cam_xpt.c revision 256975
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 256975 2013-10-23 14:58:09Z mav $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/proc.h>
44#include <sys/sbuf.h>
45#include <sys/smp.h>
46#include <sys/taskqueue.h>
47
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/sysctl.h>
51#include <sys/kthread.h>
52
53#include <cam/cam.h>
54#include <cam/cam_ccb.h>
55#include <cam/cam_periph.h>
56#include <cam/cam_queue.h>
57#include <cam/cam_sim.h>
58#include <cam/cam_xpt.h>
59#include <cam/cam_xpt_sim.h>
60#include <cam/cam_xpt_periph.h>
61#include <cam/cam_xpt_internal.h>
62#include <cam/cam_debug.h>
63#include <cam/cam_compat.h>
64
65#include <cam/scsi/scsi_all.h>
66#include <cam/scsi/scsi_message.h>
67#include <cam/scsi/scsi_pass.h>
68
69#include <machine/md_var.h>	/* geometry translation */
70#include <machine/stdarg.h>	/* for xpt_print below */
71
72#include "opt_cam.h"
73
74/*
75 * This is the maximum number of high powered commands (e.g. start unit)
76 * that can be outstanding at a particular time.
77 */
78#ifndef CAM_MAX_HIGHPOWER
79#define CAM_MAX_HIGHPOWER  4
80#endif
81
82/* Datastructures internal to the xpt layer */
83MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87
88/* Object for defering XPT actions to a taskqueue */
89struct xpt_task {
90	struct task	task;
91	void		*data1;
92	uintptr_t	data2;
93};
94
95typedef enum {
96	XPT_FLAG_OPEN		= 0x01
97} xpt_flags;
98
99struct xpt_softc {
100	xpt_flags		flags;
101
102	/* number of high powered commands that can go through right now */
103	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
104	int			num_highpower;
105
106	/* queue for handling async rescan requests. */
107	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
108	int buses_to_config;
109	int buses_config_done;
110
111	/* Registered busses */
112	TAILQ_HEAD(,cam_eb)	xpt_busses;
113	u_int			bus_generation;
114
115	struct intr_config_hook	*xpt_config_hook;
116
117	int			boot_delay;
118	struct callout 		boot_callout;
119
120	struct mtx		xpt_topo_lock;
121	struct mtx		xpt_lock;
122	struct taskqueue	*xpt_taskq;
123};
124
125typedef enum {
126	DM_RET_COPY		= 0x01,
127	DM_RET_FLAG_MASK	= 0x0f,
128	DM_RET_NONE		= 0x00,
129	DM_RET_STOP		= 0x10,
130	DM_RET_DESCEND		= 0x20,
131	DM_RET_ERROR		= 0x30,
132	DM_RET_ACTION_MASK	= 0xf0
133} dev_match_ret;
134
135typedef enum {
136	XPT_DEPTH_BUS,
137	XPT_DEPTH_TARGET,
138	XPT_DEPTH_DEVICE,
139	XPT_DEPTH_PERIPH
140} xpt_traverse_depth;
141
142struct xpt_traverse_config {
143	xpt_traverse_depth	depth;
144	void			*tr_func;
145	void			*tr_arg;
146};
147
148typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
149typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
150typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
151typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
152typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
153
154/* Transport layer configuration information */
155static struct xpt_softc xsoftc;
156
157TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
158SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
159           &xsoftc.boot_delay, 0, "Bus registration wait time");
160
161struct cam_doneq {
162	struct mtx_padalign	cam_doneq_mtx;
163	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
164	int			cam_doneq_sleep;
165};
166
167static struct cam_doneq cam_doneqs[MAXCPU];
168static int cam_num_doneqs;
169static struct proc *cam_proc;
170
171TUNABLE_INT("kern.cam.num_doneqs", &cam_num_doneqs);
172SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
173           &cam_num_doneqs, 0, "Number of completion queues/threads");
174
175struct cam_periph *xpt_periph;
176
177static periph_init_t xpt_periph_init;
178
179static struct periph_driver xpt_driver =
180{
181	xpt_periph_init, "xpt",
182	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
183	CAM_PERIPH_DRV_EARLY
184};
185
186PERIPHDRIVER_DECLARE(xpt, xpt_driver);
187
188static d_open_t xptopen;
189static d_close_t xptclose;
190static d_ioctl_t xptioctl;
191static d_ioctl_t xptdoioctl;
192
193static struct cdevsw xpt_cdevsw = {
194	.d_version =	D_VERSION,
195	.d_flags =	0,
196	.d_open =	xptopen,
197	.d_close =	xptclose,
198	.d_ioctl =	xptioctl,
199	.d_name =	"xpt",
200};
201
202/* Storage for debugging datastructures */
203struct cam_path *cam_dpath;
204u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
205TUNABLE_INT("kern.cam.dflags", &cam_dflags);
206SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
207	&cam_dflags, 0, "Enabled debug flags");
208u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
209TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
210SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
211	&cam_debug_delay, 0, "Delay in us after each debug message");
212
213/* Our boot-time initialization hook */
214static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
215
216static moduledata_t cam_moduledata = {
217	"cam",
218	cam_module_event_handler,
219	NULL
220};
221
222static int	xpt_init(void *);
223
224DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
225MODULE_VERSION(cam, 1);
226
227
228static void		xpt_async_bcast(struct async_list *async_head,
229					u_int32_t async_code,
230					struct cam_path *path,
231					void *async_arg);
232static path_id_t xptnextfreepathid(void);
233static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
234static union ccb *xpt_get_ccb(struct cam_periph *periph);
235static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
236static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
237static void	 xpt_run_allocq_task(void *context, int pending);
238static void	 xpt_run_devq(struct cam_devq *devq);
239static timeout_t xpt_release_devq_timeout;
240static void	 xpt_release_simq_timeout(void *arg) __unused;
241static void	 xpt_acquire_bus(struct cam_eb *bus);
242static void	 xpt_release_bus(struct cam_eb *bus);
243static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
244		    int run_queue);
245static struct cam_et*
246		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
247static void	 xpt_acquire_target(struct cam_et *target);
248static void	 xpt_release_target(struct cam_et *target);
249static struct cam_eb*
250		 xpt_find_bus(path_id_t path_id);
251static struct cam_et*
252		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
253static struct cam_ed*
254		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
255static void	 xpt_config(void *arg);
256static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
257				 u_int32_t new_priority);
258static xpt_devicefunc_t xptpassannouncefunc;
259static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
260static void	 xptpoll(struct cam_sim *sim);
261static void	 camisr_runqueue(void);
262static void	 xpt_done_process(struct ccb_hdr *ccb_h);
263static void	 xpt_done_td(void *);
264static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
265				    u_int num_patterns, struct cam_eb *bus);
266static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
267				       u_int num_patterns,
268				       struct cam_ed *device);
269static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
270				       u_int num_patterns,
271				       struct cam_periph *periph);
272static xpt_busfunc_t	xptedtbusfunc;
273static xpt_targetfunc_t	xptedttargetfunc;
274static xpt_devicefunc_t	xptedtdevicefunc;
275static xpt_periphfunc_t	xptedtperiphfunc;
276static xpt_pdrvfunc_t	xptplistpdrvfunc;
277static xpt_periphfunc_t	xptplistperiphfunc;
278static int		xptedtmatch(struct ccb_dev_match *cdm);
279static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
280static int		xptbustraverse(struct cam_eb *start_bus,
281				       xpt_busfunc_t *tr_func, void *arg);
282static int		xpttargettraverse(struct cam_eb *bus,
283					  struct cam_et *start_target,
284					  xpt_targetfunc_t *tr_func, void *arg);
285static int		xptdevicetraverse(struct cam_et *target,
286					  struct cam_ed *start_device,
287					  xpt_devicefunc_t *tr_func, void *arg);
288static int		xptperiphtraverse(struct cam_ed *device,
289					  struct cam_periph *start_periph,
290					  xpt_periphfunc_t *tr_func, void *arg);
291static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
292					xpt_pdrvfunc_t *tr_func, void *arg);
293static int		xptpdperiphtraverse(struct periph_driver **pdrv,
294					    struct cam_periph *start_periph,
295					    xpt_periphfunc_t *tr_func,
296					    void *arg);
297static xpt_busfunc_t	xptdefbusfunc;
298static xpt_targetfunc_t	xptdeftargetfunc;
299static xpt_devicefunc_t	xptdefdevicefunc;
300static xpt_periphfunc_t	xptdefperiphfunc;
301static void		xpt_finishconfig_task(void *context, int pending);
302static void		xpt_dev_async_default(u_int32_t async_code,
303					      struct cam_eb *bus,
304					      struct cam_et *target,
305					      struct cam_ed *device,
306					      void *async_arg);
307static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
308						 struct cam_et *target,
309						 lun_id_t lun_id);
310static xpt_devicefunc_t	xptsetasyncfunc;
311static xpt_busfunc_t	xptsetasyncbusfunc;
312static cam_status	xptregister(struct cam_periph *periph,
313				    void *arg);
314static __inline int device_is_queued(struct cam_ed *device);
315
316static __inline int
317xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
318{
319	int	retval;
320
321	mtx_assert(&devq->send_mtx, MA_OWNED);
322	if ((dev->ccbq.queue.entries > 0) &&
323	    (dev->ccbq.dev_openings > 0) &&
324	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
325		/*
326		 * The priority of a device waiting for controller
327		 * resources is that of the highest priority CCB
328		 * enqueued.
329		 */
330		retval =
331		    xpt_schedule_dev(&devq->send_queue,
332				     &dev->devq_entry,
333				     CAMQ_GET_PRIO(&dev->ccbq.queue));
334	} else {
335		retval = 0;
336	}
337	return (retval);
338}
339
340static __inline int
341device_is_queued(struct cam_ed *device)
342{
343	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
344}
345
346static void
347xpt_periph_init()
348{
349	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
350}
351
352static int
353xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
354{
355
356	/*
357	 * Only allow read-write access.
358	 */
359	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
360		return(EPERM);
361
362	/*
363	 * We don't allow nonblocking access.
364	 */
365	if ((flags & O_NONBLOCK) != 0) {
366		printf("%s: can't do nonblocking access\n", devtoname(dev));
367		return(ENODEV);
368	}
369
370	/* Mark ourselves open */
371	mtx_lock(&xsoftc.xpt_lock);
372	xsoftc.flags |= XPT_FLAG_OPEN;
373	mtx_unlock(&xsoftc.xpt_lock);
374
375	return(0);
376}
377
378static int
379xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
380{
381
382	/* Mark ourselves closed */
383	mtx_lock(&xsoftc.xpt_lock);
384	xsoftc.flags &= ~XPT_FLAG_OPEN;
385	mtx_unlock(&xsoftc.xpt_lock);
386
387	return(0);
388}
389
390/*
391 * Don't automatically grab the xpt softc lock here even though this is going
392 * through the xpt device.  The xpt device is really just a back door for
393 * accessing other devices and SIMs, so the right thing to do is to grab
394 * the appropriate SIM lock once the bus/SIM is located.
395 */
396static int
397xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
398{
399	int error;
400
401	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
402		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
403	}
404	return (error);
405}
406
407static int
408xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
409{
410	int error;
411
412	error = 0;
413
414	switch(cmd) {
415	/*
416	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
417	 * to accept CCB types that don't quite make sense to send through a
418	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
419	 * in the CAM spec.
420	 */
421	case CAMIOCOMMAND: {
422		union ccb *ccb;
423		union ccb *inccb;
424		struct cam_eb *bus;
425
426		inccb = (union ccb *)addr;
427
428		bus = xpt_find_bus(inccb->ccb_h.path_id);
429		if (bus == NULL)
430			return (EINVAL);
431
432		switch (inccb->ccb_h.func_code) {
433		case XPT_SCAN_BUS:
434		case XPT_RESET_BUS:
435			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437				xpt_release_bus(bus);
438				return (EINVAL);
439			}
440			break;
441		case XPT_SCAN_TGT:
442			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444				xpt_release_bus(bus);
445				return (EINVAL);
446			}
447			break;
448		default:
449			break;
450		}
451
452		switch(inccb->ccb_h.func_code) {
453		case XPT_SCAN_BUS:
454		case XPT_RESET_BUS:
455		case XPT_PATH_INQ:
456		case XPT_ENG_INQ:
457		case XPT_SCAN_LUN:
458		case XPT_SCAN_TGT:
459
460			ccb = xpt_alloc_ccb();
461
462			/*
463			 * Create a path using the bus, target, and lun the
464			 * user passed in.
465			 */
466			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467					    inccb->ccb_h.path_id,
468					    inccb->ccb_h.target_id,
469					    inccb->ccb_h.target_lun) !=
470					    CAM_REQ_CMP){
471				error = EINVAL;
472				xpt_free_ccb(ccb);
473				break;
474			}
475			/* Ensure all of our fields are correct */
476			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477				      inccb->ccb_h.pinfo.priority);
478			xpt_merge_ccb(ccb, inccb);
479			xpt_path_lock(ccb->ccb_h.path);
480			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481			xpt_path_unlock(ccb->ccb_h.path);
482			bcopy(ccb, inccb, sizeof(union ccb));
483			xpt_free_path(ccb->ccb_h.path);
484			xpt_free_ccb(ccb);
485			break;
486
487		case XPT_DEBUG: {
488			union ccb ccb;
489
490			/*
491			 * This is an immediate CCB, so it's okay to
492			 * allocate it on the stack.
493			 */
494
495			/*
496			 * Create a path using the bus, target, and lun the
497			 * user passed in.
498			 */
499			if (xpt_create_path(&ccb.ccb_h.path, NULL,
500					    inccb->ccb_h.path_id,
501					    inccb->ccb_h.target_id,
502					    inccb->ccb_h.target_lun) !=
503					    CAM_REQ_CMP){
504				error = EINVAL;
505				break;
506			}
507			/* Ensure all of our fields are correct */
508			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
509				      inccb->ccb_h.pinfo.priority);
510			xpt_merge_ccb(&ccb, inccb);
511			xpt_action(&ccb);
512			bcopy(&ccb, inccb, sizeof(union ccb));
513			xpt_free_path(ccb.ccb_h.path);
514			break;
515
516		}
517		case XPT_DEV_MATCH: {
518			struct cam_periph_map_info mapinfo;
519			struct cam_path *old_path;
520
521			/*
522			 * We can't deal with physical addresses for this
523			 * type of transaction.
524			 */
525			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526			    CAM_DATA_VADDR) {
527				error = EINVAL;
528				break;
529			}
530
531			/*
532			 * Save this in case the caller had it set to
533			 * something in particular.
534			 */
535			old_path = inccb->ccb_h.path;
536
537			/*
538			 * We really don't need a path for the matching
539			 * code.  The path is needed because of the
540			 * debugging statements in xpt_action().  They
541			 * assume that the CCB has a valid path.
542			 */
543			inccb->ccb_h.path = xpt_periph->path;
544
545			bzero(&mapinfo, sizeof(mapinfo));
546
547			/*
548			 * Map the pattern and match buffers into kernel
549			 * virtual address space.
550			 */
551			error = cam_periph_mapmem(inccb, &mapinfo);
552
553			if (error) {
554				inccb->ccb_h.path = old_path;
555				break;
556			}
557
558			/*
559			 * This is an immediate CCB, we can send it on directly.
560			 */
561			xpt_action(inccb);
562
563			/*
564			 * Map the buffers back into user space.
565			 */
566			cam_periph_unmapmem(inccb, &mapinfo);
567
568			inccb->ccb_h.path = old_path;
569
570			error = 0;
571			break;
572		}
573		default:
574			error = ENOTSUP;
575			break;
576		}
577		xpt_release_bus(bus);
578		break;
579	}
580	/*
581	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
582	 * with the periphal driver name and unit name filled in.  The other
583	 * fields don't really matter as input.  The passthrough driver name
584	 * ("pass"), and unit number are passed back in the ccb.  The current
585	 * device generation number, and the index into the device peripheral
586	 * driver list, and the status are also passed back.  Note that
587	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
588	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
589	 * (or rather should be) impossible for the device peripheral driver
590	 * list to change since we look at the whole thing in one pass, and
591	 * we do it with lock protection.
592	 *
593	 */
594	case CAMGETPASSTHRU: {
595		union ccb *ccb;
596		struct cam_periph *periph;
597		struct periph_driver **p_drv;
598		char   *name;
599		u_int unit;
600		int base_periph_found;
601
602		ccb = (union ccb *)addr;
603		unit = ccb->cgdl.unit_number;
604		name = ccb->cgdl.periph_name;
605		base_periph_found = 0;
606
607		/*
608		 * Sanity check -- make sure we don't get a null peripheral
609		 * driver name.
610		 */
611		if (*ccb->cgdl.periph_name == '\0') {
612			error = EINVAL;
613			break;
614		}
615
616		/* Keep the list from changing while we traverse it */
617		xpt_lock_buses();
618
619		/* first find our driver in the list of drivers */
620		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
621			if (strcmp((*p_drv)->driver_name, name) == 0)
622				break;
623
624		if (*p_drv == NULL) {
625			xpt_unlock_buses();
626			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
627			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
628			*ccb->cgdl.periph_name = '\0';
629			ccb->cgdl.unit_number = 0;
630			error = ENOENT;
631			break;
632		}
633
634		/*
635		 * Run through every peripheral instance of this driver
636		 * and check to see whether it matches the unit passed
637		 * in by the user.  If it does, get out of the loops and
638		 * find the passthrough driver associated with that
639		 * peripheral driver.
640		 */
641		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
642		     periph = TAILQ_NEXT(periph, unit_links)) {
643
644			if (periph->unit_number == unit)
645				break;
646		}
647		/*
648		 * If we found the peripheral driver that the user passed
649		 * in, go through all of the peripheral drivers for that
650		 * particular device and look for a passthrough driver.
651		 */
652		if (periph != NULL) {
653			struct cam_ed *device;
654			int i;
655
656			base_periph_found = 1;
657			device = periph->path->device;
658			for (i = 0, periph = SLIST_FIRST(&device->periphs);
659			     periph != NULL;
660			     periph = SLIST_NEXT(periph, periph_links), i++) {
661				/*
662				 * Check to see whether we have a
663				 * passthrough device or not.
664				 */
665				if (strcmp(periph->periph_name, "pass") == 0) {
666					/*
667					 * Fill in the getdevlist fields.
668					 */
669					strcpy(ccb->cgdl.periph_name,
670					       periph->periph_name);
671					ccb->cgdl.unit_number =
672						periph->unit_number;
673					if (SLIST_NEXT(periph, periph_links))
674						ccb->cgdl.status =
675							CAM_GDEVLIST_MORE_DEVS;
676					else
677						ccb->cgdl.status =
678						       CAM_GDEVLIST_LAST_DEVICE;
679					ccb->cgdl.generation =
680						device->generation;
681					ccb->cgdl.index = i;
682					/*
683					 * Fill in some CCB header fields
684					 * that the user may want.
