404Spjd		 * If it was a prefetch, we will explicitly move it to
1834168404Spjd		 * the head of the list now.
1835168404Spjd		 */
1836168404Spjd		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1837168404Spjd			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1838168404Spjd			ASSERT(list_link_active(&buf->b_arc_node));
1839168404Spjd			mutex_enter(&arc_mfu->arcs_mtx);
1840168404Spjd			list_remove(&arc_mfu->arcs_list, buf);
1841168404Spjd			list_insert_head(&arc_mfu->arcs_list, buf);
1842168404Spjd			mutex_exit(&arc_mfu->arcs_mtx);
1843168404Spjd		}
1844168404Spjd		ARCSTAT_BUMP(arcstat_mfu_hits);
1845168404Spjd		buf->b_arc_access = lbolt;
1846168404Spjd	} else if (buf->b_state == arc_mfu_ghost) {
1847168404Spjd		arc_state_t	*new_state = arc_mfu;
1848168404Spjd		/*
1849168404Spjd		 * This buffer has been accessed more than once but has
1850168404Spjd		 * been evicted from the cache.  Move it back to the
1851168404Spjd		 * MFU state.
1852168404Spjd		 */
1853168404Spjd
1854168404Spjd		if (buf->b_flags & ARC_PREFETCH) {
1855168404Spjd			/*
1856168404Spjd			 * This is a prefetch access...
1857168404Spjd			 * move this block back to the MRU state.
1858168404Spjd			 */
1859168404Spjd			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1860168404Spjd			new_state = arc_mru;
1861168404Spjd		}
1862168404Spjd
1863168404Spjd		buf->b_arc_access = lbolt;
1864168404Spjd		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1865168404Spjd		arc_change_state(new_state, buf, hash_lock);
1866168404Spjd
1867168404Spjd		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
1868168404Spjd	} else {
1869168404Spjd		ASSERT(!"invalid arc state");
1870168404Spjd	}
1871168404Spjd}
1872168404Spjd
1873168404Spjd/* a generic arc_done_func_t which you can use */
1874168404Spjd/* ARGSUSED */
1875168404Spjdvoid
1876168404Spjdarc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1877168404Spjd{
1878168404Spjd	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1879168404Spjd	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1880168404Spjd}
1881168404Spjd
1882168404Spjd/* a generic arc_done_func_t which you can use */
1883168404Spjdvoid
1884168404Spjdarc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1885168404Spjd{
1886168404Spjd	arc_buf_t **bufp = arg;
1887168404Spjd	if (zio && zio->io_error) {
1888168404Spjd		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1889168404Spjd		*bufp = NULL;
1890168404Spjd	} else {
1891168404Spjd		*bufp = buf;
1892168404Spjd	}
1893168404Spjd}
1894168404Spjd
1895168404Spjdstatic void
1896168404Spjdarc_read_done(zio_t *zio)
1897168404Spjd{
1898168404Spjd	arc_buf_hdr_t	*hdr, *found;
1899168404Spjd	arc_buf_t	*buf;
1900168404Spjd	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1901168404Spjd	kmutex_t	*hash_lock;
1902168404Spjd	arc_callback_t	*callback_list, *acb;
1903168404Spjd	int		freeable = FALSE;
1904168404Spjd
1905168404Spjd	buf = zio->io_private;
1906168404Spjd	hdr = buf->b_hdr;
1907168404Spjd
1908168404Spjd	/*
1909168404Spjd	 * The hdr was inserted into hash-table and removed from lists
1910168404Spjd	 * prior to starting I/O.  We should find this header, since
1911168404Spjd	 * it's in the hash table, and it should be legit since it's
1912168404Spjd	 * not possible to evict it during the I/O.  The only possible
1913168404Spjd	 * reason for it not to be found is if we were freed during the
1914168404Spjd	 * read.
1915168404Spjd	 */
1916168404Spjd	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1917168404Spjd	    &hash_lock);
1918168404Spjd
1919168404Spjd	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1920168404Spjd	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1921168404Spjd
1922168404Spjd	/* byteswap if necessary */
1923168404Spjd	callback_list = hdr->b_acb;
1924168404Spjd	ASSERT(callback_list != NULL);
1925168404Spjd	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1926168404Spjd		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1927168404Spjd
1928168404Spjd	arc_cksum_compute(buf);
1929168404Spjd
1930168404Spjd	/* create copies of the data buffer for the callers */
1931168404Spjd	abuf = buf;
1932168404Spjd	for (acb = callback_list; acb; acb = acb->acb_next) {
1933168404Spjd		if (acb->acb_done) {
1934168404Spjd			if (abuf == NULL)
1935168404Spjd				abuf = arc_buf_clone(buf);
1936168404Spjd			acb->acb_buf = abuf;
1937168404Spjd			abuf = NULL;
1938168404Spjd		}
1939168404Spjd	}
1940168404Spjd	hdr->b_acb = NULL;
1941168404Spjd	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1942168404Spjd	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1943168404Spjd	if (abuf == buf)
1944168404Spjd		hdr->b_flags |= ARC_BUF_AVAILABLE;
1945168404Spjd
1946168404Spjd	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1947168404Spjd
1948168404Spjd	if (zio->io_error != 0) {
1949168404Spjd		hdr->b_flags |= ARC_IO_ERROR;
1950168404Spjd		if (hdr->b_state != arc_anon)
1951168404Spjd			arc_change_state(arc_anon, hdr, hash_lock);
1952168404Spjd		if (HDR_IN_HASH_TABLE(hdr))
1953168404Spjd			buf_hash_remove(hdr);
1954168404Spjd		freeable = refcount_is_zero(&hdr->b_refcnt);
1955168404Spjd		/* convert checksum errors into IO errors */
1956168404Spjd		if (zio->io_error == ECKSUM)
1957168404Spjd			zio->io_error = EIO;
1958168404Spjd	}
1959168404Spjd
1960168404Spjd	/*
1961168404Spjd	 * Broadcast before we drop the hash_lock to avoid the possibility
1962168404Spjd	 * that the hdr (and hence the cv) might be freed before we get to
1963168404Spjd	 * the cv_broadcast().
