scsi_pass.c revision 330926
1/*-
2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification, immediately at the beginning of the file.
12 * 2. The name of the author may not be used to endorse or promote products
13 *    derived from this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/cam/scsi/scsi_pass.c 330926 2018-03-14 09:57:58Z tijl $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/conf.h>
35#include <sys/types.h>
36#include <sys/bio.h>
37#include <sys/bus.h>
38#include <sys/devicestat.h>
39#include <sys/errno.h>
40#include <sys/fcntl.h>
41#include <sys/malloc.h>
42#include <sys/proc.h>
43#include <sys/poll.h>
44#include <sys/selinfo.h>
45#include <sys/sdt.h>
46#include <sys/taskqueue.h>
47#include <vm/uma.h>
48#include <vm/vm.h>
49#include <vm/vm_extern.h>
50
51#include <machine/bus.h>
52
53#include <cam/cam.h>
54#include <cam/cam_ccb.h>
55#include <cam/cam_periph.h>
56#include <cam/cam_queue.h>
57#include <cam/cam_xpt.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_debug.h>
60#include <cam/cam_compat.h>
61#include <cam/cam_xpt_periph.h>
62
63#include <cam/scsi/scsi_all.h>
64#include <cam/scsi/scsi_pass.h>
65
66typedef enum {
67	PASS_FLAG_OPEN			= 0x01,
68	PASS_FLAG_LOCKED		= 0x02,
69	PASS_FLAG_INVALID		= 0x04,
70	PASS_FLAG_INITIAL_PHYSPATH	= 0x08,
71	PASS_FLAG_ZONE_INPROG		= 0x10,
72	PASS_FLAG_ZONE_VALID		= 0x20,
73	PASS_FLAG_UNMAPPED_CAPABLE	= 0x40,
74	PASS_FLAG_ABANDONED_REF_SET	= 0x80
75} pass_flags;
76
77typedef enum {
78	PASS_STATE_NORMAL
79} pass_state;
80
81typedef enum {
82	PASS_CCB_BUFFER_IO,
83	PASS_CCB_QUEUED_IO
84} pass_ccb_types;
85
86#define ccb_type	ppriv_field0
87#define ccb_ioreq	ppriv_ptr1
88
89/*
90 * The maximum number of memory segments we preallocate.
91 */
92#define	PASS_MAX_SEGS	16
93
94typedef enum {
95	PASS_IO_NONE		= 0x00,
96	PASS_IO_USER_SEG_MALLOC	= 0x01,
97	PASS_IO_KERN_SEG_MALLOC	= 0x02,
98	PASS_IO_ABANDONED	= 0x04
99} pass_io_flags;
100
101struct pass_io_req {
102	union ccb			 ccb;
103	union ccb			*alloced_ccb;
104	union ccb			*user_ccb_ptr;
105	camq_entry			 user_periph_links;
106	ccb_ppriv_area			 user_periph_priv;
107	struct cam_periph_map_info	 mapinfo;
108	pass_io_flags			 flags;
109	ccb_flags			 data_flags;
110	int				 num_user_segs;
111	bus_dma_segment_t		 user_segs[PASS_MAX_SEGS];
112	int				 num_kern_segs;
113	bus_dma_segment_t		 kern_segs[PASS_MAX_SEGS];
114	bus_dma_segment_t		*user_segptr;
115	bus_dma_segment_t		*kern_segptr;
116	int				 num_bufs;
117	uint32_t			 dirs[CAM_PERIPH_MAXMAPS];
118	uint32_t			 lengths[CAM_PERIPH_MAXMAPS];
119	uint8_t				*user_bufs[CAM_PERIPH_MAXMAPS];
120	uint8_t				*kern_bufs[CAM_PERIPH_MAXMAPS];
121	struct bintime			 start_time;
122	TAILQ_ENTRY(pass_io_req)	 links;
123};
124
125struct pass_softc {
126	pass_state		  state;
127	pass_flags		  flags;
128	u_int8_t		  pd_type;
129	union ccb		  saved_ccb;
130	int			  open_count;
131	u_int		 	  maxio;
132	struct devstat		 *device_stats;
133	struct cdev		 *dev;
134	struct cdev		 *alias_dev;
135	struct task		  add_physpath_task;
136	struct task		  shutdown_kqueue_task;
137	struct selinfo		  read_select;
138	TAILQ_HEAD(, pass_io_req) incoming_queue;
139	TAILQ_HEAD(, pass_io_req) active_queue;
140	TAILQ_HEAD(, pass_io_req) abandoned_queue;
141	TAILQ_HEAD(, pass_io_req) done_queue;
142	struct cam_periph	 *periph;
143	char			  zone_name[12];
144	char			  io_zone_name[12];
145	uma_zone_t		  pass_zone;
146	uma_zone_t		  pass_io_zone;
147	size_t			  io_zone_size;
148};
149
150static	d_open_t	passopen;
151static	d_close_t	passclose;
152static	d_ioctl_t	passioctl;
153static	d_ioctl_t	passdoioctl;
154static	d_poll_t	passpoll;
155static	d_kqfilter_t	passkqfilter;
156static	void		passreadfiltdetach(struct knote *kn);
157static	int		passreadfilt(struct knote *kn, long hint);
158
159static	periph_init_t	passinit;
160static	periph_ctor_t	passregister;
161static	periph_oninv_t	passoninvalidate;
162static	periph_dtor_t	passcleanup;
163static	periph_start_t	passstart;
164static	void		pass_shutdown_kqueue(void *context, int pending);
165static	void		pass_add_physpath(void *context, int pending);
166static	void		passasync(void *callback_arg, u_int32_t code,
167				  struct cam_path *path, void *arg);
168static	void		passdone(struct cam_periph *periph,
169				 union ccb *done_ccb);
170static	int		passcreatezone(struct cam_periph *periph);
171static	void		passiocleanup(struct pass_softc *softc,
172				      struct pass_io_req *io_req);
173static	int		passcopysglist(struct cam_periph *periph,
174				       struct pass_io_req *io_req,
175				       ccb_flags direction);
176static	int		passmemsetup(struct cam_periph *periph,
177				     struct pass_io_req *io_req);
178static	int		passmemdone(struct cam_periph *periph,
179				    struct pass_io_req *io_req);
180static	int		passerror(union ccb *ccb, u_int32_t cam_flags,
181				  u_int32_t sense_flags);
182static 	int		passsendccb(struct cam_periph *periph, union ccb *ccb,
183				    union ccb *inccb);
184
185static struct periph_driver passdriver =
186{
187	passinit, "pass",
188	TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
189};
190
191PERIPHDRIVER_DECLARE(pass, passdriver);
192
193static struct cdevsw pass_cdevsw = {
194	.d_version =	D_VERSION,
195	.d_flags =	D_TRACKCLOSE,
196	.d_open =	passopen,
197	.d_close =	passclose,
198	.d_ioctl =	passioctl,
199	.d_poll = 	passpoll,
200	.d_kqfilter = 	passkqfilter,
201	.d_name =	"pass",
202};
203
204static struct filterops passread_filtops = {
205	.f_isfd	=	1,
206	.f_detach =	passreadfiltdetach,
207	.f_event =	passreadfilt
208};
209
210static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
211
212static void
213passinit(void)
214{
215	cam_status status;
216
217	/*
218	 * Install a global async callback.  This callback will
219	 * receive async callbacks like "new device found".
220	 */
221	status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
222
223	if (status != CAM_REQ_CMP) {
224		printf("pass: Failed to attach master async callback "
225		       "due to status 0x%x!\n", status);
226	}
227
228}
229
230static void
231passrejectios(struct cam_periph *periph)
232{
233	struct pass_io_req *io_req, *io_req2;
234	struct pass_softc *softc;
235
236	softc = (struct pass_softc *)periph->softc;
237
238	/*
239	 * The user can no longer get status for I/O on the done queue, so
240	 * clean up all outstanding I/O on the done queue.
241	 */
242	TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
243		TAILQ_REMOVE(&softc->done_queue, io_req, links);
244		passiocleanup(softc, io_req);
245		uma_zfree(softc->pass_zone, io_req);
246	}
247
248	/*
249	 * The underlying device is gone, so we can't issue these I/Os.
250	 * The devfs node has been shut down, so we can't return status to
251	 * the user.  Free any I/O left on the incoming queue.
252	 */
253	TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
254		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
255		passiocleanup(softc, io_req);
256		uma_zfree(softc->pass_zone, io_req);
257	}
258
259	/*
260	 * Normally we would put I/Os on the abandoned queue and acquire a
261	 * reference when we saw the final close.  But, the device went
262	 * away and devfs may have moved everything off to deadfs by the
263	 * time the I/O done callback is called; as a result, we won't see
264	 * any more closes.  So, if we have any active I/Os, we need to put
265	 * them on the abandoned queue.  When the abandoned queue is empty,
266	 * we'll release the remaining reference (see below) to the peripheral.
