pmap.c revision 319203
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 * Copyright (c) 2014 Andrew Turner
13 * All rights reserved.
14 * Copyright (c) 2014-2016 The FreeBSD Foundation
15 * All rights reserved.
16 *
17 * This code is derived from software contributed to Berkeley by
18 * the Systems Programming Group of the University of Utah Computer
19 * Science Department and William Jolitz of UUNET Technologies Inc.
20 *
21 * This software was developed by Andrew Turner under sponsorship from
22 * the FreeBSD Foundation.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 *    notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 *    notice, this list of conditions and the following disclaimer in the
31 *    documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 *    must display the following acknowledgement:
34 *	This product includes software developed by the University of
35 *	California, Berkeley and its contributors.
36 * 4. Neither the name of the University nor the names of its contributors
37 *    may be used to endorse or promote products derived from this software
38 *    without specific prior written permission.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53 */
54/*-
55 * Copyright (c) 2003 Networks Associates Technology, Inc.
56 * All rights reserved.
57 *
58 * This software was developed for the FreeBSD Project by Jake Burkholder,
59 * Safeport Network Services, and Network Associates Laboratories, the
60 * Security Research Division of Network Associates, Inc. under
61 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62 * CHATS research program.
63 *
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
66 * are met:
67 * 1. Redistributions of source code must retain the above copyright
68 *    notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 *    notice, this list of conditions and the following disclaimer in the
71 *    documentation and/or other materials provided with the distribution.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/11/sys/arm64/arm64/pmap.c 319203 2017-05-30 12:44:01Z andrew $");
88
89/*
90 *	Manages physical address maps.
91 *
92 *	Since the information managed by this module is
93 *	also stored by the logical address mapping module,
94 *	this module may throw away valid virtual-to-physical
95 *	mappings at almost any time.  However, invalidations
96 *	of virtual-to-physical mappings must be done as
97 *	requested.
98 *
99 *	In order to cope with hardware architectures which
100 *	make virtual-to-physical map invalidates expensive,
101 *	this module may delay invalidate or reduced protection
102 *	operations until such time as they are actually
103 *	necessary.  This module is given full information as
104 *	to which processors are currently using which maps,
105 *	and to when physical maps must be made correct.
106 */
107
108#include <sys/param.h>
109#include <sys/bitstring.h>
110#include <sys/bus.h>
111#include <sys/systm.h>
112#include <sys/kernel.h>
113#include <sys/ktr.h>
114#include <sys/lock.h>
115#include <sys/malloc.h>
116#include <sys/mman.h>
117#include <sys/msgbuf.h>
118#include <sys/mutex.h>
119#include <sys/proc.h>
120#include <sys/rwlock.h>
121#include <sys/sx.h>
122#include <sys/vmem.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#include <sys/_unrhdr.h>
127#include <sys/smp.h>
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/vm_phys.h>
139#include <vm/vm_radix.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/machdep.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146
147#define	NL0PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
148#define	NL1PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
149#define	NL2PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
150#define	NL3PG		(PAGE_SIZE/(sizeof (pt_entry_t)))
151
152#define	NUL0E		L0_ENTRIES
153#define	NUL1E		(NUL0E * NL1PG)
154#define	NUL2E		(NUL1E * NL2PG)
155
156#if !defined(DIAGNOSTIC)
157#ifdef __GNUC_GNU_INLINE__
158#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
159#else
160#define PMAP_INLINE	extern inline
161#endif
162#else
163#define PMAP_INLINE
164#endif
165
166/*
167 * These are configured by the mair_el1 register. This is set up in locore.S
168 */
169#define	DEVICE_MEMORY	0
170#define	UNCACHED_MEMORY	1
171#define	CACHED_MEMORY	2
172
173
174#ifdef PV_STATS
175#define PV_STAT(x)	do { x ; } while (0)
176#else
177#define PV_STAT(x)	do { } while (0)
178#endif
179
180#define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
181#define	pa_to_pvh(pa)		(&pv_table[pmap_l2_pindex(pa)])
182
183#define	NPV_LIST_LOCKS	MAXCPU
184
185#define	PHYS_TO_PV_LIST_LOCK(pa)	\
186			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
187
188#define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
189	struct rwlock **_lockp = (lockp);		\
190	struct rwlock *_new_lock;			\
191							\
192	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
193	if (_new_lock != *_lockp) {			\
194		if (*_lockp != NULL)			\
195			rw_wunlock(*_lockp);		\
196		*_lockp = _new_lock;			\
197		rw_wlock(*_lockp);			\
198	}						\
199} while (0)
200
201#define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
202			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
203
204#define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
205	struct rwlock **_lockp = (lockp);		\
206							\
207	if (*_lockp != NULL) {				\
208		rw_wunlock(*_lockp);			\
209		*_lockp = NULL;				\
210	}						\
211} while (0)
212
213#define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
214			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
215
216struct pmap kernel_pmap_store;
217
218vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
219vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
220vm_offset_t kernel_vm_end = 0;
221
222struct msgbuf *msgbufp = NULL;
223
224/*
225 * Data for the pv entry allocation mechanism.
226 * Updates to pv_invl_gen are protected by the pv_list_locks[]
227 * elements, but reads are not.
228 */
229static struct md_page *pv_table;
230static struct md_page pv_dummy;
231
232vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
233vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
234vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
235
236/* This code assumes all L1 DMAP entries will be used */
237CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
238CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
239
240#define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
241extern pt_entry_t pagetable_dmap[];
242
243static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
244
245static int superpages_enabled = 0;
246SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
247    CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
248    "Are large page mappings enabled?");
249
250/*
251 * Data for the pv entry allocation mechanism
252 */
253static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
254static struct mtx pv_chunks_mutex;
255static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
256
257static void	free_pv_chunk(struct pv_chunk *pc);
258static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
259static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
260static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
261static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
262static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
263		    vm_offset_t va);
264
265static int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode);
266static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
267static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
268static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
269    vm_offset_t va, struct rwlock **lockp);
270static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
271static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
272    vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
273static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
274    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
275static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
276    vm_page_t m, struct rwlock **lockp);
277
278static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
279		struct rwlock **lockp);
280
281static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
282    struct spglist *free);
283static int pmap_unuse_l3(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
284
285/*
286 * These load the old table data and store the new value.
287 * They need to be atomic as the System MMU may write to the table at
288 * the same time as the CPU.
289 */
290#define	pmap_load_store(table, entry) atomic_swap_64(table, entry)
291#define	pmap_set(table, mask) atomic_set_64(table, mask)
292#define	pmap_load_clear(table) atomic_swap_64(table, 0)
293#define	pmap_load(table) (*table)
294
295/********************/
296/* Inline functions */
297/********************/
298
299static __inline void
300pagecopy(void *s, void *d)
301{
302
303	memcpy(d, s, PAGE_SIZE);
304}
305
306#define	pmap_l0_index(va)	(((va) >> L0_SHIFT) & L0_ADDR_MASK)
307#define	pmap_l1_index(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
308#define	pmap_l2_index(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
309#define	pmap_l3_index(va)	(((va) >> L3_SHIFT) & Ln_ADDR_MASK)
310
311static __inline pd_entry_t *
312pmap_l0(pmap_t pmap, vm_offset_t va)
313{
314
315	return (&pmap->pm_l0[pmap_l0_index(va)]);
316}
317
318static __inline pd_entry_t *
319pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
320{
321	pd_entry_t *l1;
322
323	l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
324	return (&l1[pmap_l1_index(va)]);
325}
326
327static __inline pd_entry_t *
328pmap_l1(pmap_t pmap, vm_offset_t va)
329{
330	pd_entry_t *l0;
331
332	l0 = pmap_l0(pmap, va);
333	if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
334		return (NULL);
335
336	return (pmap_l0_to_l1(l0, va));
337}
338
339static __inline pd_entry_t *
340pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
341{
342	pd_entry_t *l2;
343
344	l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
345	return (&l2[pmap_l2_index(va)]);
346}
347
348static __inline pd_entry_t *
349pmap_l2(pmap_t pmap, vm_offset_t va)
350{
351	pd_entry_t *l1;
352
353	l1 = pmap_l1(pmap, va);
354	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
355		return (NULL);
356
357	return (pmap_l1_to_l2(l1, va));
358}
359
360static __inline pt_entry_t *
361pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
362{
363	pt_entry_t *l3;
364
365	l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK);
366	return (&l3[pmap_l3_index(va)]);
367}
368
369/*
370 * Returns the lowest valid pde for a given virtual address.
371 * The next level may or may not point to a valid page or block.
372 */
373static __inline pd_entry_t *
374pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
375{
376	pd_entry_t *l0, *l1, *l2, desc;
377
378	l0 = pmap_l0(pmap, va);
379	desc = pmap_load(l0) & ATTR_DESCR_MASK;
380	if (desc != L0_TABLE) {
381		*level = -1;
382		return (NULL);
383	}
384
385	l1 = pmap_l0_to_l1(l0, va);
386	desc = pmap_load(l1) & ATTR_DESCR_MASK;
387	if (desc != L1_TABLE) {
388		*level = 0;
389		return (l0);
390	}
391
392	l2 = pmap_l1_to_l2(l1, va);
393	desc = pmap_load(l2) & ATTR_DESCR_MASK;
394	if (desc != L2_TABLE) {
395		*level = 1;
396		return (l1);
397	}
398
399	*level = 2;
400	return (l2);
401}
402
403/*
404 * Returns the lowest valid pte block or table entry for a given virtual
405 * address. If there are no valid entries return NULL and set the level to
406 * the first invalid level.
407 */
408static __inline pt_entry_t *
409pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
410{
411	pd_entry_t *l1, *l2, desc;
412	pt_entry_t *l3;
413
414	l1 = pmap_l1(pmap, va);
415	if (l1 == NULL) {
416		*level = 0;
417		return (NULL);
418	}
419	desc = pmap_load(l1) & ATTR_DESCR_MASK;
420	if (desc == L1_BLOCK) {
421		*level = 1;
422		return (l1);
423	}
424
425	if (desc != L1_TABLE) {
426		*level = 1;
427		return (NULL);
428	}
429
430	l2 = pmap_l1_to_l2(l1, va);
431	desc = pmap_load(l2) & ATTR_DESCR_MASK;
432	if (desc == L2_BLOCK) {
433		*level = 2;
434		return (l2);
435	}
436
437	if (desc != L2_TABLE) {
438		*level = 2;
439		return (NULL);
440	}
441
442	*level = 3;
443	l3 = pmap_l2_to_l3(l2, va);
444	if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
445		return (NULL);
446
447	return (l3);
448}
449
450static inline bool
451pmap_superpages_enabled(void)
452{
453
454	return (superpages_enabled != 0);
455}
456
457bool
458pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
459    pd_entry_t **l2, pt_entry_t **l3)
460{
461	pd_entry_t *l0p, *l1p, *l2p;
462
463	if (pmap->pm_l0 == NULL)
464		return (false);
465
466	l0p = pmap_l0(pmap, va);
467	*l0 = l0p;
468
469	if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
470		return (false);
471
472	l1p = pmap_l0_to_l1(l0p, va);
473	*l1 = l1p;
474
475	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
476		*l2 = NULL;
477		*l3 = NULL;
478		return (true);
479	}
480
481	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
482		return (false);
483
484	l2p = pmap_l1_to_l2(l1p, va);
485	*l2 = l2p;
486
487	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
488		*l3 = NULL;
489		return (true);
490	}
491
492	*l3 = pmap_l2_to_l3(l2p, va);
493
494	return (true);
495}
496
497static __inline int
498pmap_is_current(pmap_t pmap)
499{
500
501	return ((pmap == pmap_kernel()) ||
502	    (pmap == curthread->td_proc->p_vmspace->vm_map.pmap));
503}
504
505static __inline int
506pmap_l3_valid(pt_entry_t l3)
507{
508
509	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
510}
511
512
513/* Is a level 1 or 2entry a valid block and cacheable */
514CTASSERT(L1_BLOCK == L2_BLOCK);
515static __inline int
516pmap_pte_valid_cacheable(pt_entry_t pte)
517{
518
519	return (((pte & ATTR_DESCR_MASK) == L1_BLOCK) &&
520	    ((pte & ATTR_IDX_MASK) == ATTR_IDX(CACHED_MEMORY)));
521}
522
523static __inline int
524pmap_l3_valid_cacheable(pt_entry_t l3)
525{
526
527	return (((l3 & ATTR_DESCR_MASK) == L3_PAGE) &&
528	    ((l3 & ATTR_IDX_MASK) == ATTR_IDX(CACHED_MEMORY)));
529}
530
531#define	PTE_SYNC(pte)	cpu_dcache_wb_range((vm_offset_t)pte, sizeof(*pte))
532
533/*
534 * Checks if the page is dirty. We currently lack proper tracking of this on
535 * arm64 so for now assume is a page mapped as rw was accessed it is.
