avl.c revision 185029
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28
29/*
30 * AVL - generic AVL tree implementation for kernel use
31 *
32 * A complete description of AVL trees can be found in many CS textbooks.
33 *
34 * Here is a very brief overview. An AVL tree is a binary search tree that is
35 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
36 * any given node, the left and right subtrees are allowed to differ in height
37 * by at most 1 level.
38 *
39 * This relaxation from a perfectly balanced binary tree allows doing
40 * insertion and deletion relatively efficiently. Searching the tree is
41 * still a fast operation, roughly O(log(N)).
42 *
43 * The key to insertion and deletion is a set of tree maniuplations called
44 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
45 *
46 * This implementation of AVL trees has the following peculiarities:
47 *
48 *	- The AVL specific data structures are physically embedded as fields
49 *	  in the "using" data structures.  To maintain generality the code
50 *	  must constantly translate between "avl_node_t *" and containing
51 *	  data structure "void *"s by adding/subracting the avl_offset.
52 *
53 *	- Since the AVL data is always embedded in other structures, there is
54 *	  no locking or memory allocation in the AVL routines. This must be
55 *	  provided for by the enclosing data structure's semantics. Typically,
56 *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
57 *	  exclusive write lock. Other operations require a read lock.
58 *
59 *      - The implementation uses iteration instead of explicit recursion,
60 *	  since it is intended to run on limited size kernel stacks. Since
61 *	  there is no recursion stack present to move "up" in the tree,
62 *	  there is an explicit "parent" link in the avl_node_t.
63 *
64 *      - The left/right children pointers of a node are in an array.
65 *	  In the code, variables (instead of constants) are used to represent
66 *	  left and right indices.  The implementation is written as if it only
67 *	  dealt with left handed manipulations.  By changing the value assigned
68 *	  to "left", the code also works for right handed trees.  The
69 *	  following variables/terms are frequently used:
70 *
71 *		int left;	// 0 when dealing with left children,
72 *				// 1 for dealing with right children
73 *
74 *		int left_heavy;	// -1 when left subtree is taller at some node,
75 *				// +1 when right subtree is taller
76 *
77 *		int right;	// will be the opposite of left (0 or 1)
78 *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
79 *
80 *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
81 *
82 *	  Though it is a little more confusing to read the code, the approach
83 *	  allows using half as much code (and hence cache footprint) for tree
84 *	  manipulations and eliminates many conditional branches.
85 *
86 *	- The avl_index_t is an opaque "cookie" used to find nodes at or
87 *	  adjacent to where a new value would be inserted in the tree. The value
88 *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
89 *	  pointer) is set to indicate if that the new node has a value greater
90 *	  than the value of the indicated "avl_node_t *".
91 */
92
93#include <sys/types.h>
94#include <sys/param.h>
95#include <sys/stdint.h>
96#include <sys/debug.h>
97#include <sys/avl.h>
98
99/*
100 * Small arrays to translate between balance (or diff) values and child indeces.
101 *
102 * Code that deals with binary tree data structures will randomly use
103 * left and right children when examining a tree.  C "if()" statements
104 * which evaluate randomly suffer from very poor hardware branch prediction.
105 * In this code we avoid some of the branch mispredictions by using the
106 * following translation arrays. They replace random branches with an
107 * additional memory reference. Since the translation arrays are both very
108 * small the data should remain efficiently in cache.
109 */
110static const int  avl_child2balance[2]	= {-1, 1};
111static const int  avl_balance2child[]	= {0, 0, 1};
112
113
114/*
115 * Walk from one node to the previous valued node (ie. an infix walk
116 * towards the left). At any given node we do one of 2 things:
117 *
118 * - If there is a left child, go to it, then to it's rightmost descendant.
119 *
120 * - otherwise we return thru parent nodes until we've come from a right child.
121 *
122 * Return Value:
123 * NULL - if at the end of the nodes
124 * otherwise next node
125 */
126void *
127avl_walk(avl_tree_t *tree, void	*oldnode, int left)
128{
129	size_t off = tree->avl_offset;
130	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
131	int right = 1 - left;
132	int was_child;
133
134
135	/*
136	 * nowhere to walk to if tree is empty
137	 */
138	if (node == NULL)
139		return (NULL);
140
141	/*
142	 * Visit the previous valued node. There are two possibilities:
143	 *
144	 * If this node has a left child, go down one left, then all
145	 * the way right.