267	 */
268	TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
269		TAILQ_REMOVE(&softc->active_queue, io_req, links);
270		io_req->flags |= PASS_IO_ABANDONED;
271		TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
272	}
273
274	/*
275	 * If we put any I/O on the abandoned queue, acquire a reference.
276	 */
277	if ((!TAILQ_EMPTY(&softc->abandoned_queue))
278	 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
279		cam_periph_doacquire(periph);
280		softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
281	}
282}
283
284static void
285passdevgonecb(void *arg)
286{
287	struct cam_periph *periph;
288	struct mtx *mtx;
289	struct pass_softc *softc;
290	int i;
291
292	periph = (struct cam_periph *)arg;
293	mtx = cam_periph_mtx(periph);
294	mtx_lock(mtx);
295
296	softc = (struct pass_softc *)periph->softc;
297	KASSERT(softc->open_count >= 0, ("Negative open count %d",
298		softc->open_count));
299
300	/*
301	 * When we get this callback, we will get no more close calls from
302	 * devfs.  So if we have any dangling opens, we need to release the
303	 * reference held for that particular context.
304	 */
305	for (i = 0; i < softc->open_count; i++)
306		cam_periph_release_locked(periph);
307
308	softc->open_count = 0;
309
310	/*
311	 * Release the reference held for the device node, it is gone now.
312	 * Accordingly, inform all queued I/Os of their fate.
313	 */
314	cam_periph_release_locked(periph);
315	passrejectios(periph);
316
317	/*
318	 * We reference the SIM lock directly here, instead of using
319	 * cam_periph_unlock().  The reason is that the final call to
320	 * cam_periph_release_locked() above could result in the periph
321	 * getting freed.  If that is the case, dereferencing the periph
322	 * with a cam_periph_unlock() call would cause a page fault.
323	 */
324	mtx_unlock(mtx);
325
326	/*
327	 * We have to remove our kqueue context from a thread because it
328	 * may sleep.  It would be nice if we could get a callback from
329	 * kqueue when it is done cleaning up resources.
330	 */
331	taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
332}
333
334static void
335passoninvalidate(struct cam_periph *periph)
336{
337	struct pass_softc *softc;
338
339	softc = (struct pass_softc *)periph->softc;
340
341	/*
342	 * De-register any async callbacks.
343	 */
344	xpt_register_async(0, passasync, periph, periph->path);
345
346	softc->flags |= PASS_FLAG_INVALID;
347
348	/*
349	 * Tell devfs this device has gone away, and ask for a callback
350	 * when it has cleaned up its state.
351	 */
352	destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
353}
354
355static void
356passcleanup(struct cam_periph *periph)
357{
358	struct pass_softc *softc;
359
360	softc = (struct pass_softc *)periph->softc;
361
362	cam_periph_assert(periph, MA_OWNED);
363	KASSERT(TAILQ_EMPTY(&softc->active_queue),
364		("%s called when there are commands on the active queue!\n",
365		__func__));
366	KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
367		("%s called when there are commands on the abandoned queue!\n",
368		__func__));
369	KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
370		("%s called when there are commands on the incoming queue!\n",
371		__func__));
372	KASSERT(TAILQ_EMPTY(&softc->done_queue),
373		("%s called when there are commands on the done queue!\n",
374		__func__));
375
376	devstat_remove_entry(softc->device_stats);
377
378	cam_periph_unlock(periph);
379
380	/*
381	 * We call taskqueue_drain() for the physpath task to make sure it
382	 * is complete.  We drop the lock because this can potentially
383	 * sleep.  XXX KDM that is bad.  Need a way to get a callback when
384	 * a taskqueue is drained.
385	 *
386 	 * Note that we don't drain the kqueue shutdown task queue.  This
387	 * is because we hold a reference on the periph for kqueue, and
388	 * release that reference from the kqueue shutdown task queue.  So
389	 * we cannot come into this routine unless we've released that
390	 * reference.  Also, because that could be the last reference, we
391	 * could be called from the cam_periph_release() call in
392	 * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
393	 * would deadlock.  It would be preferable if we had a way to
394	 * get a callback when a taskqueue is done.
395	 */
396	taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
397
398	cam_periph_lock(periph);
399
400	free(softc, M_DEVBUF);
401}
402
403static void
404pass_shutdown_kqueue(void *context, int pending)
405{
406	struct cam_periph *periph;
407	struct pass_softc *softc;
408
409	periph = context;
410	softc = periph->softc;
411
412	knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
413	knlist_destroy(&softc->read_select.si_note);
414
415	/*
416	 * Release the reference we held for kqueue.
417	 */
418	cam_periph_release(periph);
419}
420
421static void
422pass_add_physpath(void *context, int pending)
423{
424	struct cam_periph *periph;
425	struct pass_softc *softc;
426	struct mtx *mtx;
427	char *physpath;
428
429	/*
430	 * If we have one, create a devfs alias for our
431	 * physical path.
432	 */
433	periph = context;
434	softc = periph->softc;
435	physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
436	mtx = cam_periph_mtx(periph);
437	mtx_lock(mtx);
438
439	if (periph->flags & CAM_PERIPH_INVALID)
440		goto out;
441
442	if (xpt_getattr(physpath, MAXPATHLEN,
443			"GEOM::physpath", periph->path) == 0
444	 && strlen(physpath) != 0) {
445
446		mtx_unlock(mtx);
447		make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
448					softc->dev, softc->alias_dev, physpath);
449		mtx_lock(mtx);
450	}
451
452out:
453	/*
454	 * Now that we've made our alias, we no longer have to have a
455	 * reference to the device.
456	 */
457	if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
458		softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
459
460	/*
461	 * We always acquire a reference to the periph before queueing this
462	 * task queue function, so it won't go away before we run.
463	 */
464	while (pending-- > 0)
465		cam_periph_release_locked(periph);
466	mtx_unlock(mtx);
467
468	free(physpath, M_DEVBUF);
469}
470
471static void
472passasync(void *callback_arg, u_int32_t code,
473	  struct cam_path *path, void *arg)
474{
475	struct cam_periph *periph;
476
477	periph = (struct cam_periph *)callback_arg;
478
479	switch (code) {
480	case AC_FOUND_DEVICE:
481	{
482		struct ccb_getdev *cgd;
483		cam_status status;
484
485		cgd = (struct ccb_getdev *)arg;
486		if (cgd == NULL)
487			break;
488
489		/*
490		 * Allocate a peripheral instance for
491		 * this device and start the probe
492		 * process.
493		 */
494		status = cam_periph_alloc(passregister, passoninvalidate,
495					  passcleanup, passstart, "pass",
496					  CAM_PERIPH_BIO, path,
497					  passasync, AC_FOUND_DEVICE, cgd);
498
499		if (status != CAM_REQ_CMP
500		 && status != CAM_REQ_INPROG) {
501			const struct cam_status_entry *entry;
502
503			entry = cam_fetch_status_entry(status);
504
505			printf("passasync: Unable to attach new device "
506			       "due to status %#x: %s\n", status, entry ?
507			       entry->status_text : "Unknown");
508		}
509
510		break;
511	}
512	case AC_ADVINFO_CHANGED:
513	{
514		uintptr_t buftype;
515
516		buftype = (uintptr_t)arg;
517		if (buftype == CDAI_TYPE_PHYS_PATH) {
518			struct pass_softc *softc;
519			cam_status status;
520
521			softc = (struct pass_softc *)periph->softc;
522			/*
523			 * Acquire a reference to the periph before we
524			 * start the taskqueue, so that we don't run into
525			 * a situation where the periph goes away before
526			 * the task queue has a chance to run.