1964168404Spjd	 */
1965168404Spjd	cv_broadcast(&hdr->b_cv);
1966168404Spjd
1967168404Spjd	if (hash_lock) {
1968168404Spjd		/*
1969168404Spjd		 * Only call arc_access on anonymous buffers.  This is because
1970168404Spjd		 * if we've issued an I/O for an evicted buffer, we've already
1971168404Spjd		 * called arc_access (to prevent any simultaneous readers from
1972168404Spjd		 * getting confused).
1973168404Spjd		 */
1974168404Spjd		if (zio->io_error == 0 && hdr->b_state == arc_anon)
1975168404Spjd			arc_access(hdr, hash_lock);
1976168404Spjd		mutex_exit(hash_lock);
1977168404Spjd	} else {
1978168404Spjd		/*
1979168404Spjd		 * This block was freed while we waited for the read to
1980168404Spjd		 * complete.  It has been removed from the hash table and
1981168404Spjd		 * moved to the anonymous state (so that it won't show up
1982168404Spjd		 * in the cache).
1983168404Spjd		 */
1984168404Spjd		ASSERT3P(hdr->b_state, ==, arc_anon);
1985168404Spjd		freeable = refcount_is_zero(&hdr->b_refcnt);
1986168404Spjd	}
1987168404Spjd
1988168404Spjd	/* execute each callback and free its structure */
1989168404Spjd	while ((acb = callback_list) != NULL) {
1990168404Spjd		if (acb->acb_done)
1991168404Spjd			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1992168404Spjd
1993168404Spjd		if (acb->acb_zio_dummy != NULL) {
1994168404Spjd			acb->acb_zio_dummy->io_error = zio->io_error;
1995168404Spjd			zio_nowait(acb->acb_zio_dummy);
1996168404Spjd		}
1997168404Spjd
1998168404Spjd		callback_list = acb->acb_next;
1999168404Spjd		kmem_free(acb, sizeof (arc_callback_t));
2000168404Spjd	}
2001168404Spjd
2002168404Spjd	if (freeable)
2003168404Spjd		arc_hdr_destroy(hdr);
2004168404Spjd}
2005168404Spjd
2006168404Spjd/*
2007168404Spjd * "Read" the block block at the specified DVA (in bp) via the
2008168404Spjd * cache.  If the block is found in the cache, invoke the provided
2009168404Spjd * callback immediately and return.  Note that the `zio' parameter
2010168404Spjd * in the callback will be NULL in this case, since no IO was
2011168404Spjd * required.  If the block is not in the cache pass the read request
2012168404Spjd * on to the spa with a substitute callback function, so that the
2013168404Spjd * requested block will be added to the cache.
2014168404Spjd *
2015168404Spjd * If a read request arrives for a block that has a read in-progress,
2016168404Spjd * either wait for the in-progress read to complete (and return the
2017168404Spjd * results); or, if this is a read with a "done" func, add a record
2018168404Spjd * to the read to invoke the "done" func when the read completes,
2019168404Spjd * and return; or just return.
2020168404Spjd *
2021168404Spjd * arc_read_done() will invoke all the requested "done" functions
2022168404Spjd * for readers of this block.
2023168404Spjd */
2024168404Spjdint
2025168404Spjdarc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2026168404Spjd    arc_done_func_t *done, void *private, int priority, int flags,
2027168404Spjd    uint32_t *arc_flags, zbookmark_t *zb)
2028168404Spjd{
2029168404Spjd	arc_buf_hdr_t *hdr;
2030168404Spjd	arc_buf_t *buf;
2031168404Spjd	kmutex_t *hash_lock;
2032168404Spjd	zio_t	*rzio;
2033168404Spjd
2034168404Spjdtop:
2035168404Spjd	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2036168404Spjd	if (hdr && hdr->b_datacnt > 0) {
2037168404Spjd
2038168404Spjd		*arc_flags |= ARC_CACHED;
2039168404Spjd
2040168404Spjd		if (HDR_IO_IN_PROGRESS(hdr)) {
2041168404Spjd
2042168404Spjd			if (*arc_flags & ARC_WAIT) {
2043168404Spjd				cv_wait(&hdr->b_cv, hash_lock);
2044168404Spjd				mutex_exit(hash_lock);
2045168404Spjd				goto top;
2046168404Spjd			}
2047168404Spjd			ASSERT(*arc_flags & ARC_NOWAIT);
2048168404Spjd
2049168404Spjd			if (done) {
2050168404Spjd				arc_callback_t	*acb = NULL;
2051168404Spjd
2052168404Spjd				acb = kmem_zalloc(sizeof (arc_callback_t),
2053168404Spjd				    KM_SLEEP);
2054168404Spjd				acb->acb_done = done;
2055168404Spjd				acb->acb_private = private;
2056168404Spjd				acb->acb_byteswap = swap;
2057168404Spjd				if (pio != NULL)
2058168404Spjd					acb->acb_zio_dummy = zio_null(pio,
2059168404Spjd					    spa, NULL, NULL, flags);
2060168404Spjd
2061168404Spjd				ASSERT(acb->acb_done != NULL);
2062168404Spjd				acb->acb_next = hdr->b_acb;
2063168404Spjd				hdr->b_acb = acb;
2064168404Spjd				add_reference(hdr, hash_lock, private);
2065168404Spjd				mutex_exit(hash_lock);
2066168404Spjd				return (0);
2067168404Spjd			}
2068168404Spjd			mutex_exit(hash_lock);
2069168404Spjd			return (0);
2070168404Spjd		}
2071168404Spjd
2072168404Spjd		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2073168404Spjd
2074168404Spjd		if (done) {
2075168404Spjd			add_reference(hdr, hash_lock, private);
2076168404Spjd			/*
2077168404Spjd			 * If this block is already in use, create a new
2078168404Spjd			 * copy of the data so that we will be guaranteed
2079168404Spjd			 * that arc_release() will always succeed.