146	 */
147	if (node->avl_child[left] != NULL) {
148		for (node = node->avl_child[left];
149		    node->avl_child[right] != NULL;
150		    node = node->avl_child[right])
151			;
152	/*
153	 * Otherwise, return thru left children as far as we can.
154	 */
155	} else {
156		for (;;) {
157			was_child = AVL_XCHILD(node);
158			node = AVL_XPARENT(node);
159			if (node == NULL)
160				return (NULL);
161			if (was_child == right)
162				break;
163		}
164	}
165
166	return (AVL_NODE2DATA(node, off));
167}
168
169/*
170 * Return the lowest valued node in a tree or NULL.
171 * (leftmost child from root of tree)
172 */
173void *
174avl_first(avl_tree_t *tree)
175{
176	avl_node_t *node;
177	avl_node_t *prev = NULL;
178	size_t off = tree->avl_offset;
179
180	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
181		prev = node;
182
183	if (prev != NULL)
184		return (AVL_NODE2DATA(prev, off));
185	return (NULL);
186}
187
188/*
189 * Return the highest valued node in a tree or NULL.
190 * (rightmost child from root of tree)
191 */
192void *
193avl_last(avl_tree_t *tree)
194{
195	avl_node_t *node;
196	avl_node_t *prev = NULL;
197	size_t off = tree->avl_offset;
198
199	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
200		prev = node;
201
202	if (prev != NULL)
203		return (AVL_NODE2DATA(prev, off));
204	return (NULL);
205}
206
207/*
208 * Access the node immediately before or after an insertion point.
209 *
210 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
211 *
212 * Return value:
213 *	NULL: no node in the given direction
214 *	"void *"  of the found tree node
215 */
216void *
217avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
218{
219	int child = AVL_INDEX2CHILD(where);
220	avl_node_t *node = AVL_INDEX2NODE(where);
221	void *data;
222	size_t off = tree->avl_offset;
223
224	if (node == NULL) {
225		ASSERT(tree->avl_root == NULL);
226		return (NULL);
227	}
228	data = AVL_NODE2DATA(node, off);
229	if (child != direction)
230		return (data);
231
232	return (avl_walk(tree, data, direction));
233}
234
235
236/*
237 * Search for the node which contains "value".  The algorithm is a
238 * simple binary tree search.
239 *
240 * return value:
241 *	NULL: the value is not in the AVL tree
242 *		*where (if not NULL)  is set to indicate the insertion point
243 *	"void *"  of the found tree node
244 */
245void *
246avl_find(avl_tree_t *tree, void *value, avl_index_t *where)
247{
248	avl_node_t *node;
249	avl_node_t *prev = NULL;
250	int child = 0;
251	int diff;
252	size_t off = tree->avl_offset;
253
254	for (node = tree->avl_root; node != NULL;
255	    node = node->avl_child[child]) {
256
257		prev = node;
258
259		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
260		ASSERT(-1 <= diff && diff <= 1);
261		if (diff == 0) {
262#ifdef DEBUG
263			if (where != NULL)
264				*where = 0;
265#endif
266			return (AVL_NODE2DATA(node, off));
267		}
268		child = avl_balance2child[1 + diff];
269
270	}
271
272	if (where != NULL)
273		*where = AVL_MKINDEX(prev, child);
274
275	return (NULL);
276}
277
278
279/*
280 * Perform a rotation to restore balance at the subtree given by depth.
281 *
282 * This routine is used by both insertion and deletion. The return value
283 * indicates:
284 *	 0 : subtree did not change height
285 *	!0 : subtree was reduced in height
286 *
287 * The code is written as if handling left rotations, right rotations are
288 * symmetric and handled by swapping values of variables right/left[_heavy]
289 *
290 * On input balance is the "new" balance at "node". This value is either
291 * -2 or +2.
292 */
293static int
294avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
295{
296	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
297	int right = 1 - left;
298	int left_heavy = balance >> 1;
299	int right_heavy = -left_heavy;
300	avl_node_t *parent = AVL_XPARENT(node);
301	avl_node_t *child = node->avl_child[left];
302	avl_node_t *cright;
303	avl_node_t *gchild;
304	avl_node_t *gright;
305	avl_node_t *gleft;
306	int which_child = AVL_XCHILD(node);
307	int child_bal = AVL_XBALANCE(child);
308
309	/* BEGIN CSTYLED */
310	/*
311	 * case 1 : node is overly left heavy, the left child is balanced or
312	 * also left heavy. This requires the following rotation.