527			 */
528			status = cam_periph_acquire(periph);
529			if (status != CAM_REQ_CMP)
530				break;
531
532			taskqueue_enqueue(taskqueue_thread,
533					  &softc->add_physpath_task);
534		}
535		break;
536	}
537	default:
538		cam_periph_async(periph, code, path, arg);
539		break;
540	}
541}
542
543static cam_status
544passregister(struct cam_periph *periph, void *arg)
545{
546	struct pass_softc *softc;
547	struct ccb_getdev *cgd;
548	struct ccb_pathinq cpi;
549	struct make_dev_args args;
550	int error, no_tags;
551
552	cgd = (struct ccb_getdev *)arg;
553	if (cgd == NULL) {
554		printf("%s: no getdev CCB, can't register device\n", __func__);
555		return(CAM_REQ_CMP_ERR);
556	}
557
558	softc = (struct pass_softc *)malloc(sizeof(*softc),
559					    M_DEVBUF, M_NOWAIT);
560
561	if (softc == NULL) {
562		printf("%s: Unable to probe new device. "
563		       "Unable to allocate softc\n", __func__);
564		return(CAM_REQ_CMP_ERR);
565	}
566
567	bzero(softc, sizeof(*softc));
568	softc->state = PASS_STATE_NORMAL;
569	if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
570		softc->pd_type = SID_TYPE(&cgd->inq_data);
571	else if (cgd->protocol == PROTO_SATAPM)
572		softc->pd_type = T_ENCLOSURE;
573	else
574		softc->pd_type = T_DIRECT;
575
576	periph->softc = softc;
577	softc->periph = periph;
578	TAILQ_INIT(&softc->incoming_queue);
579	TAILQ_INIT(&softc->active_queue);
580	TAILQ_INIT(&softc->abandoned_queue);
581	TAILQ_INIT(&softc->done_queue);
582	snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
583		 periph->periph_name, periph->unit_number);
584	snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
585		 periph->periph_name, periph->unit_number);
586	softc->io_zone_size = MAXPHYS;
587	knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
588
589	bzero(&cpi, sizeof(cpi));
590	xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
591	cpi.ccb_h.func_code = XPT_PATH_INQ;
592	xpt_action((union ccb *)&cpi);
593
594	if (cpi.maxio == 0)
595		softc->maxio = DFLTPHYS;	/* traditional default */
596	else if (cpi.maxio > MAXPHYS)
597		softc->maxio = MAXPHYS;		/* for safety */
598	else
599		softc->maxio = cpi.maxio;	/* real value */
600
601	if (cpi.hba_misc & PIM_UNMAPPED)
602		softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
603
604	/*
605	 * We pass in 0 for a blocksize, since we don't
606	 * know what the blocksize of this device is, if
607	 * it even has a blocksize.
608	 */
609	cam_periph_unlock(periph);
610	no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
611	softc->device_stats = devstat_new_entry("pass",
612			  periph->unit_number, 0,
613			  DEVSTAT_NO_BLOCKSIZE
614			  | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
615			  softc->pd_type |
616			  XPORT_DEVSTAT_TYPE(cpi.transport) |
617			  DEVSTAT_TYPE_PASS,
618			  DEVSTAT_PRIORITY_PASS);
619
620	/*
621	 * Initialize the taskqueue handler for shutting down kqueue.
622	 */
623	TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
624		  pass_shutdown_kqueue, periph);
625
626	/*
627	 * Acquire a reference to the periph that we can release once we've
628	 * cleaned up the kqueue.
629	 */
630	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
631		xpt_print(periph->path, "%s: lost periph during "
632			  "registration!\n", __func__);
633		cam_periph_lock(periph);
634		return (CAM_REQ_CMP_ERR);
635	}
636
637	/*
638	 * Acquire a reference to the periph before we create the devfs
639	 * instance for it.  We'll release this reference once the devfs
640	 * instance has been freed.
641	 */
642	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
643		xpt_print(periph->path, "%s: lost periph during "
644			  "registration!\n", __func__);
645		cam_periph_lock(periph);
646		return (CAM_REQ_CMP_ERR);
647	}
648
649	/* Register the device */
650	make_dev_args_init(&args);
651	args.mda_devsw = &pass_cdevsw;
652	args.mda_unit = periph->unit_number;
653	args.mda_uid = UID_ROOT;
654	args.mda_gid = GID_OPERATOR;
655	args.mda_mode = 0600;
656	args.mda_si_drv1 = periph;
657	error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
658	    periph->unit_number);
659	if (error != 0) {
660		cam_periph_lock(periph);
661		cam_periph_release_locked(periph);
662		return (CAM_REQ_CMP_ERR);
663	}
664
665	/*
666	 * Hold a reference to the periph before we create the physical
667	 * path alias so it can't go away.
668	 */
669	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
670		xpt_print(periph->path, "%s: lost periph during "
671			  "registration!\n", __func__);
672		cam_periph_lock(periph);
673		return (CAM_REQ_CMP_ERR);
674	}
675
676	cam_periph_lock(periph);
677
678	TASK_INIT(&softc->add_physpath_task, /*priority*/0,
679		  pass_add_physpath, periph);
680
681	/*
682	 * See if physical path information is already available.
683	 */
684	taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
685
686	/*
687	 * Add an async callback so that we get notified if
688	 * this device goes away or its physical path
689	 * (stored in the advanced info data of the EDT) has
690	 * changed.
691	 */
692	xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
693			   passasync, periph, periph->path);
694
695	if (bootverbose)
696		xpt_announce_periph(periph, NULL);
697
698	return(CAM_REQ_CMP);
699}
700
701static int
702passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
703{
704	struct cam_periph *periph;
705	struct pass_softc *softc;
706	int error;
707
708	periph = (struct cam_periph *)dev->si_drv1;
709	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
710		return (ENXIO);
711
712	cam_periph_lock(periph);
713
714	softc = (struct pass_softc *)periph->softc;
715
716	if (softc->flags & PASS_FLAG_INVALID) {
717		cam_periph_release_locked(periph);
718		cam_periph_unlock(periph);
719		return(ENXIO);
720	}
721
722	/*
723	 * Don't allow access when we're running at a high securelevel.
724	 */
725	error = securelevel_gt(td->td_ucred, 1);
726	if (error) {
727		cam_periph_release_locked(periph);
728		cam_periph_unlock(periph);
729		return(error);
730	}
731
732	/*
733	 * Only allow read-write access.
734	 */
735	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
736		cam_periph_release_locked(periph);
737		cam_periph_unlock(periph);
738		return(EPERM);
739	}
740
741	/*
742	 * We don't allow nonblocking access.
743	 */
744	if ((flags & O_NONBLOCK) != 0) {
745		xpt_print(periph->path, "can't do nonblocking access\n");
746		cam_periph_release_locked(periph);
747		cam_periph_unlock(periph);
748		return(EINVAL);
749	}
750
751	softc->open_count++;
752
753	cam_periph_unlock(periph);
754
755	return (error);
756}
757
758static int
759passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
760{
761	struct 	cam_periph *periph;
762	struct  pass_softc *softc;
763	struct mtx *mtx;
764
765	periph = (struct cam_periph *)dev->si_drv1;
766	mtx = cam_periph_mtx(periph);
767	mtx_lock(mtx);
768
769	softc = periph->softc;
770	softc->open_count--;
771
772	if (softc->open_count == 0) {
773		struct pass_io_req *io_req, *io_req2;
774
775		TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
776			TAILQ_REMOVE(&softc->done_queue, io_req, links);
777			passiocleanup(softc, io_req);
778			uma_zfree(softc->pass_zone, io_req);
779		}
780
781		TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
782				   io_req2) {
783			TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
784			passiocleanup(softc, io_req);
785			uma_zfree(softc->pass_zone, io_req);
786		}
787
788		/*
789		 * If there are any active I/Os, we need to forcibly acquire a
790		 * reference to the peripheral so that we don't go away
791		 * before they complete.  We'll release the reference when
792		 * the abandoned queue is empty.
793		 */
794		io_req = TAILQ_FIRST(&softc->active_queue);
795		if ((io_req != NULL)
796		 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
797			cam_periph_doacquire(periph);
798			softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
799		}
800
801		/*
802		 * Since the I/O in the active queue is not under our
803		 * control, just set a flag so that we can clean it up when
804		 * it completes and put it on the abandoned queue.  This
805		 * will prevent our sending spurious completions in the
806		 * event that the device is opened again before these I/Os
807		 * complete.
808		 */
809		TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
810				   io_req2) {
811			TAILQ_REMOVE(&softc->active_queue, io_req, links);
812			io_req->flags |= PASS_IO_ABANDONED;
813			TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
814					  links);
815		}
816	}
817
818	cam_periph_release_locked(periph);
819
820	/*
821	 * We reference the lock directly here, instead of using
822	 * cam_periph_unlock().  The reason is that the call to
823	 * cam_periph_release_locked() above could result in the periph
824	 * getting freed.  If that is the case, dereferencing the periph
825	 * with a cam_periph_unlock() call would cause a page fault.
826	 *
827	 * cam_periph_release() avoids this problem using the same method,
828	 * but we're manually acquiring and dropping the lock here to
829	 * protect the open count and avoid another lock acquisition and
830	 * release.
831	 */
832	mtx_unlock(mtx);
833
834	return (0);
835}
836
837
838static void
839passstart(struct cam_periph *periph, union ccb *start_ccb)
840{
841	struct pass_softc *softc;
842
843	softc = (struct pass_softc *)periph->softc;
844
845	switch (softc->state) {
846	case PASS_STATE_NORMAL: {
847		struct pass_io_req *io_req;
848
849		/*
850		 * Check for any queued I/O requests that require an
851		 * allocated slot.
852		 */
853		io_req = TAILQ_FIRST(&softc->incoming_queue);
854		if (io_req == NULL) {
855			xpt_release_ccb(start_ccb);
856			break;
857		}
858		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
859		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
860		/*
861		 * Merge the user's CCB into the allocated CCB.
