pmap.c revision 324400
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 * Copyright (c) 2014 Andrew Turner
13 * All rights reserved.
14 * Copyright (c) 2014-2016 The FreeBSD Foundation
15 * All rights reserved.
16 *
17 * This code is derived from software contributed to Berkeley by
18 * the Systems Programming Group of the University of Utah Computer
19 * Science Department and William Jolitz of UUNET Technologies Inc.
20 *
21 * This software was developed by Andrew Turner under sponsorship from
22 * the FreeBSD Foundation.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 *    notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 *    notice, this list of conditions and the following disclaimer in the
31 *    documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 *    must display the following acknowledgement:
34 *	This product includes software developed by the University of
35 *	California, Berkeley and its contributors.
36 * 4. Neither the name of the University nor the names of its contributors
37 *    may be used to endorse or promote products derived from this software
38 *    without specific prior written permission.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53 */
54/*-
55 * Copyright (c) 2003 Networks Associates Technology, Inc.
56 * All rights reserved.
57 *
58 * This software was developed for the FreeBSD Project by Jake Burkholder,
59 * Safeport Network Services, and Network Associates Laboratories, the
60 * Security Research Division of Network Associates, Inc. under
61 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62 * CHATS research program.
63 *
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
66 * are met:
67 * 1. Redistributions of source code must retain the above copyright
68 *    notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 *    notice, this list of conditions and the following disclaimer in the
71 *    documentation and/or other materials provided with the distribution.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/11/sys/arm64/arm64/pmap.c 324400 2017-10-07 21:13:54Z alc $");
88
89/*
90 *	Manages physical address maps.
91 *
92 *	Since the information managed by this module is
93 *	also stored by the logical address mapping module,
94 *	this module may throw away valid virtual-to-physical
95 *	mappings at almost any time.  However, invalidations
96 *	of virtual-to-physical mappings must be done as
97 *	requested.
98 *
99 *	In order to cope with hardware architectures which
100 *	make virtual-to-physical map invalidates expensive,
101 *	this module may delay invalidate or reduced protection
102 *	operations until such time as they are actually
103 *	necessary.  This module is given full information as
104 *	to which processors are currently using which maps,
105 *	and to when physical maps must be made correct.
106 */
107
108#include <sys/param.h>
109#include <sys/bitstring.h>
110#include <sys/bus.h>
111#include <sys/systm.h>
112#include <sys/kernel.h>
113#include <sys/ktr.h>
114#include <sys/lock.h>
115#include <sys/malloc.h>
116#include <sys/mman.h>
117#include <sys/msgbuf.h>
118#include <sys/mutex.h>
119#include <sys/proc.h>
120#include <sys/rwlock.h>
121#include <sys/sx.h>
122#include <sys/vmem.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#include <sys/_unrhdr.h>
127#include <sys/smp.h>
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/vm_phys.h>
139#include <vm/vm_radix.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/machdep.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146
147#define	NL0PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
148#define	NL1PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
149#define	NL2PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
150#define	NL3PG		(PAGE_SIZE/(sizeof (pt_entry_t)))
151
152#define	NUL0E		L0_ENTRIES
153#define	NUL1E		(NUL0E * NL1PG)
154#define	NUL2E		(NUL1E * NL2PG)
155
156#if !defined(DIAGNOSTIC)
157#ifdef __GNUC_GNU_INLINE__
158#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
159#else
160#define PMAP_INLINE	extern inline
161#endif
162#else
163#define PMAP_INLINE
164#endif
165
166/*
167 * These are configured by the mair_el1 register. This is set up in locore.S
168 */
169#define	DEVICE_MEMORY	0
170#define	UNCACHED_MEMORY	1
171#define	CACHED_MEMORY	2
172
173
174#ifdef PV_STATS
175#define PV_STAT(x)	do { x ; } while (0)
176#else
177#define PV_STAT(x)	do { } while (0)
178#endif
179
180#define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
181#define	pa_to_pvh(pa)		(&pv_table[pmap_l2_pindex(pa)])
182
183#define	NPV_LIST_LOCKS	MAXCPU
184
185#define	PHYS_TO_PV_LIST_LOCK(pa)	\
186			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
187
188#define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
189	struct rwlock **_lockp = (lockp);		\
190	struct rwlock *_new_lock;			\
191							\
192	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
193	if (_new_lock != *_lockp) {			\
194		if (*_lockp != NULL)			\
195			rw_wunlock(*_lockp);		\
196		*_lockp = _new_lock;			\
197		rw_wlock(*_lockp);			\
198	}						\
199} while (0)
200
201#define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
202			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
203
204#define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
205	struct rwlock **_lockp = (lockp);		\
206							\
207	if (*_lockp != NULL) {				\
208		rw_wunlock(*_lockp);			\
209		*_lockp = NULL;				\
210	}						\
211} while (0)
212
213#define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
214			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
215
216struct pmap kernel_pmap_store;
217
218vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
219vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
220vm_offset_t kernel_vm_end = 0;
221
222struct msgbuf *msgbufp = NULL;
223
224/*
225 * Data for the pv entry allocation mechanism.
226 * Updates to pv_invl_gen are protected by the pv_list_locks[]
227 * elements, but reads are not.
228 */
229static struct md_page *pv_table;
230static struct md_page pv_dummy;
231
232vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
233vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
234vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
235
236/* This code assumes all L1 DMAP entries will be used */
237CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
238CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
239
240#define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
241extern pt_entry_t pagetable_dmap[];
242
243static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
244
245static int superpages_enabled = 0;
246SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
247    CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
248    "Are large page mappings enabled?");
249
250/*
251 * Data for the pv entry allocation mechanism
252 */
253static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
254static struct mtx pv_chunks_mutex;
255static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
256
257static void	free_pv_chunk(struct pv_chunk *pc);
258static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
259static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
260static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
261static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
262static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
263		    vm_offset_t va);
264
265static int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode);
266static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
267static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
268static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
269    vm_offset_t va, struct rwlock **lockp);
270static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
271static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
272    vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
273static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
274    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
275static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
276    vm_page_t m, struct rwlock **lockp);
277
278static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
279		struct rwlock **lockp);
280
281static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
282    struct spglist *free);
283static int pmap_unuse_l3(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
284
285/*
286 * These load the old table data and store the new value.
287 * They need to be atomic as the System MMU may write to the table at
288 * the same time as the CPU.
289 */
290#define	pmap_load_store(table, entry) atomic_swap_64(table, entry)
291#define	pmap_set(table, mask) atomic_set_64(table, mask)
292#define	pmap_load_clear(table) atomic_swap_64(table, 0)
293#define	pmap_load(table) (*table)
294
295/********************/
296/* Inline functions */
297/********************/
298
299static __inline void
300pagecopy(void *s, void *d)
301{
302
303	memcpy(d, s, PAGE_SIZE);
304}
305
306#define	pmap_l0_index(va)	(((va) >> L0_SHIFT) & L0_ADDR_MASK)
307#define	pmap_l1_index(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
308#define	pmap_l2_index(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
309#define	pmap_l3_index(va)	(((va) >> L3_SHIFT) & Ln_ADDR_MASK)
310
311static __inline pd_entry_t *
312pmap_l0(pmap_t pmap, vm_offset_t va)
313{
314
315	return (&pmap->pm_l0[pmap_l0_index(va)]);
316}
317
318static __inline pd_entry_t *
319pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
320{
321	pd_entry_t *l1;
322
323	l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
324	return (&l1[pmap_l1_index(va)]);
325}
326
327static __inline pd_entry_t *
328pmap_l1(pmap_t pmap, vm_offset_t va)
329{
330	pd_entry_t *l0;
331
332	l0 = pmap_l0(pmap, va);
333	if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
334		return (NULL);
335
336	return (pmap_l0_to_l1(l0, va));
337}
338
339static __inline pd_entry_t *
340pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
341{
342	pd_entry_t *l2;
343
344	l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
345	return (&l2[pmap_l2_index(va)]);
346}
347
348static __inline pd_entry_t *
349pmap_l2(pmap_t pmap, vm_offset_t va)
350{
351	pd_entry_t *l1;
352
353	l1 = pmap_l1(pmap, va);
354	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
355		return (NULL);
356
357	return (pmap_l1_to_l2(l1, va));
358}
359
360static __inline pt_entry_t *
361pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
362{
363	pt_entry_t *l3;
364
365	l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK);
366	return (&l3[pmap_l3_index(va)]);
367}
368
369/*
370 * Returns the lowest valid pde for a given virtual address.
371 * The next level may or may not point to a valid page or block.
372 */
373static __inline pd_entry_t *
374pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
375{
376	pd_entry_t *l0, *l1, *l2, desc;
377
378	l0 = pmap_l0(pmap, va);
379	desc = pmap_load(l0) & ATTR_DESCR_MASK;
380	if (desc != L0_TABLE) {
381		*level = -1;
382		return (NULL);
383	}
384
385	l1 = pmap_l0_to_l1(l0, va);
386	desc = pmap_load(l1) & ATTR_DESCR_MASK;
387	if (desc != L1_TABLE) {
388		*level = 0;
389		return (l0);
390	}
391
392	l2 = pmap_l1_to_l2(l1, va);
393	desc = pmap_load(l2) & ATTR_DESCR_MASK;
394	if (desc != L2_TABLE) {
395		*level = 1;
396		return (l1);
397	}
398
399	*level = 2;
400	return (l2);
401}
402
403/*
404 * Returns the lowest valid pte block or table entry for a given virtual
405 * address. If there are no valid entries return NULL and set the level to
406 * the first invalid level.
407 */
408static __inline pt_entry_t *
409pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
410{
411	pd_entry_t *l1, *l2, desc;
412	pt_entry_t *l3;
413
414	l1 = pmap_l1(pmap, va);
415	if (l1 == NULL) {
416		*level = 0;
417		return (NULL);
418	}
419	desc = pmap_load(l1) & ATTR_DESCR_MASK;
420	if (desc == L1_BLOCK) {
421		*level = 1;
422		return (l1);
423	}
424
425	if (desc != L1_TABLE) {
426		*level = 1;
427		return (NULL);
428	}
429
430	l2 = pmap_l1_to_l2(l1, va);
431	desc = pmap_load(l2) & ATTR_DESCR_MASK;
432	if (desc == L2_BLOCK) {
433		*level = 2;
434		return (l2);
435	}
436
437	if (desc != L2_TABLE) {
438		*level = 2;
439		return (NULL);
440	}
441
442	*level = 3;
443	l3 = pmap_l2_to_l3(l2, va);
444	if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
445		return (NULL);
446
447	return (l3);
448}
449
450static inline bool
451pmap_superpages_enabled(void)
452{
453
454	return (superpages_enabled != 0);
455}
456
457bool
458pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
459    pd_entry_t **l2, pt_entry_t **l3)
460{
461	pd_entry_t *l0p, *l1p, *l2p;
462
463	if (pmap->pm_l0 == NULL)
464		return (false);
465
466	l0p = pmap_l0(pmap, va);
467	*l0 = l0p;
468
469	if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
470		return (false);
471
472	l1p = pmap_l0_to_l1(l0p, va);
473	*l1 = l1p;
474
475	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
476		*l2 = NULL;
477		*l3 = NULL;
478		return (true);
479	}
480
481	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
482		return (false);
483
484	l2p = pmap_l1_to_l2(l1p, va);
485	*l2 = l2p;
486
487	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
488		*l3 = NULL;
489		return (true);
490	}
491
492	*l3 = pmap_l2_to_l3(l2p, va);
493
494	return (true);
495}
496
497static __inline int
498pmap_is_current(pmap_t pmap)
499{
500
501	return ((pmap == pmap_kernel()) ||
502	    (pmap == curthread->td_proc->p_vmspace->vm_map.pmap));
503}
504
505static __inline int
506pmap_l3_valid(pt_entry_t l3)
507{
508
509	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
510}
511
512
513/* Is a level 1 or 2entry a valid block and cacheable */
514CTASSERT(L1_BLOCK == L2_BLOCK);
515static __inline int
516pmap_pte_valid_cacheable(pt_entry_t pte)
517{
518
519	return (((pte & ATTR_DESCR_MASK) == L1_BLOCK) &&
520	    ((pte & ATTR_IDX_MASK) == ATTR_IDX(CACHED_MEMORY)));
521}
522
523static __inline int
524pmap_l3_valid_cacheable(pt_entry_t l3)
525{
526
527	return (((l3 & ATTR_DESCR_MASK) == L3_PAGE) &&
528	    ((l3 & ATTR_IDX_MASK) == ATTR_IDX(CACHED_MEMORY)));
529}
530
531#define	PTE_SYNC(pte)	cpu_dcache_wb_range((vm_offset_t)pte, sizeof(*pte))
532
533/*
534 * Checks if the page is dirty. We currently lack proper tracking of this on
535 * arm64 so for now assume is a page mapped as rw was accessed it is.
536 */
537static inline int
538pmap_page_dirty(pt_entry_t pte)
539{
540
541	return ((pte & (ATTR_AF | ATTR_AP_RW_BIT)) ==
542	    (ATTR_AF | ATTR_AP(ATTR_AP_RW)));
543}
544
545static __inline void
546pmap_resident_count_inc(pmap_t pmap, int count)
547{
548
549	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
550	pmap->pm_stats.resident_count += count;
551}
552
553static __inline void
554pmap_resident_count_dec(pmap_t pmap, int count)
555{
556
557	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
558	KASSERT(pmap->pm_stats.resident_count >= count,
559	    ("pmap %p resident count underflow %ld %d", pmap,
560	    pmap->pm_stats.resident_count, count));
561	pmap->pm_stats.resident_count -= count;
562}
563
564static pt_entry_t *
565pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
566    u_int *l2_slot)
567{
568	pt_entry_t *l2;
569	pd_entry_t *l1;
570
571	l1 = (pd_entry_t *)l1pt;
572	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
573
574	/* Check locore has used a table L1 map */
575	KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
576	   ("Invalid bootstrap L1 table"));
577	/* Find the address of the L2 table */
578	l2 = (pt_entry_t *)init_pt_va;
579	*l2_slot = pmap_l2_index(va);
580
581	return (l2);
582}
583
584static vm_paddr_t
585pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
586{
587	u_int l1_slot, l2_slot;
588	pt_entry_t *l2;
589
590	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
591
592	return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
593}
594
595static void
596pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa, vm_paddr_t max_pa)
597{
598	vm_offset_t va;
599	vm_paddr_t pa;
600	u_int l1_slot;
601
602	pa = dmap_phys_base = min_pa & ~L1_OFFSET;
603	va = DMAP_MIN_ADDRESS;
604	for (; va < DMAP_MAX_ADDRESS && pa < max_pa;
605	    pa += L1_SIZE, va += L1_SIZE, l1_slot++) {
606		l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
607
608		pmap_load_store(&pagetable_dmap[l1_slot],
609		    (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_XN |
610		    ATTR_IDX(CACHED_MEMORY) | L1_BLOCK);
611	}
612
613	/* Set the upper limit of the DMAP region */
614	dmap_phys_max = pa;
615	dmap_max_addr = va;
616
617	cpu_dcache_wb_range((vm_offset_t)pagetable_dmap,
618	    PAGE_SIZE * DMAP_TABLES);
619	cpu_tlb_flushID();
620}
621
622static vm_offset_t
623pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
624{
625	vm_offset_t l2pt;
626	vm_paddr_t pa;
627	pd_entry_t *l1;
628	u_int l1_slot;
629
630	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
631
632	l1 = (pd_entry_t *)l1pt;
633	l1_slot = pmap_l1_index(va);
634	l2pt = l2_start;
635
636	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
637		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
638
639		pa = pmap_early_vtophys(l1pt, l2pt);
640		pmap_load_store(&l1[l1_slot],
641		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
642		l2pt += PAGE_SIZE;
643	}
644
645	/* Clean the L2 page table */
646	memset((void *)l2_start, 0, l2pt - l2_start);
647	cpu_dcache_wb_range(l2_start, l2pt - l2_start);
648
649	/* Flush the l1 table to ram */
650	cpu_dcache_wb_range((vm_offset_t)l1, PAGE_SIZE);
651
652	return l2pt;
653}
654
655static vm_offset_t
656pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
657{
658	vm_offset_t l2pt, l3pt;
659	vm_paddr_t pa;
660	pd_entry_t *l2;
661	u_int l2_slot;
662
663	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
664
665	l2 = pmap_l2(kernel_pmap, va);
666	l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
667	l2pt = (vm_offset_t)l2;
668	l2_slot = pmap_l2_index(va);
669	l3pt = l3_start;
670
671	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
672		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
673
674		pa = pmap_early_vtophys(l1pt, l3pt);
675		pmap_load_store(&l2[l2_slot],
676		    (pa & ~Ln_TABLE_MASK) | L2_TABLE);
677		l3pt += PAGE_SIZE;
678	}
679
680	/* Clean the L2 page table */
681	memset((void *)l3_start, 0, l3pt - l3_start);
682	cpu_dcache_wb_range(l3_start, l3pt - l3_start);
683
684	cpu_dcache_wb_range((vm_offset_t)l2, PAGE_SIZE);
685
686	return l3pt;
687}
688
689/*
690 *	Bootstrap the system enough to run with virtual memory.
691 */
692void
693pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
694    vm_size_t kernlen)
695{
696	u_int l1_slot, l2_slot, avail_slot, map_slot, used_map_slot;
697	uint64_t kern_delta;
698	pt_entry_t *l2;
699	vm_offset_t va, freemempos;
700	vm_offset_t dpcpu, msgbufpv;
701	vm_paddr_t pa, max_pa, min_pa;
702	int i;
703
704	kern_delta = KERNBASE - kernstart;
705	physmem = 0;
706
707	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
708	printf("%lx\n", l1pt);
709	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
710
711	/* Set this early so we can use the pagetable walking functions */
712	kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
713	PMAP_LOCK_INIT(kernel_pmap);
714
715	/* Assume the address we were loaded to is a valid physical address */
716	min_pa = max_pa = KERNBASE - kern_delta;
717
718	/*
719	 * Find the minimum physical address. physmap is sorted,
720	 * but may contain empty ranges.
721	 */
722	for (i = 0; i < (physmap_idx * 2); i += 2) {
723		if (physmap[i] == physmap[i + 1])
724			continue;
725		if (physmap[i] <= min_pa)
726			min_pa = physmap[i];
727		if (physmap[i + 1] > max_pa)
728			max_pa = physmap[i + 1];
729	}
730
731	/* Create a direct map region early so we can use it for pa -> va */
732	pmap_bootstrap_dmap(l1pt, min_pa, max_pa);
733
734	va = KERNBASE;
735	pa = KERNBASE - kern_delta;
736
737	/*
738	 * Start to initialise phys_avail by copying from physmap
739	 * up to the physical address KERNBASE points at.
