cam_xpt.c revision 249108
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 249108 2013-04-04 20:31:40Z mav $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#include <cam/cam.h>
52#include <cam/cam_ccb.h>
53#include <cam/cam_periph.h>
54#include <cam/cam_queue.h>
55#include <cam/cam_sim.h>
56#include <cam/cam_xpt.h>
57#include <cam/cam_xpt_sim.h>
58#include <cam/cam_xpt_periph.h>
59#include <cam/cam_xpt_internal.h>
60#include <cam/cam_debug.h>
61
62#include <cam/scsi/scsi_all.h>
63#include <cam/scsi/scsi_message.h>
64#include <cam/scsi/scsi_pass.h>
65
66#include <machine/md_var.h>	/* geometry translation */
67#include <machine/stdarg.h>	/* for xpt_print below */
68
69#include "opt_cam.h"
70
71/*
72 * This is the maximum number of high powered commands (e.g. start unit)
73 * that can be outstanding at a particular time.
74 */
75#ifndef CAM_MAX_HIGHPOWER
76#define CAM_MAX_HIGHPOWER  4
77#endif
78
79/* Datastructures internal to the xpt layer */
80MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
81MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
82MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
83MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
84
85/* Object for defering XPT actions to a taskqueue */
86struct xpt_task {
87	struct task	task;
88	void		*data1;
89	uintptr_t	data2;
90};
91
92typedef enum {
93	XPT_FLAG_OPEN		= 0x01
94} xpt_flags;
95
96struct xpt_softc {
97	xpt_flags		flags;
98	u_int32_t		xpt_generation;
99
100	/* number of high powered commands that can go through right now */
101	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
102	int			num_highpower;
103
104	/* queue for handling async rescan requests. */
105	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106	int buses_to_config;
107	int buses_config_done;
108
109	/* Registered busses */
110	TAILQ_HEAD(,cam_eb)	xpt_busses;
111	u_int			bus_generation;
112
113	struct intr_config_hook	*xpt_config_hook;
114
115	int			boot_delay;
116	struct callout 		boot_callout;
117
118	struct mtx		xpt_topo_lock;
119	struct mtx		xpt_lock;
120};
121
122typedef enum {
123	DM_RET_COPY		= 0x01,
124	DM_RET_FLAG_MASK	= 0x0f,
125	DM_RET_NONE		= 0x00,
126	DM_RET_STOP		= 0x10,
127	DM_RET_DESCEND		= 0x20,
128	DM_RET_ERROR		= 0x30,
129	DM_RET_ACTION_MASK	= 0xf0
130} dev_match_ret;
131
132typedef enum {
133	XPT_DEPTH_BUS,
134	XPT_DEPTH_TARGET,
135	XPT_DEPTH_DEVICE,
136	XPT_DEPTH_PERIPH
137} xpt_traverse_depth;
138
139struct xpt_traverse_config {
140	xpt_traverse_depth	depth;
141	void			*tr_func;
142	void			*tr_arg;
143};
144
145typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150
151/* Transport layer configuration information */
152static struct xpt_softc xsoftc;
153
154TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156           &xsoftc.boot_delay, 0, "Bus registration wait time");
157
158/* Queues for our software interrupt handler */
159typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161static cam_simq_t cam_simq;
162static struct mtx cam_simq_lock;
163
164/* Pointers to software interrupt handlers */
165static void *cambio_ih;
166
167struct cam_periph *xpt_periph;
168
169static periph_init_t xpt_periph_init;
170
171static struct periph_driver xpt_driver =
172{
173	xpt_periph_init, "xpt",
174	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175	CAM_PERIPH_DRV_EARLY
176};
177
178PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179
180static d_open_t xptopen;
181static d_close_t xptclose;
182static d_ioctl_t xptioctl;
183
184static struct cdevsw xpt_cdevsw = {
185	.d_version =	D_VERSION,
186	.d_flags =	0,
187	.d_open =	xptopen,
188	.d_close =	xptclose,
189	.d_ioctl =	xptioctl,
190	.d_name =	"xpt",
191};
192
193/* Storage for debugging datastructures */
194struct cam_path *cam_dpath;
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196TUNABLE_INT("kern.cam.dflags", &cam_dflags);
197SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
198	&cam_dflags, 0, "Enabled debug flags");
199u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
200TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
201SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
202	&cam_debug_delay, 0, "Delay in us after each debug message");
203
204/* Our boot-time initialization hook */
205static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
206
207static moduledata_t cam_moduledata = {
208	"cam",
209	cam_module_event_handler,
210	NULL
211};
212
213static int	xpt_init(void *);
214
215DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
216MODULE_VERSION(cam, 1);
217
218
219static void		xpt_async_bcast(struct async_list *async_head,
220					u_int32_t async_code,
221					struct cam_path *path,
222					void *async_arg);
223static path_id_t xptnextfreepathid(void);
224static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
225static union ccb *xpt_get_ccb(struct cam_ed *device);
226static void	 xpt_run_dev_allocq(struct cam_eb *bus);
227static void	 xpt_run_dev_sendq(struct cam_eb *bus);
228static timeout_t xpt_release_devq_timeout;
229static void	 xpt_release_simq_timeout(void *arg) __unused;
230static void	 xpt_release_bus(struct cam_eb *bus);
231static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
232		    u_int count, int run_queue);
233static struct cam_et*
234		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
235static void	 xpt_release_target(struct cam_et *target);
236static struct cam_eb*
237		 xpt_find_bus(path_id_t path_id);
238static struct cam_et*
239		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
240static struct cam_ed*
241		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
242static void	 xpt_config(void *arg);
243static xpt_devicefunc_t xptpassannouncefunc;
244static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
245static void	 xptpoll(struct cam_sim *sim);
246static void	 camisr(void *);
247static void	 camisr_runqueue(void *);
248static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
249				    u_int num_patterns, struct cam_eb *bus);
250static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
251				       u_int num_patterns,
252				       struct cam_ed *device);
253static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
254				       u_int num_patterns,
255				       struct cam_periph *periph);
256static xpt_busfunc_t	xptedtbusfunc;
257static xpt_targetfunc_t	xptedttargetfunc;
258static xpt_devicefunc_t	xptedtdevicefunc;
259static xpt_periphfunc_t	xptedtperiphfunc;
260static xpt_pdrvfunc_t	xptplistpdrvfunc;
261static xpt_periphfunc_t	xptplistperiphfunc;
262static int		xptedtmatch(struct ccb_dev_match *cdm);
263static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
264static int		xptbustraverse(struct cam_eb *start_bus,
265				       xpt_busfunc_t *tr_func, void *arg);
266static int		xpttargettraverse(struct cam_eb *bus,
267					  struct cam_et *start_target,
268					  xpt_targetfunc_t *tr_func, void *arg);
269static int		xptdevicetraverse(struct cam_et *target,
270					  struct cam_ed *start_device,
271					  xpt_devicefunc_t *tr_func, void *arg);
272static int		xptperiphtraverse(struct cam_ed *device,
273					  struct cam_periph *start_periph,
274					  xpt_periphfunc_t *tr_func, void *arg);
275static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
276					xpt_pdrvfunc_t *tr_func, void *arg);
277static int		xptpdperiphtraverse(struct periph_driver **pdrv,
278					    struct cam_periph *start_periph,
279					    xpt_periphfunc_t *tr_func,
280					    void *arg);
281static xpt_busfunc_t	xptdefbusfunc;
282static xpt_targetfunc_t	xptdeftargetfunc;
283static xpt_devicefunc_t	xptdefdevicefunc;
284static xpt_periphfunc_t	xptdefperiphfunc;
285static void		xpt_finishconfig_task(void *context, int pending);
286static void		xpt_dev_async_default(u_int32_t async_code,
287					      struct cam_eb *bus,
288					      struct cam_et *target,
289					      struct cam_ed *device,
290					      void *async_arg);
291static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
292						 struct cam_et *target,
293						 lun_id_t lun_id);
294static xpt_devicefunc_t	xptsetasyncfunc;
295static xpt_busfunc_t	xptsetasyncbusfunc;
296static cam_status	xptregister(struct cam_periph *periph,
297				    void *arg);
298static __inline int periph_is_queued(struct cam_periph *periph);
299static __inline int device_is_alloc_queued(struct cam_ed *device);
300static __inline int device_is_send_queued(struct cam_ed *device);
301
302static __inline int
303xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
304{
305	int retval;
306
307	if ((dev->drvq.entries > 0) &&
308	    (dev->ccbq.devq_openings > 0) &&
309	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
310		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
311		/*
312		 * The priority of a device waiting for CCB resources
313		 * is that of the highest priority peripheral driver
314		 * enqueued.
315		 */
316		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
317					  &dev->alloc_ccb_entry.pinfo,
318					  CAMQ_GET_PRIO(&dev->drvq));
319	} else {
320		retval = 0;
321	}
322
323	return (retval);
324}
325
326static __inline int
327xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
328{
329	int	retval;
330
331	if ((dev->ccbq.queue.entries > 0) &&
332	    (dev->ccbq.dev_openings > 0) &&
333	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
334		/*
335		 * The priority of a device waiting for controller
336		 * resources is that of the highest priority CCB
337		 * enqueued.
338		 */
339		retval =
340		    xpt_schedule_dev(&bus->sim->devq->send_queue,
341				     &dev->send_ccb_entry.pinfo,
342				     CAMQ_GET_PRIO(&dev->ccbq.queue));
343	} else {
344		retval = 0;
345	}
346	return (retval);
347}
348
349static __inline int
350periph_is_queued(struct cam_periph *periph)
351{
352	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
353}
354
355static __inline int
356device_is_alloc_queued(struct cam_ed *device)
357{
358	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
359}
360
361static __inline int
362device_is_send_queued(struct cam_ed *device)
363{
364	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
365}
366
367static void
368xpt_periph_init()
369{
370	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
371}
372
373static void
374xptdone(struct cam_periph *periph, union ccb *done_ccb)
375{
376	/* Caller will release the CCB */
377	wakeup(&done_ccb->ccb_h.cbfcnp);
378}
379
380static int
381xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
382{
383
384	/*
385	 * Only allow read-write access.
386	 */
387	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
388		return(EPERM);
389
390	/*
391	 * We don't allow nonblocking access.
392	 */
393	if ((flags & O_NONBLOCK) != 0) {
394		printf("%s: can't do nonblocking access\n", devtoname(dev));
395		return(ENODEV);
396	}
397
398	/* Mark ourselves open */
399	mtx_lock(&xsoftc.xpt_lock);
400	xsoftc.flags |= XPT_FLAG_OPEN;
401	mtx_unlock(&xsoftc.xpt_lock);
402
403	return(0);
404}
405
406static int
407xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
408{
409
410	/* Mark ourselves closed */
411	mtx_lock(&xsoftc.xpt_lock);
412	xsoftc.flags &= ~XPT_FLAG_OPEN;
413	mtx_unlock(&xsoftc.xpt_lock);
414
415	return(0);
416}
417
418/*
419 * Don't automatically grab the xpt softc lock here even though this is going
420 * through the xpt device.  The xpt device is really just a back door for
421 * accessing other devices and SIMs, so the right thing to do is to grab
422 * the appropriate SIM lock once the bus/SIM is located.
423 */
424static int
425xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
426{
427	int error;
428
429	error = 0;
430
431	switch(cmd) {
432	/*
433	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
434	 * to accept CCB types that don't quite make sense to send through a
435	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
436	 * in the CAM spec.
437	 */
438	case CAMIOCOMMAND: {
439		union ccb *ccb;
440		union ccb *inccb;
441		struct cam_eb *bus;
442
443		inccb = (union ccb *)addr;
444
445		bus = xpt_find_bus(inccb->ccb_h.path_id);
446		if (bus == NULL)
447			return (EINVAL);
448
449		switch (inccb->ccb_h.func_code) {
450		case XPT_SCAN_BUS:
451		case XPT_RESET_BUS:
452			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
453			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454				xpt_release_bus(bus);
455				return (EINVAL);
456			}
457			break;
458		case XPT_SCAN_TGT:
459			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
460			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461				xpt_release_bus(bus);
462				return (EINVAL);
463			}
464			break;
465		default:
466			break;
467		}
468
469		switch(inccb->ccb_h.func_code) {
470		case XPT_SCAN_BUS:
471		case XPT_RESET_BUS:
472		case XPT_PATH_INQ:
473		case XPT_ENG_INQ:
474		case XPT_SCAN_LUN:
475		case XPT_SCAN_TGT:
476
477			ccb = xpt_alloc_ccb();
478
479			CAM_SIM_LOCK(bus->sim);
480
481			/*
482			 * Create a path using the bus, target, and lun the
483			 * user passed in.
484			 */
485			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
486					    inccb->ccb_h.path_id,
487					    inccb->ccb_h.target_id,
488					    inccb->ccb_h.target_lun) !=
489					    CAM_REQ_CMP){
490				error = EINVAL;
491				CAM_SIM_UNLOCK(bus->sim);
492				xpt_free_ccb(ccb);
493				break;
494			}
495			/* Ensure all of our fields are correct */
496			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
497				      inccb->ccb_h.pinfo.priority);
498			xpt_merge_ccb(ccb, inccb);
499			ccb->ccb_h.cbfcnp = xptdone;
500			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
501			bcopy(ccb, inccb, sizeof(union ccb));
502			xpt_free_path(ccb->ccb_h.path);
503			xpt_free_ccb(ccb);
504			CAM_SIM_UNLOCK(bus->sim);
505			break;
506
507		case XPT_DEBUG: {
508			union ccb ccb;
509
510			/*
511			 * This is an immediate CCB, so it's okay to
512			 * allocate it on the stack.
513			 */
514
515			CAM_SIM_LOCK(bus->sim);
516
517			/*
518			 * Create a path using the bus, target, and lun the
519			 * user passed in.
520			 */
521			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
522					    inccb->ccb_h.path_id,
523					    inccb->ccb_h.target_id,
524					    inccb->ccb_h.target_lun) !=
525					    CAM_REQ_CMP){
526				error = EINVAL;
527				CAM_SIM_UNLOCK(bus->sim);
528				break;
529			}
530			/* Ensure all of our fields are correct */
531			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
532				      inccb->ccb_h.pinfo.priority);
533			xpt_merge_ccb(&ccb, inccb);
534			ccb.ccb_h.cbfcnp = xptdone;
535			xpt_action(&ccb);
536			bcopy(&ccb, inccb, sizeof(union ccb));
537			xpt_free_path(ccb.ccb_h.path);
538			CAM_SIM_UNLOCK(bus->sim);
539			break;
540
541		}
542		case XPT_DEV_MATCH: {
543			struct cam_periph_map_info mapinfo;
544			struct cam_path *old_path;
545
546			/*
547			 * We can't deal with physical addresses for this
548			 * type of transaction.
549			 */
550			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
551			    CAM_DATA_VADDR) {
552				error = EINVAL;
553				break;
554			}
555
556			/*
557			 * Save this in case the caller had it set to
558			 * something in particular.
559			 */
560			old_path = inccb->ccb_h.path;
561
562			/*
563			 * We really don't need a path for the matching
564			 * code.  The path is needed because of the
565			 * debugging statements in xpt_action().  They
566			 * assume that the CCB has a valid path.
567			 */
568			inccb->ccb_h.path = xpt_periph->path;
569
570			bzero(&mapinfo, sizeof(mapinfo));
571
572			/*
573			 * Map the pattern and match buffers into kernel
574			 * virtual address space.
575			 */
576			error = cam_periph_mapmem(inccb, &mapinfo);
577
578			if (error) {
579				inccb->ccb_h.path = old_path;
580				break;
581			}
582
583			/*
584			 * This is an immediate CCB, we can send it on directly.
585			 */
586			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
587			xpt_action(inccb);
588			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
589
590			/*
591			 * Map the buffers back into user space.
592			 */
593			cam_periph_unmapmem(inccb, &mapinfo);
594
595			inccb->ccb_h.path = old_path;
596
597			error = 0;
598			break;
599		}
600		default:
601			error = ENOTSUP;
602			break;
603		}
604		xpt_release_bus(bus);
605		break;
606	}
607	/*
608	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
609	 * with the periphal driver name and unit name filled in.  The other
610	 * fields don't really matter as input.  The passthrough driver name
611	 * ("pass"), and unit number are passed back in the ccb.  The current
612	 * device generation number, and the index into the device peripheral
613	 * driver list, and the status are also passed back.  Note that
614	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
615	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
616	 * (or rather should be) impossible for the device peripheral driver
617	 * list to change since we look at the whole thing in one pass, and
618	 * we do it with lock protection.
619	 *
620	 */
621	case CAMGETPASSTHRU: {
622		union ccb *ccb;
623		struct cam_periph *periph;
624		struct periph_driver **p_drv;
625		char   *name;
626		u_int unit;
627		u_int cur_generation;
628		int base_periph_found;
629		int splbreaknum;
630
631		ccb = (union ccb *)addr;
632		unit = ccb->cgdl.unit_number;
633		name = ccb->cgdl.periph_name;
634		/*
635		 * Every 100 devices, we want to drop our lock protection to
636		 * give the software interrupt handler a chance to run.
637		 * Most systems won't run into this check, but this should
638		 * avoid starvation in the software interrupt handler in
639		 * large systems.
640		 */
641		splbreaknum = 100;
642
643		ccb = (union ccb *)addr;
644
645		base_periph_found = 0;
646
647		/*
648		 * Sanity check -- make sure we don't get a null peripheral
649		 * driver name.
650		 */
651		if (*ccb->cgdl.periph_name == '\0') {
652			error = EINVAL;
653			break;
654		}
655
656		/* Keep the list from changing while we traverse it */
657		xpt_lock_buses();
658ptstartover:
659		cur_generation = xsoftc.xpt_generation;
660
661		/* first find our driver in the list of drivers */
662		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
663			if (strcmp((*p_drv)->driver_name, name) == 0)
664				break;
665
666		if (*p_drv == NULL) {
667			xpt_unlock_buses();
668			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
669			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
670			*ccb->cgdl.periph_name = '\0';
671			ccb->cgdl.unit_number = 0;
672			error = ENOENT;
673			break;
674		}
675
676		/*
677		 * Run through every peripheral instance of this driver
678		 * and check to see whether it matches the unit passed
679		 * in by the user.  If it does, get out of the loops and
680		 * find the passthrough driver associated with that
681		 * peripheral driver.
