1/*-
2 * CAM IO Scheduler Interface
3 *
4 * Copyright (c) 2015 Netflix, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification, immediately at the beginning of the file.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/11/sys/cam/cam_iosched.c 334263 2018-05-27 23:52:41Z sbruno $
29 */
30
31#include "opt_cam.h"
32#include "opt_ddb.h"
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/11/sys/cam/cam_iosched.c 334263 2018-05-27 23:52:41Z sbruno $");
36
37#include <sys/param.h>
38
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/bio.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/sysctl.h>
46
47#include <cam/cam.h>
48#include <cam/cam_ccb.h>
49#include <cam/cam_periph.h>
50#include <cam/cam_xpt_periph.h>
51#include <cam/cam_iosched.h>
52
53#include <ddb/ddb.h>
54
55static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
56    "CAM I/O Scheduler buffers");
57
58/*
59 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
60 * over the bioq_* interface, with notions of separate calls for normal I/O and
61 * for trims.
62 *
63 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
64 * steer the rate of one type of traffic to help other types of traffic (eg
65 * limit writes when read latency deteriorates on SSDs).
66 */
67
68#ifdef CAM_IOSCHED_DYNAMIC
69
70static int do_dynamic_iosched = 1;
71TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
72SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
73    &do_dynamic_iosched, 1,
74    "Enable Dynamic I/O scheduler optimizations.");
75
76static int alpha_bits = 9;
77TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
78SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
79    &alpha_bits, 1,
80    "Bits in EMA's alpha.");
81
82
83
84struct iop_stats;
85struct cam_iosched_softc;
86
87int iosched_debug = 0;
88
89typedef enum {
90	none = 0,				/* No limits */
91	queue_depth,			/* Limit how many ops we queue to SIM */
92	iops,				/* Limit # of IOPS to the drive */
93	bandwidth,			/* Limit bandwidth to the drive */
94	limiter_max
95} io_limiter;
96
97static const char *cam_iosched_limiter_names[] =
98    { "none", "queue_depth", "iops", "bandwidth" };
99
100/*
101 * Called to initialize the bits of the iop_stats structure relevant to the
102 * limiter. Called just after the limiter is set.
103 */
104typedef int l_init_t(struct iop_stats *);
105
106/*
107 * Called every tick.
108 */
109typedef int l_tick_t(struct iop_stats *);
110
111/*
112 * Called to see if the limiter thinks this IOP can be allowed to
113 * proceed. If so, the limiter assumes that the while IOP proceeded
114 * and makes any accounting of it that's needed.
115 */
116typedef int l_iop_t(struct iop_stats *, struct bio *);
117
118/*
119 * Called when an I/O completes so the limiter can updates its
120 * accounting. Pending I/Os may complete in any order (even when
121 * sent to the hardware at the same time), so the limiter may not
122 * make any assumptions other than this I/O has completed. If it
123 * returns 1, then xpt_schedule() needs to be called again.
124 */
125typedef int l_iodone_t(struct iop_stats *, struct bio *);
126
127static l_iop_t cam_iosched_qd_iop;
128static l_iop_t cam_iosched_qd_caniop;
129static l_iodone_t cam_iosched_qd_iodone;
130
131static l_init_t cam_iosched_iops_init;
132static l_tick_t cam_iosched_iops_tick;
133static l_iop_t cam_iosched_iops_caniop;
134static l_iop_t cam_iosched_iops_iop;
135
136static l_init_t cam_iosched_bw_init;
137static l_tick_t cam_iosched_bw_tick;
138static l_iop_t cam_iosched_bw_caniop;
139static l_iop_t cam_iosched_bw_iop;
140
141struct limswitch
142{
143	l_init_t	*l_init;
144	l_tick_t	*l_tick;
145	l_iop_t		*l_iop;
146	l_iop_t		*l_caniop;
147	l_iodone_t	*l_iodone;
148} limsw[] =
149{
150	{	/* none */
151		.l_init = NULL,
152		.l_tick = NULL,
153		.l_iop = NULL,
154		.l_iodone= NULL,
155	},
156	{	/* queue_depth */
157		.l_init = NULL,
158		.l_tick = NULL,
159		.l_caniop = cam_iosched_qd_caniop,
160		.l_iop = cam_iosched_qd_iop,
161		.l_iodone= cam_iosched_qd_iodone,
162	},
163	{	/* iops */
164		.l_init = cam_iosched_iops_init,
165		.l_tick = cam_iosched_iops_tick,
166		.l_caniop = cam_iosched_iops_caniop,
167		.l_iop = cam_iosched_iops_iop,
168		.l_iodone= NULL,
169	},
170	{	/* bandwidth */
171		.l_init = cam_iosched_bw_init,
172		.l_tick = cam_iosched_bw_tick,
173		.l_caniop = cam_iosched_bw_caniop,
174		.l_iop = cam_iosched_bw_iop,
175		.l_iodone= NULL,
176	},
177};
178
179struct iop_stats
180{
181	/*
182	 * sysctl state for this subnode.
183	 */
184	struct sysctl_ctx_list	sysctl_ctx;
185	struct sysctl_oid	*sysctl_tree;
186
187	/*
188	 * Information about the current rate limiters, if any
189	 */
190	io_limiter	limiter;	/* How are I/Os being limited */
191	int		min;		/* Low range of limit */
192	int		max;		/* High range of limit */
193	int		current;	/* Current rate limiter */
194	int		l_value1;	/* per-limiter scratch value 1. */
195	int		l_value2;	/* per-limiter scratch value 2. */
196
197
198	/*
199	 * Debug information about counts of I/Os that have gone through the
200	 * scheduler.
201	 */
202	int		pending;	/* I/Os pending in the hardware */
203	int		queued;		/* number currently in the queue */
204	int		total;		/* Total for all time -- wraps */
205	int		in;		/* number queued all time -- wraps */
206	int		out;		/* number completed all time -- wraps */
207
208	/*
209	 * Statistics on different bits of the process.