862		 */
863		xpt_merge_ccb(start_ccb, &io_req->ccb);
864		start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
865		start_ccb->ccb_h.ccb_ioreq = io_req;
866		start_ccb->ccb_h.cbfcnp = passdone;
867		io_req->alloced_ccb = start_ccb;
868		binuptime(&io_req->start_time);
869		devstat_start_transaction(softc->device_stats,
870					  &io_req->start_time);
871
872		xpt_action(start_ccb);
873
874		/*
875		 * If we have any more I/O waiting, schedule ourselves again.
876		 */
877		if (!TAILQ_EMPTY(&softc->incoming_queue))
878			xpt_schedule(periph, CAM_PRIORITY_NORMAL);
879		break;
880	}
881	default:
882		break;
883	}
884}
885
886static void
887passdone(struct cam_periph *periph, union ccb *done_ccb)
888{
889	struct pass_softc *softc;
890	struct ccb_scsiio *csio;
891
892	softc = (struct pass_softc *)periph->softc;
893
894	cam_periph_assert(periph, MA_OWNED);
895
896	csio = &done_ccb->csio;
897	switch (csio->ccb_h.ccb_type) {
898	case PASS_CCB_QUEUED_IO: {
899		struct pass_io_req *io_req;
900
901		io_req = done_ccb->ccb_h.ccb_ioreq;
902#if 0
903		xpt_print(periph->path, "%s: called for user CCB %p\n",
904			  __func__, io_req->user_ccb_ptr);
905#endif
906		if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
907		 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
908		 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
909			int error;
910
911			error = passerror(done_ccb, CAM_RETRY_SELTO,
912					  SF_RETRY_UA | SF_NO_PRINT);
913
914			if (error == ERESTART) {
915				/*
916				 * A retry was scheduled, so
917 				 * just return.
918				 */
919				return;
920			}
921		}
922
923		/*
924		 * Copy the allocated CCB contents back to the malloced CCB
925		 * so we can give status back to the user when he requests it.
926		 */
927		bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
928
929		/*
930		 * Log data/transaction completion with devstat(9).
931		 */
932		switch (done_ccb->ccb_h.func_code) {
933		case XPT_SCSI_IO:
934			devstat_end_transaction(softc->device_stats,
935			    done_ccb->csio.dxfer_len - done_ccb->csio.resid,
936			    done_ccb->csio.tag_action & 0x3,
937			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
938			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
939			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
940			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
941			    &io_req->start_time);
942			break;
943		case XPT_ATA_IO:
944			devstat_end_transaction(softc->device_stats,
945			    done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
946			    0, /* Not used in ATA */
947			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
948			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
949			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
950			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
951			    &io_req->start_time);
952			break;
953		case XPT_SMP_IO:
954			/*
955			 * XXX KDM this isn't quite right, but there isn't
956			 * currently an easy way to represent a bidirectional
957			 * transfer in devstat.  The only way to do it
958			 * and have the byte counts come out right would
959			 * mean that we would have to record two
960			 * transactions, one for the request and one for the
961			 * response.  For now, so that we report something,
962			 * just treat the entire thing as a read.
963			 */
964			devstat_end_transaction(softc->device_stats,
965			    done_ccb->smpio.smp_request_len +
966			    done_ccb->smpio.smp_response_len,
967			    DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
968			    &io_req->start_time);
969			break;
970		default:
971			devstat_end_transaction(softc->device_stats, 0,
972			    DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
973			    &io_req->start_time);
974			break;
975		}
976
977		/*
978		 * In the normal case, take the completed I/O off of the
979		 * active queue and put it on the done queue.  Notitfy the
980		 * user that we have a completed I/O.
981		 */
982		if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
983			TAILQ_REMOVE(&softc->active_queue, io_req, links);
984			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
985			selwakeuppri(&softc->read_select, PRIBIO);
986			KNOTE_LOCKED(&softc->read_select.si_note, 0);
987		} else {
988			/*
989			 * In the case of an abandoned I/O (final close
990			 * without fetching the I/O), take it off of the
991			 * abandoned queue and free it.
992			 */
993			TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
994			passiocleanup(softc, io_req);
995			uma_zfree(softc->pass_zone, io_req);
996
997			/*
998			 * Release the done_ccb here, since we may wind up
999			 * freeing the peripheral when we decrement the
1000			 * reference count below.
1001			 */
1002			xpt_release_ccb(done_ccb);
1003
1004			/*
1005			 * If the abandoned queue is empty, we can release
1006			 * our reference to the periph since we won't have
1007			 * any more completions coming.
1008			 */
1009			if ((TAILQ_EMPTY(&softc->abandoned_queue))
1010			 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1011				softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1012				cam_periph_release_locked(periph);
1013			}
1014
1015			/*
1016			 * We have already released the CCB, so we can
1017			 * return.
1018			 */
1019			return;
1020		}
1021		break;
1022	}
1023	}
1024	xpt_release_ccb(done_ccb);
1025}
1026
1027static int
1028passcreatezone(struct cam_periph *periph)
1029{
1030	struct pass_softc *softc;
1031	int error;
1032
1033	error = 0;
1034	softc = (struct pass_softc *)periph->softc;
1035
1036	cam_periph_assert(periph, MA_OWNED);
1037	KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1038		("%s called when the pass(4) zone is valid!\n", __func__));
1039	KASSERT((softc->pass_zone == NULL),
1040		("%s called when the pass(4) zone is allocated!\n", __func__));
1041
1042	if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1043
1044		/*
1045		 * We're the first context through, so we need to create
1046		 * the pass(4) UMA zone for I/O requests.
1047		 */
1048		softc->flags |= PASS_FLAG_ZONE_INPROG;
1049
1050		/*
1051		 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1052		 * so we cannot hold a mutex while we call it.
1053		 */
1054		cam_periph_unlock(periph);
1055
1056		softc->pass_zone = uma_zcreate(softc->zone_name,
1057		    sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1058		    /*align*/ 0, /*flags*/ 0);
1059
1060		softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1061		    softc->io_zone_size, NULL, NULL, NULL, NULL,
1062		    /*align*/ 0, /*flags*/ 0);
1063
1064		cam_periph_lock(periph);
1065
1066		if ((softc->pass_zone == NULL)
1067		 || (softc->pass_io_zone == NULL)) {
1068			if (softc->pass_zone == NULL)
1069				xpt_print(periph->path, "unable to allocate "
1070				    "IO Req UMA zone\n");
1071			else
1072				xpt_print(periph->path, "unable to allocate "
1073				    "IO UMA zone\n");
1074			softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1075			goto bailout;
1076		}
1077
1078		/*
1079		 * Set the flags appropriately and notify any other waiters.
1080		 */
1081		softc->flags &= PASS_FLAG_ZONE_INPROG;
1082		softc->flags |= PASS_FLAG_ZONE_VALID;
1083		wakeup(&softc->pass_zone);
1084	} else {
1085		/*
1086		 * In this case, the UMA zone has not yet been created, but
1087		 * another context is in the process of creating it.  We
1088		 * need to sleep until the creation is either done or has
1089		 * failed.
1090		 */
1091		while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1092		    && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1093			error = msleep(&softc->pass_zone,
1094				       cam_periph_mtx(periph), PRIBIO,
1095				       "paszon", 0);
1096			if (error != 0)
1097				goto bailout;
1098		}
1099		/*
1100		 * If the zone creation failed, no luck for the user.
1101		 */
1102		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1103			error = ENOMEM;
1104			goto bailout;
1105		}
1106	}
1107bailout:
1108	return (error);
1109}
1110
1111static void
1112passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1113{
1114	union ccb *ccb;
1115	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1116	int i, numbufs;
1117
1118	ccb = &io_req->ccb;
1119
1120	switch (ccb->ccb_h.func_code) {
1121	case XPT_DEV_MATCH:
1122		numbufs = min(io_req->num_bufs, 2);
1123
1124		if (numbufs == 1) {
1125			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1126		} else {
1127			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1128			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1129		}
1130		break;
1131	case XPT_SCSI_IO:
1132	case XPT_CONT_TARGET_IO:
1133		data_ptrs[0] = &ccb->csio.data_ptr;
1134		numbufs = min(io_req->num_bufs, 1);
1135		break;
1136	case XPT_ATA_IO:
1137		data_ptrs[0] = &ccb->ataio.data_ptr;
1138		numbufs = min(io_req->num_bufs, 1);
1139		break;
1140	case XPT_SMP_IO:
1141		numbufs = min(io_req->num_bufs, 2);
1142		data_ptrs[0] = &ccb->smpio.smp_request;
1143		data_ptrs[1] = &ccb->smpio.smp_response;
1144		break;
1145	case XPT_DEV_ADVINFO:
1146		numbufs = min(io_req->num_bufs, 1);
1147		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1148		break;
1149	case XPT_NVME_IO:
1150	case XPT_NVME_ADMIN:
1151		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1152		numbufs = min(io_req->num_bufs, 1);
1153		break;
1154	default:
1155		/* allow ourselves to be swapped once again */
1156		return;
1157		break; /* NOTREACHED */
1158	}
1159
1160	if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1161		free(io_req->user_segptr, M_SCSIPASS);
1162		io_req->user_segptr = NULL;
1163	}
1164
1165	/*
1166	 * We only want to free memory we malloced.