682		 */
683		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
684		     periph = TAILQ_NEXT(periph, unit_links)) {
685
686			if (periph->unit_number == unit) {
687				break;
688			} else if (--splbreaknum == 0) {
689				xpt_unlock_buses();
690				xpt_lock_buses();
691				splbreaknum = 100;
692				if (cur_generation != xsoftc.xpt_generation)
693				       goto ptstartover;
694			}
695		}
696		/*
697		 * If we found the peripheral driver that the user passed
698		 * in, go through all of the peripheral drivers for that
699		 * particular device and look for a passthrough driver.
700		 */
701		if (periph != NULL) {
702			struct cam_ed *device;
703			int i;
704
705			base_periph_found = 1;
706			device = periph->path->device;
707			for (i = 0, periph = SLIST_FIRST(&device->periphs);
708			     periph != NULL;
709			     periph = SLIST_NEXT(periph, periph_links), i++) {
710				/*
711				 * Check to see whether we have a
712				 * passthrough device or not.
713				 */
714				if (strcmp(periph->periph_name, "pass") == 0) {
715					/*
716					 * Fill in the getdevlist fields.
717					 */
718					strcpy(ccb->cgdl.periph_name,
719					       periph->periph_name);
720					ccb->cgdl.unit_number =
721						periph->unit_number;
722					if (SLIST_NEXT(periph, periph_links))
723						ccb->cgdl.status =
724							CAM_GDEVLIST_MORE_DEVS;
725					else
726						ccb->cgdl.status =
727						       CAM_GDEVLIST_LAST_DEVICE;
728					ccb->cgdl.generation =
729						device->generation;
730					ccb->cgdl.index = i;
731					/*
732					 * Fill in some CCB header fields
733					 * that the user may want.
734					 */
735					ccb->ccb_h.path_id =
736						periph->path->bus->path_id;
737					ccb->ccb_h.target_id =
738						periph->path->target->target_id;
739					ccb->ccb_h.target_lun =
740						periph->path->device->lun_id;
741					ccb->ccb_h.status = CAM_REQ_CMP;
742					break;
743				}
744			}
745		}
746
747		/*
748		 * If the periph is null here, one of two things has
749		 * happened.  The first possibility is that we couldn't
750		 * find the unit number of the particular peripheral driver
751		 * that the user is asking about.  e.g. the user asks for
752		 * the passthrough driver for "da11".  We find the list of
753		 * "da" peripherals all right, but there is no unit 11.
754		 * The other possibility is that we went through the list
755		 * of peripheral drivers attached to the device structure,
756		 * but didn't find one with the name "pass".  Either way,
757		 * we return ENOENT, since we couldn't find something.
758		 */
759		if (periph == NULL) {
760			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
761			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
762			*ccb->cgdl.periph_name = '\0';
763			ccb->cgdl.unit_number = 0;
764			error = ENOENT;
765			/*
766			 * It is unfortunate that this is even necessary,
767			 * but there are many, many clueless users out there.
768			 * If this is true, the user is looking for the
769			 * passthrough driver, but doesn't have one in his
770			 * kernel.
771			 */
772			if (base_periph_found == 1) {
773				printf("xptioctl: pass driver is not in the "
774				       "kernel\n");
775				printf("xptioctl: put \"device pass\" in "
776				       "your kernel config file\n");
777			}
778		}
779		xpt_unlock_buses();
780		break;
781		}
782	default:
783		error = ENOTTY;
784		break;
785	}
786
787	return(error);
788}
789
790static int
791cam_module_event_handler(module_t mod, int what, void *arg)
792{
793	int error;
794
795	switch (what) {
796	case MOD_LOAD:
797		if ((error = xpt_init(NULL)) != 0)
798			return (error);
799		break;
800	case MOD_UNLOAD:
801		return EBUSY;
802	default:
803		return EOPNOTSUPP;
804	}
805
806	return 0;
807}
808
809static void
810xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
811{
812
813	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
814		xpt_free_path(done_ccb->ccb_h.path);
815		xpt_free_ccb(done_ccb);
816	} else {
817		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
818		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
819	}
820	xpt_release_boot();
821}
822
823/* thread to handle bus rescans */
824static void
825xpt_scanner_thread(void *dummy)
826{
827	union ccb	*ccb;
828	struct cam_sim	*sim;
829
830	xpt_lock_buses();
831	for (;;) {
832		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
833			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
834			       "ccb_scanq", 0);
835		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
836			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
837			xpt_unlock_buses();
838
839			sim = ccb->ccb_h.path->bus->sim;
840			CAM_SIM_LOCK(sim);
841			xpt_action(ccb);
842			CAM_SIM_UNLOCK(sim);
843
844			xpt_lock_buses();
845		}
846	}
847}
848
849void
850xpt_rescan(union ccb *ccb)
851{
852	struct ccb_hdr *hdr;
853
854	/* Prepare request */
855	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
856	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
857		ccb->ccb_h.func_code = XPT_SCAN_BUS;
858	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
859	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
860		ccb->ccb_h.func_code = XPT_SCAN_TGT;
861	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
862	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
863		ccb->ccb_h.func_code = XPT_SCAN_LUN;
864	else {
865		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
866		xpt_free_path(ccb->ccb_h.path);
867		xpt_free_ccb(ccb);
868		return;
869	}
870	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
871	ccb->ccb_h.cbfcnp = xpt_rescan_done;
872	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
873	/* Don't make duplicate entries for the same paths. */
874	xpt_lock_buses();
875	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
876		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
877			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
878				wakeup(&xsoftc.ccb_scanq);
879				xpt_unlock_buses();
880				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
881				xpt_free_path(ccb->ccb_h.path);
882				xpt_free_ccb(ccb);
883				return;
884			}
885		}
886	}
887	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
888	xsoftc.buses_to_config++;
889	wakeup(&xsoftc.ccb_scanq);
890	xpt_unlock_buses();
891}
892
893/* Functions accessed by the peripheral drivers */
894static int
895xpt_init(void *dummy)
896{
897	struct cam_sim *xpt_sim;
898	struct cam_path *path;
899	struct cam_devq *devq;
900	cam_status status;
901
902	TAILQ_INIT(&xsoftc.xpt_busses);
903	TAILQ_INIT(&cam_simq);
904	TAILQ_INIT(&xsoftc.ccb_scanq);
905	STAILQ_INIT(&xsoftc.highpowerq);
906	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
907
908	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
909	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
910	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
911
912	/*
913	 * The xpt layer is, itself, the equivelent of a SIM.
914	 * Allow 16 ccbs in the ccb pool for it.  This should
915	 * give decent parallelism when we probe busses and
916	 * perform other XPT functions.
917	 */
918	devq = cam_simq_alloc(16);
919	xpt_sim = cam_sim_alloc(xptaction,
920				xptpoll,
921				"xpt",
922				/*softc*/NULL,
923				/*unit*/0,
924				/*mtx*/&xsoftc.xpt_lock,
925				/*max_dev_transactions*/0,
926				/*max_tagged_dev_transactions*/0,
927				devq);
928	if (xpt_sim == NULL)
929		return (ENOMEM);
930
931	mtx_lock(&xsoftc.xpt_lock);
932	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
933		mtx_unlock(&xsoftc.xpt_lock);
934		printf("xpt_init: xpt_bus_register failed with status %#x,"
935		       " failing attach\n", status);
936		return (EINVAL);
937	}
938
939	/*
940	 * Looking at the XPT from the SIM layer, the XPT is
941	 * the equivelent of a peripheral driver.  Allocate
942	 * a peripheral driver entry for us.
943	 */
944	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
945				      CAM_TARGET_WILDCARD,
946				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
947		mtx_unlock(&xsoftc.xpt_lock);
948		printf("xpt_init: xpt_create_path failed with status %#x,"
949		       " failing attach\n", status);
950		return (EINVAL);
951	}
952
953	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
954			 path, NULL, 0, xpt_sim);
955	xpt_free_path(path);
956	mtx_unlock(&xsoftc.xpt_lock);
957	/* Install our software interrupt handlers */
958	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
959	/*
960	 * Register a callback for when interrupts are enabled.
961	 */
962	xsoftc.xpt_config_hook =
963	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
964					      M_CAMXPT, M_NOWAIT | M_ZERO);
965	if (xsoftc.xpt_config_hook == NULL) {
966		printf("xpt_init: Cannot malloc config hook "
967		       "- failing attach\n");
968		return (ENOMEM);
969	}
970	xsoftc.xpt_config_hook->ich_func = xpt_config;
971	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
972		free (xsoftc.xpt_config_hook, M_CAMXPT);
973		printf("xpt_init: config_intrhook_establish failed "
974		       "- failing attach\n");
975	}
976
977	return (0);
978}
979
980static cam_status
981xptregister(struct cam_periph *periph, void *arg)
982{
983	struct cam_sim *xpt_sim;
984
985	if (periph == NULL) {
986		printf("xptregister: periph was NULL!!\n");
987		return(CAM_REQ_CMP_ERR);
988	}
989
990	xpt_sim = (struct cam_sim *)arg;
991	xpt_sim->softc = periph;
992	xpt_periph = periph;
993	periph->softc = NULL;
994
995	return(CAM_REQ_CMP);
996}
997
998int32_t
999xpt_add_periph(struct cam_periph *periph)
1000{
1001	struct cam_ed *device;
1002	int32_t	 status;
1003	struct periph_list *periph_head;
1004
1005	mtx_assert(periph->sim->mtx, MA_OWNED);
1006
1007	device = periph->path->device;
1008
1009	periph_head = &device->periphs;
1010
1011	status = CAM_REQ_CMP;
1012
1013	if (device != NULL) {
1014		/*
1015		 * Make room for this peripheral
1016		 * so it will fit in the queue
1017		 * when it's scheduled to run
1018		 */
1019		status = camq_resize(&device->drvq,
1020				     device->drvq.array_size + 1);
1021
1022		device->generation++;
1023
1024		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1025	}
1026
1027	xpt_lock_buses();
1028	xsoftc.xpt_generation++;
1029	xpt_unlock_buses();
1030
1031	return (status);
1032}
1033
1034void
1035xpt_remove_periph(struct cam_periph *periph, int topology_lock_held)
1036{
1037	struct cam_ed *device;
1038
1039	mtx_assert(periph->sim->mtx, MA_OWNED);
1040
1041	device = periph->path->device;
1042
1043	if (device != NULL) {
1044		struct periph_list *periph_head;
1045
1046		periph_head = &device->periphs;
1047
1048		/* Release the slot for this peripheral */
1049		camq_resize(&device->drvq, device->drvq.array_size - 1);
1050
1051		device->generation++;
1052
1053		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1054	}
1055
1056	if (topology_lock_held == 0)
1057		xpt_lock_buses();
1058
1059	xsoftc.xpt_generation++;
1060
1061	if (topology_lock_held == 0)
1062		xpt_unlock_buses();
1063}
1064
1065
1066void
1067xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1068{
1069	struct	cam_path *path = periph->path;
1070
1071	mtx_assert(periph->sim->mtx, MA_OWNED);
1072
1073	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1074	       periph->periph_name, periph->unit_number,
1075	       path->bus->sim->sim_name,
1076	       path->bus->sim->unit_number,
1077	       path->bus->sim->bus_id,
1078	       path->bus->path_id,
1079	       path->target->target_id,
1080	       path->device->lun_id);
1081	printf("%s%d: ", periph->periph_name, periph->unit_number);
1082	if (path->device->protocol == PROTO_SCSI)
1083		scsi_print_inquiry(&path->device->inq_data);
1084	else if (path->device->protocol == PROTO_ATA ||
1085	    path->device->protocol == PROTO_SATAPM)
1086		ata_print_ident(&path->device->ident_data);
1087	else if (path->device->protocol == PROTO_SEMB)
1088		semb_print_ident(
1089		    (struct sep_identify_data *)&path->device->ident_data);
1090	else
1091		printf("Unknown protocol device\n");
1092	if (bootverbose && path->device->serial_num_len > 0) {
1093		/* Don't wrap the screen  - print only the first 60 chars */
1094		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1095		       periph->unit_number, path->device->serial_num);
1096	}
1097	/* Announce transport details. */
1098	(*(path->bus->xport->announce))(periph);
1099	/* Announce command queueing. */
1100	if (path->device->inq_flags & SID_CmdQue
1101	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1102		printf("%s%d: Command Queueing enabled\n",
1103		       periph->periph_name, periph->unit_number);
1104	}
1105	/* Announce caller's details if they've passed in. */
1106	if (announce_string != NULL)
1107		printf("%s%d: %s\n", periph->periph_name,
1108		       periph->unit_number, announce_string);
1109}
1110
1111int
1112xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1113{
1114	int ret = -1;
1115	struct ccb_dev_advinfo cdai;
1116
1117	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1118
1119	memset(&cdai, 0, sizeof(cdai));
1120	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1121	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1122	cdai.bufsiz = len;
1123
1124	if (!strcmp(attr, "GEOM::ident"))
1125		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1126	else if (!strcmp(attr, "GEOM::physpath"))
1127		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1128	else
1129		goto out;
1130
1131	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1132	if (cdai.buf == NULL) {
1133		ret = ENOMEM;
1134		goto out;
1135	}
1136	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1137	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1138		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1139	if (cdai.provsiz == 0)
1140		goto out;
1141	ret = 0;
1142	if (strlcpy(buf, cdai.buf, len) >= len)
1143		ret = EFAULT;
1144
1145out:
1146	if (cdai.buf != NULL)
1147		free(cdai.buf, M_CAMXPT);
1148	return ret;
1149}
1150
1151static dev_match_ret
1152xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1153	    struct cam_eb *bus)
1154{
1155	dev_match_ret retval;
1156	int i;
1157
1158	retval = DM_RET_NONE;
1159
1160	/*
1161	 * If we aren't given something to match against, that's an error.
1162	 */
1163	if (bus == NULL)
1164		return(DM_RET_ERROR);
1165
1166	/*
1167	 * If there are no match entries, then this bus matches no
1168	 * matter what.
1169	 */
1170	if ((patterns == NULL) || (num_patterns == 0))
1171		return(DM_RET_DESCEND | DM_RET_COPY);
1172
1173	for (i = 0; i < num_patterns; i++) {
1174		struct bus_match_pattern *cur_pattern;
1175
1176		/*
1177		 * If the pattern in question isn't for a bus node, we
1178		 * aren't interested.  However, we do indicate to the
1179		 * calling routine that we should continue descending the
1180		 * tree, since the user wants to match against lower-level
1181		 * EDT elements.
1182		 */
1183		if (patterns[i].type != DEV_MATCH_BUS) {
1184			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1185				retval |= DM_RET_DESCEND;
1186			continue;
1187		}
1188
1189		cur_pattern = &patterns[i].pattern.bus_pattern;
1190
1191		/*
1192		 * If they want to match any bus node, we give them any
1193		 * device node.
1194		 */
1195		if (cur_pattern->flags == BUS_MATCH_ANY) {
1196			/* set the copy flag */
1197			retval |= DM_RET_COPY;
1198
1199			/*
1200			 * If we've already decided on an action, go ahead
1201			 * and return.
1202			 */
1203			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1204				return(retval);
1205		}
1206
1207		/*
1208		 * Not sure why someone would do this...
1209		 */
1210		if (cur_pattern->flags == BUS_MATCH_NONE)
1211			continue;
1212
1213		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1214		 && (cur_pattern->path_id != bus->path_id))
1215			continue;
1216
1217		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1218		 && (cur_pattern->bus_id != bus->sim->bus_id))
1219			continue;
1220
1221		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1222		 && (cur_pattern->unit_number != bus->sim->unit_number))
1223			continue;
1224
1225		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1226		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1227			     DEV_IDLEN) != 0))
1228			continue;
1229
1230		/*
1231		 * If we get to this point, the user definitely wants
1232		 * information on this bus.  So tell the caller to copy the
1233		 * data out.
1234		 */
1235		retval |= DM_RET_COPY;
1236
1237		/*
1238		 * If the return action has been set to descend, then we
1239		 * know that we've already seen a non-bus matching
1240		 * expression, therefore we need to further descend the tree.
1241		 * This won't change by continuing around the loop, so we
1242		 * go ahead and return.  If we haven't seen a non-bus
1243		 * matching expression, we keep going around the loop until
1244		 * we exhaust the matching expressions.  We'll set the stop
1245		 * flag once we fall out of the loop.
1246		 */
1247		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1248			return(retval);
1249	}
1250
1251	/*
1252	 * If the return action hasn't been set to descend yet, that means
1253	 * we haven't seen anything other than bus matching patterns.  So
1254	 * tell the caller to stop descending the tree -- the user doesn't
1255	 * want to match against lower level tree elements.
1256	 */
1257	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1258		retval |= DM_RET_STOP;
1259
1260	return(retval);
1261}
1262
1263static dev_match_ret
1264xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1265	       struct cam_ed *device)
1266{
1267	dev_match_ret retval;
1268	int i;
1269
1270	retval = DM_RET_NONE;
1271
1272	/*
1273	 * If we aren't given something to match against, that's an error.
1274	 */
1275	if (device == NULL)
1276		return(DM_RET_ERROR);
1277
1278	/*
1279	 * If there are no match entries, then this device matches no
1280	 * matter what.
1281	 */
1282	if ((patterns == NULL) || (num_patterns == 0))
1283		return(DM_RET_DESCEND | DM_RET_COPY);
1284
1285	for (i = 0; i < num_patterns; i++) {
1286		struct device_match_pattern *cur_pattern;
1287		struct scsi_vpd_device_id *device_id_page;
1288
1289		/*
1290		 * If the pattern in question isn't for a device node, we
1291		 * aren't interested.
1292		 */
1293		if (patterns[i].type != DEV_MATCH_DEVICE) {
1294			if ((patterns[i].type == DEV_MATCH_PERIPH)
1295			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1296				retval |= DM_RET_DESCEND;
1297			continue;
1298		}
1299
1300		cur_pattern = &patterns[i].pattern.device_pattern;
1301
1302		/* Error out if mutually exclusive options are specified. */
1303		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1304		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1305			return(DM_RET_ERROR);
1306
1307		/*
1308		 * If they want to match any device node, we give them any
1309		 * device node.