210	 */
211		/* Exp Moving Average, alpha = 1 / (1 << alpha_bits) */
212	sbintime_t      ema;
213	sbintime_t      emss;		/* Exp Moving sum of the squares */
214	sbintime_t      sd;		/* Last computed sd */
215
216	struct cam_iosched_softc *softc;
217};
218
219
220typedef enum {
221	set_max = 0,			/* current = max */
222	read_latency,			/* Steer read latency by throttling writes */
223	cl_max				/* Keep last */
224} control_type;
225
226static const char *cam_iosched_control_type_names[] =
227    { "set_max", "read_latency" };
228
229struct control_loop
230{
231	/*
232	 * sysctl state for this subnode.
233	 */
234	struct sysctl_ctx_list	sysctl_ctx;
235	struct sysctl_oid	*sysctl_tree;
236
237	sbintime_t	next_steer;		/* Time of next steer */
238	sbintime_t	steer_interval;		/* How often do we steer? */
239	sbintime_t	lolat;
240	sbintime_t	hilat;
241	int		alpha;
242	control_type	type;			/* What type of control? */
243	int		last_count;		/* Last I/O count */
244
245	struct cam_iosched_softc *softc;
246};
247
248#endif
249
250struct cam_iosched_softc
251{
252	struct bio_queue_head bio_queue;
253	struct bio_queue_head trim_queue;
254				/* scheduler flags < 16, user flags >= 16 */
255	uint32_t	flags;
256	int		sort_io_queue;
257#ifdef CAM_IOSCHED_DYNAMIC
258	int		read_bias;		/* Read bias setting */
259	int		current_read_bias;	/* Current read bias state */
260	int		total_ticks;
261
262	struct bio_queue_head write_queue;
263	struct iop_stats read_stats, write_stats, trim_stats;
264	struct sysctl_ctx_list	sysctl_ctx;
265	struct sysctl_oid	*sysctl_tree;
266
267	int		quanta;			/* Number of quanta per second */
268	struct callout	ticker;			/* Callout for our quota system */
269	struct cam_periph *periph;		/* cam periph associated with this device */
270	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
271	sbintime_t	last_time;		/* Last time we ticked */
272	struct control_loop cl;
273#endif
274};
275
276#ifdef CAM_IOSCHED_DYNAMIC
277/*
278 * helper functions to call the limsw functions.
279 */
280static int
281cam_iosched_limiter_init(struct iop_stats *ios)
282{
283	int lim = ios->limiter;
284
285	/* maybe this should be a kassert */
286	if (lim < none || lim >= limiter_max)
287		return EINVAL;
288
289	if (limsw[lim].l_init)
290		return limsw[lim].l_init(ios);
291
292	return 0;
293}
294
295static int
296cam_iosched_limiter_tick(struct iop_stats *ios)
297{
298	int lim = ios->limiter;
299
300	/* maybe this should be a kassert */
301	if (lim < none || lim >= limiter_max)
302		return EINVAL;
303
304	if (limsw[lim].l_tick)
305		return limsw[lim].l_tick(ios);
306
307	return 0;
308}
309
310static int
311cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
312{
313	int lim = ios->limiter;
314
315	/* maybe this should be a kassert */
316	if (lim < none || lim >= limiter_max)
317		return EINVAL;
318
319	if (limsw[lim].l_iop)
320		return limsw[lim].l_iop(ios, bp);
321
322	return 0;
323}
324
325static int
326cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
327{
328	int lim = ios->limiter;
329
330	/* maybe this should be a kassert */
331	if (lim < none || lim >= limiter_max)
332		return EINVAL;
333
334	if (limsw[lim].l_caniop)
335		return limsw[lim].l_caniop(ios, bp);
336
337	return 0;
338}
339
340static int
341cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
342{
343	int lim = ios->limiter;
344
345	/* maybe this should be a kassert */
346	if (lim < none || lim >= limiter_max)
347		return 0;
348
349	if (limsw[lim].l_iodone)
350		return limsw[lim].l_iodone(ios, bp);
351
352	return 0;
353}
354
355/*
356 * Functions to implement the different kinds of limiters
357 */
358
359static int
360cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
361{
362
363	if (ios->current <= 0 || ios->pending < ios->current)
364		return 0;
365
366	return EAGAIN;
367}
368
369static int
370cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
371{
372
373	if (ios->current <= 0 || ios->pending < ios->current)
374		return 0;
375
376	return EAGAIN;
377}
378
379static int
380cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
381{
382
383	if (ios->current <= 0 || ios->pending != ios->current)
384		return 0;
385
386	return 1;
387}
388
389static int
390cam_iosched_iops_init(struct iop_stats *ios)
391{
392
393	ios->l_value1 = ios->current / ios->softc->quanta;
394	if (ios->l_value1 <= 0)
395		ios->l_value1 = 1;
396
397	return 0;
398}
399
400static int
401cam_iosched_iops_tick(struct iop_stats *ios)
402{
403
404	ios->l_value1 = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
405	if (ios->l_value1 <= 0)
406		ios->l_value1 = 1;
407
408	return 0;
409}
410
411static int
412cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
413{
414
415	/*
416	 * So if we have any more IOPs left, allow it,
417	 * otherwise wait.
418	 */
419	if (ios->l_value1 <= 0)
420		return EAGAIN;
421	return 0;
422}
423
424static int
425cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
426{
427	int rv;
428
429	rv = cam_iosched_limiter_caniop(ios, bp);
430	if (rv == 0)
431		ios->l_value1--;
432
433	return rv;
434}
435
436static int
437cam_iosched_bw_init(struct iop_stats *ios)
438{
439
440	/* ios->current is in kB/s, so scale to bytes */
441	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
442
443	return 0;
444}
445
446static int
447cam_iosched_bw_tick(struct iop_stats *ios)
448{
449	int bw;
450
451	/*
452	 * If we're in the hole for available quota from
453	 * the last time, then add the quantum for this.
454	 * If we have any left over from last quantum,
455	 * then too bad, that's lost. Also, ios->current
456	 * is in kB/s, so scale.
457	 *
458	 * We also allow up to 4 quanta of credits to
459	 * accumulate to deal with burstiness. 4 is extremely
460	 * arbitrary.
461	 */
462	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
463	if (ios->l_value1 < bw * 4)
464		ios->l_value1 += bw;
465
466	return 0;
467}
468
469static int
470cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
471{
472	/*
473	 * So if we have any more bw quota left, allow it,
474	 * otherwise wait. Not, we'll go negative and that's
475	 * OK. We'll just get a lettle less next quota.