1167	 */
1168	if (io_req->data_flags == CAM_DATA_VADDR) {
1169		for (i = 0; i < io_req->num_bufs; i++) {
1170			if (io_req->kern_bufs[i] == NULL)
1171				continue;
1172
1173			free(io_req->kern_bufs[i], M_SCSIPASS);
1174			io_req->kern_bufs[i] = NULL;
1175		}
1176	} else if (io_req->data_flags == CAM_DATA_SG) {
1177		for (i = 0; i < io_req->num_kern_segs; i++) {
1178			if ((uint8_t *)(uintptr_t)
1179			    io_req->kern_segptr[i].ds_addr == NULL)
1180				continue;
1181
1182			uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1183			    io_req->kern_segptr[i].ds_addr);
1184			io_req->kern_segptr[i].ds_addr = 0;
1185		}
1186	}
1187
1188	if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1189		free(io_req->kern_segptr, M_SCSIPASS);
1190		io_req->kern_segptr = NULL;
1191	}
1192
1193	if (io_req->data_flags != CAM_DATA_PADDR) {
1194		for (i = 0; i < numbufs; i++) {
1195			/*
1196			 * Restore the user's buffer pointers to their
1197			 * previous values.
1198			 */
1199			if (io_req->user_bufs[i] != NULL)
1200				*data_ptrs[i] = io_req->user_bufs[i];
1201		}
1202	}
1203
1204}
1205
1206static int
1207passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1208	       ccb_flags direction)
1209{
1210	bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1211	bus_dma_segment_t *user_sglist, *kern_sglist;
1212	int i, j, error;
1213
1214	error = 0;
1215	kern_watermark = 0;
1216	user_watermark = 0;
1217	len_to_copy = 0;
1218	len_copied = 0;
1219	user_sglist = io_req->user_segptr;
1220	kern_sglist = io_req->kern_segptr;
1221
1222	for (i = 0, j = 0; i < io_req->num_user_segs &&
1223	     j < io_req->num_kern_segs;) {
1224		uint8_t *user_ptr, *kern_ptr;
1225
1226		len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1227		    kern_sglist[j].ds_len - kern_watermark);
1228
1229		user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1230		user_ptr = user_ptr + user_watermark;
1231		kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1232		kern_ptr = kern_ptr + kern_watermark;
1233
1234		user_watermark += len_to_copy;
1235		kern_watermark += len_to_copy;
1236
1237		if (!useracc(user_ptr, len_to_copy,
1238		    (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1239			xpt_print(periph->path, "%s: unable to access user "
1240				  "S/G list element %p len %zu\n", __func__,
1241				  user_ptr, len_to_copy);
1242			error = EFAULT;
1243			goto bailout;
1244		}
1245
1246		if (direction == CAM_DIR_IN) {
1247			error = copyout(kern_ptr, user_ptr, len_to_copy);
1248			if (error != 0) {
1249				xpt_print(periph->path, "%s: copyout of %u "
1250					  "bytes from %p to %p failed with "
1251					  "error %d\n", __func__, len_to_copy,
1252					  kern_ptr, user_ptr, error);
1253				goto bailout;
1254			}
1255		} else {
1256			error = copyin(user_ptr, kern_ptr, len_to_copy);
1257			if (error != 0) {
1258				xpt_print(periph->path, "%s: copyin of %u "
1259					  "bytes from %p to %p failed with "
1260					  "error %d\n", __func__, len_to_copy,
1261					  user_ptr, kern_ptr, error);
1262				goto bailout;
1263			}
1264		}
1265
1266		len_copied += len_to_copy;
1267
1268		if (user_sglist[i].ds_len == user_watermark) {
1269			i++;
1270			user_watermark = 0;
1271		}
1272
1273		if (kern_sglist[j].ds_len == kern_watermark) {
1274			j++;
1275			kern_watermark = 0;
1276		}
1277	}
1278
1279bailout:
1280
1281	return (error);
1282}
1283
1284static int
1285passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1286{
1287	union ccb *ccb;
1288	struct pass_softc *softc;
1289	int numbufs, i;
1290	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1291	uint32_t lengths[CAM_PERIPH_MAXMAPS];
1292	uint32_t dirs[CAM_PERIPH_MAXMAPS];
1293	uint32_t num_segs;
1294	uint16_t *seg_cnt_ptr;
1295	size_t maxmap;
1296	int error;
1297
1298	cam_periph_assert(periph, MA_NOTOWNED);
1299
1300	softc = periph->softc;
1301
1302	error = 0;
1303	ccb = &io_req->ccb;
1304	maxmap = 0;
1305	num_segs = 0;
1306	seg_cnt_ptr = NULL;
1307
1308	switch(ccb->ccb_h.func_code) {
1309	case XPT_DEV_MATCH:
1310		if (ccb->cdm.match_buf_len == 0) {
1311			printf("%s: invalid match buffer length 0\n", __func__);
1312			return(EINVAL);
1313		}
1314		if (ccb->cdm.pattern_buf_len > 0) {
1315			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1316			lengths[0] = ccb->cdm.pattern_buf_len;
1317			dirs[0] = CAM_DIR_OUT;
1318			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1319			lengths[1] = ccb->cdm.match_buf_len;
1320			dirs[1] = CAM_DIR_IN;
1321			numbufs = 2;
1322		} else {
1323			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1324			lengths[0] = ccb->cdm.match_buf_len;
1325			dirs[0] = CAM_DIR_IN;
1326			numbufs = 1;
1327		}
1328		io_req->data_flags = CAM_DATA_VADDR;
1329		break;
1330	case XPT_SCSI_IO:
1331	case XPT_CONT_TARGET_IO:
1332		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1333			return(0);
1334
1335		/*
1336		 * The user shouldn't be able to supply a bio.
1337		 */
1338		if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1339			return (EINVAL);
1340
1341		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1342
1343		data_ptrs[0] = &ccb->csio.data_ptr;
1344		lengths[0] = ccb->csio.dxfer_len;
1345		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1346		num_segs = ccb->csio.sglist_cnt;
1347		seg_cnt_ptr = &ccb->csio.sglist_cnt;
1348		numbufs = 1;
1349		maxmap = softc->maxio;
1350		break;
1351	case XPT_ATA_IO:
1352		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1353			return(0);
1354
1355		/*
1356		 * We only support a single virtual address for ATA I/O.
1357		 */
1358		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1359			return (EINVAL);
1360
1361		io_req->data_flags = CAM_DATA_VADDR;
1362
1363		data_ptrs[0] = &ccb->ataio.data_ptr;
1364		lengths[0] = ccb->ataio.dxfer_len;
1365		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1366		numbufs = 1;
1367		maxmap = softc->maxio;
1368		break;
1369	case XPT_SMP_IO:
1370		io_req->data_flags = CAM_DATA_VADDR;
1371
1372		data_ptrs[0] = &ccb->smpio.smp_request;
1373		lengths[0] = ccb->smpio.smp_request_len;
1374		dirs[0] = CAM_DIR_OUT;
1375		data_ptrs[1] = &ccb->smpio.smp_response;
1376		lengths[1] = ccb->smpio.smp_response_len;
1377		dirs[1] = CAM_DIR_IN;
1378		numbufs = 2;
1379		maxmap = softc->maxio;
1380		break;
1381	case XPT_DEV_ADVINFO:
1382		if (ccb->cdai.bufsiz == 0)
1383			return (0);
1384
1385		io_req->data_flags = CAM_DATA_VADDR;
1386
1387		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1388		lengths[0] = ccb->cdai.bufsiz;
1389		dirs[0] = CAM_DIR_IN;
1390		numbufs = 1;
1391		break;
1392	case XPT_NVME_ADMIN:
1393	case XPT_NVME_IO:
1394		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1395			return (0);
1396
1397		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1398
1399		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1400		lengths[0] = ccb->nvmeio.dxfer_len;
1401		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1402		num_segs = ccb->nvmeio.sglist_cnt;
1403		seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1404		numbufs = 1;
1405		maxmap = softc->maxio;
1406		break;
1407	default:
1408		return(EINVAL);
1409		break; /* NOTREACHED */
1410	}
1411
1412	io_req->num_bufs = numbufs;
1413
1414	/*
1415	 * If there is a maximum, check to make sure that the user's
1416	 * request fits within the limit.  In general, we should only have
1417	 * a maximum length for requests that go to hardware.  Otherwise it
1418	 * is whatever we're able to malloc.