536 */
537static inline int
538pmap_page_dirty(pt_entry_t pte)
539{
540
541	return ((pte & (ATTR_AF | ATTR_AP_RW_BIT)) ==
542	    (ATTR_AF | ATTR_AP(ATTR_AP_RW)));
543}
544
545static __inline void
546pmap_resident_count_inc(pmap_t pmap, int count)
547{
548
549	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
550	pmap->pm_stats.resident_count += count;
551}
552
553static __inline void
554pmap_resident_count_dec(pmap_t pmap, int count)
555{
556
557	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
558	KASSERT(pmap->pm_stats.resident_count >= count,
559	    ("pmap %p resident count underflow %ld %d", pmap,
560	    pmap->pm_stats.resident_count, count));
561	pmap->pm_stats.resident_count -= count;
562}
563
564static pt_entry_t *
565pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
566    u_int *l2_slot)
567{
568	pt_entry_t *l2;
569	pd_entry_t *l1;
570
571	l1 = (pd_entry_t *)l1pt;
572	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
573
574	/* Check locore has used a table L1 map */
575	KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
576	   ("Invalid bootstrap L1 table"));
577	/* Find the address of the L2 table */
578	l2 = (pt_entry_t *)init_pt_va;
579	*l2_slot = pmap_l2_index(va);
580
581	return (l2);
582}
583
584static vm_paddr_t
585pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
586{
587	u_int l1_slot, l2_slot;
588	pt_entry_t *l2;
589
590	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
591
592	return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
593}
594
595static void
596pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa, vm_paddr_t max_pa)
597{
598	vm_offset_t va;
599	vm_paddr_t pa;
600	u_int l1_slot;
601
602	pa = dmap_phys_base = min_pa & ~L1_OFFSET;
603	va = DMAP_MIN_ADDRESS;
604	for (; va < DMAP_MAX_ADDRESS && pa < max_pa;
605	    pa += L1_SIZE, va += L1_SIZE, l1_slot++) {
606		l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
607
608		pmap_load_store(&pagetable_dmap[l1_slot],
609		    (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_XN |
610		    ATTR_IDX(CACHED_MEMORY) | L1_BLOCK);
611	}
612
613	/* Set the upper limit of the DMAP region */
614	dmap_phys_max = pa;
615	dmap_max_addr = va;
616
617	cpu_dcache_wb_range((vm_offset_t)pagetable_dmap,
618	    PAGE_SIZE * DMAP_TABLES);
619	cpu_tlb_flushID();
620}
621
622static vm_offset_t
623pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
624{
625	vm_offset_t l2pt;
626	vm_paddr_t pa;
627	pd_entry_t *l1;
628	u_int l1_slot;
629
630	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
631
632	l1 = (pd_entry_t *)l1pt;
633	l1_slot = pmap_l1_index(va);
634	l2pt = l2_start;
635
636	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
637		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
638
639		pa = pmap_early_vtophys(l1pt, l2pt);
640		pmap_load_store(&l1[l1_slot],
641		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
642		l2pt += PAGE_SIZE;
643	}
644
645	/* Clean the L2 page table */
646	memset((void *)l2_start, 0, l2pt - l2_start);
647	cpu_dcache_wb_range(l2_start, l2pt - l2_start);
648
649	/* Flush the l1 table to ram */
650	cpu_dcache_wb_range((vm_offset_t)l1, PAGE_SIZE);
651
652	return l2pt;
653}
654
655static vm_offset_t
656pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
657{
658	vm_offset_t l2pt, l3pt;
659	vm_paddr_t pa;
660	pd_entry_t *l2;
661	u_int l2_slot;
662
663	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
664
665	l2 = pmap_l2(kernel_pmap, va);
666	l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
667	l2pt = (vm_offset_t)l2;
668	l2_slot = pmap_l2_index(va);
669	l3pt = l3_start;
670
671	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
672		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
673
674		pa = pmap_early_vtophys(l1pt, l3pt);
675		pmap_load_store(&l2[l2_slot],
676		    (pa & ~Ln_TABLE_MASK) | L2_TABLE);
677		l3pt += PAGE_SIZE;
678	}
679
680	/* Clean the L2 page table */
681	memset((void *)l3_start, 0, l3pt - l3_start);
682	cpu_dcache_wb_range(l3_start, l3pt - l3_start);
683
684	cpu_dcache_wb_range((vm_offset_t)l2, PAGE_SIZE);
685
686	return l3pt;
687}
688
689/*
690 *	Bootstrap the system enough to run with virtual memory.
691 */
692void
693pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
694    vm_size_t kernlen)
695{
696	u_int l1_slot, l2_slot, avail_slot, map_slot, used_map_slot;
697	uint64_t kern_delta;
698	pt_entry_t *l2;
699	vm_offset_t va, freemempos;
700	vm_offset_t dpcpu, msgbufpv;
701	vm_paddr_t pa, max_pa, min_pa;
702	int i;
703
704	kern_delta = KERNBASE - kernstart;
705	physmem = 0;
706
707	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
708	printf("%lx\n", l1pt);
709	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
710
711	/* Set this early so we can use the pagetable walking functions */
712	kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
713	PMAP_LOCK_INIT(kernel_pmap);
714
715	/* Assume the address we were loaded to is a valid physical address */
716	min_pa = max_pa = KERNBASE - kern_delta;
717
718	/*
719	 * Find the minimum physical address. physmap is sorted,
720	 * but may contain empty ranges.
721	 */
722	for (i = 0; i < (physmap_idx * 2); i += 2) {
723		if (physmap[i] == physmap[i + 1])
724			continue;
725		if (physmap[i] <= min_pa)
726			min_pa = physmap[i];
727		if (physmap[i + 1] > max_pa)
728			max_pa = physmap[i + 1];
729	}
730
731	/* Create a direct map region early so we can use it for pa -> va */
732	pmap_bootstrap_dmap(l1pt, min_pa, max_pa);
733
734	va = KERNBASE;
735	pa = KERNBASE - kern_delta;
736
737	/*
738	 * Start to initialise phys_avail by copying from physmap
739	 * up to the physical address KERNBASE points at.
740	 */
741	map_slot = avail_slot = 0;
742	for (; map_slot < (physmap_idx * 2) &&
743	    avail_slot < (PHYS_AVAIL_SIZE - 2); map_slot += 2) {
744		if (physmap[map_slot] == physmap[map_slot + 1])
745			continue;
746
747		if (physmap[map_slot] <= pa &&
748		    physmap[map_slot + 1] > pa)
749			break;
750
751		phys_avail[avail_slot] = physmap[map_slot];
752		phys_avail[avail_slot + 1] = physmap[map_slot + 1];
753		physmem += (phys_avail[avail_slot + 1] -
754		    phys_avail[avail_slot]) >> PAGE_SHIFT;
755		avail_slot += 2;
756	}
757
758	/* Add the memory before the kernel */
759	if (physmap[avail_slot] < pa && avail_slot < (PHYS_AVAIL_SIZE - 2)) {
760		phys_avail[avail_slot] = physmap[map_slot];
761		phys_avail[avail_slot + 1] = pa;
762		physmem += (phys_avail[avail_slot + 1] -
763		    phys_avail[avail_slot]) >> PAGE_SHIFT;
764		avail_slot += 2;
765	}
766	used_map_slot = map_slot;
767
768	/*
769	 * Read the page table to find out what is already mapped.
770	 * This assumes we have mapped a block of memory from KERNBASE
771	 * using a single L1 entry.
772	 */
773	l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
774
775	/* Sanity check the index, KERNBASE should be the first VA */
776	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
777
778	/* Find how many pages we have mapped */
779	for (; l2_slot < Ln_ENTRIES; l2_slot++) {
780		if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0)
781			break;
782
783		/* Check locore used L2 blocks */
784		KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK,
785		    ("Invalid bootstrap L2 table"));
786		KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa,
787		    ("Incorrect PA in L2 table"));
788
789		va += L2_SIZE;
790		pa += L2_SIZE;
791	}
792
793	va = roundup2(va, L1_SIZE);
794
795	freemempos = KERNBASE + kernlen;
796	freemempos = roundup2(freemempos, PAGE_SIZE);
797	/* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */
798	freemempos = pmap_bootstrap_l2(l1pt, va, freemempos);
799	/* And the l3 tables for the early devmap */
800	freemempos = pmap_bootstrap_l3(l1pt,
801	    VM_MAX_KERNEL_ADDRESS - L2_SIZE, freemempos);
802
803	cpu_tlb_flushID();
804
805#define alloc_pages(var, np)						\
806	(var) = freemempos;						\
807	freemempos += (np * PAGE_SIZE);					\
808	memset((char *)(var), 0, ((np) * PAGE_SIZE));
809
810	/* Allocate dynamic per-cpu area. */
811	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
812	dpcpu_init((void *)dpcpu, 0);
813
814	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
815	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
816	msgbufp = (void *)msgbufpv;
817
818	virtual_avail = roundup2(freemempos, L1_SIZE);
819	virtual_end = VM_MAX_KERNEL_ADDRESS - L2_SIZE;
820	kernel_vm_end = virtual_avail;
821
822	pa = pmap_early_vtophys(l1pt, freemempos);
823
824	/* Finish initialising physmap */
825	map_slot = used_map_slot;
826	for (; avail_slot < (PHYS_AVAIL_SIZE - 2) &&
827	    map_slot < (physmap_idx * 2); map_slot += 2) {
828		if (physmap[map_slot] == physmap[map_slot + 1])
829			continue;
830
831		/* Have we used the current range? */
832		if (physmap[map_slot + 1] <= pa)
833			continue;
834
835		/* Do we need to split the entry? */
836		if (physmap[map_slot] < pa) {
837			phys_avail[avail_slot] = pa;
838			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
839		} else {
840			phys_avail[avail_slot] = physmap[map_slot];
841			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
842		}
843		physmem += (phys_avail[avail_slot + 1] -
844		    phys_avail[avail_slot]) >> PAGE_SHIFT;
845
846		avail_slot += 2;
847	}
848	phys_avail[avail_slot] = 0;
849	phys_avail[avail_slot + 1] = 0;
850
851	/*
852	 * Maxmem isn't the "maximum memory", it's one larger than the
853	 * highest page of the physical address space.  It should be
854	 * called something like "Maxphyspage".
855	 */
856	Maxmem = atop(phys_avail[avail_slot - 1]);
857
858	cpu_tlb_flushID();
859}
860
861/*
862 *	Initialize a vm_page's machine-dependent fields.
863 */
864void
865pmap_page_init(vm_page_t m)
866{
867
868	TAILQ_INIT(&m->md.pv_list);
869	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
870}
871
872/*
873 *	Initialize the pmap module.