313	 *
314	 *                   (node bal:-2)
315	 *                    /           \
316	 *                   /             \
317	 *              (child bal:0 or -1)
318	 *              /    \
319	 *             /      \
320	 *                     cright
321	 *
322	 * becomes:
323	 *
324	 *              (child bal:1 or 0)
325	 *              /        \
326	 *             /          \
327	 *                        (node bal:-1 or 0)
328	 *                         /     \
329	 *                        /       \
330	 *                     cright
331	 *
332	 * we detect this situation by noting that child's balance is not
333	 * right_heavy.
334	 */
335	/* END CSTYLED */
336	if (child_bal != right_heavy) {
337
338		/*
339		 * compute new balance of nodes
340		 *
341		 * If child used to be left heavy (now balanced) we reduced
342		 * the height of this sub-tree -- used in "return...;" below
343		 */
344		child_bal += right_heavy; /* adjust towards right */
345
346		/*
347		 * move "cright" to be node's left child
348		 */
349		cright = child->avl_child[right];
350		node->avl_child[left] = cright;
351		if (cright != NULL) {
352			AVL_SETPARENT(cright, node);
353			AVL_SETCHILD(cright, left);
354		}
355
356		/*
357		 * move node to be child's right child
358		 */
359		child->avl_child[right] = node;
360		AVL_SETBALANCE(node, -child_bal);
361		AVL_SETCHILD(node, right);
362		AVL_SETPARENT(node, child);
363
364		/*
365		 * update the pointer into this subtree
366		 */
367		AVL_SETBALANCE(child, child_bal);
368		AVL_SETCHILD(child, which_child);
369		AVL_SETPARENT(child, parent);
370		if (parent != NULL)
371			parent->avl_child[which_child] = child;
372		else
373			tree->avl_root = child;
374
375		return (child_bal == 0);
376	}
377
378	/* BEGIN CSTYLED */
379	/*
380	 * case 2 : When node is left heavy, but child is right heavy we use
381	 * a different rotation.
382	 *
383	 *                   (node b:-2)
384	 *                    /   \
385	 *                   /     \
386	 *                  /       \
387	 *             (child b:+1)
388	 *              /     \
389	 *             /       \
390	 *                   (gchild b: != 0)
391	 *                     /  \
392	 *                    /    \
393	 *                 gleft   gright
394	 *
395	 * becomes:
396	 *
397	 *              (gchild b:0)
398	 *              /       \
399	 *             /         \
400	 *            /           \
401	 *        (child b:?)   (node b:?)
402	 *         /  \          /   \
403	 *        /    \        /     \
404	 *            gleft   gright
405	 *
406	 * computing the new balances is more complicated. As an example:
407	 *	 if gchild was right_heavy, then child is now left heavy
408	 *		else it is balanced
409	 */
410	/* END CSTYLED */
411	gchild = child->avl_child[right];
412	gleft = gchild->avl_child[left];
413	gright = gchild->avl_child[right];
414
415	/*
416	 * move gright to left child of node and
417	 *
418	 * move gleft to right child of node
419	 */
420	node->avl_child[left] = gright;
421	if (gright != NULL) {
422		AVL_SETPARENT(gright, node);
423		AVL_SETCHILD(gright, left);
424	}
425
426	child->avl_child[right] = gleft;
427	if (gleft != NULL) {
428		AVL_SETPARENT(gleft, child);
429		AVL_SETCHILD(gleft, right);
430	}
431
432	/*
433	 * move child to left child of gchild and
434	 *
435	 * move node to right child of gchild and
436	 *
437	 * fixup parent of all this to point to gchild
438	 */
439	balance = AVL_XBALANCE(gchild);
440	gchild->avl_child[left] = child;
441	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
442	AVL_SETPARENT(child, gchild);
443	AVL_SETCHILD(child, left);
444
445	gchild->avl_child[right] = node;
446	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
447	AVL_SETPARENT(node, gchild);
448	AVL_SETCHILD(node, right);
449
450	AVL_SETBALANCE(gchild, 0);
451	AVL_SETPARENT(gchild, parent);
452	AVL_SETCHILD(gchild, which_child);
453	if (parent != NULL)
454		parent->avl_child[which_child] = gchild;
455	else
456		tree->avl_root = gchild;
457
458	return (1);	/* the new tree is always shorter */
459}
460
461
462/*
463 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
464 *
465 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
466 * searches out to the leaf positions.  The avl_index_t indicates the node
467 * which will be the parent of the new node.