476	 *
477	 * Note on going negative: that allows us to process
478	 * requests in order better, since we won't allow
479	 * shorter reads to get around the long one that we
480	 * don't have the quota to do just yet. It also prevents
481	 * starvation by being a little more permissive about
482	 * what we let through this quantum (to prevent the
483	 * starvation), at the cost of getting a little less
484	 * next quantum.
485	 */
486	if (ios->l_value1 <= 0)
487		return EAGAIN;
488
489
490	return 0;
491}
492
493static int
494cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
495{
496	int rv;
497
498	rv = cam_iosched_limiter_caniop(ios, bp);
499	if (rv == 0)
500		ios->l_value1 -= bp->bio_length;
501
502	return rv;
503}
504
505static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
506
507static void
508cam_iosched_ticker(void *arg)
509{
510	struct cam_iosched_softc *isc = arg;
511	sbintime_t now, delta;
512
513	callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
514
515	now = sbinuptime();
516	delta = now - isc->last_time;
517	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
518	isc->last_time = now;
519
520	cam_iosched_cl_maybe_steer(&isc->cl);
521
522	cam_iosched_limiter_tick(&isc->read_stats);
523	cam_iosched_limiter_tick(&isc->write_stats);
524	cam_iosched_limiter_tick(&isc->trim_stats);
525
526	cam_iosched_schedule(isc, isc->periph);
527
528	isc->total_ticks++;
529}
530
531
532static void
533cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
534{
535
536	clp->next_steer = sbinuptime();
537	clp->softc = isc;
538	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
539	clp->lolat = 5 * SBT_1MS;
540	clp->hilat = 15 * SBT_1MS;
541	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
542	clp->type = set_max;
543}
544
545static void
546cam_iosched_cl_maybe_steer(struct control_loop *clp)
547{
548	struct cam_iosched_softc *isc;
549	sbintime_t now, lat;
550	int old;
551
552	isc = clp->softc;
553	now = isc->last_time;
554	if (now < clp->next_steer)
555		return;
556
557	clp->next_steer = now + clp->steer_interval;
558	switch (clp->type) {
559	case set_max:
560		if (isc->write_stats.current != isc->write_stats.max)
561			printf("Steering write from %d kBps to %d kBps\n",
562			    isc->write_stats.current, isc->write_stats.max);
563		isc->read_stats.current = isc->read_stats.max;
564		isc->write_stats.current = isc->write_stats.max;
565		isc->trim_stats.current = isc->trim_stats.max;
566		break;
567	case read_latency:
568		old = isc->write_stats.current;
569		lat = isc->read_stats.ema;
570		/*
571		 * Simple PLL-like engine. Since we're steering to a range for
572		 * the SP (set point) that makes things a little more
573		 * complicated. In addition, we're not directly controlling our
574		 * PV (process variable), the read latency, but instead are
575		 * manipulating the write bandwidth limit for our MV
576		 * (manipulation variable), analysis of this code gets a bit
577		 * messy. Also, the MV is a very noisy control surface for read
578		 * latency since it is affected by many hidden processes inside
579		 * the device which change how responsive read latency will be
580		 * in reaction to changes in write bandwidth. Unlike the classic
581		 * boiler control PLL. this may result in over-steering while
582		 * the SSD takes its time to react to the new, lower load. This
583		 * is why we use a relatively low alpha of between .1 and .25 to
584		 * compensate for this effect. At .1, it takes ~22 steering
585		 * intervals to back off by a factor of 10. At .2 it only takes
586		 * ~10. At .25 it only takes ~8. However some preliminary data
587		 * from the SSD drives suggests a reasponse time in 10's of
588		 * seconds before latency drops regardless of the new write
589		 * rate. Careful observation will be reqiured to tune this
590		 * effectively.
591		 *
592		 * Also, when there's no read traffic, we jack up the write
593		 * limit too regardless of the last read latency.  10 is
594		 * somewhat arbitrary.
595		 */
596		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
597			isc->write_stats.current = isc->write_stats.current *
598			    (100 + clp->alpha) / 100;	/* Scale up */
599		else if (lat > clp->hilat)
600			isc->write_stats.current = isc->write_stats.current *
601			    (100 - clp->alpha) / 100;	/* Scale down */
602		clp->last_count = isc->read_stats.total;
603
604		/*
605		 * Even if we don't steer, per se, enforce the min/max limits as
606		 * those may have changed.