874 *	Called by vm_init, to initialize any structures that the pmap
875 *	system needs to map virtual memory.
876 */
877void
878pmap_init(void)
879{
880	vm_size_t s;
881	int i, pv_npg;
882
883	/*
884	 * Are large page mappings enabled?
885	 */
886	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
887
888	/*
889	 * Initialize the pv chunk list mutex.
890	 */
891	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
892
893	/*
894	 * Initialize the pool of pv list locks.
895	 */
896	for (i = 0; i < NPV_LIST_LOCKS; i++)
897		rw_init(&pv_list_locks[i], "pmap pv list");
898
899	/*
900	 * Calculate the size of the pv head table for superpages.
901	 */
902	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
903
904	/*
905	 * Allocate memory for the pv head table for superpages.
906	 */
907	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
908	s = round_page(s);
909	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
910	    M_WAITOK | M_ZERO);
911	for (i = 0; i < pv_npg; i++)
912		TAILQ_INIT(&pv_table[i].pv_list);
913	TAILQ_INIT(&pv_dummy.pv_list);
914}
915
916static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD, 0,
917    "2MB page mapping counters");
918
919static u_long pmap_l2_demotions;
920SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
921    &pmap_l2_demotions, 0, "2MB page demotions");
922
923static u_long pmap_l2_p_failures;
924SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
925    &pmap_l2_p_failures, 0, "2MB page promotion failures");
926
927static u_long pmap_l2_promotions;
928SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
929    &pmap_l2_promotions, 0, "2MB page promotions");
930
931/*
932 * Invalidate a single TLB entry.
933 */
934PMAP_INLINE void
935pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
936{
937
938	sched_pin();
939	__asm __volatile(
940	    "dsb  ishst		\n"
941	    "tlbi vaae1is, %0	\n"
942	    "dsb  ish		\n"
943	    "isb		\n"
944	    : : "r"(va >> PAGE_SHIFT));
945	sched_unpin();
946}
947
948PMAP_INLINE void
949pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
950{
951	vm_offset_t addr;
952
953	sched_pin();
954	dsb(ishst);
955	for (addr = sva; addr < eva; addr += PAGE_SIZE) {
956		__asm __volatile(
957		    "tlbi vaae1is, %0" : : "r"(addr >> PAGE_SHIFT));
958	}
959	__asm __volatile(
960	    "dsb  ish	\n"
961	    "isb	\n");
962	sched_unpin();
963}
964
965PMAP_INLINE void
966pmap_invalidate_all(pmap_t pmap)
967{
968
969	sched_pin();
970	__asm __volatile(
971	    "dsb  ishst		\n"
972	    "tlbi vmalle1is	\n"
973	    "dsb  ish		\n"
974	    "isb		\n");
975	sched_unpin();
976}
977
978/*
979 *	Routine:	pmap_extract
980 *	Function:
981 *		Extract the physical page address associated
982 *		with the given map/virtual_address pair.
983 */
984vm_paddr_t
985pmap_extract(pmap_t pmap, vm_offset_t va)
986{
987	pt_entry_t *pte, tpte;
988	vm_paddr_t pa;
989	int lvl;
990
991	pa = 0;
992	PMAP_LOCK(pmap);
993	/*
994	 * Find the block or page map for this virtual address. pmap_pte
995	 * will return either a valid block/page entry, or NULL.
996	 */
997	pte = pmap_pte(pmap, va, &lvl);
998	if (pte != NULL) {
999		tpte = pmap_load(pte);
1000		pa = tpte & ~ATTR_MASK;
1001		switch(lvl) {
1002		case 1:
1003			KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1004			    ("pmap_extract: Invalid L1 pte found: %lx",
1005			    tpte & ATTR_DESCR_MASK));
1006			pa |= (va & L1_OFFSET);
1007			break;
1008		case 2:
1009			KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1010			    ("pmap_extract: Invalid L2 pte found: %lx",
1011			    tpte & ATTR_DESCR_MASK));
1012			pa |= (va & L2_OFFSET);
1013			break;
1014		case 3:
1015			KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1016			    ("pmap_extract: Invalid L3 pte found: %lx",
1017			    tpte & ATTR_DESCR_MASK));
1018			pa |= (va & L3_OFFSET);
1019			break;
1020		}
1021	}
1022	PMAP_UNLOCK(pmap);
1023	return (pa);
1024}
1025
1026/*
1027 *	Routine:	pmap_extract_and_hold
1028 *	Function:
1029 *		Atomically extract and hold the physical page
1030 *		with the given pmap and virtual address pair
1031 *		if that mapping permits the given protection.
1032 */
1033vm_page_t
1034pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1035{
1036	pt_entry_t *pte, tpte;
1037	vm_offset_t off;
1038	vm_paddr_t pa;
1039	vm_page_t m;
1040	int lvl;
1041
1042	pa = 0;
1043	m = NULL;
1044	PMAP_LOCK(pmap);
1045retry:
1046	pte = pmap_pte(pmap, va, &lvl);
1047	if (pte != NULL) {
1048		tpte = pmap_load(pte);
1049
1050		KASSERT(lvl > 0 && lvl <= 3,
1051		    ("pmap_extract_and_hold: Invalid level %d", lvl));
1052		CTASSERT(L1_BLOCK == L2_BLOCK);
1053		KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1054		    (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1055		    ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1056		     tpte & ATTR_DESCR_MASK));
1057		if (((tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) ||
1058		    ((prot & VM_PROT_WRITE) == 0)) {
1059			switch(lvl) {
1060			case 1:
1061				off = va & L1_OFFSET;
1062				break;
1063			case 2:
1064				off = va & L2_OFFSET;
1065				break;
1066			case 3:
1067			default:
1068				off = 0;
1069			}
1070			if (vm_page_pa_tryrelock(pmap,
1071			    (tpte & ~ATTR_MASK) | off, &pa))
1072				goto retry;
1073			m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1074			vm_page_hold(m);
1075		}
1076	}
1077	PA_UNLOCK_COND(pa);
1078	PMAP_UNLOCK(pmap);
1079	return (m);
1080}
1081
1082vm_paddr_t
1083pmap_kextract(vm_offset_t va)
1084{
1085	pt_entry_t *pte, tpte;
1086	vm_paddr_t pa;
1087	int lvl;
1088
1089	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1090		pa = DMAP_TO_PHYS(va);
1091	} else {
1092		pa = 0;
1093		pte = pmap_pte(kernel_pmap, va, &lvl);
1094		if (pte != NULL) {
1095			tpte = pmap_load(pte);
1096			pa = tpte & ~ATTR_MASK;
1097			switch(lvl) {
1098			case 1:
1099				KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1100				    ("pmap_kextract: Invalid L1 pte found: %lx",
1101				    tpte & ATTR_DESCR_MASK));
1102				pa |= (va & L1_OFFSET);
1103				break;
1104			case 2:
1105				KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1106				    ("pmap_kextract: Invalid L2 pte found: %lx",
1107				    tpte & ATTR_DESCR_MASK));
1108				pa |= (va & L2_OFFSET);
1109				break;
1110			case 3:
1111				KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1112				    ("pmap_kextract: Invalid L3 pte found: %lx",
1113				    tpte & ATTR_DESCR_MASK));
1114				pa |= (va & L3_OFFSET);
1115				break;
1116			}
1117		}
1118	}
1119	return (pa);
1120}
1121
1122/***************************************************
1123 * Low level mapping routines.....
1124 ***************************************************/
1125
1126static void
1127pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1128{
1129	pd_entry_t *pde;
1130	pt_entry_t *pte, attr;
1131	vm_offset_t va;
1132	int lvl;
1133
1134	KASSERT((pa & L3_OFFSET) == 0,
1135	   ("pmap_kenter: Invalid physical address"));
1136	KASSERT((sva & L3_OFFSET) == 0,
1137	   ("pmap_kenter: Invalid virtual address"));
1138	KASSERT((size & PAGE_MASK) == 0,
1139	    ("pmap_kenter: Mapping is not page-sized"));
1140
1141	attr = ATTR_DEFAULT | ATTR_IDX(mode) | L3_PAGE;
1142	if (mode == DEVICE_MEMORY)
1143		attr |= ATTR_XN;
1144
1145	va = sva;
1146	while (size != 0) {
1147		pde = pmap_pde(kernel_pmap, va, &lvl);
1148		KASSERT(pde != NULL,
1149		    ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1150		KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1151
1152		pte = pmap_l2_to_l3(pde, va);
1153		pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1154		PTE_SYNC(pte);
1155
1156		va += PAGE_SIZE;
1157		pa += PAGE_SIZE;
1158		size -= PAGE_SIZE;
1159	}
1160	pmap_invalidate_range(kernel_pmap, sva, va);
1161}
1162
1163void
1164pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1165{
1166
1167	pmap_kenter(sva, size, pa, DEVICE_MEMORY);
1168}
1169
1170/*
1171 * Remove a page from the kernel pagetables.
1172 */
1173PMAP_INLINE void
1174pmap_kremove(vm_offset_t va)
1175{
1176	pt_entry_t *pte;
1177	int lvl;
1178
1179	pte = pmap_pte(kernel_pmap, va, &lvl);
1180	KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1181	KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1182
1183	if (pmap_l3_valid_cacheable(pmap_load(pte)))
1184		cpu_dcache_wb_range(va, L3_SIZE);
1185	pmap_load_clear(pte);
1186	PTE_SYNC(pte);
1187	pmap_invalidate_page(kernel_pmap, va);
1188}
1189
1190void
1191pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1192{
1193	pt_entry_t *pte;
1194	vm_offset_t va;
1195	int lvl;
1196
1197	KASSERT((sva & L3_OFFSET) == 0,
1198	   ("pmap_kremove_device: Invalid virtual address"));
1199	KASSERT((size & PAGE_MASK) == 0,
1200	    ("pmap_kremove_device: Mapping is not page-sized"));
1201
1202	va = sva;
1203	while (size != 0) {
1204		pte = pmap_pte(kernel_pmap, va, &lvl);
1205		KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1206		KASSERT(lvl == 3,
1207		    ("Invalid device pagetable level: %d != 3", lvl));
1208		pmap_load_clear(pte);
1209		PTE_SYNC(pte);
1210
1211		va += PAGE_SIZE;
1212		size -= PAGE_SIZE;
1213	}
1214	pmap_invalidate_range(kernel_pmap, sva, va);
1215}
1216
1217/*
1218 *	Used to map a range of physical addresses into kernel
1219 *	virtual address space.
1220 *
1221 *	The value passed in '*virt' is a suggested virtual address for
1222 *	the mapping. Architectures which can support a direct-mapped
1223 *	physical to virtual region can return the appropriate address
1224 *	within that region, leaving '*virt' unchanged. Other
1225 *	architectures should map the pages starting at '*virt' and
1226 *	update '*virt' with the first usable address after the mapped
1227 *	region.
1228 */
1229vm_offset_t
1230pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1231{
1232	return PHYS_TO_DMAP(start);
1233}
1234
1235
1236/*
1237 * Add a list of wired pages to the kva
1238 * this routine is only used for temporary
1239 * kernel mappings that do not need to have
1240 * page modification or references recorded.
1241 * Note that old mappings are simply written
1242 * over.  The page *must* be wired.