740	 */
741	map_slot = avail_slot = 0;
742	for (; map_slot < (physmap_idx * 2) &&
743	    avail_slot < (PHYS_AVAIL_SIZE - 2); map_slot += 2) {
744		if (physmap[map_slot] == physmap[map_slot + 1])
745			continue;
746
747		if (physmap[map_slot] <= pa &&
748		    physmap[map_slot + 1] > pa)
749			break;
750
751		phys_avail[avail_slot] = physmap[map_slot];
752		phys_avail[avail_slot + 1] = physmap[map_slot + 1];
753		physmem += (phys_avail[avail_slot + 1] -
754		    phys_avail[avail_slot]) >> PAGE_SHIFT;
755		avail_slot += 2;
756	}
757
758	/* Add the memory before the kernel */
759	if (physmap[avail_slot] < pa && avail_slot < (PHYS_AVAIL_SIZE - 2)) {
760		phys_avail[avail_slot] = physmap[map_slot];
761		phys_avail[avail_slot + 1] = pa;
762		physmem += (phys_avail[avail_slot + 1] -
763		    phys_avail[avail_slot]) >> PAGE_SHIFT;
764		avail_slot += 2;
765	}
766	used_map_slot = map_slot;
767
768	/*
769	 * Read the page table to find out what is already mapped.
770	 * This assumes we have mapped a block of memory from KERNBASE
771	 * using a single L1 entry.
772	 */
773	l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
774
775	/* Sanity check the index, KERNBASE should be the first VA */
776	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
777
778	/* Find how many pages we have mapped */
779	for (; l2_slot < Ln_ENTRIES; l2_slot++) {
780		if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0)
781			break;
782
783		/* Check locore used L2 blocks */
784		KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK,
785		    ("Invalid bootstrap L2 table"));
786		KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa,
787		    ("Incorrect PA in L2 table"));
788
789		va += L2_SIZE;
790		pa += L2_SIZE;
791	}
792
793	va = roundup2(va, L1_SIZE);
794
795	freemempos = KERNBASE + kernlen;
796	freemempos = roundup2(freemempos, PAGE_SIZE);
797	/* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */
798	freemempos = pmap_bootstrap_l2(l1pt, va, freemempos);
799	/* And the l3 tables for the early devmap */
800	freemempos = pmap_bootstrap_l3(l1pt,
801	    VM_MAX_KERNEL_ADDRESS - L2_SIZE, freemempos);
802
803	cpu_tlb_flushID();
804
805#define alloc_pages(var, np)						\
806	(var) = freemempos;						\
807	freemempos += (np * PAGE_SIZE);					\
808	memset((char *)(var), 0, ((np) * PAGE_SIZE));
809
810	/* Allocate dynamic per-cpu area. */
811	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
812	dpcpu_init((void *)dpcpu, 0);
813
814	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
815	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
816	msgbufp = (void *)msgbufpv;
817
818	virtual_avail = roundup2(freemempos, L1_SIZE);
819	virtual_end = VM_MAX_KERNEL_ADDRESS - L2_SIZE;
820	kernel_vm_end = virtual_avail;
821
822	pa = pmap_early_vtophys(l1pt, freemempos);
823
824	/* Finish initialising physmap */
825	map_slot = used_map_slot;
826	for (; avail_slot < (PHYS_AVAIL_SIZE - 2) &&
827	    map_slot < (physmap_idx * 2); map_slot += 2) {
828		if (physmap[map_slot] == physmap[map_slot + 1])
829			continue;
830
831		/* Have we used the current range? */
832		if (physmap[map_slot + 1] <= pa)
833			continue;
834
835		/* Do we need to split the entry? */
836		if (physmap[map_slot] < pa) {
837			phys_avail[avail_slot] = pa;
838			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
839		} else {
840			phys_avail[avail_slot] = physmap[map_slot];
841			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
842		}
843		physmem += (phys_avail[avail_slot + 1] -
844		    phys_avail[avail_slot]) >> PAGE_SHIFT;
845
846		avail_slot += 2;
847	}
848	phys_avail[avail_slot] = 0;
849	phys_avail[avail_slot + 1] = 0;
850
851	/*
852	 * Maxmem isn't the "maximum memory", it's one larger than the
853	 * highest page of the physical address space.  It should be
854	 * called something like "Maxphyspage".
855	 */
856	Maxmem = atop(phys_avail[avail_slot - 1]);
857
858	cpu_tlb_flushID();
859}
860
861/*
862 *	Initialize a vm_page's machine-dependent fields.
863 */
864void
865pmap_page_init(vm_page_t m)
866{
867
868	TAILQ_INIT(&m->md.pv_list);
869	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
870}
871
872/*
873 *	Initialize the pmap module.
874 *	Called by vm_init, to initialize any structures that the pmap
875 *	system needs to map virtual memory.
876 */
877void
878pmap_init(void)
879{
880	vm_size_t s;
881	int i, pv_npg;
882
883	/*
884	 * Are large page mappings enabled?
885	 */
886	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
887
888	/*
889	 * Initialize the pv chunk list mutex.
890	 */
891	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
892
893	/*
894	 * Initialize the pool of pv list locks.
895	 */
896	for (i = 0; i < NPV_LIST_LOCKS; i++)
897		rw_init(&pv_list_locks[i], "pmap pv list");
898
899	/*
900	 * Calculate the size of the pv head table for superpages.
901	 */
902	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
903
904	/*
905	 * Allocate memory for the pv head table for superpages.
906	 */
907	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
908	s = round_page(s);
909	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
910	    M_WAITOK | M_ZERO);
911	for (i = 0; i < pv_npg; i++)
912		TAILQ_INIT(&pv_table[i].pv_list);
913	TAILQ_INIT(&pv_dummy.pv_list);
914}
915
916static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD, 0,
917    "2MB page mapping counters");
918
919static u_long pmap_l2_demotions;
920SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
921    &pmap_l2_demotions, 0, "2MB page demotions");
922
923static u_long pmap_l2_p_failures;
924SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
925    &pmap_l2_p_failures, 0, "2MB page promotion failures");
926
927static u_long pmap_l2_promotions;
928SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
929    &pmap_l2_promotions, 0, "2MB page promotions");
930
931/*
932 * Invalidate a single TLB entry.
933 */
934PMAP_INLINE void
935pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
936{
937
938	sched_pin();
939	__asm __volatile(
940	    "dsb  ishst		\n"
941	    "tlbi vaae1is, %0	\n"
942	    "dsb  ish		\n"
943	    "isb		\n"
944	    : : "r"(va >> PAGE_SHIFT));
945	sched_unpin();
946}
947
948PMAP_INLINE void
949pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
950{
951	vm_offset_t addr;
952
953	sched_pin();
954	dsb(ishst);
955	for (addr = sva; addr < eva; addr += PAGE_SIZE) {
956		__asm __volatile(
957		    "tlbi vaae1is, %0" : : "r"(addr >> PAGE_SHIFT));
958	}
959	__asm __volatile(
960	    "dsb  ish	\n"
961	    "isb	\n");
962	sched_unpin();
963}
964
965PMAP_INLINE void
966pmap_invalidate_all(pmap_t pmap)
967{
968
969	sched_pin();
970	__asm __volatile(
971	    "dsb  ishst		\n"
972	    "tlbi vmalle1is	\n"
973	    "dsb  ish		\n"
974	    "isb		\n");
975	sched_unpin();
976}
977
978/*
979 *	Routine:	pmap_extract
980 *	Function:
981 *		Extract the physical page address associated
982 *		with the given map/virtual_address pair.
983 */
984vm_paddr_t
985pmap_extract(pmap_t pmap, vm_offset_t va)
986{
987	pt_entry_t *pte, tpte;
988	vm_paddr_t pa;
989	int lvl;
990
991	pa = 0;
992	PMAP_LOCK(pmap);
993	/*
994	 * Find the block or page map for this virtual address. pmap_pte
995	 * will return either a valid block/page entry, or NULL.
996	 */
997	pte = pmap_pte(pmap, va, &lvl);
998	if (pte != NULL) {
999		tpte = pmap_load(pte);
1000		pa = tpte & ~ATTR_MASK;
1001		switch(lvl) {
1002		case 1:
1003			KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1004			    ("pmap_extract: Invalid L1 pte found: %lx",
1005			    tpte & ATTR_DESCR_MASK));
1006			pa |= (va & L1_OFFSET);
1007			break;
1008		case 2:
1009			KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1010			    ("pmap_extract: Invalid L2 pte found: %lx",
1011			    tpte & ATTR_DESCR_MASK));
1012			pa |= (va & L2_OFFSET);
1013			break;
1014		case 3:
1015			KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1016			    ("pmap_extract: Invalid L3 pte found: %lx",
1017			    tpte & ATTR_DESCR_MASK));
1018			pa |= (va & L3_OFFSET);
1019			break;
1020		}
1021	}
1022	PMAP_UNLOCK(pmap);
1023	return (pa);
1024}
1025
1026/*
1027 *	Routine:	pmap_extract_and_hold
1028 *	Function:
1029 *		Atomically extract and hold the physical page
1030 *		with the given pmap and virtual address pair
1031 *		if that mapping permits the given protection.
1032 */
1033vm_page_t
1034pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1035{
1036	pt_entry_t *pte, tpte;
1037	vm_offset_t off;
1038	vm_paddr_t pa;
1039	vm_page_t m;
1040	int lvl;
1041
1042	pa = 0;
1043	m = NULL;
1044	PMAP_LOCK(pmap);
1045retry:
1046	pte = pmap_pte(pmap, va, &lvl);
1047	if (pte != NULL) {
1048		tpte = pmap_load(pte);
1049
1050		KASSERT(lvl > 0 && lvl <= 3,
1051		    ("pmap_extract_and_hold: Invalid level %d", lvl));
1052		CTASSERT(L1_BLOCK == L2_BLOCK);
1053		KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1054		    (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1055		    ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1056		     tpte & ATTR_DESCR_MASK));
1057		if (((tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) ||
1058		    ((prot & VM_PROT_WRITE) == 0)) {
1059			switch(lvl) {
1060			case 1:
1061				off = va & L1_OFFSET;
1062				break;
1063			case 2:
1064				off = va & L2_OFFSET;
1065				break;
1066			case 3:
1067			default:
1068				off = 0;
1069			}
1070			if (vm_page_pa_tryrelock(pmap,
1071			    (tpte & ~ATTR_MASK) | off, &pa))
1072				goto retry;
1073			m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1074			vm_page_hold(m);
1075		}
1076	}
1077	PA_UNLOCK_COND(pa);
1078	PMAP_UNLOCK(pmap);
1079	return (m);
1080}
1081
1082vm_paddr_t
1083pmap_kextract(vm_offset_t va)
1084{
1085	pt_entry_t *pte, tpte;
1086	vm_paddr_t pa;
1087	int lvl;
1088
1089	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1090		pa = DMAP_TO_PHYS(va);
1091	} else {
1092		pa = 0;
1093		pte = pmap_pte(kernel_pmap, va, &lvl);
1094		if (pte != NULL) {
1095			tpte = pmap_load(pte);
1096			pa = tpte & ~ATTR_MASK;
1097			switch(lvl) {
1098			case 1:
1099				KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1100				    ("pmap_kextract: Invalid L1 pte found: %lx",
1101				    tpte & ATTR_DESCR_MASK));
1102				pa |= (va & L1_OFFSET);
1103				break;
1104			case 2:
1105				KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1106				    ("pmap_kextract: Invalid L2 pte found: %lx",
1107				    tpte & ATTR_DESCR_MASK));
1108				pa |= (va & L2_OFFSET);
1109				break;
1110			case 3:
1111				KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1112				    ("pmap_kextract: Invalid L3 pte found: %lx",
1113				    tpte & ATTR_DESCR_MASK));
1114				pa |= (va & L3_OFFSET);
1115				break;
1116			}
1117		}
1118	}
1119	return (pa);
1120}
1121
1122/***************************************************
1123 * Low level mapping routines.....
1124 ***************************************************/
1125
1126static void
1127pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1128{
1129	pd_entry_t *pde;
1130	pt_entry_t *pte, attr;
1131	vm_offset_t va;
1132	int lvl;
1133
1134	KASSERT((pa & L3_OFFSET) == 0,
1135	   ("pmap_kenter: Invalid physical address"));
1136	KASSERT((sva & L3_OFFSET) == 0,
1137	   ("pmap_kenter: Invalid virtual address"));
1138	KASSERT((size & PAGE_MASK) == 0,
1139	    ("pmap_kenter: Mapping is not page-sized"));
1140
1141	attr = ATTR_DEFAULT | ATTR_IDX(mode) | L3_PAGE;
1142	if (mode == DEVICE_MEMORY)
1143		attr |= ATTR_XN;
1144
1145	va = sva;
1146	while (size != 0) {
1147		pde = pmap_pde(kernel_pmap, va, &lvl);
1148		KASSERT(pde != NULL,
1149		    ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1150		KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1151
1152		pte = pmap_l2_to_l3(pde, va);
1153		pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1154		PTE_SYNC(pte);
1155
1156		va += PAGE_SIZE;
1157		pa += PAGE_SIZE;
1158		size -= PAGE_SIZE;
1159	}
1160	pmap_invalidate_range(kernel_pmap, sva, va);
1161}
1162
1163void
1164pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1165{
1166
1167	pmap_kenter(sva, size, pa, DEVICE_MEMORY);
1168}
1169
1170/*
1171 * Remove a page from the kernel pagetables.
1172 */
1173PMAP_INLINE void
1174pmap_kremove(vm_offset_t va)
1175{
1176	pt_entry_t *pte;
1177	int lvl;
1178
1179	pte = pmap_pte(kernel_pmap, va, &lvl);
1180	KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1181	KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1182
1183	if (pmap_l3_valid_cacheable(pmap_load(pte)))
1184		cpu_dcache_wb_range(va, L3_SIZE);
1185	pmap_load_clear(pte);
1186	PTE_SYNC(pte);
1187	pmap_invalidate_page(kernel_pmap, va);
1188}
1189
1190void
1191pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1192{
1193	pt_entry_t *pte;
1194	vm_offset_t va;
1195	int lvl;
1196
1197	KASSERT((sva & L3_OFFSET) == 0,
1198	   ("pmap_kremove_device: Invalid virtual address"));
1199	KASSERT((size & PAGE_MASK) == 0,
1200	    ("pmap_kremove_device: Mapping is not page-sized"));
1201
1202	va = sva;
1203	while (size != 0) {
1204		pte = pmap_pte(kernel_pmap, va, &lvl);
1205		KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1206		KASSERT(lvl == 3,
1207		    ("Invalid device pagetable level: %d != 3", lvl));
1208		pmap_load_clear(pte);
1209		PTE_SYNC(pte);
1210
1211		va += PAGE_SIZE;
1212		size -= PAGE_SIZE;
1213	}
1214	pmap_invalidate_range(kernel_pmap, sva, va);
1215}
1216
1217/*
1218 *	Used to map a range of physical addresses into kernel
1219 *	virtual address space.
1220 *
1221 *	The value passed in '*virt' is a suggested virtual address for
1222 *	the mapping. Architectures which can support a direct-mapped
1223 *	physical to virtual region can return the appropriate address
1224 *	within that region, leaving '*virt' unchanged. Other
1225 *	architectures should map the pages starting at '*virt' and
1226 *	update '*virt' with the first usable address after the mapped
1227 *	region.
1228 */
1229vm_offset_t
1230pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1231{
1232	return PHYS_TO_DMAP(start);
1233}
1234
1235
1236/*
1237 * Add a list of wired pages to the kva
1238 * this routine is only used for temporary
1239 * kernel mappings that do not need to have
1240 * page modification or references recorded.
1241 * Note that old mappings are simply written
1242 * over.  The page *must* be wired.
1243 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1244 */
1245void
1246pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1247{
1248	pd_entry_t *pde;
1249	pt_entry_t *pte, pa;
1250	vm_offset_t va;
1251	vm_page_t m;
1252	int i, lvl;
1253
1254	va = sva;
1255	for (i = 0; i < count; i++) {
1256		pde = pmap_pde(kernel_pmap, va, &lvl);
1257		KASSERT(pde != NULL,
1258		    ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1259		KASSERT(lvl == 2,
1260		    ("pmap_qenter: Invalid level %d", lvl));
1261
1262		m = ma[i];
1263		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_AP(ATTR_AP_RW) |
1264		    ATTR_IDX(m->md.pv_memattr) | L3_PAGE;
1265		if (m->md.pv_memattr == DEVICE_MEMORY)
1266			pa |= ATTR_XN;
1267		pte = pmap_l2_to_l3(pde, va);
1268		pmap_load_store(pte, pa);
1269		PTE_SYNC(pte);
1270
1271		va += L3_SIZE;
1272	}
1273	pmap_invalidate_range(kernel_pmap, sva, va);
1274}
1275
1276/*
1277 * This routine tears out page mappings from the
1278 * kernel -- it is meant only for temporary mappings.
1279 */
1280void
1281pmap_qremove(vm_offset_t sva, int count)
1282{
1283	pt_entry_t *pte;
1284	vm_offset_t va;
1285	int lvl;
1286
1287	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1288
1289	va = sva;
1290	while (count-- > 0) {
1291		pte = pmap_pte(kernel_pmap, va, &lvl);
1292		KASSERT(lvl == 3,
1293		    ("Invalid device pagetable level: %d != 3", lvl));
1294		if (pte != NULL) {
1295			if (pmap_l3_valid_cacheable(pmap_load(pte)))
1296				cpu_dcache_wb_range(va, L3_SIZE);
1297			pmap_load_clear(pte);
1298			PTE_SYNC(pte);
1299		}
1300
1301		va += PAGE_SIZE;
1302	}
1303	pmap_invalidate_range(kernel_pmap, sva, va);
1304}
1305
1306/***************************************************
1307 * Page table page management routines.....
1308 ***************************************************/
1309static __inline void
1310pmap_free_zero_pages(struct spglist *free)
1311{
1312	vm_page_t m;
1313
1314	while ((m = SLIST_FIRST(free)) != NULL) {
1315		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1316		/* Preserve the page's PG_ZERO setting. */
1317		vm_page_free_toq(m);
1318	}
1319}
1320
1321/*
1322 * Schedule the specified unused page table page to be freed.  Specifically,
1323 * add the page to the specified list of pages that will be released to the
1324 * physical memory manager after the TLB has been updated.
1325 */
1326static __inline void
1327pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1328    boolean_t set_PG_ZERO)
1329{
1330
1331	if (set_PG_ZERO)
1332		m->flags |= PG_ZERO;
1333	else
1334		m->flags &= ~PG_ZERO;
1335	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1336}
1337
1338/*
1339 * Decrements a page table page's wire count, which is used to record the
1340 * number of valid page table entries within the page.  If the wire count
1341 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1342 * page table page was unmapped and FALSE otherwise.