685					 */
686					ccb->ccb_h.path_id =
687						periph->path->bus->path_id;
688					ccb->ccb_h.target_id =
689						periph->path->target->target_id;
690					ccb->ccb_h.target_lun =
691						periph->path->device->lun_id;
692					ccb->ccb_h.status = CAM_REQ_CMP;
693					break;
694				}
695			}
696		}
697
698		/*
699		 * If the periph is null here, one of two things has
700		 * happened.  The first possibility is that we couldn't
701		 * find the unit number of the particular peripheral driver
702		 * that the user is asking about.  e.g. the user asks for
703		 * the passthrough driver for "da11".  We find the list of
704		 * "da" peripherals all right, but there is no unit 11.
705		 * The other possibility is that we went through the list
706		 * of peripheral drivers attached to the device structure,
707		 * but didn't find one with the name "pass".  Either way,
708		 * we return ENOENT, since we couldn't find something.
709		 */
710		if (periph == NULL) {
711			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
712			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
713			*ccb->cgdl.periph_name = '\0';
714			ccb->cgdl.unit_number = 0;
715			error = ENOENT;
716			/*
717			 * It is unfortunate that this is even necessary,
718			 * but there are many, many clueless users out there.
719			 * If this is true, the user is looking for the
720			 * passthrough driver, but doesn't have one in his
721			 * kernel.
722			 */
723			if (base_periph_found == 1) {
724				printf("xptioctl: pass driver is not in the "
725				       "kernel\n");
726				printf("xptioctl: put \"device pass\" in "
727				       "your kernel config file\n");
728			}
729		}
730		xpt_unlock_buses();
731		break;
732		}
733	default:
734		error = ENOTTY;
735		break;
736	}
737
738	return(error);
739}
740
741static int
742cam_module_event_handler(module_t mod, int what, void *arg)
743{
744	int error;
745
746	switch (what) {
747	case MOD_LOAD:
748		if ((error = xpt_init(NULL)) != 0)
749			return (error);
750		break;
751	case MOD_UNLOAD:
752		return EBUSY;
753	default:
754		return EOPNOTSUPP;
755	}
756
757	return 0;
758}
759
760static void
761xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
762{
763
764	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
765		xpt_free_path(done_ccb->ccb_h.path);
766		xpt_free_ccb(done_ccb);
767	} else {
768		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
769		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
770	}
771	xpt_release_boot();
772}
773
774/* thread to handle bus rescans */
775static void
776xpt_scanner_thread(void *dummy)
777{
778	union ccb	*ccb;
779	struct cam_path	 path;
780
781	xpt_lock_buses();
782	for (;;) {
783		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
784			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
785			       "ccb_scanq", 0);
786		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
787			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
788			xpt_unlock_buses();
789
790			/*
791			 * Since lock can be dropped inside and path freed
792			 * by completion callback even before return here,
793			 * take our own path copy for reference.
794			 */
795			xpt_copy_path(&path, ccb->ccb_h.path);
796			xpt_path_lock(&path);
797			xpt_action(ccb);
798			xpt_path_unlock(&path);
799			xpt_release_path(&path);
800
801			xpt_lock_buses();
802		}
803	}
804}
805
806void
807xpt_rescan(union ccb *ccb)
808{
809	struct ccb_hdr *hdr;
810
811	/* Prepare request */
812	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
813	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
814		ccb->ccb_h.func_code = XPT_SCAN_BUS;
815	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
816	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
817		ccb->ccb_h.func_code = XPT_SCAN_TGT;
818	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
819	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
820		ccb->ccb_h.func_code = XPT_SCAN_LUN;
821	else {
822		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
823		xpt_free_path(ccb->ccb_h.path);
824		xpt_free_ccb(ccb);
825		return;
826	}
827	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
828	ccb->ccb_h.cbfcnp = xpt_rescan_done;
829	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
830	/* Don't make duplicate entries for the same paths. */
831	xpt_lock_buses();
832	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
833		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
834			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
835				wakeup(&xsoftc.ccb_scanq);
836				xpt_unlock_buses();
837				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
838				xpt_free_path(ccb->ccb_h.path);
839				xpt_free_ccb(ccb);
840				return;
841			}
842		}
843	}
844	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
845	xsoftc.buses_to_config++;
846	wakeup(&xsoftc.ccb_scanq);
847	xpt_unlock_buses();
848}
849
850/* Functions accessed by the peripheral drivers */
851static int
852xpt_init(void *dummy)
853{
854	struct cam_sim *xpt_sim;
855	struct cam_path *path;
856	struct cam_devq *devq;
857	cam_status status;
858	int error, i;
859
860	TAILQ_INIT(&xsoftc.xpt_busses);
861	TAILQ_INIT(&xsoftc.ccb_scanq);
862	STAILQ_INIT(&xsoftc.highpowerq);
863	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
864
865	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
866	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
867	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
868	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
869
870#ifdef CAM_BOOT_DELAY
871	/*
872	 * Override this value at compile time to assist our users
873	 * who don't use loader to boot a kernel.
874	 */
875	xsoftc.boot_delay = CAM_BOOT_DELAY;
876#endif
877	/*
878	 * The xpt layer is, itself, the equivelent of a SIM.
879	 * Allow 16 ccbs in the ccb pool for it.  This should
880	 * give decent parallelism when we probe busses and
881	 * perform other XPT functions.
882	 */
883	devq = cam_simq_alloc(16);
884	xpt_sim = cam_sim_alloc(xptaction,
885				xptpoll,
886				"xpt",
887				/*softc*/NULL,
888				/*unit*/0,
889				/*mtx*/&xsoftc.xpt_lock,
890				/*max_dev_transactions*/0,
891				/*max_tagged_dev_transactions*/0,
892				devq);
893	if (xpt_sim == NULL)
894		return (ENOMEM);
895
896	mtx_lock(&xsoftc.xpt_lock);
897	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
898		mtx_unlock(&xsoftc.xpt_lock);
899		printf("xpt_init: xpt_bus_register failed with status %#x,"
900		       " failing attach\n", status);
901		return (EINVAL);
902	}
903
904	/*
905	 * Looking at the XPT from the SIM layer, the XPT is
906	 * the equivelent of a peripheral driver.  Allocate
907	 * a peripheral driver entry for us.
908	 */
909	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
910				      CAM_TARGET_WILDCARD,
911				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
912		mtx_unlock(&xsoftc.xpt_lock);
913		printf("xpt_init: xpt_create_path failed with status %#x,"
914		       " failing attach\n", status);
915		return (EINVAL);
916	}
917
918	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
919			 path, NULL, 0, xpt_sim);
920	xpt_free_path(path);
921	mtx_unlock(&xsoftc.xpt_lock);
922	if (cam_num_doneqs < 1)
923		cam_num_doneqs = 1 + mp_ncpus / 6;
924	else if (cam_num_doneqs > MAXCPU)
925		cam_num_doneqs = MAXCPU;
926	for (i = 0; i < cam_num_doneqs; i++) {
927		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
928		    MTX_DEF);
929		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
930		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
931		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
932		if (error != 0) {
933			cam_num_doneqs = i;
934			break;
935		}
936	}
937	if (cam_num_doneqs < 1) {
938		printf("xpt_init: Cannot init completion queues "
939		       "- failing attach\n");
940		return (ENOMEM);
941	}
942	/*
943	 * Register a callback for when interrupts are enabled.
944	 */
945	xsoftc.xpt_config_hook =
946	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
947					      M_CAMXPT, M_NOWAIT | M_ZERO);
948	if (xsoftc.xpt_config_hook == NULL) {
949		printf("xpt_init: Cannot malloc config hook "
950		       "- failing attach\n");
951		return (ENOMEM);
952	}
953	xsoftc.xpt_config_hook->ich_func = xpt_config;
954	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
955		free (xsoftc.xpt_config_hook, M_CAMXPT);
956		printf("xpt_init: config_intrhook_establish failed "
957		       "- failing attach\n");
958	}
959
960	return (0);
961}
962
963static cam_status
964xptregister(struct cam_periph *periph, void *arg)
965{
966	struct cam_sim *xpt_sim;
967
968	if (periph == NULL) {
969		printf("xptregister: periph was NULL!!\n");
970		return(CAM_REQ_CMP_ERR);
971	}
972
973	xpt_sim = (struct cam_sim *)arg;
974	xpt_sim->softc = periph;
975	xpt_periph = periph;
976	periph->softc = NULL;
977
978	return(CAM_REQ_CMP);
979}
980
981int32_t
982xpt_add_periph(struct cam_periph *periph)
983{
984	struct cam_ed *device;
985	int32_t	 status;
986
987	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
988	device = periph->path->device;
989	status = CAM_REQ_CMP;
990	if (device != NULL) {
991		mtx_lock(&device->target->bus->eb_mtx);
992		device->generation++;
993		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
994		mtx_unlock(&device->target->bus->eb_mtx);
995	}
996
997	return (status);
998}
999
1000void
1001xpt_remove_periph(struct cam_periph *periph)
1002{
1003	struct cam_ed *device;
1004
1005	device = periph->path->device;
1006	if (device != NULL) {
1007		mtx_lock(&device->target->bus->eb_mtx);
1008		device->generation++;
1009		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1010		mtx_unlock(&device->target->bus->eb_mtx);
1011	}
1012}
1013
1014
1015void
1016xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1017{
1018	struct	cam_path *path = periph->path;
1019
1020	cam_periph_assert(periph, MA_OWNED);
1021	periph->flags |= CAM_PERIPH_ANNOUNCED;
1022
1023	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1024	       periph->periph_name, periph->unit_number,
1025	       path->bus->sim->sim_name,
1026	       path->bus->sim->unit_number,
1027	       path->bus->sim->bus_id,
1028	       path->bus->path_id,
1029	       path->target->target_id,
1030	       path->device->lun_id);
1031	printf("%s%d: ", periph->periph_name, periph->unit_number);
1032	if (path->device->protocol == PROTO_SCSI)
1033		scsi_print_inquiry(&path->device->inq_data);
1034	else if (path->device->protocol == PROTO_ATA ||
1035	    path->device->protocol == PROTO_SATAPM)
1036		ata_print_ident(&path->device->ident_data);
1037	else if (path->device->protocol == PROTO_SEMB)
1038		semb_print_ident(
1039		    (struct sep_identify_data *)&path->device->ident_data);
1040	else
1041		printf("Unknown protocol device\n");
1042	if (path->device->serial_num_len > 0) {
1043		/* Don't wrap the screen  - print only the first 60 chars */
1044		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1045		       periph->unit_number, path->device->serial_num);
1046	}
1047	/* Announce transport details. */
1048	(*(path->bus->xport->announce))(periph);
1049	/* Announce command queueing. */
1050	if (path->device->inq_flags & SID_CmdQue
1051	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1052		printf("%s%d: Command Queueing enabled\n",
1053		       periph->periph_name, periph->unit_number);
1054	}
1055	/* Announce caller's details if they've passed in. */
1056	if (announce_string != NULL)
1057		printf("%s%d: %s\n", periph->periph_name,
1058		       periph->unit_number, announce_string);
1059}
1060
1061void
1062xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1063{
1064	if (quirks != 0) {
1065		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1066		    periph->unit_number, quirks, bit_string);
1067	}
1068}
1069
1070void
1071xpt_denounce_periph(struct cam_periph *periph)
1072{
1073	struct	cam_path *path = periph->path;
1074
1075	cam_periph_assert(periph, MA_OWNED);
1076	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1077	       periph->periph_name, periph->unit_number,
1078	       path->bus->sim->sim_name,
1079	       path->bus->sim->unit_number,
1080	       path->bus->sim->bus_id,
1081	       path->bus->path_id,
1082	       path->target->target_id,
1083	       path->device->lun_id);
1084	printf("%s%d: ", periph->periph_name, periph->unit_number);
1085	if (path->device->protocol == PROTO_SCSI)
1086		scsi_print_inquiry_short(&path->device->inq_data);
1087	else if (path->device->protocol == PROTO_ATA ||
1088	    path->device->protocol == PROTO_SATAPM)
1089		ata_print_ident_short(&path->device->ident_data);
1090	else if (path->device->protocol == PROTO_SEMB)
1091		semb_print_ident_short(
1092		    (struct sep_identify_data *)&path->device->ident_data);
1093	else
1094		printf("Unknown protocol device");
1095	if (path->device->serial_num_len > 0)
1096		printf(" s/n %.60s", path->device->serial_num);
1097	printf(" detached\n");
1098}
1099
1100
1101int
1102xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1103{
1104	int ret = -1, l;
1105	struct ccb_dev_advinfo cdai;
1106	struct scsi_vpd_id_descriptor *idd;
1107
1108	xpt_path_assert(path, MA_OWNED);
1109
1110	memset(&cdai, 0, sizeof(cdai));
1111	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1112	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1113	cdai.bufsiz = len;
1114
1115	if (!strcmp(attr, "GEOM::ident"))
1116		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1117	else if (!strcmp(attr, "GEOM::physpath"))
1118		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1119	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1120		 strcmp(attr, "GEOM::lunname") == 0) {
1121		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1122		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1123	} else
1124		goto out;
1125
1126	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1127	if (cdai.buf == NULL) {
1128		ret = ENOMEM;
1129		goto out;
1130	}
1131	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1132	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1133		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1134	if (cdai.provsiz == 0)
1135		goto out;
1136	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1137		if (strcmp(attr, "GEOM::lunid") == 0) {
1138			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1139			    cdai.provsiz, scsi_devid_is_lun_naa);
1140			if (idd == NULL)
1141				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1142				    cdai.provsiz, scsi_devid_is_lun_eui64);
1143		} else
1144			idd = NULL;
1145		if (idd == NULL)
1146			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1147			    cdai.provsiz, scsi_devid_is_lun_t10);
1148		if (idd == NULL)
1149			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1150			    cdai.provsiz, scsi_devid_is_lun_name);
1151		if (idd == NULL)
1152			goto out;
1153		ret = 0;
1154		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1155		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1156			l = strnlen(idd->identifier, idd->length);
1157			if (l < len) {
1158				bcopy(idd->identifier, buf, l);
1159				buf[l] = 0;
1160			} else
1161				ret = EFAULT;
1162		} else {
1163			if (idd->length * 2 < len) {
1164				for (l = 0; l < idd->length; l++)
1165					sprintf(buf + l * 2, "%02x",
1166					    idd->identifier[l]);
1167			} else
1168				ret = EFAULT;
1169		}
1170	} else {
1171		ret = 0;
1172		if (strlcpy(buf, cdai.buf, len) >= len)
1173			ret = EFAULT;
1174	}
1175
1176out:
1177	if (cdai.buf != NULL)
1178		free(cdai.buf, M_CAMXPT);
1179	return ret;
1180}
1181
1182static dev_match_ret
1183xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1184	    struct cam_eb *bus)
1185{
1186	dev_match_ret retval;
1187	int i;
1188
1189	retval = DM_RET_NONE;
1190
1191	/*
1192	 * If we aren't given something to match against, that's an error.
1193	 */
1194	if (bus == NULL)
1195		return(DM_RET_ERROR);
1196
1197	/*
1198	 * If there are no match entries, then this bus matches no
1199	 * matter what.
1200	 */
1201	if ((patterns == NULL) || (num_patterns == 0))
1202		return(DM_RET_DESCEND | DM_RET_COPY);
1203
1204	for (i = 0; i < num_patterns; i++) {
1205		struct bus_match_pattern *cur_pattern;
1206
1207		/*
1208		 * If the pattern in question isn't for a bus node, we
1209		 * aren't interested.  However, we do indicate to the
1210		 * calling routine that we should continue descending the
1211		 * tree, since the user wants to match against lower-level
1212		 * EDT elements.
1213		 */
1214		if (patterns[i].type != DEV_MATCH_BUS) {
1215			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1216				retval |= DM_RET_DESCEND;
1217			continue;
1218		}
1219
1220		cur_pattern = &patterns[i].pattern.bus_pattern;
1221
1222		/*
1223		 * If they want to match any bus node, we give them any
1224		 * device node.
1225		 */
1226		if (cur_pattern->flags == BUS_MATCH_ANY) {
1227			/* set the copy flag */
1228			retval |= DM_RET_COPY;
1229
1230			/*
1231			 * If we've already decided on an action, go ahead
1232			 * and return.
1233			 */
1234			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1235				return(retval);
1236		}
1237
1238		/*
1239		 * Not sure why someone would do this...
1240		 */
1241		if (cur_pattern->flags == BUS_MATCH_NONE)
1242			continue;
1243
1244		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1245		 && (cur_pattern->path_id != bus->path_id))
1246			continue;
1247
1248		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1249		 && (cur_pattern->bus_id != bus->sim->bus_id))
1250			continue;
1251
1252		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1253		 && (cur_pattern->unit_number != bus->sim->unit_number))
1254			continue;
1255
1256		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1257		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1258			     DEV_IDLEN) != 0))
1259			continue;
1260
1261		/*
1262		 * If we get to this point, the user definitely wants
1263		 * information on this bus.  So tell the caller to copy the
1264		 * data out.
1265		 */
1266		retval |= DM_RET_COPY;
1267
1268		/*
1269		 * If the return action has been set to descend, then we
1270		 * know that we've already seen a non-bus matching
1271		 * expression, therefore we need to further descend the tree.
1272		 * This won't change by continuing around the loop, so we
1273		 * go ahead and return.  If we haven't seen a non-bus
1274		 * matching expression, we keep going around the loop until
1275		 * we exhaust the matching expressions.  We'll set the stop
1276		 * flag once we fall out of the loop.
1277		 */
1278		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1279			return(retval);
1280	}
1281
1282	/*
1283	 * If the return action hasn't been set to descend yet, that means
1284	 * we haven't seen anything other than bus matching patterns.  So
1285	 * tell the caller to stop descending the tree -- the user doesn't
1286	 * want to match against lower level tree elements.
1287	 */
1288	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1289		retval |= DM_RET_STOP;
1290
1291	return(retval);
1292}
1293
1294static dev_match_ret
1295xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1296	       struct cam_ed *device)
1297{
1298	dev_match_ret retval;
1299	int i;
1300
1301	retval = DM_RET_NONE;
1302
1303	/*
1304	 * If we aren't given something to match against, that's an error.
1305	 */
1306	if (device == NULL)
1307		return(DM_RET_ERROR);
1308
1309	/*
1310	 * If there are no match entries, then this device matches no
1311	 * matter what.
1312	 */
1313	if ((patterns == NULL) || (num_patterns == 0))
1314		return(DM_RET_DESCEND | DM_RET_COPY);
1315
1316	for (i = 0; i < num_patterns; i++) {
1317		struct device_match_pattern *cur_pattern;
1318		struct scsi_vpd_device_id *device_id_page;
1319
1320		/*
1321		 * If the pattern in question isn't for a device node, we
1322		 * aren't interested.
1323		 */
1324		if (patterns[i].type != DEV_MATCH_DEVICE) {
1325			if ((patterns[i].type == DEV_MATCH_PERIPH)
1326			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1327				retval |= DM_RET_DESCEND;
1328			continue;
1329		}
1330
1331		cur_pattern = &patterns[i].pattern.device_pattern;
1332
1333		/* Error out if mutually exclusive options are specified. */
1334		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1335		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1336			return(DM_RET_ERROR);
1337
1338		/*
1339		 * If they want to match any device node, we give them any
1340		 * device node.
1341		 */
1342		if (cur_pattern->flags == DEV_MATCH_ANY)
1343			goto copy_dev_node;
1344
1345		/*
1346		 * Not sure why someone would do this...