2080168404Spjd			 */
2081168404Spjd			buf = hdr->b_buf;
2082168404Spjd			ASSERT(buf);
2083168404Spjd			ASSERT(buf->b_data);
2084168404Spjd			if (HDR_BUF_AVAILABLE(hdr)) {
2085168404Spjd				ASSERT(buf->b_efunc == NULL);
2086168404Spjd				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2087168404Spjd			} else {
2088168404Spjd				buf = arc_buf_clone(buf);
2089168404Spjd			}
2090168404Spjd		} else if (*arc_flags & ARC_PREFETCH &&
2091168404Spjd		    refcount_count(&hdr->b_refcnt) == 0) {
2092168404Spjd			hdr->b_flags |= ARC_PREFETCH;
2093168404Spjd		}
2094168404Spjd		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2095168404Spjd		arc_access(hdr, hash_lock);
2096168404Spjd		mutex_exit(hash_lock);
2097168404Spjd		ARCSTAT_BUMP(arcstat_hits);
2098168404Spjd		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2099168404Spjd		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2100168404Spjd		    data, metadata, hits);
2101168404Spjd
2102168404Spjd		if (done)
2103168404Spjd			done(NULL, buf, private);
2104168404Spjd	} else {
2105168404Spjd		uint64_t size = BP_GET_LSIZE(bp);
2106168404Spjd		arc_callback_t	*acb;
2107168404Spjd
2108168404Spjd		if (hdr == NULL) {
2109168404Spjd			/* this block is not in the cache */
2110168404Spjd			arc_buf_hdr_t	*exists;
2111168404Spjd			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2112168404Spjd			buf = arc_buf_alloc(spa, size, private, type);
2113168404Spjd			hdr = buf->b_hdr;
2114168404Spjd			hdr->b_dva = *BP_IDENTITY(bp);
2115168404Spjd			hdr->b_birth = bp->blk_birth;
2116168404Spjd			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2117168404Spjd			exists = buf_hash_insert(hdr, &hash_lock);
2118168404Spjd			if (exists) {
2119168404Spjd				/* somebody beat us to the hash insert */
2120168404Spjd				mutex_exit(hash_lock);
2121168404Spjd				bzero(&hdr->b_dva, sizeof (dva_t));
2122168404Spjd				hdr->b_birth = 0;
2123168404Spjd				hdr->b_cksum0 = 0;
2124168404Spjd				(void) arc_buf_remove_ref(buf, private);
2125168404Spjd				goto top; /* restart the IO request */
2126168404Spjd			}
2127168404Spjd			/* if this is a prefetch, we don't have a reference */
2128168404Spjd			if (*arc_flags & ARC_PREFETCH) {
2129168404Spjd				(void) remove_reference(hdr, hash_lock,
2130168404Spjd				    private);
2131168404Spjd				hdr->b_flags |= ARC_PREFETCH;
2132168404Spjd			}
2133168404Spjd			if (BP_GET_LEVEL(bp) > 0)
2134168404Spjd				hdr->b_flags |= ARC_INDIRECT;
2135168404Spjd		} else {
2136168404Spjd			/* this block is in the ghost cache */
2137168404Spjd			ASSERT(GHOST_STATE(hdr->b_state));
2138168404Spjd			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2139168404Spjd			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2140168404Spjd			ASSERT(hdr->b_buf == NULL);
2141168404Spjd
2142168404Spjd			/* if this is a prefetch, we don't have a reference */
2143168404Spjd			if (*arc_flags & ARC_PREFETCH)
2144168404Spjd				hdr->b_flags |= ARC_PREFETCH;
2145168404Spjd			else
2146168404Spjd				add_reference(hdr, hash_lock, private);
2147168404Spjd			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
2148168404Spjd			buf->b_hdr = hdr;
2149168404Spjd			buf->b_data = NULL;
2150168404Spjd			buf->b_efunc = NULL;
2151168404Spjd			buf->b_private = NULL;
2152168404Spjd			buf->b_next = NULL;
2153168404Spjd			hdr->b_buf = buf;
2154168404Spjd			arc_get_data_buf(buf);
2155168404Spjd			ASSERT(hdr->b_datacnt == 0);
2156168404Spjd			hdr->b_datacnt = 1;
2157168404Spjd
2158168404Spjd		}
2159168404Spjd
2160168404Spjd		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2161168404Spjd		acb->acb_done = done;
2162168404Spjd		acb->acb_private = private;
2163168404Spjd		acb->acb_byteswap = swap;
2164168404Spjd
2165168404Spjd		ASSERT(hdr->b_acb == NULL);
2166168404Spjd		hdr->b_acb = acb;
2167168404Spjd		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2168168404Spjd
2169168404Spjd		/*
2170168404Spjd		 * If the buffer has been evicted, migrate it to a present state
2171168404Spjd		 * before issuing the I/O.  Once we drop the hash-table lock,
2172168404Spjd		 * the header will be marked as I/O in progress and have an
2173168404Spjd		 * attached buffer.  At this point, anybody who finds this
2174168404Spjd		 * buffer ought to notice that it's legit but has a pending I/O.
2175168404Spjd		 */
2176168404Spjd
2177168404Spjd		if (GHOST_STATE(hdr->b_state))
2178168404Spjd			arc_access(hdr, hash_lock);
2179168404Spjd		mutex_exit(hash_lock);
2180168404Spjd
2181168404Spjd		ASSERT3U(hdr->b_size, ==, size);
2182168404Spjd		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2183168404Spjd		    zbookmark_t *, zb);
2184168404Spjd		ARCSTAT_BUMP(arcstat_misses);
2185168404Spjd		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2186168404Spjd		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2187168404Spjd		    data, metadata, misses);
2188168404Spjd
2189168404Spjd		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2190168404Spjd		    arc_read_done, buf, priority, flags, zb);
2191168404Spjd
2192168404Spjd		if (*arc_flags & ARC_WAIT)
2193168404Spjd			return (zio_wait(rzio));
2194168404Spjd
2195168404Spjd		ASSERT(*arc_flags & ARC_NOWAIT);
2196168404Spjd		zio_nowait(rzio);
2197168404Spjd	}
2198168404Spjd	return (0);
2199168404Spjd}
2200168404Spjd
2201168404Spjd/*
2202168404Spjd * arc_read() variant to support pool traversal.  If the block is already
2203168404Spjd * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2204168404Spjd * The idea is that we don't want pool traversal filling up memory, but
2205168404Spjd * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2206168404Spjd */
2207168404Spjdint
2208168404Spjdarc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2209168404Spjd{
2210168404Spjd	arc_buf_hdr_t *hdr;
2211168404Spjd	kmutex_t *hash_mtx;
2212168404Spjd	int rc = 0;
2213168404Spjd
2214168404Spjd	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2215168404Spjd
2216168404Spjd	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2217168404Spjd		arc_buf_t *buf = hdr->b_buf;
2218168404Spjd
2219168404Spjd		ASSERT(buf);
2220168404Spjd		while (buf->b_data == NULL) {
2221168404Spjd			buf = buf->b_next;
2222168404Spjd			ASSERT(buf);
2223168404Spjd		}
2224168404Spjd		bcopy(buf->b_data, data, hdr->b_size);
2225168404Spjd	} else {
2226168404Spjd		rc = ENOENT;
2227168404Spjd	}
2228168404Spjd
2229168404Spjd	if (hash_mtx)
2230168404Spjd		mutex_exit(hash_mtx);
2231168404Spjd
2232168404Spjd	return (rc);
2233168404Spjd}
2234168404Spjd
2235168404Spjdvoid
2236168404Spjdarc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2237168404Spjd{
2238168404Spjd	ASSERT(buf->b_hdr != NULL);
2239168404Spjd	ASSERT(buf->b_hdr->b_state != arc_anon);
2240168404Spjd	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2241168404Spjd	buf->b_efunc = func;
2242168404Spjd	buf->b_private = private;
2243168404Spjd}
2244168404Spjd
2245168404Spjd/*
2246168404Spjd * This is used by the DMU to let the ARC know that a buffer is
2247168404Spjd * being evicted, so the ARC should clean up.  If this arc buf
2248168404Spjd * is not yet in the evicted state, it will be put there.