607		 */
608		if (isc->write_stats.current < isc->write_stats.min)
609			isc->write_stats.current = isc->write_stats.min;
610		if (isc->write_stats.current > isc->write_stats.max)
611			isc->write_stats.current = isc->write_stats.max;
612		if (old != isc->write_stats.current && 	iosched_debug)
613			printf("Steering write from %d kBps to %d kBps due to latency of %jdms\n",
614			    old, isc->write_stats.current,
615			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
616		break;
617	case cl_max:
618		break;
619	}
620}
621#endif
622
623			/* Trim or similar currently pending completion */
624#define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
625			/* Callout active, and needs to be torn down */
626#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
627
628			/* Periph drivers set these flags to indicate work */
629#define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)
630
631#ifdef CAM_IOSCHED_DYNAMIC
632static void
633cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
634    sbintime_t sim_latency, int cmd, size_t size);
635#endif
636
637static inline int
638cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
639{
640	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
641}
642
643static inline int
644cam_iosched_has_io(struct cam_iosched_softc *isc)
645{
646#ifdef CAM_IOSCHED_DYNAMIC
647	if (do_dynamic_iosched) {
648		struct bio *rbp = bioq_first(&isc->bio_queue);
649		struct bio *wbp = bioq_first(&isc->write_queue);
650		int can_write = wbp != NULL &&
651		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
652		int can_read = rbp != NULL &&
653		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
654		if (iosched_debug > 2) {
655			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
656			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
657			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
658		}
659		return can_read || can_write;
660	}
661#endif
662	return bioq_first(&isc->bio_queue) != NULL;
663}
664
665static inline int
666cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
667{
668	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
669	    bioq_first(&isc->trim_queue);
670}
671
672#define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
673    (isc)->sort_io_queue : cam_sort_io_queues)
674
675
676static inline int
677cam_iosched_has_work(struct cam_iosched_softc *isc)
678{
679#ifdef CAM_IOSCHED_DYNAMIC
680	if (iosched_debug > 2)
681		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
682		    cam_iosched_has_more_trim(isc),
683		    cam_iosched_has_flagged_work(isc));
684#endif
685
686	return cam_iosched_has_io(isc) ||
687		cam_iosched_has_more_trim(isc) ||
688		cam_iosched_has_flagged_work(isc);
689}
690
691#ifdef CAM_IOSCHED_DYNAMIC
692static void
693cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
694{
695
696	ios->limiter = none;
697	cam_iosched_limiter_init(ios);
698	ios->in = 0;
699	ios->max = 300000;
700	ios->min = 1;
701	ios->out = 0;
702	ios->pending = 0;
703	ios->queued = 0;
704	ios->total = 0;
705	ios->ema = 0;
706	ios->emss = 0;
707	ios->sd = 0;
708	ios->softc = isc;
709}
710
711static int
712cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
713{
714	char buf[16];
715	struct iop_stats *ios;
716	struct cam_iosched_softc *isc;
717	int value, i, error, cantick;
718	const char *p;
719
720	ios = arg1;
721	isc = ios->softc;
722	value = ios->limiter;
723	if (value < none || value >= limiter_max)
724		p = "UNKNOWN";
725	else
726		p = cam_iosched_limiter_names[value];
727
728	strlcpy(buf, p, sizeof(buf));
729	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
730	if (error != 0 || req->newptr == NULL)
731		return error;
732
733	cam_periph_lock(isc->periph);
734
735	for (i = none; i < limiter_max; i++) {
736		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
737			continue;
738		ios->limiter = i;
739		error = cam_iosched_limiter_init(ios);
740		if (error != 0) {
741			ios->limiter = value;
742			cam_periph_unlock(isc->periph);
743			return error;
744		}
745		cantick = !!limsw[isc->read_stats.limiter].l_tick +
746		    !!limsw[isc->write_stats.limiter].l_tick +
747		    !!limsw[isc->trim_stats.limiter].l_tick +
748		    1;	/* Control loop requires it */
749		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
750			if (cantick == 0) {
751				callout_stop(&isc->ticker);
752				isc->flags &= ~CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
753			}
754		} else {
755			if (cantick != 0) {
756				callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
757				isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
758			}
759		}
760
761		cam_periph_unlock(isc->periph);
762		return 0;
763	}
764
765	cam_periph_unlock(isc->periph);
766	return EINVAL;
767}
768
769static int
770cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
771{
772	char buf[16];
773	struct control_loop *clp;
774	struct cam_iosched_softc *isc;
775	int value, i, error;
776	const char *p;
777
778	clp = arg1;
779	isc = clp->softc;
780	value = clp->type;
781	if (value < none || value >= cl_max)
782		p = "UNKNOWN";
783	else
784		p = cam_iosched_control_type_names[value];
785
786	strlcpy(buf, p, sizeof(buf));
787	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
788	if (error != 0 || req->newptr == NULL)
789		return error;
790
791	for (i = set_max; i < cl_max; i++) {
792		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
793			continue;
794		cam_periph_lock(isc->periph);
795		clp->type = i;
796		cam_periph_unlock(isc->periph);
797		return 0;
798	}
799
800	return EINVAL;
801}
802
803static int
804cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
805{
806	char buf[16];
807	sbintime_t value;
808	int error;
809	uint64_t us;
810
811	value = *(sbintime_t *)arg1;
812	us = (uint64_t)value / SBT_1US;
813	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
814	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
815	if (error != 0 || req->newptr == NULL)
816		return error;
817	us = strtoul(buf, NULL, 10);
818	if (us == 0)
819		return EINVAL;
820	*(sbintime_t *)arg1 = us * SBT_1US;
821	return 0;
822}
823
824static int
825cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
826{
827	int *quanta;
828	int error, value;
829
830	quanta = (unsigned *)arg1;
831	value = *quanta;
832
833	error = sysctl_handle_int(oidp, (int *)&value, 0, req);
834	if ((error != 0) || (req->newptr == NULL))
835		return (error);
836
837	if (value < 1 || value > hz)
838		return (EINVAL);
839
840	*quanta = value;
841
842	return (0);
843}
844
845static void
846cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
847{
848	struct sysctl_oid_list *n;
849	struct sysctl_ctx_list *ctx;
850
851	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
852	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
853	    CTLFLAG_RD, 0, name);
854	n = SYSCTL_CHILDREN(ios->sysctl_tree);
855	ctx = &ios->sysctl_ctx;
856
857	SYSCTL_ADD_UQUAD(ctx, n,
858	    OID_AUTO, "ema", CTLFLAG_RD,
859	    &ios->ema,
860	    "Fast Exponentially Weighted Moving Average");
861	SYSCTL_ADD_UQUAD(ctx, n,
862	    OID_AUTO, "emss", CTLFLAG_RD,
863	    &ios->emss,
864	    "Fast Exponentially Weighted Moving Sum of Squares (maybe wrong)");
865	SYSCTL_ADD_UQUAD(ctx, n,