1419	 */
1420	for (i = 0; i < numbufs; i++) {
1421		io_req->user_bufs[i] = *data_ptrs[i];
1422		io_req->dirs[i] = dirs[i];
1423		io_req->lengths[i] = lengths[i];
1424
1425		if (maxmap == 0)
1426			continue;
1427
1428		if (lengths[i] <= maxmap)
1429			continue;
1430
1431		xpt_print(periph->path, "%s: data length %u > max allowed %u "
1432			  "bytes\n", __func__, lengths[i], maxmap);
1433		error = EINVAL;
1434		goto bailout;
1435	}
1436
1437	switch (io_req->data_flags) {
1438	case CAM_DATA_VADDR:
1439		/* Map or copy the buffer into kernel address space */
1440		for (i = 0; i < numbufs; i++) {
1441			uint8_t *tmp_buf;
1442
1443			/*
1444			 * If for some reason no length is specified, we
1445			 * don't need to allocate anything.
1446			 */
1447			if (io_req->lengths[i] == 0)
1448				continue;
1449
1450			/*
1451			 * Make sure that the user's buffer is accessible
1452			 * to that process.
1453			 */
1454			if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1455			    (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1456			     VM_PROT_READ)) {
1457				xpt_print(periph->path, "%s: user address %p "
1458				    "length %u is not accessible\n", __func__,
1459				    io_req->user_bufs[i], io_req->lengths[i]);
1460				error = EFAULT;
1461				goto bailout;
1462			}
1463
1464			tmp_buf = malloc(lengths[i], M_SCSIPASS,
1465					 M_WAITOK | M_ZERO);
1466			io_req->kern_bufs[i] = tmp_buf;
1467			*data_ptrs[i] = tmp_buf;
1468
1469#if 0
1470			xpt_print(periph->path, "%s: malloced %p len %u, user "
1471				  "buffer %p, operation: %s\n", __func__,
1472				  tmp_buf, lengths[i], io_req->user_bufs[i],
1473				  (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1474#endif
1475			/*
1476			 * We only need to copy in if the user is writing.
1477			 */
1478			if (dirs[i] != CAM_DIR_OUT)
1479				continue;
1480
1481			error = copyin(io_req->user_bufs[i],
1482				       io_req->kern_bufs[i], lengths[i]);
1483			if (error != 0) {
1484				xpt_print(periph->path, "%s: copy of user "
1485					  "buffer from %p to %p failed with "
1486					  "error %d\n", __func__,
1487					  io_req->user_bufs[i],
1488					  io_req->kern_bufs[i], error);
1489				goto bailout;
1490			}
1491		}
1492		break;
1493	case CAM_DATA_PADDR:
1494		/* Pass down the pointer as-is */
1495		break;
1496	case CAM_DATA_SG: {
1497		size_t sg_length, size_to_go, alloc_size;
1498		uint32_t num_segs_needed;
1499
1500		/*
1501		 * Copy the user S/G list in, and then copy in the
1502		 * individual segments.
1503		 */
1504		/*
1505		 * We shouldn't see this, but check just in case.
1506		 */
1507		if (numbufs != 1) {
1508			xpt_print(periph->path, "%s: cannot currently handle "
1509				  "more than one S/G list per CCB\n", __func__);
1510			error = EINVAL;
1511			goto bailout;
1512		}
1513
1514		/*
1515		 * We have to have at least one segment.
1516		 */
1517		if (num_segs == 0) {
1518			xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1519				  "but sglist_cnt=0!\n", __func__);
1520			error = EINVAL;
1521			goto bailout;
1522		}
1523
1524		/*
1525		 * Make sure the user specified the total length and didn't
1526		 * just leave it to us to decode the S/G list.
1527		 */
1528		if (lengths[0] == 0) {
1529			xpt_print(periph->path, "%s: no dxfer_len specified, "
1530				  "but CAM_DATA_SG flag is set!\n", __func__);
1531			error = EINVAL;
1532			goto bailout;
1533		}
1534
1535		/*
1536		 * We allocate buffers in io_zone_size increments for an
1537		 * S/G list.  This will generally be MAXPHYS.
1538		 */
1539		if (lengths[0] <= softc->io_zone_size)
1540			num_segs_needed = 1;
1541		else {
1542			num_segs_needed = lengths[0] / softc->io_zone_size;
1543			if ((lengths[0] % softc->io_zone_size) != 0)
1544				num_segs_needed++;
1545		}
1546
1547		/* Figure out the size of the S/G list */
1548		sg_length = num_segs * sizeof(bus_dma_segment_t);
1549		io_req->num_user_segs = num_segs;
1550		io_req->num_kern_segs = num_segs_needed;
1551
1552		/* Save the user's S/G list pointer for later restoration */
1553		io_req->user_bufs[0] = *data_ptrs[0];
1554
1555		/*
1556		 * If we have enough segments allocated by default to handle
1557		 * the length of the user's S/G list,
1558		 */
1559		if (num_segs > PASS_MAX_SEGS) {
1560			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1561			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1562			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1563		} else
1564			io_req->user_segptr = io_req->user_segs;
1565
1566		if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1567			xpt_print(periph->path, "%s: unable to access user "
1568				  "S/G list at %p\n", __func__, *data_ptrs[0]);
1569			error = EFAULT;
1570			goto bailout;
1571		}
1572
1573		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1574		if (error != 0) {
1575			xpt_print(periph->path, "%s: copy of user S/G list "
1576				  "from %p to %p failed with error %d\n",
1577				  __func__, *data_ptrs[0], io_req->user_segptr,
1578				  error);
1579			goto bailout;
1580		}
1581
1582		if (num_segs_needed > PASS_MAX_SEGS) {
1583			io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1584			    num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1585			io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1586		} else {
1587			io_req->kern_segptr = io_req->kern_segs;
1588		}
1589
1590		/*
1591		 * Allocate the kernel S/G list.
1592		 */
1593		for (size_to_go = lengths[0], i = 0;
1594		     size_to_go > 0 && i < num_segs_needed;
1595		     i++, size_to_go -= alloc_size) {
1596			uint8_t *kern_ptr;
1597
1598			alloc_size = min(size_to_go, softc->io_zone_size);
1599			kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1600			io_req->kern_segptr[i].ds_addr =
1601			    (bus_addr_t)(uintptr_t)kern_ptr;
1602			io_req->kern_segptr[i].ds_len = alloc_size;
1603		}
1604		if (size_to_go > 0) {
1605			printf("%s: size_to_go = %zu, software error!\n",
1606			       __func__, size_to_go);
1607			error = EINVAL;
1608			goto bailout;
1609		}
1610
1611		*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1612		*seg_cnt_ptr = io_req->num_kern_segs;
1613
1614		/*
1615		 * We only need to copy data here if the user is writing.
1616		 */
1617		if (dirs[0] == CAM_DIR_OUT)
1618			error = passcopysglist(periph, io_req, dirs[0]);
1619		break;
1620	}
1621	case CAM_DATA_SG_PADDR: {
1622		size_t sg_length;
1623
1624		/*
1625		 * We shouldn't see this, but check just in case.
1626		 */
1627		if (numbufs != 1) {
1628			printf("%s: cannot currently handle more than one "
1629			       "S/G list per CCB\n", __func__);
1630			error = EINVAL;
1631			goto bailout;
1632		}
1633
1634		/*
1635		 * We have to have at least one segment.
1636		 */
1637		if (num_segs == 0) {
1638			xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1639				  "set, but sglist_cnt=0!\n", __func__);
1640			error = EINVAL;
1641			goto bailout;
1642		}
1643
1644		/*
1645		 * Make sure the user specified the total length and didn't
1646		 * just leave it to us to decode the S/G list.
1647		 */
1648		if (lengths[0] == 0) {
1649			xpt_print(periph->path, "%s: no dxfer_len specified, "
1650				  "but CAM_DATA_SG flag is set!\n", __func__);
1651			error = EINVAL;
1652			goto bailout;
1653		}
1654
1655		/* Figure out the size of the S/G list */
1656		sg_length = num_segs * sizeof(bus_dma_segment_t);
1657		io_req->num_user_segs = num_segs;
1658		io_req->num_kern_segs = io_req->num_user_segs;
1659
1660		/* Save the user's S/G list pointer for later restoration */
1661		io_req->user_bufs[0] = *data_ptrs[0];
1662
1663		if (num_segs > PASS_MAX_SEGS) {
1664			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1665			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1666			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1667		} else
1668			io_req->user_segptr = io_req->user_segs;
1669
1670		io_req->kern_segptr = io_req->user_segptr;
1671
1672		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1673		if (error != 0) {
1674			xpt_print(periph->path, "%s: copy of user S/G list "
1675				  "from %p to %p failed with error %d\n",
1676				  __func__, *data_ptrs[0], io_req->user_segptr,
1677				  error);
1678			goto bailout;
1679		}
1680		break;
1681	}
1682	default:
1683	case CAM_DATA_BIO:
1684		/*
1685		 * A user shouldn't be attaching a bio to the CCB.  It
1686		 * isn't a user-accessible structure.