2249168404Spjd */
2250168404Spjdint
2251168404Spjdarc_buf_evict(arc_buf_t *buf)
2252168404Spjd{
2253168404Spjd	arc_buf_hdr_t *hdr;
2254168404Spjd	kmutex_t *hash_lock;
2255168404Spjd	arc_buf_t **bufp;
2256168404Spjd
2257168404Spjd	mutex_enter(&arc_eviction_mtx);
2258168404Spjd	hdr = buf->b_hdr;
2259168404Spjd	if (hdr == NULL) {
2260168404Spjd		/*
2261168404Spjd		 * We are in arc_do_user_evicts().
2262168404Spjd		 */
2263168404Spjd		ASSERT(buf->b_data == NULL);
2264168404Spjd		mutex_exit(&arc_eviction_mtx);
2265168404Spjd		return (0);
2266168404Spjd	}
2267168404Spjd	hash_lock = HDR_LOCK(hdr);
2268168404Spjd	mutex_exit(&arc_eviction_mtx);
2269168404Spjd
2270168404Spjd	mutex_enter(hash_lock);
2271168404Spjd
2272168404Spjd	if (buf->b_data == NULL) {
2273168404Spjd		/*
2274168404Spjd		 * We are on the eviction list.
2275168404Spjd		 */
2276168404Spjd		mutex_exit(hash_lock);
2277168404Spjd		mutex_enter(&arc_eviction_mtx);
2278168404Spjd		if (buf->b_hdr == NULL) {
2279168404Spjd			/*
2280168404Spjd			 * We are already in arc_do_user_evicts().
2281168404Spjd			 */
2282168404Spjd			mutex_exit(&arc_eviction_mtx);
2283168404Spjd			return (0);
2284168404Spjd		} else {
2285168404Spjd			arc_buf_t copy = *buf; /* structure assignment */
2286168404Spjd			/*
2287168404Spjd			 * Process this buffer now
2288168404Spjd			 * but let arc_do_user_evicts() do the reaping.
2289168404Spjd			 */
2290168404Spjd			buf->b_efunc = NULL;
2291168404Spjd			mutex_exit(&arc_eviction_mtx);
2292168404Spjd			VERIFY(copy.b_efunc(&copy) == 0);
2293168404Spjd			return (1);
2294168404Spjd		}
2295168404Spjd	}
2296168404Spjd
2297168404Spjd	ASSERT(buf->b_hdr == hdr);
2298168404Spjd	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2299168404Spjd	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2300168404Spjd
2301168404Spjd	/*
2302168404Spjd	 * Pull this buffer off of the hdr
2303168404Spjd	 */
2304168404Spjd	bufp = &hdr->b_buf;
2305168404Spjd	while (*bufp != buf)
2306168404Spjd		bufp = &(*bufp)->b_next;
2307168404Spjd	*bufp = buf->b_next;
2308168404Spjd
2309168404Spjd	ASSERT(buf->b_data != NULL);
2310168404Spjd	arc_buf_destroy(buf, FALSE, FALSE);
2311168404Spjd
2312168404Spjd	if (hdr->b_datacnt == 0) {
2313168404Spjd		arc_state_t *old_state = hdr->b_state;
2314168404Spjd		arc_state_t *evicted_state;
2315168404Spjd
2316168404Spjd		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2317168404Spjd
2318168404Spjd		evicted_state =
2319168404Spjd		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2320168404Spjd
2321168404Spjd		mutex_enter(&old_state->arcs_mtx);
2322168404Spjd		mutex_enter(&evicted_state->arcs_mtx);
2323168404Spjd
2324168404Spjd		arc_change_state(evicted_state, hdr, hash_lock);
2325168404Spjd		ASSERT(HDR_IN_HASH_TABLE(hdr));
2326168404Spjd		hdr->b_flags = ARC_IN_HASH_TABLE;
2327168404Spjd
2328168404Spjd		mutex_exit(&evicted_state->arcs_mtx);
2329168404Spjd		mutex_exit(&old_state->arcs_mtx);
2330168404Spjd	}
2331168404Spjd	mutex_exit(hash_lock);
2332168404Spjd
2333168404Spjd	VERIFY(buf->b_efunc(buf) == 0);
2334168404Spjd	buf->b_efunc = NULL;
2335168404Spjd	buf->b_private = NULL;
2336168404Spjd	buf->b_hdr = NULL;
2337168404Spjd	kmem_cache_free(buf_cache, buf);
2338168404Spjd	return (1);
2339168404Spjd}
2340168404Spjd
2341168404Spjd/*
2342168404Spjd * Release this buffer from the cache.  This must be done
2343168404Spjd * after a read and prior to modifying the buffer contents.
2344168404Spjd * If the buffer has more than one reference, we must make
2345168404Spjd * make a new hdr for the buffer.