468 *
469 * After the node is inserted, a single rotation further up the tree may
470 * be necessary to maintain an acceptable AVL balance.
471 */
472void
473avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
474{
475	avl_node_t *node;
476	avl_node_t *parent = AVL_INDEX2NODE(where);
477	int old_balance;
478	int new_balance;
479	int which_child = AVL_INDEX2CHILD(where);
480	size_t off = tree->avl_offset;
481
482	ASSERT(tree);
483#ifdef _LP64
484	ASSERT(((uintptr_t)new_data & 0x7) == 0);
485#endif
486
487	node = AVL_DATA2NODE(new_data, off);
488
489	/*
490	 * First, add the node to the tree at the indicated position.
491	 */
492	++tree->avl_numnodes;
493
494	node->avl_child[0] = NULL;
495	node->avl_child[1] = NULL;
496
497	AVL_SETCHILD(node, which_child);
498	AVL_SETBALANCE(node, 0);
499	AVL_SETPARENT(node, parent);
500	if (parent != NULL) {
501		ASSERT(parent->avl_child[which_child] == NULL);
502		parent->avl_child[which_child] = node;
503	} else {
504		ASSERT(tree->avl_root == NULL);
505		tree->avl_root = node;
506	}
507	/*
508	 * Now, back up the tree modifying the balance of all nodes above the
509	 * insertion point. If we get to a highly unbalanced ancestor, we
510	 * need to do a rotation.  If we back out of the tree we are done.
511	 * If we brought any subtree into perfect balance (0), we are also done.
512	 */
513	for (;;) {
514		node = parent;
515		if (node == NULL)
516			return;
517
518		/*
519		 * Compute the new balance
520		 */
521		old_balance = AVL_XBALANCE(node);
522		new_balance = old_balance + avl_child2balance[which_child];
523
524		/*
525		 * If we introduced equal balance, then we are done immediately
526		 */
527		if (new_balance == 0) {
528			AVL_SETBALANCE(node, 0);
529			return;
530		}
531
532		/*
533		 * If both old and new are not zero we went
534		 * from -1 to -2 balance, do a rotation.
535		 */
536		if (old_balance != 0)
537			break;
538
539		AVL_SETBALANCE(node, new_balance);
540		parent = AVL_XPARENT(node);
541		which_child = AVL_XCHILD(node);
542	}
543
544	/*
545	 * perform a rotation to fix the tree and return
546	 */
547	(void) avl_rotation(tree, node, new_balance);
548}
549
550/*
551 * Insert "new_data" in "tree" in the given "direction" either after or
552 * before (AVL_AFTER, AVL_BEFORE) the data "here".
553 *
554 * Insertions can only be done at empty leaf points in the tree, therefore
555 * if the given child of the node is already present we move to either
556 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
557 * every other node in the tree is a leaf, this always works.
558 *
559 * To help developers using this interface, we assert that the new node
560 * is correctly ordered at every step of the way in DEBUG kernels.
561 */
562void
563avl_insert_here(
564	avl_tree_t *tree,
565	void *new_data,
566	void *here,
567	int direction)
568{
569	avl_node_t *node;
570	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
571#ifdef DEBUG
572	int diff;
573#endif
574
575	ASSERT(tree != NULL);
576	ASSERT(new_data != NULL);
577	ASSERT(here != NULL);
578	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
579
580	/*
581	 * If corresponding child of node is not NULL, go to the neighboring
582	 * node and reverse the insertion direction.