1687		 */
1688		error = EINVAL;
1689		break;
1690	}
1691
1692bailout:
1693	if (error != 0)
1694		passiocleanup(softc, io_req);
1695
1696	return (error);
1697}
1698
1699static int
1700passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1701{
1702	struct pass_softc *softc;
1703	union ccb *ccb;
1704	int error;
1705	int i;
1706
1707	error = 0;
1708	softc = (struct pass_softc *)periph->softc;
1709	ccb = &io_req->ccb;
1710
1711	switch (io_req->data_flags) {
1712	case CAM_DATA_VADDR:
1713		/*
1714		 * Copy back to the user buffer if this was a read.
1715		 */
1716		for (i = 0; i < io_req->num_bufs; i++) {
1717			if (io_req->dirs[i] != CAM_DIR_IN)
1718				continue;
1719
1720			error = copyout(io_req->kern_bufs[i],
1721			    io_req->user_bufs[i], io_req->lengths[i]);
1722			if (error != 0) {
1723				xpt_print(periph->path, "Unable to copy %u "
1724					  "bytes from %p to user address %p\n",
1725					  io_req->lengths[i],
1726					  io_req->kern_bufs[i],
1727					  io_req->user_bufs[i]);
1728				goto bailout;
1729			}
1730
1731		}
1732		break;
1733	case CAM_DATA_PADDR:
1734		/* Do nothing.  The pointer is a physical address already */
1735		break;
1736	case CAM_DATA_SG:
1737		/*
1738		 * Copy back to the user buffer if this was a read.
1739		 * Restore the user's S/G list buffer pointer.
1740		 */
1741		if (io_req->dirs[0] == CAM_DIR_IN)
1742			error = passcopysglist(periph, io_req, io_req->dirs[0]);
1743		break;
1744	case CAM_DATA_SG_PADDR:
1745		/*
1746		 * Restore the user's S/G list buffer pointer.  No need to
1747		 * copy.
1748		 */
1749		break;
1750	default:
1751	case CAM_DATA_BIO:
1752		error = EINVAL;
1753		break;
1754	}
1755
1756bailout:
1757	/*
1758	 * Reset the user's pointers to their original values and free
1759	 * allocated memory.
1760	 */
1761	passiocleanup(softc, io_req);
1762
1763	return (error);
1764}
1765
1766static int
1767passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1768{
1769	int error;
1770
1771	if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1772		error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1773	}
1774	return (error);
1775}
1776
1777static int
1778passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1779{
1780	struct	cam_periph *periph;
1781	struct	pass_softc *softc;
1782	int	error;
1783	uint32_t priority;
1784
1785	periph = (struct cam_periph *)dev->si_drv1;
1786	cam_periph_lock(periph);
1787	softc = (struct pass_softc *)periph->softc;
1788
1789	error = 0;
1790
1791	switch (cmd) {
1792
1793	case CAMIOCOMMAND:
1794	{
1795		union ccb *inccb;
1796		union ccb *ccb;
1797		int ccb_malloced;
1798
1799		inccb = (union ccb *)addr;
1800
1801		if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1802			error = EINVAL;
1803			break;
1804		}
1805
1806		/*
1807		 * Some CCB types, like scan bus and scan lun can only go
1808		 * through the transport layer device.
1809		 */
1810		if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1811			xpt_print(periph->path, "CCB function code %#x is "
1812			    "restricted to the XPT device\n",
1813			    inccb->ccb_h.func_code);
1814			error = ENODEV;
1815			break;
1816		}
1817
1818		/* Compatibility for RL/priority-unaware code. */
1819		priority = inccb->ccb_h.pinfo.priority;
1820		if (priority <= CAM_PRIORITY_OOB)
1821		    priority += CAM_PRIORITY_OOB + 1;
1822
1823		/*
1824		 * Non-immediate CCBs need a CCB from the per-device pool
1825		 * of CCBs, which is scheduled by the transport layer.
1826		 * Immediate CCBs and user-supplied CCBs should just be
1827		 * malloced.
1828		 */
1829		if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1830		 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1831			ccb = cam_periph_getccb(periph, priority);
1832			ccb_malloced = 0;
1833		} else {
1834			ccb = xpt_alloc_ccb_nowait();
1835
1836			if (ccb != NULL)
1837				xpt_setup_ccb(&ccb->ccb_h, periph->path,
1838					      priority);
1839			ccb_malloced = 1;
1840		}
1841
1842		if (ccb == NULL) {
1843			xpt_print(periph->path, "unable to allocate CCB\n");
1844			error = ENOMEM;
1845			break;
1846		}
1847
1848		error = passsendccb(periph, ccb, inccb);
1849
1850		if (ccb_malloced)
1851			xpt_free_ccb(ccb);
1852		else
1853			xpt_release_ccb(ccb);
1854
1855		break;
1856	}
1857	case CAMIOQUEUE:
1858	{
1859		struct pass_io_req *io_req;
1860		union ccb **user_ccb, *ccb;
1861		xpt_opcode fc;
1862
1863		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1864			error = passcreatezone(periph);
1865			if (error != 0)
1866				goto bailout;
1867		}
1868
1869		/*
1870		 * We're going to do a blocking allocation for this I/O
1871		 * request, so we have to drop the lock.
1872		 */
1873		cam_periph_unlock(periph);
1874
1875		io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1876		ccb = &io_req->ccb;
1877		user_ccb = (union ccb **)addr;
1878
1879		/*
1880		 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1881		 * pointer to the user's CCB, so we have to copy the whole
1882		 * thing in to a buffer we have allocated (above) instead
1883		 * of allowing the ioctl code to malloc a buffer and copy
1884		 * it in.
1885		 *
1886		 * This is an advantage for this asynchronous interface,
1887		 * since we don't want the memory to get freed while the
1888		 * CCB is outstanding.
1889		 */
1890#if 0
1891		xpt_print(periph->path, "Copying user CCB %p to "
1892			  "kernel address %p\n", *user_ccb, ccb);
1893#endif
1894		error = copyin(*user_ccb, ccb, sizeof(*ccb));
1895		if (error != 0) {
1896			xpt_print(periph->path, "Copy of user CCB %p to "
1897				  "kernel address %p failed with error %d\n",
1898				  *user_ccb, ccb, error);
1899			goto camioqueue_error;
1900		}
1901
1902		if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1903			error = EINVAL;
1904			goto camioqueue_error;
1905		}
1906
1907		if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1908			if (ccb->csio.cdb_len > IOCDBLEN) {
1909				error = EINVAL;
1910				goto camioqueue_error;
1911			}
1912			error = copyin(ccb->csio.cdb_io.cdb_ptr,
1913			    ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1914			if (error != 0)
1915				goto camioqueue_error;
1916			ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1917		}
1918
1919		/*
1920		 * Some CCB types, like scan bus and scan lun can only go
1921		 * through the transport layer device.
1922		 */
1923		if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1924			xpt_print(periph->path, "CCB function code %#x is "
1925			    "restricted to the XPT device\n",
1926			    ccb->ccb_h.func_code);
1927			error = ENODEV;
1928			goto camioqueue_error;
1929		}
1930
1931		/*
1932		 * Save the user's CCB pointer as well as his linked list
1933		 * pointers and peripheral private area so that we can
1934		 * restore these later.
1935		 */
1936		io_req->user_ccb_ptr = *user_ccb;
1937		io_req->user_periph_links = ccb->ccb_h.periph_links;
1938		io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1939
1940		/*
1941		 * Now that we've saved the user's values, we can set our
1942		 * own peripheral private entry.
1943		 */
1944		ccb->ccb_h.ccb_ioreq = io_req;
1945
1946		/* Compatibility for RL/priority-unaware code. */
1947		priority = ccb->ccb_h.pinfo.priority;
1948		if (priority <= CAM_PRIORITY_OOB)
1949		    priority += CAM_PRIORITY_OOB + 1;
1950
1951		/*
1952		 * Setup fields in the CCB like the path and the priority.
1953		 * The path in particular cannot be done in userland, since
1954		 * it is a pointer to a kernel data structure.
1955		 */
1956		xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1957				    ccb->ccb_h.flags);
1958
1959		/*
1960		 * Setup our done routine.  There is no way for the user to
1961		 * have a valid pointer here.
1962		 */
1963		ccb->ccb_h.cbfcnp = passdone;
1964
1965		fc = ccb->ccb_h.func_code;
1966		/*
1967		 * If this function code has memory that can be mapped in
1968		 * or out, we need to call passmemsetup().