2346168404Spjd */
2347168404Spjdvoid
2348168404Spjdarc_release(arc_buf_t *buf, void *tag)
2349168404Spjd{
2350168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2351168404Spjd	kmutex_t *hash_lock = HDR_LOCK(hdr);
2352168404Spjd
2353168404Spjd	/* this buffer is not on any list */
2354168404Spjd	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2355168404Spjd
2356168404Spjd	if (hdr->b_state == arc_anon) {
2357168404Spjd		/* this buffer is already released */
2358168404Spjd		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2359168404Spjd		ASSERT(BUF_EMPTY(hdr));
2360168404Spjd		ASSERT(buf->b_efunc == NULL);
2361168404Spjd		arc_buf_thaw(buf);
2362168404Spjd		return;
2363168404Spjd	}
2364168404Spjd
2365168404Spjd	mutex_enter(hash_lock);
2366168404Spjd
2367168404Spjd	/*
2368168404Spjd	 * Do we have more than one buf?
2369168404Spjd	 */
2370168404Spjd	if (hdr->b_buf != buf || buf->b_next != NULL) {
2371168404Spjd		arc_buf_hdr_t *nhdr;
2372168404Spjd		arc_buf_t **bufp;
2373168404Spjd		uint64_t blksz = hdr->b_size;
2374168404Spjd		spa_t *spa = hdr->b_spa;
2375168404Spjd		arc_buf_contents_t type = hdr->b_type;
2376168404Spjd
2377168404Spjd		ASSERT(hdr->b_datacnt > 1);
2378168404Spjd		/*
2379168404Spjd		 * Pull the data off of this buf and attach it to
2380168404Spjd		 * a new anonymous buf.
2381168404Spjd		 */
2382168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
2383168404Spjd		bufp = &hdr->b_buf;
2384168404Spjd		while (*bufp != buf)
2385168404Spjd			bufp = &(*bufp)->b_next;
2386168404Spjd		*bufp = (*bufp)->b_next;
2387168404Spjd		buf->b_next = NULL;
2388168404Spjd
2389168404Spjd		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2390168404Spjd		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2391168404Spjd		if (refcount_is_zero(&hdr->b_refcnt)) {
2392168404Spjd			ASSERT3U(hdr->b_state->arcs_lsize, >=, hdr->b_size);
2393168404Spjd			atomic_add_64(&hdr->b_state->arcs_lsize, -hdr->b_size);
2394168404Spjd		}
2395168404Spjd		hdr->b_datacnt -= 1;
2396168404Spjd		arc_cksum_verify(buf);
2397168404Spjd
2398168404Spjd		mutex_exit(hash_lock);
2399168404Spjd
2400168404Spjd		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2401168404Spjd		nhdr->b_size = blksz;
2402168404Spjd		nhdr->b_spa = spa;
2403168404Spjd		nhdr->b_type = type;
2404168404Spjd		nhdr->b_buf = buf;
2405168404Spjd		nhdr->b_state = arc_anon;
2406168404Spjd		nhdr->b_arc_access = 0;
2407168404Spjd		nhdr->b_flags = 0;
2408168404Spjd		nhdr->b_datacnt = 1;
2409168404Spjd		nhdr->b_freeze_cksum = NULL;
2410168460Spjd		mutex_init(&nhdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
2411168404Spjd		(void) refcount_add(&nhdr->b_refcnt, tag);
2412168404Spjd		buf->b_hdr = nhdr;
2413168404Spjd		atomic_add_64(&arc_anon->arcs_size, blksz);
2414168404Spjd
2415168404Spjd		hdr = nhdr;
2416168404Spjd	} else {
2417168404Spjd		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2418168404Spjd		ASSERT(!list_link_active(&hdr->b_arc_node));
2419168404Spjd		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2420168404Spjd		arc_change_state(arc_anon, hdr, hash_lock);
2421168404Spjd		hdr->b_arc_access = 0;
2422168404Spjd		mutex_exit(hash_lock);
2423168404Spjd		bzero(&hdr->b_dva, sizeof (dva_t));
2424168404Spjd		hdr->b_birth = 0;
2425168404Spjd		hdr->b_cksum0 = 0;
2426168404Spjd		arc_buf_thaw(buf);
2427168404Spjd	}
2428168404Spjd	buf->b_efunc = NULL;
2429168404Spjd	buf->b_private = NULL;
2430168404Spjd}
2431168404Spjd
2432168404Spjdint
2433168404Spjdarc_released(arc_buf_t *buf)
2434168404Spjd{
2435168404Spjd	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2436168404Spjd}
2437168404Spjd
2438168404Spjdint
2439168404Spjdarc_has_callback(arc_buf_t *buf)
2440168404Spjd{
2441168404Spjd	return (buf->b_efunc != NULL);
2442168404Spjd}
2443168404Spjd
2444168404Spjd#ifdef ZFS_DEBUG
2445168404Spjdint
2446168404Spjdarc_referenced(arc_buf_t *buf)
2447168404Spjd{
2448168404Spjd	return (refcount_count(&buf->b_hdr->b_refcnt));
2449168404Spjd}
2450168404Spjd#endif
2451168404Spjd
2452168404Spjdstatic void
2453168404Spjdarc_write_ready(zio_t *zio)
2454168404Spjd{
2455168404Spjd	arc_write_callback_t *callback = zio->io_private;
2456168404Spjd	arc_buf_t *buf = callback->awcb_buf;
2457168404Spjd
2458168404Spjd	if (callback->awcb_ready) {
2459168404Spjd		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2460168404Spjd		callback->awcb_ready(zio, buf, callback->awcb_private);
2461168404Spjd	}
2462168404Spjd	arc_cksum_compute(buf);
2463168404Spjd}
2464168404Spjd
2465168404Spjdstatic void
2466168404Spjdarc_write_done(zio_t *zio)
2467168404Spjd{
2468168404Spjd	arc_write_callback_t *callback = zio->io_private;
2469168404Spjd	arc_buf_t *buf = callback->awcb_buf;
2470168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2471168404Spjd
2472168404Spjd	hdr->b_acb = NULL;
2473168404Spjd
2474168404Spjd	/* this buffer is on no lists and is not in the hash table */
2475168404Spjd	ASSERT3P(hdr->b_state, ==, arc_anon);
2476168404Spjd
2477168404Spjd	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2478168404Spjd	hdr->b_birth = zio->io_bp->blk_birth;
2479168404Spjd	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2480168404Spjd	/*
2481168404Spjd	 * If the block to be written was all-zero, we may have
2482168404Spjd	 * compressed it away.  In this case no write was performed
2483168404Spjd	 * so there will be no dva/birth-date/checksum.  The buffer
2484168404Spjd	 * must therefor remain anonymous (and uncached).