1347		 */
1348		if (cur_pattern->flags == DEV_MATCH_NONE)
1349			continue;
1350
1351		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1352		 && (cur_pattern->path_id != device->target->bus->path_id))
1353			continue;
1354
1355		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1356		 && (cur_pattern->target_id != device->target->target_id))
1357			continue;
1358
1359		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1360		 && (cur_pattern->target_lun != device->lun_id))
1361			continue;
1362
1363		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1364		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1365				    (caddr_t)&cur_pattern->data.inq_pat,
1366				    1, sizeof(cur_pattern->data.inq_pat),
1367				    scsi_static_inquiry_match) == NULL))
1368			continue;
1369
1370		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1371		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1372		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1373		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1374				      device->device_id_len
1375				    - SVPD_DEVICE_ID_HDR_LEN,
1376				      cur_pattern->data.devid_pat.id,
1377				      cur_pattern->data.devid_pat.id_len) != 0))
1378			continue;
1379
1380copy_dev_node:
1381		/*
1382		 * If we get to this point, the user definitely wants
1383		 * information on this device.  So tell the caller to copy
1384		 * the data out.
1385		 */
1386		retval |= DM_RET_COPY;
1387
1388		/*
1389		 * If the return action has been set to descend, then we
1390		 * know that we've already seen a peripheral matching
1391		 * expression, therefore we need to further descend the tree.
1392		 * This won't change by continuing around the loop, so we
1393		 * go ahead and return.  If we haven't seen a peripheral
1394		 * matching expression, we keep going around the loop until
1395		 * we exhaust the matching expressions.  We'll set the stop
1396		 * flag once we fall out of the loop.
1397		 */
1398		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1399			return(retval);
1400	}
1401
1402	/*
1403	 * If the return action hasn't been set to descend yet, that means
1404	 * we haven't seen any peripheral matching patterns.  So tell the
1405	 * caller to stop descending the tree -- the user doesn't want to
1406	 * match against lower level tree elements.
1407	 */
1408	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1409		retval |= DM_RET_STOP;
1410
1411	return(retval);
1412}
1413
1414/*
1415 * Match a single peripheral against any number of match patterns.
1416 */
1417static dev_match_ret
1418xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1419	       struct cam_periph *periph)
1420{
1421	dev_match_ret retval;
1422	int i;
1423
1424	/*
1425	 * If we aren't given something to match against, that's an error.
1426	 */
1427	if (periph == NULL)
1428		return(DM_RET_ERROR);
1429
1430	/*
1431	 * If there are no match entries, then this peripheral matches no
1432	 * matter what.
1433	 */
1434	if ((patterns == NULL) || (num_patterns == 0))
1435		return(DM_RET_STOP | DM_RET_COPY);
1436
1437	/*
1438	 * There aren't any nodes below a peripheral node, so there's no
1439	 * reason to descend the tree any further.
1440	 */
1441	retval = DM_RET_STOP;
1442
1443	for (i = 0; i < num_patterns; i++) {
1444		struct periph_match_pattern *cur_pattern;
1445
1446		/*
1447		 * If the pattern in question isn't for a peripheral, we
1448		 * aren't interested.
1449		 */
1450		if (patterns[i].type != DEV_MATCH_PERIPH)
1451			continue;
1452
1453		cur_pattern = &patterns[i].pattern.periph_pattern;
1454
1455		/*
1456		 * If they want to match on anything, then we will do so.
1457		 */
1458		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1459			/* set the copy flag */
1460			retval |= DM_RET_COPY;
1461
1462			/*
1463			 * We've already set the return action to stop,
1464			 * since there are no nodes below peripherals in
1465			 * the tree.
1466			 */
1467			return(retval);
1468		}
1469
1470		/*
1471		 * Not sure why someone would do this...
1472		 */
1473		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1474			continue;
1475
1476		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1477		 && (cur_pattern->path_id != periph->path->bus->path_id))
1478			continue;
1479
1480		/*
1481		 * For the target and lun id's, we have to make sure the
1482		 * target and lun pointers aren't NULL.  The xpt peripheral
1483		 * has a wildcard target and device.
1484		 */
1485		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1486		 && ((periph->path->target == NULL)
1487		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1488			continue;
1489
1490		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1491		 && ((periph->path->device == NULL)
1492		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1493			continue;
1494
1495		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1496		 && (cur_pattern->unit_number != periph->unit_number))
1497			continue;
1498
1499		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1500		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1501			     DEV_IDLEN) != 0))
1502			continue;
1503
1504		/*
1505		 * If we get to this point, the user definitely wants
1506		 * information on this peripheral.  So tell the caller to
1507		 * copy the data out.
1508		 */
1509		retval |= DM_RET_COPY;
1510
1511		/*
1512		 * The return action has already been set to stop, since
1513		 * peripherals don't have any nodes below them in the EDT.
1514		 */
1515		return(retval);
1516	}
1517
1518	/*
1519	 * If we get to this point, the peripheral that was passed in
1520	 * doesn't match any of the patterns.
1521	 */
1522	return(retval);
1523}
1524
1525static int
1526xptedtbusfunc(struct cam_eb *bus, void *arg)
1527{
1528	struct ccb_dev_match *cdm;
1529	struct cam_et *target;
1530	dev_match_ret retval;
1531
1532	cdm = (struct ccb_dev_match *)arg;
1533
1534	/*
1535	 * If our position is for something deeper in the tree, that means
1536	 * that we've already seen this node.  So, we keep going down.
1537	 */
1538	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1539	 && (cdm->pos.cookie.bus == bus)
1540	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1541	 && (cdm->pos.cookie.target != NULL))
1542		retval = DM_RET_DESCEND;
1543	else
1544		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1545
1546	/*
1547	 * If we got an error, bail out of the search.
1548	 */
1549	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1550		cdm->status = CAM_DEV_MATCH_ERROR;
1551		return(0);
1552	}
1553
1554	/*
1555	 * If the copy flag is set, copy this bus out.
1556	 */
1557	if (retval & DM_RET_COPY) {
1558		int spaceleft, j;
1559
1560		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1561			sizeof(struct dev_match_result));
1562
1563		/*
1564		 * If we don't have enough space to put in another
1565		 * match result, save our position and tell the
1566		 * user there are more devices to check.
1567		 */
1568		if (spaceleft < sizeof(struct dev_match_result)) {
1569			bzero(&cdm->pos, sizeof(cdm->pos));
1570			cdm->pos.position_type =
1571				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1572
1573			cdm->pos.cookie.bus = bus;
1574			cdm->pos.generations[CAM_BUS_GENERATION]=
1575				xsoftc.bus_generation;
1576			cdm->status = CAM_DEV_MATCH_MORE;
1577			return(0);
1578		}
1579		j = cdm->num_matches;
1580		cdm->num_matches++;
1581		cdm->matches[j].type = DEV_MATCH_BUS;
1582		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1583		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1584		cdm->matches[j].result.bus_result.unit_number =
1585			bus->sim->unit_number;
1586		strncpy(cdm->matches[j].result.bus_result.dev_name,
1587			bus->sim->sim_name, DEV_IDLEN);
1588	}
1589
1590	/*
1591	 * If the user is only interested in busses, there's no
1592	 * reason to descend to the next level in the tree.
1593	 */
1594	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1595		return(1);
1596
1597	/*
1598	 * If there is a target generation recorded, check it to
1599	 * make sure the target list hasn't changed.
1600	 */
1601	mtx_lock(&bus->eb_mtx);
1602	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1603	 && (cdm->pos.cookie.bus == bus)
1604	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1605	 && (cdm->pos.cookie.target != NULL)) {
1606		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1607		    bus->generation)) {
1608			mtx_unlock(&bus->eb_mtx);
1609			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1610			return (0);
1611		}
1612		target = (struct cam_et *)cdm->pos.cookie.target;
1613		target->refcount++;
1614	} else
1615		target = NULL;
1616	mtx_unlock(&bus->eb_mtx);
1617
1618	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1619}
1620
1621static int
1622xptedttargetfunc(struct cam_et *target, void *arg)
1623{
1624	struct ccb_dev_match *cdm;
1625	struct cam_eb *bus;
1626	struct cam_ed *device;
1627
1628	cdm = (struct ccb_dev_match *)arg;
1629	bus = target->bus;
1630
1631	/*
1632	 * If there is a device list generation recorded, check it to
1633	 * make sure the device list hasn't changed.
1634	 */
1635	mtx_lock(&bus->eb_mtx);
1636	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1637	 && (cdm->pos.cookie.bus == bus)
1638	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1639	 && (cdm->pos.cookie.target == target)
1640	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1641	 && (cdm->pos.cookie.device != NULL)) {
1642		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1643		    target->generation) {
1644			mtx_unlock(&bus->eb_mtx);
1645			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1646			return(0);
1647		}
1648		device = (struct cam_ed *)cdm->pos.cookie.device;
1649		device->refcount++;
1650	} else
1651		device = NULL;
1652	mtx_unlock(&bus->eb_mtx);
1653
1654	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1655}
1656
1657static int
1658xptedtdevicefunc(struct cam_ed *device, void *arg)
1659{
1660	struct cam_eb *bus;
1661	struct cam_periph *periph;
1662	struct ccb_dev_match *cdm;
1663	dev_match_ret retval;
1664
1665	cdm = (struct ccb_dev_match *)arg;
1666	bus = device->target->bus;
1667
1668	/*
1669	 * If our position is for something deeper in the tree, that means
1670	 * that we've already seen this node.  So, we keep going down.
1671	 */
1672	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1673	 && (cdm->pos.cookie.device == device)
1674	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1675	 && (cdm->pos.cookie.periph != NULL))
1676		retval = DM_RET_DESCEND;
1677	else
1678		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1679					device);
1680
1681	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1682		cdm->status = CAM_DEV_MATCH_ERROR;
1683		return(0);
1684	}
1685
1686	/*
1687	 * If the copy flag is set, copy this device out.
1688	 */
1689	if (retval & DM_RET_COPY) {
1690		int spaceleft, j;
1691
1692		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1693			sizeof(struct dev_match_result));
1694
1695		/*
1696		 * If we don't have enough space to put in another
1697		 * match result, save our position and tell the
1698		 * user there are more devices to check.
1699		 */
1700		if (spaceleft < sizeof(struct dev_match_result)) {
1701			bzero(&cdm->pos, sizeof(cdm->pos));
1702			cdm->pos.position_type =
1703				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1704				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1705
1706			cdm->pos.cookie.bus = device->target->bus;
1707			cdm->pos.generations[CAM_BUS_GENERATION]=
1708				xsoftc.bus_generation;
1709			cdm->pos.cookie.target = device->target;
1710			cdm->pos.generations[CAM_TARGET_GENERATION] =
1711				device->target->bus->generation;
1712			cdm->pos.cookie.device = device;
1713			cdm->pos.generations[CAM_DEV_GENERATION] =
1714				device->target->generation;
1715			cdm->status = CAM_DEV_MATCH_MORE;
1716			return(0);
1717		}
1718		j = cdm->num_matches;
1719		cdm->num_matches++;
1720		cdm->matches[j].type = DEV_MATCH_DEVICE;
1721		cdm->matches[j].result.device_result.path_id =
1722			device->target->bus->path_id;
1723		cdm->matches[j].result.device_result.target_id =
1724			device->target->target_id;
1725		cdm->matches[j].result.device_result.target_lun =
1726			device->lun_id;
1727		cdm->matches[j].result.device_result.protocol =
1728			device->protocol;
1729		bcopy(&device->inq_data,
1730		      &cdm->matches[j].result.device_result.inq_data,
1731		      sizeof(struct scsi_inquiry_data));
1732		bcopy(&device->ident_data,
1733		      &cdm->matches[j].result.device_result.ident_data,
1734		      sizeof(struct ata_params));
1735
1736		/* Let the user know whether this device is unconfigured */
1737		if (device->flags & CAM_DEV_UNCONFIGURED)
1738			cdm->matches[j].result.device_result.flags =
1739				DEV_RESULT_UNCONFIGURED;
1740		else
1741			cdm->matches[j].result.device_result.flags =
1742				DEV_RESULT_NOFLAG;
1743	}
1744
1745	/*
1746	 * If the user isn't interested in peripherals, don't descend
1747	 * the tree any further.
1748	 */
1749	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1750		return(1);
1751
1752	/*
1753	 * If there is a peripheral list generation recorded, make sure
1754	 * it hasn't changed.
1755	 */
1756	xpt_lock_buses();
1757	mtx_lock(&bus->eb_mtx);
1758	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1759	 && (cdm->pos.cookie.bus == bus)
1760	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1761	 && (cdm->pos.cookie.target == device->target)
1762	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1763	 && (cdm->pos.cookie.device == device)
1764	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1765	 && (cdm->pos.cookie.periph != NULL)) {
1766		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1767		    device->generation) {
1768			mtx_unlock(&bus->eb_mtx);
1769			xpt_unlock_buses();
1770			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1771			return(0);
1772		}
1773		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1774		periph->refcount++;
1775	} else
1776		periph = NULL;
1777	mtx_unlock(&bus->eb_mtx);
1778	xpt_unlock_buses();
1779
1780	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1781}
1782
1783static int
1784xptedtperiphfunc(struct cam_periph *periph, void *arg)
1785{
1786	struct ccb_dev_match *cdm;
1787	dev_match_ret retval;
1788
1789	cdm = (struct ccb_dev_match *)arg;
1790
1791	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1792
1793	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1794		cdm->status = CAM_DEV_MATCH_ERROR;
1795		return(0);
1796	}
1797
1798	/*
1799	 * If the copy flag is set, copy this peripheral out.
1800	 */
1801	if (retval & DM_RET_COPY) {
1802		int spaceleft, j;
1803
1804		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1805			sizeof(struct dev_match_result));
1806
1807		/*
1808		 * If we don't have enough space to put in another
1809		 * match result, save our position and tell the
1810		 * user there are more devices to check.
1811		 */
1812		if (spaceleft < sizeof(struct dev_match_result)) {
1813			bzero(&cdm->pos, sizeof(cdm->pos));
1814			cdm->pos.position_type =
1815				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1816				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1817				CAM_DEV_POS_PERIPH;
1818
1819			cdm->pos.cookie.bus = periph->path->bus;
1820			cdm->pos.generations[CAM_BUS_GENERATION]=
1821				xsoftc.bus_generation;
1822			cdm->pos.cookie.target = periph->path->target;
1823			cdm->pos.generations[CAM_TARGET_GENERATION] =
1824				periph->path->bus->generation;
1825			cdm->pos.cookie.device = periph->path->device;
1826			cdm->pos.generations[CAM_DEV_GENERATION] =
1827				periph->path->target->generation;
1828			cdm->pos.cookie.periph = periph;
1829			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1830				periph->path->device->generation;
1831			cdm->status = CAM_DEV_MATCH_MORE;
1832			return(0);
1833		}
1834
1835		j = cdm->num_matches;
1836		cdm->num_matches++;
1837		cdm->matches[j].type = DEV_MATCH_PERIPH;
1838		cdm->matches[j].result.periph_result.path_id =
1839			periph->path->bus->path_id;
1840		cdm->matches[j].result.periph_result.target_id =
1841			periph->path->target->target_id;
1842		cdm->matches[j].result.periph_result.target_lun =
1843			periph->path->device->lun_id;
1844		cdm->matches[j].result.periph_result.unit_number =
1845			periph->unit_number;
1846		strncpy(cdm->matches[j].result.periph_result.periph_name,
1847			periph->periph_name, DEV_IDLEN);
1848	}
1849
1850	return(1);
1851}
1852
1853static int
1854xptedtmatch(struct ccb_dev_match *cdm)
1855{
1856	struct cam_eb *bus;
1857	int ret;
1858
1859	cdm->num_matches = 0;
1860
1861	/*
1862	 * Check the bus list generation.  If it has changed, the user
1863	 * needs to reset everything and start over.
1864	 */
1865	xpt_lock_buses();
1866	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1867	 && (cdm->pos.cookie.bus != NULL)) {
1868		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1869		    xsoftc.bus_generation) {
1870			xpt_unlock_buses();
1871			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1872			return(0);
1873		}
1874		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1875		bus->refcount++;
1876	} else
1877		bus = NULL;
1878	xpt_unlock_buses();
1879
1880	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1881
1882	/*
1883	 * If we get back 0, that means that we had to stop before fully
1884	 * traversing the EDT.  It also means that one of the subroutines
1885	 * has set the status field to the proper value.  If we get back 1,
1886	 * we've fully traversed the EDT and copied out any matching entries.
1887	 */
1888	if (ret == 1)
1889		cdm->status = CAM_DEV_MATCH_LAST;
1890
1891	return(ret);
1892}
1893
1894static int
1895xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1896{
1897	struct cam_periph *periph;
1898	struct ccb_dev_match *cdm;
1899
1900	cdm = (struct ccb_dev_match *)arg;
1901
1902	xpt_lock_buses();
1903	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1904	 && (cdm->pos.cookie.pdrv == pdrv)
1905	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1906	 && (cdm->pos.cookie.periph != NULL)) {
1907		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1908		    (*pdrv)->generation) {
1909			xpt_unlock_buses();
1910			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1911			return(0);
1912		}
1913		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1914		periph->refcount++;
1915	} else
1916		periph = NULL;
1917	xpt_unlock_buses();
1918
1919	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1920}
1921
1922static int
1923xptplistperiphfunc(struct cam_periph *periph, void *arg)
1924{
1925	struct ccb_dev_match *cdm;
1926	dev_match_ret retval;
1927
1928	cdm = (struct ccb_dev_match *)arg;
1929
1930	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1931
1932	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1933		cdm->status = CAM_DEV_MATCH_ERROR;
1934		return(0);
1935	}
1936
1937	/*
1938	 * If the copy flag is set, copy this peripheral out.
1939	 */
1940	if (retval & DM_RET_COPY) {
1941		int spaceleft, j;
1942
1943		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1944			sizeof(struct dev_match_result));
1945
1946		/*
1947		 * If we don't have enough space to put in another
1948		 * match result, save our position and tell the
1949		 * user there are more devices to check.
1950		 */
1951		if (spaceleft < sizeof(struct dev_match_result)) {
1952			struct periph_driver **pdrv;
1953
1954			pdrv = NULL;
1955			bzero(&cdm->pos, sizeof(cdm->pos));
1956			cdm->pos.position_type =
1957				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1958				CAM_DEV_POS_PERIPH;
1959
1960			/*
1961			 * This may look a bit non-sensical, but it is
1962			 * actually quite logical.  There are very few
1963			 * peripheral drivers, and bloating every peripheral
1964			 * structure with a pointer back to its parent
1965			 * peripheral driver linker set entry would cost
1966			 * more in the long run than doing this quick lookup.
1967			 */
1968			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1969				if (strcmp((*pdrv)->driver_name,
1970				    periph->periph_name) == 0)
1971					break;
1972			}
1973
1974			if (*pdrv == NULL) {
1975				cdm->status = CAM_DEV_MATCH_ERROR;
1976				return(0);
1977			}
1978
1979			cdm->pos.cookie.pdrv = pdrv;
1980			/*
1981			 * The periph generation slot does double duty, as
1982			 * does the periph pointer slot.  They are used for
1983			 * both edt and pdrv lookups and positioning.