1243 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1244 */
1245void
1246pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1247{
1248	pd_entry_t *pde;
1249	pt_entry_t *pte, pa;
1250	vm_offset_t va;
1251	vm_page_t m;
1252	int i, lvl;
1253
1254	va = sva;
1255	for (i = 0; i < count; i++) {
1256		pde = pmap_pde(kernel_pmap, va, &lvl);
1257		KASSERT(pde != NULL,
1258		    ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1259		KASSERT(lvl == 2,
1260		    ("pmap_qenter: Invalid level %d", lvl));
1261
1262		m = ma[i];
1263		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_AP(ATTR_AP_RW) |
1264		    ATTR_IDX(m->md.pv_memattr) | L3_PAGE;
1265		if (m->md.pv_memattr == DEVICE_MEMORY)
1266			pa |= ATTR_XN;
1267		pte = pmap_l2_to_l3(pde, va);
1268		pmap_load_store(pte, pa);
1269		PTE_SYNC(pte);
1270
1271		va += L3_SIZE;
1272	}
1273	pmap_invalidate_range(kernel_pmap, sva, va);
1274}
1275
1276/*
1277 * This routine tears out page mappings from the
1278 * kernel -- it is meant only for temporary mappings.
1279 */
1280void
1281pmap_qremove(vm_offset_t sva, int count)
1282{
1283	pt_entry_t *pte;
1284	vm_offset_t va;
1285	int lvl;
1286
1287	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1288
1289	va = sva;
1290	while (count-- > 0) {
1291		pte = pmap_pte(kernel_pmap, va, &lvl);
1292		KASSERT(lvl == 3,
1293		    ("Invalid device pagetable level: %d != 3", lvl));
1294		if (pte != NULL) {
1295			if (pmap_l3_valid_cacheable(pmap_load(pte)))
1296				cpu_dcache_wb_range(va, L3_SIZE);
1297			pmap_load_clear(pte);
1298			PTE_SYNC(pte);
1299		}
1300
1301		va += PAGE_SIZE;
1302	}
1303	pmap_invalidate_range(kernel_pmap, sva, va);
1304}
1305
1306/***************************************************
1307 * Page table page management routines.....
1308 ***************************************************/
1309static __inline void
1310pmap_free_zero_pages(struct spglist *free)
1311{
1312	vm_page_t m;
1313
1314	while ((m = SLIST_FIRST(free)) != NULL) {
1315		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1316		/* Preserve the page's PG_ZERO setting. */
1317		vm_page_free_toq(m);
1318	}
1319}
1320
1321/*
1322 * Schedule the specified unused page table page to be freed.  Specifically,
1323 * add the page to the specified list of pages that will be released to the
1324 * physical memory manager after the TLB has been updated.
1325 */
1326static __inline void
1327pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1328    boolean_t set_PG_ZERO)
1329{
1330
1331	if (set_PG_ZERO)
1332		m->flags |= PG_ZERO;
1333	else
1334		m->flags &= ~PG_ZERO;
1335	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1336}
1337
1338/*
1339 * Decrements a page table page's wire count, which is used to record the
1340 * number of valid page table entries within the page.  If the wire count
1341 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1342 * page table page was unmapped and FALSE otherwise.
1343 */
1344static inline boolean_t
1345pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1346{
1347
1348	--m->wire_count;
1349	if (m->wire_count == 0) {
1350		_pmap_unwire_l3(pmap, va, m, free);
1351		return (TRUE);
1352	} else
1353		return (FALSE);
1354}
1355
1356static void
1357_pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1358{
1359
1360	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1361	/*
1362	 * unmap the page table page
1363	 */
1364	if (m->pindex >= (NUL2E + NUL1E)) {
1365		/* l1 page */
1366		pd_entry_t *l0;
1367
1368		l0 = pmap_l0(pmap, va);
1369		pmap_load_clear(l0);
1370		PTE_SYNC(l0);
1371	} else if (m->pindex >= NUL2E) {
1372		/* l2 page */
1373		pd_entry_t *l1;
1374
1375		l1 = pmap_l1(pmap, va);
1376		pmap_load_clear(l1);
1377		PTE_SYNC(l1);
1378	} else {
1379		/* l3 page */
1380		pd_entry_t *l2;
1381
1382		l2 = pmap_l2(pmap, va);
1383		pmap_load_clear(l2);
1384		PTE_SYNC(l2);
1385	}
1386	pmap_resident_count_dec(pmap, 1);
1387	if (m->pindex < NUL2E) {
1388		/* We just released an l3, unhold the matching l2 */
1389		pd_entry_t *l1, tl1;
1390		vm_page_t l2pg;
1391
1392		l1 = pmap_l1(pmap, va);
1393		tl1 = pmap_load(l1);
1394		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1395		pmap_unwire_l3(pmap, va, l2pg, free);
1396	} else if (m->pindex < (NUL2E + NUL1E)) {
1397		/* We just released an l2, unhold the matching l1 */
1398		pd_entry_t *l0, tl0;
1399		vm_page_t l1pg;
1400
1401		l0 = pmap_l0(pmap, va);
1402		tl0 = pmap_load(l0);
1403		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1404		pmap_unwire_l3(pmap, va, l1pg, free);
1405	}
1406	pmap_invalidate_page(pmap, va);
1407
1408	/*
1409	 * This is a release store so that the ordinary store unmapping
1410	 * the page table page is globally performed before TLB shoot-
1411	 * down is begun.
1412	 */
1413	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
1414
1415	/*
1416	 * Put page on a list so that it is released after
1417	 * *ALL* TLB shootdown is done
1418	 */
1419	pmap_add_delayed_free_list(m, free, TRUE);
1420}
1421
1422/*
1423 * After removing an l3 entry, this routine is used to
1424 * conditionally free the page, and manage the hold/wire counts.
1425 */
1426static int
1427pmap_unuse_l3(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1428    struct spglist *free)
1429{
1430	vm_page_t mpte;
1431
1432	if (va >= VM_MAXUSER_ADDRESS)
1433		return (0);
1434	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1435	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1436	return (pmap_unwire_l3(pmap, va, mpte, free));
1437}
1438
1439void
1440pmap_pinit0(pmap_t pmap)
1441{
1442
1443	PMAP_LOCK_INIT(pmap);
1444	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1445	pmap->pm_l0 = kernel_pmap->pm_l0;
1446	pmap->pm_root.rt_root = 0;
1447}
1448
1449int
1450pmap_pinit(pmap_t pmap)
1451{
1452	vm_paddr_t l0phys;
1453	vm_page_t l0pt;
1454
1455	/*
1456	 * allocate the l0 page
1457	 */
1458	while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1459	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1460		VM_WAIT;
1461
1462	l0phys = VM_PAGE_TO_PHYS(l0pt);
1463	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(l0phys);
1464
1465	if ((l0pt->flags & PG_ZERO) == 0)
1466		pagezero(pmap->pm_l0);
1467
1468	pmap->pm_root.rt_root = 0;
1469	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1470
1471	return (1);
1472}
1473
1474/*
1475 * This routine is called if the desired page table page does not exist.
1476 *
1477 * If page table page allocation fails, this routine may sleep before
1478 * returning NULL.  It sleeps only if a lock pointer was given.
1479 *
1480 * Note: If a page allocation fails at page table level two or three,
1481 * one or two pages may be held during the wait, only to be released
1482 * afterwards.  This conservative approach is easily argued to avoid
1483 * race conditions.
1484 */
1485static vm_page_t
1486_pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1487{
1488	vm_page_t m, l1pg, l2pg;
1489
1490	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1491
1492	/*
1493	 * Allocate a page table page.
1494	 */
1495	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1496	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1497		if (lockp != NULL) {
1498			RELEASE_PV_LIST_LOCK(lockp);
1499			PMAP_UNLOCK(pmap);
1500			VM_WAIT;
1501			PMAP_LOCK(pmap);
1502		}
1503
1504		/*
1505		 * Indicate the need to retry.  While waiting, the page table
1506		 * page may have been allocated.
1507		 */
1508		return (NULL);
1509	}
1510	if ((m->flags & PG_ZERO) == 0)
1511		pmap_zero_page(m);
1512
1513	/*
1514	 * Map the pagetable page into the process address space, if
1515	 * it isn't already there.
1516	 */
1517
1518	if (ptepindex >= (NUL2E + NUL1E)) {
1519		pd_entry_t *l0;
1520		vm_pindex_t l0index;
1521
1522		l0index = ptepindex - (NUL2E + NUL1E);
1523		l0 = &pmap->pm_l0[l0index];
1524		pmap_load_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1525		PTE_SYNC(l0);
1526	} else if (ptepindex >= NUL2E) {
1527		vm_pindex_t l0index, l1index;
1528		pd_entry_t *l0, *l1;
1529		pd_entry_t tl0;
1530
1531		l1index = ptepindex - NUL2E;
1532		l0index = l1index >> L0_ENTRIES_SHIFT;
1533
1534		l0 = &pmap->pm_l0[l0index];
1535		tl0 = pmap_load(l0);
1536		if (tl0 == 0) {
1537			/* recurse for allocating page dir */
1538			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1539			    lockp) == NULL) {
1540				--m->wire_count;
1541				/* XXX: release mem barrier? */
1542				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1543				vm_page_free_zero(m);
1544				return (NULL);
1545			}
1546		} else {
1547			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1548			l1pg->wire_count++;
1549		}
1550
1551		l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1552		l1 = &l1[ptepindex & Ln_ADDR_MASK];
1553		pmap_load_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1554		PTE_SYNC(l1);
1555	} else {
1556		vm_pindex_t l0index, l1index;
1557		pd_entry_t *l0, *l1, *l2;
1558		pd_entry_t tl0, tl1;
1559
1560		l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1561		l0index = l1index >> L0_ENTRIES_SHIFT;
1562
1563		l0 = &pmap->pm_l0[l0index];
1564		tl0 = pmap_load(l0);
1565		if (tl0 == 0) {
1566			/* recurse for allocating page dir */
1567			if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1568			    lockp) == NULL) {
1569				--m->wire_count;
1570				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1571				vm_page_free_zero(m);
1572				return (NULL);
1573			}
1574			tl0 = pmap_load(l0);
1575			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1576			l1 = &l1[l1index & Ln_ADDR_MASK];
1577		} else {
1578			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1579			l1 = &l1[l1index & Ln_ADDR_MASK];
1580			tl1 = pmap_load(l1);
1581			if (tl1 == 0) {
1582				/* recurse for allocating page dir */
1583				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1584				    lockp) == NULL) {
1585					--m->wire_count;
1586					/* XXX: release mem barrier? */
1587					atomic_subtract_int(
1588					    &vm_cnt.v_wire_count, 1);
1589					vm_page_free_zero(m);
1590					return (NULL);
1591				}
1592			} else {
1593				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1594				l2pg->wire_count++;
1595			}
1596		}
1597
1598		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1599		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1600		pmap_load_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1601		PTE_SYNC(l2);
1602	}
1603
1604	pmap_resident_count_inc(pmap, 1);
1605
1606	return (m);
1607}
1608
1609static vm_page_t
1610pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1611{
1612	vm_pindex_t ptepindex;
1613	pd_entry_t *pde, tpde;
1614#ifdef INVARIANTS
1615	pt_entry_t *pte;
1616#endif
1617	vm_page_t m;
1618	int lvl;
1619
1620	/*
1621	 * Calculate pagetable page index
1622	 */
1623	ptepindex = pmap_l2_pindex(va);
1624retry:
1625	/*
1626	 * Get the page directory entry
1627	 */
1628	pde = pmap_pde(pmap, va, &lvl);
1629
1630	/*
1631	 * If the page table page is mapped, we just increment the hold count,
1632	 * and activate it. If we get a level 2 pde it will point to a level 3
1633	 * table.