583	 */
584	node = AVL_DATA2NODE(here, tree->avl_offset);
585
586#ifdef DEBUG
587	diff = tree->avl_compar(new_data, here);
588	ASSERT(-1 <= diff && diff <= 1);
589	ASSERT(diff != 0);
590	ASSERT(diff > 0 ? child == 1 : child == 0);
591#endif
592
593	if (node->avl_child[child] != NULL) {
594		node = node->avl_child[child];
595		child = 1 - child;
596		while (node->avl_child[child] != NULL) {
597#ifdef DEBUG
598			diff = tree->avl_compar(new_data,
599			    AVL_NODE2DATA(node, tree->avl_offset));
600			ASSERT(-1 <= diff && diff <= 1);
601			ASSERT(diff != 0);
602			ASSERT(diff > 0 ? child == 1 : child == 0);
603#endif
604			node = node->avl_child[child];
605		}
606#ifdef DEBUG
607		diff = tree->avl_compar(new_data,
608		    AVL_NODE2DATA(node, tree->avl_offset));
609		ASSERT(-1 <= diff && diff <= 1);
610		ASSERT(diff != 0);
611		ASSERT(diff > 0 ? child == 1 : child == 0);
612#endif
613	}
614	ASSERT(node->avl_child[child] == NULL);
615
616	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
617}
618
619/*
620 * Add a new node to an AVL tree.
621 */
622void
623avl_add(avl_tree_t *tree, void *new_node)
624{
625	avl_index_t where;
626
627	/*
628	 * This is unfortunate.  We want to call panic() here, even for
629	 * non-DEBUG kernels.  In userland, however, we can't depend on anything
630	 * in libc or else the rtld build process gets confused.  So, all we can
631	 * do in userland is resort to a normal ASSERT().
632	 */
633	if (avl_find(tree, new_node, &where) != NULL)
634#ifdef _KERNEL
635		panic("avl_find() succeeded inside avl_add()");
636#else
637		ASSERT(0);
638#endif
639	avl_insert(tree, new_node, where);
640}
641
642/*
643 * Delete a node from the AVL tree.  Deletion is similar to insertion, but
644 * with 2 complications.
645 *
646 * First, we may be deleting an interior node. Consider the following subtree:
647 *
648 *     d           c            c
649 *    / \         / \          / \
650 *   b   e       b   e        b   e
651 *  / \	        / \          /
652 * a   c       a            a
653 *
654 * When we are deleting node (d), we find and bring up an adjacent valued leaf
655 * node, say (c), to take the interior node's place. In the code this is
656 * handled by temporarily swapping (d) and (c) in the tree and then using
657 * common code to delete (d) from the leaf position.
658 *
659 * Secondly, an interior deletion from a deep tree may require more than one
660 * rotation to fix the balance. This is handled by moving up the tree through
661 * parents and applying rotations as needed. The return value from
662 * avl_rotation() is used to detect when a subtree did not change overall
663 * height due to a rotation.
664 */
665void
666avl_remove(avl_tree_t *tree, void *data)
667{
668	avl_node_t *delete;
669	avl_node_t *parent;
670	avl_node_t *node;
671	avl_node_t tmp;
672	int old_balance;
673	int new_balance;
674	int left;
675	int right;
676	int which_child;
677	size_t off = tree->avl_offset;
678
679	ASSERT(tree);
680
681	delete = AVL_DATA2NODE(data, off);
682
683	/*
684	 * Deletion is easiest with a node that has at most 1 child.
685	 * We swap a node with 2 children with a sequentially valued
686	 * neighbor node. That node will have at most 1 child. Note this
687	 * has no effect on the ordering of the remaining nodes.
688	 *
689	 * As an optimization, we choose the greater neighbor if the tree
690	 * is right heavy, otherwise the left neighbor. This reduces the
691	 * number of rotations needed.
692	 */
693	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
694
695		/*
696		 * choose node to swap from whichever side is taller
697		 */
698		old_balance = AVL_XBALANCE(delete);
699		left = avl_balance2child[old_balance + 1];
700		right = 1 - left;
701
702		/*
703		 * get to the previous value'd node
704		 * (down 1 left, as far as possible right)
705		 */
706		for (node = delete->avl_child[left];
707		    node->avl_child[right] != NULL;
708		    node = node->avl_child[right])
709			;
710
711		/*
712		 * create a temp placeholder for 'node'
713		 * move 'node' to delete's spot in the tree
714		 */
715		tmp = *node;
716
717		*node = *delete;
718		if (node->avl_child[left] == node)
719			node->avl_child[left] = &tmp;
720
721		parent = AVL_XPARENT(node);
722		if (parent != NULL)
723			parent->avl_child[AVL_XCHILD(node)] = node;
724		else
725			tree->avl_root = node;
726		AVL_SETPARENT(node->avl_child[left], node);
727		AVL_SETPARENT(node->avl_child[right], node);
728
729		/*
730		 * Put tmp where node used to be (just temporary).