1984			 */
1985			cdm->pos.cookie.periph = periph;
1986			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1987				(*pdrv)->generation;
1988			cdm->status = CAM_DEV_MATCH_MORE;
1989			return(0);
1990		}
1991
1992		j = cdm->num_matches;
1993		cdm->num_matches++;
1994		cdm->matches[j].type = DEV_MATCH_PERIPH;
1995		cdm->matches[j].result.periph_result.path_id =
1996			periph->path->bus->path_id;
1997
1998		/*
1999		 * The transport layer peripheral doesn't have a target or
2000		 * lun.
2001		 */
2002		if (periph->path->target)
2003			cdm->matches[j].result.periph_result.target_id =
2004				periph->path->target->target_id;
2005		else
2006			cdm->matches[j].result.periph_result.target_id = -1;
2007
2008		if (periph->path->device)
2009			cdm->matches[j].result.periph_result.target_lun =
2010				periph->path->device->lun_id;
2011		else
2012			cdm->matches[j].result.periph_result.target_lun = -1;
2013
2014		cdm->matches[j].result.periph_result.unit_number =
2015			periph->unit_number;
2016		strncpy(cdm->matches[j].result.periph_result.periph_name,
2017			periph->periph_name, DEV_IDLEN);
2018	}
2019
2020	return(1);
2021}
2022
2023static int
2024xptperiphlistmatch(struct ccb_dev_match *cdm)
2025{
2026	int ret;
2027
2028	cdm->num_matches = 0;
2029
2030	/*
2031	 * At this point in the edt traversal function, we check the bus
2032	 * list generation to make sure that no busses have been added or
2033	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2034	 * For the peripheral driver list traversal function, however, we
2035	 * don't have to worry about new peripheral driver types coming or
2036	 * going; they're in a linker set, and therefore can't change
2037	 * without a recompile.
2038	 */
2039
2040	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2041	 && (cdm->pos.cookie.pdrv != NULL))
2042		ret = xptpdrvtraverse(
2043				(struct periph_driver **)cdm->pos.cookie.pdrv,
2044				xptplistpdrvfunc, cdm);
2045	else
2046		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2047
2048	/*
2049	 * If we get back 0, that means that we had to stop before fully
2050	 * traversing the peripheral driver tree.  It also means that one of
2051	 * the subroutines has set the status field to the proper value.  If
2052	 * we get back 1, we've fully traversed the EDT and copied out any
2053	 * matching entries.
2054	 */
2055	if (ret == 1)
2056		cdm->status = CAM_DEV_MATCH_LAST;
2057
2058	return(ret);
2059}
2060
2061static int
2062xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2063{
2064	struct cam_eb *bus, *next_bus;
2065	int retval;
2066
2067	retval = 1;
2068	if (start_bus)
2069		bus = start_bus;
2070	else {
2071		xpt_lock_buses();
2072		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2073		if (bus == NULL) {
2074			xpt_unlock_buses();
2075			return (retval);
2076		}
2077		bus->refcount++;
2078		xpt_unlock_buses();
2079	}
2080	for (; bus != NULL; bus = next_bus) {
2081		retval = tr_func(bus, arg);
2082		if (retval == 0) {
2083			xpt_release_bus(bus);
2084			break;
2085		}
2086		xpt_lock_buses();
2087		next_bus = TAILQ_NEXT(bus, links);
2088		if (next_bus)
2089			next_bus->refcount++;
2090		xpt_unlock_buses();
2091		xpt_release_bus(bus);
2092	}
2093	return(retval);
2094}
2095
2096static int
2097xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2098		  xpt_targetfunc_t *tr_func, void *arg)
2099{
2100	struct cam_et *target, *next_target;
2101	int retval;
2102
2103	retval = 1;
2104	if (start_target)
2105		target = start_target;
2106	else {
2107		mtx_lock(&bus->eb_mtx);
2108		target = TAILQ_FIRST(&bus->et_entries);
2109		if (target == NULL) {
2110			mtx_unlock(&bus->eb_mtx);
2111			return (retval);
2112		}
2113		target->refcount++;
2114		mtx_unlock(&bus->eb_mtx);
2115	}
2116	for (; target != NULL; target = next_target) {
2117		retval = tr_func(target, arg);
2118		if (retval == 0) {
2119			xpt_release_target(target);
2120			break;
2121		}
2122		mtx_lock(&bus->eb_mtx);
2123		next_target = TAILQ_NEXT(target, links);
2124		if (next_target)
2125			next_target->refcount++;
2126		mtx_unlock(&bus->eb_mtx);
2127		xpt_release_target(target);
2128	}
2129	return(retval);
2130}
2131
2132static int
2133xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2134		  xpt_devicefunc_t *tr_func, void *arg)
2135{
2136	struct cam_eb *bus;
2137	struct cam_ed *device, *next_device;
2138	int retval;
2139
2140	retval = 1;
2141	bus = target->bus;
2142	if (start_device)
2143		device = start_device;
2144	else {
2145		mtx_lock(&bus->eb_mtx);
2146		device = TAILQ_FIRST(&target->ed_entries);
2147		if (device == NULL) {
2148			mtx_unlock(&bus->eb_mtx);
2149			return (retval);
2150		}
2151		device->refcount++;
2152		mtx_unlock(&bus->eb_mtx);
2153	}
2154	for (; device != NULL; device = next_device) {
2155		mtx_lock(&device->device_mtx);
2156		retval = tr_func(device, arg);
2157		mtx_unlock(&device->device_mtx);
2158		if (retval == 0) {
2159			xpt_release_device(device);
2160			break;
2161		}
2162		mtx_lock(&bus->eb_mtx);
2163		next_device = TAILQ_NEXT(device, links);
2164		if (next_device)
2165			next_device->refcount++;
2166		mtx_unlock(&bus->eb_mtx);
2167		xpt_release_device(device);
2168	}
2169	return(retval);
2170}
2171
2172static int
2173xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2174		  xpt_periphfunc_t *tr_func, void *arg)
2175{
2176	struct cam_eb *bus;
2177	struct cam_periph *periph, *next_periph;
2178	int retval;
2179
2180	retval = 1;
2181
2182	bus = device->target->bus;
2183	if (start_periph)
2184		periph = start_periph;
2185	else {
2186		xpt_lock_buses();
2187		mtx_lock(&bus->eb_mtx);
2188		periph = SLIST_FIRST(&device->periphs);
2189		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2190			periph = SLIST_NEXT(periph, periph_links);
2191		if (periph == NULL) {
2192			mtx_unlock(&bus->eb_mtx);
2193			xpt_unlock_buses();
2194			return (retval);
2195		}
2196		periph->refcount++;
2197		mtx_unlock(&bus->eb_mtx);
2198		xpt_unlock_buses();
2199	}
2200	for (; periph != NULL; periph = next_periph) {
2201		retval = tr_func(periph, arg);
2202		if (retval == 0) {
2203			cam_periph_release(periph);
2204			break;
2205		}
2206		xpt_lock_buses();
2207		mtx_lock(&bus->eb_mtx);
2208		next_periph = SLIST_NEXT(periph, periph_links);
2209		while (next_periph != NULL &&
2210		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2211			next_periph = SLIST_NEXT(periph, periph_links);
2212		if (next_periph)
2213			next_periph->refcount++;
2214		mtx_unlock(&bus->eb_mtx);
2215		xpt_unlock_buses();
2216		cam_periph_release_locked(periph);
2217	}
2218	return(retval);
2219}
2220
2221static int
2222xptpdrvtraverse(struct periph_driver **start_pdrv,
2223		xpt_pdrvfunc_t *tr_func, void *arg)
2224{
2225	struct periph_driver **pdrv;
2226	int retval;
2227
2228	retval = 1;
2229
2230	/*
2231	 * We don't traverse the peripheral driver list like we do the
2232	 * other lists, because it is a linker set, and therefore cannot be
2233	 * changed during runtime.  If the peripheral driver list is ever
2234	 * re-done to be something other than a linker set (i.e. it can
2235	 * change while the system is running), the list traversal should
2236	 * be modified to work like the other traversal functions.
2237	 */
2238	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2239	     *pdrv != NULL; pdrv++) {
2240		retval = tr_func(pdrv, arg);
2241
2242		if (retval == 0)
2243			return(retval);
2244	}
2245
2246	return(retval);
2247}
2248
2249static int
2250xptpdperiphtraverse(struct periph_driver **pdrv,
2251		    struct cam_periph *start_periph,
2252		    xpt_periphfunc_t *tr_func, void *arg)
2253{
2254	struct cam_periph *periph, *next_periph;
2255	int retval;
2256
2257	retval = 1;
2258
2259	if (start_periph)
2260		periph = start_periph;
2261	else {
2262		xpt_lock_buses();
2263		periph = TAILQ_FIRST(&(*pdrv)->units);
2264		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2265			periph = TAILQ_NEXT(periph, unit_links);
2266		if (periph == NULL) {
2267			xpt_unlock_buses();
2268			return (retval);
2269		}
2270		periph->refcount++;
2271		xpt_unlock_buses();
2272	}
2273	for (; periph != NULL; periph = next_periph) {
2274		cam_periph_lock(periph);
2275		retval = tr_func(periph, arg);
2276		cam_periph_unlock(periph);
2277		if (retval == 0) {
2278			cam_periph_release(periph);
2279			break;
2280		}
2281		xpt_lock_buses();
2282		next_periph = TAILQ_NEXT(periph, unit_links);
2283		while (next_periph != NULL &&
2284		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2285			next_periph = TAILQ_NEXT(periph, unit_links);
2286		if (next_periph)
2287			next_periph->refcount++;
2288		xpt_unlock_buses();
2289		cam_periph_release(periph);
2290	}
2291	return(retval);
2292}
2293
2294static int
2295xptdefbusfunc(struct cam_eb *bus, void *arg)
2296{
2297	struct xpt_traverse_config *tr_config;
2298
2299	tr_config = (struct xpt_traverse_config *)arg;
2300
2301	if (tr_config->depth == XPT_DEPTH_BUS) {
2302		xpt_busfunc_t *tr_func;
2303
2304		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2305
2306		return(tr_func(bus, tr_config->tr_arg));
2307	} else
2308		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2309}
2310
2311static int
2312xptdeftargetfunc(struct cam_et *target, void *arg)
2313{
2314	struct xpt_traverse_config *tr_config;
2315
2316	tr_config = (struct xpt_traverse_config *)arg;
2317
2318	if (tr_config->depth == XPT_DEPTH_TARGET) {
2319		xpt_targetfunc_t *tr_func;
2320
2321		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2322
2323		return(tr_func(target, tr_config->tr_arg));
2324	} else
2325		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2326}
2327
2328static int
2329xptdefdevicefunc(struct cam_ed *device, void *arg)
2330{
2331	struct xpt_traverse_config *tr_config;
2332
2333	tr_config = (struct xpt_traverse_config *)arg;
2334
2335	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2336		xpt_devicefunc_t *tr_func;
2337
2338		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2339
2340		return(tr_func(device, tr_config->tr_arg));
2341	} else
2342		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2343}
2344
2345static int
2346xptdefperiphfunc(struct cam_periph *periph, void *arg)
2347{
2348	struct xpt_traverse_config *tr_config;
2349	xpt_periphfunc_t *tr_func;
2350
2351	tr_config = (struct xpt_traverse_config *)arg;
2352
2353	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2354
2355	/*
2356	 * Unlike the other default functions, we don't check for depth
2357	 * here.  The peripheral driver level is the last level in the EDT,
2358	 * so if we're here, we should execute the function in question.
2359	 */
2360	return(tr_func(periph, tr_config->tr_arg));
2361}
2362
2363/*
2364 * Execute the given function for every bus in the EDT.
2365 */
2366static int
2367xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2368{
2369	struct xpt_traverse_config tr_config;
2370
2371	tr_config.depth = XPT_DEPTH_BUS;
2372	tr_config.tr_func = tr_func;
2373	tr_config.tr_arg = arg;
2374
2375	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2376}
2377
2378/*
2379 * Execute the given function for every device in the EDT.
2380 */
2381static int
2382xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2383{
2384	struct xpt_traverse_config tr_config;
2385
2386	tr_config.depth = XPT_DEPTH_DEVICE;
2387	tr_config.tr_func = tr_func;
2388	tr_config.tr_arg = arg;
2389
2390	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2391}
2392
2393static int
2394xptsetasyncfunc(struct cam_ed *device, void *arg)
2395{
2396	struct cam_path path;
2397	struct ccb_getdev cgd;
2398	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2399
2400	/*
2401	 * Don't report unconfigured devices (Wildcard devs,
2402	 * devices only for target mode, device instances
2403	 * that have been invalidated but are waiting for
2404	 * their last reference count to be released).
2405	 */
2406	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2407		return (1);
2408
2409	xpt_compile_path(&path,
2410			 NULL,
2411			 device->target->bus->path_id,
2412			 device->target->target_id,
2413			 device->lun_id);
2414	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2415	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2416	xpt_action((union ccb *)&cgd);
2417	csa->callback(csa->callback_arg,
2418			    AC_FOUND_DEVICE,
2419			    &path, &cgd);
2420	xpt_release_path(&path);
2421
2422	return(1);
2423}
2424
2425static int
2426xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2427{
2428	struct cam_path path;
2429	struct ccb_pathinq cpi;
2430	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2431
2432	xpt_compile_path(&path, /*periph*/NULL,
2433			 bus->path_id,
2434			 CAM_TARGET_WILDCARD,
2435			 CAM_LUN_WILDCARD);
2436	xpt_path_lock(&path);
2437	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2438	cpi.ccb_h.func_code = XPT_PATH_INQ;
2439	xpt_action((union ccb *)&cpi);
2440	csa->callback(csa->callback_arg,
2441			    AC_PATH_REGISTERED,
2442			    &path, &cpi);
2443	xpt_path_unlock(&path);
2444	xpt_release_path(&path);
2445
2446	return(1);
2447}
2448
2449void
2450xpt_action(union ccb *start_ccb)
2451{
2452
2453	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2454
2455	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2456	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2457}
2458
2459void
2460xpt_action_default(union ccb *start_ccb)
2461{
2462	struct cam_path *path;
2463	struct cam_sim *sim;
2464	int lock;
2465
2466	path = start_ccb->ccb_h.path;
2467	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2468
2469	switch (start_ccb->ccb_h.func_code) {
2470	case XPT_SCSI_IO:
2471	{
2472		struct cam_ed *device;
2473
2474		/*
2475		 * For the sake of compatibility with SCSI-1
2476		 * devices that may not understand the identify
2477		 * message, we include lun information in the
2478		 * second byte of all commands.  SCSI-1 specifies
2479		 * that luns are a 3 bit value and reserves only 3
2480		 * bits for lun information in the CDB.  Later
2481		 * revisions of the SCSI spec allow for more than 8
2482		 * luns, but have deprecated lun information in the
2483		 * CDB.  So, if the lun won't fit, we must omit.
2484		 *
2485		 * Also be aware that during initial probing for devices,
2486		 * the inquiry information is unknown but initialized to 0.
2487		 * This means that this code will be exercised while probing
2488		 * devices with an ANSI revision greater than 2.
2489		 */
2490		device = path->device;
2491		if (device->protocol_version <= SCSI_REV_2
2492		 && start_ccb->ccb_h.target_lun < 8
2493		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2494
2495			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2496			    start_ccb->ccb_h.target_lun << 5;
2497		}
2498		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2499	}
2500	/* FALLTHROUGH */
2501	case XPT_TARGET_IO:
2502	case XPT_CONT_TARGET_IO:
2503		start_ccb->csio.sense_resid = 0;
2504		start_ccb->csio.resid = 0;
2505		/* FALLTHROUGH */
2506	case XPT_ATA_IO:
2507		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2508			start_ccb->ataio.resid = 0;
2509		/* FALLTHROUGH */
2510	case XPT_RESET_DEV:
2511	case XPT_ENG_EXEC:
2512	case XPT_SMP_IO:
2513	{
2514		struct cam_devq *devq;
2515
2516		devq = path->bus->sim->devq;
2517		mtx_lock(&devq->send_mtx);
2518		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2519		if (xpt_schedule_devq(devq, path->device) != 0)
2520			xpt_run_devq(devq);
2521		mtx_unlock(&devq->send_mtx);
2522		break;
2523	}
2524	case XPT_CALC_GEOMETRY:
2525		/* Filter out garbage */
2526		if (start_ccb->ccg.block_size == 0
2527		 || start_ccb->ccg.volume_size == 0) {
2528			start_ccb->ccg.cylinders = 0;
2529			start_ccb->ccg.heads = 0;
2530			start_ccb->ccg.secs_per_track = 0;
2531			start_ccb->ccb_h.status = CAM_REQ_CMP;
2532			break;
2533		}
2534#if defined(PC98) || defined(__sparc64__)
2535		/*
2536		 * In a PC-98 system, geometry translation depens on
2537		 * the "real" device geometry obtained from mode page 4.
2538		 * SCSI geometry translation is performed in the
2539		 * initialization routine of the SCSI BIOS and the result
2540		 * stored in host memory.  If the translation is available
2541		 * in host memory, use it.  If not, rely on the default
2542		 * translation the device driver performs.
2543		 * For sparc64, we may need adjust the geometry of large
2544		 * disks in order to fit the limitations of the 16-bit
2545		 * fields of the VTOC8 disk label.
2546		 */
2547		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2548			start_ccb->ccb_h.status = CAM_REQ_CMP;
2549			break;
2550		}
2551#endif
2552		goto call_sim;
2553	case XPT_ABORT:
2554	{
2555		union ccb* abort_ccb;
2556
2557		abort_ccb = start_ccb->cab.abort_ccb;
2558		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2559
2560			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2561				struct cam_ccbq *ccbq;
2562				struct cam_ed *device;
2563
2564				device = abort_ccb->ccb_h.path->device;
2565				ccbq = &device->ccbq;
2566				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2567				abort_ccb->ccb_h.status =
2568				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2569				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2570				xpt_done(abort_ccb);
2571				start_ccb->ccb_h.status = CAM_REQ_CMP;
2572				break;
2573			}
2574			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2575			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2576				/*
2577				 * We've caught this ccb en route to
2578				 * the SIM.  Flag it for abort and the
2579				 * SIM will do so just before starting
2580				 * real work on the CCB.
2581				 */
2582				abort_ccb->ccb_h.status =
2583				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2584				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2585				start_ccb->ccb_h.status = CAM_REQ_CMP;
2586				break;
2587			}
2588		}
2589		if (XPT_FC_IS_QUEUED(abort_ccb)
2590		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2591			/*
2592			 * It's already completed but waiting
2593			 * for our SWI to get to it.
2594			 */
2595			start_ccb->ccb_h.status = CAM_UA_ABORT;
2596			break;
2597		}
2598		/*
2599		 * If we weren't able to take care of the abort request
2600		 * in the XPT, pass the request down to the SIM for processing.