1634	 */
1635	switch (lvl) {
1636	case -1:
1637		break;
1638	case 0:
1639#ifdef INVARIANTS
1640		pte = pmap_l0_to_l1(pde, va);
1641		KASSERT(pmap_load(pte) == 0,
1642		    ("pmap_alloc_l3: TODO: l0 superpages"));
1643#endif
1644		break;
1645	case 1:
1646#ifdef INVARIANTS
1647		pte = pmap_l1_to_l2(pde, va);
1648		KASSERT(pmap_load(pte) == 0,
1649		    ("pmap_alloc_l3: TODO: l1 superpages"));
1650#endif
1651		break;
1652	case 2:
1653		tpde = pmap_load(pde);
1654		if (tpde != 0) {
1655			m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
1656			m->wire_count++;
1657			return (m);
1658		}
1659		break;
1660	default:
1661		panic("pmap_alloc_l3: Invalid level %d", lvl);
1662	}
1663
1664	/*
1665	 * Here if the pte page isn't mapped, or if it has been deallocated.
1666	 */
1667	m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1668	if (m == NULL && lockp != NULL)
1669		goto retry;
1670
1671	return (m);
1672}
1673
1674
1675/***************************************************
1676 * Pmap allocation/deallocation routines.
1677 ***************************************************/
1678
1679/*
1680 * Release any resources held by the given physical map.
1681 * Called when a pmap initialized by pmap_pinit is being released.
1682 * Should only be called if the map contains no valid mappings.
1683 */
1684void
1685pmap_release(pmap_t pmap)
1686{
1687	vm_page_t m;
1688
1689	KASSERT(pmap->pm_stats.resident_count == 0,
1690	    ("pmap_release: pmap resident count %ld != 0",
1691	    pmap->pm_stats.resident_count));
1692	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1693	    ("pmap_release: pmap has reserved page table page(s)"));
1694
1695	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l0));
1696
1697	m->wire_count--;
1698	atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1699	vm_page_free_zero(m);
1700}
1701
1702static int
1703kvm_size(SYSCTL_HANDLER_ARGS)
1704{
1705	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1706
1707	return sysctl_handle_long(oidp, &ksize, 0, req);
1708}
1709SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1710    0, 0, kvm_size, "LU", "Size of KVM");
1711
1712static int
1713kvm_free(SYSCTL_HANDLER_ARGS)
1714{
1715	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1716
1717	return sysctl_handle_long(oidp, &kfree, 0, req);
1718}
1719SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1720    0, 0, kvm_free, "LU", "Amount of KVM free");
1721
1722/*
1723 * grow the number of kernel page table entries, if needed
1724 */
1725void
1726pmap_growkernel(vm_offset_t addr)
1727{
1728	vm_paddr_t paddr;
1729	vm_page_t nkpg;
1730	pd_entry_t *l0, *l1, *l2;
1731
1732	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1733
1734	addr = roundup2(addr, L2_SIZE);
1735	if (addr - 1 >= kernel_map->max_offset)
1736		addr = kernel_map->max_offset;
1737	while (kernel_vm_end < addr) {
1738		l0 = pmap_l0(kernel_pmap, kernel_vm_end);
1739		KASSERT(pmap_load(l0) != 0,
1740		    ("pmap_growkernel: No level 0 kernel entry"));
1741
1742		l1 = pmap_l0_to_l1(l0, kernel_vm_end);
1743		if (pmap_load(l1) == 0) {
1744			/* We need a new PDP entry */
1745			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
1746			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1747			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1748			if (nkpg == NULL)
1749				panic("pmap_growkernel: no memory to grow kernel");
1750			if ((nkpg->flags & PG_ZERO) == 0)
1751				pmap_zero_page(nkpg);
1752			paddr = VM_PAGE_TO_PHYS(nkpg);
1753			pmap_load_store(l1, paddr | L1_TABLE);
1754			PTE_SYNC(l1);
1755			continue; /* try again */
1756		}
1757		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1758		if ((pmap_load(l2) & ATTR_AF) != 0) {
1759			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1760			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1761				kernel_vm_end = kernel_map->max_offset;
1762				break;
1763			}
1764			continue;
1765		}
1766
1767		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
1768		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1769		    VM_ALLOC_ZERO);
1770		if (nkpg == NULL)
1771			panic("pmap_growkernel: no memory to grow kernel");
1772		if ((nkpg->flags & PG_ZERO) == 0)
1773			pmap_zero_page(nkpg);
1774		paddr = VM_PAGE_TO_PHYS(nkpg);
1775		pmap_load_store(l2, paddr | L2_TABLE);
1776		PTE_SYNC(l2);
1777		pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1778
1779		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1780		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1781			kernel_vm_end = kernel_map->max_offset;
1782			break;
1783		}
1784	}
1785}
1786
1787
1788/***************************************************
1789 * page management routines.
1790 ***************************************************/
1791
1792CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1793CTASSERT(_NPCM == 3);
1794CTASSERT(_NPCPV == 168);
1795
1796static __inline struct pv_chunk *
1797pv_to_chunk(pv_entry_t pv)
1798{
1799
1800	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1801}
1802
1803#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1804
1805#define	PC_FREE0	0xfffffffffffffffful
1806#define	PC_FREE1	0xfffffffffffffffful
1807#define	PC_FREE2	0x000000fffffffffful
1808
1809static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1810
1811#if 0
1812#ifdef PV_STATS
1813static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1814
1815SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1816	"Current number of pv entry chunks");
1817SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1818	"Current number of pv entry chunks allocated");
1819SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1820	"Current number of pv entry chunks frees");
1821SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1822	"Number of times tried to get a chunk page but failed.");
1823
1824static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1825static int pv_entry_spare;
1826
1827SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1828	"Current number of pv entry frees");
1829SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1830	"Current number of pv entry allocs");
1831SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1832	"Current number of pv entries");
1833SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1834	"Current number of spare pv entries");
1835#endif
1836#endif /* 0 */
1837
1838/*
1839 * We are in a serious low memory condition.  Resort to
1840 * drastic measures to free some pages so we can allocate
1841 * another pv entry chunk.
1842 *
1843 * Returns NULL if PV entries were reclaimed from the specified pmap.
1844 *
1845 * We do not, however, unmap 2mpages because subsequent accesses will
1846 * allocate per-page pv entries until repromotion occurs, thereby
1847 * exacerbating the shortage of free pv entries.
1848 */
1849static vm_page_t
1850reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1851{
1852
1853	panic("ARM64TODO: reclaim_pv_chunk");
1854}
1855
1856/*
1857 * free the pv_entry back to the free list
1858 */
1859static void
1860free_pv_entry(pmap_t pmap, pv_entry_t pv)
1861{
1862	struct pv_chunk *pc;
1863	int idx, field, bit;
1864
1865	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1866	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1867	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1868	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1869	pc = pv_to_chunk(pv);
1870	idx = pv - &pc->pc_pventry[0];
1871	field = idx / 64;
1872	bit = idx % 64;
1873	pc->pc_map[field] |= 1ul << bit;
1874	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
1875	    pc->pc_map[2] != PC_FREE2) {
1876		/* 98% of the time, pc is already at the head of the list. */
1877		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1878			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1879			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1880		}
1881		return;
1882	}
1883	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1884	free_pv_chunk(pc);
1885}
1886
1887static void
1888free_pv_chunk(struct pv_chunk *pc)
1889{
1890	vm_page_t m;
1891
1892	mtx_lock(&pv_chunks_mutex);
1893 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1894	mtx_unlock(&pv_chunks_mutex);
1895	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1896	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1897	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1898	/* entire chunk is free, return it */
1899	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1900	dump_drop_page(m->phys_addr);
1901	vm_page_unwire(m, PQ_NONE);
1902	vm_page_free(m);
1903}
1904
1905/*
1906 * Returns a new PV entry, allocating a new PV chunk from the system when
1907 * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1908 * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1909 * returned.
1910 *
1911 * The given PV list lock may be released.
1912 */
1913static pv_entry_t
1914get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1915{
1916	int bit, field;
1917	pv_entry_t pv;
1918	struct pv_chunk *pc;
1919	vm_page_t m;
1920
1921	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1922	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1923retry:
1924	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1925	if (pc != NULL) {
1926		for (field = 0; field < _NPCM; field++) {
1927			if (pc->pc_map[field]) {
1928				bit = ffsl(pc->pc_map[field]) - 1;
1929				break;
1930			}
1931		}
1932		if (field < _NPCM) {
1933			pv = &pc->pc_pventry[field * 64 + bit];
1934			pc->pc_map[field] &= ~(1ul << bit);
1935			/* If this was the last item, move it to tail */
1936			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
1937			    pc->pc_map[2] == 0) {
1938				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1939				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1940				    pc_list);
1941			}
1942			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1943			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1944			return (pv);
1945		}
1946	}
1947	/* No free items, allocate another chunk */
1948	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1949	    VM_ALLOC_WIRED);
1950	if (m == NULL) {
1951		if (lockp == NULL) {
1952			PV_STAT(pc_chunk_tryfail++);
1953			return (NULL);
1954		}
1955		m = reclaim_pv_chunk(pmap, lockp);
1956		if (m == NULL)
1957			goto retry;
1958	}
1959	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1960	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1961	dump_add_page(m->phys_addr);
1962	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1963	pc->pc_pmap = pmap;
1964	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1965	pc->pc_map[1] = PC_FREE1;
1966	pc->pc_map[2] = PC_FREE2;
1967	mtx_lock(&pv_chunks_mutex);
1968	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1969	mtx_unlock(&pv_chunks_mutex);
1970	pv = &pc->pc_pventry[0];
1971	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1972	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1973	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1974	return (pv);
1975}
1976
1977/*
1978 * Ensure that the number of spare PV entries in the specified pmap meets or
1979 * exceeds the given count, "needed".
1980 *
1981 * The given PV list lock may be released.
1982 */
1983static void
1984reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1985{
1986	struct pch new_tail;
1987	struct pv_chunk *pc;
1988	int avail, free;
1989	vm_page_t m;
1990
1991	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1992	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1993
1994	/*
1995	 * Newly allocated PV chunks must be stored in a private list until
1996	 * the required number of PV chunks have been allocated.  Otherwise,
1997	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1998	 * contrast, these chunks must be added to the pmap upon allocation.
1999	 */
2000	TAILQ_INIT(&new_tail);
2001retry:
2002	avail = 0;
2003	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2004		bit_count((bitstr_t *)pc->pc_map, 0,
2005		    sizeof(pc->pc_map) * NBBY, &free);
2006		if (free == 0)
2007			break;
2008		avail += free;
2009		if (avail >= needed)
2010			break;
2011	}
2012	for (; avail < needed; avail += _NPCPV) {
2013		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2014		    VM_ALLOC_WIRED);
2015		if (m == NULL) {
2016			m = reclaim_pv_chunk(pmap, lockp);
2017			if (m == NULL)
2018				goto retry;
2019		}
2020		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2021		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2022		dump_add_page(m->phys_addr);
2023		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2024		pc->pc_pmap = pmap;
2025		pc->pc_map[0] = PC_FREE0;
2026		pc->pc_map[1] = PC_FREE1;
2027		pc->pc_map[2] = PC_FREE2;
2028		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2029		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2030		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2031	}
2032	if (!TAILQ_EMPTY(&new_tail)) {
2033		mtx_lock(&pv_chunks_mutex);
2034		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2035		mtx_unlock(&pv_chunks_mutex);
2036	}
2037}
2038
2039/*
2040 * First find and then remove the pv entry for the specified pmap and virtual
2041 * address from the specified pv list.  Returns the pv entry if found and NULL
2042 * otherwise.  This operation can be performed on pv lists for either 4KB or
2043 * 2MB page mappings.
2044 */
2045static __inline pv_entry_t
2046pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2047{
2048	pv_entry_t pv;
2049
2050	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2051		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2052			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2053			pvh->pv_gen++;
2054			break;
2055		}
2056	}
2057	return (pv);
2058}
2059
2060/*
2061 * After demotion from a 2MB page mapping to 512 4KB page mappings,
2062 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2063 * entries for each of the 4KB page mappings.