1343 */
1344static inline boolean_t
1345pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1346{
1347
1348	--m->wire_count;
1349	if (m->wire_count == 0) {
1350		_pmap_unwire_l3(pmap, va, m, free);
1351		return (TRUE);
1352	} else
1353		return (FALSE);
1354}
1355
1356static void
1357_pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1358{
1359
1360	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1361	/*
1362	 * unmap the page table page
1363	 */
1364	if (m->pindex >= (NUL2E + NUL1E)) {
1365		/* l1 page */
1366		pd_entry_t *l0;
1367
1368		l0 = pmap_l0(pmap, va);
1369		pmap_load_clear(l0);
1370		PTE_SYNC(l0);
1371	} else if (m->pindex >= NUL2E) {
1372		/* l2 page */
1373		pd_entry_t *l1;
1374
1375		l1 = pmap_l1(pmap, va);
1376		pmap_load_clear(l1);
1377		PTE_SYNC(l1);
1378	} else {
1379		/* l3 page */
1380		pd_entry_t *l2;
1381
1382		l2 = pmap_l2(pmap, va);
1383		pmap_load_clear(l2);
1384		PTE_SYNC(l2);
1385	}
1386	pmap_resident_count_dec(pmap, 1);
1387	if (m->pindex < NUL2E) {
1388		/* We just released an l3, unhold the matching l2 */
1389		pd_entry_t *l1, tl1;
1390		vm_page_t l2pg;
1391
1392		l1 = pmap_l1(pmap, va);
1393		tl1 = pmap_load(l1);
1394		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1395		pmap_unwire_l3(pmap, va, l2pg, free);
1396	} else if (m->pindex < (NUL2E + NUL1E)) {
1397		/* We just released an l2, unhold the matching l1 */
1398		pd_entry_t *l0, tl0;
1399		vm_page_t l1pg;
1400
1401		l0 = pmap_l0(pmap, va);
1402		tl0 = pmap_load(l0);
1403		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1404		pmap_unwire_l3(pmap, va, l1pg, free);
1405	}
1406	pmap_invalidate_page(pmap, va);
1407
1408	/*
1409	 * This is a release store so that the ordinary store unmapping
1410	 * the page table page is globally performed before TLB shoot-
1411	 * down is begun.
1412	 */
1413	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
1414
1415	/*
1416	 * Put page on a list so that it is released after
1417	 * *ALL* TLB shootdown is done
1418	 */
1419	pmap_add_delayed_free_list(m, free, TRUE);
1420}
1421
1422/*
1423 * After removing an l3 entry, this routine is used to
1424 * conditionally free the page, and manage the hold/wire counts.
1425 */
1426static int
1427pmap_unuse_l3(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1428    struct spglist *free)
1429{
1430	vm_page_t mpte;
1431
1432	if (va >= VM_MAXUSER_ADDRESS)
1433		return (0);
1434	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1435	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1436	return (pmap_unwire_l3(pmap, va, mpte, free));
1437}
1438
1439void
1440pmap_pinit0(pmap_t pmap)
1441{
1442
1443	PMAP_LOCK_INIT(pmap);
1444	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1445	pmap->pm_l0 = kernel_pmap->pm_l0;
1446	pmap->pm_root.rt_root = 0;
1447}
1448
1449int
1450pmap_pinit(pmap_t pmap)
1451{
1452	vm_paddr_t l0phys;
1453	vm_page_t l0pt;
1454
1455	/*
1456	 * allocate the l0 page
1457	 */
1458	while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1459	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1460		VM_WAIT;
1461
1462	l0phys = VM_PAGE_TO_PHYS(l0pt);
1463	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(l0phys);
1464
1465	if ((l0pt->flags & PG_ZERO) == 0)
1466		pagezero(pmap->pm_l0);
1467
1468	pmap->pm_root.rt_root = 0;
1469	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1470
1471	return (1);
1472}
1473
1474/*
1475 * This routine is called if the desired page table page does not exist.
1476 *
1477 * If page table page allocation fails, this routine may sleep before
1478 * returning NULL.  It sleeps only if a lock pointer was given.
1479 *
1480 * Note: If a page allocation fails at page table level two or three,
1481 * one or two pages may be held during the wait, only to be released
1482 * afterwards.  This conservative approach is easily argued to avoid
1483 * race conditions.
1484 */
1485static vm_page_t
1486_pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1487{
1488	vm_page_t m, l1pg, l2pg;
1489
1490	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1491
1492	/*
1493	 * Allocate a page table page.
1494	 */
1495	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1496	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1497		if (lockp != NULL) {
1498			RELEASE_PV_LIST_LOCK(lockp);
1499			PMAP_UNLOCK(pmap);
1500			VM_WAIT;
1501			PMAP_LOCK(pmap);
1502		}
1503
1504		/*
1505		 * Indicate the need to retry.  While waiting, the page table
1506		 * page may have been allocated.
1507		 */
1508		return (NULL);
1509	}
1510	if ((m->flags & PG_ZERO) == 0)
1511		pmap_zero_page(m);
1512
1513	/*
1514	 * Map the pagetable page into the process address space, if
1515	 * it isn't already there.
1516	 */
1517
1518	if (ptepindex >= (NUL2E + NUL1E)) {
1519		pd_entry_t *l0;
1520		vm_pindex_t l0index;
1521
1522		l0index = ptepindex - (NUL2E + NUL1E);
1523		l0 = &pmap->pm_l0[l0index];
1524		pmap_load_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1525		PTE_SYNC(l0);
1526	} else if (ptepindex >= NUL2E) {
1527		vm_pindex_t l0index, l1index;
1528		pd_entry_t *l0, *l1;
1529		pd_entry_t tl0;
1530
1531		l1index = ptepindex - NUL2E;
1532		l0index = l1index >> L0_ENTRIES_SHIFT;
1533
1534		l0 = &pmap->pm_l0[l0index];
1535		tl0 = pmap_load(l0);
1536		if (tl0 == 0) {
1537			/* recurse for allocating page dir */
1538			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1539			    lockp) == NULL) {
1540				--m->wire_count;
1541				/* XXX: release mem barrier? */
1542				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1543				vm_page_free_zero(m);
1544				return (NULL);
1545			}
1546		} else {
1547			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1548			l1pg->wire_count++;
1549		}
1550
1551		l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1552		l1 = &l1[ptepindex & Ln_ADDR_MASK];
1553		pmap_load_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1554		PTE_SYNC(l1);
1555	} else {
1556		vm_pindex_t l0index, l1index;
1557		pd_entry_t *l0, *l1, *l2;
1558		pd_entry_t tl0, tl1;
1559
1560		l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1561		l0index = l1index >> L0_ENTRIES_SHIFT;
1562
1563		l0 = &pmap->pm_l0[l0index];
1564		tl0 = pmap_load(l0);
1565		if (tl0 == 0) {
1566			/* recurse for allocating page dir */
1567			if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1568			    lockp) == NULL) {
1569				--m->wire_count;
1570				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1571				vm_page_free_zero(m);
1572				return (NULL);
1573			}
1574			tl0 = pmap_load(l0);
1575			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1576			l1 = &l1[l1index & Ln_ADDR_MASK];
1577		} else {
1578			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1579			l1 = &l1[l1index & Ln_ADDR_MASK];
1580			tl1 = pmap_load(l1);
1581			if (tl1 == 0) {
1582				/* recurse for allocating page dir */
1583				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1584				    lockp) == NULL) {
1585					--m->wire_count;
1586					/* XXX: release mem barrier? */
1587					atomic_subtract_int(
1588					    &vm_cnt.v_wire_count, 1);
1589					vm_page_free_zero(m);
1590					return (NULL);
1591				}
1592			} else {
1593				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1594				l2pg->wire_count++;
1595			}
1596		}
1597
1598		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1599		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1600		pmap_load_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1601		PTE_SYNC(l2);
1602	}
1603
1604	pmap_resident_count_inc(pmap, 1);
1605
1606	return (m);
1607}
1608
1609static vm_page_t
1610pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1611{
1612	vm_pindex_t ptepindex;
1613	pd_entry_t *pde, tpde;
1614#ifdef INVARIANTS
1615	pt_entry_t *pte;
1616#endif
1617	vm_page_t m;
1618	int lvl;
1619
1620	/*
1621	 * Calculate pagetable page index
1622	 */
1623	ptepindex = pmap_l2_pindex(va);
1624retry:
1625	/*
1626	 * Get the page directory entry
1627	 */
1628	pde = pmap_pde(pmap, va, &lvl);
1629
1630	/*
1631	 * If the page table page is mapped, we just increment the hold count,
1632	 * and activate it. If we get a level 2 pde it will point to a level 3
1633	 * table.
1634	 */
1635	switch (lvl) {
1636	case -1:
1637		break;
1638	case 0:
1639#ifdef INVARIANTS
1640		pte = pmap_l0_to_l1(pde, va);
1641		KASSERT(pmap_load(pte) == 0,
1642		    ("pmap_alloc_l3: TODO: l0 superpages"));
1643#endif
1644		break;
1645	case 1:
1646#ifdef INVARIANTS
1647		pte = pmap_l1_to_l2(pde, va);
1648		KASSERT(pmap_load(pte) == 0,
1649		    ("pmap_alloc_l3: TODO: l1 superpages"));
1650#endif
1651		break;
1652	case 2:
1653		tpde = pmap_load(pde);
1654		if (tpde != 0) {
1655			m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
1656			m->wire_count++;
1657			return (m);
1658		}
1659		break;
1660	default:
1661		panic("pmap_alloc_l3: Invalid level %d", lvl);
1662	}
1663
1664	/*
1665	 * Here if the pte page isn't mapped, or if it has been deallocated.
1666	 */
1667	m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1668	if (m == NULL && lockp != NULL)
1669		goto retry;
1670
1671	return (m);
1672}
1673
1674
1675/***************************************************
1676 * Pmap allocation/deallocation routines.
1677 ***************************************************/
1678
1679/*
1680 * Release any resources held by the given physical map.
1681 * Called when a pmap initialized by pmap_pinit is being released.
1682 * Should only be called if the map contains no valid mappings.
1683 */
1684void
1685pmap_release(pmap_t pmap)
1686{
1687	vm_page_t m;
1688
1689	KASSERT(pmap->pm_stats.resident_count == 0,
1690	    ("pmap_release: pmap resident count %ld != 0",
1691	    pmap->pm_stats.resident_count));
1692	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1693	    ("pmap_release: pmap has reserved page table page(s)"));
1694
1695	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l0));
1696
1697	m->wire_count--;
1698	atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1699	vm_page_free_zero(m);
1700}
1701
1702static int
1703kvm_size(SYSCTL_HANDLER_ARGS)
1704{
1705	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1706
1707	return sysctl_handle_long(oidp, &ksize, 0, req);
1708}
1709SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1710    0, 0, kvm_size, "LU", "Size of KVM");
1711
1712static int
1713kvm_free(SYSCTL_HANDLER_ARGS)
1714{
1715	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1716
1717	return sysctl_handle_long(oidp, &kfree, 0, req);
1718}
1719SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1720    0, 0, kvm_free, "LU", "Amount of KVM free");
1721
1722/*
1723 * grow the number of kernel page table entries, if needed
1724 */
1725void
1726pmap_growkernel(vm_offset_t addr)
1727{
1728	vm_paddr_t paddr;
1729	vm_page_t nkpg;
1730	pd_entry_t *l0, *l1, *l2;
1731
1732	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1733
1734	addr = roundup2(addr, L2_SIZE);
1735	if (addr - 1 >= kernel_map->max_offset)
1736		addr = kernel_map->max_offset;
1737	while (kernel_vm_end < addr) {
1738		l0 = pmap_l0(kernel_pmap, kernel_vm_end);
1739		KASSERT(pmap_load(l0) != 0,
1740		    ("pmap_growkernel: No level 0 kernel entry"));
1741
1742		l1 = pmap_l0_to_l1(l0, kernel_vm_end);
1743		if (pmap_load(l1) == 0) {
1744			/* We need a new PDP entry */
1745			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
1746			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1747			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1748			if (nkpg == NULL)
1749				panic("pmap_growkernel: no memory to grow kernel");
1750			if ((nkpg->flags & PG_ZERO) == 0)
1751				pmap_zero_page(nkpg);
1752			paddr = VM_PAGE_TO_PHYS(nkpg);
1753			pmap_load_store(l1, paddr | L1_TABLE);
1754			PTE_SYNC(l1);
1755			continue; /* try again */
1756		}
1757		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1758		if ((pmap_load(l2) & ATTR_AF) != 0) {
1759			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1760			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1761				kernel_vm_end = kernel_map->max_offset;
1762				break;
1763			}
1764			continue;
1765		}
1766
1767		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
1768		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1769		    VM_ALLOC_ZERO);
1770		if (nkpg == NULL)
1771			panic("pmap_growkernel: no memory to grow kernel");
1772		if ((nkpg->flags & PG_ZERO) == 0)
1773			pmap_zero_page(nkpg);
1774		paddr = VM_PAGE_TO_PHYS(nkpg);
1775		pmap_load_store(l2, paddr | L2_TABLE);
1776		PTE_SYNC(l2);
1777		pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1778
1779		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1780		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1781			kernel_vm_end = kernel_map->max_offset;
1782			break;
1783		}
1784	}
1785}
1786
1787
1788/***************************************************
1789 * page management routines.
1790 ***************************************************/
1791
1792CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1793CTASSERT(_NPCM == 3);
1794CTASSERT(_NPCPV == 168);
1795
1796static __inline struct pv_chunk *
1797pv_to_chunk(pv_entry_t pv)
1798{
1799
1800	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1801}
1802
1803#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1804
1805#define	PC_FREE0	0xfffffffffffffffful
1806#define	PC_FREE1	0xfffffffffffffffful
1807#define	PC_FREE2	0x000000fffffffffful
1808
1809static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1810
1811#if 0
1812#ifdef PV_STATS
1813static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1814
1815SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1816	"Current number of pv entry chunks");
1817SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1818	"Current number of pv entry chunks allocated");
1819SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1820	"Current number of pv entry chunks frees");
1821SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1822	"Number of times tried to get a chunk page but failed.");
1823
1824static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1825static int pv_entry_spare;
1826
1827SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1828	"Current number of pv entry frees");
1829SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1830	"Current number of pv entry allocs");
1831SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1832	"Current number of pv entries");
1833SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1834	"Current number of spare pv entries");
1835#endif
1836#endif /* 0 */
1837
1838/*
1839 * We are in a serious low memory condition.  Resort to
1840 * drastic measures to free some pages so we can allocate
1841 * another pv entry chunk.
1842 *
1843 * Returns NULL if PV entries were reclaimed from the specified pmap.
1844 *
1845 * We do not, however, unmap 2mpages because subsequent accesses will
1846 * allocate per-page pv entries until repromotion occurs, thereby
1847 * exacerbating the shortage of free pv entries.
1848 */
1849static vm_page_t
1850reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1851{
1852	struct pch new_tail;
1853	struct pv_chunk *pc;
1854	struct md_page *pvh;
1855	pd_entry_t *pde;
1856	pmap_t pmap;
1857	pt_entry_t *pte, tpte;
1858	pv_entry_t pv;
1859	vm_offset_t va;
1860	vm_page_t m, m_pc;
1861	struct spglist free;
1862	uint64_t inuse;
1863	int bit, field, freed, lvl;
1864
1865	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1866	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1867	pmap = NULL;
1868	m_pc = NULL;
1869	SLIST_INIT(&free);
1870	TAILQ_INIT(&new_tail);
1871	mtx_lock(&pv_chunks_mutex);
1872	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) {
1873		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1874		mtx_unlock(&pv_chunks_mutex);
1875		if (pmap != pc->pc_pmap) {
1876			if (pmap != NULL && pmap != locked_pmap)
1877				PMAP_UNLOCK(pmap);
1878			pmap = pc->pc_pmap;
1879			/* Avoid deadlock and lock recursion. */
1880			if (pmap > locked_pmap) {
1881				RELEASE_PV_LIST_LOCK(lockp);
1882				PMAP_LOCK(pmap);
1883			} else if (pmap != locked_pmap &&
1884			    !PMAP_TRYLOCK(pmap)) {
1885				pmap = NULL;
1886				TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1887				mtx_lock(&pv_chunks_mutex);
1888				continue;
1889			}
1890		}
1891
1892		/*
1893		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1894		 */
1895		freed = 0;
1896		for (field = 0; field < _NPCM; field++) {
1897			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1898			    inuse != 0; inuse &= ~(1UL << bit)) {
1899				bit = ffsl(inuse) - 1;
1900				pv = &pc->pc_pventry[field * 64 + bit];
1901				va = pv->pv_va;
1902				pde = pmap_pde(pmap, va, &lvl);
1903				if (lvl != 2)
1904					continue;
1905				pte = pmap_l2_to_l3(pde, va);
1906				tpte = pmap_load(pte);
1907				if ((tpte & ATTR_SW_WIRED) != 0)
1908					continue;
1909				tpte = pmap_load_clear(pte);
1910				PTE_SYNC(pte);
1911				pmap_invalidate_page(pmap, va);
1912				m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK);
1913				if (pmap_page_dirty(tpte))
1914					vm_page_dirty(m);
1915				if ((tpte & ATTR_AF) != 0)
1916					vm_page_aflag_set(m, PGA_REFERENCED);
1917				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1918				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
1919				m->md.pv_gen++;
1920				if (TAILQ_EMPTY(&m->md.pv_list) &&
1921				    (m->flags & PG_FICTITIOUS) == 0) {
1922					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1923					if (TAILQ_EMPTY(&pvh->pv_list)) {
1924						vm_page_aflag_clear(m,
1925						    PGA_WRITEABLE);
1926					}
1927				}
1928				pc->pc_map[field] |= 1UL << bit;
1929				pmap_unuse_l3(pmap, va, pmap_load(pde), &free);
1930				freed++;
1931			}
1932		}
1933		if (freed == 0) {
1934			TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1935			mtx_lock(&pv_chunks_mutex);
1936			continue;
1937		}
1938		/* Every freed mapping is for a 4 KB page. */
1939		pmap_resident_count_dec(pmap, freed);
1940		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1941		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1942		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1943		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1944		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
1945		    pc->pc_map[2] == PC_FREE2) {
1946			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1947			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1948			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1949			/* Entire chunk is free; return it. */
1950			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1951			dump_drop_page(m_pc->phys_addr);
1952			mtx_lock(&pv_chunks_mutex);
1953			break;
1954		}
1955		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1956		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1957		mtx_lock(&pv_chunks_mutex);
1958		/* One freed pv entry in locked_pmap is sufficient. */
1959		if (pmap == locked_pmap)
1960			break;
1961	}
1962	TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1963	mtx_unlock(&pv_chunks_mutex);
1964	if (pmap != NULL && pmap != locked_pmap)
1965		PMAP_UNLOCK(pmap);
1966	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1967		m_pc = SLIST_FIRST(&free);
1968		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1969		/* Recycle a freed page table page. */
1970		m_pc->wire_count = 1;
1971		atomic_add_int(&vm_cnt.v_wire_count, 1);
1972	}
1973	pmap_free_zero_pages(&free);
1974	return (m_pc);
1975}
1976
1977/*
1978 * free the pv_entry back to the free list
1979 */
1980static void
1981free_pv_entry(pmap_t pmap, pv_entry_t pv)
1982{
1983	struct pv_chunk *pc;
1984	int idx, field, bit;
1985
1986	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1987	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1988	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1989	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1990	pc = pv_to_chunk(pv);
1991	idx = pv - &pc->pc_pventry[0];
1992	field = idx / 64;
1993	bit = idx % 64;
1994	pc->pc_map[field] |= 1ul << bit;
1995	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
1996	    pc->pc_map[2] != PC_FREE2) {
1997		/* 98% of the time, pc is already at the head of the list. */
1998		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1999			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2000			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2001		}
2002		return;
2003	}
2004	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2005	free_pv_chunk(pc);
2006}
2007
2008static void
2009free_pv_chunk(struct pv_chunk *pc)
2010{
2011	vm_page_t m;
2012
2013	mtx_lock(&pv_chunks_mutex);
2014 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2015	mtx_unlock(&pv_chunks_mutex);
2016	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2017	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2018	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2019	/* entire chunk is free, return it */
2020	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2021	dump_drop_page(m->phys_addr);
2022	vm_page_unwire(m, PQ_NONE);
2023	vm_page_free(m);
2024}
2025
2026/*
2027 * Returns a new PV entry, allocating a new PV chunk from the system when
2028 * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2029 * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2030 * returned.