866	    OID_AUTO, "sd", CTLFLAG_RD,
867	    &ios->sd,
868	    "Estimated SD for fast ema (may be wrong)");
869
870	SYSCTL_ADD_INT(ctx, n,
871	    OID_AUTO, "pending", CTLFLAG_RD,
872	    &ios->pending, 0,
873	    "Instantaneous # of pending transactions");
874	SYSCTL_ADD_INT(ctx, n,
875	    OID_AUTO, "count", CTLFLAG_RD,
876	    &ios->total, 0,
877	    "# of transactions submitted to hardware");
878	SYSCTL_ADD_INT(ctx, n,
879	    OID_AUTO, "queued", CTLFLAG_RD,
880	    &ios->queued, 0,
881	    "# of transactions in the queue");
882	SYSCTL_ADD_INT(ctx, n,
883	    OID_AUTO, "in", CTLFLAG_RD,
884	    &ios->in, 0,
885	    "# of transactions queued to driver");
886	SYSCTL_ADD_INT(ctx, n,
887	    OID_AUTO, "out", CTLFLAG_RD,
888	    &ios->out, 0,
889	    "# of transactions completed");
890
891	SYSCTL_ADD_PROC(ctx, n,
892	    OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
893	    ios, 0, cam_iosched_limiter_sysctl, "A",
894	    "Current limiting type.");
895	SYSCTL_ADD_INT(ctx, n,
896	    OID_AUTO, "min", CTLFLAG_RW,
897	    &ios->min, 0,
898	    "min resource");
899	SYSCTL_ADD_INT(ctx, n,
900	    OID_AUTO, "max", CTLFLAG_RW,
901	    &ios->max, 0,
902	    "max resource");
903	SYSCTL_ADD_INT(ctx, n,
904	    OID_AUTO, "current", CTLFLAG_RW,
905	    &ios->current, 0,
906	    "current resource");
907
908}
909
910static void
911cam_iosched_iop_stats_fini(struct iop_stats *ios)
912{
913	if (ios->sysctl_tree)
914		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
915			printf("can't remove iosched sysctl stats context\n");
916}
917
918static void
919cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
920{
921	struct sysctl_oid_list *n;
922	struct sysctl_ctx_list *ctx;
923	struct control_loop *clp;
924
925	clp = &isc->cl;
926	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
927	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
928	    CTLFLAG_RD, 0, "Control loop info");
929	n = SYSCTL_CHILDREN(clp->sysctl_tree);
930	ctx = &clp->sysctl_ctx;
931
932	SYSCTL_ADD_PROC(ctx, n,
933	    OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
934	    clp, 0, cam_iosched_control_type_sysctl, "A",
935	    "Control loop algorithm");
936	SYSCTL_ADD_PROC(ctx, n,
937	    OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
938	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
939	    "How often to steer (in us)");
940	SYSCTL_ADD_PROC(ctx, n,
941	    OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
942	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
943	    "Low water mark for Latency (in us)");
944	SYSCTL_ADD_PROC(ctx, n,
945	    OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
946	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
947	    "Hi water mark for Latency (in us)");
948	SYSCTL_ADD_INT(ctx, n,
949	    OID_AUTO, "alpha", CTLFLAG_RW,
950	    &clp->alpha, 0,
951	    "Alpha for PLL (x100) aka gain");
952}
953
954static void
955cam_iosched_cl_sysctl_fini(struct control_loop *clp)
956{
957	if (clp->sysctl_tree)
958		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
959			printf("can't remove iosched sysctl control loop context\n");
960}
961#endif
962
963/*
964 * Allocate the iosched structure. This also insulates callers from knowing
965 * sizeof struct cam_iosched_softc.
966 */
967int
968cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
969{
970
971	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
972	if (*iscp == NULL)
973		return ENOMEM;
974#ifdef CAM_IOSCHED_DYNAMIC
975	if (iosched_debug)
976		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
977#endif
978	(*iscp)->sort_io_queue = -1;
979	bioq_init(&(*iscp)->bio_queue);
980	bioq_init(&(*iscp)->trim_queue);
981#ifdef CAM_IOSCHED_DYNAMIC
982	if (do_dynamic_iosched) {
983		bioq_init(&(*iscp)->write_queue);
984		(*iscp)->read_bias = 100;
985		(*iscp)->current_read_bias = 100;
986		(*iscp)->quanta = 200;
987		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
988		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
989		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
990		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
991		(*iscp)->last_time = sbinuptime();
992		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
993		(*iscp)->periph = periph;
994		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
995		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
996		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
997	}
998#endif
999
1000	return 0;
1001}
1002
1003/*
1004 * Reclaim all used resources. This assumes that other folks have
1005 * drained the requests in the hardware. Maybe an unwise assumption.
1006 */
1007void
1008cam_iosched_fini(struct cam_iosched_softc *isc)
1009{
1010	if (isc) {
1011		cam_iosched_flush(isc, NULL, ENXIO);
1012#ifdef CAM_IOSCHED_DYNAMIC
1013		cam_iosched_iop_stats_fini(&isc->read_stats);
1014		cam_iosched_iop_stats_fini(&isc->write_stats);
1015		cam_iosched_iop_stats_fini(&isc->trim_stats);
1016		cam_iosched_cl_sysctl_fini(&isc->cl);
1017		if (isc->sysctl_tree)
1018			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1019				printf("can't remove iosched sysctl stats context\n");
1020		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1021			callout_drain(&isc->ticker);
1022			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1023		}
1024
1025#endif
1026		free(isc, M_CAMSCHED);
1027	}
1028}
1029
1030/*
1031 * After we're sure we're attaching a device, go ahead and add
1032 * hooks for any sysctl we may wish to honor.
1033 */
1034void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1035    struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1036{
1037#ifdef CAM_IOSCHED_DYNAMIC
1038	struct sysctl_oid_list *n;
1039#endif
1040
1041	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
1042		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1043		&isc->sort_io_queue, 0,
1044		"Sort IO queue to try and optimise disk access patterns");
1045
1046#ifdef CAM_IOSCHED_DYNAMIC
1047	if (!do_dynamic_iosched)
1048		return;
1049
1050	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1051	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1052	    CTLFLAG_RD, 0, "I/O scheduler statistics");
1053	n = SYSCTL_CHILDREN(isc->sysctl_tree);
1054	ctx = &isc->sysctl_ctx;
1055
1056	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1057	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1058	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1059	cam_iosched_cl_sysctl_init(isc);
1060
1061	SYSCTL_ADD_INT(ctx, n,
1062	    OID_AUTO, "read_bias", CTLFLAG_RW,
1063	    &isc->read_bias, 100,
1064	    "How biased towards read should we be independent of limits");
1065
1066	SYSCTL_ADD_PROC(ctx, n,
1067	    OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW,
1068	    &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1069	    "How many quanta per second do we slice the I/O up into");
1070
1071	SYSCTL_ADD_INT(ctx, n,
1072	    OID_AUTO, "total_ticks", CTLFLAG_RD,
1073	    &isc->total_ticks, 0,
1074	    "Total number of ticks we've done");
1075#endif
1076}
1077
1078/*
1079 * Flush outstanding I/O. Consumers of this library don't know all the
1080 * queues we may keep, so this allows all I/O to be flushed in one
1081 * convenient call.