2064 */
2065static void
2066pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2067    struct rwlock **lockp)
2068{
2069	struct md_page *pvh;
2070	struct pv_chunk *pc;
2071	pv_entry_t pv;
2072	vm_offset_t va_last;
2073	vm_page_t m;
2074	int bit, field;
2075
2076	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2077	KASSERT((pa & L2_OFFSET) == 0,
2078	    ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2079	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2080
2081	/*
2082	 * Transfer the 2mpage's pv entry for this mapping to the first
2083	 * page's pv list.  Once this transfer begins, the pv list lock
2084	 * must not be released until the last pv entry is reinstantiated.
2085	 */
2086	pvh = pa_to_pvh(pa);
2087	va = va & ~L2_OFFSET;
2088	pv = pmap_pvh_remove(pvh, pmap, va);
2089	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2090	m = PHYS_TO_VM_PAGE(pa);
2091	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2092	m->md.pv_gen++;
2093	/* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2094	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2095	va_last = va + L2_SIZE - PAGE_SIZE;
2096	for (;;) {
2097		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2098		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2099		    pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2100		for (field = 0; field < _NPCM; field++) {
2101			while (pc->pc_map[field]) {
2102				bit = ffsl(pc->pc_map[field]) - 1;
2103				pc->pc_map[field] &= ~(1ul << bit);
2104				pv = &pc->pc_pventry[field * 64 + bit];
2105				va += PAGE_SIZE;
2106				pv->pv_va = va;
2107				m++;
2108				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2109			    ("pmap_pv_demote_l2: page %p is not managed", m));
2110				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2111				m->md.pv_gen++;
2112				if (va == va_last)
2113					goto out;
2114			}
2115		}
2116		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2117		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2118	}
2119out:
2120	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2121		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2122		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2123	}
2124	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2125	PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2126}
2127
2128/*
2129 * First find and then destroy the pv entry for the specified pmap and virtual
2130 * address.  This operation can be performed on pv lists for either 4KB or 2MB
2131 * page mappings.
2132 */
2133static void
2134pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2135{
2136	pv_entry_t pv;
2137
2138	pv = pmap_pvh_remove(pvh, pmap, va);
2139	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2140	free_pv_entry(pmap, pv);
2141}
2142
2143/*
2144 * Conditionally create the PV entry for a 4KB page mapping if the required
2145 * memory can be allocated without resorting to reclamation.
2146 */
2147static boolean_t
2148pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2149    struct rwlock **lockp)
2150{
2151	pv_entry_t pv;
2152
2153	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2154	/* Pass NULL instead of the lock pointer to disable reclamation. */
2155	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2156		pv->pv_va = va;
2157		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2158		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2159		m->md.pv_gen++;
2160		return (TRUE);
2161	} else
2162		return (FALSE);
2163}
2164
2165/*
2166 * pmap_remove_l3: do the things to unmap a page in a process
2167 */
2168static int
2169pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2170    pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2171{
2172	struct md_page *pvh;
2173	pt_entry_t old_l3;
2174	vm_page_t m;
2175
2176	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2177	if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(pmap_load(l3)))
2178		cpu_dcache_wb_range(va, L3_SIZE);
2179	old_l3 = pmap_load_clear(l3);
2180	PTE_SYNC(l3);
2181	pmap_invalidate_page(pmap, va);
2182	if (old_l3 & ATTR_SW_WIRED)
2183		pmap->pm_stats.wired_count -= 1;
2184	pmap_resident_count_dec(pmap, 1);
2185	if (old_l3 & ATTR_SW_MANAGED) {
2186		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2187		if (pmap_page_dirty(old_l3))
2188			vm_page_dirty(m);
2189		if (old_l3 & ATTR_AF)
2190			vm_page_aflag_set(m, PGA_REFERENCED);
2191		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2192		pmap_pvh_free(&m->md, pmap, va);
2193		if (TAILQ_EMPTY(&m->md.pv_list) &&
2194		    (m->flags & PG_FICTITIOUS) == 0) {
2195			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2196			if (TAILQ_EMPTY(&pvh->pv_list))
2197				vm_page_aflag_clear(m, PGA_WRITEABLE);
2198		}
2199	}
2200	return (pmap_unuse_l3(pmap, va, l2e, free));
2201}
2202
2203/*
2204 *	Remove the given range of addresses from the specified map.
2205 *
2206 *	It is assumed that the start and end are properly
2207 *	rounded to the page size.
2208 */
2209void
2210pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2211{
2212	struct rwlock *lock;
2213	vm_offset_t va, va_next;
2214	pd_entry_t *l0, *l1, *l2;
2215	pt_entry_t l3_paddr, *l3;
2216	struct spglist free;
2217	int anyvalid;
2218
2219	/*
2220	 * Perform an unsynchronized read.  This is, however, safe.
2221	 */
2222	if (pmap->pm_stats.resident_count == 0)
2223		return;
2224
2225	anyvalid = 0;
2226	SLIST_INIT(&free);
2227
2228	PMAP_LOCK(pmap);
2229
2230	lock = NULL;
2231	for (; sva < eva; sva = va_next) {
2232
2233		if (pmap->pm_stats.resident_count == 0)
2234			break;
2235
2236		l0 = pmap_l0(pmap, sva);
2237		if (pmap_load(l0) == 0) {
2238			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2239			if (va_next < sva)
2240				va_next = eva;
2241			continue;
2242		}
2243
2244		l1 = pmap_l0_to_l1(l0, sva);
2245		if (pmap_load(l1) == 0) {
2246			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2247			if (va_next < sva)
2248				va_next = eva;
2249			continue;
2250		}
2251
2252		/*
2253		 * Calculate index for next page table.
2254		 */
2255		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2256		if (va_next < sva)
2257			va_next = eva;
2258
2259		l2 = pmap_l1_to_l2(l1, sva);
2260		if (l2 == NULL)
2261			continue;
2262
2263		l3_paddr = pmap_load(l2);
2264
2265		if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
2266			/* TODO: Add pmap_remove_l2 */
2267			if (pmap_demote_l2_locked(pmap, l2, sva & ~L2_OFFSET,
2268			    &lock) == NULL)
2269				continue;
2270			l3_paddr = pmap_load(l2);
2271		}
2272
2273		/*
2274		 * Weed out invalid mappings.
2275		 */
2276		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
2277			continue;
2278
2279		/*
2280		 * Limit our scan to either the end of the va represented
2281		 * by the current page table page, or to the end of the
2282		 * range being removed.
2283		 */
2284		if (va_next > eva)
2285			va_next = eva;
2286
2287		va = va_next;
2288		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2289		    sva += L3_SIZE) {
2290			if (l3 == NULL)
2291				panic("l3 == NULL");
2292			if (pmap_load(l3) == 0) {
2293				if (va != va_next) {
2294					pmap_invalidate_range(pmap, va, sva);
2295					va = va_next;
2296				}
2297				continue;
2298			}
2299			if (va == va_next)
2300				va = sva;
2301			if (pmap_remove_l3(pmap, l3, sva, l3_paddr, &free,
2302			    &lock)) {
2303				sva += L3_SIZE;
2304				break;
2305			}
2306		}
2307		if (va != va_next)
2308			pmap_invalidate_range(pmap, va, sva);
2309	}
2310	if (lock != NULL)
2311		rw_wunlock(lock);
2312	if (anyvalid)
2313		pmap_invalidate_all(pmap);
2314	PMAP_UNLOCK(pmap);
2315	pmap_free_zero_pages(&free);
2316}
2317
2318/*
2319 *	Routine:	pmap_remove_all
2320 *	Function:
2321 *		Removes this physical page from
2322 *		all physical maps in which it resides.
2323 *		Reflects back modify bits to the pager.
2324 *
2325 *	Notes:
2326 *		Original versions of this routine were very
2327 *		inefficient because they iteratively called
2328 *		pmap_remove (slow...)
2329 */
2330
2331void
2332pmap_remove_all(vm_page_t m)
2333{
2334	struct md_page *pvh;
2335	pv_entry_t pv;
2336	pmap_t pmap;
2337	struct rwlock *lock;
2338	pd_entry_t *pde, tpde;
2339	pt_entry_t *pte, tpte;
2340	vm_offset_t va;
2341	struct spglist free;
2342	int lvl, pvh_gen, md_gen;
2343
2344	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2345	    ("pmap_remove_all: page %p is not managed", m));
2346	SLIST_INIT(&free);
2347	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2348	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2349	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2350retry:
2351	rw_wlock(lock);
2352	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2353		pmap = PV_PMAP(pv);
2354		if (!PMAP_TRYLOCK(pmap)) {
2355			pvh_gen = pvh->pv_gen;
2356			rw_wunlock(lock);
2357			PMAP_LOCK(pmap);
2358			rw_wlock(lock);
2359			if (pvh_gen != pvh->pv_gen) {
2360				rw_wunlock(lock);
2361				PMAP_UNLOCK(pmap);
2362				goto retry;
2363			}
2364		}
2365		va = pv->pv_va;
2366		pte = pmap_pte(pmap, va, &lvl);
2367		KASSERT(pte != NULL,
2368		    ("pmap_remove_all: no page table entry found"));
2369		KASSERT(lvl == 2,
2370		    ("pmap_remove_all: invalid pte level %d", lvl));
2371
2372		pmap_demote_l2_locked(pmap, pte, va, &lock);
2373		PMAP_UNLOCK(pmap);
2374	}
2375	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2376		pmap = PV_PMAP(pv);
2377		if (!PMAP_TRYLOCK(pmap)) {
2378			pvh_gen = pvh->pv_gen;
2379			md_gen = m->md.pv_gen;
2380			rw_wunlock(lock);
2381			PMAP_LOCK(pmap);
2382			rw_wlock(lock);
2383			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2384				rw_wunlock(lock);
2385				PMAP_UNLOCK(pmap);
2386				goto retry;
2387			}
2388		}
2389		pmap_resident_count_dec(pmap, 1);
2390
2391		pde = pmap_pde(pmap, pv->pv_va, &lvl);
2392		KASSERT(pde != NULL,
2393		    ("pmap_remove_all: no page directory entry found"));
2394		KASSERT(lvl == 2,
2395		    ("pmap_remove_all: invalid pde level %d", lvl));
2396		tpde = pmap_load(pde);
2397
2398		pte = pmap_l2_to_l3(pde, pv->pv_va);
2399		tpte = pmap_load(pte);
2400		if (pmap_is_current(pmap) &&
2401		    pmap_l3_valid_cacheable(tpte))
2402			cpu_dcache_wb_range(pv->pv_va, L3_SIZE);
2403		pmap_load_clear(pte);
2404		PTE_SYNC(pte);
2405		pmap_invalidate_page(pmap, pv->pv_va);
2406		if (tpte & ATTR_SW_WIRED)
2407			pmap->pm_stats.wired_count--;
2408		if ((tpte & ATTR_AF) != 0)
2409			vm_page_aflag_set(m, PGA_REFERENCED);
2410
2411		/*
2412		 * Update the vm_page_t clean and reference bits.
2413		 */
2414		if (pmap_page_dirty(tpte))
2415			vm_page_dirty(m);
2416		pmap_unuse_l3(pmap, pv->pv_va, tpde, &free);
2417		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2418		m->md.pv_gen++;
2419		free_pv_entry(pmap, pv);
2420		PMAP_UNLOCK(pmap);
2421	}
2422	vm_page_aflag_clear(m, PGA_WRITEABLE);
2423	rw_wunlock(lock);
2424	pmap_free_zero_pages(&free);
2425}
2426
2427/*
2428 *	Set the physical protection on the
2429 *	specified range of this map as requested.