2031 *
2032 * The given PV list lock may be released.
2033 */
2034static pv_entry_t
2035get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2036{
2037	int bit, field;
2038	pv_entry_t pv;
2039	struct pv_chunk *pc;
2040	vm_page_t m;
2041
2042	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2043	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2044retry:
2045	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2046	if (pc != NULL) {
2047		for (field = 0; field < _NPCM; field++) {
2048			if (pc->pc_map[field]) {
2049				bit = ffsl(pc->pc_map[field]) - 1;
2050				break;
2051			}
2052		}
2053		if (field < _NPCM) {
2054			pv = &pc->pc_pventry[field * 64 + bit];
2055			pc->pc_map[field] &= ~(1ul << bit);
2056			/* If this was the last item, move it to tail */
2057			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2058			    pc->pc_map[2] == 0) {
2059				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2060				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2061				    pc_list);
2062			}
2063			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2064			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2065			return (pv);
2066		}
2067	}
2068	/* No free items, allocate another chunk */
2069	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2070	    VM_ALLOC_WIRED);
2071	if (m == NULL) {
2072		if (lockp == NULL) {
2073			PV_STAT(pc_chunk_tryfail++);
2074			return (NULL);
2075		}
2076		m = reclaim_pv_chunk(pmap, lockp);
2077		if (m == NULL)
2078			goto retry;
2079	}
2080	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2081	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2082	dump_add_page(m->phys_addr);
2083	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2084	pc->pc_pmap = pmap;
2085	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
2086	pc->pc_map[1] = PC_FREE1;
2087	pc->pc_map[2] = PC_FREE2;
2088	mtx_lock(&pv_chunks_mutex);
2089	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2090	mtx_unlock(&pv_chunks_mutex);
2091	pv = &pc->pc_pventry[0];
2092	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2093	PV_STAT(atomic_add_long(&pv_entry_count, 1));
2094	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2095	return (pv);
2096}
2097
2098/*
2099 * Ensure that the number of spare PV entries in the specified pmap meets or
2100 * exceeds the given count, "needed".
2101 *
2102 * The given PV list lock may be released.
2103 */
2104static void
2105reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2106{
2107	struct pch new_tail;
2108	struct pv_chunk *pc;
2109	int avail, free;
2110	vm_page_t m;
2111
2112	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2113	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2114
2115	/*
2116	 * Newly allocated PV chunks must be stored in a private list until
2117	 * the required number of PV chunks have been allocated.  Otherwise,
2118	 * reclaim_pv_chunk() could recycle one of these chunks.  In
2119	 * contrast, these chunks must be added to the pmap upon allocation.
2120	 */
2121	TAILQ_INIT(&new_tail);
2122retry:
2123	avail = 0;
2124	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2125		bit_count((bitstr_t *)pc->pc_map, 0,
2126		    sizeof(pc->pc_map) * NBBY, &free);
2127		if (free == 0)
2128			break;
2129		avail += free;
2130		if (avail >= needed)
2131			break;
2132	}
2133	for (; avail < needed; avail += _NPCPV) {
2134		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2135		    VM_ALLOC_WIRED);
2136		if (m == NULL) {
2137			m = reclaim_pv_chunk(pmap, lockp);
2138			if (m == NULL)
2139				goto retry;
2140		}
2141		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2142		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2143		dump_add_page(m->phys_addr);
2144		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2145		pc->pc_pmap = pmap;
2146		pc->pc_map[0] = PC_FREE0;
2147		pc->pc_map[1] = PC_FREE1;
2148		pc->pc_map[2] = PC_FREE2;
2149		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2150		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2151		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2152	}
2153	if (!TAILQ_EMPTY(&new_tail)) {
2154		mtx_lock(&pv_chunks_mutex);
2155		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2156		mtx_unlock(&pv_chunks_mutex);
2157	}
2158}
2159
2160/*
2161 * First find and then remove the pv entry for the specified pmap and virtual
2162 * address from the specified pv list.  Returns the pv entry if found and NULL
2163 * otherwise.  This operation can be performed on pv lists for either 4KB or
2164 * 2MB page mappings.
2165 */
2166static __inline pv_entry_t
2167pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2168{
2169	pv_entry_t pv;
2170
2171	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2172		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2173			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2174			pvh->pv_gen++;
2175			break;
2176		}
2177	}
2178	return (pv);
2179}
2180
2181/*
2182 * After demotion from a 2MB page mapping to 512 4KB page mappings,
2183 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2184 * entries for each of the 4KB page mappings.
2185 */
2186static void
2187pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2188    struct rwlock **lockp)
2189{
2190	struct md_page *pvh;
2191	struct pv_chunk *pc;
2192	pv_entry_t pv;
2193	vm_offset_t va_last;
2194	vm_page_t m;
2195	int bit, field;
2196
2197	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2198	KASSERT((pa & L2_OFFSET) == 0,
2199	    ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2200	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2201
2202	/*
2203	 * Transfer the 2mpage's pv entry for this mapping to the first
2204	 * page's pv list.  Once this transfer begins, the pv list lock
2205	 * must not be released until the last pv entry is reinstantiated.
2206	 */
2207	pvh = pa_to_pvh(pa);
2208	va = va & ~L2_OFFSET;
2209	pv = pmap_pvh_remove(pvh, pmap, va);
2210	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2211	m = PHYS_TO_VM_PAGE(pa);
2212	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2213	m->md.pv_gen++;
2214	/* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2215	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2216	va_last = va + L2_SIZE - PAGE_SIZE;
2217	for (;;) {
2218		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2219		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2220		    pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2221		for (field = 0; field < _NPCM; field++) {
2222			while (pc->pc_map[field]) {
2223				bit = ffsl(pc->pc_map[field]) - 1;
2224				pc->pc_map[field] &= ~(1ul << bit);
2225				pv = &pc->pc_pventry[field * 64 + bit];
2226				va += PAGE_SIZE;
2227				pv->pv_va = va;
2228				m++;
2229				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2230			    ("pmap_pv_demote_l2: page %p is not managed", m));
2231				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2232				m->md.pv_gen++;
2233				if (va == va_last)
2234					goto out;
2235			}
2236		}
2237		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2238		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2239	}
2240out:
2241	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2242		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2243		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2244	}
2245	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2246	PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2247}
2248
2249/*
2250 * First find and then destroy the pv entry for the specified pmap and virtual
2251 * address.  This operation can be performed on pv lists for either 4KB or 2MB
2252 * page mappings.
2253 */
2254static void
2255pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2256{
2257	pv_entry_t pv;
2258
2259	pv = pmap_pvh_remove(pvh, pmap, va);
2260	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2261	free_pv_entry(pmap, pv);
2262}
2263
2264/*
2265 * Conditionally create the PV entry for a 4KB page mapping if the required
2266 * memory can be allocated without resorting to reclamation.
2267 */
2268static boolean_t
2269pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2270    struct rwlock **lockp)
2271{
2272	pv_entry_t pv;
2273
2274	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2275	/* Pass NULL instead of the lock pointer to disable reclamation. */
2276	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2277		pv->pv_va = va;
2278		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2279		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2280		m->md.pv_gen++;
2281		return (TRUE);
2282	} else
2283		return (FALSE);
2284}
2285
2286/*
2287 * pmap_remove_l3: do the things to unmap a page in a process
2288 */
2289static int
2290pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2291    pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2292{
2293	struct md_page *pvh;
2294	pt_entry_t old_l3;
2295	vm_page_t m;
2296
2297	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2298	if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(pmap_load(l3)))
2299		cpu_dcache_wb_range(va, L3_SIZE);
2300	old_l3 = pmap_load_clear(l3);
2301	PTE_SYNC(l3);
2302	pmap_invalidate_page(pmap, va);
2303	if (old_l3 & ATTR_SW_WIRED)
2304		pmap->pm_stats.wired_count -= 1;
2305	pmap_resident_count_dec(pmap, 1);
2306	if (old_l3 & ATTR_SW_MANAGED) {
2307		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2308		if (pmap_page_dirty(old_l3))
2309			vm_page_dirty(m);
2310		if (old_l3 & ATTR_AF)
2311			vm_page_aflag_set(m, PGA_REFERENCED);
2312		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2313		pmap_pvh_free(&m->md, pmap, va);
2314		if (TAILQ_EMPTY(&m->md.pv_list) &&
2315		    (m->flags & PG_FICTITIOUS) == 0) {
2316			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2317			if (TAILQ_EMPTY(&pvh->pv_list))
2318				vm_page_aflag_clear(m, PGA_WRITEABLE);
2319		}
2320	}
2321	return (pmap_unuse_l3(pmap, va, l2e, free));
2322}
2323
2324/*
2325 *	Remove the given range of addresses from the specified map.
2326 *
2327 *	It is assumed that the start and end are properly
2328 *	rounded to the page size.
2329 */
2330void
2331pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2332{
2333	struct rwlock *lock;
2334	vm_offset_t va, va_next;
2335	pd_entry_t *l0, *l1, *l2;
2336	pt_entry_t l3_paddr, *l3;
2337	struct spglist free;
2338
2339	/*
2340	 * Perform an unsynchronized read.  This is, however, safe.
2341	 */
2342	if (pmap->pm_stats.resident_count == 0)
2343		return;
2344
2345	SLIST_INIT(&free);
2346
2347	PMAP_LOCK(pmap);
2348
2349	lock = NULL;
2350	for (; sva < eva; sva = va_next) {
2351
2352		if (pmap->pm_stats.resident_count == 0)
2353			break;
2354
2355		l0 = pmap_l0(pmap, sva);
2356		if (pmap_load(l0) == 0) {
2357			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2358			if (va_next < sva)
2359				va_next = eva;
2360			continue;
2361		}
2362
2363		l1 = pmap_l0_to_l1(l0, sva);
2364		if (pmap_load(l1) == 0) {
2365			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2366			if (va_next < sva)
2367				va_next = eva;
2368			continue;
2369		}
2370
2371		/*
2372		 * Calculate index for next page table.
2373		 */
2374		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2375		if (va_next < sva)
2376			va_next = eva;
2377
2378		l2 = pmap_l1_to_l2(l1, sva);
2379		if (l2 == NULL)
2380			continue;
2381
2382		l3_paddr = pmap_load(l2);
2383
2384		if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
2385			/* TODO: Add pmap_remove_l2 */
2386			if (pmap_demote_l2_locked(pmap, l2, sva & ~L2_OFFSET,
2387			    &lock) == NULL)
2388				continue;
2389			l3_paddr = pmap_load(l2);
2390		}
2391
2392		/*
2393		 * Weed out invalid mappings.
2394		 */
2395		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
2396			continue;
2397
2398		/*
2399		 * Limit our scan to either the end of the va represented
2400		 * by the current page table page, or to the end of the
2401		 * range being removed.
2402		 */
2403		if (va_next > eva)
2404			va_next = eva;
2405
2406		va = va_next;
2407		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2408		    sva += L3_SIZE) {
2409			if (l3 == NULL)
2410				panic("l3 == NULL");
2411			if (pmap_load(l3) == 0) {
2412				if (va != va_next) {
2413					pmap_invalidate_range(pmap, va, sva);
2414					va = va_next;
2415				}
2416				continue;
2417			}
2418			if (va == va_next)
2419				va = sva;
2420			if (pmap_remove_l3(pmap, l3, sva, l3_paddr, &free,
2421			    &lock)) {
2422				sva += L3_SIZE;
2423				break;
2424			}
2425		}
2426		if (va != va_next)
2427			pmap_invalidate_range(pmap, va, sva);
2428	}
2429	if (lock != NULL)
2430		rw_wunlock(lock);
2431	PMAP_UNLOCK(pmap);
2432	pmap_free_zero_pages(&free);
2433}
2434
2435/*
2436 *	Routine:	pmap_remove_all
2437 *	Function:
2438 *		Removes this physical page from
2439 *		all physical maps in which it resides.
2440 *		Reflects back modify bits to the pager.
2441 *
2442 *	Notes:
2443 *		Original versions of this routine were very
2444 *		inefficient because they iteratively called
2445 *		pmap_remove (slow...)
2446 */
2447
2448void
2449pmap_remove_all(vm_page_t m)
2450{
2451	struct md_page *pvh;
2452	pv_entry_t pv;
2453	pmap_t pmap;
2454	struct rwlock *lock;
2455	pd_entry_t *pde, tpde;
2456	pt_entry_t *pte, tpte;
2457	vm_offset_t va;
2458	struct spglist free;
2459	int lvl, pvh_gen, md_gen;
2460
2461	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2462	    ("pmap_remove_all: page %p is not managed", m));
2463	SLIST_INIT(&free);
2464	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2465	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2466	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2467retry:
2468	rw_wlock(lock);
2469	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2470		pmap = PV_PMAP(pv);
2471		if (!PMAP_TRYLOCK(pmap)) {
2472			pvh_gen = pvh->pv_gen;
2473			rw_wunlock(lock);
2474			PMAP_LOCK(pmap);
2475			rw_wlock(lock);
2476			if (pvh_gen != pvh->pv_gen) {
2477				rw_wunlock(lock);
2478				PMAP_UNLOCK(pmap);
2479				goto retry;
2480			}
2481		}
2482		va = pv->pv_va;
2483		pte = pmap_pte(pmap, va, &lvl);
2484		KASSERT(pte != NULL,
2485		    ("pmap_remove_all: no page table entry found"));
2486		KASSERT(lvl == 2,
2487		    ("pmap_remove_all: invalid pte level %d", lvl));
2488
2489		pmap_demote_l2_locked(pmap, pte, va, &lock);
2490		PMAP_UNLOCK(pmap);
2491	}
2492	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2493		pmap = PV_PMAP(pv);
2494		if (!PMAP_TRYLOCK(pmap)) {
2495			pvh_gen = pvh->pv_gen;
2496			md_gen = m->md.pv_gen;
2497			rw_wunlock(lock);
2498			PMAP_LOCK(pmap);
2499			rw_wlock(lock);
2500			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2501				rw_wunlock(lock);
2502				PMAP_UNLOCK(pmap);
2503				goto retry;
2504			}
2505		}
2506		pmap_resident_count_dec(pmap, 1);
2507
2508		pde = pmap_pde(pmap, pv->pv_va, &lvl);
2509		KASSERT(pde != NULL,
2510		    ("pmap_remove_all: no page directory entry found"));
2511		KASSERT(lvl == 2,
2512		    ("pmap_remove_all: invalid pde level %d", lvl));
2513		tpde = pmap_load(pde);
2514
2515		pte = pmap_l2_to_l3(pde, pv->pv_va);
2516		tpte = pmap_load(pte);
2517		if (pmap_is_current(pmap) &&
2518		    pmap_l3_valid_cacheable(tpte))
2519			cpu_dcache_wb_range(pv->pv_va, L3_SIZE);
2520		pmap_load_clear(pte);
2521		PTE_SYNC(pte);
2522		pmap_invalidate_page(pmap, pv->pv_va);
2523		if (tpte & ATTR_SW_WIRED)
2524			pmap->pm_stats.wired_count--;
2525		if ((tpte & ATTR_AF) != 0)
2526			vm_page_aflag_set(m, PGA_REFERENCED);
2527
2528		/*
2529		 * Update the vm_page_t clean and reference bits.
2530		 */
2531		if (pmap_page_dirty(tpte))
2532			vm_page_dirty(m);
2533		pmap_unuse_l3(pmap, pv->pv_va, tpde, &free);
2534		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2535		m->md.pv_gen++;
2536		free_pv_entry(pmap, pv);
2537		PMAP_UNLOCK(pmap);
2538	}
2539	vm_page_aflag_clear(m, PGA_WRITEABLE);
2540	rw_wunlock(lock);
2541	pmap_free_zero_pages(&free);
2542}
2543
2544/*
2545 *	Set the physical protection on the
2546 *	specified range of this map as requested.