1310		 */
1311		if (cur_pattern->flags == DEV_MATCH_ANY)
1312			goto copy_dev_node;
1313
1314		/*
1315		 * Not sure why someone would do this...
1316		 */
1317		if (cur_pattern->flags == DEV_MATCH_NONE)
1318			continue;
1319
1320		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1321		 && (cur_pattern->path_id != device->target->bus->path_id))
1322			continue;
1323
1324		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1325		 && (cur_pattern->target_id != device->target->target_id))
1326			continue;
1327
1328		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1329		 && (cur_pattern->target_lun != device->lun_id))
1330			continue;
1331
1332		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1333		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1334				    (caddr_t)&cur_pattern->data.inq_pat,
1335				    1, sizeof(cur_pattern->data.inq_pat),
1336				    scsi_static_inquiry_match) == NULL))
1337			continue;
1338
1339		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1340		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1341		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1342		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1343				      device->device_id_len
1344				    - SVPD_DEVICE_ID_HDR_LEN,
1345				      cur_pattern->data.devid_pat.id,
1346				      cur_pattern->data.devid_pat.id_len) != 0))
1347			continue;
1348
1349copy_dev_node:
1350		/*
1351		 * If we get to this point, the user definitely wants
1352		 * information on this device.  So tell the caller to copy
1353		 * the data out.
1354		 */
1355		retval |= DM_RET_COPY;
1356
1357		/*
1358		 * If the return action has been set to descend, then we
1359		 * know that we've already seen a peripheral matching
1360		 * expression, therefore we need to further descend the tree.
1361		 * This won't change by continuing around the loop, so we
1362		 * go ahead and return.  If we haven't seen a peripheral
1363		 * matching expression, we keep going around the loop until
1364		 * we exhaust the matching expressions.  We'll set the stop
1365		 * flag once we fall out of the loop.
1366		 */
1367		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1368			return(retval);
1369	}
1370
1371	/*
1372	 * If the return action hasn't been set to descend yet, that means
1373	 * we haven't seen any peripheral matching patterns.  So tell the
1374	 * caller to stop descending the tree -- the user doesn't want to
1375	 * match against lower level tree elements.
1376	 */
1377	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1378		retval |= DM_RET_STOP;
1379
1380	return(retval);
1381}
1382
1383/*
1384 * Match a single peripheral against any number of match patterns.
1385 */
1386static dev_match_ret
1387xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1388	       struct cam_periph *periph)
1389{
1390	dev_match_ret retval;
1391	int i;
1392
1393	/*
1394	 * If we aren't given something to match against, that's an error.
1395	 */
1396	if (periph == NULL)
1397		return(DM_RET_ERROR);
1398
1399	/*
1400	 * If there are no match entries, then this peripheral matches no
1401	 * matter what.
1402	 */
1403	if ((patterns == NULL) || (num_patterns == 0))
1404		return(DM_RET_STOP | DM_RET_COPY);
1405
1406	/*
1407	 * There aren't any nodes below a peripheral node, so there's no
1408	 * reason to descend the tree any further.
1409	 */
1410	retval = DM_RET_STOP;
1411
1412	for (i = 0; i < num_patterns; i++) {
1413		struct periph_match_pattern *cur_pattern;
1414
1415		/*
1416		 * If the pattern in question isn't for a peripheral, we
1417		 * aren't interested.
1418		 */
1419		if (patterns[i].type != DEV_MATCH_PERIPH)
1420			continue;
1421
1422		cur_pattern = &patterns[i].pattern.periph_pattern;
1423
1424		/*
1425		 * If they want to match on anything, then we will do so.
1426		 */
1427		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1428			/* set the copy flag */
1429			retval |= DM_RET_COPY;
1430
1431			/*
1432			 * We've already set the return action to stop,
1433			 * since there are no nodes below peripherals in
1434			 * the tree.
1435			 */
1436			return(retval);
1437		}
1438
1439		/*
1440		 * Not sure why someone would do this...
1441		 */
1442		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1443			continue;
1444
1445		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1446		 && (cur_pattern->path_id != periph->path->bus->path_id))
1447			continue;
1448
1449		/*
1450		 * For the target and lun id's, we have to make sure the
1451		 * target and lun pointers aren't NULL.  The xpt peripheral
1452		 * has a wildcard target and device.
1453		 */
1454		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1455		 && ((periph->path->target == NULL)
1456		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1457			continue;
1458
1459		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1460		 && ((periph->path->device == NULL)
1461		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1462			continue;
1463
1464		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1465		 && (cur_pattern->unit_number != periph->unit_number))
1466			continue;
1467
1468		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1469		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1470			     DEV_IDLEN) != 0))
1471			continue;
1472
1473		/*
1474		 * If we get to this point, the user definitely wants
1475		 * information on this peripheral.  So tell the caller to
1476		 * copy the data out.
1477		 */
1478		retval |= DM_RET_COPY;
1479
1480		/*
1481		 * The return action has already been set to stop, since
1482		 * peripherals don't have any nodes below them in the EDT.
1483		 */
1484		return(retval);
1485	}
1486
1487	/*
1488	 * If we get to this point, the peripheral that was passed in
1489	 * doesn't match any of the patterns.
1490	 */
1491	return(retval);
1492}
1493
1494static int
1495xptedtbusfunc(struct cam_eb *bus, void *arg)
1496{
1497	struct ccb_dev_match *cdm;
1498	dev_match_ret retval;
1499
1500	cdm = (struct ccb_dev_match *)arg;
1501
1502	/*
1503	 * If our position is for something deeper in the tree, that means
1504	 * that we've already seen this node.  So, we keep going down.
1505	 */
1506	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1507	 && (cdm->pos.cookie.bus == bus)
1508	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1509	 && (cdm->pos.cookie.target != NULL))
1510		retval = DM_RET_DESCEND;
1511	else
1512		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1513
1514	/*
1515	 * If we got an error, bail out of the search.
1516	 */
1517	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1518		cdm->status = CAM_DEV_MATCH_ERROR;
1519		return(0);
1520	}
1521
1522	/*
1523	 * If the copy flag is set, copy this bus out.
1524	 */
1525	if (retval & DM_RET_COPY) {
1526		int spaceleft, j;
1527
1528		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1529			sizeof(struct dev_match_result));
1530
1531		/*
1532		 * If we don't have enough space to put in another
1533		 * match result, save our position and tell the
1534		 * user there are more devices to check.
1535		 */
1536		if (spaceleft < sizeof(struct dev_match_result)) {
1537			bzero(&cdm->pos, sizeof(cdm->pos));
1538			cdm->pos.position_type =
1539				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1540
1541			cdm->pos.cookie.bus = bus;
1542			cdm->pos.generations[CAM_BUS_GENERATION]=
1543				xsoftc.bus_generation;
1544			cdm->status = CAM_DEV_MATCH_MORE;
1545			return(0);
1546		}
1547		j = cdm->num_matches;
1548		cdm->num_matches++;
1549		cdm->matches[j].type = DEV_MATCH_BUS;
1550		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1551		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1552		cdm->matches[j].result.bus_result.unit_number =
1553			bus->sim->unit_number;
1554		strncpy(cdm->matches[j].result.bus_result.dev_name,
1555			bus->sim->sim_name, DEV_IDLEN);
1556	}
1557
1558	/*
1559	 * If the user is only interested in busses, there's no
1560	 * reason to descend to the next level in the tree.
1561	 */
1562	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1563		return(1);
1564
1565	/*
1566	 * If there is a target generation recorded, check it to
1567	 * make sure the target list hasn't changed.
1568	 */
1569	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1570	 && (bus == cdm->pos.cookie.bus)
1571	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1572	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1573	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1574	     bus->generation)) {
1575		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1576		return(0);
1577	}
1578
1579	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1580	 && (cdm->pos.cookie.bus == bus)
1581	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1582	 && (cdm->pos.cookie.target != NULL))
1583		return(xpttargettraverse(bus,
1584					(struct cam_et *)cdm->pos.cookie.target,
1585					 xptedttargetfunc, arg));
1586	else
1587		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1588}
1589
1590static int
1591xptedttargetfunc(struct cam_et *target, void *arg)
1592{
1593	struct ccb_dev_match *cdm;
1594
1595	cdm = (struct ccb_dev_match *)arg;
1596
1597	/*
1598	 * If there is a device list generation recorded, check it to
1599	 * make sure the device list hasn't changed.
1600	 */
1601	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1602	 && (cdm->pos.cookie.bus == target->bus)
1603	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1604	 && (cdm->pos.cookie.target == target)
1605	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1606	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1607	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1608	     target->generation)) {
1609		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1610		return(0);
1611	}
1612
1613	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1614	 && (cdm->pos.cookie.bus == target->bus)
1615	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1616	 && (cdm->pos.cookie.target == target)
1617	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1618	 && (cdm->pos.cookie.device != NULL))
1619		return(xptdevicetraverse(target,
1620					(struct cam_ed *)cdm->pos.cookie.device,
1621					 xptedtdevicefunc, arg));
1622	else
1623		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1624}
1625
1626static int
1627xptedtdevicefunc(struct cam_ed *device, void *arg)
1628{
1629
1630	struct ccb_dev_match *cdm;
1631	dev_match_ret retval;
1632
1633	cdm = (struct ccb_dev_match *)arg;
1634
1635	/*
1636	 * If our position is for something deeper in the tree, that means
1637	 * that we've already seen this node.  So, we keep going down.
1638	 */
1639	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1640	 && (cdm->pos.cookie.device == device)
1641	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1642	 && (cdm->pos.cookie.periph != NULL))
1643		retval = DM_RET_DESCEND;
1644	else
1645		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1646					device);
1647
1648	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1649		cdm->status = CAM_DEV_MATCH_ERROR;
1650		return(0);
1651	}
1652
1653	/*
1654	 * If the copy flag is set, copy this device out.
1655	 */
1656	if (retval & DM_RET_COPY) {
1657		int spaceleft, j;
1658
1659		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1660			sizeof(struct dev_match_result));
1661
1662		/*
1663		 * If we don't have enough space to put in another
1664		 * match result, save our position and tell the
1665		 * user there are more devices to check.
1666		 */
1667		if (spaceleft < sizeof(struct dev_match_result)) {
1668			bzero(&cdm->pos, sizeof(cdm->pos));
1669			cdm->pos.position_type =
1670				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1671				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1672
1673			cdm->pos.cookie.bus = device->target->bus;
1674			cdm->pos.generations[CAM_BUS_GENERATION]=
1675				xsoftc.bus_generation;
1676			cdm->pos.cookie.target = device->target;
1677			cdm->pos.generations[CAM_TARGET_GENERATION] =
1678				device->target->bus->generation;
1679			cdm->pos.cookie.device = device;
1680			cdm->pos.generations[CAM_DEV_GENERATION] =
1681				device->target->generation;
1682			cdm->status = CAM_DEV_MATCH_MORE;
1683			return(0);
1684		}
1685		j = cdm->num_matches;
1686		cdm->num_matches++;
1687		cdm->matches[j].type = DEV_MATCH_DEVICE;
1688		cdm->matches[j].result.device_result.path_id =
1689			device->target->bus->path_id;
1690		cdm->matches[j].result.device_result.target_id =
1691			device->target->target_id;
1692		cdm->matches[j].result.device_result.target_lun =
1693			device->lun_id;
1694		cdm->matches[j].result.device_result.protocol =
1695			device->protocol;
1696		bcopy(&device->inq_data,
1697		      &cdm->matches[j].result.device_result.inq_data,
1698		      sizeof(struct scsi_inquiry_data));
1699		bcopy(&device->ident_data,
1700		      &cdm->matches[j].result.device_result.ident_data,
1701		      sizeof(struct ata_params));
1702
1703		/* Let the user know whether this device is unconfigured */
1704		if (device->flags & CAM_DEV_UNCONFIGURED)
1705			cdm->matches[j].result.device_result.flags =
1706				DEV_RESULT_UNCONFIGURED;
1707		else
1708			cdm->matches[j].result.device_result.flags =
1709				DEV_RESULT_NOFLAG;
1710	}
1711
1712	/*
1713	 * If the user isn't interested in peripherals, don't descend
1714	 * the tree any further.
1715	 */
1716	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1717		return(1);
1718
1719	/*
1720	 * If there is a peripheral list generation recorded, make sure
1721	 * it hasn't changed.
1722	 */
1723	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1724	 && (device->target->bus == cdm->pos.cookie.bus)
1725	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1726	 && (device->target == cdm->pos.cookie.target)
1727	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1728	 && (device == cdm->pos.cookie.device)
1729	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1730	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1731	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1732	     device->generation)){
1733		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1734		return(0);
1735	}
1736
1737	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1738	 && (cdm->pos.cookie.bus == device->target->bus)
1739	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1740	 && (cdm->pos.cookie.target == device->target)
1741	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1742	 && (cdm->pos.cookie.device == device)
1743	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1744	 && (cdm->pos.cookie.periph != NULL))
1745		return(xptperiphtraverse(device,
1746				(struct cam_periph *)cdm->pos.cookie.periph,
1747				xptedtperiphfunc, arg));
1748	else
1749		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1750}
1751
1752static int
1753xptedtperiphfunc(struct cam_periph *periph, void *arg)
1754{
1755	struct ccb_dev_match *cdm;
1756	dev_match_ret retval;
1757
1758	cdm = (struct ccb_dev_match *)arg;
1759
1760	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1761
1762	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1763		cdm->status = CAM_DEV_MATCH_ERROR;
1764		return(0);
1765	}
1766
1767	/*
1768	 * If the copy flag is set, copy this peripheral out.
1769	 */
1770	if (retval & DM_RET_COPY) {
1771		int spaceleft, j;
1772
1773		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1774			sizeof(struct dev_match_result));
1775
1776		/*
1777		 * If we don't have enough space to put in another
1778		 * match result, save our position and tell the
1779		 * user there are more devices to check.
1780		 */
1781		if (spaceleft < sizeof(struct dev_match_result)) {
1782			bzero(&cdm->pos, sizeof(cdm->pos));
1783			cdm->pos.position_type =
1784				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1785				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1786				CAM_DEV_POS_PERIPH;
1787
1788			cdm->pos.cookie.bus = periph->path->bus;
1789			cdm->pos.generations[CAM_BUS_GENERATION]=
1790				xsoftc.bus_generation;
1791			cdm->pos.cookie.target = periph->path->target;
1792			cdm->pos.generations[CAM_TARGET_GENERATION] =
1793				periph->path->bus->generation;
1794			cdm->pos.cookie.device = periph->path->device;
1795			cdm->pos.generations[CAM_DEV_GENERATION] =
1796				periph->path->target->generation;
1797			cdm->pos.cookie.periph = periph;
1798			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1799				periph->path->device->generation;
1800			cdm->status = CAM_DEV_MATCH_MORE;
1801			return(0);
1802		}
1803
1804		j = cdm->num_matches;
1805		cdm->num_matches++;
1806		cdm->matches[j].type = DEV_MATCH_PERIPH;
1807		cdm->matches[j].result.periph_result.path_id =
1808			periph->path->bus->path_id;
1809		cdm->matches[j].result.periph_result.target_id =
1810			periph->path->target->target_id;
1811		cdm->matches[j].result.periph_result.target_lun =
1812			periph->path->device->lun_id;
1813		cdm->matches[j].result.periph_result.unit_number =
1814			periph->unit_number;
1815		strncpy(cdm->matches[j].result.periph_result.periph_name,
1816			periph->periph_name, DEV_IDLEN);
1817	}
1818
1819	return(1);
1820}
1821
1822static int
1823xptedtmatch(struct ccb_dev_match *cdm)
1824{
1825	int ret;
1826
1827	cdm->num_matches = 0;
1828
1829	/*
1830	 * Check the bus list generation.  If it has changed, the user
1831	 * needs to reset everything and start over.
1832	 */
1833	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1834	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1835	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1836		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1837		return(0);
1838	}
1839
1840	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1841	 && (cdm->pos.cookie.bus != NULL))
1842		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1843				     xptedtbusfunc, cdm);
1844	else
1845		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1846
1847	/*
1848	 * If we get back 0, that means that we had to stop before fully
1849	 * traversing the EDT.  It also means that one of the subroutines
1850	 * has set the status field to the proper value.  If we get back 1,
1851	 * we've fully traversed the EDT and copied out any matching entries.
1852	 */
1853	if (ret == 1)
1854		cdm->status = CAM_DEV_MATCH_LAST;
1855
1856	return(ret);
1857}
1858
1859static int
1860xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1861{
1862	struct ccb_dev_match *cdm;
1863
1864	cdm = (struct ccb_dev_match *)arg;
1865
1866	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1867	 && (cdm->pos.cookie.pdrv == pdrv)
1868	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1869	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1870	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1871	     (*pdrv)->generation)) {
1872		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1873		return(0);
1874	}
1875
1876	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1877	 && (cdm->pos.cookie.pdrv == pdrv)
1878	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1879	 && (cdm->pos.cookie.periph != NULL))
1880		return(xptpdperiphtraverse(pdrv,
1881				(struct cam_periph *)cdm->pos.cookie.periph,
1882				xptplistperiphfunc, arg));
1883	else
1884		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1885}
1886
1887static int
1888xptplistperiphfunc(struct cam_periph *periph, void *arg)
1889{
1890	struct ccb_dev_match *cdm;
1891	dev_match_ret retval;
1892
1893	cdm = (struct ccb_dev_match *)arg;
1894
1895	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1896
1897	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1898		cdm->status = CAM_DEV_MATCH_ERROR;
1899		return(0);
1900	}
1901
1902	/*
1903	 * If the copy flag is set, copy this peripheral out.
1904	 */
1905	if (retval & DM_RET_COPY) {
1906		int spaceleft, j;
1907
1908		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1909			sizeof(struct dev_match_result));
1910
1911		/*
1912		 * If we don't have enough space to put in another
1913		 * match result, save our position and tell the
1914		 * user there are more devices to check.