2430 */
2431void
2432pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2433{
2434	vm_offset_t va, va_next;
2435	pd_entry_t *l0, *l1, *l2;
2436	pt_entry_t *l3p, l3, nbits;
2437
2438	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
2439	if (prot == VM_PROT_NONE) {
2440		pmap_remove(pmap, sva, eva);
2441		return;
2442	}
2443
2444	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
2445	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
2446		return;
2447
2448	PMAP_LOCK(pmap);
2449	for (; sva < eva; sva = va_next) {
2450
2451		l0 = pmap_l0(pmap, sva);
2452		if (pmap_load(l0) == 0) {
2453			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2454			if (va_next < sva)
2455				va_next = eva;
2456			continue;
2457		}
2458
2459		l1 = pmap_l0_to_l1(l0, sva);
2460		if (pmap_load(l1) == 0) {
2461			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2462			if (va_next < sva)
2463				va_next = eva;
2464			continue;
2465		}
2466
2467		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2468		if (va_next < sva)
2469			va_next = eva;
2470
2471		l2 = pmap_l1_to_l2(l1, sva);
2472		if (pmap_load(l2) == 0)
2473			continue;
2474
2475		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
2476			l3p = pmap_demote_l2(pmap, l2, sva);
2477			if (l3p == NULL)
2478				continue;
2479		}
2480		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
2481		    ("pmap_protect: Invalid L2 entry after demotion"));
2482
2483		if (va_next > eva)
2484			va_next = eva;
2485
2486		va = va_next;
2487		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
2488		    sva += L3_SIZE) {
2489			l3 = pmap_load(l3p);
2490			if (!pmap_l3_valid(l3))
2491				continue;
2492
2493			nbits = 0;
2494			if ((prot & VM_PROT_WRITE) == 0) {
2495				if ((l3 & ATTR_SW_MANAGED) &&
2496				    pmap_page_dirty(l3)) {
2497					vm_page_dirty(PHYS_TO_VM_PAGE(l3 &
2498					    ~ATTR_MASK));
2499				}
2500				nbits |= ATTR_AP(ATTR_AP_RO);
2501			}
2502			if ((prot & VM_PROT_EXECUTE) == 0)
2503				nbits |= ATTR_XN;
2504
2505			pmap_set(l3p, nbits);
2506			PTE_SYNC(l3p);
2507			/* XXX: Use pmap_invalidate_range */
2508			pmap_invalidate_page(pmap, va);
2509		}
2510	}
2511	PMAP_UNLOCK(pmap);
2512
2513	/* TODO: Only invalidate entries we are touching */
2514	pmap_invalidate_all(pmap);
2515}
2516
2517/*
2518 * Inserts the specified page table page into the specified pmap's collection
2519 * of idle page table pages.  Each of a pmap's page table pages is responsible
2520 * for mapping a distinct range of virtual addresses.  The pmap's collection is
2521 * ordered by this virtual address range.
2522 */
2523static __inline int
2524pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
2525{
2526
2527	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2528	return (vm_radix_insert(&pmap->pm_root, mpte));
2529}
2530
2531/*
2532 * Removes the page table page mapping the specified virtual address from the
2533 * specified pmap's collection of idle page table pages, and returns it.
2534 * Otherwise, returns NULL if there is no page table page corresponding to the
2535 * specified virtual address.
2536 */
2537static __inline vm_page_t
2538pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
2539{
2540
2541	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2542	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
2543}
2544
2545/*
2546 * Performs a break-before-make update of a pmap entry. This is needed when
2547 * either promoting or demoting pages to ensure the TLB doesn't get into an
2548 * inconsistent state.
2549 */
2550static void
2551pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
2552    vm_offset_t va, vm_size_t size)
2553{
2554	register_t intr;
2555
2556	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2557
2558	/*
2559	 * Ensure we don't get switched out with the page table in an
2560	 * inconsistent state. We also need to ensure no interrupts fire
2561	 * as they may make use of an address we are about to invalidate.
2562	 */
2563	intr = intr_disable();
2564	critical_enter();
2565
2566	/* Clear the old mapping */
2567	pmap_load_clear(pte);
2568	PTE_SYNC(pte);
2569	pmap_invalidate_range(pmap, va, va + size);
2570
2571	/* Create the new mapping */
2572	pmap_load_store(pte, newpte);
2573	PTE_SYNC(pte);
2574
2575	critical_exit();
2576	intr_restore(intr);
2577}
2578
2579/*
2580 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
2581 * replace the many pv entries for the 4KB page mappings by a single pv entry
2582 * for the 2MB page mapping.
2583 */
2584static void
2585pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2586    struct rwlock **lockp)
2587{
2588	struct md_page *pvh;
2589	pv_entry_t pv;
2590	vm_offset_t va_last;
2591	vm_page_t m;
2592
2593	KASSERT((pa & L2_OFFSET) == 0,
2594	    ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
2595	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2596
2597	/*
2598	 * Transfer the first page's pv entry for this mapping to the 2mpage's
2599	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
2600	 * a transfer avoids the possibility that get_pv_entry() calls
2601	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
2602	 * mappings that is being promoted.
2603	 */
2604	m = PHYS_TO_VM_PAGE(pa);
2605	va = va & ~L2_OFFSET;
2606	pv = pmap_pvh_remove(&m->md, pmap, va);
2607	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
2608	pvh = pa_to_pvh(pa);
2609	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2610	pvh->pv_gen++;
2611	/* Free the remaining NPTEPG - 1 pv entries. */
2612	va_last = va + L2_SIZE - PAGE_SIZE;
2613	do {
2614		m++;
2615		va += PAGE_SIZE;
2616		pmap_pvh_free(&m->md, pmap, va);
2617	} while (va < va_last);
2618}
2619
2620/*
2621 * Tries to promote the 512, contiguous 4KB page mappings that are within a
2622 * single level 2 table entry to a single 2MB page mapping.  For promotion
2623 * to occur, two conditions must be met: (1) the 4KB page mappings must map
2624 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2625 * identical characteristics.
2626 */
2627static void
2628pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
2629    struct rwlock **lockp)
2630{
2631	pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
2632	vm_page_t mpte;
2633	vm_offset_t sva;
2634
2635	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2636
2637	sva = va & ~L2_OFFSET;
2638	firstl3 = pmap_l2_to_l3(l2, sva);
2639	newl2 = pmap_load(firstl3);
2640
2641	/* Check the alingment is valid */
2642	if (((newl2 & ~ATTR_MASK) & L2_OFFSET) != 0) {
2643		atomic_add_long(&pmap_l2_p_failures, 1);
2644		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
2645		    " in pmap %p", va, pmap);
2646		return;
2647	}
2648
2649	pa = newl2 + L2_SIZE - PAGE_SIZE;
2650	for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
2651		oldl3 = pmap_load(l3);
2652		if (oldl3 != pa) {
2653			atomic_add_long(&pmap_l2_p_failures, 1);
2654			CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
2655			    " in pmap %p", va, pmap);
2656			return;
2657		}
2658		pa -= PAGE_SIZE;
2659	}
2660
2661	/*
2662	 * Save the page table page in its current state until the L2
2663	 * mapping the superpage is demoted by pmap_demote_l2() or
2664	 * destroyed by pmap_remove_l3().
2665	 */
2666	mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
2667	KASSERT(mpte >= vm_page_array &&
2668	    mpte < &vm_page_array[vm_page_array_size],
2669	    ("pmap_promote_l2: page table page is out of range"));
2670	KASSERT(mpte->pindex == pmap_l2_pindex(va),
2671	    ("pmap_promote_l2: page table page's pindex is wrong"));
2672	if (pmap_insert_pt_page(pmap, mpte)) {
2673		atomic_add_long(&pmap_l2_p_failures, 1);
2674		CTR2(KTR_PMAP,
2675		    "pmap_promote_l2: failure for va %#lx in pmap %p", va,
2676		    pmap);
2677		return;
2678	}
2679
2680	if ((newl2 & ATTR_SW_MANAGED) != 0)
2681		pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
2682
2683	newl2 &= ~ATTR_DESCR_MASK;
2684	newl2 |= L2_BLOCK;
2685
2686	pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
2687
2688	atomic_add_long(&pmap_l2_promotions, 1);
2689	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
2690		    pmap);
2691}
2692
2693/*
2694 *	Insert the given physical page (p) at
2695 *	the specified virtual address (v) in the
2696 *	target physical map with the protection requested.
2697 *
2698 *	If specified, the page will be wired down, meaning
2699 *	that the related pte can not be reclaimed.
2700 *
2701 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2702 *	or lose information.  That is, this routine must actually
2703 *	insert this page into the given map NOW.
2704 */
2705int
2706pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2707    u_int flags, int8_t psind __unused)
2708{
2709	struct rwlock *lock;
2710	pd_entry_t *pde;
2711	pt_entry_t new_l3, orig_l3;
2712	pt_entry_t *l2, *l3;
2713	pv_entry_t pv;
2714	vm_paddr_t opa, pa, l1_pa, l2_pa, l3_pa;
2715	vm_page_t mpte, om, l1_m, l2_m, l3_m;
2716	boolean_t nosleep;
2717	int lvl;
2718
2719	va = trunc_page(va);
2720	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2721		VM_OBJECT_ASSERT_LOCKED(m->object);
2722	pa = VM_PAGE_TO_PHYS(m);
2723	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
2724	    L3_PAGE);
2725	if ((prot & VM_PROT_WRITE) == 0)
2726		new_l3 |= ATTR_AP(ATTR_AP_RO);
2727	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
2728		new_l3 |= ATTR_XN;
2729	if ((flags & PMAP_ENTER_WIRED) != 0)
2730		new_l3 |= ATTR_SW_WIRED;
2731	if ((va >> 63) == 0)
2732		new_l3 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN;
2733
2734	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
2735
2736	mpte = NULL;
2737
2738	lock = NULL;
2739	PMAP_LOCK(pmap);
2740
2741	pde = pmap_pde(pmap, va, &lvl);
2742	if (pde != NULL && lvl == 1) {
2743		l2 = pmap_l1_to_l2(pde, va);
2744		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
2745		    (l3 = pmap_demote_l2_locked(pmap, l2, va & ~L2_OFFSET,
2746		    &lock)) != NULL) {
2747			l3 = &l3[pmap_l3_index(va)];
2748			if (va < VM_MAXUSER_ADDRESS) {
2749				mpte = PHYS_TO_VM_PAGE(
2750				    pmap_load(l2) & ~ATTR_MASK);
2751				mpte->wire_count++;
2752			}
2753			goto havel3;
2754		}
2755	}
2756
2757	if (va < VM_MAXUSER_ADDRESS) {
2758		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2759		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
2760		if (mpte == NULL && nosleep) {
2761			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
2762			if (lock != NULL)
2763				rw_wunlock(lock);
2764			PMAP_UNLOCK(pmap);
2765			return (KERN_RESOURCE_SHORTAGE);
2766		}
2767		pde = pmap_pde(pmap, va, &lvl);
2768		KASSERT(pde != NULL,
2769		    ("pmap_enter: Invalid page entry, va: 0x%lx", va));
2770		KASSERT(lvl == 2,
2771		    ("pmap_enter: Invalid level %d", lvl));
2772
2773		l3 = pmap_l2_to_l3(pde, va);
2774	} else {
2775		/*
2776		 * If we get a level 2 pde it must point to a level 3 entry
2777		 * otherwise we will need to create the intermediate tables
2778		 */
2779		if (lvl < 2) {
2780			switch(lvl) {
2781			default:
2782			case -1:
2783				/* Get the l0 pde to update */
2784				pde = pmap_l0(pmap, va);
2785				KASSERT(pde != NULL, ("..."));
2786
2787				l1_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2788				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2789				    VM_ALLOC_ZERO);
2790				if (l1_m == NULL)
2791					panic("pmap_enter: l1 pte_m == NULL");
2792				if ((l1_m->flags & PG_ZERO) == 0)
2793					pmap_zero_page(l1_m);
2794
2795				l1_pa = VM_PAGE_TO_PHYS(l1_m);
2796				pmap_load_store(pde, l1_pa | L0_TABLE);
2797				PTE_SYNC(pde);
2798				/* FALLTHROUGH */
2799			case 0:
2800				/* Get the l1 pde to update */
2801				pde = pmap_l1_to_l2(pde, va);
2802				KASSERT(pde != NULL, ("..."));
2803
2804				l2_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2805				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2806				    VM_ALLOC_ZERO);
2807				if (l2_m == NULL)
2808					panic("pmap_enter: l2 pte_m == NULL");
2809				if ((l2_m->flags & PG_ZERO) == 0)
2810					pmap_zero_page(l2_m);
2811
2812				l2_pa = VM_PAGE_TO_PHYS(l2_m);
2813				pmap_load_store(pde, l2_pa | L1_TABLE);
2814				PTE_SYNC(pde);
2815				/* FALLTHROUGH */
2816			case 1:
2817				/* Get the l2 pde to update */
2818				pde = pmap_l1_to_l2(pde, va);
2819
2820				l3_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2821				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2822				    VM_ALLOC_ZERO);
2823				if (l3_m == NULL)
2824					panic("pmap_enter: l3 pte_m == NULL");
2825				if ((l3_m->flags & PG_ZERO) == 0)
2826					pmap_zero_page(l3_m);
2827
2828				l3_pa = VM_PAGE_TO_PHYS(l3_m);
2829				pmap_load_store(pde, l3_pa | L2_TABLE);
2830				PTE_SYNC(pde);
2831				break;
2832			}
2833		}
2834		l3 = pmap_l2_to_l3(pde, va);
2835		pmap_invalidate_page(pmap, va);
2836	}
2837havel3:
2838
2839	om = NULL;
2840	orig_l3 = pmap_load(l3);
2841	opa = orig_l3 & ~ATTR_MASK;
2842
2843	/*
2844	 * Is the specified virtual address already mapped?