2485168404Spjd	 */
2486168404Spjd	if (!BUF_EMPTY(hdr)) {
2487168404Spjd		arc_buf_hdr_t *exists;
2488168404Spjd		kmutex_t *hash_lock;
2489168404Spjd
2490168404Spjd		arc_cksum_verify(buf);
2491168404Spjd
2492168404Spjd		exists = buf_hash_insert(hdr, &hash_lock);
2493168404Spjd		if (exists) {
2494168404Spjd			/*
2495168404Spjd			 * This can only happen if we overwrite for
2496168404Spjd			 * sync-to-convergence, because we remove
2497168404Spjd			 * buffers from the hash table when we arc_free().
2498168404Spjd			 */
2499168404Spjd			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2500168404Spjd			    BP_IDENTITY(zio->io_bp)));
2501168404Spjd			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2502168404Spjd			    zio->io_bp->blk_birth);
2503168404Spjd
2504168404Spjd			ASSERT(refcount_is_zero(&exists->b_refcnt));
2505168404Spjd			arc_change_state(arc_anon, exists, hash_lock);
2506168404Spjd			mutex_exit(hash_lock);
2507168404Spjd			arc_hdr_destroy(exists);
2508168404Spjd			exists = buf_hash_insert(hdr, &hash_lock);
2509168404Spjd			ASSERT3P(exists, ==, NULL);
2510168404Spjd		}
2511168404Spjd		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2512168404Spjd		arc_access(hdr, hash_lock);
2513168404Spjd		mutex_exit(hash_lock);
2514168404Spjd	} else if (callback->awcb_done == NULL) {
2515168404Spjd		int destroy_hdr;
2516168404Spjd		/*
2517168404Spjd		 * This is an anonymous buffer with no user callback,
2518168404Spjd		 * destroy it if there are no active references.
2519168404Spjd		 */
2520168404Spjd		mutex_enter(&arc_eviction_mtx);
2521168404Spjd		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2522168404Spjd		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2523168404Spjd		mutex_exit(&arc_eviction_mtx);
2524168404Spjd		if (destroy_hdr)
2525168404Spjd			arc_hdr_destroy(hdr);
2526168404Spjd	} else {
2527168404Spjd		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2528168404Spjd	}
2529168404Spjd
2530168404Spjd	if (callback->awcb_done) {
2531168404Spjd		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2532168404Spjd		callback->awcb_done(zio, buf, callback->awcb_private);
2533168404Spjd	}
2534168404Spjd
2535168404Spjd	kmem_free(callback, sizeof (arc_write_callback_t));
2536168404Spjd}
2537168404Spjd
2538168404Spjdzio_t *
2539168404Spjdarc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2540168404Spjd    uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2541168404Spjd    arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
2542168404Spjd    int flags, zbookmark_t *zb)
2543168404Spjd{
2544168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2545168404Spjd	arc_write_callback_t *callback;
2546168404Spjd	zio_t	*zio;
2547168404Spjd
2548168404Spjd	/* this is a private buffer - no locking required */
2549168404Spjd	ASSERT3P(hdr->b_state, ==, arc_anon);
2550168404Spjd	ASSERT(BUF_EMPTY(hdr));
2551168404Spjd	ASSERT(!HDR_IO_ERROR(hdr));
2552168404Spjd	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2553168404Spjd	ASSERT(hdr->b_acb == 0);
2554168404Spjd	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
2555168404Spjd	callback->awcb_ready = ready;
2556168404Spjd	callback->awcb_done = done;
2557168404Spjd	callback->awcb_private = private;
2558168404Spjd	callback->awcb_buf = buf;
2559168404Spjd	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2560168404Spjd	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2561168404Spjd	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
2562168404Spjd	    priority, flags, zb);
2563168404Spjd
2564168404Spjd	return (zio);
2565168404Spjd}
2566168404Spjd
2567168404Spjdint
2568168404Spjdarc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2569168404Spjd    zio_done_func_t *done, void *private, uint32_t arc_flags)
2570168404Spjd{
2571168404Spjd	arc_buf_hdr_t *ab;
2572168404Spjd	kmutex_t *hash_lock;
2573168404Spjd	zio_t	*zio;
2574168404Spjd
2575168404Spjd	/*
2576168404Spjd	 * If this buffer is in the cache, release it, so it
2577168404Spjd	 * can be re-used.
2578168404Spjd	 */
2579168404Spjd	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2580168404Spjd	if (ab != NULL) {
2581168404Spjd		/*
2582168404Spjd		 * The checksum of blocks to free is not always
2583168404Spjd		 * preserved (eg. on the deadlist).  However, if it is
2584168404Spjd		 * nonzero, it should match what we have in the cache.
2585168404Spjd		 */
2586168404Spjd		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2587168404Spjd		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2588168404Spjd		if (ab->b_state != arc_anon)
2589168404Spjd			arc_change_state(arc_anon, ab, hash_lock);
2590168404Spjd		if (HDR_IO_IN_PROGRESS(ab)) {
2591168404Spjd			/*
2592168404Spjd			 * This should only happen when we prefetch.
2593168404Spjd			 */
2594168404Spjd			ASSERT(ab->b_flags & ARC_PREFETCH);
2595168404Spjd			ASSERT3U(ab->b_datacnt, ==, 1);
2596168404Spjd			ab->b_flags |= ARC_FREED_IN_READ;
2597168404Spjd			if (HDR_IN_HASH_TABLE(ab))
2598168404Spjd				buf_hash_remove(ab);
2599168404Spjd			ab->b_arc_access = 0;
2600168404Spjd			bzero(&ab->b_dva, sizeof (dva_t));
2601168404Spjd			ab->b_birth = 0;
2602168404Spjd			ab->b_cksum0 = 0;
2603168404Spjd			ab->b_buf->b_efunc = NULL;
2604168404Spjd			ab->b_buf->b_private = NULL;
2605168404Spjd			mutex_exit(hash_lock);
2606168404Spjd		} else if (refcount_is_zero(&ab->b_refcnt)) {
2607168404Spjd			mutex_exit(hash_lock);
2608168404Spjd			arc_hdr_destroy(ab);
2609168404Spjd			ARCSTAT_BUMP(arcstat_deleted);
2610168404Spjd		} else {
2611168404Spjd			/*
2612168404Spjd			 * We still have an active reference on this
2613168404Spjd			 * buffer.  This can happen, e.g., from
2614168404Spjd			 * dbuf_unoverride().