731		 * It always has a parent and at most 1 child.
732		 */
733		delete = &tmp;
734		parent = AVL_XPARENT(delete);
735		parent->avl_child[AVL_XCHILD(delete)] = delete;
736		which_child = (delete->avl_child[1] != 0);
737		if (delete->avl_child[which_child] != NULL)
738			AVL_SETPARENT(delete->avl_child[which_child], delete);
739	}
740
741
742	/*
743	 * Here we know "delete" is at least partially a leaf node. It can
744	 * be easily removed from the tree.
745	 */
746	ASSERT(tree->avl_numnodes > 0);
747	--tree->avl_numnodes;
748	parent = AVL_XPARENT(delete);
749	which_child = AVL_XCHILD(delete);
750	if (delete->avl_child[0] != NULL)
751		node = delete->avl_child[0];
752	else
753		node = delete->avl_child[1];
754
755	/*
756	 * Connect parent directly to node (leaving out delete).
757	 */
758	if (node != NULL) {
759		AVL_SETPARENT(node, parent);
760		AVL_SETCHILD(node, which_child);
761	}
762	if (parent == NULL) {
763		tree->avl_root = node;
764		return;
765	}
766	parent->avl_child[which_child] = node;
767
768
769	/*
770	 * Since the subtree is now shorter, begin adjusting parent balances
771	 * and performing any needed rotations.
772	 */
773	do {
774
775		/*
776		 * Move up the tree and adjust the balance
777		 *
778		 * Capture the parent and which_child values for the next
779		 * iteration before any rotations occur.
780		 */
781		node = parent;
782		old_balance = AVL_XBALANCE(node);
783		new_balance = old_balance - avl_child2balance[which_child];
784		parent = AVL_XPARENT(node);
785		which_child = AVL_XCHILD(node);
786
787		/*
788		 * If a node was in perfect balance but isn't anymore then
789		 * we can stop, since the height didn't change above this point
790		 * due to a deletion.
791		 */
792		if (old_balance == 0) {
793			AVL_SETBALANCE(node, new_balance);
794			break;
795		}
796
797		/*
798		 * If the new balance is zero, we don't need to rotate
799		 * else
800		 * need a rotation to fix the balance.
801		 * If the rotation doesn't change the height
802		 * of the sub-tree we have finished adjusting.
803		 */
804		if (new_balance == 0)
805			AVL_SETBALANCE(node, new_balance);
806		else if (!avl_rotation(tree, node, new_balance))
807			break;
808	} while (parent != NULL);
809}
810
811#define	AVL_REINSERT(tree, obj)		\
812	avl_remove((tree), (obj));	\
813	avl_add((tree), (obj))
814
815boolean_t
816avl_update_lt(avl_tree_t *t, void *obj)
817{
818	void *neighbor;
819
820	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
821	    (t->avl_compar(obj, neighbor) <= 0));
822
823	neighbor = AVL_PREV(t, obj);
824	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
825		AVL_REINSERT(t, obj);
826		return (B_TRUE);
827	}
828
829	return (B_FALSE);
830}
831
832boolean_t
833avl_update_gt(avl_tree_t *t, void *obj)
834{
835	void *neighbor;
836
837	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
838	    (t->avl_compar(obj, neighbor) >= 0));
839
840	neighbor = AVL_NEXT(t, obj);
841	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
842		AVL_REINSERT(t, obj);
843		return (B_TRUE);
844	}
845
846	return (B_FALSE);
847}
848
849boolean_t
850avl_update(avl_tree_t *t, void *obj)
851{
852	void *neighbor;
853
854	neighbor = AVL_PREV(t, obj);
855	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
856		AVL_REINSERT(t, obj);
857		return (B_TRUE);
858	}
859
860	neighbor = AVL_NEXT(t, obj);
861	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
862		AVL_REINSERT(t, obj);
863		return (B_TRUE);
864	}
865
866	return (B_FALSE);
867}
868
869/*
870 * initialize a new AVL tree
871 */
872void
873avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
874    size_t size, size_t offset)
875{
876	ASSERT(tree);
877	ASSERT(compar);
878	ASSERT(size > 0);
879	ASSERT(size >= offset + sizeof (avl_node_t));
880#ifdef _LP64
881	ASSERT((offset & 0x7) == 0);
882#endif
883
884	tree->avl_compar = compar;
885	tree->avl_root = NULL;
886	tree->avl_numnodes = 0;
887	tree->avl_size = size;
888	tree->avl_offset = offset;
889}
890
891/*
892 * Delete a tree.