2601		 */
2602	}
2603	/* FALLTHROUGH */
2604	case XPT_ACCEPT_TARGET_IO:
2605	case XPT_EN_LUN:
2606	case XPT_IMMED_NOTIFY:
2607	case XPT_NOTIFY_ACK:
2608	case XPT_RESET_BUS:
2609	case XPT_IMMEDIATE_NOTIFY:
2610	case XPT_NOTIFY_ACKNOWLEDGE:
2611	case XPT_GET_SIM_KNOB:
2612	case XPT_SET_SIM_KNOB:
2613	case XPT_GET_TRAN_SETTINGS:
2614	case XPT_SET_TRAN_SETTINGS:
2615	case XPT_PATH_INQ:
2616call_sim:
2617		sim = path->bus->sim;
2618		lock = (mtx_owned(sim->mtx) == 0);
2619		if (lock)
2620			CAM_SIM_LOCK(sim);
2621		(*(sim->sim_action))(sim, start_ccb);
2622		if (lock)
2623			CAM_SIM_UNLOCK(sim);
2624		break;
2625	case XPT_PATH_STATS:
2626		start_ccb->cpis.last_reset = path->bus->last_reset;
2627		start_ccb->ccb_h.status = CAM_REQ_CMP;
2628		break;
2629	case XPT_GDEV_TYPE:
2630	{
2631		struct cam_ed *dev;
2632
2633		dev = path->device;
2634		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2635			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2636		} else {
2637			struct ccb_getdev *cgd;
2638
2639			cgd = &start_ccb->cgd;
2640			cgd->protocol = dev->protocol;
2641			cgd->inq_data = dev->inq_data;
2642			cgd->ident_data = dev->ident_data;
2643			cgd->inq_flags = dev->inq_flags;
2644			cgd->ccb_h.status = CAM_REQ_CMP;
2645			cgd->serial_num_len = dev->serial_num_len;
2646			if ((dev->serial_num_len > 0)
2647			 && (dev->serial_num != NULL))
2648				bcopy(dev->serial_num, cgd->serial_num,
2649				      dev->serial_num_len);
2650		}
2651		break;
2652	}
2653	case XPT_GDEV_STATS:
2654	{
2655		struct cam_ed *dev;
2656
2657		dev = path->device;
2658		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2659			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2660		} else {
2661			struct ccb_getdevstats *cgds;
2662			struct cam_eb *bus;
2663			struct cam_et *tar;
2664
2665			cgds = &start_ccb->cgds;
2666			bus = path->bus;
2667			tar = path->target;
2668			cgds->dev_openings = dev->ccbq.dev_openings;
2669			cgds->dev_active = dev->ccbq.dev_active;
2670			cgds->devq_openings = dev->ccbq.devq_openings;
2671			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2672			cgds->held = dev->ccbq.held;
2673			cgds->last_reset = tar->last_reset;
2674			cgds->maxtags = dev->maxtags;
2675			cgds->mintags = dev->mintags;
2676			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2677				cgds->last_reset = bus->last_reset;
2678			cgds->ccb_h.status = CAM_REQ_CMP;
2679		}
2680		break;
2681	}
2682	case XPT_GDEVLIST:
2683	{
2684		struct cam_periph	*nperiph;
2685		struct periph_list	*periph_head;
2686		struct ccb_getdevlist	*cgdl;
2687		u_int			i;
2688		struct cam_ed		*device;
2689		int			found;
2690
2691
2692		found = 0;
2693
2694		/*
2695		 * Don't want anyone mucking with our data.
2696		 */
2697		device = path->device;
2698		periph_head = &device->periphs;
2699		cgdl = &start_ccb->cgdl;
2700
2701		/*
2702		 * Check and see if the list has changed since the user
2703		 * last requested a list member.  If so, tell them that the
2704		 * list has changed, and therefore they need to start over
2705		 * from the beginning.
2706		 */
2707		if ((cgdl->index != 0) &&
2708		    (cgdl->generation != device->generation)) {
2709			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2710			break;
2711		}
2712
2713		/*
2714		 * Traverse the list of peripherals and attempt to find
2715		 * the requested peripheral.
2716		 */
2717		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2718		     (nperiph != NULL) && (i <= cgdl->index);
2719		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2720			if (i == cgdl->index) {
2721				strncpy(cgdl->periph_name,
2722					nperiph->periph_name,
2723					DEV_IDLEN);
2724				cgdl->unit_number = nperiph->unit_number;
2725				found = 1;
2726			}
2727		}
2728		if (found == 0) {
2729			cgdl->status = CAM_GDEVLIST_ERROR;
2730			break;
2731		}
2732
2733		if (nperiph == NULL)
2734			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2735		else
2736			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2737
2738		cgdl->index++;
2739		cgdl->generation = device->generation;
2740
2741		cgdl->ccb_h.status = CAM_REQ_CMP;
2742		break;
2743	}
2744	case XPT_DEV_MATCH:
2745	{
2746		dev_pos_type position_type;
2747		struct ccb_dev_match *cdm;
2748
2749		cdm = &start_ccb->cdm;
2750
2751		/*
2752		 * There are two ways of getting at information in the EDT.
2753		 * The first way is via the primary EDT tree.  It starts
2754		 * with a list of busses, then a list of targets on a bus,
2755		 * then devices/luns on a target, and then peripherals on a
2756		 * device/lun.  The "other" way is by the peripheral driver
2757		 * lists.  The peripheral driver lists are organized by
2758		 * peripheral driver.  (obviously)  So it makes sense to
2759		 * use the peripheral driver list if the user is looking
2760		 * for something like "da1", or all "da" devices.  If the
2761		 * user is looking for something on a particular bus/target
2762		 * or lun, it's generally better to go through the EDT tree.
2763		 */
2764
2765		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2766			position_type = cdm->pos.position_type;
2767		else {
2768			u_int i;
2769
2770			position_type = CAM_DEV_POS_NONE;
2771
2772			for (i = 0; i < cdm->num_patterns; i++) {
2773				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2774				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2775					position_type = CAM_DEV_POS_EDT;
2776					break;
2777				}
2778			}
2779
2780			if (cdm->num_patterns == 0)
2781				position_type = CAM_DEV_POS_EDT;
2782			else if (position_type == CAM_DEV_POS_NONE)
2783				position_type = CAM_DEV_POS_PDRV;
2784		}
2785
2786		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2787		case CAM_DEV_POS_EDT:
2788			xptedtmatch(cdm);
2789			break;
2790		case CAM_DEV_POS_PDRV:
2791			xptperiphlistmatch(cdm);
2792			break;
2793		default:
2794			cdm->status = CAM_DEV_MATCH_ERROR;
2795			break;
2796		}
2797
2798		if (cdm->status == CAM_DEV_MATCH_ERROR)
2799			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2800		else
2801			start_ccb->ccb_h.status = CAM_REQ_CMP;
2802
2803		break;
2804	}
2805	case XPT_SASYNC_CB:
2806	{
2807		struct ccb_setasync *csa;
2808		struct async_node *cur_entry;
2809		struct async_list *async_head;
2810		u_int32_t added;
2811
2812		csa = &start_ccb->csa;
2813		added = csa->event_enable;
2814		async_head = &path->device->asyncs;
2815
2816		/*
2817		 * If there is already an entry for us, simply
2818		 * update it.
2819		 */
2820		cur_entry = SLIST_FIRST(async_head);
2821		while (cur_entry != NULL) {
2822			if ((cur_entry->callback_arg == csa->callback_arg)
2823			 && (cur_entry->callback == csa->callback))
2824				break;
2825			cur_entry = SLIST_NEXT(cur_entry, links);
2826		}
2827
2828		if (cur_entry != NULL) {
2829		 	/*
2830			 * If the request has no flags set,
2831			 * remove the entry.
2832			 */
2833			added &= ~cur_entry->event_enable;
2834			if (csa->event_enable == 0) {
2835				SLIST_REMOVE(async_head, cur_entry,
2836					     async_node, links);
2837				xpt_release_device(path->device);
2838				free(cur_entry, M_CAMXPT);
2839			} else {
2840				cur_entry->event_enable = csa->event_enable;
2841			}
2842			csa->event_enable = added;
2843		} else {
2844			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2845					   M_NOWAIT);
2846			if (cur_entry == NULL) {
2847				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2848				break;
2849			}
2850			cur_entry->event_enable = csa->event_enable;
2851			cur_entry->event_lock =
2852			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2853			cur_entry->callback_arg = csa->callback_arg;
2854			cur_entry->callback = csa->callback;
2855			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2856			xpt_acquire_device(path->device);
2857		}
2858		start_ccb->ccb_h.status = CAM_REQ_CMP;
2859		break;
2860	}
2861	case XPT_REL_SIMQ:
2862	{
2863		struct ccb_relsim *crs;
2864		struct cam_ed *dev;
2865
2866		crs = &start_ccb->crs;
2867		dev = path->device;
2868		if (dev == NULL) {
2869
2870			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2871			break;
2872		}
2873
2874		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2875
2876			/* Don't ever go below one opening */
2877			if (crs->openings > 0) {
2878				xpt_dev_ccbq_resize(path, crs->openings);
2879				if (bootverbose) {
2880					xpt_print(path,
2881					    "number of openings is now %d\n",
2882					    crs->openings);
2883				}
2884			}
2885		}
2886
2887		mtx_lock(&dev->sim->devq->send_mtx);
2888		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2889
2890			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2891
2892				/*
2893				 * Just extend the old timeout and decrement
2894				 * the freeze count so that a single timeout
2895				 * is sufficient for releasing the queue.
2896				 */
2897				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2898				callout_stop(&dev->callout);
2899			} else {
2900
2901				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2902			}
2903
2904			callout_reset(&dev->callout,
2905			    (crs->release_timeout * hz) / 1000,
2906			    xpt_release_devq_timeout, dev);
2907
2908			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2909
2910		}
2911
2912		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2913
2914			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2915				/*
2916				 * Decrement the freeze count so that a single
2917				 * completion is still sufficient to unfreeze
2918				 * the queue.
2919				 */
2920				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2921			} else {
2922
2923				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2924				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2925			}
2926		}
2927
2928		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2929
2930			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2931			 || (dev->ccbq.dev_active == 0)) {
2932
2933				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2934			} else {
2935
2936				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2937				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2938			}
2939		}
2940		mtx_unlock(&dev->sim->devq->send_mtx);
2941
2942		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2943			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2944		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2945		start_ccb->ccb_h.status = CAM_REQ_CMP;
2946		break;
2947	}
2948	case XPT_DEBUG: {
2949		struct cam_path *oldpath;
2950
2951		/* Check that all request bits are supported. */
2952		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2953			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2954			break;
2955		}
2956
2957		cam_dflags = CAM_DEBUG_NONE;
2958		if (cam_dpath != NULL) {
2959			oldpath = cam_dpath;
2960			cam_dpath = NULL;
2961			xpt_free_path(oldpath);
2962		}
2963		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2964			if (xpt_create_path(&cam_dpath, NULL,
2965					    start_ccb->ccb_h.path_id,
2966					    start_ccb->ccb_h.target_id,
2967					    start_ccb->ccb_h.target_lun) !=
2968					    CAM_REQ_CMP) {
2969				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2970			} else {
2971				cam_dflags = start_ccb->cdbg.flags;
2972				start_ccb->ccb_h.status = CAM_REQ_CMP;
2973				xpt_print(cam_dpath, "debugging flags now %x\n",
2974				    cam_dflags);
2975			}
2976		} else
2977			start_ccb->ccb_h.status = CAM_REQ_CMP;
2978		break;
2979	}
2980	case XPT_NOOP:
2981		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2982			xpt_freeze_devq(path, 1);
2983		start_ccb->ccb_h.status = CAM_REQ_CMP;
2984		break;
2985	default:
2986	case XPT_SDEV_TYPE:
2987	case XPT_TERM_IO:
2988	case XPT_ENG_INQ:
2989		/* XXX Implement */
2990		printf("%s: CCB type %#x not supported\n", __func__,
2991		       start_ccb->ccb_h.func_code);
2992		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2993		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2994			xpt_done(start_ccb);
2995		}
2996		break;
2997	}
2998}
2999
3000void
3001xpt_polled_action(union ccb *start_ccb)
3002{
3003	u_int32_t timeout;
3004	struct	  cam_sim *sim;
3005	struct	  cam_devq *devq;
3006	struct	  cam_ed *dev;
3007
3008	timeout = start_ccb->ccb_h.timeout * 10;
3009	sim = start_ccb->ccb_h.path->bus->sim;
3010	devq = sim->devq;
3011	dev = start_ccb->ccb_h.path->device;
3012
3013	mtx_unlock(&dev->device_mtx);
3014
3015	/*
3016	 * Steal an opening so that no other queued requests
3017	 * can get it before us while we simulate interrupts.
3018	 */
3019	mtx_lock(&devq->send_mtx);
3020	dev->ccbq.devq_openings--;
3021	dev->ccbq.dev_openings--;
3022	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3023	    (--timeout > 0)) {
3024		mtx_unlock(&devq->send_mtx);
3025		DELAY(100);
3026		CAM_SIM_LOCK(sim);
3027		(*(sim->sim_poll))(sim);
3028		CAM_SIM_UNLOCK(sim);
3029		camisr_runqueue();
3030		mtx_lock(&devq->send_mtx);
3031	}
3032	dev->ccbq.devq_openings++;
3033	dev->ccbq.dev_openings++;
3034	mtx_unlock(&devq->send_mtx);
3035
3036	if (timeout != 0) {
3037		xpt_action(start_ccb);
3038		while(--timeout > 0) {
3039			CAM_SIM_LOCK(sim);
3040			(*(sim->sim_poll))(sim);
3041			CAM_SIM_UNLOCK(sim);
3042			camisr_runqueue();
3043			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3044			    != CAM_REQ_INPROG)
3045				break;
3046			DELAY(100);
3047		}
3048		if (timeout == 0) {
3049			/*
3050			 * XXX Is it worth adding a sim_timeout entry
3051			 * point so we can attempt recovery?  If
3052			 * this is only used for dumps, I don't think
3053			 * it is.
3054			 */
3055			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3056		}
3057	} else {
3058		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3059	}
3060
3061	mtx_lock(&dev->device_mtx);
3062}
3063
3064/*
3065 * Schedule a peripheral driver to receive a ccb when it's
3066 * target device has space for more transactions.
3067 */
3068void
3069xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3070{
3071
3072	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3073	cam_periph_assert(periph, MA_OWNED);
3074	if (new_priority < periph->scheduled_priority) {
3075		periph->scheduled_priority = new_priority;
3076		xpt_run_allocq(periph, 0);
3077	}
3078}
3079
3080
3081/*
3082 * Schedule a device to run on a given queue.
3083 * If the device was inserted as a new entry on the queue,
3084 * return 1 meaning the device queue should be run. If we
3085 * were already queued, implying someone else has already
3086 * started the queue, return 0 so the caller doesn't attempt
3087 * to run the queue.
3088 */
3089static int
3090xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3091		 u_int32_t new_priority)
3092{
3093	int retval;
3094	u_int32_t old_priority;
3095
3096	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3097
3098	old_priority = pinfo->priority;
3099
3100	/*
3101	 * Are we already queued?
3102	 */
3103	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3104		/* Simply reorder based on new priority */
3105		if (new_priority < old_priority) {
3106			camq_change_priority(queue, pinfo->index,
3107					     new_priority);
3108			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3109					("changed priority to %d\n",
3110					 new_priority));
3111			retval = 1;
3112		} else
3113			retval = 0;
3114	} else {
3115		/* New entry on the queue */
3116		if (new_priority < old_priority)
3117			pinfo->priority = new_priority;
3118
3119		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3120				("Inserting onto queue\n"));
3121		pinfo->generation = ++queue->generation;
3122		camq_insert(queue, pinfo);
3123		retval = 1;
3124	}
3125	return (retval);
3126}
3127
3128static void
3129xpt_run_allocq_task(void *context, int pending)
3130{
3131	struct cam_periph *periph = context;
3132
3133	cam_periph_lock(periph);
3134	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3135	xpt_run_allocq(periph, 1);
3136	cam_periph_unlock(periph);
3137	cam_periph_release(periph);
3138}
3139
3140static void
3141xpt_run_allocq(struct cam_periph *periph, int sleep)
3142{
3143	struct cam_ed	*device;
3144	union ccb	*ccb;
3145	uint32_t	 prio;
3146
3147	cam_periph_assert(periph, MA_OWNED);
3148	if (periph->periph_allocating)
3149		return;
3150	periph->periph_allocating = 1;
3151	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3152	device = periph->path->device;
3153	ccb = NULL;
3154restart:
3155	while ((prio = min(periph->scheduled_priority,
3156	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3157	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3158	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3159
3160		if (ccb == NULL &&
3161		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3162			if (sleep) {
3163				ccb = xpt_get_ccb(periph);
3164				goto restart;
3165			}
3166			if (periph->flags & CAM_PERIPH_RUN_TASK)
3167				break;
3168			xpt_lock_buses();
3169			periph->refcount++;	/* Unconditionally acquire */
3170			xpt_unlock_buses();
3171			periph->flags |= CAM_PERIPH_RUN_TASK;
3172			taskqueue_enqueue(xsoftc.xpt_taskq,
3173			    &periph->periph_run_task);
3174			break;
3175		}
3176		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3177		if (prio == periph->immediate_priority) {
3178			periph->immediate_priority = CAM_PRIORITY_NONE;
3179			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3180					("waking cam_periph_getccb()\n"));
3181			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3182					  periph_links.sle);
3183			wakeup(&periph->ccb_list);
3184		} else {
3185			periph->scheduled_priority = CAM_PRIORITY_NONE;
3186			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3187					("calling periph_start()\n"));
3188			periph->periph_start(periph, ccb);
3189		}
3190		ccb = NULL;
3191	}
3192	if (ccb != NULL)
3193		xpt_release_ccb(ccb);
3194	periph->periph_allocating = 0;
3195}
3196
3197static void
3198xpt_run_devq(struct cam_devq *devq)
3199{
3200	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3201	int lock;
3202
3203	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3204
3205	devq->send_queue.qfrozen_cnt++;
3206	while ((devq->send_queue.entries > 0)
3207	    && (devq->send_openings > 0)
3208	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3209		struct	cam_ed *device;
3210		union ccb *work_ccb;
3211		struct	cam_sim *sim;
3212
3213		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3214							   CAMQ_HEAD);
3215		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3216				("running device %p\n", device));
3217
3218		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3219		if (work_ccb == NULL) {
3220			printf("device on run queue with no ccbs???\n");
3221			continue;
3222		}
3223
3224		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3225
3226			mtx_lock(&xsoftc.xpt_lock);
3227		 	if (xsoftc.num_highpower <= 0) {
3228				/*
3229				 * We got a high power command, but we
3230				 * don't have any available slots.  Freeze
3231				 * the device queue until we have a slot
3232				 * available.
3233				 */
3234				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3235				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3236						   highpowerq_entry);
3237
3238				mtx_unlock(&xsoftc.xpt_lock);
3239				continue;
3240			} else {
3241				/*
3242				 * Consume a high power slot while
3243				 * this ccb runs.
3244				 */
3245				xsoftc.num_highpower--;
3246			}
3247			mtx_unlock(&xsoftc.xpt_lock);
3248		}
3249		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3250		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3251		devq->send_openings--;
3252		devq->send_active++;
3253		xpt_schedule_devq(devq, device);
3254		mtx_unlock(&devq->send_mtx);
3255
3256		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3257			/*
3258			 * The client wants to freeze the queue
3259			 * after this CCB is sent.