2547 */
2548void
2549pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2550{
2551	vm_offset_t va, va_next;
2552	pd_entry_t *l0, *l1, *l2;
2553	pt_entry_t *l3p, l3, nbits;
2554
2555	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
2556	if (prot == VM_PROT_NONE) {
2557		pmap_remove(pmap, sva, eva);
2558		return;
2559	}
2560
2561	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
2562	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
2563		return;
2564
2565	PMAP_LOCK(pmap);
2566	for (; sva < eva; sva = va_next) {
2567
2568		l0 = pmap_l0(pmap, sva);
2569		if (pmap_load(l0) == 0) {
2570			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2571			if (va_next < sva)
2572				va_next = eva;
2573			continue;
2574		}
2575
2576		l1 = pmap_l0_to_l1(l0, sva);
2577		if (pmap_load(l1) == 0) {
2578			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2579			if (va_next < sva)
2580				va_next = eva;
2581			continue;
2582		}
2583
2584		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2585		if (va_next < sva)
2586			va_next = eva;
2587
2588		l2 = pmap_l1_to_l2(l1, sva);
2589		if (pmap_load(l2) == 0)
2590			continue;
2591
2592		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
2593			l3p = pmap_demote_l2(pmap, l2, sva);
2594			if (l3p == NULL)
2595				continue;
2596		}
2597		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
2598		    ("pmap_protect: Invalid L2 entry after demotion"));
2599
2600		if (va_next > eva)
2601			va_next = eva;
2602
2603		va = va_next;
2604		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
2605		    sva += L3_SIZE) {
2606			l3 = pmap_load(l3p);
2607			if (!pmap_l3_valid(l3))
2608				continue;
2609
2610			nbits = 0;
2611			if ((prot & VM_PROT_WRITE) == 0) {
2612				if ((l3 & ATTR_SW_MANAGED) &&
2613				    pmap_page_dirty(l3)) {
2614					vm_page_dirty(PHYS_TO_VM_PAGE(l3 &
2615					    ~ATTR_MASK));
2616				}
2617				nbits |= ATTR_AP(ATTR_AP_RO);
2618			}
2619			if ((prot & VM_PROT_EXECUTE) == 0)
2620				nbits |= ATTR_XN;
2621
2622			pmap_set(l3p, nbits);
2623			PTE_SYNC(l3p);
2624			/* XXX: Use pmap_invalidate_range */
2625			pmap_invalidate_page(pmap, sva);
2626		}
2627	}
2628	PMAP_UNLOCK(pmap);
2629}
2630
2631/*
2632 * Inserts the specified page table page into the specified pmap's collection
2633 * of idle page table pages.  Each of a pmap's page table pages is responsible
2634 * for mapping a distinct range of virtual addresses.  The pmap's collection is
2635 * ordered by this virtual address range.
2636 */
2637static __inline int
2638pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
2639{
2640
2641	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2642	return (vm_radix_insert(&pmap->pm_root, mpte));
2643}
2644
2645/*
2646 * Removes the page table page mapping the specified virtual address from the
2647 * specified pmap's collection of idle page table pages, and returns it.
2648 * Otherwise, returns NULL if there is no page table page corresponding to the
2649 * specified virtual address.
2650 */
2651static __inline vm_page_t
2652pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
2653{
2654
2655	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2656	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
2657}
2658
2659/*
2660 * Performs a break-before-make update of a pmap entry. This is needed when
2661 * either promoting or demoting pages to ensure the TLB doesn't get into an
2662 * inconsistent state.
2663 */
2664static void
2665pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
2666    vm_offset_t va, vm_size_t size)
2667{
2668	register_t intr;
2669
2670	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2671
2672	/*
2673	 * Ensure we don't get switched out with the page table in an
2674	 * inconsistent state. We also need to ensure no interrupts fire
2675	 * as they may make use of an address we are about to invalidate.
2676	 */
2677	intr = intr_disable();
2678	critical_enter();
2679
2680	/* Clear the old mapping */
2681	pmap_load_clear(pte);
2682	PTE_SYNC(pte);
2683	pmap_invalidate_range(pmap, va, va + size);
2684
2685	/* Create the new mapping */
2686	pmap_load_store(pte, newpte);
2687	PTE_SYNC(pte);
2688
2689	critical_exit();
2690	intr_restore(intr);
2691}
2692
2693/*
2694 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
2695 * replace the many pv entries for the 4KB page mappings by a single pv entry
2696 * for the 2MB page mapping.
2697 */
2698static void
2699pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2700    struct rwlock **lockp)
2701{
2702	struct md_page *pvh;
2703	pv_entry_t pv;
2704	vm_offset_t va_last;
2705	vm_page_t m;
2706
2707	KASSERT((pa & L2_OFFSET) == 0,
2708	    ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
2709	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2710
2711	/*
2712	 * Transfer the first page's pv entry for this mapping to the 2mpage's
2713	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
2714	 * a transfer avoids the possibility that get_pv_entry() calls
2715	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
2716	 * mappings that is being promoted.
2717	 */
2718	m = PHYS_TO_VM_PAGE(pa);
2719	va = va & ~L2_OFFSET;
2720	pv = pmap_pvh_remove(&m->md, pmap, va);
2721	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
2722	pvh = pa_to_pvh(pa);
2723	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2724	pvh->pv_gen++;
2725	/* Free the remaining NPTEPG - 1 pv entries. */
2726	va_last = va + L2_SIZE - PAGE_SIZE;
2727	do {
2728		m++;
2729		va += PAGE_SIZE;
2730		pmap_pvh_free(&m->md, pmap, va);
2731	} while (va < va_last);
2732}
2733
2734/*
2735 * Tries to promote the 512, contiguous 4KB page mappings that are within a
2736 * single level 2 table entry to a single 2MB page mapping.  For promotion
2737 * to occur, two conditions must be met: (1) the 4KB page mappings must map
2738 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2739 * identical characteristics.
2740 */
2741static void
2742pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
2743    struct rwlock **lockp)
2744{
2745	pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
2746	vm_page_t mpte;
2747	vm_offset_t sva;
2748
2749	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2750
2751	sva = va & ~L2_OFFSET;
2752	firstl3 = pmap_l2_to_l3(l2, sva);
2753	newl2 = pmap_load(firstl3);
2754
2755	/* Check the alingment is valid */
2756	if (((newl2 & ~ATTR_MASK) & L2_OFFSET) != 0) {
2757		atomic_add_long(&pmap_l2_p_failures, 1);
2758		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
2759		    " in pmap %p", va, pmap);
2760		return;
2761	}
2762
2763	pa = newl2 + L2_SIZE - PAGE_SIZE;
2764	for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
2765		oldl3 = pmap_load(l3);
2766		if (oldl3 != pa) {
2767			atomic_add_long(&pmap_l2_p_failures, 1);
2768			CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
2769			    " in pmap %p", va, pmap);
2770			return;
2771		}
2772		pa -= PAGE_SIZE;
2773	}
2774
2775	/*
2776	 * Save the page table page in its current state until the L2
2777	 * mapping the superpage is demoted by pmap_demote_l2() or
2778	 * destroyed by pmap_remove_l3().
2779	 */
2780	mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
2781	KASSERT(mpte >= vm_page_array &&
2782	    mpte < &vm_page_array[vm_page_array_size],
2783	    ("pmap_promote_l2: page table page is out of range"));
2784	KASSERT(mpte->pindex == pmap_l2_pindex(va),
2785	    ("pmap_promote_l2: page table page's pindex is wrong"));
2786	if (pmap_insert_pt_page(pmap, mpte)) {
2787		atomic_add_long(&pmap_l2_p_failures, 1);
2788		CTR2(KTR_PMAP,
2789		    "pmap_promote_l2: failure for va %#lx in pmap %p", va,
2790		    pmap);
2791		return;
2792	}
2793
2794	if ((newl2 & ATTR_SW_MANAGED) != 0)
2795		pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
2796
2797	newl2 &= ~ATTR_DESCR_MASK;
2798	newl2 |= L2_BLOCK;
2799
2800	pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
2801
2802	atomic_add_long(&pmap_l2_promotions, 1);
2803	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
2804		    pmap);
2805}
2806
2807/*
2808 *	Insert the given physical page (p) at
2809 *	the specified virtual address (v) in the
2810 *	target physical map with the protection requested.
2811 *
2812 *	If specified, the page will be wired down, meaning
2813 *	that the related pte can not be reclaimed.
2814 *
2815 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2816 *	or lose information.  That is, this routine must actually
2817 *	insert this page into the given map NOW.
2818 */
2819int
2820pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2821    u_int flags, int8_t psind __unused)
2822{
2823	struct rwlock *lock;
2824	pd_entry_t *pde;
2825	pt_entry_t new_l3, orig_l3;
2826	pt_entry_t *l2, *l3;
2827	pv_entry_t pv;
2828	vm_paddr_t opa, pa, l1_pa, l2_pa, l3_pa;
2829	vm_page_t mpte, om, l1_m, l2_m, l3_m;
2830	boolean_t nosleep;
2831	int lvl;
2832
2833	va = trunc_page(va);
2834	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2835		VM_OBJECT_ASSERT_LOCKED(m->object);
2836	pa = VM_PAGE_TO_PHYS(m);
2837	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
2838	    L3_PAGE);
2839	if ((prot & VM_PROT_WRITE) == 0)
2840		new_l3 |= ATTR_AP(ATTR_AP_RO);
2841	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
2842		new_l3 |= ATTR_XN;
2843	if ((flags & PMAP_ENTER_WIRED) != 0)
2844		new_l3 |= ATTR_SW_WIRED;
2845	if ((va >> 63) == 0)
2846		new_l3 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN;
2847
2848	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
2849
2850	mpte = NULL;
2851
2852	lock = NULL;
2853	PMAP_LOCK(pmap);
2854
2855	pde = pmap_pde(pmap, va, &lvl);
2856	if (pde != NULL && lvl == 1) {
2857		l2 = pmap_l1_to_l2(pde, va);
2858		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
2859		    (l3 = pmap_demote_l2_locked(pmap, l2, va & ~L2_OFFSET,
2860		    &lock)) != NULL) {
2861			l3 = &l3[pmap_l3_index(va)];
2862			if (va < VM_MAXUSER_ADDRESS) {
2863				mpte = PHYS_TO_VM_PAGE(
2864				    pmap_load(l2) & ~ATTR_MASK);
2865				mpte->wire_count++;
2866			}
2867			goto havel3;
2868		}
2869	}
2870
2871	if (va < VM_MAXUSER_ADDRESS) {
2872		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2873		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
2874		if (mpte == NULL && nosleep) {
2875			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
2876			if (lock != NULL)
2877				rw_wunlock(lock);
2878			PMAP_UNLOCK(pmap);
2879			return (KERN_RESOURCE_SHORTAGE);
2880		}
2881		pde = pmap_pde(pmap, va, &lvl);
2882		KASSERT(pde != NULL,
2883		    ("pmap_enter: Invalid page entry, va: 0x%lx", va));
2884		KASSERT(lvl == 2,
2885		    ("pmap_enter: Invalid level %d", lvl));
2886
2887		l3 = pmap_l2_to_l3(pde, va);
2888	} else {
2889		/*
2890		 * If we get a level 2 pde it must point to a level 3 entry
2891		 * otherwise we will need to create the intermediate tables
2892		 */
2893		if (lvl < 2) {
2894			switch(lvl) {
2895			default:
2896			case -1:
2897				/* Get the l0 pde to update */
2898				pde = pmap_l0(pmap, va);
2899				KASSERT(pde != NULL, ("..."));
2900
2901				l1_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2902				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2903				    VM_ALLOC_ZERO);
2904				if (l1_m == NULL)
2905					panic("pmap_enter: l1 pte_m == NULL");
2906				if ((l1_m->flags & PG_ZERO) == 0)
2907					pmap_zero_page(l1_m);
2908
2909				l1_pa = VM_PAGE_TO_PHYS(l1_m);
2910				pmap_load_store(pde, l1_pa | L0_TABLE);
2911				PTE_SYNC(pde);
2912				/* FALLTHROUGH */
2913			case 0:
2914				/* Get the l1 pde to update */
2915				pde = pmap_l1_to_l2(pde, va);
2916				KASSERT(pde != NULL, ("..."));
2917
2918				l2_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2919				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2920				    VM_ALLOC_ZERO);
2921				if (l2_m == NULL)
2922					panic("pmap_enter: l2 pte_m == NULL");
2923				if ((l2_m->flags & PG_ZERO) == 0)
2924					pmap_zero_page(l2_m);
2925
2926				l2_pa = VM_PAGE_TO_PHYS(l2_m);
2927				pmap_load_store(pde, l2_pa | L1_TABLE);
2928				PTE_SYNC(pde);
2929				/* FALLTHROUGH */
2930			case 1:
2931				/* Get the l2 pde to update */
2932				pde = pmap_l1_to_l2(pde, va);
2933
2934				l3_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2935				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2936				    VM_ALLOC_ZERO);
2937				if (l3_m == NULL)
2938					panic("pmap_enter: l3 pte_m == NULL");
2939				if ((l3_m->flags & PG_ZERO) == 0)
2940					pmap_zero_page(l3_m);
2941
2942				l3_pa = VM_PAGE_TO_PHYS(l3_m);
2943				pmap_load_store(pde, l3_pa | L2_TABLE);
2944				PTE_SYNC(pde);
2945				break;
2946			}
2947		}
2948		l3 = pmap_l2_to_l3(pde, va);
2949		pmap_invalidate_page(pmap, va);
2950	}
2951havel3:
2952
2953	om = NULL;
2954	orig_l3 = pmap_load(l3);
2955	opa = orig_l3 & ~ATTR_MASK;
2956
2957	/*
2958	 * Is the specified virtual address already mapped?
2959	 */
2960	if (pmap_l3_valid(orig_l3)) {
2961		/*
2962		 * Wiring change, just update stats. We don't worry about
2963		 * wiring PT pages as they remain resident as long as there
2964		 * are valid mappings in them. Hence, if a user page is wired,
2965		 * the PT page will be also.
2966		 */
2967		if ((flags & PMAP_ENTER_WIRED) != 0 &&
2968		    (orig_l3 & ATTR_SW_WIRED) == 0)
2969			pmap->pm_stats.wired_count++;
2970		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
2971		    (orig_l3 & ATTR_SW_WIRED) != 0)
2972			pmap->pm_stats.wired_count--;
2973
2974		/*
2975		 * Remove the extra PT page reference.
2976		 */
2977		if (mpte != NULL) {
2978			mpte->wire_count--;
2979			KASSERT(mpte->wire_count > 0,
2980			    ("pmap_enter: missing reference to page table page,"
2981			     " va: 0x%lx", va));
2982		}
2983
2984		/*
2985		 * Has the physical page changed?
2986		 */
2987		if (opa == pa) {
2988			/*
2989			 * No, might be a protection or wiring change.
2990			 */
2991			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
2992				new_l3 |= ATTR_SW_MANAGED;
2993				if ((new_l3 & ATTR_AP(ATTR_AP_RW)) ==
2994				    ATTR_AP(ATTR_AP_RW)) {
2995					vm_page_aflag_set(m, PGA_WRITEABLE);
2996				}
2997			}
2998			goto validate;
2999		}
3000
3001		/* Flush the cache, there might be uncommitted data in it */
3002		if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(orig_l3))
3003			cpu_dcache_wb_range(va, L3_SIZE);
3004	} else {
3005		/*
3006		 * Increment the counters.
3007		 */
3008		if ((new_l3 & ATTR_SW_WIRED) != 0)
3009			pmap->pm_stats.wired_count++;
3010		pmap_resident_count_inc(pmap, 1);
3011	}
3012	/*
3013	 * Enter on the PV list if part of our managed memory.
3014	 */
3015	if ((m->oflags & VPO_UNMANAGED) == 0) {
3016		new_l3 |= ATTR_SW_MANAGED;
3017		pv = get_pv_entry(pmap, &lock);
3018		pv->pv_va = va;
3019		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3020		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3021		m->md.pv_gen++;
3022		if ((new_l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3023			vm_page_aflag_set(m, PGA_WRITEABLE);
3024	}
3025
3026	/*
3027	 * Update the L3 entry.
3028	 */
3029	if (orig_l3 != 0) {
3030validate:
3031		orig_l3 = pmap_load(l3);
3032		opa = orig_l3 & ~ATTR_MASK;
3033
3034		if (opa != pa) {
3035			pmap_update_entry(pmap, l3, new_l3, va, PAGE_SIZE);
3036			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
3037				om = PHYS_TO_VM_PAGE(opa);
3038				if (pmap_page_dirty(orig_l3))
3039					vm_page_dirty(om);
3040				if ((orig_l3 & ATTR_AF) != 0)
3041					vm_page_aflag_set(om, PGA_REFERENCED);
3042				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3043				pmap_pvh_free(&om->md, pmap, va);
3044				if ((om->aflags & PGA_WRITEABLE) != 0 &&
3045				    TAILQ_EMPTY(&om->md.pv_list) &&
3046				    ((om->flags & PG_FICTITIOUS) != 0 ||
3047				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3048					vm_page_aflag_clear(om, PGA_WRITEABLE);
3049			}
3050		} else {
3051			pmap_load_store(l3, new_l3);
3052			PTE_SYNC(l3);
3053			pmap_invalidate_page(pmap, va);
3054			if (pmap_page_dirty(orig_l3) &&
3055			    (orig_l3 & ATTR_SW_MANAGED) != 0)
3056				vm_page_dirty(m);
3057		}
3058	} else {
3059		pmap_load_store(l3, new_l3);
3060	}
3061
3062	PTE_SYNC(l3);
3063	pmap_invalidate_page(pmap, va);
3064
3065	if (pmap != pmap_kernel()) {
3066		if (pmap == &curproc->p_vmspace->vm_pmap &&
3067		    (prot & VM_PROT_EXECUTE) != 0)
3068			cpu_icache_sync_range(va, PAGE_SIZE);
3069
3070		if ((mpte == NULL || mpte->wire_count == NL3PG) &&
3071		    pmap_superpages_enabled() &&
3072		    (m->flags & PG_FICTITIOUS) == 0 &&
3073		    vm_reserv_level_iffullpop(m) == 0) {
3074			pmap_promote_l2(pmap, pde, va, &lock);
3075		}
3076	}
3077
3078	if (lock != NULL)
3079		rw_wunlock(lock);
3080	PMAP_UNLOCK(pmap);
3081	return (KERN_SUCCESS);
3082}
3083
3084/*
3085 * Maps a sequence of resident pages belonging to the same object.
3086 * The sequence begins with the given page m_start.  This page is
3087 * mapped at the given virtual address start.  Each subsequent page is
3088 * mapped at a virtual address that is offset from start by the same
3089 * amount as the page is offset from m_start within the object.  The
3090 * last page in the sequence is the page with the largest offset from
3091 * m_start that can be mapped at a virtual address less than the given
3092 * virtual address end.  Not every virtual page between start and end
3093 * is mapped; only those for which a resident page exists with the
3094 * corresponding offset from m_start are mapped.
3095 */
3096void
3097pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3098    vm_page_t m_start, vm_prot_t prot)
3099{
3100	struct rwlock *lock;
3101	vm_offset_t va;
3102	vm_page_t m, mpte;
3103	vm_pindex_t diff, psize;
3104
3105	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3106
3107	psize = atop(end - start);
3108	mpte = NULL;
3109	m = m_start;
3110	lock = NULL;
3111	PMAP_LOCK(pmap);
3112	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3113		va = start + ptoa(diff);
3114		mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte, &lock);
3115		m = TAILQ_NEXT(m, listq);
3116	}
3117	if (lock != NULL)
3118		rw_wunlock(lock);
3119	PMAP_UNLOCK(pmap);
3120}
3121
3122/*
3123 * this code makes some *MAJOR* assumptions:
3124 * 1. Current pmap & pmap exists.