1969		 */
1970		if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1971		 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1972		 || (fc == XPT_DEV_ADVINFO)
1973		 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1974			error = passmemsetup(periph, io_req);
1975			if (error != 0)
1976				goto camioqueue_error;
1977		} else
1978			io_req->mapinfo.num_bufs_used = 0;
1979
1980		cam_periph_lock(periph);
1981
1982		/*
1983		 * Everything goes on the incoming queue initially.
1984		 */
1985		TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1986
1987		/*
1988		 * If the CCB is queued, and is not a user CCB, then
1989		 * we need to allocate a slot for it.  Call xpt_schedule()
1990		 * so that our start routine will get called when a CCB is
1991		 * available.
1992		 */
1993		if ((fc & XPT_FC_QUEUED)
1994		 && ((fc & XPT_FC_USER_CCB) == 0)) {
1995			xpt_schedule(periph, priority);
1996			break;
1997		}
1998
1999		/*
2000		 * At this point, the CCB in question is either an
2001		 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
2002		 * and therefore should be malloced, not allocated via a slot.
2003		 * Remove the CCB from the incoming queue and add it to the
2004		 * active queue.
2005		 */
2006		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
2007		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
2008
2009		xpt_action(ccb);
2010
2011		/*
2012		 * If this is not a queued CCB (i.e. it is an immediate CCB),
2013		 * then it is already done.  We need to put it on the done
2014		 * queue for the user to fetch.
2015		 */
2016		if ((fc & XPT_FC_QUEUED) == 0) {
2017			TAILQ_REMOVE(&softc->active_queue, io_req, links);
2018			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2019		}
2020		break;
2021
2022camioqueue_error:
2023		uma_zfree(softc->pass_zone, io_req);
2024		cam_periph_lock(periph);
2025		break;
2026	}
2027	case CAMIOGET:
2028	{
2029		union ccb **user_ccb;
2030		struct pass_io_req *io_req;
2031		int old_error;
2032
2033		user_ccb = (union ccb **)addr;
2034		old_error = 0;
2035
2036		io_req = TAILQ_FIRST(&softc->done_queue);
2037		if (io_req == NULL) {
2038			error = ENOENT;
2039			break;
2040		}
2041
2042		/*
2043		 * Remove the I/O from the done queue.
2044		 */
2045		TAILQ_REMOVE(&softc->done_queue, io_req, links);
2046
2047		/*
2048		 * We have to drop the lock during the copyout because the
2049		 * copyout can result in VM faults that require sleeping.
2050		 */
2051		cam_periph_unlock(periph);
2052
2053		/*
2054		 * Do any needed copies (e.g. for reads) and revert the
2055		 * pointers in the CCB back to the user's pointers.
2056		 */
2057		error = passmemdone(periph, io_req);
2058
2059		old_error = error;
2060
2061		io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2062		io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2063
2064#if 0
2065		xpt_print(periph->path, "Copying to user CCB %p from "
2066			  "kernel address %p\n", *user_ccb, &io_req->ccb);
2067#endif
2068
2069		error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2070		if (error != 0) {
2071			xpt_print(periph->path, "Copy to user CCB %p from "
2072				  "kernel address %p failed with error %d\n",
2073				  *user_ccb, &io_req->ccb, error);
2074		}
2075
2076		/*
2077		 * Prefer the first error we got back, and make sure we
2078		 * don't overwrite bad status with good.
2079		 */
2080		if (old_error != 0)
2081			error = old_error;
2082
2083		cam_periph_lock(periph);
2084
2085		/*
2086		 * At this point, if there was an error, we could potentially
2087		 * re-queue the I/O and try again.  But why?  The error
2088		 * would almost certainly happen again.  We might as well
2089		 * not leak memory.
2090		 */
2091		uma_zfree(softc->pass_zone, io_req);
2092		break;
2093	}
2094	default:
2095		error = cam_periph_ioctl(periph, cmd, addr, passerror);
2096		break;
2097	}
2098
2099bailout:
2100	cam_periph_unlock(periph);
2101
2102	return(error);
2103}
2104
2105static int
2106passpoll(struct cdev *dev, int poll_events, struct thread *td)
2107{
2108	struct cam_periph *periph;
2109	struct pass_softc *softc;
2110	int revents;
2111
2112	periph = (struct cam_periph *)dev->si_drv1;
2113	softc = (struct pass_softc *)periph->softc;
2114
2115	revents = poll_events & (POLLOUT | POLLWRNORM);
2116	if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2117		cam_periph_lock(periph);
2118
2119		if (!TAILQ_EMPTY(&softc->done_queue)) {
2120			revents |= poll_events & (POLLIN | POLLRDNORM);
2121		}
2122		cam_periph_unlock(periph);
2123		if (revents == 0)
2124			selrecord(td, &softc->read_select);
2125	}
2126
2127	return (revents);
2128}
2129
2130static int
2131passkqfilter(struct cdev *dev, struct knote *kn)
2132{
2133	struct cam_periph *periph;
2134	struct pass_softc *softc;
2135
2136	periph = (struct cam_periph *)dev->si_drv1;
2137	softc = (struct pass_softc *)periph->softc;
2138
2139	kn->kn_hook = (caddr_t)periph;
2140	kn->kn_fop = &passread_filtops;
2141	knlist_add(&softc->read_select.si_note, kn, 0);
2142
2143	return (0);
2144}
2145
2146static void
2147passreadfiltdetach(struct knote *kn)
2148{
2149	struct cam_periph *periph;
2150	struct pass_softc *softc;
2151
2152	periph = (struct cam_periph *)kn->kn_hook;
2153	softc = (struct pass_softc *)periph->softc;
2154
2155	knlist_remove(&softc->read_select.si_note, kn, 0);
2156}
2157
2158static int
2159passreadfilt(struct knote *kn, long hint)
2160{
2161	struct cam_periph *periph;
2162	struct pass_softc *softc;
2163	int retval;
2164
2165	periph = (struct cam_periph *)kn->kn_hook;
2166	softc = (struct pass_softc *)periph->softc;
2167
2168	cam_periph_assert(periph, MA_OWNED);
2169
2170	if (TAILQ_EMPTY(&softc->done_queue))
2171		retval = 0;
2172	else
2173		retval = 1;
2174
2175	return (retval);
2176}
2177
2178/*
2179 * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2180 * should be the CCB that is copied in from the user.
2181 */
2182static int
2183passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2184{
2185	struct pass_softc *softc;
2186	struct cam_periph_map_info mapinfo;
2187	uint8_t *cmd;
2188	xpt_opcode fc;
2189	int error;
2190
2191	softc = (struct pass_softc *)periph->softc;
2192
2193	/*
2194	 * There are some fields in the CCB header that need to be
2195	 * preserved, the rest we get from the user.
2196	 */
2197	xpt_merge_ccb(ccb, inccb);
2198
2199	if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2200		cmd = __builtin_alloca(ccb->csio.cdb_len);
2201		error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2202		if (error)
2203			return (error);
2204		ccb->csio.cdb_io.cdb_ptr = cmd;
2205	}
2206
2207	/*
2208	 */
2209	ccb->ccb_h.cbfcnp = passdone;
2210
2211	/*
2212	 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2213	 * Even if no data transfer is needed, it's a cheap check and it
2214	 * simplifies the code.
2215	 */
2216	fc = ccb->ccb_h.func_code;
2217	if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2218	 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2219		bzero(&mapinfo, sizeof(mapinfo));
2220
2221		/*
2222		 * cam_periph_mapmem calls into proc and vm functions that can
2223		 * sleep as well as trigger I/O, so we can't hold the lock.
2224		 * Dropping it here is reasonably safe.
2225		 */
2226		cam_periph_unlock(periph);
2227		error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2228		cam_periph_lock(periph);
2229
2230		/*
2231		 * cam_periph_mapmem returned an error, we can't continue.
2232		 * Return the error to the user.
2233		 */
2234		if (error)
2235			return(error);
2236	} else
2237		/* Ensure that the unmap call later on is a no-op. */
2238		mapinfo.num_bufs_used = 0;
2239
2240	/*
2241	 * If the user wants us to perform any error recovery, then honor
2242	 * that request.  Otherwise, it's up to the user to perform any
2243	 * error recovery.
2244	 */
2245	cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2246	    passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2247	    /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2248	    softc->device_stats);
2249
2250	cam_periph_unmapmem(ccb, &mapinfo);
2251
2252	ccb->ccb_h.cbfcnp = NULL;
2253	ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2254	bcopy(ccb, inccb, sizeof(union ccb));
2255
2256	return(0);
2257}
2258
2259static int
2260passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2261{
2262	struct cam_periph *periph;
2263	struct pass_softc *softc;
2264
2265	periph = xpt_path_periph(ccb->ccb_h.path);
2266	softc = (struct pass_softc *)periph->softc;
2267
2268	return(cam_periph_error(ccb, cam_flags, sense_flags,
2269				 &softc->saved_ccb));
2270}
2271