1082 */
1083void
1084cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1085{
1086	bioq_flush(&isc->bio_queue, stp, err);
1087	bioq_flush(&isc->trim_queue, stp, err);
1088#ifdef CAM_IOSCHED_DYNAMIC
1089	if (do_dynamic_iosched)
1090		bioq_flush(&isc->write_queue, stp, err);
1091#endif
1092}
1093
1094#ifdef CAM_IOSCHED_DYNAMIC
1095static struct bio *
1096cam_iosched_get_write(struct cam_iosched_softc *isc)
1097{
1098	struct bio *bp;
1099
1100	/*
1101	 * We control the write rate by controlling how many requests we send
1102	 * down to the drive at any one time. Fewer requests limits the
1103	 * effects of both starvation when the requests take a while and write
1104	 * amplification when each request is causing more than one write to
1105	 * the NAND media. Limiting the queue depth like this will also limit
1106	 * the write throughput and give and reads that want to compete to
1107	 * compete unfairly.
1108	 */
1109	bp = bioq_first(&isc->write_queue);
1110	if (bp == NULL) {
1111		if (iosched_debug > 3)
1112			printf("No writes present in write_queue\n");
1113		return NULL;
1114	}
1115
1116	/*
1117	 * If pending read, prefer that based on current read bias
1118	 * setting.
1119	 */
1120	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1121		if (iosched_debug)
1122			printf("Reads present and current_read_bias is %d queued writes %d queued reads %d\n", isc->current_read_bias, isc->write_stats.queued, isc->read_stats.queued);
1123		isc->current_read_bias--;
1124		return NULL;
1125	}
1126
1127	/*
1128	 * See if our current limiter allows this I/O.
1129	 */
1130	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1131		if (iosched_debug)
1132			printf("Can't write because limiter says no.\n");
1133		return NULL;
1134	}
1135
1136	/*
1137	 * Let's do this: We've passed all the gates and we're a go
1138	 * to schedule the I/O in the SIM.
1139	 */
1140	isc->current_read_bias = isc->read_bias;
1141	bioq_remove(&isc->write_queue, bp);
1142	if (bp->bio_cmd == BIO_WRITE) {
1143		isc->write_stats.queued--;
1144		isc->write_stats.total++;
1145		isc->write_stats.pending++;
1146	}
1147	if (iosched_debug > 9)
1148		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1149	return bp;
1150}
1151#endif
1152
1153/*
1154 * Put back a trim that you weren't able to actually schedule this time.
1155 */
1156void
1157cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1158{
1159	bioq_insert_head(&isc->trim_queue, bp);
1160#ifdef CAM_IOSCHED_DYNAMIC
1161	isc->trim_stats.queued++;
1162	isc->trim_stats.total--;		/* since we put it back, don't double count */
1163	isc->trim_stats.pending--;
1164#endif
1165}
1166
1167/*
1168 * gets the next trim from the trim queue.
1169 *
1170 * Assumes we're called with the periph lock held.  It removes this
1171 * trim from the queue and the device must explicitly reinstert it
1172 * should the need arise.
1173 */
1174struct bio *
1175cam_iosched_next_trim(struct cam_iosched_softc *isc)
1176{
1177	struct bio *bp;
1178
1179	bp  = bioq_first(&isc->trim_queue);
1180	if (bp == NULL)
1181		return NULL;
1182	bioq_remove(&isc->trim_queue, bp);
1183#ifdef CAM_IOSCHED_DYNAMIC
1184	isc->trim_stats.queued--;
1185	isc->trim_stats.total++;
1186	isc->trim_stats.pending++;
1187#endif
1188	return bp;
1189}
1190
1191/*
1192 * gets the an available trim from the trim queue, if there's no trim
1193 * already pending. It removes this trim from the queue and the device
1194 * must explicitly reinstert it should the need arise.
1195 *
1196 * Assumes we're called with the periph lock held.
1197 */
1198struct bio *
1199cam_iosched_get_trim(struct cam_iosched_softc *isc)
1200{
1201
1202	if (!cam_iosched_has_more_trim(isc))
1203		return NULL;
1204
1205	return cam_iosched_next_trim(isc);
1206}
1207
1208/*
1209 * Determine what the next bit of work to do is for the periph. The
1210 * default implementation looks to see if we have trims to do, but no
1211 * trims outstanding. If so, we do that. Otherwise we see if we have
1212 * other work. If we do, then we do that. Otherwise why were we called?
1213 */
1214struct bio *
1215cam_iosched_next_bio(struct cam_iosched_softc *isc)
1216{
1217	struct bio *bp;
1218
1219	/*
1220	 * See if we have a trim that can be scheduled. We can only send one
1221	 * at a time down, so this takes that into account.
1222	 *
1223	 * XXX newer TRIM commands are queueable. Revisit this when we
1224	 * implement them.
1225	 */
1226	if ((bp = cam_iosched_get_trim(isc)) != NULL)
1227		return bp;
1228
1229#ifdef CAM_IOSCHED_DYNAMIC
1230	/*
1231	 * See if we have any pending writes, and room in the queue for them,
1232	 * and if so, those are next.
1233	 */
1234	if (do_dynamic_iosched) {
1235		if ((bp = cam_iosched_get_write(isc)) != NULL)
1236			return bp;
1237	}
1238#endif
1239
1240	/*
1241	 * next, see if there's other, normal I/O waiting. If so return that.
1242	 */
1243	if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1244		return NULL;
1245
1246#ifdef CAM_IOSCHED_DYNAMIC
1247	/*
1248	 * For the netflix scheduler, bio_queue is only for reads, so enforce
1249	 * the limits here. Enforce only for reads.
1250	 */
1251	if (do_dynamic_iosched) {
1252		if (bp->bio_cmd == BIO_READ &&
1253		    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0)
1254			return NULL;
1255	}
1256#endif
1257	bioq_remove(&isc->bio_queue, bp);
1258#ifdef CAM_IOSCHED_DYNAMIC
1259	if (do_dynamic_iosched) {
1260		if (bp->bio_cmd == BIO_READ) {
1261			isc->read_stats.queued--;
1262			isc->read_stats.total++;
1263			isc->read_stats.pending++;
1264		} else
1265			printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1266	}
1267	if (iosched_debug > 9)
1268		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1269#endif
1270	return bp;
1271}
1272
1273/*
1274 * Driver has been given some work to do by the block layer. Tell the
1275 * scheduler about it and have it queue the work up. The scheduler module
1276 * will then return the currently most useful bit of work later, possibly
1277 * deferring work for various reasons.