3260			 */
3261			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3262		}
3263
3264		/* In Target mode, the peripheral driver knows best... */
3265		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3266			if ((device->inq_flags & SID_CmdQue) != 0
3267			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3268				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3269			else
3270				/*
3271				 * Clear this in case of a retried CCB that
3272				 * failed due to a rejected tag.
3273				 */
3274				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3275		}
3276
3277		switch (work_ccb->ccb_h.func_code) {
3278		case XPT_SCSI_IO:
3279			CAM_DEBUG(work_ccb->ccb_h.path,
3280			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3281			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3282					  &device->inq_data),
3283			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3284					     cdb_str, sizeof(cdb_str))));
3285			break;
3286		case XPT_ATA_IO:
3287			CAM_DEBUG(work_ccb->ccb_h.path,
3288			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3289			     ata_op_string(&work_ccb->ataio.cmd),
3290			     ata_cmd_string(&work_ccb->ataio.cmd,
3291					    cdb_str, sizeof(cdb_str))));
3292			break;
3293		default:
3294			break;
3295		}
3296
3297		/*
3298		 * Device queues can be shared among multiple SIM instances
3299		 * that reside on different busses.  Use the SIM from the
3300		 * queued device, rather than the one from the calling bus.
3301		 */
3302		sim = device->sim;
3303		lock = (mtx_owned(sim->mtx) == 0);
3304		if (lock)
3305			CAM_SIM_LOCK(sim);
3306		(*(sim->sim_action))(sim, work_ccb);
3307		if (lock)
3308			CAM_SIM_UNLOCK(sim);
3309		mtx_lock(&devq->send_mtx);
3310	}
3311	devq->send_queue.qfrozen_cnt--;
3312}
3313
3314/*
3315 * This function merges stuff from the slave ccb into the master ccb, while
3316 * keeping important fields in the master ccb constant.
3317 */
3318void
3319xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3320{
3321
3322	/*
3323	 * Pull fields that are valid for peripheral drivers to set
3324	 * into the master CCB along with the CCB "payload".
3325	 */
3326	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3327	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3328	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3329	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3330	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3331	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3332}
3333
3334void
3335xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3336{
3337
3338	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3339	ccb_h->pinfo.priority = priority;
3340	ccb_h->path = path;
3341	ccb_h->path_id = path->bus->path_id;
3342	if (path->target)
3343		ccb_h->target_id = path->target->target_id;
3344	else
3345		ccb_h->target_id = CAM_TARGET_WILDCARD;
3346	if (path->device) {
3347		ccb_h->target_lun = path->device->lun_id;
3348		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3349	} else {
3350		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3351	}
3352	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3353	ccb_h->flags = 0;
3354	ccb_h->xflags = 0;
3355}
3356
3357/* Path manipulation functions */
3358cam_status
3359xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3360		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3361{
3362	struct	   cam_path *path;
3363	cam_status status;
3364
3365	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3366
3367	if (path == NULL) {
3368		status = CAM_RESRC_UNAVAIL;
3369		return(status);
3370	}
3371	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3372	if (status != CAM_REQ_CMP) {
3373		free(path, M_CAMPATH);
3374		path = NULL;
3375	}
3376	*new_path_ptr = path;
3377	return (status);
3378}
3379
3380cam_status
3381xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3382			 struct cam_periph *periph, path_id_t path_id,
3383			 target_id_t target_id, lun_id_t lun_id)
3384{
3385
3386	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3387	    lun_id));
3388}
3389
3390cam_status
3391xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3392		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3393{
3394	struct	     cam_eb *bus;
3395	struct	     cam_et *target;
3396	struct	     cam_ed *device;
3397	cam_status   status;
3398
3399	status = CAM_REQ_CMP;	/* Completed without error */
3400	target = NULL;		/* Wildcarded */
3401	device = NULL;		/* Wildcarded */
3402
3403	/*
3404	 * We will potentially modify the EDT, so block interrupts
3405	 * that may attempt to create cam paths.
3406	 */
3407	bus = xpt_find_bus(path_id);
3408	if (bus == NULL) {
3409		status = CAM_PATH_INVALID;
3410	} else {
3411		xpt_lock_buses();
3412		mtx_lock(&bus->eb_mtx);
3413		target = xpt_find_target(bus, target_id);
3414		if (target == NULL) {
3415			/* Create one */
3416			struct cam_et *new_target;
3417
3418			new_target = xpt_alloc_target(bus, target_id);
3419			if (new_target == NULL) {
3420				status = CAM_RESRC_UNAVAIL;
3421			} else {
3422				target = new_target;
3423			}
3424		}
3425		xpt_unlock_buses();
3426		if (target != NULL) {
3427			device = xpt_find_device(target, lun_id);
3428			if (device == NULL) {
3429				/* Create one */
3430				struct cam_ed *new_device;
3431
3432				new_device =
3433				    (*(bus->xport->alloc_device))(bus,
3434								      target,
3435								      lun_id);
3436				if (new_device == NULL) {
3437					status = CAM_RESRC_UNAVAIL;
3438				} else {
3439					device = new_device;
3440				}
3441			}
3442		}
3443		mtx_unlock(&bus->eb_mtx);
3444	}
3445
3446	/*
3447	 * Only touch the user's data if we are successful.
3448	 */
3449	if (status == CAM_REQ_CMP) {
3450		new_path->periph = perph;
3451		new_path->bus = bus;
3452		new_path->target = target;
3453		new_path->device = device;
3454		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3455	} else {
3456		if (device != NULL)
3457			xpt_release_device(device);
3458		if (target != NULL)
3459			xpt_release_target(target);
3460		if (bus != NULL)
3461			xpt_release_bus(bus);
3462	}
3463	return (status);
3464}
3465
3466cam_status
3467xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3468{
3469	struct	   cam_path *new_path;
3470
3471	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3472	if (new_path == NULL)
3473		return(CAM_RESRC_UNAVAIL);
3474	xpt_copy_path(new_path, path);
3475	*new_path_ptr = new_path;
3476	return (CAM_REQ_CMP);
3477}
3478
3479void
3480xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3481{
3482
3483	*new_path = *path;
3484	if (path->bus != NULL)
3485		xpt_acquire_bus(path->bus);
3486	if (path->target != NULL)
3487		xpt_acquire_target(path->target);
3488	if (path->device != NULL)
3489		xpt_acquire_device(path->device);
3490}
3491
3492void
3493xpt_release_path(struct cam_path *path)
3494{
3495	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3496	if (path->device != NULL) {
3497		xpt_release_device(path->device);
3498		path->device = NULL;
3499	}
3500	if (path->target != NULL) {
3501		xpt_release_target(path->target);
3502		path->target = NULL;
3503	}
3504	if (path->bus != NULL) {
3505		xpt_release_bus(path->bus);
3506		path->bus = NULL;
3507	}
3508}
3509
3510void
3511xpt_free_path(struct cam_path *path)
3512{
3513
3514	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3515	xpt_release_path(path);
3516	free(path, M_CAMPATH);
3517}
3518
3519void
3520xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3521    uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3522{
3523
3524	xpt_lock_buses();
3525	if (bus_ref) {
3526		if (path->bus)
3527			*bus_ref = path->bus->refcount;
3528		else
3529			*bus_ref = 0;
3530	}
3531	if (periph_ref) {
3532		if (path->periph)
3533			*periph_ref = path->periph->refcount;
3534		else
3535			*periph_ref = 0;
3536	}
3537	xpt_unlock_buses();
3538	if (target_ref) {
3539		if (path->target)
3540			*target_ref = path->target->refcount;
3541		else
3542			*target_ref = 0;
3543	}
3544	if (device_ref) {
3545		if (path->device)
3546			*device_ref = path->device->refcount;
3547		else
3548			*device_ref = 0;
3549	}
3550}
3551
3552/*
3553 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3554 * in path1, 2 for match with wildcards in path2.
3555 */
3556int
3557xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3558{
3559	int retval = 0;
3560
3561	if (path1->bus != path2->bus) {
3562		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3563			retval = 1;
3564		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3565			retval = 2;
3566		else
3567			return (-1);
3568	}
3569	if (path1->target != path2->target) {
3570		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3571			if (retval == 0)
3572				retval = 1;
3573		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3574			retval = 2;
3575		else
3576			return (-1);
3577	}
3578	if (path1->device != path2->device) {
3579		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3580			if (retval == 0)
3581				retval = 1;
3582		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3583			retval = 2;
3584		else
3585			return (-1);
3586	}
3587	return (retval);
3588}
3589
3590int
3591xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3592{
3593	int retval = 0;
3594
3595	if (path->bus != dev->target->bus) {
3596		if (path->bus->path_id == CAM_BUS_WILDCARD)
3597			retval = 1;
3598		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3599			retval = 2;
3600		else
3601			return (-1);
3602	}
3603	if (path->target != dev->target) {
3604		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3605			if (retval == 0)
3606				retval = 1;
3607		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3608			retval = 2;
3609		else
3610			return (-1);
3611	}
3612	if (path->device != dev) {
3613		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3614			if (retval == 0)
3615				retval = 1;
3616		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3617			retval = 2;
3618		else
3619			return (-1);
3620	}
3621	return (retval);
3622}
3623
3624void
3625xpt_print_path(struct cam_path *path)
3626{
3627
3628	if (path == NULL)
3629		printf("(nopath): ");
3630	else {
3631		if (path->periph != NULL)
3632			printf("(%s%d:", path->periph->periph_name,
3633			       path->periph->unit_number);
3634		else
3635			printf("(noperiph:");
3636
3637		if (path->bus != NULL)
3638			printf("%s%d:%d:", path->bus->sim->sim_name,
3639			       path->bus->sim->unit_number,
3640			       path->bus->sim->bus_id);
3641		else
3642			printf("nobus:");
3643
3644		if (path->target != NULL)
3645			printf("%d:", path->target->target_id);
3646		else
3647			printf("X:");
3648
3649		if (path->device != NULL)
3650			printf("%d): ", path->device->lun_id);
3651		else
3652			printf("X): ");
3653	}
3654}
3655
3656void
3657xpt_print_device(struct cam_ed *device)
3658{
3659
3660	if (device == NULL)
3661		printf("(nopath): ");
3662	else {
3663		printf("(noperiph:%s%d:%d:%d:%d): ", device->sim->sim_name,
3664		       device->sim->unit_number,
3665		       device->sim->bus_id,
3666		       device->target->target_id,
3667		       device->lun_id);
3668	}
3669}
3670
3671void
3672xpt_print(struct cam_path *path, const char *fmt, ...)
3673{
3674	va_list ap;
3675	xpt_print_path(path);
3676	va_start(ap, fmt);
3677	vprintf(fmt, ap);
3678	va_end(ap);
3679}
3680
3681int
3682xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3683{
3684	struct sbuf sb;
3685
3686	sbuf_new(&sb, str, str_len, 0);
3687
3688	if (path == NULL)
3689		sbuf_printf(&sb, "(nopath): ");
3690	else {
3691		if (path->periph != NULL)
3692			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3693				    path->periph->unit_number);
3694		else
3695			sbuf_printf(&sb, "(noperiph:");
3696
3697		if (path->bus != NULL)
3698			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3699				    path->bus->sim->unit_number,
3700				    path->bus->sim->bus_id);
3701		else
3702			sbuf_printf(&sb, "nobus:");
3703
3704		if (path->target != NULL)
3705			sbuf_printf(&sb, "%d:", path->target->target_id);
3706		else
3707			sbuf_printf(&sb, "X:");
3708
3709		if (path->device != NULL)
3710			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3711		else
3712			sbuf_printf(&sb, "X): ");
3713	}
3714	sbuf_finish(&sb);
3715
3716	return(sbuf_len(&sb));
3717}
3718
3719path_id_t
3720xpt_path_path_id(struct cam_path *path)
3721{
3722	return(path->bus->path_id);
3723}
3724
3725target_id_t
3726xpt_path_target_id(struct cam_path *path)
3727{
3728	if (path->target != NULL)
3729		return (path->target->target_id);
3730	else
3731		return (CAM_TARGET_WILDCARD);
3732}
3733
3734lun_id_t
3735xpt_path_lun_id(struct cam_path *path)
3736{
3737	if (path->device != NULL)
3738		return (path->device->lun_id);
3739	else
3740		return (CAM_LUN_WILDCARD);
3741}
3742
3743struct cam_sim *
3744xpt_path_sim(struct cam_path *path)
3745{
3746
3747	return (path->bus->sim);
3748}
3749
3750struct cam_periph*
3751xpt_path_periph(struct cam_path *path)
3752{
3753
3754	return (path->periph);
3755}
3756
3757int
3758xpt_path_legacy_ata_id(struct cam_path *path)
3759{
3760	struct cam_eb *bus;
3761	int bus_id;
3762
3763	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3764	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3765	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3766	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3767		return (-1);
3768
3769	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3770	    path->bus->sim->unit_number < 2) {
3771		bus_id = path->bus->sim->unit_number;
3772	} else {
3773		bus_id = 2;
3774		xpt_lock_buses();
3775		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3776			if (bus == path->bus)
3777				break;
3778			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3779			     bus->sim->unit_number >= 2) ||
3780			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3781			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3782			    strcmp(bus->sim->sim_name, "siisch") == 0)
3783				bus_id++;
3784		}
3785		xpt_unlock_buses();
3786	}
3787	if (path->target != NULL) {
3788		if (path->target->target_id < 2)
3789			return (bus_id * 2 + path->target->target_id);
3790		else
3791			return (-1);
3792	} else
3793		return (bus_id * 2);
3794}
3795
3796/*
3797 * Release a CAM control block for the caller.  Remit the cost of the structure
3798 * to the device referenced by the path.  If the this device had no 'credits'
3799 * and peripheral drivers have registered async callbacks for this notification
3800 * call them now.
3801 */
3802void
3803xpt_release_ccb(union ccb *free_ccb)
3804{
3805	struct	 cam_ed *device;
3806	struct	 cam_periph *periph;
3807
3808	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3809	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3810	device = free_ccb->ccb_h.path->device;
3811	periph = free_ccb->ccb_h.path->periph;
3812
3813	xpt_free_ccb(free_ccb);
3814	periph->periph_allocated--;
3815	cam_ccbq_release_opening(&device->ccbq);
3816	xpt_run_allocq(periph, 0);
3817}
3818
3819/* Functions accessed by SIM drivers */
3820
3821static struct xpt_xport xport_default = {
3822	.alloc_device = xpt_alloc_device_default,
3823	.action = xpt_action_default,
3824	.async = xpt_dev_async_default,
3825};
3826
3827/*
3828 * A sim structure, listing the SIM entry points and instance
3829 * identification info is passed to xpt_bus_register to hook the SIM
3830 * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3831 * for this new bus and places it in the array of busses and assigns
3832 * it a path_id.  The path_id may be influenced by "hard wiring"
3833 * information specified by the user.  Once interrupt services are
3834 * available, the bus will be probed.
3835 */
3836int32_t
3837xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3838{
3839	struct cam_eb *new_bus;
3840	struct cam_eb *old_bus;
3841	struct ccb_pathinq cpi;
3842	struct cam_path *path;
3843	cam_status status;
3844
3845	mtx_assert(sim->mtx, MA_OWNED);
3846
3847	sim->bus_id = bus;
3848	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3849					  M_CAMXPT, M_NOWAIT|M_ZERO);
3850	if (new_bus == NULL) {
3851		/* Couldn't satisfy request */
3852		return (CAM_RESRC_UNAVAIL);
3853	}
3854
3855	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3856	TAILQ_INIT(&new_bus->et_entries);
3857	cam_sim_hold(sim);
3858	new_bus->sim = sim;
3859	timevalclear(&new_bus->last_reset);
3860	new_bus->flags = 0;
3861	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3862	new_bus->generation = 0;
3863
3864	xpt_lock_buses();
3865	sim->path_id = new_bus->path_id =
3866	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3867	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3868	while (old_bus != NULL
3869	    && old_bus->path_id < new_bus->path_id)
3870		old_bus = TAILQ_NEXT(old_bus, links);
3871	if (old_bus != NULL)
3872		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3873	else
3874		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3875	xsoftc.bus_generation++;
3876	xpt_unlock_buses();
3877
3878	/*
3879	 * Set a default transport so that a PATH_INQ can be issued to
3880	 * the SIM.  This will then allow for probing and attaching of
3881	 * a more appropriate transport.
3882	 */
3883	new_bus->xport = &xport_default;
3884
3885	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3886				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3887	if (status != CAM_REQ_CMP) {
3888		xpt_release_bus(new_bus);
3889		free(path, M_CAMXPT);
3890		return (CAM_RESRC_UNAVAIL);
3891	}
3892
3893	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3894	cpi.ccb_h.func_code = XPT_PATH_INQ;
3895	xpt_action((union ccb *)&cpi);
3896
3897	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3898		switch (cpi.transport) {
3899		case XPORT_SPI:
3900		case XPORT_SAS:
3901		case XPORT_FC:
3902		case XPORT_USB:
3903		case XPORT_ISCSI:
3904		case XPORT_SRP:
3905		case XPORT_PPB:
3906			new_bus->xport = scsi_get_xport();
3907			break;
3908		case XPORT_ATA:
3909		case XPORT_SATA:
3910			new_bus->xport = ata_get_xport();
3911			break;
3912		default:
3913			new_bus->xport = &xport_default;
3914			break;
3915		}
3916	}
3917
3918	/* Notify interested parties */
3919	if (sim->path_id != CAM_XPT_PATH_ID) {
3920
3921		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3922		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3923			union	ccb *scan_ccb;
3924
3925			/* Initiate bus rescan. */
3926			scan_ccb = xpt_alloc_ccb_nowait();
3927			if (scan_ccb != NULL) {
3928				scan_ccb->ccb_h.path = path;
3929				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3930				scan_ccb->crcn.flags = 0;
3931				xpt_rescan(scan_ccb);
3932			} else
3933				xpt_print(path,
3934					  "Can't allocate CCB to scan bus\n");
3935		} else
3936			xpt_free_path(path);
3937	} else
3938		xpt_free_path(path);
3939	return (CAM_SUCCESS);
3940}
3941
3942int32_t
3943xpt_bus_deregister(path_id_t pathid)
3944{
3945	struct cam_path bus_path;
3946	cam_status status;
3947
3948	status = xpt_compile_path(&bus_path, NULL, pathid,
3949				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3950	if (status != CAM_REQ_CMP)
3951		return (status);
3952
3953	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3954	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3955
3956	/* Release the reference count held while registered. */
3957	xpt_release_bus(bus_path.bus);
3958	xpt_release_path(&bus_path);
3959
3960	return (CAM_REQ_CMP);
3961}
3962
3963static path_id_t
3964xptnextfreepathid(void)
3965{
3966	struct cam_eb *bus;
3967	path_id_t pathid;
3968	const char *strval;
3969
3970	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3971	pathid = 0;
3972	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3973retry:
3974	/* Find an unoccupied pathid */
3975	while (bus != NULL && bus->path_id <= pathid) {
3976		if (bus->path_id == pathid)
3977			pathid++;
3978		bus = TAILQ_NEXT(bus, links);
3979	}
3980
3981	/*
3982	 * Ensure that this pathid is not reserved for
3983	 * a bus that may be registered in the future.