1915		 */
1916		if (spaceleft < sizeof(struct dev_match_result)) {
1917			struct periph_driver **pdrv;
1918
1919			pdrv = NULL;
1920			bzero(&cdm->pos, sizeof(cdm->pos));
1921			cdm->pos.position_type =
1922				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1923				CAM_DEV_POS_PERIPH;
1924
1925			/*
1926			 * This may look a bit non-sensical, but it is
1927			 * actually quite logical.  There are very few
1928			 * peripheral drivers, and bloating every peripheral
1929			 * structure with a pointer back to its parent
1930			 * peripheral driver linker set entry would cost
1931			 * more in the long run than doing this quick lookup.
1932			 */
1933			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1934				if (strcmp((*pdrv)->driver_name,
1935				    periph->periph_name) == 0)
1936					break;
1937			}
1938
1939			if (*pdrv == NULL) {
1940				cdm->status = CAM_DEV_MATCH_ERROR;
1941				return(0);
1942			}
1943
1944			cdm->pos.cookie.pdrv = pdrv;
1945			/*
1946			 * The periph generation slot does double duty, as
1947			 * does the periph pointer slot.  They are used for
1948			 * both edt and pdrv lookups and positioning.
1949			 */
1950			cdm->pos.cookie.periph = periph;
1951			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1952				(*pdrv)->generation;
1953			cdm->status = CAM_DEV_MATCH_MORE;
1954			return(0);
1955		}
1956
1957		j = cdm->num_matches;
1958		cdm->num_matches++;
1959		cdm->matches[j].type = DEV_MATCH_PERIPH;
1960		cdm->matches[j].result.periph_result.path_id =
1961			periph->path->bus->path_id;
1962
1963		/*
1964		 * The transport layer peripheral doesn't have a target or
1965		 * lun.
1966		 */
1967		if (periph->path->target)
1968			cdm->matches[j].result.periph_result.target_id =
1969				periph->path->target->target_id;
1970		else
1971			cdm->matches[j].result.periph_result.target_id = -1;
1972
1973		if (periph->path->device)
1974			cdm->matches[j].result.periph_result.target_lun =
1975				periph->path->device->lun_id;
1976		else
1977			cdm->matches[j].result.periph_result.target_lun = -1;
1978
1979		cdm->matches[j].result.periph_result.unit_number =
1980			periph->unit_number;
1981		strncpy(cdm->matches[j].result.periph_result.periph_name,
1982			periph->periph_name, DEV_IDLEN);
1983	}
1984
1985	return(1);
1986}
1987
1988static int
1989xptperiphlistmatch(struct ccb_dev_match *cdm)
1990{
1991	int ret;
1992
1993	cdm->num_matches = 0;
1994
1995	/*
1996	 * At this point in the edt traversal function, we check the bus
1997	 * list generation to make sure that no busses have been added or
1998	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1999	 * For the peripheral driver list traversal function, however, we
2000	 * don't have to worry about new peripheral driver types coming or
2001	 * going; they're in a linker set, and therefore can't change
2002	 * without a recompile.
2003	 */
2004
2005	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2006	 && (cdm->pos.cookie.pdrv != NULL))
2007		ret = xptpdrvtraverse(
2008				(struct periph_driver **)cdm->pos.cookie.pdrv,
2009				xptplistpdrvfunc, cdm);
2010	else
2011		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2012
2013	/*
2014	 * If we get back 0, that means that we had to stop before fully
2015	 * traversing the peripheral driver tree.  It also means that one of
2016	 * the subroutines has set the status field to the proper value.  If
2017	 * we get back 1, we've fully traversed the EDT and copied out any
2018	 * matching entries.
2019	 */
2020	if (ret == 1)
2021		cdm->status = CAM_DEV_MATCH_LAST;
2022
2023	return(ret);
2024}
2025
2026static int
2027xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2028{
2029	struct cam_eb *bus, *next_bus;
2030	int retval;
2031
2032	retval = 1;
2033
2034	xpt_lock_buses();
2035	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2036	     bus != NULL;
2037	     bus = next_bus) {
2038
2039		bus->refcount++;
2040
2041		/*
2042		 * XXX The locking here is obviously very complex.  We
2043		 * should work to simplify it.
2044		 */
2045		xpt_unlock_buses();
2046		CAM_SIM_LOCK(bus->sim);
2047		retval = tr_func(bus, arg);
2048		CAM_SIM_UNLOCK(bus->sim);
2049
2050		xpt_lock_buses();
2051		next_bus = TAILQ_NEXT(bus, links);
2052		xpt_unlock_buses();
2053
2054		xpt_release_bus(bus);
2055
2056		if (retval == 0)
2057			return(retval);
2058		xpt_lock_buses();
2059	}
2060	xpt_unlock_buses();
2061
2062	return(retval);
2063}
2064
2065static int
2066xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2067		  xpt_targetfunc_t *tr_func, void *arg)
2068{
2069	struct cam_et *target, *next_target;
2070	int retval;
2071
2072	mtx_assert(bus->sim->mtx, MA_OWNED);
2073	retval = 1;
2074	for (target = (start_target ? start_target :
2075		       TAILQ_FIRST(&bus->et_entries));
2076	     target != NULL; target = next_target) {
2077
2078		target->refcount++;
2079
2080		retval = tr_func(target, arg);
2081
2082		next_target = TAILQ_NEXT(target, links);
2083
2084		xpt_release_target(target);
2085
2086		if (retval == 0)
2087			return(retval);
2088	}
2089
2090	return(retval);
2091}
2092
2093static int
2094xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2095		  xpt_devicefunc_t *tr_func, void *arg)
2096{
2097	struct cam_ed *device, *next_device;
2098	int retval;
2099
2100	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2101	retval = 1;
2102	for (device = (start_device ? start_device :
2103		       TAILQ_FIRST(&target->ed_entries));
2104	     device != NULL;
2105	     device = next_device) {
2106
2107		/*
2108		 * Hold a reference so the current device does not go away
2109		 * on us.
2110		 */
2111		device->refcount++;
2112
2113		retval = tr_func(device, arg);
2114
2115		/*
2116		 * Grab our next pointer before we release the current
2117		 * device.
2118		 */
2119		next_device = TAILQ_NEXT(device, links);
2120
2121		xpt_release_device(device);
2122
2123		if (retval == 0)
2124			return(retval);
2125	}
2126
2127	return(retval);
2128}
2129
2130static int
2131xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2132		  xpt_periphfunc_t *tr_func, void *arg)
2133{
2134	struct cam_periph *periph, *next_periph;
2135	int retval;
2136
2137	retval = 1;
2138
2139	mtx_assert(device->sim->mtx, MA_OWNED);
2140	xpt_lock_buses();
2141	for (periph = (start_periph ? start_periph :
2142		       SLIST_FIRST(&device->periphs));
2143	     periph != NULL;
2144	     periph = next_periph) {
2145
2146
2147		/*
2148		 * In this case, we want to show peripherals that have been
2149		 * invalidated, but not peripherals that are scheduled to
2150		 * be freed.  So instead of calling cam_periph_acquire(),
2151		 * which will fail if the periph has been invalidated, we
2152		 * just check for the free flag here.  If it is in the
2153		 * process of being freed, we skip to the next periph.
2154		 */
2155		if (periph->flags & CAM_PERIPH_FREE) {
2156			next_periph = SLIST_NEXT(periph, periph_links);
2157			continue;
2158		}
2159
2160		/*
2161		 * Acquire a reference to this periph while we call the
2162		 * traversal function, so it can't go away.
2163		 */
2164		periph->refcount++;
2165
2166		retval = tr_func(periph, arg);
2167
2168		/*
2169		 * Grab the next peripheral before we release this one, so
2170		 * our next pointer is still valid.
2171		 */
2172		next_periph = SLIST_NEXT(periph, periph_links);
2173
2174		cam_periph_release_locked_buses(periph);
2175
2176		if (retval == 0)
2177			goto bailout_done;
2178	}
2179
2180bailout_done:
2181
2182	xpt_unlock_buses();
2183
2184	return(retval);
2185}
2186
2187static int
2188xptpdrvtraverse(struct periph_driver **start_pdrv,
2189		xpt_pdrvfunc_t *tr_func, void *arg)
2190{
2191	struct periph_driver **pdrv;
2192	int retval;
2193
2194	retval = 1;
2195
2196	/*
2197	 * We don't traverse the peripheral driver list like we do the
2198	 * other lists, because it is a linker set, and therefore cannot be
2199	 * changed during runtime.  If the peripheral driver list is ever
2200	 * re-done to be something other than a linker set (i.e. it can
2201	 * change while the system is running), the list traversal should
2202	 * be modified to work like the other traversal functions.
2203	 */
2204	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2205	     *pdrv != NULL; pdrv++) {
2206		retval = tr_func(pdrv, arg);
2207
2208		if (retval == 0)
2209			return(retval);
2210	}
2211
2212	return(retval);
2213}
2214
2215static int
2216xptpdperiphtraverse(struct periph_driver **pdrv,
2217		    struct cam_periph *start_periph,
2218		    xpt_periphfunc_t *tr_func, void *arg)
2219{
2220	struct cam_periph *periph, *next_periph;
2221	struct cam_sim *sim;
2222	int retval;
2223
2224	retval = 1;
2225
2226	xpt_lock_buses();
2227	for (periph = (start_periph ? start_periph :
2228	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2229	     periph = next_periph) {
2230
2231
2232		/*
2233		 * In this case, we want to show peripherals that have been
2234		 * invalidated, but not peripherals that are scheduled to
2235		 * be freed.  So instead of calling cam_periph_acquire(),
2236		 * which will fail if the periph has been invalidated, we
2237		 * just check for the free flag here.  If it is free, we
2238		 * skip to the next periph.
2239		 */
2240		if (periph->flags & CAM_PERIPH_FREE) {
2241			next_periph = TAILQ_NEXT(periph, unit_links);
2242			continue;
2243		}
2244
2245		/*
2246		 * Acquire a reference to this periph while we call the
2247		 * traversal function, so it can't go away.
2248		 */
2249		periph->refcount++;
2250		sim = periph->sim;
2251		xpt_unlock_buses();
2252		CAM_SIM_LOCK(sim);
2253		xpt_lock_buses();
2254		retval = tr_func(periph, arg);
2255
2256		/*
2257		 * Grab the next peripheral before we release this one, so
2258		 * our next pointer is still valid.
2259		 */
2260		next_periph = TAILQ_NEXT(periph, unit_links);
2261
2262		cam_periph_release_locked_buses(periph);
2263		CAM_SIM_UNLOCK(sim);
2264
2265		if (retval == 0)
2266			goto bailout_done;
2267	}
2268bailout_done:
2269
2270	xpt_unlock_buses();
2271
2272	return(retval);
2273}
2274
2275static int
2276xptdefbusfunc(struct cam_eb *bus, void *arg)
2277{
2278	struct xpt_traverse_config *tr_config;
2279
2280	tr_config = (struct xpt_traverse_config *)arg;
2281
2282	if (tr_config->depth == XPT_DEPTH_BUS) {
2283		xpt_busfunc_t *tr_func;
2284
2285		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2286
2287		return(tr_func(bus, tr_config->tr_arg));
2288	} else
2289		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2290}
2291
2292static int
2293xptdeftargetfunc(struct cam_et *target, void *arg)
2294{
2295	struct xpt_traverse_config *tr_config;
2296
2297	tr_config = (struct xpt_traverse_config *)arg;
2298
2299	if (tr_config->depth == XPT_DEPTH_TARGET) {
2300		xpt_targetfunc_t *tr_func;
2301
2302		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2303
2304		return(tr_func(target, tr_config->tr_arg));
2305	} else
2306		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2307}
2308
2309static int
2310xptdefdevicefunc(struct cam_ed *device, void *arg)
2311{
2312	struct xpt_traverse_config *tr_config;
2313
2314	tr_config = (struct xpt_traverse_config *)arg;
2315
2316	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2317		xpt_devicefunc_t *tr_func;
2318
2319		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2320
2321		return(tr_func(device, tr_config->tr_arg));
2322	} else
2323		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2324}
2325
2326static int
2327xptdefperiphfunc(struct cam_periph *periph, void *arg)
2328{
2329	struct xpt_traverse_config *tr_config;
2330	xpt_periphfunc_t *tr_func;
2331
2332	tr_config = (struct xpt_traverse_config *)arg;
2333
2334	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2335
2336	/*
2337	 * Unlike the other default functions, we don't check for depth
2338	 * here.  The peripheral driver level is the last level in the EDT,
2339	 * so if we're here, we should execute the function in question.
2340	 */
2341	return(tr_func(periph, tr_config->tr_arg));
2342}
2343
2344/*
2345 * Execute the given function for every bus in the EDT.
2346 */
2347static int
2348xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2349{
2350	struct xpt_traverse_config tr_config;
2351
2352	tr_config.depth = XPT_DEPTH_BUS;
2353	tr_config.tr_func = tr_func;
2354	tr_config.tr_arg = arg;
2355
2356	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2357}
2358
2359/*
2360 * Execute the given function for every device in the EDT.
2361 */
2362static int
2363xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2364{
2365	struct xpt_traverse_config tr_config;
2366
2367	tr_config.depth = XPT_DEPTH_DEVICE;
2368	tr_config.tr_func = tr_func;
2369	tr_config.tr_arg = arg;
2370
2371	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2372}
2373
2374static int
2375xptsetasyncfunc(struct cam_ed *device, void *arg)
2376{
2377	struct cam_path path;
2378	struct ccb_getdev cgd;
2379	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2380
2381	/*
2382	 * Don't report unconfigured devices (Wildcard devs,
2383	 * devices only for target mode, device instances
2384	 * that have been invalidated but are waiting for
2385	 * their last reference count to be released).
2386	 */
2387	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2388		return (1);
2389
2390	xpt_compile_path(&path,
2391			 NULL,
2392			 device->target->bus->path_id,
2393			 device->target->target_id,
2394			 device->lun_id);
2395	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2396	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2397	xpt_action((union ccb *)&cgd);
2398	csa->callback(csa->callback_arg,
2399			    AC_FOUND_DEVICE,
2400			    &path, &cgd);
2401	xpt_release_path(&path);
2402
2403	return(1);
2404}
2405
2406static int
2407xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2408{
2409	struct cam_path path;
2410	struct ccb_pathinq cpi;
2411	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2412
2413	xpt_compile_path(&path, /*periph*/NULL,
2414			 bus->sim->path_id,
2415			 CAM_TARGET_WILDCARD,
2416			 CAM_LUN_WILDCARD);
2417	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2418	cpi.ccb_h.func_code = XPT_PATH_INQ;
2419	xpt_action((union ccb *)&cpi);
2420	csa->callback(csa->callback_arg,
2421			    AC_PATH_REGISTERED,
2422			    &path, &cpi);
2423	xpt_release_path(&path);
2424
2425	return(1);
2426}
2427
2428void
2429xpt_action(union ccb *start_ccb)
2430{
2431
2432	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2433
2434	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2435	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2436}
2437
2438void
2439xpt_action_default(union ccb *start_ccb)
2440{
2441	struct cam_path *path;
2442
2443	path = start_ccb->ccb_h.path;
2444	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2445
2446	switch (start_ccb->ccb_h.func_code) {
2447	case XPT_SCSI_IO:
2448	{
2449		struct cam_ed *device;
2450
2451		/*
2452		 * For the sake of compatibility with SCSI-1
2453		 * devices that may not understand the identify
2454		 * message, we include lun information in the
2455		 * second byte of all commands.  SCSI-1 specifies
2456		 * that luns are a 3 bit value and reserves only 3
2457		 * bits for lun information in the CDB.  Later
2458		 * revisions of the SCSI spec allow for more than 8
2459		 * luns, but have deprecated lun information in the
2460		 * CDB.  So, if the lun won't fit, we must omit.
2461		 *
2462		 * Also be aware that during initial probing for devices,
2463		 * the inquiry information is unknown but initialized to 0.
2464		 * This means that this code will be exercised while probing
2465		 * devices with an ANSI revision greater than 2.
2466		 */
2467		device = path->device;
2468		if (device->protocol_version <= SCSI_REV_2
2469		 && start_ccb->ccb_h.target_lun < 8
2470		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2471
2472			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2473			    start_ccb->ccb_h.target_lun << 5;
2474		}
2475		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2476	}
2477	/* FALLTHROUGH */
2478	case XPT_TARGET_IO:
2479	case XPT_CONT_TARGET_IO:
2480		start_ccb->csio.sense_resid = 0;
2481		start_ccb->csio.resid = 0;
2482		/* FALLTHROUGH */
2483	case XPT_ATA_IO:
2484		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2485			start_ccb->ataio.resid = 0;
2486		/* FALLTHROUGH */
2487	case XPT_RESET_DEV:
2488	case XPT_ENG_EXEC:
2489	case XPT_SMP_IO:
2490	{
2491		int frozen;
2492
2493		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2494		path->device->sim->devq->alloc_openings += frozen;
2495		if (frozen > 0)
2496			xpt_run_dev_allocq(path->bus);
2497		if (xpt_schedule_dev_sendq(path->bus, path->device))
2498			xpt_run_dev_sendq(path->bus);
2499		break;
2500	}
2501	case XPT_CALC_GEOMETRY:
2502	{
2503		struct cam_sim *sim;
2504
2505		/* Filter out garbage */
2506		if (start_ccb->ccg.block_size == 0
2507		 || start_ccb->ccg.volume_size == 0) {
2508			start_ccb->ccg.cylinders = 0;
2509			start_ccb->ccg.heads = 0;
2510			start_ccb->ccg.secs_per_track = 0;
2511			start_ccb->ccb_h.status = CAM_REQ_CMP;
2512			break;
2513		}
2514#if defined(PC98) || defined(__sparc64__)
2515		/*
2516		 * In a PC-98 system, geometry translation depens on
2517		 * the "real" device geometry obtained from mode page 4.
2518		 * SCSI geometry translation is performed in the
2519		 * initialization routine of the SCSI BIOS and the result
2520		 * stored in host memory.  If the translation is available
2521		 * in host memory, use it.  If not, rely on the default
2522		 * translation the device driver performs.
2523		 * For sparc64, we may need adjust the geometry of large
2524		 * disks in order to fit the limitations of the 16-bit
2525		 * fields of the VTOC8 disk label.