2615168404Spjd			 */
2616168404Spjd			ASSERT(!HDR_IN_HASH_TABLE(ab));
2617168404Spjd			ab->b_arc_access = 0;
2618168404Spjd			bzero(&ab->b_dva, sizeof (dva_t));
2619168404Spjd			ab->b_birth = 0;
2620168404Spjd			ab->b_cksum0 = 0;
2621168404Spjd			ab->b_buf->b_efunc = NULL;
2622168404Spjd			ab->b_buf->b_private = NULL;
2623168404Spjd			mutex_exit(hash_lock);
2624168404Spjd		}
2625168404Spjd	}
2626168404Spjd
2627168404Spjd	zio = zio_free(pio, spa, txg, bp, done, private);
2628168404Spjd
2629168404Spjd	if (arc_flags & ARC_WAIT)
2630168404Spjd		return (zio_wait(zio));
2631168404Spjd
2632168404Spjd	ASSERT(arc_flags & ARC_NOWAIT);
2633168404Spjd	zio_nowait(zio);
2634168404Spjd
2635168404Spjd	return (0);
2636168404Spjd}
2637168404Spjd
2638168404Spjdvoid
2639168404Spjdarc_tempreserve_clear(uint64_t tempreserve)
2640168404Spjd{
2641168404Spjd	atomic_add_64(&arc_tempreserve, -tempreserve);
2642168404Spjd	ASSERT((int64_t)arc_tempreserve >= 0);
2643168404Spjd}
2644168404Spjd
2645168404Spjdint
2646168404Spjdarc_tempreserve_space(uint64_t tempreserve)
2647168404Spjd{
2648168404Spjd#ifdef ZFS_DEBUG
2649168404Spjd	/*
2650168404Spjd	 * Once in a while, fail for no reason.  Everything should cope.
2651168404Spjd	 */
2652168404Spjd	if (spa_get_random(10000) == 0) {
2653168404Spjd		dprintf("forcing random failure\n");
2654168404Spjd		return (ERESTART);
2655168404Spjd	}
2656168404Spjd#endif
2657168404Spjd	if (tempreserve > arc_c/4 && !arc_no_grow)
2658168404Spjd		arc_c = MIN(arc_c_max, tempreserve * 4);
2659168404Spjd	if (tempreserve > arc_c)
2660168404Spjd		return (ENOMEM);
2661168404Spjd
2662168404Spjd	/*
2663168404Spjd	 * Throttle writes when the amount of dirty data in the cache
2664168404Spjd	 * gets too large.  We try to keep the cache less than half full
2665168404Spjd	 * of dirty blocks so that our sync times don't grow too large.
2666168404Spjd	 * Note: if two requests come in concurrently, we might let them
2667168404Spjd	 * both succeed, when one of them should fail.  Not a huge deal.
2668168404Spjd	 *
2669168404Spjd	 * XXX The limit should be adjusted dynamically to keep the time
2670168404Spjd	 * to sync a dataset fixed (around 1-5 seconds?).
2671168404Spjd	 */
2672168404Spjd
2673168404Spjd	if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
2674168404Spjd	    arc_tempreserve + arc_anon->arcs_size > arc_c / 4) {
2675168404Spjd		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2676168404Spjd		    "tempreserve=%lluK arc_c=%lluK\n",
2677168404Spjd		    arc_tempreserve>>10, arc_anon->arcs_lsize>>10,
2678168404Spjd		    tempreserve>>10, arc_c>>10);
2679168404Spjd		return (ERESTART);
2680168404Spjd	}
2681168404Spjd	atomic_add_64(&arc_tempreserve, tempreserve);
2682168404Spjd	return (0);
2683168404Spjd}
2684168404Spjd
2685168582Spjdstatic kmutex_t arc_lowmem_lock;
2686168404Spjd#ifdef _KERNEL
2687168566Spjdstatic eventhandler_tag arc_event_lowmem = NULL;
2688168404Spjd
2689168404Spjdstatic void
2690168566Spjdarc_lowmem(void *arg __unused, int howto __unused)
2691168404Spjd{
2692168404Spjd
2693168566Spjd	/* Serialize access via arc_lowmem_lock. */
2694168566Spjd	mutex_enter(&arc_lowmem_lock);
2695168404Spjd	zfs_needfree = 1;
2696168404Spjd	cv_signal(&arc_reclaim_thr_cv);
2697168404Spjd	while (zfs_needfree)
2698168404Spjd		tsleep(&zfs_needfree, 0, "zfs:lowmem", hz / 5);
2699168566Spjd	mutex_exit(&arc_lowmem_lock);
2700168404Spjd}
2701168404Spjd#endif
2702168404Spjd
2703168404Spjdvoid
2704168404Spjdarc_init(void)
2705168404Spjd{
2706168404Spjd	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2707168404Spjd	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2708168566Spjd	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
2709168404Spjd
2710168404Spjd	/* Convert seconds to clock ticks */
2711168404Spjd	arc_min_prefetch_lifespan = 1 * hz;
2712168404Spjd
2713168404Spjd	/* Start out with 1/8 of all memory */
2714168566Spjd	arc_c = kmem_size() / 8;
2715168404Spjd#if 0
2716168404Spjd#ifdef _KERNEL
2717168404Spjd	/*
2718168404Spjd	 * On architectures where the physical memory can be larger
2719168404Spjd	 * than the addressable space (intel in 32-bit mode), we may
2720168404Spjd	 * need to limit the cache to 1/8 of VM size.