3984	 */
3985	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3986		++pathid;
3987		/* Start the search over */
3988		goto retry;
3989	}
3990	return (pathid);
3991}
3992
3993static path_id_t
3994xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3995{
3996	path_id_t pathid;
3997	int i, dunit, val;
3998	char buf[32];
3999	const char *dname;
4000
4001	pathid = CAM_XPT_PATH_ID;
4002	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4003	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4004		return (pathid);
4005	i = 0;
4006	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4007		if (strcmp(dname, "scbus")) {
4008			/* Avoid a bit of foot shooting. */
4009			continue;
4010		}
4011		if (dunit < 0)		/* unwired?! */
4012			continue;
4013		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4014			if (sim_bus == val) {
4015				pathid = dunit;
4016				break;
4017			}
4018		} else if (sim_bus == 0) {
4019			/* Unspecified matches bus 0 */
4020			pathid = dunit;
4021			break;
4022		} else {
4023			printf("Ambiguous scbus configuration for %s%d "
4024			       "bus %d, cannot wire down.  The kernel "
4025			       "config entry for scbus%d should "
4026			       "specify a controller bus.\n"
4027			       "Scbus will be assigned dynamically.\n",
4028			       sim_name, sim_unit, sim_bus, dunit);
4029			break;
4030		}
4031	}
4032
4033	if (pathid == CAM_XPT_PATH_ID)
4034		pathid = xptnextfreepathid();
4035	return (pathid);
4036}
4037
4038static const char *
4039xpt_async_string(u_int32_t async_code)
4040{
4041
4042	switch (async_code) {
4043	case AC_BUS_RESET: return ("AC_BUS_RESET");
4044	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4045	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4046	case AC_SENT_BDR: return ("AC_SENT_BDR");
4047	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4048	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4049	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4050	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4051	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4052	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4053	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4054	case AC_CONTRACT: return ("AC_CONTRACT");
4055	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4056	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4057	}
4058	return ("AC_UNKNOWN");
4059}
4060
4061static int
4062xpt_async_size(u_int32_t async_code)
4063{
4064
4065	switch (async_code) {
4066	case AC_BUS_RESET: return (0);
4067	case AC_UNSOL_RESEL: return (0);
4068	case AC_SCSI_AEN: return (0);
4069	case AC_SENT_BDR: return (0);
4070	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4071	case AC_PATH_DEREGISTERED: return (0);
4072	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4073	case AC_LOST_DEVICE: return (0);
4074	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4075	case AC_INQ_CHANGED: return (0);
4076	case AC_GETDEV_CHANGED: return (0);
4077	case AC_CONTRACT: return (sizeof(struct ac_contract));
4078	case AC_ADVINFO_CHANGED: return (-1);
4079	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4080	}
4081	return (0);
4082}
4083
4084static int
4085xpt_async_process_dev(struct cam_ed *device, void *arg)
4086{
4087	union ccb *ccb = arg;
4088	struct cam_path *path = ccb->ccb_h.path;
4089	void *async_arg = ccb->casync.async_arg_ptr;
4090	u_int32_t async_code = ccb->casync.async_code;
4091	int relock;
4092
4093	if (path->device != device
4094	 && path->device->lun_id != CAM_LUN_WILDCARD
4095	 && device->lun_id != CAM_LUN_WILDCARD)
4096		return (1);
4097
4098	/*
4099	 * The async callback could free the device.
4100	 * If it is a broadcast async, it doesn't hold
4101	 * device reference, so take our own reference.
4102	 */
4103	xpt_acquire_device(device);
4104
4105	/*
4106	 * If async for specific device is to be delivered to
4107	 * the wildcard client, take the specific device lock.
4108	 * XXX: We may need a way for client to specify it.
4109	 */
4110	if ((device->lun_id == CAM_LUN_WILDCARD &&
4111	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4112	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4113	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4114	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4115	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4116		mtx_unlock(&device->device_mtx);
4117		xpt_path_lock(path);
4118		relock = 1;
4119	} else
4120		relock = 0;
4121
4122	(*(device->target->bus->xport->async))(async_code,
4123	    device->target->bus, device->target, device, async_arg);
4124	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4125
4126	if (relock) {
4127		xpt_path_unlock(path);
4128		mtx_lock(&device->device_mtx);
4129	}
4130	xpt_release_device(device);
4131	return (1);
4132}
4133
4134static int
4135xpt_async_process_tgt(struct cam_et *target, void *arg)
4136{
4137	union ccb *ccb = arg;
4138	struct cam_path *path = ccb->ccb_h.path;
4139
4140	if (path->target != target
4141	 && path->target->target_id != CAM_TARGET_WILDCARD
4142	 && target->target_id != CAM_TARGET_WILDCARD)
4143		return (1);
4144
4145	if (ccb->casync.async_code == AC_SENT_BDR) {
4146		/* Update our notion of when the last reset occurred */
4147		microtime(&target->last_reset);
4148	}
4149
4150	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4151}
4152
4153static void
4154xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4155{
4156	struct cam_eb *bus;
4157	struct cam_path *path;
4158	void *async_arg;
4159	u_int32_t async_code;
4160
4161	path = ccb->ccb_h.path;
4162	async_code = ccb->casync.async_code;
4163	async_arg = ccb->casync.async_arg_ptr;
4164	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4165	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4166	bus = path->bus;
4167
4168	if (async_code == AC_BUS_RESET) {
4169		/* Update our notion of when the last reset occurred */
4170		microtime(&bus->last_reset);
4171	}
4172
4173	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4174
4175	/*
4176	 * If this wasn't a fully wildcarded async, tell all
4177	 * clients that want all async events.
4178	 */
4179	if (bus != xpt_periph->path->bus) {
4180		xpt_path_lock(xpt_periph->path);
4181		xpt_async_process_dev(xpt_periph->path->device, ccb);
4182		xpt_path_unlock(xpt_periph->path);
4183	}
4184
4185	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4186		xpt_release_devq(path, 1, TRUE);
4187	else
4188		xpt_release_simq(path->bus->sim, TRUE);
4189	if (ccb->casync.async_arg_size > 0)
4190		free(async_arg, M_CAMXPT);
4191	xpt_free_path(path);
4192	xpt_free_ccb(ccb);
4193}
4194
4195static void
4196xpt_async_bcast(struct async_list *async_head,
4197		u_int32_t async_code,
4198		struct cam_path *path, void *async_arg)
4199{
4200	struct async_node *cur_entry;
4201	int lock;
4202
4203	cur_entry = SLIST_FIRST(async_head);
4204	while (cur_entry != NULL) {
4205		struct async_node *next_entry;
4206		/*
4207		 * Grab the next list entry before we call the current
4208		 * entry's callback.  This is because the callback function
4209		 * can delete its async callback entry.
4210		 */
4211		next_entry = SLIST_NEXT(cur_entry, links);
4212		if ((cur_entry->event_enable & async_code) != 0) {
4213			lock = cur_entry->event_lock;
4214			if (lock)
4215				CAM_SIM_LOCK(path->device->sim);
4216			cur_entry->callback(cur_entry->callback_arg,
4217					    async_code, path,
4218					    async_arg);
4219			if (lock)
4220				CAM_SIM_UNLOCK(path->device->sim);
4221		}
4222		cur_entry = next_entry;
4223	}
4224}
4225
4226void
4227xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4228{
4229	union ccb *ccb;
4230	int size;
4231
4232	ccb = xpt_alloc_ccb_nowait();
4233	if (ccb == NULL) {
4234		xpt_print(path, "Can't allocate CCB to send %s\n",
4235		    xpt_async_string(async_code));
4236		return;
4237	}
4238
4239	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4240		xpt_print(path, "Can't allocate path to send %s\n",
4241		    xpt_async_string(async_code));
4242		xpt_free_ccb(ccb);
4243		return;
4244	}
4245	ccb->ccb_h.path->periph = NULL;
4246	ccb->ccb_h.func_code = XPT_ASYNC;
4247	ccb->ccb_h.cbfcnp = xpt_async_process;
4248	ccb->ccb_h.flags |= CAM_UNLOCKED;
4249	ccb->casync.async_code = async_code;
4250	ccb->casync.async_arg_size = 0;
4251	size = xpt_async_size(async_code);
4252	if (size > 0 && async_arg != NULL) {
4253		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4254		if (ccb->casync.async_arg_ptr == NULL) {
4255			xpt_print(path, "Can't allocate argument to send %s\n",
4256			    xpt_async_string(async_code));
4257			xpt_free_path(ccb->ccb_h.path);
4258			xpt_free_ccb(ccb);
4259			return;
4260		}
4261		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4262		ccb->casync.async_arg_size = size;
4263	} else if (size < 0)
4264		ccb->casync.async_arg_size = size;
4265	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4266		xpt_freeze_devq(path, 1);
4267	else
4268		xpt_freeze_simq(path->bus->sim, 1);
4269	xpt_done(ccb);
4270}
4271
4272static void
4273xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4274		      struct cam_et *target, struct cam_ed *device,
4275		      void *async_arg)
4276{
4277
4278	/*
4279	 * We only need to handle events for real devices.
4280	 */
4281	if (target->target_id == CAM_TARGET_WILDCARD
4282	 || device->lun_id == CAM_LUN_WILDCARD)
4283		return;
4284
4285	printf("%s called\n", __func__);
4286}
4287
4288u_int32_t
4289xpt_freeze_devq(struct cam_path *path, u_int count)
4290{
4291	struct cam_ed	*dev = path->device;
4292	struct cam_devq	*devq;
4293	uint32_t	 freeze;
4294
4295	devq = dev->sim->devq;
4296	mtx_lock(&devq->send_mtx);
4297	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4298	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4299	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4300	/* Remove frozen device from sendq. */
4301	if (device_is_queued(dev))
4302		camq_remove(&devq->send_queue, dev->devq_entry.index);
4303	mtx_unlock(&devq->send_mtx);
4304	return (freeze);
4305}
4306
4307u_int32_t
4308xpt_freeze_simq(struct cam_sim *sim, u_int count)
4309{
4310	struct cam_devq	*devq;
4311	uint32_t	 freeze;
4312
4313	devq = sim->devq;
4314	mtx_lock(&devq->send_mtx);
4315	freeze = (devq->send_queue.qfrozen_cnt += count);
4316	mtx_unlock(&devq->send_mtx);
4317	return (freeze);
4318}
4319
4320static void
4321xpt_release_devq_timeout(void *arg)
4322{
4323	struct cam_ed *dev;
4324	struct cam_devq *devq;
4325
4326	dev = (struct cam_ed *)arg;
4327	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4328	devq = dev->sim->devq;
4329	mtx_assert(&devq->send_mtx, MA_OWNED);
4330	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4331		xpt_run_devq(devq);
4332}
4333
4334void
4335xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4336{
4337	struct cam_ed *dev;
4338	struct cam_devq *devq;
4339
4340	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4341	    count, run_queue));
4342	dev = path->device;
4343	devq = dev->sim->devq;
4344	mtx_lock(&devq->send_mtx);
4345	if (xpt_release_devq_device(dev, count, run_queue))
4346		xpt_run_devq(dev->sim->devq);
4347	mtx_unlock(&devq->send_mtx);
4348}
4349
4350static int
4351xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4352{
4353
4354	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4355	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4356	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4357	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4358	if (count > dev->ccbq.queue.qfrozen_cnt) {
4359#ifdef INVARIANTS
4360		printf("xpt_release_devq(): requested %u > present %u\n",
4361		    count, dev->ccbq.queue.qfrozen_cnt);
4362#endif
4363		count = dev->ccbq.queue.qfrozen_cnt;
4364	}
4365	dev->ccbq.queue.qfrozen_cnt -= count;
4366	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4367		/*
4368		 * No longer need to wait for a successful
4369		 * command completion.
4370		 */
4371		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4372		/*
4373		 * Remove any timeouts that might be scheduled
4374		 * to release this queue.
4375		 */
4376		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4377			callout_stop(&dev->callout);
4378			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4379		}
4380		/*
4381		 * Now that we are unfrozen schedule the
4382		 * device so any pending transactions are
4383		 * run.
4384		 */
4385		xpt_schedule_devq(dev->sim->devq, dev);
4386	} else
4387		run_queue = 0;
4388	return (run_queue);
4389}
4390
4391void
4392xpt_release_simq(struct cam_sim *sim, int run_queue)
4393{
4394	struct cam_devq	*devq;
4395
4396	devq = sim->devq;
4397	mtx_lock(&devq->send_mtx);
4398	if (devq->send_queue.qfrozen_cnt <= 0) {
4399#ifdef INVARIANTS
4400		printf("xpt_release_simq: requested 1 > present %u\n",
4401		    devq->send_queue.qfrozen_cnt);
4402#endif
4403	} else
4404		devq->send_queue.qfrozen_cnt--;
4405	if (devq->send_queue.qfrozen_cnt == 0) {
4406		/*
4407		 * If there is a timeout scheduled to release this
4408		 * sim queue, remove it.  The queue frozen count is
4409		 * already at 0.
4410		 */
4411		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4412			callout_stop(&sim->callout);
4413			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4414		}
4415		if (run_queue) {
4416			/*
4417			 * Now that we are unfrozen run the send queue.
4418			 */
4419			xpt_run_devq(sim->devq);
4420		}
4421	}
4422	mtx_unlock(&devq->send_mtx);
4423}
4424
4425/*
4426 * XXX Appears to be unused.
4427 */
4428static void
4429xpt_release_simq_timeout(void *arg)
4430{
4431	struct cam_sim *sim;
4432
4433	sim = (struct cam_sim *)arg;
4434	xpt_release_simq(sim, /* run_queue */ TRUE);
4435}
4436
4437void
4438xpt_done(union ccb *done_ccb)
4439{
4440	struct cam_doneq *queue;
4441	int	run, hash;
4442
4443	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4444	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4445		return;
4446
4447	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4448	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4449	queue = &cam_doneqs[hash];
4450	mtx_lock(&queue->cam_doneq_mtx);
4451	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4452	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4453	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4454	mtx_unlock(&queue->cam_doneq_mtx);
4455	if (run)
4456		wakeup(&queue->cam_doneq);
4457}
4458
4459void
4460xpt_done_direct(union ccb *done_ccb)
4461{
4462
4463	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n"));
4464	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4465		return;
4466
4467	xpt_done_process(&done_ccb->ccb_h);
4468}
4469
4470union ccb *
4471xpt_alloc_ccb()
4472{
4473	union ccb *new_ccb;
4474
4475	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4476	return (new_ccb);
4477}
4478
4479union ccb *
4480xpt_alloc_ccb_nowait()
4481{
4482	union ccb *new_ccb;
4483
4484	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4485	return (new_ccb);
4486}
4487
4488void
4489xpt_free_ccb(union ccb *free_ccb)
4490{
4491	free(free_ccb, M_CAMCCB);
4492}
4493
4494
4495
4496/* Private XPT functions */
4497
4498/*
4499 * Get a CAM control block for the caller. Charge the structure to the device
4500 * referenced by the path.  If we don't have sufficient resources to allocate
4501 * more ccbs, we return NULL.
4502 */
4503static union ccb *
4504xpt_get_ccb_nowait(struct cam_periph *periph)
4505{
4506	union ccb *new_ccb;
4507
4508	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT);
4509	if (new_ccb == NULL)
4510		return (NULL);
4511	periph->periph_allocated++;
4512	cam_ccbq_take_opening(&periph->path->device->ccbq);
4513	return (new_ccb);
4514}
4515
4516static union ccb *
4517xpt_get_ccb(struct cam_periph *periph)
4518{
4519	union ccb *new_ccb;
4520
4521	cam_periph_unlock(periph);
4522	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK);
4523	cam_periph_lock(periph);
4524	periph->periph_allocated++;
4525	cam_ccbq_take_opening(&periph->path->device->ccbq);
4526	return (new_ccb);
4527}
4528
4529union ccb *
4530cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4531{
4532	struct ccb_hdr *ccb_h;
4533
4534	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4535	cam_periph_assert(periph, MA_OWNED);
4536	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4537	    ccb_h->pinfo.priority != priority) {
4538		if (priority < periph->immediate_priority) {
4539			periph->immediate_priority = priority;
4540			xpt_run_allocq(periph, 0);
4541		} else
4542			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4543			    "cgticb", 0);
4544	}
4545	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4546	return ((union ccb *)ccb_h);
4547}
4548
4549static void
4550xpt_acquire_bus(struct cam_eb *bus)
4551{
4552
4553	xpt_lock_buses();
4554	bus->refcount++;
4555	xpt_unlock_buses();
4556}
4557
4558static void
4559xpt_release_bus(struct cam_eb *bus)
4560{
4561
4562	xpt_lock_buses();
4563	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4564	if (--bus->refcount > 0) {
4565		xpt_unlock_buses();
4566		return;
4567	}
4568	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4569	xsoftc.bus_generation++;
4570	xpt_unlock_buses();
4571	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4572	    ("destroying bus, but target list is not empty"));
4573	cam_sim_release(bus->sim);
4574	mtx_destroy(&bus->eb_mtx);
4575	free(bus, M_CAMXPT);
4576}
4577
4578static struct cam_et *
4579xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4580{
4581	struct cam_et *cur_target, *target;
4582
4583	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4584	mtx_assert(&bus->eb_mtx, MA_OWNED);
4585	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4586					 M_NOWAIT|M_ZERO);
4587	if (target == NULL)
4588		return (NULL);
4589
4590	TAILQ_INIT(&target->ed_entries);
4591	target->bus = bus;
4592	target->target_id = target_id;
4593	target->refcount = 1;
4594	target->generation = 0;
4595	target->luns = NULL;
4596	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4597	timevalclear(&target->last_reset);
4598	/*
4599	 * Hold a reference to our parent bus so it
4600	 * will not go away before we do.