3125 * 2. Not wired.
3126 * 3. Read access.
3127 * 4. No page table pages.
3128 * but is *MUCH* faster than pmap_enter...
3129 */
3130
3131void
3132pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3133{
3134	struct rwlock *lock;
3135
3136	lock = NULL;
3137	PMAP_LOCK(pmap);
3138	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3139	if (lock != NULL)
3140		rw_wunlock(lock);
3141	PMAP_UNLOCK(pmap);
3142}
3143
3144static vm_page_t
3145pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3146    vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3147{
3148	struct spglist free;
3149	pd_entry_t *pde;
3150	pt_entry_t *l2, *l3;
3151	vm_paddr_t pa;
3152	int lvl;
3153
3154	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3155	    (m->oflags & VPO_UNMANAGED) != 0,
3156	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3157	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3158
3159	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3160	/*
3161	 * In the case that a page table page is not
3162	 * resident, we are creating it here.
3163	 */
3164	if (va < VM_MAXUSER_ADDRESS) {
3165		vm_pindex_t l2pindex;
3166
3167		/*
3168		 * Calculate pagetable page index
3169		 */
3170		l2pindex = pmap_l2_pindex(va);
3171		if (mpte && (mpte->pindex == l2pindex)) {
3172			mpte->wire_count++;
3173		} else {
3174			/*
3175			 * Get the l2 entry
3176			 */
3177			pde = pmap_pde(pmap, va, &lvl);
3178
3179			/*
3180			 * If the page table page is mapped, we just increment
3181			 * the hold count, and activate it.  Otherwise, we
3182			 * attempt to allocate a page table page.  If this
3183			 * attempt fails, we don't retry.  Instead, we give up.
3184			 */
3185			if (lvl == 1) {
3186				l2 = pmap_l1_to_l2(pde, va);
3187				if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
3188				    L2_BLOCK)
3189					return (NULL);
3190			}
3191			if (lvl == 2 && pmap_load(pde) != 0) {
3192				mpte =
3193				    PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3194				mpte->wire_count++;
3195			} else {
3196				/*
3197				 * Pass NULL instead of the PV list lock
3198				 * pointer, because we don't intend to sleep.
3199				 */
3200				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3201				if (mpte == NULL)
3202					return (mpte);
3203			}
3204		}
3205		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3206		l3 = &l3[pmap_l3_index(va)];
3207	} else {
3208		mpte = NULL;
3209		pde = pmap_pde(kernel_pmap, va, &lvl);
3210		KASSERT(pde != NULL,
3211		    ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
3212		     va));
3213		KASSERT(lvl == 2,
3214		    ("pmap_enter_quick_locked: Invalid level %d", lvl));
3215		l3 = pmap_l2_to_l3(pde, va);
3216	}
3217
3218	if (pmap_load(l3) != 0) {
3219		if (mpte != NULL) {
3220			mpte->wire_count--;
3221			mpte = NULL;
3222		}
3223		return (mpte);
3224	}
3225
3226	/*
3227	 * Enter on the PV list if part of our managed memory.
3228	 */
3229	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3230	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3231		if (mpte != NULL) {
3232			SLIST_INIT(&free);
3233			if (pmap_unwire_l3(pmap, va, mpte, &free)) {
3234				pmap_invalidate_page(pmap, va);
3235				pmap_free_zero_pages(&free);
3236			}
3237			mpte = NULL;
3238		}
3239		return (mpte);
3240	}
3241
3242	/*
3243	 * Increment counters
3244	 */
3245	pmap_resident_count_inc(pmap, 1);
3246
3247	pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
3248	    ATTR_AP(ATTR_AP_RO) | L3_PAGE;
3249	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3250		pa |= ATTR_XN;
3251	else if (va < VM_MAXUSER_ADDRESS)
3252		pa |= ATTR_PXN;
3253
3254	/*
3255	 * Now validate mapping with RO protection
3256	 */
3257	if ((m->oflags & VPO_UNMANAGED) == 0)
3258		pa |= ATTR_SW_MANAGED;
3259	pmap_load_store(l3, pa);
3260	PTE_SYNC(l3);
3261	pmap_invalidate_page(pmap, va);
3262	return (mpte);
3263}
3264
3265/*
3266 * This code maps large physical mmap regions into the
3267 * processor address space.  Note that some shortcuts
3268 * are taken, but the code works.
3269 */
3270void
3271pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3272    vm_pindex_t pindex, vm_size_t size)
3273{
3274
3275	VM_OBJECT_ASSERT_WLOCKED(object);
3276	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3277	    ("pmap_object_init_pt: non-device object"));
3278}
3279
3280/*
3281 *	Clear the wired attribute from the mappings for the specified range of
3282 *	addresses in the given pmap.  Every valid mapping within that range
3283 *	must have the wired attribute set.  In contrast, invalid mappings
3284 *	cannot have the wired attribute set, so they are ignored.
3285 *
3286 *	The wired attribute of the page table entry is not a hardware feature,
3287 *	so there is no need to invalidate any TLB entries.
3288 */
3289void
3290pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3291{
3292	vm_offset_t va_next;
3293	pd_entry_t *l0, *l1, *l2;
3294	pt_entry_t *l3;
3295
3296	PMAP_LOCK(pmap);
3297	for (; sva < eva; sva = va_next) {
3298		l0 = pmap_l0(pmap, sva);
3299		if (pmap_load(l0) == 0) {
3300			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3301			if (va_next < sva)
3302				va_next = eva;
3303			continue;
3304		}
3305
3306		l1 = pmap_l0_to_l1(l0, sva);
3307		if (pmap_load(l1) == 0) {
3308			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3309			if (va_next < sva)
3310				va_next = eva;
3311			continue;
3312		}
3313
3314		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3315		if (va_next < sva)
3316			va_next = eva;
3317
3318		l2 = pmap_l1_to_l2(l1, sva);
3319		if (pmap_load(l2) == 0)
3320			continue;
3321
3322		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3323			l3 = pmap_demote_l2(pmap, l2, sva);
3324			if (l3 == NULL)
3325				continue;
3326		}
3327		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3328		    ("pmap_unwire: Invalid l2 entry after demotion"));
3329
3330		if (va_next > eva)
3331			va_next = eva;
3332		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
3333		    sva += L3_SIZE) {
3334			if (pmap_load(l3) == 0)
3335				continue;
3336			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
3337				panic("pmap_unwire: l3 %#jx is missing "
3338				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
3339
3340			/*
3341			 * PG_W must be cleared atomically.  Although the pmap
3342			 * lock synchronizes access to PG_W, another processor
3343			 * could be setting PG_M and/or PG_A concurrently.
3344			 */
3345			atomic_clear_long(l3, ATTR_SW_WIRED);
3346			pmap->pm_stats.wired_count--;
3347		}
3348	}
3349	PMAP_UNLOCK(pmap);
3350}
3351
3352/*
3353 *	Copy the range specified by src_addr/len
3354 *	from the source map to the range dst_addr/len
3355 *	in the destination map.
3356 *
3357 *	This routine is only advisory and need not do anything.
3358 */
3359
3360void
3361pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3362    vm_offset_t src_addr)
3363{
3364}
3365
3366/*
3367 *	pmap_zero_page zeros the specified hardware page by mapping
3368 *	the page into KVM and using bzero to clear its contents.
3369 */
3370void
3371pmap_zero_page(vm_page_t m)
3372{
3373	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3374
3375	pagezero((void *)va);
3376}
3377
3378/*
3379 *	pmap_zero_page_area zeros the specified hardware page by mapping
3380 *	the page into KVM and using bzero to clear its contents.
3381 *
3382 *	off and size may not cover an area beyond a single hardware page.
3383 */
3384void
3385pmap_zero_page_area(vm_page_t m, int off, int size)
3386{
3387	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3388
3389	if (off == 0 && size == PAGE_SIZE)
3390		pagezero((void *)va);
3391	else
3392		bzero((char *)va + off, size);
3393}
3394
3395/*
3396 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3397 *	the page into KVM and using bzero to clear its contents.  This
3398 *	is intended to be called from the vm_pagezero process only and
3399 *	outside of Giant.
3400 */
3401void
3402pmap_zero_page_idle(vm_page_t m)
3403{
3404	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3405
3406	pagezero((void *)va);
3407}
3408
3409/*
3410 *	pmap_copy_page copies the specified (machine independent)
3411 *	page by mapping the page into virtual memory and using
3412 *	bcopy to copy the page, one machine dependent page at a
3413 *	time.
3414 */
3415void
3416pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
3417{
3418	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
3419	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
3420
3421	pagecopy((void *)src, (void *)dst);
3422}
3423
3424int unmapped_buf_allowed = 1;
3425
3426void
3427pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3428    vm_offset_t b_offset, int xfersize)
3429{
3430	void *a_cp, *b_cp;
3431	vm_page_t m_a, m_b;
3432	vm_paddr_t p_a, p_b;
3433	vm_offset_t a_pg_offset, b_pg_offset;
3434	int cnt;
3435
3436	while (xfersize > 0) {
3437		a_pg_offset = a_offset & PAGE_MASK;
3438		m_a = ma[a_offset >> PAGE_SHIFT];
3439		p_a = m_a->phys_addr;
3440		b_pg_offset = b_offset & PAGE_MASK;
3441		m_b = mb[b_offset >> PAGE_SHIFT];
3442		p_b = m_b->phys_addr;
3443		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3444		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3445		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
3446			panic("!DMAP a %lx", p_a);
3447		} else {
3448			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
3449		}
3450		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
3451			panic("!DMAP b %lx", p_b);
3452		} else {
3453			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
3454		}
3455		bcopy(a_cp, b_cp, cnt);
3456		a_offset += cnt;
3457		b_offset += cnt;
3458		xfersize -= cnt;
3459	}
3460}
3461
3462vm_offset_t
3463pmap_quick_enter_page(vm_page_t m)
3464{
3465
3466	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
3467}
3468
3469void
3470pmap_quick_remove_page(vm_offset_t addr)
3471{
3472}
3473
3474/*
3475 * Returns true if the pmap's pv is one of the first
3476 * 16 pvs linked to from this page.  This count may
3477 * be changed upwards or downwards in the future; it
3478 * is only necessary that true be returned for a small
3479 * subset of pmaps for proper page aging.
3480 */
3481boolean_t
3482pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3483{
3484	struct md_page *pvh;
3485	struct rwlock *lock;
3486	pv_entry_t pv;
3487	int loops = 0;
3488	boolean_t rv;
3489
3490	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3491	    ("pmap_page_exists_quick: page %p is not managed", m));
3492	rv = FALSE;
3493	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3494	rw_rlock(lock);
3495	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3496		if (PV_PMAP(pv) == pmap) {
3497			rv = TRUE;
3498			break;
3499		}
3500		loops++;
3501		if (loops >= 16)
3502			break;
3503	}
3504	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
3505		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3506		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3507			if (PV_PMAP(pv) == pmap) {
3508				rv = TRUE;
3509				break;
3510			}
3511			loops++;
3512			if (loops >= 16)
3513				break;
3514		}
3515	}
3516	rw_runlock(lock);
3517	return (rv);
3518}
3519
3520/*
3521 *	pmap_page_wired_mappings:
3522 *
3523 *	Return the number of managed mappings to the given physical page
3524 *	that are wired.
3525 */
3526int
3527pmap_page_wired_mappings(vm_page_t m)
3528{
3529	struct rwlock *lock;
3530	struct md_page *pvh;
3531	pmap_t pmap;
3532	pt_entry_t *pte;
3533	pv_entry_t pv;
3534	int count, lvl, md_gen, pvh_gen;
3535
3536	if ((m->oflags & VPO_UNMANAGED) != 0)
3537		return (0);
3538	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3539	rw_rlock(lock);
3540restart:
3541	count = 0;
3542	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3543		pmap = PV_PMAP(pv);
3544		if (!PMAP_TRYLOCK(pmap)) {
3545			md_gen = m->md.pv_gen;
3546			rw_runlock(lock);
3547			PMAP_LOCK(pmap);
3548			rw_rlock(lock);
3549			if (md_gen != m->md.pv_gen) {
3550				PMAP_UNLOCK(pmap);
3551				goto restart;
3552			}
3553		}
3554		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3555		if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
3556			count++;
3557		PMAP_UNLOCK(pmap);
3558	}
3559	if ((m->flags & PG_FICTITIOUS) == 0) {
3560		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3561		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3562			pmap = PV_PMAP(pv);
3563			if (!PMAP_TRYLOCK(pmap)) {
3564				md_gen = m->md.pv_gen;
3565				pvh_gen = pvh->pv_gen;
3566				rw_runlock(lock);
3567				PMAP_LOCK(pmap);
3568				rw_rlock(lock);
3569				if (md_gen != m->md.pv_gen ||
3570				    pvh_gen != pvh->pv_gen) {
3571					PMAP_UNLOCK(pmap);
3572					goto restart;
3573				}
3574			}
3575			pte = pmap_pte(pmap, pv->pv_va, &lvl);
3576			if (pte != NULL &&
3577			    (pmap_load(pte) & ATTR_SW_WIRED) != 0)
3578				count++;
3579			PMAP_UNLOCK(pmap);
3580		}
3581	}
3582	rw_runlock(lock);
3583	return (count);
3584}
3585
3586/*
3587 * Destroy all managed, non-wired mappings in the given user-space
3588 * pmap.  This pmap cannot be active on any processor besides the
3589 * caller.
3590 *
3591 * This function cannot be applied to the kernel pmap.  Moreover, it
3592 * is not intended for general use.  It is only to be used during
3593 * process termination.  Consequently, it can be implemented in ways
3594 * that make it faster than pmap_remove().  First, it can more quickly
3595 * destroy mappings by iterating over the pmap's collection of PV
3596 * entries, rather than searching the page table.  Second, it doesn't
3597 * have to test and clear the page table entries atomically, because
3598 * no processor is currently accessing the user address space.  In
3599 * particular, a page table entry's dirty bit won't change state once
3600 * this function starts.
3601 */
3602void
3603pmap_remove_pages(pmap_t pmap)
3604{
3605	pd_entry_t *pde;
3606	pt_entry_t *pte, tpte;
3607	struct spglist free;
3608	vm_page_t m, ml3, mt;
3609	pv_entry_t pv;
3610	struct md_page *pvh;
3611	struct pv_chunk *pc, *npc;
3612	struct rwlock *lock;
3613	int64_t bit;
3614	uint64_t inuse, bitmask;
3615	int allfree, field, freed, idx, lvl;
3616	vm_paddr_t pa;
3617
3618	lock = NULL;
3619
3620	SLIST_INIT(&free);
3621	PMAP_LOCK(pmap);
3622	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3623		allfree = 1;
3624		freed = 0;
3625		for (field = 0; field < _NPCM; field++) {
3626			inuse = ~pc->pc_map[field] & pc_freemask[field];
3627			while (inuse != 0) {
3628				bit = ffsl(inuse) - 1;
3629				bitmask = 1UL << bit;
3630				idx = field * 64 + bit;
3631				pv = &pc->pc_pventry[idx];
3632				inuse &= ~bitmask;
3633
3634				pde = pmap_pde(pmap, pv->pv_va, &lvl);
3635				KASSERT(pde != NULL,
3636				    ("Attempting to remove an unmapped page"));
3637
3638				switch(lvl) {
3639				case 1:
3640					pte = pmap_l1_to_l2(pde, pv->pv_va);
3641					tpte = pmap_load(pte);
3642					KASSERT((tpte & ATTR_DESCR_MASK) ==
3643					    L2_BLOCK,
3644					    ("Attempting to remove an invalid "
3645					    "block: %lx", tpte));
3646					tpte = pmap_load(pte);
3647					break;
3648				case 2:
3649					pte = pmap_l2_to_l3(pde, pv->pv_va);
3650					tpte = pmap_load(pte);
3651					KASSERT((tpte & ATTR_DESCR_MASK) ==
3652					    L3_PAGE,
3653					    ("Attempting to remove an invalid "
3654					     "page: %lx", tpte));
3655					break;
3656				default:
3657					panic(
3658					    "Invalid page directory level: %d",
3659					    lvl);
3660				}
3661
3662/*
3663 * We cannot remove wired pages from a process' mapping at this time
3664 */
3665				if (tpte & ATTR_SW_WIRED) {
3666					allfree = 0;
3667					continue;
3668				}
3669
3670				pa = tpte & ~ATTR_MASK;
3671
3672				m = PHYS_TO_VM_PAGE(pa);
3673				KASSERT(m->phys_addr == pa,
3674				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3675				    m, (uintmax_t)m->phys_addr,
3676				    (uintmax_t)tpte));
3677
3678				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3679				    m < &vm_page_array[vm_page_array_size],
3680				    ("pmap_remove_pages: bad pte %#jx",
3681				    (uintmax_t)tpte));
3682
3683				if (pmap_is_current(pmap)) {
3684					if (lvl == 2 &&
3685					    pmap_l3_valid_cacheable(tpte)) {
3686						cpu_dcache_wb_range(pv->pv_va,
3687						    L3_SIZE);
3688					} else if (lvl == 1 &&
3689					    pmap_pte_valid_cacheable(tpte)) {
3690						cpu_dcache_wb_range(pv->pv_va,
3691						    L2_SIZE);
3692					}
3693				}
3694				pmap_load_clear(pte);
3695				PTE_SYNC(pte);
3696				pmap_invalidate_page(pmap, pv->pv_va);
3697
3698				/*
3699				 * Update the vm_page_t clean/reference bits.