2721168404Spjd	 */
2722168404Spjd	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2723168404Spjd#endif
2724168404Spjd#endif
2725168566Spjd	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
2726168566Spjd	arc_c_min = MAX(arc_c / 4, 64<<18);
2727168566Spjd	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
2728168404Spjd	if (arc_c * 8 >= 1<<30)
2729168404Spjd		arc_c_max = (arc_c * 8) - (1<<30);
2730168404Spjd	else
2731168404Spjd		arc_c_max = arc_c_min;
2732168566Spjd	arc_c_max = MAX(arc_c * 4, arc_c_max);
2733168481Spjd#ifdef _KERNEL
2734168404Spjd	/*
2735168404Spjd	 * Allow the tunables to override our calculations if they are
2736168566Spjd	 * reasonable (ie. over 16MB)
2737168404Spjd	 */
2738168566Spjd	if (zfs_arc_max >= 64<<18 && zfs_arc_max < kmem_size())
2739168404Spjd		arc_c_max = zfs_arc_max;
2740168566Spjd	if (zfs_arc_min >= 64<<18 && zfs_arc_min <= arc_c_max)
2741168404Spjd		arc_c_min = zfs_arc_min;
2742168481Spjd#endif
2743168404Spjd	arc_c = arc_c_max;
2744168404Spjd	arc_p = (arc_c >> 1);
2745168404Spjd
2746168404Spjd	/* if kmem_flags are set, lets try to use less memory */
2747168404Spjd	if (kmem_debugging())
2748168404Spjd		arc_c = arc_c / 2;
2749168404Spjd	if (arc_c < arc_c_min)
2750168404Spjd		arc_c = arc_c_min;
2751168404Spjd
2752168473Spjd	zfs_arc_min = arc_c_min;
2753168473Spjd	zfs_arc_max = arc_c_max;
2754168473Spjd
2755168404Spjd	arc_anon = &ARC_anon;
2756168404Spjd	arc_mru = &ARC_mru;
2757168404Spjd	arc_mru_ghost = &ARC_mru_ghost;
2758168404Spjd	arc_mfu = &ARC_mfu;
2759168404Spjd	arc_mfu_ghost = &ARC_mfu_ghost;
2760168404Spjd	arc_size = 0;
2761168404Spjd
2762168404Spjd	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2763168404Spjd	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2764168404Spjd	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2765168404Spjd	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2766168404Spjd	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2767168404Spjd
2768168404Spjd	list_create(&arc_mru->arcs_list, sizeof (arc_buf_hdr_t),
2769168404Spjd	    offsetof(arc_buf_hdr_t, b_arc_node));
2770168404Spjd	list_create(&arc_mru_ghost->arcs_list, sizeof (arc_buf_hdr_t),
2771168404Spjd	    offsetof(arc_buf_hdr_t, b_arc_node));
2772168404Spjd	list_create(&arc_mfu->arcs_list, sizeof (arc_buf_hdr_t),
2773168404Spjd	    offsetof(arc_buf_hdr_t, b_arc_node));
2774168404Spjd	list_create(&arc_mfu_ghost->arcs_list, sizeof (arc_buf_hdr_t),
2775168404Spjd	    offsetof(arc_buf_hdr_t, b_arc_node));
2776168404Spjd
2777168404Spjd	buf_init();
2778168404Spjd
2779168404Spjd	arc_thread_exit = 0;
2780168404Spjd	arc_eviction_list = NULL;
2781168404Spjd	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2782168404Spjd	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
2783168404Spjd
2784168404Spjd	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
2785168404Spjd	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
2786168404Spjd
2787168404Spjd	if (arc_ksp != NULL) {
2788168404Spjd		arc_ksp->ks_data = &arc_stats;
2789168404Spjd		kstat_install(arc_ksp);
2790168404Spjd	}
2791168404Spjd
2792168404Spjd	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2793168404Spjd	    TS_RUN, minclsyspri);
2794168404Spjd
2795168404Spjd#ifdef _KERNEL
2796168566Spjd	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
2797168404Spjd	    EVENTHANDLER_PRI_FIRST);
2798168404Spjd#endif
2799168404Spjd
2800168404Spjd	arc_dead = FALSE;
2801168566Spjd
2802168566Spjd#ifdef _KERNEL
2803168566Spjd	/* Warn about ZFS memory requirements. */
2804168696Spjd	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
2805168566Spjd		printf("ZFS WARNING: Recomended minimum of RAM size is 512MB, "
2806168566Spjd		    "expect unstable behaviour.\n");
2807168566Spjd	} else if (kmem_size() < 256 * (1 << 20)) {
2808168566Spjd		printf("ZFS WARNING: Recomended minimum of kmem_map size is "
2809168566Spjd		    "256MB, expect unstable behaviour.\n");
2810168566Spjd		printf("             Consider tunning vm.kmem_size and "
2811168566Spjd		    "vm.kmem_size_max in /boot/loader.conf.\n");
2812168566Spjd	}
2813168566Spjd#endif
2814168404Spjd}
2815168404Spjd
2816168404Spjdvoid
2817168404Spjdarc_fini(void)
2818168404Spjd{
2819168404Spjd	mutex_enter(&arc_reclaim_thr_lock);
2820168404Spjd	arc_thread_exit = 1;
2821168404Spjd	cv_signal(&arc_reclaim_thr_cv);
2822168404Spjd	while (arc_thread_exit != 0)
2823168404Spjd		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2824168404Spjd	mutex_exit(&arc_reclaim_thr_lock);
2825168404Spjd
2826168404Spjd	arc_flush();
2827168404Spjd
2828168404Spjd	arc_dead = TRUE;
2829168404Spjd
2830168404Spjd	if (arc_ksp != NULL) {
2831168404Spjd		kstat_delete(arc_ksp);
2832168404Spjd		arc_ksp = NULL;
2833168404Spjd	}
2834168404Spjd
2835168404Spjd	mutex_destroy(&arc_eviction_mtx);
2836168404Spjd	mutex_destroy(&arc_reclaim_thr_lock);
2837168404Spjd	cv_destroy(&arc_reclaim_thr_cv);
2838168404Spjd
2839168404Spjd	list_destroy(&arc_mru->arcs_list);
2840168404Spjd	list_destroy(&arc_mru_ghost->arcs_list);
2841168404Spjd	list_destroy(&arc_mfu->arcs_list);
2842168404Spjd	list_destroy(&arc_mfu_ghost->arcs_list);
2843168404Spjd
2844168404Spjd	mutex_destroy(&arc_anon->arcs_mtx);
2845168404Spjd	mutex_destroy(&arc_mru->arcs_mtx);
2846168404Spjd	mutex_destroy(&arc_mru_ghost->arcs_mtx);
2847168404Spjd	mutex_destroy(&arc_mfu->arcs_mtx);
2848168404Spjd	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
2849168404Spjd
2850168404Spjd	buf_fini();
2851168404Spjd
2852168582Spjd	mutex_destroy(&arc_lowmem_lock);
2853168404Spjd#ifdef _KERNEL
2854168566Spjd	if (arc_event_lowmem != NULL)
2855168566Spjd		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
2856168404Spjd#endif
2857168404Spjd}
2858