2526		 */
2527		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2528			start_ccb->ccb_h.status = CAM_REQ_CMP;
2529			break;
2530		}
2531#endif
2532		sim = path->bus->sim;
2533		(*(sim->sim_action))(sim, start_ccb);
2534		break;
2535	}
2536	case XPT_ABORT:
2537	{
2538		union ccb* abort_ccb;
2539
2540		abort_ccb = start_ccb->cab.abort_ccb;
2541		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2542
2543			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2544				struct cam_ccbq *ccbq;
2545				struct cam_ed *device;
2546
2547				device = abort_ccb->ccb_h.path->device;
2548				ccbq = &device->ccbq;
2549				device->sim->devq->alloc_openings -=
2550				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2551				abort_ccb->ccb_h.status =
2552				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2553				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2554				xpt_done(abort_ccb);
2555				start_ccb->ccb_h.status = CAM_REQ_CMP;
2556				break;
2557			}
2558			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2559			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2560				/*
2561				 * We've caught this ccb en route to
2562				 * the SIM.  Flag it for abort and the
2563				 * SIM will do so just before starting
2564				 * real work on the CCB.
2565				 */
2566				abort_ccb->ccb_h.status =
2567				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2568				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2569				start_ccb->ccb_h.status = CAM_REQ_CMP;
2570				break;
2571			}
2572		}
2573		if (XPT_FC_IS_QUEUED(abort_ccb)
2574		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2575			/*
2576			 * It's already completed but waiting
2577			 * for our SWI to get to it.
2578			 */
2579			start_ccb->ccb_h.status = CAM_UA_ABORT;
2580			break;
2581		}
2582		/*
2583		 * If we weren't able to take care of the abort request
2584		 * in the XPT, pass the request down to the SIM for processing.
2585		 */
2586	}
2587	/* FALLTHROUGH */
2588	case XPT_ACCEPT_TARGET_IO:
2589	case XPT_EN_LUN:
2590	case XPT_IMMED_NOTIFY:
2591	case XPT_NOTIFY_ACK:
2592	case XPT_RESET_BUS:
2593	case XPT_IMMEDIATE_NOTIFY:
2594	case XPT_NOTIFY_ACKNOWLEDGE:
2595	case XPT_GET_SIM_KNOB:
2596	case XPT_SET_SIM_KNOB:
2597	{
2598		struct cam_sim *sim;
2599
2600		sim = path->bus->sim;
2601		(*(sim->sim_action))(sim, start_ccb);
2602		break;
2603	}
2604	case XPT_PATH_INQ:
2605	{
2606		struct cam_sim *sim;
2607
2608		sim = path->bus->sim;
2609		(*(sim->sim_action))(sim, start_ccb);
2610		break;
2611	}
2612	case XPT_PATH_STATS:
2613		start_ccb->cpis.last_reset = path->bus->last_reset;
2614		start_ccb->ccb_h.status = CAM_REQ_CMP;
2615		break;
2616	case XPT_GDEV_TYPE:
2617	{
2618		struct cam_ed *dev;
2619
2620		dev = path->device;
2621		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2622			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2623		} else {
2624			struct ccb_getdev *cgd;
2625
2626			cgd = &start_ccb->cgd;
2627			cgd->protocol = dev->protocol;
2628			cgd->inq_data = dev->inq_data;
2629			cgd->ident_data = dev->ident_data;
2630			cgd->inq_flags = dev->inq_flags;
2631			cgd->ccb_h.status = CAM_REQ_CMP;
2632			cgd->serial_num_len = dev->serial_num_len;
2633			if ((dev->serial_num_len > 0)
2634			 && (dev->serial_num != NULL))
2635				bcopy(dev->serial_num, cgd->serial_num,
2636				      dev->serial_num_len);
2637		}
2638		break;
2639	}
2640	case XPT_GDEV_STATS:
2641	{
2642		struct cam_ed *dev;
2643
2644		dev = path->device;
2645		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2646			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2647		} else {
2648			struct ccb_getdevstats *cgds;
2649			struct cam_eb *bus;
2650			struct cam_et *tar;
2651
2652			cgds = &start_ccb->cgds;
2653			bus = path->bus;
2654			tar = path->target;
2655			cgds->dev_openings = dev->ccbq.dev_openings;
2656			cgds->dev_active = dev->ccbq.dev_active;
2657			cgds->devq_openings = dev->ccbq.devq_openings;
2658			cgds->devq_queued = dev->ccbq.queue.entries;
2659			cgds->held = dev->ccbq.held;
2660			cgds->last_reset = tar->last_reset;
2661			cgds->maxtags = dev->maxtags;
2662			cgds->mintags = dev->mintags;
2663			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2664				cgds->last_reset = bus->last_reset;
2665			cgds->ccb_h.status = CAM_REQ_CMP;
2666		}
2667		break;
2668	}
2669	case XPT_GDEVLIST:
2670	{
2671		struct cam_periph	*nperiph;
2672		struct periph_list	*periph_head;
2673		struct ccb_getdevlist	*cgdl;
2674		u_int			i;
2675		struct cam_ed		*device;
2676		int			found;
2677
2678
2679		found = 0;
2680
2681		/*
2682		 * Don't want anyone mucking with our data.
2683		 */
2684		device = path->device;
2685		periph_head = &device->periphs;
2686		cgdl = &start_ccb->cgdl;
2687
2688		/*
2689		 * Check and see if the list has changed since the user
2690		 * last requested a list member.  If so, tell them that the
2691		 * list has changed, and therefore they need to start over
2692		 * from the beginning.
2693		 */
2694		if ((cgdl->index != 0) &&
2695		    (cgdl->generation != device->generation)) {
2696			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2697			break;
2698		}
2699
2700		/*
2701		 * Traverse the list of peripherals and attempt to find
2702		 * the requested peripheral.
2703		 */
2704		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2705		     (nperiph != NULL) && (i <= cgdl->index);
2706		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2707			if (i == cgdl->index) {
2708				strncpy(cgdl->periph_name,
2709					nperiph->periph_name,
2710					DEV_IDLEN);
2711				cgdl->unit_number = nperiph->unit_number;
2712				found = 1;
2713			}
2714		}
2715		if (found == 0) {
2716			cgdl->status = CAM_GDEVLIST_ERROR;
2717			break;
2718		}
2719
2720		if (nperiph == NULL)
2721			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2722		else
2723			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2724
2725		cgdl->index++;
2726		cgdl->generation = device->generation;
2727
2728		cgdl->ccb_h.status = CAM_REQ_CMP;
2729		break;
2730	}
2731	case XPT_DEV_MATCH:
2732	{
2733		dev_pos_type position_type;
2734		struct ccb_dev_match *cdm;
2735
2736		cdm = &start_ccb->cdm;
2737
2738		/*
2739		 * There are two ways of getting at information in the EDT.
2740		 * The first way is via the primary EDT tree.  It starts
2741		 * with a list of busses, then a list of targets on a bus,
2742		 * then devices/luns on a target, and then peripherals on a
2743		 * device/lun.  The "other" way is by the peripheral driver
2744		 * lists.  The peripheral driver lists are organized by
2745		 * peripheral driver.  (obviously)  So it makes sense to
2746		 * use the peripheral driver list if the user is looking
2747		 * for something like "da1", or all "da" devices.  If the
2748		 * user is looking for something on a particular bus/target
2749		 * or lun, it's generally better to go through the EDT tree.
2750		 */
2751
2752		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2753			position_type = cdm->pos.position_type;
2754		else {
2755			u_int i;
2756
2757			position_type = CAM_DEV_POS_NONE;
2758
2759			for (i = 0; i < cdm->num_patterns; i++) {
2760				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2761				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2762					position_type = CAM_DEV_POS_EDT;
2763					break;
2764				}
2765			}
2766
2767			if (cdm->num_patterns == 0)
2768				position_type = CAM_DEV_POS_EDT;
2769			else if (position_type == CAM_DEV_POS_NONE)
2770				position_type = CAM_DEV_POS_PDRV;
2771		}
2772
2773		/*
2774		 * Note that we drop the SIM lock here, because the EDT
2775		 * traversal code needs to do its own locking.
2776		 */
2777		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2778		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2779		case CAM_DEV_POS_EDT:
2780			xptedtmatch(cdm);
2781			break;
2782		case CAM_DEV_POS_PDRV:
2783			xptperiphlistmatch(cdm);
2784			break;
2785		default:
2786			cdm->status = CAM_DEV_MATCH_ERROR;
2787			break;
2788		}
2789		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2790
2791		if (cdm->status == CAM_DEV_MATCH_ERROR)
2792			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2793		else
2794			start_ccb->ccb_h.status = CAM_REQ_CMP;
2795
2796		break;
2797	}
2798	case XPT_SASYNC_CB:
2799	{
2800		struct ccb_setasync *csa;
2801		struct async_node *cur_entry;
2802		struct async_list *async_head;
2803		u_int32_t added;
2804
2805		csa = &start_ccb->csa;
2806		added = csa->event_enable;
2807		async_head = &path->device->asyncs;
2808
2809		/*
2810		 * If there is already an entry for us, simply
2811		 * update it.
2812		 */
2813		cur_entry = SLIST_FIRST(async_head);
2814		while (cur_entry != NULL) {
2815			if ((cur_entry->callback_arg == csa->callback_arg)
2816			 && (cur_entry->callback == csa->callback))
2817				break;
2818			cur_entry = SLIST_NEXT(cur_entry, links);
2819		}
2820
2821		if (cur_entry != NULL) {
2822		 	/*
2823			 * If the request has no flags set,
2824			 * remove the entry.
2825			 */
2826			added &= ~cur_entry->event_enable;
2827			if (csa->event_enable == 0) {
2828				SLIST_REMOVE(async_head, cur_entry,
2829					     async_node, links);
2830				xpt_release_device(path->device);
2831				free(cur_entry, M_CAMXPT);
2832			} else {
2833				cur_entry->event_enable = csa->event_enable;
2834			}
2835			csa->event_enable = added;
2836		} else {
2837			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2838					   M_NOWAIT);
2839			if (cur_entry == NULL) {
2840				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2841				break;
2842			}
2843			cur_entry->event_enable = csa->event_enable;
2844			cur_entry->callback_arg = csa->callback_arg;
2845			cur_entry->callback = csa->callback;
2846			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2847			xpt_acquire_device(path->device);
2848		}
2849		start_ccb->ccb_h.status = CAM_REQ_CMP;
2850		break;
2851	}
2852	case XPT_REL_SIMQ:
2853	{
2854		struct ccb_relsim *crs;
2855		struct cam_ed *dev;
2856
2857		crs = &start_ccb->crs;
2858		dev = path->device;
2859		if (dev == NULL) {
2860
2861			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2862			break;
2863		}
2864
2865		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2866
2867			/* Don't ever go below one opening */
2868			if (crs->openings > 0) {
2869				xpt_dev_ccbq_resize(path, crs->openings);
2870				if (bootverbose) {
2871					xpt_print(path,
2872					    "number of openings is now %d\n",
2873					    crs->openings);
2874				}
2875			}
2876		}
2877
2878		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2879
2880			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2881
2882				/*
2883				 * Just extend the old timeout and decrement
2884				 * the freeze count so that a single timeout
2885				 * is sufficient for releasing the queue.
2886				 */
2887				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2888				callout_stop(&dev->callout);
2889			} else {
2890
2891				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2892			}
2893
2894			callout_reset(&dev->callout,
2895			    (crs->release_timeout * hz) / 1000,
2896			    xpt_release_devq_timeout, dev);
2897
2898			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2899
2900		}
2901
2902		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2903
2904			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2905				/*
2906				 * Decrement the freeze count so that a single
2907				 * completion is still sufficient to unfreeze
2908				 * the queue.
2909				 */
2910				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2911			} else {
2912
2913				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2914				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2915			}
2916		}
2917
2918		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2919
2920			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2921			 || (dev->ccbq.dev_active == 0)) {
2922
2923				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2924			} else {
2925
2926				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2927				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2928			}
2929		}
2930
2931		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2932			xpt_release_devq_rl(path, /*runlevel*/
2933			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2934				crs->release_timeout : 0,
2935			    /*count*/1, /*run_queue*/TRUE);
2936		}
2937		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2938		start_ccb->ccb_h.status = CAM_REQ_CMP;
2939		break;
2940	}
2941	case XPT_DEBUG: {
2942		struct cam_path *oldpath;
2943		struct cam_sim *oldsim;
2944
2945		/* Check that all request bits are supported. */
2946		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2947			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2948			break;
2949		}
2950
2951		cam_dflags = CAM_DEBUG_NONE;
2952		if (cam_dpath != NULL) {
2953			/* To release the old path we must hold proper lock. */
2954			oldpath = cam_dpath;
2955			cam_dpath = NULL;
2956			oldsim = xpt_path_sim(oldpath);
2957			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2958			CAM_SIM_LOCK(oldsim);
2959			xpt_free_path(oldpath);
2960			CAM_SIM_UNLOCK(oldsim);
2961			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2962		}
2963		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2964			if (xpt_create_path(&cam_dpath, xpt_periph,
2965					    start_ccb->ccb_h.path_id,
2966					    start_ccb->ccb_h.target_id,
2967					    start_ccb->ccb_h.target_lun) !=
2968					    CAM_REQ_CMP) {
2969				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2970			} else {
2971				cam_dflags = start_ccb->cdbg.flags;
2972				start_ccb->ccb_h.status = CAM_REQ_CMP;
2973				xpt_print(cam_dpath, "debugging flags now %x\n",
2974				    cam_dflags);
2975			}
2976		} else
2977			start_ccb->ccb_h.status = CAM_REQ_CMP;
2978		break;
2979	}
2980	case XPT_FREEZE_QUEUE:
2981	{
2982		struct ccb_relsim *crs = &start_ccb->crs;
2983
2984		xpt_freeze_devq_rl(path, /*runlevel*/
2985		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2986		    crs->release_timeout : 0, /*count*/1);
2987		start_ccb->ccb_h.status = CAM_REQ_CMP;
2988		break;
2989	}
2990	case XPT_NOOP:
2991		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2992			xpt_freeze_devq(path, 1);
2993		start_ccb->ccb_h.status = CAM_REQ_CMP;
2994		break;
2995	default:
2996	case XPT_SDEV_TYPE:
2997	case XPT_TERM_IO:
2998	case XPT_ENG_INQ:
2999		/* XXX Implement */
3000		printf("%s: CCB type %#x not supported\n", __func__,
3001		       start_ccb->ccb_h.func_code);
3002		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3003		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3004			xpt_done(start_ccb);
3005		}
3006		break;
3007	}
3008}
3009
3010void
3011xpt_polled_action(union ccb *start_ccb)
3012{
3013	u_int32_t timeout;
3014	struct	  cam_sim *sim;
3015	struct	  cam_devq *devq;
3016	struct	  cam_ed *dev;
3017
3018
3019	timeout = start_ccb->ccb_h.timeout * 10;
3020	sim = start_ccb->ccb_h.path->bus->sim;
3021	devq = sim->devq;
3022	dev = start_ccb->ccb_h.path->device;
3023
3024	mtx_assert(sim->mtx, MA_OWNED);
3025
3026	/* Don't use ISR for this SIM while polling. */
3027	sim->flags |= CAM_SIM_POLLED;
3028
3029	/*
3030	 * Steal an opening so that no other queued requests
3031	 * can get it before us while we simulate interrupts.
3032	 */
3033	dev->ccbq.devq_openings--;
3034	dev->ccbq.dev_openings--;
3035
3036	while(((devq != NULL && devq->send_openings <= 0) ||
3037	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3038		DELAY(100);
3039		(*(sim->sim_poll))(sim);
3040		camisr_runqueue(&sim->sim_doneq);
3041	}
3042
3043	dev->ccbq.devq_openings++;
3044	dev->ccbq.dev_openings++;
3045
3046	if (timeout != 0) {
3047		xpt_action(start_ccb);
3048		while(--timeout > 0) {
3049			(*(sim->sim_poll))(sim);
3050			camisr_runqueue(&sim->sim_doneq);
3051			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3052			    != CAM_REQ_INPROG)
3053				break;
3054			DELAY(100);
3055		}
3056		if (timeout == 0) {
3057			/*
3058			 * XXX Is it worth adding a sim_timeout entry
3059			 * point so we can attempt recovery?  If
3060			 * this is only used for dumps, I don't think
3061			 * it is.
3062			 */
3063			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3064		}
3065	} else {
3066		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3067	}
3068
3069	/* We will use CAM ISR for this SIM again. */
3070	sim->flags &= ~CAM_SIM_POLLED;
3071}
3072
3073/*
3074 * Schedule a peripheral driver to receive a ccb when it's
3075 * target device has space for more transactions.
3076 */
3077void
3078xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3079{
3080	struct cam_ed *device;
3081	int runq = 0;
3082
3083	mtx_assert(perph->sim->mtx, MA_OWNED);
3084
3085	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3086	device = perph->path->device;
3087	if (periph_is_queued(perph)) {
3088		/* Simply reorder based on new priority */
3089		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3090			  ("   change priority to %d\n", new_priority));
3091		if (new_priority < perph->pinfo.priority) {
3092			camq_change_priority(&device->drvq,
3093					     perph->pinfo.index,
3094					     new_priority);
3095			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3096		}
3097	} else {
3098		/* New entry on the queue */
3099		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3100			  ("   added periph to queue\n"));
3101		perph->pinfo.priority = new_priority;
3102		perph->pinfo.generation = ++device->drvq.generation;
3103		camq_insert(&device->drvq, &perph->pinfo);
3104		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3105	}
3106	if (runq != 0) {
3107		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3108			  ("   calling xpt_run_devq\n"));
3109		xpt_run_dev_allocq(perph->path->bus);
3110	}
3111}
3112
3113
3114/*
3115 * Schedule a device to run on a given queue.
3116 * If the device was inserted as a new entry on the queue,
3117 * return 1 meaning the device queue should be run. If we
3118 * were already queued, implying someone else has already
3119 * started the queue, return 0 so the caller doesn't attempt
3120 * to run the queue.
3121 */
3122int
3123xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3124		 u_int32_t new_priority)
3125{
3126	int retval;
3127	u_int32_t old_priority;
3128
3129	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3130
3131	old_priority = pinfo->priority;
3132
3133	/*
3134	 * Are we already queued?