3700				 */
3701				if ((tpte & ATTR_AP_RW_BIT) ==
3702				    ATTR_AP(ATTR_AP_RW)) {
3703					switch (lvl) {
3704					case 1:
3705						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3706							vm_page_dirty(m);
3707						break;
3708					case 2:
3709						vm_page_dirty(m);
3710						break;
3711					}
3712				}
3713
3714				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
3715
3716				/* Mark free */
3717				pc->pc_map[field] |= bitmask;
3718				switch (lvl) {
3719				case 1:
3720					pmap_resident_count_dec(pmap,
3721					    L2_SIZE / PAGE_SIZE);
3722					pvh = pa_to_pvh(tpte & ~ATTR_MASK);
3723					TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
3724					pvh->pv_gen++;
3725					if (TAILQ_EMPTY(&pvh->pv_list)) {
3726						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3727							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
3728							    TAILQ_EMPTY(&mt->md.pv_list))
3729								vm_page_aflag_clear(mt, PGA_WRITEABLE);
3730					}
3731					ml3 = pmap_remove_pt_page(pmap,
3732					    pv->pv_va);
3733					if (ml3 != NULL) {
3734						pmap_resident_count_dec(pmap,1);
3735						KASSERT(ml3->wire_count == NL3PG,
3736						    ("pmap_remove_pages: l3 page wire count error"));
3737						ml3->wire_count = 0;
3738						pmap_add_delayed_free_list(ml3,
3739						    &free, FALSE);
3740						atomic_subtract_int(
3741						    &vm_cnt.v_wire_count, 1);
3742					}
3743					break;
3744				case 2:
3745					pmap_resident_count_dec(pmap, 1);
3746					TAILQ_REMOVE(&m->md.pv_list, pv,
3747					    pv_next);
3748					m->md.pv_gen++;
3749					if ((m->aflags & PGA_WRITEABLE) != 0 &&
3750					    TAILQ_EMPTY(&m->md.pv_list) &&
3751					    (m->flags & PG_FICTITIOUS) == 0) {
3752						pvh = pa_to_pvh(
3753						    VM_PAGE_TO_PHYS(m));
3754						if (TAILQ_EMPTY(&pvh->pv_list))
3755							vm_page_aflag_clear(m,
3756							    PGA_WRITEABLE);
3757					}
3758					break;
3759				}
3760				pmap_unuse_l3(pmap, pv->pv_va, pmap_load(pde),
3761				    &free);
3762				freed++;
3763			}
3764		}
3765		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
3766		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
3767		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
3768		if (allfree) {
3769			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3770			free_pv_chunk(pc);
3771		}
3772	}
3773	pmap_invalidate_all(pmap);
3774	if (lock != NULL)
3775		rw_wunlock(lock);
3776	PMAP_UNLOCK(pmap);
3777	pmap_free_zero_pages(&free);
3778}
3779
3780/*
3781 * This is used to check if a page has been accessed or modified. As we
3782 * don't have a bit to see if it has been modified we have to assume it
3783 * has been if the page is read/write.
3784 */
3785static boolean_t
3786pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3787{
3788	struct rwlock *lock;
3789	pv_entry_t pv;
3790	struct md_page *pvh;
3791	pt_entry_t *pte, mask, value;
3792	pmap_t pmap;
3793	int lvl, md_gen, pvh_gen;
3794	boolean_t rv;
3795
3796	rv = FALSE;
3797	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3798	rw_rlock(lock);
3799restart:
3800	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3801		pmap = PV_PMAP(pv);
3802		if (!PMAP_TRYLOCK(pmap)) {
3803			md_gen = m->md.pv_gen;
3804			rw_runlock(lock);
3805			PMAP_LOCK(pmap);
3806			rw_rlock(lock);
3807			if (md_gen != m->md.pv_gen) {
3808				PMAP_UNLOCK(pmap);
3809				goto restart;
3810			}
3811		}
3812		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3813		KASSERT(lvl == 3,
3814		    ("pmap_page_test_mappings: Invalid level %d", lvl));
3815		mask = 0;
3816		value = 0;
3817		if (modified) {
3818			mask |= ATTR_AP_RW_BIT;
3819			value |= ATTR_AP(ATTR_AP_RW);
3820		}
3821		if (accessed) {
3822			mask |= ATTR_AF | ATTR_DESCR_MASK;
3823			value |= ATTR_AF | L3_PAGE;
3824		}
3825		rv = (pmap_load(pte) & mask) == value;
3826		PMAP_UNLOCK(pmap);
3827		if (rv)
3828			goto out;
3829	}
3830	if ((m->flags & PG_FICTITIOUS) == 0) {
3831		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3832		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3833			pmap = PV_PMAP(pv);
3834			if (!PMAP_TRYLOCK(pmap)) {
3835				md_gen = m->md.pv_gen;
3836				pvh_gen = pvh->pv_gen;
3837				rw_runlock(lock);
3838				PMAP_LOCK(pmap);
3839				rw_rlock(lock);
3840				if (md_gen != m->md.pv_gen ||
3841				    pvh_gen != pvh->pv_gen) {
3842					PMAP_UNLOCK(pmap);
3843					goto restart;
3844				}
3845			}
3846			pte = pmap_pte(pmap, pv->pv_va, &lvl);
3847			KASSERT(lvl == 2,
3848			    ("pmap_page_test_mappings: Invalid level %d", lvl));
3849			mask = 0;
3850			value = 0;
3851			if (modified) {
3852				mask |= ATTR_AP_RW_BIT;
3853				value |= ATTR_AP(ATTR_AP_RW);
3854			}
3855			if (accessed) {
3856				mask |= ATTR_AF | ATTR_DESCR_MASK;
3857				value |= ATTR_AF | L2_BLOCK;
3858			}
3859			rv = (pmap_load(pte) & mask) == value;
3860			PMAP_UNLOCK(pmap);
3861			if (rv)
3862				goto out;
3863		}
3864	}
3865out:
3866	rw_runlock(lock);
3867	return (rv);
3868}
3869
3870/*
3871 *	pmap_is_modified:
3872 *
3873 *	Return whether or not the specified physical page was modified
3874 *	in any physical maps.
3875 */
3876boolean_t
3877pmap_is_modified(vm_page_t m)
3878{
3879
3880	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3881	    ("pmap_is_modified: page %p is not managed", m));
3882
3883	/*
3884	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3885	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3886	 * is clear, no PTEs can have PG_M set.
3887	 */
3888	VM_OBJECT_ASSERT_WLOCKED(m->object);
3889	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3890		return (FALSE);
3891	return (pmap_page_test_mappings(m, FALSE, TRUE));
3892}
3893
3894/*
3895 *	pmap_is_prefaultable:
3896 *
3897 *	Return whether or not the specified virtual address is eligible
3898 *	for prefault.
3899 */
3900boolean_t
3901pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3902{
3903	pt_entry_t *pte;
3904	boolean_t rv;
3905	int lvl;
3906
3907	rv = FALSE;
3908	PMAP_LOCK(pmap);
3909	pte = pmap_pte(pmap, addr, &lvl);
3910	if (pte != NULL && pmap_load(pte) != 0) {
3911		rv = TRUE;
3912	}
3913	PMAP_UNLOCK(pmap);
3914	return (rv);
3915}
3916
3917/*
3918 *	pmap_is_referenced:
3919 *
3920 *	Return whether or not the specified physical page was referenced
3921 *	in any physical maps.
3922 */
3923boolean_t
3924pmap_is_referenced(vm_page_t m)
3925{
3926
3927	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3928	    ("pmap_is_referenced: page %p is not managed", m));
3929	return (pmap_page_test_mappings(m, TRUE, FALSE));
3930}
3931
3932/*
3933 * Clear the write and modified bits in each of the given page's mappings.
3934 */
3935void
3936pmap_remove_write(vm_page_t m)
3937{
3938	struct md_page *pvh;
3939	pmap_t pmap;
3940	struct rwlock *lock;
3941	pv_entry_t next_pv, pv;
3942	pt_entry_t oldpte, *pte;
3943	vm_offset_t va;
3944	int lvl, md_gen, pvh_gen;
3945
3946	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3947	    ("pmap_remove_write: page %p is not managed", m));
3948
3949	/*
3950	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3951	 * set by another thread while the object is locked.  Thus,
3952	 * if PGA_WRITEABLE is clear, no page table entries need updating.
3953	 */
3954	VM_OBJECT_ASSERT_WLOCKED(m->object);
3955	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3956		return;
3957	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3958	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
3959	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
3960retry_pv_loop:
3961	rw_wlock(lock);
3962	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
3963		pmap = PV_PMAP(pv);
3964		if (!PMAP_TRYLOCK(pmap)) {
3965			pvh_gen = pvh->pv_gen;
3966			rw_wunlock(lock);
3967			PMAP_LOCK(pmap);
3968			rw_wlock(lock);
3969			if (pvh_gen != pvh->pv_gen) {
3970				PMAP_UNLOCK(pmap);
3971				rw_wunlock(lock);
3972				goto retry_pv_loop;
3973			}
3974		}
3975		va = pv->pv_va;
3976		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3977		if ((pmap_load(pte) & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3978			pmap_demote_l2_locked(pmap, pte, va & ~L2_OFFSET,
3979			    &lock);
3980		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3981		    ("inconsistent pv lock %p %p for page %p",
3982		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3983		PMAP_UNLOCK(pmap);
3984	}
3985	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3986		pmap = PV_PMAP(pv);
3987		if (!PMAP_TRYLOCK(pmap)) {
3988			pvh_gen = pvh->pv_gen;
3989			md_gen = m->md.pv_gen;
3990			rw_wunlock(lock);
3991			PMAP_LOCK(pmap);
3992			rw_wlock(lock);
3993			if (pvh_gen != pvh->pv_gen ||
3994			    md_gen != m->md.pv_gen) {
3995				PMAP_UNLOCK(pmap);
3996				rw_wunlock(lock);
3997				goto retry_pv_loop;
3998			}
3999		}
4000		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4001retry:
4002		oldpte = pmap_load(pte);
4003		if ((oldpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) {
4004			if (!atomic_cmpset_long(pte, oldpte,
4005			    oldpte | ATTR_AP(ATTR_AP_RO)))
4006				goto retry;
4007			if ((oldpte & ATTR_AF) != 0)
4008				vm_page_dirty(m);
4009			pmap_invalidate_page(pmap, pv->pv_va);
4010		}
4011		PMAP_UNLOCK(pmap);
4012	}
4013	rw_wunlock(lock);
4014	vm_page_aflag_clear(m, PGA_WRITEABLE);
4015}
4016
4017static __inline boolean_t
4018safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
4019{
4020
4021	return (FALSE);
4022}
4023
4024/*
4025 *	pmap_ts_referenced:
4026 *
4027 *	Return a count of reference bits for a page, clearing those bits.
4028 *	It is not necessary for every reference bit to be cleared, but it
4029 *	is necessary that 0 only be returned when there are truly no
4030 *	reference bits set.
4031 *
4032 *	As an optimization, update the page's dirty field if a modified bit is
4033 *	found while counting reference bits.  This opportunistic update can be
4034 *	performed at low cost and can eliminate the need for some future calls
4035 *	to pmap_is_modified().  However, since this function stops after
4036 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4037 *	dirty pages.  Those dirty pages will only be detected by a future call
4038 *	to pmap_is_modified().
4039 */
4040int
4041pmap_ts_referenced(vm_page_t m)
4042{
4043	struct md_page *pvh;
4044	pv_entry_t pv, pvf;
4045	pmap_t pmap;
4046	struct rwlock *lock;
4047	pd_entry_t *pde, tpde;
4048	pt_entry_t *pte, tpte;
4049	pt_entry_t *l3;
4050	vm_offset_t va;
4051	vm_paddr_t pa;
4052	int cleared, md_gen, not_cleared, lvl, pvh_gen;
4053	struct spglist free;
4054	bool demoted;
4055
4056	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4057	    ("pmap_ts_referenced: page %p is not managed", m));
4058	SLIST_INIT(&free);
4059	cleared = 0;
4060	pa = VM_PAGE_TO_PHYS(m);
4061	lock = PHYS_TO_PV_LIST_LOCK(pa);
4062	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
4063	rw_wlock(lock);
4064retry:
4065	not_cleared = 0;
4066	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4067		goto small_mappings;
4068	pv = pvf;
4069	do {
4070		if (pvf == NULL)
4071			pvf = pv;
4072		pmap = PV_PMAP(pv);
4073		if (!PMAP_TRYLOCK(pmap)) {
4074			pvh_gen = pvh->pv_gen;
4075			rw_wunlock(lock);
4076			PMAP_LOCK(pmap);
4077			rw_wlock(lock);
4078			if (pvh_gen != pvh->pv_gen) {
4079				PMAP_UNLOCK(pmap);
4080				goto retry;
4081			}
4082		}
4083		va = pv->pv_va;
4084		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4085		KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
4086		KASSERT(lvl == 1,
4087		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4088		tpde = pmap_load(pde);
4089		KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
4090		    ("pmap_ts_referenced: found an invalid l1 table"));
4091		pte = pmap_l1_to_l2(pde, pv->pv_va);
4092		tpte = pmap_load(pte);
4093		if (pmap_page_dirty(tpte)) {
4094			/*
4095			 * Although "tpte" is mapping a 2MB page, because
4096			 * this function is called at a 4KB page granularity,
4097			 * we only update the 4KB page under test.
4098			 */
4099			vm_page_dirty(m);
4100		}
4101		if ((tpte & ATTR_AF) != 0) {
4102			/*
4103			 * Since this reference bit is shared by 512 4KB
4104			 * pages, it should not be cleared every time it is
4105			 * tested.  Apply a simple "hash" function on the
4106			 * physical page number, the virtual superpage number,
4107			 * and the pmap address to select one 4KB page out of
4108			 * the 512 on which testing the reference bit will
4109			 * result in clearing that reference bit.  This
4110			 * function is designed to avoid the selection of the
4111			 * same 4KB page for every 2MB page mapping.
4112			 *
4113			 * On demotion, a mapping that hasn't been referenced
4114			 * is simply destroyed.  To avoid the possibility of a
4115			 * subsequent page fault on a demoted wired mapping,
4116			 * always leave its reference bit set.  Moreover,
4117			 * since the superpage is wired, the current state of
4118			 * its reference bit won't affect page replacement.
4119			 */
4120			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
4121			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
4122			    (tpte & ATTR_SW_WIRED) == 0) {
4123				if (safe_to_clear_referenced(pmap, tpte)) {
4124					/*
4125					 * TODO: We don't handle the access
4126					 * flag at all. We need to be able
4127					 * to set it in  the exception handler.
4128					 */
4129					panic("ARM64TODO: "
4130					    "safe_to_clear_referenced\n");
4131				} else if (pmap_demote_l2_locked(pmap, pte,
4132				    pv->pv_va, &lock) != NULL) {
4133					demoted = true;
4134					va += VM_PAGE_TO_PHYS(m) -
4135					    (tpte & ~ATTR_MASK);
4136					l3 = pmap_l2_to_l3(pte, va);
4137					pmap_remove_l3(pmap, l3, va,
4138					    pmap_load(pte), NULL, &lock);
4139				} else
4140					demoted = true;
4141
4142				if (demoted) {
4143					/*
4144					 * The superpage mapping was removed
4145					 * entirely and therefore 'pv' is no
4146					 * longer valid.
4147					 */
4148					if (pvf == pv)
4149						pvf = NULL;
4150					pv = NULL;
4151				}
4152				cleared++;
4153				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4154				    ("inconsistent pv lock %p %p for page %p",
4155				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4156			} else
4157				not_cleared++;
4158		}
4159		PMAP_UNLOCK(pmap);
4160		/* Rotate the PV list if it has more than one entry. */
4161		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4162			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4163			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4164			pvh->pv_gen++;
4165		}
4166		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4167			goto out;
4168	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4169small_mappings:
4170	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4171		goto out;
4172	pv = pvf;
4173	do {
4174		if (pvf == NULL)
4175			pvf = pv;
4176		pmap = PV_PMAP(pv);
4177		if (!PMAP_TRYLOCK(pmap)) {
4178			pvh_gen = pvh->pv_gen;
4179			md_gen = m->md.pv_gen;
4180			rw_wunlock(lock);
4181			PMAP_LOCK(pmap);
4182			rw_wlock(lock);
4183			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4184				PMAP_UNLOCK(pmap);
4185				goto retry;
4186			}
4187		}
4188		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4189		KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
4190		KASSERT(lvl == 2,
4191		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4192		tpde = pmap_load(pde);
4193		KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
4194		    ("pmap_ts_referenced: found an invalid l2 table"));
4195		pte = pmap_l2_to_l3(pde, pv->pv_va);
4196		tpte = pmap_load(pte);
4197		if (pmap_page_dirty(tpte))
4198			vm_page_dirty(m);
4199		if ((tpte & ATTR_AF) != 0) {
4200			if (safe_to_clear_referenced(pmap, tpte)) {
4201				/*
4202				 * TODO: We don't handle the access flag
4203				 * at all. We need to be able to set it in
4204				 * the exception handler.
4205				 */
4206				panic("ARM64TODO: safe_to_clear_referenced\n");
4207			} else if ((tpte & ATTR_SW_WIRED) == 0) {
4208				/*
4209				 * Wired pages cannot be paged out so
4210				 * doing accessed bit emulation for
4211				 * them is wasted effort. We do the
4212				 * hard work for unwired pages only.
4213				 */
4214				pmap_remove_l3(pmap, pte, pv->pv_va, tpde,
4215				    &free, &lock);
4216				pmap_invalidate_page(pmap, pv->pv_va);
4217				cleared++;
4218				if (pvf == pv)
4219					pvf = NULL;
4220				pv = NULL;
4221				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4222				    ("inconsistent pv lock %p %p for page %p",
4223				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4224			} else
4225				not_cleared++;
4226		}
4227		PMAP_UNLOCK(pmap);
4228		/* Rotate the PV list if it has more than one entry. */
4229		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4230			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4231			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4232			m->md.pv_gen++;
4233		}
4234	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4235	    not_cleared < PMAP_TS_REFERENCED_MAX);
4236out:
4237	rw_wunlock(lock);
4238	pmap_free_zero_pages(&free);
4239	return (cleared + not_cleared);
4240}
4241
4242/*
4243 *	Apply the given advice to the specified range of addresses within the
4244 *	given pmap.  Depending on the advice, clear the referenced and/or
4245 *	modified flags in each mapping and set the mapped page's dirty field.
4246 */
4247void
4248pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4249{
4250}
4251
4252/*
4253 *	Clear the modify bits on the specified physical page.
4254 */
4255void
4256pmap_clear_modify(vm_page_t m)
4257{
4258
4259	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4260	    ("pmap_clear_modify: page %p is not managed", m));
4261	VM_OBJECT_ASSERT_WLOCKED(m->object);
4262	KASSERT(!vm_page_xbusied(m),
4263	    ("pmap_clear_modify: page %p is exclusive busied", m));
4264
4265	/*
4266	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4267	 * If the object containing the page is locked and the page is not
4268	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4269	 */
4270	if ((m->aflags & PGA_WRITEABLE) == 0)
4271		return;
4272
4273	/* ARM64TODO: We lack support for tracking if a page is modified */
4274}
4275
4276void *
4277pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4278{
4279
4280        return ((void *)PHYS_TO_DMAP(pa));
4281}
4282
4283void
4284pmap_unmapbios(vm_paddr_t pa, vm_size_t size)
4285{
4286}
4287
4288/*
4289 * Sets the memory attribute for the specified page.
4290 */
4291void
4292pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4293{
4294
4295	m->md.pv_memattr = ma;
4296
4297	/*
4298	 * If "m" is a normal page, update its direct mapping.  This update
4299	 * can be relied upon to perform any cache operations that are
4300	 * required for data coherence.