893 */
894/* ARGSUSED */
895void
896avl_destroy(avl_tree_t *tree)
897{
898	ASSERT(tree);
899	ASSERT(tree->avl_numnodes == 0);
900	ASSERT(tree->avl_root == NULL);
901}
902
903
904/*
905 * Return the number of nodes in an AVL tree.
906 */
907ulong_t
908avl_numnodes(avl_tree_t *tree)
909{
910	ASSERT(tree);
911	return (tree->avl_numnodes);
912}
913
914boolean_t
915avl_is_empty(avl_tree_t *tree)
916{
917	ASSERT(tree);
918	return (tree->avl_numnodes == 0);
919}
920
921#define	CHILDBIT	(1L)
922
923/*
924 * Post-order tree walk used to visit all tree nodes and destroy the tree
925 * in post order. This is used for destroying a tree w/o paying any cost
926 * for rebalancing it.
927 *
928 * example:
929 *
930 *	void *cookie = NULL;
931 *	my_data_t *node;
932 *
933 *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
934 *		free(node);
935 *	avl_destroy(tree);
936 *
937 * The cookie is really an avl_node_t to the current node's parent and
938 * an indication of which child you looked at last.
939 *
940 * On input, a cookie value of CHILDBIT indicates the tree is done.
941 */
942void *
943avl_destroy_nodes(avl_tree_t *tree, void **cookie)
944{
945	avl_node_t	*node;
946	avl_node_t	*parent;
947	int		child;
948	void		*first;
949	size_t		off = tree->avl_offset;
950
951	/*
952	 * Initial calls go to the first node or it's right descendant.
953	 */
954	if (*cookie == NULL) {
955		first = avl_first(tree);
956
957		/*
958		 * deal with an empty tree
959		 */
960		if (first == NULL) {
961			*cookie = (void *)CHILDBIT;
962			return (NULL);
963		}
964
965		node = AVL_DATA2NODE(first, off);
966		parent = AVL_XPARENT(node);
967		goto check_right_side;
968	}
969
970	/*
971	 * If there is no parent to return to we are done.
972	 */
973	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
974	if (parent == NULL) {
975		if (tree->avl_root != NULL) {
976			ASSERT(tree->avl_numnodes == 1);
977			tree->avl_root = NULL;
978			tree->avl_numnodes = 0;
979		}
980		return (NULL);
981	}
982
983	/*
984	 * Remove the child pointer we just visited from the parent and tree.
985	 */
986	child = (uintptr_t)(*cookie) & CHILDBIT;
987	parent->avl_child[child] = NULL;
988	ASSERT(tree->avl_numnodes > 1);
989	--tree->avl_numnodes;
990
991	/*
992	 * If we just did a right child or there isn't one, go up to parent.
993	 */
994	if (child == 1 || parent->avl_child[1] == NULL) {
995		node = parent;
996		parent = AVL_XPARENT(parent);
997		goto done;
998	}
999
1000	/*
1001	 * Do parent's right child, then leftmost descendent.
1002	 */
1003	node = parent->avl_child[1];
1004	while (node->avl_child[0] != NULL) {
1005		parent = node;
1006		node = node->avl_child[0];
1007	}
1008
1009	/*
1010	 * If here, we moved to a left child. It may have one
1011	 * child on the right (when balance == +1).
1012	 */
1013check_right_side:
1014	if (node->avl_child[1] != NULL) {
1015		ASSERT(AVL_XBALANCE(node) == 1);
1016		parent = node;
1017		node = node->avl_child[1];
1018		ASSERT(node->avl_child[0] == NULL &&
1019		    node->avl_child[1] == NULL);
1020	} else {
1021		ASSERT(AVL_XBALANCE(node) <= 0);
1022	}
1023
1024done:
1025	if (parent == NULL) {
1026		*cookie = (void *)CHILDBIT;
1027		ASSERT(node == tree->avl_root);
1028	} else {
1029		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1030	}
1031
1032	return (AVL_NODE2DATA(node, off));
1033}
1034