3135	 */
3136	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3137		/* Simply reorder based on new priority */
3138		if (new_priority < old_priority) {
3139			camq_change_priority(queue, pinfo->index,
3140					     new_priority);
3141			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3142					("changed priority to %d\n",
3143					 new_priority));
3144			retval = 1;
3145		} else
3146			retval = 0;
3147	} else {
3148		/* New entry on the queue */
3149		if (new_priority < old_priority)
3150			pinfo->priority = new_priority;
3151
3152		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3153				("Inserting onto queue\n"));
3154		pinfo->generation = ++queue->generation;
3155		camq_insert(queue, pinfo);
3156		retval = 1;
3157	}
3158	return (retval);
3159}
3160
3161static void
3162xpt_run_dev_allocq(struct cam_eb *bus)
3163{
3164	struct	cam_devq *devq;
3165
3166	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3167	devq = bus->sim->devq;
3168
3169	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3170			("   qfrozen_cnt == 0x%x, entries == %d, "
3171			 "openings == %d, active == %d\n",
3172			 devq->alloc_queue.qfrozen_cnt[0],
3173			 devq->alloc_queue.entries,
3174			 devq->alloc_openings,
3175			 devq->alloc_active));
3176
3177	devq->alloc_queue.qfrozen_cnt[0]++;
3178	while ((devq->alloc_queue.entries > 0)
3179	    && (devq->alloc_openings > 0)
3180	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3181		struct	cam_ed_qinfo *qinfo;
3182		struct	cam_ed *device;
3183		union	ccb *work_ccb;
3184		struct	cam_periph *drv;
3185		struct	camq *drvq;
3186
3187		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3188							   CAMQ_HEAD);
3189		device = qinfo->device;
3190		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3191				("running device %p\n", device));
3192
3193		drvq = &device->drvq;
3194		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3195		    "Device on queue without any work to do"));
3196		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3197			devq->alloc_openings--;
3198			devq->alloc_active++;
3199			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3200			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3201				      drv->pinfo.priority);
3202			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3203					("calling periph start\n"));
3204			drv->periph_start(drv, work_ccb);
3205		} else {
3206			/*
3207			 * Malloc failure in alloc_ccb
3208			 */
3209			/*
3210			 * XXX add us to a list to be run from free_ccb
3211			 * if we don't have any ccbs active on this
3212			 * device queue otherwise we may never get run
3213			 * again.
3214			 */
3215			break;
3216		}
3217
3218		/* We may have more work. Attempt to reschedule. */
3219		xpt_schedule_dev_allocq(bus, device);
3220	}
3221	devq->alloc_queue.qfrozen_cnt[0]--;
3222}
3223
3224static void
3225xpt_run_dev_sendq(struct cam_eb *bus)
3226{
3227	struct	cam_devq *devq;
3228	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3229
3230	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3231
3232	devq = bus->sim->devq;
3233
3234	devq->send_queue.qfrozen_cnt[0]++;
3235	while ((devq->send_queue.entries > 0)
3236	    && (devq->send_openings > 0)
3237	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3238		struct	cam_ed_qinfo *qinfo;
3239		struct	cam_ed *device;
3240		union ccb *work_ccb;
3241		struct	cam_sim *sim;
3242
3243		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3244							   CAMQ_HEAD);
3245		device = qinfo->device;
3246		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3247				("running device %p\n", device));
3248
3249		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3250		if (work_ccb == NULL) {
3251			printf("device on run queue with no ccbs???\n");
3252			continue;
3253		}
3254
3255		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3256
3257			mtx_lock(&xsoftc.xpt_lock);
3258		 	if (xsoftc.num_highpower <= 0) {
3259				/*
3260				 * We got a high power command, but we
3261				 * don't have any available slots.  Freeze
3262				 * the device queue until we have a slot
3263				 * available.
3264				 */
3265				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3266				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3267						   &work_ccb->ccb_h,
3268						   xpt_links.stqe);
3269
3270				mtx_unlock(&xsoftc.xpt_lock);
3271				continue;
3272			} else {
3273				/*
3274				 * Consume a high power slot while
3275				 * this ccb runs.
3276				 */
3277				xsoftc.num_highpower--;
3278			}
3279			mtx_unlock(&xsoftc.xpt_lock);
3280		}
3281		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3282		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3283
3284		devq->send_openings--;
3285		devq->send_active++;
3286
3287		xpt_schedule_dev_sendq(bus, device);
3288
3289		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3290			/*
3291			 * The client wants to freeze the queue
3292			 * after this CCB is sent.
3293			 */
3294			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3295		}
3296
3297		/* In Target mode, the peripheral driver knows best... */
3298		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3299			if ((device->inq_flags & SID_CmdQue) != 0
3300			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3301				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3302			else
3303				/*
3304				 * Clear this in case of a retried CCB that
3305				 * failed due to a rejected tag.
3306				 */
3307				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3308		}
3309
3310		switch (work_ccb->ccb_h.func_code) {
3311		case XPT_SCSI_IO:
3312			CAM_DEBUG(work_ccb->ccb_h.path,
3313			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3314			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3315					  &device->inq_data),
3316			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3317					     cdb_str, sizeof(cdb_str))));
3318			break;
3319		case XPT_ATA_IO:
3320			CAM_DEBUG(work_ccb->ccb_h.path,
3321			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3322			     ata_op_string(&work_ccb->ataio.cmd),
3323			     ata_cmd_string(&work_ccb->ataio.cmd,
3324					    cdb_str, sizeof(cdb_str))));
3325			break;
3326		default:
3327			break;
3328		}
3329
3330		/*
3331		 * Device queues can be shared among multiple sim instances
3332		 * that reside on different busses.  Use the SIM in the queue
3333		 * CCB's path, rather than the one in the bus that was passed
3334		 * into this function.
3335		 */
3336		sim = work_ccb->ccb_h.path->bus->sim;
3337		(*(sim->sim_action))(sim, work_ccb);
3338	}
3339	devq->send_queue.qfrozen_cnt[0]--;
3340}
3341
3342/*
3343 * This function merges stuff from the slave ccb into the master ccb, while
3344 * keeping important fields in the master ccb constant.
3345 */
3346void
3347xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3348{
3349
3350	/*
3351	 * Pull fields that are valid for peripheral drivers to set
3352	 * into the master CCB along with the CCB "payload".
3353	 */
3354	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3355	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3356	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3357	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3358	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3359	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3360}
3361
3362void
3363xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3364{
3365
3366	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3367	ccb_h->pinfo.priority = priority;
3368	ccb_h->path = path;
3369	ccb_h->path_id = path->bus->path_id;
3370	if (path->target)
3371		ccb_h->target_id = path->target->target_id;
3372	else
3373		ccb_h->target_id = CAM_TARGET_WILDCARD;
3374	if (path->device) {
3375		ccb_h->target_lun = path->device->lun_id;
3376		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3377	} else {
3378		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3379	}
3380	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3381	ccb_h->flags = 0;
3382}
3383
3384/* Path manipulation functions */
3385cam_status
3386xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3387		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3388{
3389	struct	   cam_path *path;
3390	cam_status status;
3391
3392	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3393
3394	if (path == NULL) {
3395		status = CAM_RESRC_UNAVAIL;
3396		return(status);
3397	}
3398	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3399	if (status != CAM_REQ_CMP) {
3400		free(path, M_CAMPATH);
3401		path = NULL;
3402	}
3403	*new_path_ptr = path;
3404	return (status);
3405}
3406
3407cam_status
3408xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3409			 struct cam_periph *periph, path_id_t path_id,
3410			 target_id_t target_id, lun_id_t lun_id)
3411{
3412	struct	   cam_path *path;
3413	struct	   cam_eb *bus = NULL;
3414	cam_status status;
3415
3416	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3417
3418	bus = xpt_find_bus(path_id);
3419	if (bus != NULL)
3420		CAM_SIM_LOCK(bus->sim);
3421	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3422	if (bus != NULL) {
3423		CAM_SIM_UNLOCK(bus->sim);
3424		xpt_release_bus(bus);
3425	}
3426	if (status != CAM_REQ_CMP) {
3427		free(path, M_CAMPATH);
3428		path = NULL;
3429	}
3430	*new_path_ptr = path;
3431	return (status);
3432}
3433
3434cam_status
3435xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3436		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3437{
3438	struct	     cam_eb *bus;
3439	struct	     cam_et *target;
3440	struct	     cam_ed *device;
3441	cam_status   status;
3442
3443	status = CAM_REQ_CMP;	/* Completed without error */
3444	target = NULL;		/* Wildcarded */
3445	device = NULL;		/* Wildcarded */
3446
3447	/*
3448	 * We will potentially modify the EDT, so block interrupts
3449	 * that may attempt to create cam paths.
3450	 */
3451	bus = xpt_find_bus(path_id);
3452	if (bus == NULL) {
3453		status = CAM_PATH_INVALID;
3454	} else {
3455		target = xpt_find_target(bus, target_id);
3456		if (target == NULL) {
3457			/* Create one */
3458			struct cam_et *new_target;
3459
3460			new_target = xpt_alloc_target(bus, target_id);
3461			if (new_target == NULL) {
3462				status = CAM_RESRC_UNAVAIL;
3463			} else {
3464				target = new_target;
3465			}
3466		}
3467		if (target != NULL) {
3468			device = xpt_find_device(target, lun_id);
3469			if (device == NULL) {
3470				/* Create one */
3471				struct cam_ed *new_device;
3472
3473				new_device =
3474				    (*(bus->xport->alloc_device))(bus,
3475								      target,
3476								      lun_id);
3477				if (new_device == NULL) {
3478					status = CAM_RESRC_UNAVAIL;
3479				} else {
3480					device = new_device;
3481				}
3482			}
3483		}
3484	}
3485
3486	/*
3487	 * Only touch the user's data if we are successful.
3488	 */
3489	if (status == CAM_REQ_CMP) {
3490		new_path->periph = perph;
3491		new_path->bus = bus;
3492		new_path->target = target;
3493		new_path->device = device;
3494		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3495	} else {
3496		if (device != NULL)
3497			xpt_release_device(device);
3498		if (target != NULL)
3499			xpt_release_target(target);
3500		if (bus != NULL)
3501			xpt_release_bus(bus);
3502	}
3503	return (status);
3504}
3505
3506void
3507xpt_release_path(struct cam_path *path)
3508{
3509	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3510	if (path->device != NULL) {
3511		xpt_release_device(path->device);
3512		path->device = NULL;
3513	}
3514	if (path->target != NULL) {
3515		xpt_release_target(path->target);
3516		path->target = NULL;
3517	}
3518	if (path->bus != NULL) {
3519		xpt_release_bus(path->bus);
3520		path->bus = NULL;
3521	}
3522}
3523
3524void
3525xpt_free_path(struct cam_path *path)
3526{
3527
3528	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3529	xpt_release_path(path);
3530	free(path, M_CAMPATH);
3531}
3532
3533void
3534xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3535    uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3536{
3537
3538	xpt_lock_buses();
3539	if (bus_ref) {
3540		if (path->bus)
3541			*bus_ref = path->bus->refcount;
3542		else
3543			*bus_ref = 0;
3544	}
3545	if (periph_ref) {
3546		if (path->periph)
3547			*periph_ref = path->periph->refcount;
3548		else
3549			*periph_ref = 0;
3550	}
3551	xpt_unlock_buses();
3552	if (target_ref) {
3553		if (path->target)
3554			*target_ref = path->target->refcount;
3555		else
3556			*target_ref = 0;
3557	}
3558	if (device_ref) {
3559		if (path->device)
3560			*device_ref = path->device->refcount;
3561		else
3562			*device_ref = 0;
3563	}
3564}
3565
3566/*
3567 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3568 * in path1, 2 for match with wildcards in path2.
3569 */
3570int
3571xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3572{
3573	int retval = 0;
3574
3575	if (path1->bus != path2->bus) {
3576		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3577			retval = 1;
3578		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3579			retval = 2;
3580		else
3581			return (-1);
3582	}
3583	if (path1->target != path2->target) {
3584		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3585			if (retval == 0)
3586				retval = 1;
3587		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3588			retval = 2;
3589		else
3590			return (-1);
3591	}
3592	if (path1->device != path2->device) {
3593		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3594			if (retval == 0)
3595				retval = 1;
3596		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3597			retval = 2;
3598		else
3599			return (-1);
3600	}
3601	return (retval);
3602}
3603
3604void
3605xpt_print_path(struct cam_path *path)
3606{
3607
3608	if (path == NULL)
3609		printf("(nopath): ");
3610	else {
3611		if (path->periph != NULL)
3612			printf("(%s%d:", path->periph->periph_name,
3613			       path->periph->unit_number);
3614		else
3615			printf("(noperiph:");
3616
3617		if (path->bus != NULL)
3618			printf("%s%d:%d:", path->bus->sim->sim_name,
3619			       path->bus->sim->unit_number,
3620			       path->bus->sim->bus_id);
3621		else
3622			printf("nobus:");
3623
3624		if (path->target != NULL)
3625			printf("%d:", path->target->target_id);
3626		else
3627			printf("X:");
3628
3629		if (path->device != NULL)
3630			printf("%d): ", path->device->lun_id);
3631		else
3632			printf("X): ");
3633	}
3634}
3635
3636void
3637xpt_print(struct cam_path *path, const char *fmt, ...)
3638{
3639	va_list ap;
3640	xpt_print_path(path);
3641	va_start(ap, fmt);
3642	vprintf(fmt, ap);
3643	va_end(ap);
3644}
3645
3646int
3647xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3648{
3649	struct sbuf sb;
3650
3651#ifdef INVARIANTS
3652	if (path != NULL && path->bus != NULL)
3653		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3654#endif
3655
3656	sbuf_new(&sb, str, str_len, 0);
3657
3658	if (path == NULL)
3659		sbuf_printf(&sb, "(nopath): ");
3660	else {
3661		if (path->periph != NULL)
3662			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3663				    path->periph->unit_number);
3664		else
3665			sbuf_printf(&sb, "(noperiph:");
3666
3667		if (path->bus != NULL)
3668			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3669				    path->bus->sim->unit_number,
3670				    path->bus->sim->bus_id);
3671		else
3672			sbuf_printf(&sb, "nobus:");
3673
3674		if (path->target != NULL)
3675			sbuf_printf(&sb, "%d:", path->target->target_id);
3676		else
3677			sbuf_printf(&sb, "X:");
3678
3679		if (path->device != NULL)
3680			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3681		else
3682			sbuf_printf(&sb, "X): ");
3683	}
3684	sbuf_finish(&sb);
3685
3686	return(sbuf_len(&sb));
3687}
3688
3689path_id_t
3690xpt_path_path_id(struct cam_path *path)
3691{
3692	return(path->bus->path_id);
3693}
3694
3695target_id_t
3696xpt_path_target_id(struct cam_path *path)
3697{
3698	if (path->target != NULL)
3699		return (path->target->target_id);
3700	else
3701		return (CAM_TARGET_WILDCARD);
3702}
3703
3704lun_id_t
3705xpt_path_lun_id(struct cam_path *path)
3706{
3707	if (path->device != NULL)
3708		return (path->device->lun_id);
3709	else
3710		return (CAM_LUN_WILDCARD);
3711}
3712
3713struct cam_sim *
3714xpt_path_sim(struct cam_path *path)
3715{
3716
3717	return (path->bus->sim);
3718}
3719
3720struct cam_periph*
3721xpt_path_periph(struct cam_path *path)
3722{
3723	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3724
3725	return (path->periph);
3726}
3727
3728int
3729xpt_path_legacy_ata_id(struct cam_path *path)
3730{
3731	struct cam_eb *bus;
3732	int bus_id;
3733
3734	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3735	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3736	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3737	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3738		return (-1);
3739
3740	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3741	    path->bus->sim->unit_number < 2) {
3742		bus_id = path->bus->sim->unit_number;
3743	} else {
3744		bus_id = 2;
3745		xpt_lock_buses();
3746		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3747			if (bus == path->bus)
3748				break;
3749			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3750			     bus->sim->unit_number >= 2) ||
3751			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3752			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3753			    strcmp(bus->sim->sim_name, "siisch") == 0)
3754				bus_id++;
3755		}
3756		xpt_unlock_buses();
3757	}
3758	if (path->target != NULL) {
3759		if (path->target->target_id < 2)
3760			return (bus_id * 2 + path->target->target_id);
3761		else
3762			return (-1);
3763	} else
3764		return (bus_id * 2);
3765}
3766
3767/*
3768 * Release a CAM control block for the caller.  Remit the cost of the structure
3769 * to the device referenced by the path.  If the this device had no 'credits'
3770 * and peripheral drivers have registered async callbacks for this notification
3771 * call them now.
3772 */
3773void
3774xpt_release_ccb(union ccb *free_ccb)
3775{
3776	struct	 cam_path *path;
3777	struct	 cam_ed *device;
3778	struct	 cam_eb *bus;
3779	struct   cam_sim *sim;
3780
3781	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3782	path = free_ccb->ccb_h.path;
3783	device = path->device;
3784	bus = path->bus;
3785	sim = bus->sim;
3786
3787	mtx_assert(sim->mtx, MA_OWNED);
3788
3789	cam_ccbq_release_opening(&device->ccbq);
3790	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3791		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3792		cam_ccbq_resize(&device->ccbq,
3793		    device->ccbq.dev_openings + device->ccbq.dev_active);
3794	}
3795	if (sim->ccb_count > sim->max_ccbs) {
3796		xpt_free_ccb(free_ccb);
3797		sim->ccb_count--;
3798	} else {
3799		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3800		    xpt_links.sle);
3801	}
3802	if (sim->devq == NULL) {
3803		return;
3804	}
3805	sim->devq->alloc_openings++;
3806	sim->devq->alloc_active--;
3807	if (device_is_alloc_queued(device) == 0)
3808		xpt_schedule_dev_allocq(bus, device);
3809	xpt_run_dev_allocq(bus);
3810}
3811
3812/* Functions accessed by SIM drivers */
3813
3814static struct xpt_xport xport_default = {
3815	.alloc_device = xpt_alloc_device_default,
3816	.action = xpt_action_default,
3817	.async = xpt_dev_async_default,
3818};
3819
3820/*
3821 * A sim structure, listing the SIM entry points and instance
3822 * identification info is passed to xpt_bus_register to hook the SIM
3823 * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3824 * for this new bus and places it in the array of busses and assigns
3825 * it a path_id.  The path_id may be influenced by "hard wiring"
3826 * information specified by the user.  Once interrupt services are
3827 * available, the bus will be probed.