4301	 */
4302	if ((m->flags & PG_FICTITIOUS) == 0 &&
4303	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
4304	    m->md.pv_memattr) != 0)
4305		panic("memory attribute change on the direct map failed");
4306}
4307
4308/*
4309 * Changes the specified virtual address range's memory type to that given by
4310 * the parameter "mode".  The specified virtual address range must be
4311 * completely contained within either the direct map or the kernel map.  If
4312 * the virtual address range is contained within the kernel map, then the
4313 * memory type for each of the corresponding ranges of the direct map is also
4314 * changed.  (The corresponding ranges of the direct map are those ranges that
4315 * map the same physical pages as the specified virtual address range.)  These
4316 * changes to the direct map are necessary because Intel describes the
4317 * behavior of their processors as "undefined" if two or more mappings to the
4318 * same physical page have different memory types.
4319 *
4320 * Returns zero if the change completed successfully, and either EINVAL or
4321 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4322 * of the virtual address range was not mapped, and ENOMEM is returned if
4323 * there was insufficient memory available to complete the change.  In the
4324 * latter case, the memory type may have been changed on some part of the
4325 * virtual address range or the direct map.
4326 */
4327static int
4328pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4329{
4330	int error;
4331
4332	PMAP_LOCK(kernel_pmap);
4333	error = pmap_change_attr_locked(va, size, mode);
4334	PMAP_UNLOCK(kernel_pmap);
4335	return (error);
4336}
4337
4338static int
4339pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
4340{
4341	vm_offset_t base, offset, tmpva;
4342	pt_entry_t l3, *pte, *newpte;
4343	int lvl;
4344
4345	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
4346	base = trunc_page(va);
4347	offset = va & PAGE_MASK;
4348	size = round_page(offset + size);
4349
4350	if (!VIRT_IN_DMAP(base))
4351		return (EINVAL);
4352
4353	for (tmpva = base; tmpva < base + size; ) {
4354		pte = pmap_pte(kernel_pmap, va, &lvl);
4355		if (pte == NULL)
4356			return (EINVAL);
4357
4358		if ((pmap_load(pte) & ATTR_IDX_MASK) == ATTR_IDX(mode)) {
4359			/*
4360			 * We already have the correct attribute,
4361			 * ignore this entry.
4362			 */
4363			switch (lvl) {
4364			default:
4365				panic("Invalid DMAP table level: %d\n", lvl);
4366			case 1:
4367				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
4368				break;
4369			case 2:
4370				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
4371				break;
4372			case 3:
4373				tmpva += PAGE_SIZE;
4374				break;
4375			}
4376		} else {
4377			/*
4378			 * Split the entry to an level 3 table, then
4379			 * set the new attribute.
4380			 */
4381			switch (lvl) {
4382			default:
4383				panic("Invalid DMAP table level: %d\n", lvl);
4384			case 1:
4385				newpte = pmap_demote_l1(kernel_pmap, pte,
4386				    tmpva & ~L1_OFFSET);
4387				if (newpte == NULL)
4388					return (EINVAL);
4389				pte = pmap_l1_to_l2(pte, tmpva);
4390			case 2:
4391				newpte = pmap_demote_l2(kernel_pmap, pte,
4392				    tmpva & ~L2_OFFSET);
4393				if (newpte == NULL)
4394					return (EINVAL);
4395				pte = pmap_l2_to_l3(pte, tmpva);
4396			case 3:
4397				/* Update the entry */
4398				l3 = pmap_load(pte);
4399				l3 &= ~ATTR_IDX_MASK;
4400				l3 |= ATTR_IDX(mode);
4401				if (mode == DEVICE_MEMORY)
4402					l3 |= ATTR_XN;
4403
4404				pmap_update_entry(kernel_pmap, pte, l3, tmpva,
4405				    PAGE_SIZE);
4406
4407				/*
4408				 * If moving to a non-cacheable entry flush
4409				 * the cache.
4410				 */
4411				if (mode == VM_MEMATTR_UNCACHEABLE)
4412					cpu_dcache_wbinv_range(tmpva, L3_SIZE);
4413
4414				break;
4415			}
4416			tmpva += PAGE_SIZE;
4417		}
4418	}
4419
4420	return (0);
4421}
4422
4423/*
4424 * Create an L2 table to map all addresses within an L1 mapping.
4425 */
4426static pt_entry_t *
4427pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
4428{
4429	pt_entry_t *l2, newl2, oldl1;
4430	vm_offset_t tmpl1;
4431	vm_paddr_t l2phys, phys;
4432	vm_page_t ml2;
4433	int i;
4434
4435	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4436	oldl1 = pmap_load(l1);
4437	KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
4438	    ("pmap_demote_l1: Demoting a non-block entry"));
4439	KASSERT((va & L1_OFFSET) == 0,
4440	    ("pmap_demote_l1: Invalid virtual address %#lx", va));
4441	KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
4442	    ("pmap_demote_l1: Level 1 table shouldn't be managed"));
4443
4444	tmpl1 = 0;
4445	if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
4446		tmpl1 = kva_alloc(PAGE_SIZE);
4447		if (tmpl1 == 0)
4448			return (NULL);
4449	}
4450
4451	if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
4452	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4453		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
4454		    " in pmap %p", va, pmap);
4455		return (NULL);
4456	}
4457
4458	l2phys = VM_PAGE_TO_PHYS(ml2);
4459	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
4460
4461	/* Address the range points at */
4462	phys = oldl1 & ~ATTR_MASK;
4463	/* The attributed from the old l1 table to be copied */
4464	newl2 = oldl1 & ATTR_MASK;
4465
4466	/* Create the new entries */
4467	for (i = 0; i < Ln_ENTRIES; i++) {
4468		l2[i] = newl2 | phys;
4469		phys += L2_SIZE;
4470	}
4471	cpu_dcache_wb_range((vm_offset_t)l2, PAGE_SIZE);
4472	KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
4473	    ("Invalid l2 page (%lx != %lx)", l2[0],
4474	    (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
4475
4476	if (tmpl1 != 0) {
4477		pmap_kenter(tmpl1, PAGE_SIZE,
4478		    DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET, CACHED_MEMORY);
4479		l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
4480	}
4481
4482	pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
4483
4484	if (tmpl1 != 0) {
4485		pmap_kremove(tmpl1);
4486		kva_free(tmpl1, PAGE_SIZE);
4487	}
4488
4489	return (l2);
4490}
4491
4492/*
4493 * Create an L3 table to map all addresses within an L2 mapping.
4494 */
4495static pt_entry_t *
4496pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
4497    struct rwlock **lockp)
4498{
4499	pt_entry_t *l3, newl3, oldl2;
4500	vm_offset_t tmpl2;
4501	vm_paddr_t l3phys, phys;
4502	vm_page_t ml3;
4503	int i;
4504
4505	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4506	l3 = NULL;
4507	oldl2 = pmap_load(l2);
4508	KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
4509	    ("pmap_demote_l2: Demoting a non-block entry"));
4510	KASSERT((va & L2_OFFSET) == 0,
4511	    ("pmap_demote_l2: Invalid virtual address %#lx", va));
4512
4513	tmpl2 = 0;
4514	if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
4515		tmpl2 = kva_alloc(PAGE_SIZE);
4516		if (tmpl2 == 0)
4517			return (NULL);
4518	}
4519
4520	if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
4521		ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
4522		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4523		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
4524		if (ml3 == NULL) {
4525			CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
4526			    " in pmap %p", va, pmap);
4527			goto fail;
4528		}
4529		if (va < VM_MAXUSER_ADDRESS)
4530			pmap_resident_count_inc(pmap, 1);
4531	}
4532
4533	l3phys = VM_PAGE_TO_PHYS(ml3);
4534	l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
4535
4536	/* Address the range points at */
4537	phys = oldl2 & ~ATTR_MASK;
4538	/* The attributed from the old l2 table to be copied */
4539	newl3 = (oldl2 & (ATTR_MASK & ~ATTR_DESCR_MASK)) | L3_PAGE;
4540
4541	/*
4542	 * If the page table page is new, initialize it.
4543	 */
4544	if (ml3->wire_count == 1) {
4545		for (i = 0; i < Ln_ENTRIES; i++) {
4546			l3[i] = newl3 | phys;
4547			phys += L3_SIZE;
4548		}
4549		cpu_dcache_wb_range((vm_offset_t)l3, PAGE_SIZE);
4550	}
4551	KASSERT(l3[0] == ((oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE),
4552	    ("Invalid l3 page (%lx != %lx)", l3[0],
4553	    (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE));
4554
4555	/*
4556	 * Map the temporary page so we don't lose access to the l2 table.
4557	 */
4558	if (tmpl2 != 0) {
4559		pmap_kenter(tmpl2, PAGE_SIZE,
4560		    DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET, CACHED_MEMORY);
4561		l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
4562	}
4563
4564	/*
4565	 * The spare PV entries must be reserved prior to demoting the
4566	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4567	 * of the L2 and the PV lists will be inconsistent, which can result
4568	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4569	 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
4570	 * PV entry for the 2MB page mapping that is being demoted.
4571	 */
4572	if ((oldl2 & ATTR_SW_MANAGED) != 0)
4573		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
4574
4575	pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
4576
4577	/*
4578	 * Demote the PV entry.
4579	 */
4580	if ((oldl2 & ATTR_SW_MANAGED) != 0)
4581		pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
4582
4583	atomic_add_long(&pmap_l2_demotions, 1);
4584	CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
4585	    " in pmap %p %lx", va, pmap, l3[0]);
4586
4587fail:
4588	if (tmpl2 != 0) {
4589		pmap_kremove(tmpl2);
4590		kva_free(tmpl2, PAGE_SIZE);
4591	}
4592
4593	return (l3);
4594
4595}
4596
4597static pt_entry_t *
4598pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
4599{
4600	struct rwlock *lock;
4601	pt_entry_t *l3;
4602
4603	lock = NULL;
4604	l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
4605	if (lock != NULL)
4606		rw_wunlock(lock);
4607	return (l3);
4608}
4609
4610/*
4611 * perform the pmap work for mincore
4612 */
4613int
4614pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4615{
4616	pd_entry_t *l1p, l1;
4617	pd_entry_t *l2p, l2;
4618	pt_entry_t *l3p, l3;
4619	vm_paddr_t pa;
4620	bool managed;
4621	int val;
4622
4623	PMAP_LOCK(pmap);
4624retry:
4625	pa = 0;
4626	val = 0;
4627	managed = false;
4628
4629	l1p = pmap_l1(pmap, addr);
4630	if (l1p == NULL) /* No l1 */
4631		goto done;
4632
4633	l1 = pmap_load(l1p);
4634	if ((l1 & ATTR_DESCR_MASK) == L1_INVAL)
4635		goto done;
4636
4637	if ((l1 & ATTR_DESCR_MASK) == L1_BLOCK) {
4638		pa = (l1 & ~ATTR_MASK) | (addr & L1_OFFSET);
4639		managed = (l1 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
4640		val = MINCORE_SUPER | MINCORE_INCORE;
4641		if (pmap_page_dirty(l1))
4642			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4643		if ((l1 & ATTR_AF) == ATTR_AF)
4644			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4645		goto done;
4646	}
4647
4648	l2p = pmap_l1_to_l2(l1p, addr);
4649	if (l2p == NULL) /* No l2 */
4650		goto done;
4651
4652	l2 = pmap_load(l2p);
4653	if ((l2 & ATTR_DESCR_MASK) == L2_INVAL)
4654		goto done;
4655
4656	if ((l2 & ATTR_DESCR_MASK) == L2_BLOCK) {
4657		pa = (l2 & ~ATTR_MASK) | (addr & L2_OFFSET);
4658		managed = (l2 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
4659		val = MINCORE_SUPER | MINCORE_INCORE;
4660		if (pmap_page_dirty(l2))
4661			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4662		if ((l2 & ATTR_AF) == ATTR_AF)
4663			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4664		goto done;
4665	}
4666
4667	l3p = pmap_l2_to_l3(l2p, addr);
4668	if (l3p == NULL) /* No l3 */
4669		goto done;
4670
4671	l3 = pmap_load(l2p);
4672	if ((l3 & ATTR_DESCR_MASK) == L3_INVAL)
4673		goto done;
4674
4675	if ((l3 & ATTR_DESCR_MASK) == L3_PAGE) {
4676		pa = (l3 & ~ATTR_MASK) | (addr & L3_OFFSET);
4677		managed = (l3 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
4678		val = MINCORE_INCORE;
4679		if (pmap_page_dirty(l3))
4680			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4681		if ((l3 & ATTR_AF) == ATTR_AF)
4682			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4683	}
4684
4685done:
4686	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4687	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4688		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4689		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4690			goto retry;
4691	} else
4692		PA_UNLOCK_COND(*locked_pa);
4693	PMAP_UNLOCK(pmap);
4694
4695	return (val);
4696}
4697
4698void
4699pmap_activate(struct thread *td)
4700{
4701	pmap_t	pmap;
4702
4703	critical_enter();
4704	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4705	td->td_pcb->pcb_l0addr = vtophys(pmap->pm_l0);
4706	__asm __volatile("msr ttbr0_el1, %0" : : "r"(td->td_pcb->pcb_l0addr));
4707	pmap_invalidate_all(pmap);
4708	critical_exit();
4709}
4710
4711void
4712pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
4713{
4714
4715	if (va >= VM_MIN_KERNEL_ADDRESS) {
4716		cpu_icache_sync_range(va, sz);
4717	} else {
4718		u_int len, offset;
4719		vm_paddr_t pa;
4720
4721		/* Find the length of data in this page to flush */
4722		offset = va & PAGE_MASK;
4723		len = imin(PAGE_SIZE - offset, sz);
4724
4725		while (sz != 0) {
4726			/* Extract the physical address & find it in the DMAP */
4727			pa = pmap_extract(pmap, va);
4728			if (pa != 0)
4729				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
4730
4731			/* Move to the next page */
4732			sz -= len;
4733			va += len;
4734			/* Set the length for the next iteration */
4735			len = imin(PAGE_SIZE, sz);
4736		}
4737	}
4738}
4739
4740int
4741pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
4742{
4743#ifdef SMP
4744	uint64_t par;
4745#endif
4746
4747	switch (ESR_ELx_EXCEPTION(esr)) {
4748	case EXCP_DATA_ABORT_L:
4749	case EXCP_DATA_ABORT:
4750		break;
4751	default:
4752		return (KERN_FAILURE);
4753	}
4754
4755#ifdef SMP
4756	PMAP_LOCK(pmap);
4757	switch (esr & ISS_DATA_DFSC_MASK) {
4758	case ISS_DATA_DFSC_TF_L0:
4759	case ISS_DATA_DFSC_TF_L1:
4760	case ISS_DATA_DFSC_TF_L2:
4761	case ISS_DATA_DFSC_TF_L3:
4762		/* Ask the MMU to check the address */
4763		if (pmap == kernel_pmap)
4764			par = arm64_address_translate_s1e1r(far);
4765		else
4766			par = arm64_address_translate_s1e0r(far);
4767
4768		/*
4769		 * If the translation was successful the address was invalid
4770		 * due to a break-before-make sequence. We can unlock and
4771		 * return success to the trap handler.
4772		 */
4773		if (PAR_SUCCESS(par)) {
4774			PMAP_UNLOCK(pmap);
4775			return (KERN_SUCCESS);
4776		}
4777		break;
4778	default:
4779		break;
4780	}
4781	PMAP_UNLOCK(pmap);
4782#endif
4783
4784	return (KERN_FAILURE);
4785}
4786
4787/*
4788 *	Increase the starting virtual address of the given mapping if a
4789 *	different alignment might result in more superpage mappings.
4790 */
4791void
4792pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4793    vm_offset_t *addr, vm_size_t size)
4794{
4795	vm_offset_t superpage_offset;
4796
4797	if (size < L2_SIZE)
4798		return;
4799	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4800		offset += ptoa(object->pg_color);
4801	superpage_offset = offset & L2_OFFSET;
4802	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
4803	    (*addr & L2_OFFSET) == superpage_offset)
4804		return;
4805	if ((*addr & L2_OFFSET) < superpage_offset)
4806		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
4807	else
4808		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
4809}
4810
4811/**
4812 * Get the kernel virtual address of a set of physical pages. If there are
4813 * physical addresses not covered by the DMAP perform a transient mapping
4814 * that will be removed when calling pmap_unmap_io_transient.
4815 *
4816 * \param page        The pages the caller wishes to obtain the virtual
4817 *                    address on the kernel memory map.
4818 * \param vaddr       On return contains the kernel virtual memory address
4819 *                    of the pages passed in the page parameter.
4820 * \param count       Number of pages passed in.
4821 * \param can_fault   TRUE if the thread using the mapped pages can take
4822 *                    page faults, FALSE otherwise.
4823 *
4824 * \returns TRUE if the caller must call pmap_unmap_io_transient when
4825 *          finished or FALSE otherwise.
4826 *
4827 */
4828boolean_t
4829pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
4830    boolean_t can_fault)
4831{
4832	vm_paddr_t paddr;
4833	boolean_t needs_mapping;
4834	int error, i;
4835
4836	/*
4837	 * Allocate any KVA space that we need, this is done in a separate
4838	 * loop to prevent calling vmem_alloc while pinned.
4839	 */
4840	needs_mapping = FALSE;
4841	for (i = 0; i < count; i++) {
4842		paddr = VM_PAGE_TO_PHYS(page[i]);
4843		if (__predict_false(!PHYS_IN_DMAP(paddr))) {
4844			error = vmem_alloc(kernel_arena, PAGE_SIZE,
4845			    M_BESTFIT | M_WAITOK, &vaddr[i]);
4846			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
4847			needs_mapping = TRUE;
4848		} else {
4849			vaddr[i] = PHYS_TO_DMAP(paddr);
4850		}
4851	}
4852
4853	/* Exit early if everything is covered by the DMAP */
4854	if (!needs_mapping)
4855		return (FALSE);
4856
4857	if (!can_fault)
4858		sched_pin();
4859	for (i = 0; i < count; i++) {
4860		paddr = VM_PAGE_TO_PHYS(page[i]);
4861		if (!PHYS_IN_DMAP(paddr)) {
4862			panic(
4863			   "pmap_map_io_transient: TODO: Map out of DMAP data");
4864		}
4865	}
4866
4867	return (needs_mapping);
4868}
4869
4870void
4871pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
4872    boolean_t can_fault)
4873{
4874	vm_paddr_t paddr;
4875	int i;
4876
4877	if (!can_fault)
4878		sched_unpin();
4879	for (i = 0; i < count; i++) {
4880		paddr = VM_PAGE_TO_PHYS(page[i]);
4881		if (!PHYS_IN_DMAP(paddr)) {
4882			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
4883		}
4884	}
4885}
4886