1278 */
1279void
1280cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1281{
1282
1283	/*
1284	 * Put all trims on the trim queue sorted, since we know
1285	 * that the collapsing code requires this. Otherwise put
1286	 * the work on the bio queue.
1287	 */
1288	if (bp->bio_cmd == BIO_DELETE) {
1289		bioq_disksort(&isc->trim_queue, bp);
1290#ifdef CAM_IOSCHED_DYNAMIC
1291		isc->trim_stats.in++;
1292		isc->trim_stats.queued++;
1293#endif
1294	}
1295#ifdef CAM_IOSCHED_DYNAMIC
1296	else if (do_dynamic_iosched &&
1297	    (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_FLUSH)) {
1298		if (cam_iosched_sort_queue(isc))
1299			bioq_disksort(&isc->write_queue, bp);
1300		else
1301			bioq_insert_tail(&isc->write_queue, bp);
1302		if (iosched_debug > 9)
1303			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
1304		if (bp->bio_cmd == BIO_WRITE) {
1305			isc->write_stats.in++;
1306			isc->write_stats.queued++;
1307		}
1308	}
1309#endif
1310	else {
1311		if (cam_iosched_sort_queue(isc))
1312			bioq_disksort(&isc->bio_queue, bp);
1313		else
1314			bioq_insert_tail(&isc->bio_queue, bp);
1315#ifdef CAM_IOSCHED_DYNAMIC
1316		if (iosched_debug > 9)
1317			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
1318		if (bp->bio_cmd == BIO_READ) {
1319			isc->read_stats.in++;
1320			isc->read_stats.queued++;
1321		} else if (bp->bio_cmd == BIO_WRITE) {
1322			isc->write_stats.in++;
1323			isc->write_stats.queued++;
1324		}
1325#endif
1326	}
1327}
1328
1329/*
1330 * If we have work, get it scheduled. Called with the periph lock held.
1331 */
1332void
1333cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1334{
1335
1336	if (cam_iosched_has_work(isc))
1337		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1338}
1339
1340/*
1341 * Complete a trim request
1342 */
1343void
1344cam_iosched_trim_done(struct cam_iosched_softc *isc)
1345{
1346
1347	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1348}
1349
1350/*
1351 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1352 * might use notes in the ccb for statistics.
1353 */
1354int
1355cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1356    union ccb *done_ccb)
1357{
1358	int retval = 0;
1359#ifdef CAM_IOSCHED_DYNAMIC
1360	if (!do_dynamic_iosched)
1361		return retval;
1362
1363	if (iosched_debug > 10)
1364		printf("done: %p %#x\n", bp, bp->bio_cmd);
1365	if (bp->bio_cmd == BIO_WRITE) {
1366		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1367		isc->write_stats.out++;
1368		isc->write_stats.pending--;
1369	} else if (bp->bio_cmd == BIO_READ) {
1370		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1371		isc->read_stats.out++;
1372		isc->read_stats.pending--;
1373	} else if (bp->bio_cmd == BIO_DELETE) {
1374		isc->trim_stats.out++;
1375		isc->trim_stats.pending--;
1376	} else if (bp->bio_cmd != BIO_FLUSH) {
1377		if (iosched_debug)
1378			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1379	}
1380
1381	if (!(bp->bio_flags & BIO_ERROR))
1382		cam_iosched_io_metric_update(isc, done_ccb->ccb_h.qos.sim_data,
1383		    bp->bio_cmd, bp->bio_bcount);
1384#endif
1385	return retval;
1386}
1387
1388/*
1389 * Tell the io scheduler that you've pushed a trim down into the sim.
1390 * xxx better place for this?
1391 */
1392void
1393cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1394{
1395
1396	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1397}
1398
1399/*
1400 * Change the sorting policy hint for I/O transactions for this device.
1401 */
1402void
1403cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1404{
1405
1406	isc->sort_io_queue = val;
1407}
1408
1409int
1410cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1411{
1412	return isc->flags & flags;
1413}
1414
1415void
1416cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1417{
1418	isc->flags |= flags;
1419}
1420
1421void
1422cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1423{
1424	isc->flags &= ~flags;
1425}
1426
1427#ifdef CAM_IOSCHED_DYNAMIC
1428/*
1429 * After the method presented in Jack Crenshaw's 1998 article "Integer
1430 * Suqare Roots," reprinted at
1431 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1432 * and well worth the read. Briefly, we find the power of 4 that's the
1433 * largest smaller than val. We then check each smaller power of 4 to
1434 * see if val is still bigger. The right shifts at each step divide
1435 * the result by 2 which after successive application winds up
1436 * accumulating the right answer. It could also have been accumulated
1437 * using a separate root counter, but this code is smaller and faster
1438 * than that method. This method is also integer size invariant.
1439 * It returns floor(sqrt((float)val)), or the larget integer less than
1440 * or equal to the square root.
1441 */
1442static uint64_t
1443isqrt64(uint64_t val)
1444{
1445	uint64_t res = 0;
1446	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1447
1448	/*
1449	 * Find the largest power of 4 smaller than val.
1450	 */
1451	while (bit > val)
1452		bit >>= 2;
1453
1454	/*
1455	 * Accumulate the answer, one bit at a time (we keep moving
1456	 * them over since 2 is the square root of 4 and we test
1457	 * powers of 4). We accumulate where we find the bit, but
1458	 * the successive shifts land the bit in the right place
1459	 * by the end.
1460	 */
1461	while (bit != 0) {
1462		if (val >= res + bit) {
1463			val -= res + bit;
1464			res = (res >> 1) + bit;
1465		} else
1466			res >>= 1;
1467		bit >>= 2;
1468	}
1469
1470	return res;
1471}
1472
1473/*
1474 * a and b are 32.32 fixed point stored in a 64-bit word.