3828 */
3829int32_t
3830xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3831{
3832	struct cam_eb *new_bus;
3833	struct cam_eb *old_bus;
3834	struct ccb_pathinq cpi;
3835	struct cam_path *path;
3836	cam_status status;
3837
3838	mtx_assert(sim->mtx, MA_OWNED);
3839
3840	sim->bus_id = bus;
3841	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3842					  M_CAMXPT, M_NOWAIT);
3843	if (new_bus == NULL) {
3844		/* Couldn't satisfy request */
3845		return (CAM_RESRC_UNAVAIL);
3846	}
3847	if (strcmp(sim->sim_name, "xpt") != 0) {
3848		sim->path_id =
3849		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3850	}
3851
3852	TAILQ_INIT(&new_bus->et_entries);
3853	new_bus->path_id = sim->path_id;
3854	cam_sim_hold(sim);
3855	new_bus->sim = sim;
3856	timevalclear(&new_bus->last_reset);
3857	new_bus->flags = 0;
3858	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3859	new_bus->generation = 0;
3860
3861	xpt_lock_buses();
3862	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3863	while (old_bus != NULL
3864	    && old_bus->path_id < new_bus->path_id)
3865		old_bus = TAILQ_NEXT(old_bus, links);
3866	if (old_bus != NULL)
3867		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3868	else
3869		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3870	xsoftc.bus_generation++;
3871	xpt_unlock_buses();
3872
3873	/*
3874	 * Set a default transport so that a PATH_INQ can be issued to
3875	 * the SIM.  This will then allow for probing and attaching of
3876	 * a more appropriate transport.
3877	 */
3878	new_bus->xport = &xport_default;
3879
3880	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3881				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3882	if (status != CAM_REQ_CMP) {
3883		xpt_release_bus(new_bus);
3884		free(path, M_CAMXPT);
3885		return (CAM_RESRC_UNAVAIL);
3886	}
3887
3888	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3889	cpi.ccb_h.func_code = XPT_PATH_INQ;
3890	xpt_action((union ccb *)&cpi);
3891
3892	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3893		switch (cpi.transport) {
3894		case XPORT_SPI:
3895		case XPORT_SAS:
3896		case XPORT_FC:
3897		case XPORT_USB:
3898		case XPORT_ISCSI:
3899		case XPORT_PPB:
3900			new_bus->xport = scsi_get_xport();
3901			break;
3902		case XPORT_ATA:
3903		case XPORT_SATA:
3904			new_bus->xport = ata_get_xport();
3905			break;
3906		default:
3907			new_bus->xport = &xport_default;
3908			break;
3909		}
3910	}
3911
3912	/* Notify interested parties */
3913	if (sim->path_id != CAM_XPT_PATH_ID) {
3914		union	ccb *scan_ccb;
3915
3916		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3917		/* Initiate bus rescan. */
3918		scan_ccb = xpt_alloc_ccb_nowait();
3919		scan_ccb->ccb_h.path = path;
3920		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3921		scan_ccb->crcn.flags = 0;
3922		xpt_rescan(scan_ccb);
3923	} else
3924		xpt_free_path(path);
3925	return (CAM_SUCCESS);
3926}
3927
3928int32_t
3929xpt_bus_deregister(path_id_t pathid)
3930{
3931	struct cam_path bus_path;
3932	cam_status status;
3933
3934	status = xpt_compile_path(&bus_path, NULL, pathid,
3935				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3936	if (status != CAM_REQ_CMP)
3937		return (status);
3938
3939	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3940	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3941
3942	/* Release the reference count held while registered. */
3943	xpt_release_bus(bus_path.bus);
3944	xpt_release_path(&bus_path);
3945
3946	return (CAM_REQ_CMP);
3947}
3948
3949static path_id_t
3950xptnextfreepathid(void)
3951{
3952	struct cam_eb *bus;
3953	path_id_t pathid;
3954	const char *strval;
3955
3956	pathid = 0;
3957	xpt_lock_buses();
3958	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3959retry:
3960	/* Find an unoccupied pathid */
3961	while (bus != NULL && bus->path_id <= pathid) {
3962		if (bus->path_id == pathid)
3963			pathid++;
3964		bus = TAILQ_NEXT(bus, links);
3965	}
3966	xpt_unlock_buses();
3967
3968	/*
3969	 * Ensure that this pathid is not reserved for
3970	 * a bus that may be registered in the future.
3971	 */
3972	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3973		++pathid;
3974		/* Start the search over */
3975		xpt_lock_buses();
3976		goto retry;
3977	}
3978	return (pathid);
3979}
3980
3981static path_id_t
3982xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3983{
3984	path_id_t pathid;
3985	int i, dunit, val;
3986	char buf[32];
3987	const char *dname;
3988
3989	pathid = CAM_XPT_PATH_ID;
3990	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3991	i = 0;
3992	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3993		if (strcmp(dname, "scbus")) {
3994			/* Avoid a bit of foot shooting. */
3995			continue;
3996		}
3997		if (dunit < 0)		/* unwired?! */
3998			continue;
3999		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4000			if (sim_bus == val) {
4001				pathid = dunit;
4002				break;
4003			}
4004		} else if (sim_bus == 0) {
4005			/* Unspecified matches bus 0 */
4006			pathid = dunit;
4007			break;
4008		} else {
4009			printf("Ambiguous scbus configuration for %s%d "
4010			       "bus %d, cannot wire down.  The kernel "
4011			       "config entry for scbus%d should "
4012			       "specify a controller bus.\n"
4013			       "Scbus will be assigned dynamically.\n",
4014			       sim_name, sim_unit, sim_bus, dunit);
4015			break;
4016		}
4017	}
4018
4019	if (pathid == CAM_XPT_PATH_ID)
4020		pathid = xptnextfreepathid();
4021	return (pathid);
4022}
4023
4024static const char *
4025xpt_async_string(u_int32_t async_code)
4026{
4027
4028	switch (async_code) {
4029	case AC_BUS_RESET: return ("AC_BUS_RESET");
4030	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4031	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4032	case AC_SENT_BDR: return ("AC_SENT_BDR");
4033	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4034	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4035	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4036	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4037	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4038	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4039	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4040	case AC_CONTRACT: return ("AC_CONTRACT");
4041	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4042	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4043	}
4044	return ("AC_UNKNOWN");
4045}
4046
4047void
4048xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4049{
4050	struct cam_eb *bus;
4051	struct cam_et *target, *next_target;
4052	struct cam_ed *device, *next_device;
4053
4054	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4055	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4056	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4057
4058	/*
4059	 * Most async events come from a CAM interrupt context.  In
4060	 * a few cases, the error recovery code at the peripheral layer,
4061	 * which may run from our SWI or a process context, may signal
4062	 * deferred events with a call to xpt_async.
4063	 */
4064
4065	bus = path->bus;
4066
4067	if (async_code == AC_BUS_RESET) {
4068		/* Update our notion of when the last reset occurred */
4069		microtime(&bus->last_reset);
4070	}
4071
4072	for (target = TAILQ_FIRST(&bus->et_entries);
4073	     target != NULL;
4074	     target = next_target) {
4075
4076		next_target = TAILQ_NEXT(target, links);
4077
4078		if (path->target != target
4079		 && path->target->target_id != CAM_TARGET_WILDCARD
4080		 && target->target_id != CAM_TARGET_WILDCARD)
4081			continue;
4082
4083		if (async_code == AC_SENT_BDR) {
4084			/* Update our notion of when the last reset occurred */
4085			microtime(&path->target->last_reset);
4086		}
4087
4088		for (device = TAILQ_FIRST(&target->ed_entries);
4089		     device != NULL;
4090		     device = next_device) {
4091
4092			next_device = TAILQ_NEXT(device, links);
4093
4094			if (path->device != device
4095			 && path->device->lun_id != CAM_LUN_WILDCARD
4096			 && device->lun_id != CAM_LUN_WILDCARD)
4097				continue;
4098			/*
4099			 * The async callback could free the device.
4100			 * If it is a broadcast async, it doesn't hold
4101			 * device reference, so take our own reference.
4102			 */
4103			xpt_acquire_device(device);
4104			(*(bus->xport->async))(async_code, bus,
4105					       target, device,
4106					       async_arg);
4107
4108			xpt_async_bcast(&device->asyncs, async_code,
4109					path, async_arg);
4110			xpt_release_device(device);
4111		}
4112	}
4113
4114	/*
4115	 * If this wasn't a fully wildcarded async, tell all
4116	 * clients that want all async events.
4117	 */
4118	if (bus != xpt_periph->path->bus)
4119		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4120				path, async_arg);
4121}
4122
4123static void
4124xpt_async_bcast(struct async_list *async_head,
4125		u_int32_t async_code,
4126		struct cam_path *path, void *async_arg)
4127{
4128	struct async_node *cur_entry;
4129
4130	cur_entry = SLIST_FIRST(async_head);
4131	while (cur_entry != NULL) {
4132		struct async_node *next_entry;
4133		/*
4134		 * Grab the next list entry before we call the current
4135		 * entry's callback.  This is because the callback function
4136		 * can delete its async callback entry.
4137		 */
4138		next_entry = SLIST_NEXT(cur_entry, links);
4139		if ((cur_entry->event_enable & async_code) != 0)
4140			cur_entry->callback(cur_entry->callback_arg,
4141					    async_code, path,
4142					    async_arg);
4143		cur_entry = next_entry;
4144	}
4145}
4146
4147static void
4148xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4149		      struct cam_et *target, struct cam_ed *device,
4150		      void *async_arg)
4151{
4152	printf("%s called\n", __func__);
4153}
4154
4155u_int32_t
4156xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
4157{
4158	struct cam_ed *dev = path->device;
4159
4160	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4161	dev->sim->devq->alloc_openings +=
4162	    cam_ccbq_freeze(&dev->ccbq, rl, count);
4163	/* Remove frozen device from allocq. */
4164	if (device_is_alloc_queued(dev) &&
4165	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4166	     CAMQ_GET_PRIO(&dev->drvq)))) {
4167		camq_remove(&dev->sim->devq->alloc_queue,
4168		    dev->alloc_ccb_entry.pinfo.index);
4169	}
4170	/* Remove frozen device from sendq. */
4171	if (device_is_send_queued(dev) &&
4172	    cam_ccbq_frozen_top(&dev->ccbq)) {
4173		camq_remove(&dev->sim->devq->send_queue,
4174		    dev->send_ccb_entry.pinfo.index);
4175	}
4176	return (dev->ccbq.queue.qfrozen_cnt[rl]);
4177}
4178
4179u_int32_t
4180xpt_freeze_devq(struct cam_path *path, u_int count)
4181{
4182
4183	return (xpt_freeze_devq_rl(path, 0, count));
4184}
4185
4186u_int32_t
4187xpt_freeze_simq(struct cam_sim *sim, u_int count)
4188{
4189
4190	mtx_assert(sim->mtx, MA_OWNED);
4191	sim->devq->send_queue.qfrozen_cnt[0] += count;
4192	return (sim->devq->send_queue.qfrozen_cnt[0]);
4193}
4194
4195static void
4196xpt_release_devq_timeout(void *arg)
4197{
4198	struct cam_ed *device;
4199
4200	device = (struct cam_ed *)arg;
4201
4202	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
4203}
4204
4205void
4206xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4207{
4208	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4209
4210	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4211}
4212
4213void
4214xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4215{
4216	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4217
4218	xpt_release_devq_device(path->device, rl, count, run_queue);
4219}
4220
4221static void
4222xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4223{
4224
4225	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4226#ifdef INVARIANTS
4227		printf("xpt_release_devq(%d): requested %u > present %u\n",
4228		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4229#endif
4230		count = dev->ccbq.queue.qfrozen_cnt[rl];
4231	}
4232	dev->sim->devq->alloc_openings -=
4233	    cam_ccbq_release(&dev->ccbq, rl, count);
4234	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4235	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4236		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4237			xpt_run_dev_allocq(dev->target->bus);
4238	}
4239	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4240		/*
4241		 * No longer need to wait for a successful
4242		 * command completion.
4243		 */
4244		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4245		/*
4246		 * Remove any timeouts that might be scheduled
4247		 * to release this queue.
4248		 */
4249		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4250			callout_stop(&dev->callout);
4251			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4252		}
4253		if (run_queue == 0)
4254			return;
4255		/*
4256		 * Now that we are unfrozen schedule the
4257		 * device so any pending transactions are
4258		 * run.
4259		 */
4260		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4261			xpt_run_dev_sendq(dev->target->bus);
4262	}
4263}
4264
4265void
4266xpt_release_simq(struct cam_sim *sim, int run_queue)
4267{
4268	struct	camq *sendq;
4269
4270	mtx_assert(sim->mtx, MA_OWNED);
4271	sendq = &(sim->devq->send_queue);
4272	if (sendq->qfrozen_cnt[0] <= 0) {
4273#ifdef INVARIANTS
4274		printf("xpt_release_simq: requested 1 > present %u\n",
4275		    sendq->qfrozen_cnt[0]);
4276#endif
4277	} else
4278		sendq->qfrozen_cnt[0]--;
4279	if (sendq->qfrozen_cnt[0] == 0) {
4280		/*
4281		 * If there is a timeout scheduled to release this
4282		 * sim queue, remove it.  The queue frozen count is
4283		 * already at 0.
4284		 */
4285		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4286			callout_stop(&sim->callout);
4287			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4288		}
4289		if (run_queue) {
4290			struct cam_eb *bus;
4291
4292			/*
4293			 * Now that we are unfrozen run the send queue.
4294			 */
4295			bus = xpt_find_bus(sim->path_id);
4296			xpt_run_dev_sendq(bus);
4297			xpt_release_bus(bus);
4298		}
4299	}
4300}
4301
4302/*
4303 * XXX Appears to be unused.
4304 */
4305static void
4306xpt_release_simq_timeout(void *arg)
4307{
4308	struct cam_sim *sim;
4309
4310	sim = (struct cam_sim *)arg;
4311	xpt_release_simq(sim, /* run_queue */ TRUE);
4312}
4313
4314void
4315xpt_done(union ccb *done_ccb)
4316{
4317	struct cam_sim *sim;
4318	int	first;
4319
4320	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4321	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4322		/*
4323		 * Queue up the request for handling by our SWI handler
4324		 * any of the "non-immediate" type of ccbs.
4325		 */
4326		sim = done_ccb->ccb_h.path->bus->sim;
4327		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4328		    sim_links.tqe);
4329		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4330		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4331		    CAM_SIM_BATCH)) == 0) {
4332			mtx_lock(&cam_simq_lock);
4333			first = TAILQ_EMPTY(&cam_simq);
4334			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4335			mtx_unlock(&cam_simq_lock);
4336			sim->flags |= CAM_SIM_ON_DONEQ;
4337			if (first)
4338				swi_sched(cambio_ih, 0);
4339		}
4340	}
4341}
4342
4343void
4344xpt_batch_start(struct cam_sim *sim)
4345{
4346
4347	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4348	sim->flags |= CAM_SIM_BATCH;
4349}
4350
4351void
4352xpt_batch_done(struct cam_sim *sim)
4353{
4354
4355	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4356	sim->flags &= ~CAM_SIM_BATCH;
4357	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4358	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4359		camisr_runqueue(&sim->sim_doneq);
4360}
4361
4362union ccb *
4363xpt_alloc_ccb()
4364{
4365	union ccb *new_ccb;
4366
4367	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4368	return (new_ccb);
4369}
4370
4371union ccb *
4372xpt_alloc_ccb_nowait()
4373{
4374	union ccb *new_ccb;
4375
4376	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4377	return (new_ccb);
4378}
4379
4380void
4381xpt_free_ccb(union ccb *free_ccb)
4382{
4383	free(free_ccb, M_CAMCCB);
4384}
4385
4386
4387
4388/* Private XPT functions */
4389
4390/*
4391 * Get a CAM control block for the caller. Charge the structure to the device
4392 * referenced by the path.  If the this device has no 'credits' then the
4393 * device already has the maximum number of outstanding operations under way
4394 * and we return NULL. If we don't have sufficient resources to allocate more
4395 * ccbs, we also return NULL.
4396 */
4397static union ccb *
4398xpt_get_ccb(struct cam_ed *device)
4399{
4400	union ccb *new_ccb;
4401	struct cam_sim *sim;
4402
4403	sim = device->sim;
4404	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4405		new_ccb = xpt_alloc_ccb_nowait();
4406                if (new_ccb == NULL) {
4407			return (NULL);
4408		}
4409		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4410			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4411		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4412				  xpt_links.sle);
4413		sim->ccb_count++;
4414	}
4415	cam_ccbq_take_opening(&device->ccbq);
4416	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4417	return (new_ccb);
4418}
4419
4420static void
4421xpt_release_bus(struct cam_eb *bus)
4422{
4423
4424	xpt_lock_buses();
4425	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4426	if (--bus->refcount > 0) {
4427		xpt_unlock_buses();
4428		return;
4429	}
4430	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4431	    ("refcount is zero, but target list is not empty"));
4432	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4433	xsoftc.bus_generation++;
4434	xpt_unlock_buses();
4435	cam_sim_release(bus->sim);
4436	free(bus, M_CAMXPT);
4437}
4438
4439static struct cam_et *
4440xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4441{
4442	struct cam_et *cur_target, *target;
4443
4444	mtx_assert(bus->sim->mtx, MA_OWNED);
4445	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4446					 M_NOWAIT|M_ZERO);
4447	if (target == NULL)
4448		return (NULL);
4449
4450	TAILQ_INIT(&target->ed_entries);
4451	target->bus = bus;
4452	target->target_id = target_id;
4453	target->refcount = 1;
4454	target->generation = 0;
4455	target->luns = NULL;
4456	timevalclear(&target->last_reset);
4457	/*
4458	 * Hold a reference to our parent bus so it
4459	 * will not go away before we do.