4601	 */
4602	bus->refcount++;
4603
4604	/* Insertion sort into our bus's target list */
4605	cur_target = TAILQ_FIRST(&bus->et_entries);
4606	while (cur_target != NULL && cur_target->target_id < target_id)
4607		cur_target = TAILQ_NEXT(cur_target, links);
4608	if (cur_target != NULL) {
4609		TAILQ_INSERT_BEFORE(cur_target, target, links);
4610	} else {
4611		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4612	}
4613	bus->generation++;
4614	return (target);
4615}
4616
4617static void
4618xpt_acquire_target(struct cam_et *target)
4619{
4620	struct cam_eb *bus = target->bus;
4621
4622	mtx_lock(&bus->eb_mtx);
4623	target->refcount++;
4624	mtx_unlock(&bus->eb_mtx);
4625}
4626
4627static void
4628xpt_release_target(struct cam_et *target)
4629{
4630	struct cam_eb *bus = target->bus;
4631
4632	mtx_lock(&bus->eb_mtx);
4633	if (--target->refcount > 0) {
4634		mtx_unlock(&bus->eb_mtx);
4635		return;
4636	}
4637	TAILQ_REMOVE(&bus->et_entries, target, links);
4638	bus->generation++;
4639	mtx_unlock(&bus->eb_mtx);
4640	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4641	    ("destroying target, but device list is not empty"));
4642	xpt_release_bus(bus);
4643	mtx_destroy(&target->luns_mtx);
4644	if (target->luns)
4645		free(target->luns, M_CAMXPT);
4646	free(target, M_CAMXPT);
4647}
4648
4649static struct cam_ed *
4650xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4651			 lun_id_t lun_id)
4652{
4653	struct cam_ed *device;
4654
4655	device = xpt_alloc_device(bus, target, lun_id);
4656	if (device == NULL)
4657		return (NULL);
4658
4659	device->mintags = 1;
4660	device->maxtags = 1;
4661	return (device);
4662}
4663
4664static void
4665xpt_destroy_device(void *context, int pending)
4666{
4667	struct cam_ed	*device = context;
4668
4669	mtx_lock(&device->device_mtx);
4670	mtx_destroy(&device->device_mtx);
4671	free(device, M_CAMDEV);
4672}
4673
4674struct cam_ed *
4675xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4676{
4677	struct cam_ed	*cur_device, *device;
4678	struct cam_devq	*devq;
4679	cam_status status;
4680
4681	mtx_assert(&bus->eb_mtx, MA_OWNED);
4682	/* Make space for us in the device queue on our bus */
4683	devq = bus->sim->devq;
4684	mtx_lock(&devq->send_mtx);
4685	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4686	mtx_unlock(&devq->send_mtx);
4687	if (status != CAM_REQ_CMP)
4688		return (NULL);
4689
4690	device = (struct cam_ed *)malloc(sizeof(*device),
4691					 M_CAMDEV, M_NOWAIT|M_ZERO);
4692	if (device == NULL)
4693		return (NULL);
4694
4695	cam_init_pinfo(&device->devq_entry);
4696	device->target = target;
4697	device->lun_id = lun_id;
4698	device->sim = bus->sim;
4699	if (cam_ccbq_init(&device->ccbq,
4700			  bus->sim->max_dev_openings) != 0) {
4701		free(device, M_CAMDEV);
4702		return (NULL);
4703	}
4704	SLIST_INIT(&device->asyncs);
4705	SLIST_INIT(&device->periphs);
4706	device->generation = 0;
4707	device->flags = CAM_DEV_UNCONFIGURED;
4708	device->tag_delay_count = 0;
4709	device->tag_saved_openings = 0;
4710	device->refcount = 1;
4711	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4712	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4713	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4714	/*
4715	 * Hold a reference to our parent bus so it
4716	 * will not go away before we do.
4717	 */
4718	target->refcount++;
4719
4720	cur_device = TAILQ_FIRST(&target->ed_entries);
4721	while (cur_device != NULL && cur_device->lun_id < lun_id)
4722		cur_device = TAILQ_NEXT(cur_device, links);
4723	if (cur_device != NULL)
4724		TAILQ_INSERT_BEFORE(cur_device, device, links);
4725	else
4726		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4727	target->generation++;
4728	return (device);
4729}
4730
4731void
4732xpt_acquire_device(struct cam_ed *device)
4733{
4734	struct cam_eb *bus = device->target->bus;
4735
4736	mtx_lock(&bus->eb_mtx);
4737	device->refcount++;
4738	mtx_unlock(&bus->eb_mtx);
4739}
4740
4741void
4742xpt_release_device(struct cam_ed *device)
4743{
4744	struct cam_eb *bus = device->target->bus;
4745	struct cam_devq *devq;
4746
4747	mtx_lock(&bus->eb_mtx);
4748	if (--device->refcount > 0) {
4749		mtx_unlock(&bus->eb_mtx);
4750		return;
4751	}
4752
4753	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4754	device->target->generation++;
4755	mtx_unlock(&bus->eb_mtx);
4756
4757	/* Release our slot in the devq */
4758	devq = bus->sim->devq;
4759	mtx_lock(&devq->send_mtx);
4760	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4761	mtx_unlock(&devq->send_mtx);
4762
4763	KASSERT(SLIST_EMPTY(&device->periphs),
4764	    ("destroying device, but periphs list is not empty"));
4765	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4766	    ("destroying device while still queued for ccbs"));
4767
4768	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4769		callout_stop(&device->callout);
4770
4771	xpt_release_target(device->target);
4772
4773	cam_ccbq_fini(&device->ccbq);
4774	/*
4775	 * Free allocated memory.  free(9) does nothing if the
4776	 * supplied pointer is NULL, so it is safe to call without
4777	 * checking.
4778	 */
4779	free(device->supported_vpds, M_CAMXPT);
4780	free(device->device_id, M_CAMXPT);
4781	free(device->physpath, M_CAMXPT);
4782	free(device->rcap_buf, M_CAMXPT);
4783	free(device->serial_num, M_CAMXPT);
4784	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4785}
4786
4787u_int32_t
4788xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4789{
4790	int	result;
4791	struct	cam_ed *dev;
4792
4793	dev = path->device;
4794	mtx_lock(&dev->sim->devq->send_mtx);
4795	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4796	mtx_unlock(&dev->sim->devq->send_mtx);
4797	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4798	 || (dev->inq_flags & SID_CmdQue) != 0)
4799		dev->tag_saved_openings = newopenings;
4800	return (result);
4801}
4802
4803static struct cam_eb *
4804xpt_find_bus(path_id_t path_id)
4805{
4806	struct cam_eb *bus;
4807
4808	xpt_lock_buses();
4809	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4810	     bus != NULL;
4811	     bus = TAILQ_NEXT(bus, links)) {
4812		if (bus->path_id == path_id) {
4813			bus->refcount++;
4814			break;
4815		}
4816	}
4817	xpt_unlock_buses();
4818	return (bus);
4819}
4820
4821static struct cam_et *
4822xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4823{
4824	struct cam_et *target;
4825
4826	mtx_assert(&bus->eb_mtx, MA_OWNED);
4827	for (target = TAILQ_FIRST(&bus->et_entries);
4828	     target != NULL;
4829	     target = TAILQ_NEXT(target, links)) {
4830		if (target->target_id == target_id) {
4831			target->refcount++;
4832			break;
4833		}
4834	}
4835	return (target);
4836}
4837
4838static struct cam_ed *
4839xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4840{
4841	struct cam_ed *device;
4842
4843	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4844	for (device = TAILQ_FIRST(&target->ed_entries);
4845	     device != NULL;
4846	     device = TAILQ_NEXT(device, links)) {
4847		if (device->lun_id == lun_id) {
4848			device->refcount++;
4849			break;
4850		}
4851	}
4852	return (device);
4853}
4854
4855void
4856xpt_start_tags(struct cam_path *path)
4857{
4858	struct ccb_relsim crs;
4859	struct cam_ed *device;
4860	struct cam_sim *sim;
4861	int    newopenings;
4862
4863	device = path->device;
4864	sim = path->bus->sim;
4865	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4866	xpt_freeze_devq(path, /*count*/1);
4867	device->inq_flags |= SID_CmdQue;
4868	if (device->tag_saved_openings != 0)
4869		newopenings = device->tag_saved_openings;
4870	else
4871		newopenings = min(device->maxtags,
4872				  sim->max_tagged_dev_openings);
4873	xpt_dev_ccbq_resize(path, newopenings);
4874	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4875	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4876	crs.ccb_h.func_code = XPT_REL_SIMQ;
4877	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4878	crs.openings
4879	    = crs.release_timeout
4880	    = crs.qfrozen_cnt
4881	    = 0;
4882	xpt_action((union ccb *)&crs);
4883}
4884
4885void
4886xpt_stop_tags(struct cam_path *path)
4887{
4888	struct ccb_relsim crs;
4889	struct cam_ed *device;
4890	struct cam_sim *sim;
4891
4892	device = path->device;
4893	sim = path->bus->sim;
4894	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4895	device->tag_delay_count = 0;
4896	xpt_freeze_devq(path, /*count*/1);
4897	device->inq_flags &= ~SID_CmdQue;
4898	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4899	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4900	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4901	crs.ccb_h.func_code = XPT_REL_SIMQ;
4902	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4903	crs.openings
4904	    = crs.release_timeout
4905	    = crs.qfrozen_cnt
4906	    = 0;
4907	xpt_action((union ccb *)&crs);
4908}
4909
4910static void
4911xpt_boot_delay(void *arg)
4912{
4913
4914	xpt_release_boot();
4915}
4916
4917static void
4918xpt_config(void *arg)
4919{
4920	/*
4921	 * Now that interrupts are enabled, go find our devices
4922	 */
4923	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4924		printf("xpt_config: failed to create taskqueue thread.\n");
4925
4926	/* Setup debugging path */
4927	if (cam_dflags != CAM_DEBUG_NONE) {
4928		if (xpt_create_path(&cam_dpath, NULL,
4929				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4930				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4931			printf("xpt_config: xpt_create_path() failed for debug"
4932			       " target %d:%d:%d, debugging disabled\n",
4933			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4934			cam_dflags = CAM_DEBUG_NONE;
4935		}
4936	} else
4937		cam_dpath = NULL;
4938
4939	periphdriver_init(1);
4940	xpt_hold_boot();
4941	callout_init(&xsoftc.boot_callout, 1);
4942	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4943	    xpt_boot_delay, NULL);
4944	/* Fire up rescan thread. */
4945	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4946	    "cam", "scanner")) {
4947		printf("xpt_config: failed to create rescan thread.\n");
4948	}
4949}
4950
4951void
4952xpt_hold_boot(void)
4953{
4954	xpt_lock_buses();
4955	xsoftc.buses_to_config++;
4956	xpt_unlock_buses();
4957}
4958
4959void
4960xpt_release_boot(void)
4961{
4962	xpt_lock_buses();
4963	xsoftc.buses_to_config--;
4964	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4965		struct	xpt_task *task;
4966
4967		xsoftc.buses_config_done = 1;
4968		xpt_unlock_buses();
4969		/* Call manually because we don't have any busses */
4970		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4971		if (task != NULL) {
4972			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4973			taskqueue_enqueue(taskqueue_thread, &task->task);
4974		}
4975	} else
4976		xpt_unlock_buses();
4977}
4978
4979/*
4980 * If the given device only has one peripheral attached to it, and if that
4981 * peripheral is the passthrough driver, announce it.  This insures that the
4982 * user sees some sort of announcement for every peripheral in their system.
4983 */
4984static int
4985xptpassannouncefunc(struct cam_ed *device, void *arg)
4986{
4987	struct cam_periph *periph;
4988	int i;
4989
4990	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4991	     periph = SLIST_NEXT(periph, periph_links), i++);
4992
4993	periph = SLIST_FIRST(&device->periphs);
4994	if ((i == 1)
4995	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4996		xpt_announce_periph(periph, NULL);
4997
4998	return(1);
4999}
5000
5001static void
5002xpt_finishconfig_task(void *context, int pending)
5003{
5004
5005	periphdriver_init(2);
5006	/*
5007	 * Check for devices with no "standard" peripheral driver
5008	 * attached.  For any devices like that, announce the
5009	 * passthrough driver so the user will see something.
5010	 */
5011	if (!bootverbose)
5012		xpt_for_all_devices(xptpassannouncefunc, NULL);
5013
5014	/* Release our hook so that the boot can continue. */
5015	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5016	free(xsoftc.xpt_config_hook, M_CAMXPT);
5017	xsoftc.xpt_config_hook = NULL;
5018
5019	free(context, M_CAMXPT);
5020}
5021
5022cam_status
5023xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5024		   struct cam_path *path)
5025{
5026	struct ccb_setasync csa;
5027	cam_status status;
5028	int xptpath = 0;
5029
5030	if (path == NULL) {
5031		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5032					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5033		if (status != CAM_REQ_CMP)
5034			return (status);
5035		xpt_path_lock(path);
5036		xptpath = 1;
5037	}
5038
5039	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5040	csa.ccb_h.func_code = XPT_SASYNC_CB;
5041	csa.event_enable = event;
5042	csa.callback = cbfunc;
5043	csa.callback_arg = cbarg;
5044	xpt_action((union ccb *)&csa);
5045	status = csa.ccb_h.status;
5046
5047	if (xptpath) {
5048		xpt_path_unlock(path);
5049		xpt_free_path(path);
5050	}
5051
5052	if ((status == CAM_REQ_CMP) &&
5053	    (csa.event_enable & AC_FOUND_DEVICE)) {
5054		/*
5055		 * Get this peripheral up to date with all
5056		 * the currently existing devices.
5057		 */
5058		xpt_for_all_devices(xptsetasyncfunc, &csa);
5059	}
5060	if ((status == CAM_REQ_CMP) &&
5061	    (csa.event_enable & AC_PATH_REGISTERED)) {
5062		/*
5063		 * Get this peripheral up to date with all
5064		 * the currently existing busses.
5065		 */
5066		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5067	}
5068
5069	return (status);
5070}
5071
5072static void
5073xptaction(struct cam_sim *sim, union ccb *work_ccb)
5074{
5075	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5076
5077	switch (work_ccb->ccb_h.func_code) {
5078	/* Common cases first */
5079	case XPT_PATH_INQ:		/* Path routing inquiry */
5080	{
5081		struct ccb_pathinq *cpi;
5082
5083		cpi = &work_ccb->cpi;
5084		cpi->version_num = 1; /* XXX??? */
5085		cpi->hba_inquiry = 0;
5086		cpi->target_sprt = 0;
5087		cpi->hba_misc = 0;
5088		cpi->hba_eng_cnt = 0;
5089		cpi->max_target = 0;
5090		cpi->max_lun = 0;
5091		cpi->initiator_id = 0;
5092		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5093		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5094		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5095		cpi->unit_number = sim->unit_number;
5096		cpi->bus_id = sim->bus_id;
5097		cpi->base_transfer_speed = 0;
5098		cpi->protocol = PROTO_UNSPECIFIED;
5099		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5100		cpi->transport = XPORT_UNSPECIFIED;
5101		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5102		cpi->ccb_h.status = CAM_REQ_CMP;
5103		xpt_done(work_ccb);
5104		break;
5105	}
5106	default:
5107		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5108		xpt_done(work_ccb);
5109		break;
5110	}
5111}
5112
5113/*
5114 * The xpt as a "controller" has no interrupt sources, so polling
5115 * is a no-op.
5116 */
5117static void
5118xptpoll(struct cam_sim *sim)
5119{
5120}
5121
5122void
5123xpt_lock_buses(void)
5124{
5125	mtx_lock(&xsoftc.xpt_topo_lock);
5126}
5127
5128void
5129xpt_unlock_buses(void)
5130{
5131	mtx_unlock(&xsoftc.xpt_topo_lock);
5132}
5133
5134struct mtx *
5135xpt_path_mtx(struct cam_path *path)
5136{
5137
5138	return (&path->device->device_mtx);
5139}
5140
5141static void
5142xpt_done_process(struct ccb_hdr *ccb_h)
5143{
5144	struct cam_sim *sim;
5145	struct cam_devq *devq;
5146	struct mtx *mtx = NULL;
5147
5148	if (ccb_h->flags & CAM_HIGH_POWER) {
5149		struct highpowerlist	*hphead;
5150		struct cam_ed		*device;
5151
5152		mtx_lock(&xsoftc.xpt_lock);
5153		hphead = &xsoftc.highpowerq;
5154
5155		device = STAILQ_FIRST(hphead);
5156
5157		/*
5158		 * Increment the count since this command is done.
5159		 */
5160		xsoftc.num_highpower++;
5161
5162		/*
5163		 * Any high powered commands queued up?
5164		 */
5165		if (device != NULL) {
5166
5167			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5168			mtx_unlock(&xsoftc.xpt_lock);
5169
5170			mtx_lock(&device->sim->devq->send_mtx);
5171			xpt_release_devq_device(device,
5172					 /*count*/1, /*runqueue*/TRUE);
5173			mtx_unlock(&device->sim->devq->send_mtx);
5174		} else
5175			mtx_unlock(&xsoftc.xpt_lock);
5176	}
5177
5178	sim = ccb_h->path->bus->sim;
5179
5180	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5181		xpt_release_simq(sim, /*run_queue*/FALSE);
5182		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5183	}
5184
5185	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5186	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5187		xpt_release_devq(ccb_h->path, /*count*/1,
5188				 /*run_queue*/FALSE);
5189		ccb_h->status &= ~CAM_DEV_QFRZN;
5190	}
5191
5192	devq = sim->devq;
5193	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5194		struct cam_ed *dev = ccb_h->path->device;
5195
5196		mtx_lock(&devq->send_mtx);
5197		devq->send_active--;
5198		devq->send_openings++;
5199		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5200
5201		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5202		  && (dev->ccbq.dev_active == 0))) {
5203			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5204			xpt_release_devq_device(dev, /*count*/1,
5205					 /*run_queue*/FALSE);
5206		}
5207
5208		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5209		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5210			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5211			xpt_release_devq_device(dev, /*count*/1,
5212					 /*run_queue*/FALSE);
5213		}
5214
5215		if (!device_is_queued(dev))
5216			(void)xpt_schedule_devq(devq, dev);
5217		mtx_unlock(&devq->send_mtx);
5218
5219		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5220			mtx = xpt_path_mtx(ccb_h->path);
5221			mtx_lock(mtx);
5222
5223			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5224			 && (--dev->tag_delay_count == 0))
5225				xpt_start_tags(ccb_h->path);
5226		}
5227	}
5228
5229	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5230		if (mtx == NULL) {
5231			mtx = xpt_path_mtx(ccb_h->path);
5232			mtx_lock(mtx);
5233		}
5234	} else {
5235		if (mtx != NULL) {
5236			mtx_unlock(mtx);
5237			mtx = NULL;
5238		}
5239	}
5240
5241	/* Call the peripheral driver's callback */
5242	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5243	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5244	if (mtx != NULL)
5245		mtx_unlock(mtx);
5246
5247	mtx_lock(&devq->send_mtx);
5248	xpt_run_devq(devq);
5249	mtx_unlock(&devq->send_mtx);
5250}
5251
5252void
5253xpt_done_td(void *arg)
5254{
5255	struct cam_doneq *queue = arg;
5256	struct ccb_hdr *ccb_h;
5257	STAILQ_HEAD(, ccb_hdr)	doneq;
5258
5259	STAILQ_INIT(&doneq);
5260	mtx_lock(&queue->cam_doneq_mtx);
5261	while (1) {
5262		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5263			queue->cam_doneq_sleep = 1;
5264			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5265			    PRIBIO, "-", 0);
5266			queue->cam_doneq_sleep = 0;
5267		}
5268		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5269		mtx_unlock(&queue->cam_doneq_mtx);
5270
5271		THREAD_NO_SLEEPING();
5272		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5273			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5274			xpt_done_process(ccb_h);
5275		}
5276		THREAD_SLEEPING_OK();
5277
5278		mtx_lock(&queue->cam_doneq_mtx);
5279	}
5280}
5281
5282static void
5283camisr_runqueue(void)
5284{
5285	struct	ccb_hdr *ccb_h;
5286	struct cam_doneq *queue;
5287	int i;
5288
5289	/* Process global queues. */
5290	for (i = 0; i < cam_num_doneqs; i++) {
5291		queue = &cam_doneqs[i];
5292		mtx_lock(&queue->cam_doneq_mtx);
5293		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5294			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5295			mtx_unlock(&queue->cam_doneq_mtx);
5296			xpt_done_process(ccb_h);
5297			mtx_lock(&queue->cam_doneq_mtx);
5298		}
5299		mtx_unlock(&queue->cam_doneq_mtx);
5300	}
5301}
5302