1475 * Let al and bl be the .32 part of a and b.
1476 * Let ah and bh be the 32 part of a and b.
1477 * R is the radix and is 1 << 32
1478 *
1479 * a * b
1480 * (ah + al / R) * (bh + bl / R)
1481 * ah * bh + (al * bh + ah * bl) / R + al * bl / R^2
1482 *
1483 * After multiplicaiton, we have to renormalize by multiply by
1484 * R, so we wind up with
1485 *	ah * bh * R + al * bh + ah * bl + al * bl / R
1486 * which turns out to be a very nice way to compute this value
1487 * so long as ah and bh are < 65536 there's no loss of high bits
1488 * and the low order bits are below the threshold of caring for
1489 * this application.
1490 */
1491static uint64_t
1492mul(uint64_t a, uint64_t b)
1493{
1494	uint64_t al, ah, bl, bh;
1495	al = a & 0xffffffff;
1496	ah = a >> 32;
1497	bl = b & 0xffffffff;
1498	bh = b >> 32;
1499	return ((ah * bh) << 32) + al * bh + ah * bl + ((al * bl) >> 32);
1500}
1501
1502static void
1503cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1504{
1505	sbintime_t y, yy;
1506	uint64_t var;
1507
1508	/*
1509	 * Classic expoentially decaying average with a tiny alpha
1510	 * (2 ^ -alpha_bits). For more info see the NIST statistical
1511	 * handbook.
1512	 *
1513	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)
1514	 * alpha = 1 / (1 << alpha_bits)
1515	 *
1516	 * Since alpha is a power of two, we can compute this w/o any mult or
1517	 * division.
1518	 */
1519	y = sim_latency;
1520	iop->ema = (y + (iop->ema << alpha_bits) - iop->ema) >> alpha_bits;
1521
1522	yy = mul(y, y);
1523	iop->emss = (yy + (iop->emss << alpha_bits) - iop->emss) >> alpha_bits;
1524
1525	/*
1526         * s_1 = sum of data
1527	 * s_2 = sum of data * data
1528	 * ema ~ mean (or s_1 / N)
1529	 * emss ~ s_2 / N
1530	 *
1531	 * sd = sqrt((N * s_2 - s_1 ^ 2) / (N * (N - 1)))
1532	 * sd = sqrt((N * s_2 / N * (N - 1)) - (s_1 ^ 2 / (N * (N - 1))))
1533	 *
1534	 * N ~ 2 / alpha - 1
1535	 * alpha < 1 / 16 (typically much less)
1536	 * N > 31 --> N large so N * (N - 1) is approx N * N
1537	 *
1538	 * substituting and rearranging:
1539	 * sd ~ sqrt(s_2 / N - (s_1 / N) ^ 2)
1540	 *    ~ sqrt(emss - ema ^ 2);
1541	 * which is the formula used here to get a decent estimate of sd which
1542	 * we use to detect outliers. Note that when first starting up, it
1543	 * takes a while for emss sum of squares estimator to converge on a
1544	 * good value.  during this time, it can be less than ema^2. We
1545	 * compute a sd of 0 in that case, and ignore outliers.
1546	 */
1547	var = iop->emss - mul(iop->ema, iop->ema);
1548	iop->sd = (int64_t)var < 0 ? 0 : isqrt64(var);
1549}
1550
1551#ifdef CAM_IOSCHED_DYNAMIC
1552static void
1553cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1554    sbintime_t sim_latency, int cmd, size_t size)
1555{
1556	/* xxx Do we need to scale based on the size of the I/O ? */
1557	switch (cmd) {
1558	case BIO_READ:
1559		cam_iosched_update(&isc->read_stats, sim_latency);
1560		break;
1561	case BIO_WRITE:
1562		cam_iosched_update(&isc->write_stats, sim_latency);
1563		break;
1564	case BIO_DELETE:
1565		cam_iosched_update(&isc->trim_stats, sim_latency);
1566		break;
1567	default:
1568		break;
1569	}
1570}
1571#endif
1572
1573#ifdef DDB
1574static int biolen(struct bio_queue_head *bq)
1575{
1576	int i = 0;
1577	struct bio *bp;
1578
1579	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1580		i++;
1581	}
1582	return i;
1583}
1584
1585/*
1586 * Show the internal state of the I/O scheduler.
1587 */
1588DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1589{
1590	struct cam_iosched_softc *isc;
1591
1592	if (!have_addr) {
1593		db_printf("Need addr\n");
1594		return;
1595	}
1596	isc = (struct cam_iosched_softc *)addr;
1597	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
1598	db_printf("min_reads:         %d\n", isc->read_stats.min);
1599	db_printf("max_reads:         %d\n", isc->read_stats.max);
1600	db_printf("reads:             %d\n", isc->read_stats.total);
1601	db_printf("in_reads:          %d\n", isc->read_stats.in);
1602	db_printf("out_reads:         %d\n", isc->read_stats.out);
1603	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
1604	db_printf("Current Q len      %d\n", biolen(&isc->bio_queue));
1605	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
1606	db_printf("min_writes:        %d\n", isc->write_stats.min);
1607	db_printf("max_writes:        %d\n", isc->write_stats.max);
1608	db_printf("writes:            %d\n", isc->write_stats.total);
1609	db_printf("in_writes:         %d\n", isc->write_stats.in);
1610	db_printf("out_writes:        %d\n", isc->write_stats.out);
1611	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
1612	db_printf("Current Q len      %d\n", biolen(&isc->write_queue));
1613	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
1614	db_printf("min_trims:         %d\n", isc->trim_stats.min);
1615	db_printf("max_trims:         %d\n", isc->trim_stats.max);
1616	db_printf("trims:             %d\n", isc->trim_stats.total);
1617	db_printf("in_trims:          %d\n", isc->trim_stats.in);
1618	db_printf("out_trims:         %d\n", isc->trim_stats.out);
1619	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
1620	db_printf("Current Q len      %d\n", biolen(&isc->trim_queue));
1621	db_printf("read_bias:         %d\n", isc->read_bias);
1622	db_printf("current_read_bias: %d\n", isc->current_read_bias);
1623	db_printf("Trim active?       %s\n",
1624	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
1625}
1626#endif
1627#endif
1628