4460	 */
4461	xpt_lock_buses();
4462	bus->refcount++;
4463	xpt_unlock_buses();
4464
4465	/* Insertion sort into our bus's target list */
4466	cur_target = TAILQ_FIRST(&bus->et_entries);
4467	while (cur_target != NULL && cur_target->target_id < target_id)
4468		cur_target = TAILQ_NEXT(cur_target, links);
4469	if (cur_target != NULL) {
4470		TAILQ_INSERT_BEFORE(cur_target, target, links);
4471	} else {
4472		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4473	}
4474	bus->generation++;
4475	return (target);
4476}
4477
4478static void
4479xpt_release_target(struct cam_et *target)
4480{
4481
4482	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4483	if (--target->refcount > 0)
4484		return;
4485	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4486	    ("refcount is zero, but device list is not empty"));
4487	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4488	target->bus->generation++;
4489	xpt_release_bus(target->bus);
4490	if (target->luns)
4491		free(target->luns, M_CAMXPT);
4492	free(target, M_CAMXPT);
4493}
4494
4495static struct cam_ed *
4496xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4497			 lun_id_t lun_id)
4498{
4499	struct cam_ed *device;
4500
4501	device = xpt_alloc_device(bus, target, lun_id);
4502	if (device == NULL)
4503		return (NULL);
4504
4505	device->mintags = 1;
4506	device->maxtags = 1;
4507	bus->sim->max_ccbs += device->ccbq.devq_openings;
4508	return (device);
4509}
4510
4511struct cam_ed *
4512xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4513{
4514	struct cam_ed	*cur_device, *device;
4515	struct cam_devq	*devq;
4516	cam_status status;
4517
4518	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4519	/* Make space for us in the device queue on our bus */
4520	devq = bus->sim->devq;
4521	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4522	if (status != CAM_REQ_CMP)
4523		return (NULL);
4524
4525	device = (struct cam_ed *)malloc(sizeof(*device),
4526					 M_CAMDEV, M_NOWAIT|M_ZERO);
4527	if (device == NULL)
4528		return (NULL);
4529
4530	cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4531	device->alloc_ccb_entry.device = device;
4532	cam_init_pinfo(&device->send_ccb_entry.pinfo);
4533	device->send_ccb_entry.device = device;
4534	device->target = target;
4535	device->lun_id = lun_id;
4536	device->sim = bus->sim;
4537	/* Initialize our queues */
4538	if (camq_init(&device->drvq, 0) != 0) {
4539		free(device, M_CAMDEV);
4540		return (NULL);
4541	}
4542	if (cam_ccbq_init(&device->ccbq,
4543			  bus->sim->max_dev_openings) != 0) {
4544		camq_fini(&device->drvq);
4545		free(device, M_CAMDEV);
4546		return (NULL);
4547	}
4548	SLIST_INIT(&device->asyncs);
4549	SLIST_INIT(&device->periphs);
4550	device->generation = 0;
4551	device->owner = NULL;
4552	device->flags = CAM_DEV_UNCONFIGURED;
4553	device->tag_delay_count = 0;
4554	device->tag_saved_openings = 0;
4555	device->refcount = 1;
4556	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4557
4558	cur_device = TAILQ_FIRST(&target->ed_entries);
4559	while (cur_device != NULL && cur_device->lun_id < lun_id)
4560		cur_device = TAILQ_NEXT(cur_device, links);
4561	if (cur_device != NULL)
4562		TAILQ_INSERT_BEFORE(cur_device, device, links);
4563	else
4564		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4565	target->refcount++;
4566	target->generation++;
4567	return (device);
4568}
4569
4570void
4571xpt_acquire_device(struct cam_ed *device)
4572{
4573
4574	mtx_assert(device->sim->mtx, MA_OWNED);
4575	device->refcount++;
4576}
4577
4578void
4579xpt_release_device(struct cam_ed *device)
4580{
4581	struct cam_devq *devq;
4582
4583	mtx_assert(device->sim->mtx, MA_OWNED);
4584	if (--device->refcount > 0)
4585		return;
4586
4587	KASSERT(SLIST_EMPTY(&device->periphs),
4588	    ("refcount is zero, but periphs list is not empty"));
4589	if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4590	 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4591		panic("Removing device while still queued for ccbs");
4592
4593	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4594		callout_stop(&device->callout);
4595
4596	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4597	device->target->generation++;
4598	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4599	/* Release our slot in the devq */
4600	devq = device->target->bus->sim->devq;
4601	cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4602	camq_fini(&device->drvq);
4603	cam_ccbq_fini(&device->ccbq);
4604	/*
4605	 * Free allocated memory.  free(9) does nothing if the
4606	 * supplied pointer is NULL, so it is safe to call without
4607	 * checking.
4608	 */
4609	free(device->supported_vpds, M_CAMXPT);
4610	free(device->device_id, M_CAMXPT);
4611	free(device->physpath, M_CAMXPT);
4612	free(device->rcap_buf, M_CAMXPT);
4613	free(device->serial_num, M_CAMXPT);
4614
4615	xpt_release_target(device->target);
4616	free(device, M_CAMDEV);
4617}
4618
4619u_int32_t
4620xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4621{
4622	int	diff;
4623	int	result;
4624	struct	cam_ed *dev;
4625
4626	dev = path->device;
4627
4628	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4629	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4630	if (result == CAM_REQ_CMP && (diff < 0)) {
4631		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4632	}
4633	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4634	 || (dev->inq_flags & SID_CmdQue) != 0)
4635		dev->tag_saved_openings = newopenings;
4636	/* Adjust the global limit */
4637	dev->sim->max_ccbs += diff;
4638	return (result);
4639}
4640
4641static struct cam_eb *
4642xpt_find_bus(path_id_t path_id)
4643{
4644	struct cam_eb *bus;
4645
4646	xpt_lock_buses();
4647	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4648	     bus != NULL;
4649	     bus = TAILQ_NEXT(bus, links)) {
4650		if (bus->path_id == path_id) {
4651			bus->refcount++;
4652			break;
4653		}
4654	}
4655	xpt_unlock_buses();
4656	return (bus);
4657}
4658
4659static struct cam_et *
4660xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4661{
4662	struct cam_et *target;
4663
4664	mtx_assert(bus->sim->mtx, MA_OWNED);
4665	for (target = TAILQ_FIRST(&bus->et_entries);
4666	     target != NULL;
4667	     target = TAILQ_NEXT(target, links)) {
4668		if (target->target_id == target_id) {
4669			target->refcount++;
4670			break;
4671		}
4672	}
4673	return (target);
4674}
4675
4676static struct cam_ed *
4677xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4678{
4679	struct cam_ed *device;
4680
4681	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4682	for (device = TAILQ_FIRST(&target->ed_entries);
4683	     device != NULL;
4684	     device = TAILQ_NEXT(device, links)) {
4685		if (device->lun_id == lun_id) {
4686			device->refcount++;
4687			break;
4688		}
4689	}
4690	return (device);
4691}
4692
4693void
4694xpt_start_tags(struct cam_path *path)
4695{
4696	struct ccb_relsim crs;
4697	struct cam_ed *device;
4698	struct cam_sim *sim;
4699	int    newopenings;
4700
4701	device = path->device;
4702	sim = path->bus->sim;
4703	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4704	xpt_freeze_devq(path, /*count*/1);
4705	device->inq_flags |= SID_CmdQue;
4706	if (device->tag_saved_openings != 0)
4707		newopenings = device->tag_saved_openings;
4708	else
4709		newopenings = min(device->maxtags,
4710				  sim->max_tagged_dev_openings);
4711	xpt_dev_ccbq_resize(path, newopenings);
4712	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4713	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4714	crs.ccb_h.func_code = XPT_REL_SIMQ;
4715	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4716	crs.openings
4717	    = crs.release_timeout
4718	    = crs.qfrozen_cnt
4719	    = 0;
4720	xpt_action((union ccb *)&crs);
4721}
4722
4723void
4724xpt_stop_tags(struct cam_path *path)
4725{
4726	struct ccb_relsim crs;
4727	struct cam_ed *device;
4728	struct cam_sim *sim;
4729
4730	device = path->device;
4731	sim = path->bus->sim;
4732	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4733	device->tag_delay_count = 0;
4734	xpt_freeze_devq(path, /*count*/1);
4735	device->inq_flags &= ~SID_CmdQue;
4736	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4737	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4738	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4739	crs.ccb_h.func_code = XPT_REL_SIMQ;
4740	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4741	crs.openings
4742	    = crs.release_timeout
4743	    = crs.qfrozen_cnt
4744	    = 0;
4745	xpt_action((union ccb *)&crs);
4746}
4747
4748static void
4749xpt_boot_delay(void *arg)
4750{
4751
4752	xpt_release_boot();
4753}
4754
4755static void
4756xpt_config(void *arg)
4757{
4758	/*
4759	 * Now that interrupts are enabled, go find our devices
4760	 */
4761
4762	/* Setup debugging path */
4763	if (cam_dflags != CAM_DEBUG_NONE) {
4764		if (xpt_create_path_unlocked(&cam_dpath, xpt_periph,
4765				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4766				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4767			printf("xpt_config: xpt_create_path() failed for debug"
4768			       " target %d:%d:%d, debugging disabled\n",
4769			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4770			cam_dflags = CAM_DEBUG_NONE;
4771		}
4772	} else
4773		cam_dpath = NULL;
4774
4775	periphdriver_init(1);
4776	xpt_hold_boot();
4777	callout_init(&xsoftc.boot_callout, 1);
4778	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4779	    xpt_boot_delay, NULL);
4780	/* Fire up rescan thread. */
4781	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4782		printf("xpt_config: failed to create rescan thread.\n");
4783	}
4784}
4785
4786void
4787xpt_hold_boot(void)
4788{
4789	xpt_lock_buses();
4790	xsoftc.buses_to_config++;
4791	xpt_unlock_buses();
4792}
4793
4794void
4795xpt_release_boot(void)
4796{
4797	xpt_lock_buses();
4798	xsoftc.buses_to_config--;
4799	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4800		struct	xpt_task *task;
4801
4802		xsoftc.buses_config_done = 1;
4803		xpt_unlock_buses();
4804		/* Call manually because we don't have any busses */
4805		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4806		if (task != NULL) {
4807			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4808			taskqueue_enqueue(taskqueue_thread, &task->task);
4809		}
4810	} else
4811		xpt_unlock_buses();
4812}
4813
4814/*
4815 * If the given device only has one peripheral attached to it, and if that
4816 * peripheral is the passthrough driver, announce it.  This insures that the
4817 * user sees some sort of announcement for every peripheral in their system.
4818 */
4819static int
4820xptpassannouncefunc(struct cam_ed *device, void *arg)
4821{
4822	struct cam_periph *periph;
4823	int i;
4824
4825	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4826	     periph = SLIST_NEXT(periph, periph_links), i++);
4827
4828	periph = SLIST_FIRST(&device->periphs);
4829	if ((i == 1)
4830	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4831		xpt_announce_periph(periph, NULL);
4832
4833	return(1);
4834}
4835
4836static void
4837xpt_finishconfig_task(void *context, int pending)
4838{
4839
4840	periphdriver_init(2);
4841	/*
4842	 * Check for devices with no "standard" peripheral driver
4843	 * attached.  For any devices like that, announce the
4844	 * passthrough driver so the user will see something.
4845	 */
4846	if (!bootverbose)
4847		xpt_for_all_devices(xptpassannouncefunc, NULL);
4848
4849	/* Release our hook so that the boot can continue. */
4850	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4851	free(xsoftc.xpt_config_hook, M_CAMXPT);
4852	xsoftc.xpt_config_hook = NULL;
4853
4854	free(context, M_CAMXPT);
4855}
4856
4857cam_status
4858xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4859		   struct cam_path *path)
4860{
4861	struct ccb_setasync csa;
4862	cam_status status;
4863	int xptpath = 0;
4864
4865	if (path == NULL) {
4866		mtx_lock(&xsoftc.xpt_lock);
4867		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4868					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4869		if (status != CAM_REQ_CMP) {
4870			mtx_unlock(&xsoftc.xpt_lock);
4871			return (status);
4872		}
4873		xptpath = 1;
4874	}
4875
4876	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4877	csa.ccb_h.func_code = XPT_SASYNC_CB;
4878	csa.event_enable = event;
4879	csa.callback = cbfunc;
4880	csa.callback_arg = cbarg;
4881	xpt_action((union ccb *)&csa);
4882	status = csa.ccb_h.status;
4883
4884	if (xptpath) {
4885		xpt_free_path(path);
4886		mtx_unlock(&xsoftc.xpt_lock);
4887	}
4888
4889	if ((status == CAM_REQ_CMP) &&
4890	    (csa.event_enable & AC_FOUND_DEVICE)) {
4891		/*
4892		 * Get this peripheral up to date with all
4893		 * the currently existing devices.
4894		 */
4895		xpt_for_all_devices(xptsetasyncfunc, &csa);
4896	}
4897	if ((status == CAM_REQ_CMP) &&
4898	    (csa.event_enable & AC_PATH_REGISTERED)) {
4899		/*
4900		 * Get this peripheral up to date with all
4901		 * the currently existing busses.
4902		 */
4903		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4904	}
4905
4906	return (status);
4907}
4908
4909static void
4910xptaction(struct cam_sim *sim, union ccb *work_ccb)
4911{
4912	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4913
4914	switch (work_ccb->ccb_h.func_code) {
4915	/* Common cases first */
4916	case XPT_PATH_INQ:		/* Path routing inquiry */
4917	{
4918		struct ccb_pathinq *cpi;
4919
4920		cpi = &work_ccb->cpi;
4921		cpi->version_num = 1; /* XXX??? */
4922		cpi->hba_inquiry = 0;
4923		cpi->target_sprt = 0;
4924		cpi->hba_misc = 0;
4925		cpi->hba_eng_cnt = 0;
4926		cpi->max_target = 0;
4927		cpi->max_lun = 0;
4928		cpi->initiator_id = 0;
4929		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4930		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4931		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4932		cpi->unit_number = sim->unit_number;
4933		cpi->bus_id = sim->bus_id;
4934		cpi->base_transfer_speed = 0;
4935		cpi->protocol = PROTO_UNSPECIFIED;
4936		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4937		cpi->transport = XPORT_UNSPECIFIED;
4938		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4939		cpi->ccb_h.status = CAM_REQ_CMP;
4940		xpt_done(work_ccb);
4941		break;
4942	}
4943	default:
4944		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4945		xpt_done(work_ccb);
4946		break;
4947	}
4948}
4949
4950/*
4951 * The xpt as a "controller" has no interrupt sources, so polling
4952 * is a no-op.
4953 */
4954static void
4955xptpoll(struct cam_sim *sim)
4956{
4957}
4958
4959void
4960xpt_lock_buses(void)
4961{
4962	mtx_lock(&xsoftc.xpt_topo_lock);
4963}
4964
4965void
4966xpt_unlock_buses(void)
4967{
4968	mtx_unlock(&xsoftc.xpt_topo_lock);
4969}
4970
4971static void
4972camisr(void *dummy)
4973{
4974	cam_simq_t queue;
4975	struct cam_sim *sim;
4976
4977	mtx_lock(&cam_simq_lock);
4978	TAILQ_INIT(&queue);
4979	while (!TAILQ_EMPTY(&cam_simq)) {
4980		TAILQ_CONCAT(&queue, &cam_simq, links);
4981		mtx_unlock(&cam_simq_lock);
4982
4983		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4984			TAILQ_REMOVE(&queue, sim, links);
4985			CAM_SIM_LOCK(sim);
4986			camisr_runqueue(&sim->sim_doneq);
4987			sim->flags &= ~CAM_SIM_ON_DONEQ;
4988			CAM_SIM_UNLOCK(sim);
4989		}
4990		mtx_lock(&cam_simq_lock);
4991	}
4992	mtx_unlock(&cam_simq_lock);
4993}
4994
4995static void
4996camisr_runqueue(void *V_queue)
4997{
4998	cam_isrq_t *queue = V_queue;
4999	struct	ccb_hdr *ccb_h;
5000
5001	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
5002		int	runq;
5003
5004		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
5005		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5006
5007		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
5008			  ("camisr\n"));
5009
5010		runq = FALSE;
5011
5012		if (ccb_h->flags & CAM_HIGH_POWER) {
5013			struct highpowerlist	*hphead;
5014			union ccb		*send_ccb;
5015
5016			mtx_lock(&xsoftc.xpt_lock);
5017			hphead = &xsoftc.highpowerq;
5018
5019			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
5020
5021			/*
5022			 * Increment the count since this command is done.
5023			 */
5024			xsoftc.num_highpower++;
5025
5026			/*
5027			 * Any high powered commands queued up?
5028			 */
5029			if (send_ccb != NULL) {
5030
5031				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
5032				mtx_unlock(&xsoftc.xpt_lock);
5033
5034				xpt_release_devq(send_ccb->ccb_h.path,
5035						 /*count*/1, /*runqueue*/TRUE);
5036			} else
5037				mtx_unlock(&xsoftc.xpt_lock);
5038		}
5039
5040		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5041			struct cam_ed *dev;
5042
5043			dev = ccb_h->path->device;
5044
5045			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5046			ccb_h->path->bus->sim->devq->send_active--;
5047			ccb_h->path->bus->sim->devq->send_openings++;
5048			runq = TRUE;
5049
5050			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5051			  && (dev->ccbq.dev_active == 0))) {
5052				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5053				xpt_release_devq(ccb_h->path, /*count*/1,
5054						 /*run_queue*/FALSE);
5055			}
5056
5057			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5058			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5059				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5060				xpt_release_devq(ccb_h->path, /*count*/1,
5061						 /*run_queue*/FALSE);
5062			}
5063
5064			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5065			 && (--dev->tag_delay_count == 0))
5066				xpt_start_tags(ccb_h->path);
5067			if (!device_is_send_queued(dev)) {
5068				(void)xpt_schedule_dev_sendq(ccb_h->path->bus,
5069							     dev);
5070			}
5071		}
5072
5073		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5074			xpt_release_simq(ccb_h->path->bus->sim,
5075					 /*run_queue*/TRUE);
5076			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5077			runq = FALSE;
5078		}
5079
5080		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5081		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5082			xpt_release_devq(ccb_h->path, /*count*/1,
5083					 /*run_queue*/TRUE);
5084			ccb_h->status &= ~CAM_DEV_QFRZN;
5085		} else if (runq) {
5086			xpt_run_dev_sendq(ccb_h->path->bus);
5087		}
5088
5089		/* Call the peripheral driver's callback */
5090		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5091	}
5092}
5093