2845	 */
2846	if (pmap_l3_valid(orig_l3)) {
2847		/*
2848		 * Wiring change, just update stats. We don't worry about
2849		 * wiring PT pages as they remain resident as long as there
2850		 * are valid mappings in them. Hence, if a user page is wired,
2851		 * the PT page will be also.
2852		 */
2853		if ((flags & PMAP_ENTER_WIRED) != 0 &&
2854		    (orig_l3 & ATTR_SW_WIRED) == 0)
2855			pmap->pm_stats.wired_count++;
2856		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
2857		    (orig_l3 & ATTR_SW_WIRED) != 0)
2858			pmap->pm_stats.wired_count--;
2859
2860		/*
2861		 * Remove the extra PT page reference.
2862		 */
2863		if (mpte != NULL) {
2864			mpte->wire_count--;
2865			KASSERT(mpte->wire_count > 0,
2866			    ("pmap_enter: missing reference to page table page,"
2867			     " va: 0x%lx", va));
2868		}
2869
2870		/*
2871		 * Has the physical page changed?
2872		 */
2873		if (opa == pa) {
2874			/*
2875			 * No, might be a protection or wiring change.
2876			 */
2877			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
2878				new_l3 |= ATTR_SW_MANAGED;
2879				if ((new_l3 & ATTR_AP(ATTR_AP_RW)) ==
2880				    ATTR_AP(ATTR_AP_RW)) {
2881					vm_page_aflag_set(m, PGA_WRITEABLE);
2882				}
2883			}
2884			goto validate;
2885		}
2886
2887		/* Flush the cache, there might be uncommitted data in it */
2888		if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(orig_l3))
2889			cpu_dcache_wb_range(va, L3_SIZE);
2890	} else {
2891		/*
2892		 * Increment the counters.
2893		 */
2894		if ((new_l3 & ATTR_SW_WIRED) != 0)
2895			pmap->pm_stats.wired_count++;
2896		pmap_resident_count_inc(pmap, 1);
2897	}
2898	/*
2899	 * Enter on the PV list if part of our managed memory.
2900	 */
2901	if ((m->oflags & VPO_UNMANAGED) == 0) {
2902		new_l3 |= ATTR_SW_MANAGED;
2903		pv = get_pv_entry(pmap, &lock);
2904		pv->pv_va = va;
2905		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
2906		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2907		m->md.pv_gen++;
2908		if ((new_l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
2909			vm_page_aflag_set(m, PGA_WRITEABLE);
2910	}
2911
2912	/*
2913	 * Update the L3 entry.
2914	 */
2915	if (orig_l3 != 0) {
2916validate:
2917		orig_l3 = pmap_load(l3);
2918		opa = orig_l3 & ~ATTR_MASK;
2919
2920		if (opa != pa) {
2921			pmap_update_entry(pmap, l3, new_l3, va, PAGE_SIZE);
2922			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
2923				om = PHYS_TO_VM_PAGE(opa);
2924				if (pmap_page_dirty(orig_l3))
2925					vm_page_dirty(om);
2926				if ((orig_l3 & ATTR_AF) != 0)
2927					vm_page_aflag_set(om, PGA_REFERENCED);
2928				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
2929				pmap_pvh_free(&om->md, pmap, va);
2930				if ((om->aflags & PGA_WRITEABLE) != 0 &&
2931				    TAILQ_EMPTY(&om->md.pv_list) &&
2932				    ((om->flags & PG_FICTITIOUS) != 0 ||
2933				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
2934					vm_page_aflag_clear(om, PGA_WRITEABLE);
2935			}
2936		} else {
2937			pmap_load_store(l3, new_l3);
2938			PTE_SYNC(l3);
2939			pmap_invalidate_page(pmap, va);
2940			if (pmap_page_dirty(orig_l3) &&
2941			    (orig_l3 & ATTR_SW_MANAGED) != 0)
2942				vm_page_dirty(m);
2943		}
2944	} else {
2945		pmap_load_store(l3, new_l3);
2946	}
2947
2948	PTE_SYNC(l3);
2949	pmap_invalidate_page(pmap, va);
2950
2951	if (pmap != pmap_kernel()) {
2952		if (pmap == &curproc->p_vmspace->vm_pmap &&
2953		    (prot & VM_PROT_EXECUTE) != 0)
2954			cpu_icache_sync_range(va, PAGE_SIZE);
2955
2956		if ((mpte == NULL || mpte->wire_count == NL3PG) &&
2957		    pmap_superpages_enabled() &&
2958		    (m->flags & PG_FICTITIOUS) == 0 &&
2959		    vm_reserv_level_iffullpop(m) == 0) {
2960			pmap_promote_l2(pmap, pde, va, &lock);
2961		}
2962	}
2963
2964	if (lock != NULL)
2965		rw_wunlock(lock);
2966	PMAP_UNLOCK(pmap);
2967	return (KERN_SUCCESS);
2968}
2969
2970/*
2971 * Maps a sequence of resident pages belonging to the same object.
2972 * The sequence begins with the given page m_start.  This page is
2973 * mapped at the given virtual address start.  Each subsequent page is
2974 * mapped at a virtual address that is offset from start by the same
2975 * amount as the page is offset from m_start within the object.  The
2976 * last page in the sequence is the page with the largest offset from
2977 * m_start that can be mapped at a virtual address less than the given
2978 * virtual address end.  Not every virtual page between start and end
2979 * is mapped; only those for which a resident page exists with the
2980 * corresponding offset from m_start are mapped.
2981 */
2982void
2983pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2984    vm_page_t m_start, vm_prot_t prot)
2985{
2986	struct rwlock *lock;
2987	vm_offset_t va;
2988	vm_page_t m, mpte;
2989	vm_pindex_t diff, psize;
2990
2991	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2992
2993	psize = atop(end - start);
2994	mpte = NULL;
2995	m = m_start;
2996	lock = NULL;
2997	PMAP_LOCK(pmap);
2998	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2999		va = start + ptoa(diff);
3000		mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte, &lock);
3001		m = TAILQ_NEXT(m, listq);
3002	}
3003	if (lock != NULL)
3004		rw_wunlock(lock);
3005	PMAP_UNLOCK(pmap);
3006}
3007
3008/*
3009 * this code makes some *MAJOR* assumptions:
3010 * 1. Current pmap & pmap exists.
3011 * 2. Not wired.
3012 * 3. Read access.
3013 * 4. No page table pages.
3014 * but is *MUCH* faster than pmap_enter...
3015 */
3016
3017void
3018pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3019{
3020	struct rwlock *lock;
3021
3022	lock = NULL;
3023	PMAP_LOCK(pmap);
3024	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3025	if (lock != NULL)
3026		rw_wunlock(lock);
3027	PMAP_UNLOCK(pmap);
3028}
3029
3030static vm_page_t
3031pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3032    vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3033{
3034	struct spglist free;
3035	pd_entry_t *pde;
3036	pt_entry_t *l2, *l3;
3037	vm_paddr_t pa;
3038	int lvl;
3039
3040	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3041	    (m->oflags & VPO_UNMANAGED) != 0,
3042	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3043	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3044
3045	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3046	/*
3047	 * In the case that a page table page is not
3048	 * resident, we are creating it here.
3049	 */
3050	if (va < VM_MAXUSER_ADDRESS) {
3051		vm_pindex_t l2pindex;
3052
3053		/*
3054		 * Calculate pagetable page index
3055		 */
3056		l2pindex = pmap_l2_pindex(va);
3057		if (mpte && (mpte->pindex == l2pindex)) {
3058			mpte->wire_count++;
3059		} else {
3060			/*
3061			 * Get the l2 entry
3062			 */
3063			pde = pmap_pde(pmap, va, &lvl);
3064
3065			/*
3066			 * If the page table page is mapped, we just increment
3067			 * the hold count, and activate it.  Otherwise, we
3068			 * attempt to allocate a page table page.  If this
3069			 * attempt fails, we don't retry.  Instead, we give up.
3070			 */
3071			if (lvl == 1) {
3072				l2 = pmap_l1_to_l2(pde, va);
3073				if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
3074				    L2_BLOCK)
3075					return (NULL);
3076			}
3077			if (lvl == 2 && pmap_load(pde) != 0) {
3078				mpte =
3079				    PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3080				mpte->wire_count++;
3081			} else {
3082				/*
3083				 * Pass NULL instead of the PV list lock
3084				 * pointer, because we don't intend to sleep.
3085				 */
3086				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3087				if (mpte == NULL)
3088					return (mpte);
3089			}
3090		}
3091		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3092		l3 = &l3[pmap_l3_index(va)];
3093	} else {
3094		mpte = NULL;
3095		pde = pmap_pde(kernel_pmap, va, &lvl);
3096		KASSERT(pde != NULL,
3097		    ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
3098		     va));
3099		KASSERT(lvl == 2,
3100		    ("pmap_enter_quick_locked: Invalid level %d", lvl));
3101		l3 = pmap_l2_to_l3(pde, va);
3102	}
3103
3104	if (pmap_load(l3) != 0) {
3105		if (mpte != NULL) {
3106			mpte->wire_count--;
3107			mpte = NULL;
3108		}
3109		return (mpte);
3110	}
3111
3112	/*
3113	 * Enter on the PV list if part of our managed memory.
3114	 */
3115	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3116	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3117		if (mpte != NULL) {
3118			SLIST_INIT(&free);
3119			if (pmap_unwire_l3(pmap, va, mpte, &free)) {
3120				pmap_invalidate_page(pmap, va);
3121				pmap_free_zero_pages(&free);
3122			}
3123			mpte = NULL;
3124		}
3125		return (mpte);
3126	}
3127
3128	/*
3129	 * Increment counters
3130	 */
3131	pmap_resident_count_inc(pmap, 1);
3132
3133	pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
3134	    ATTR_AP(ATTR_AP_RO) | L3_PAGE;
3135	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3136		pa |= ATTR_XN;
3137	else if (va < VM_MAXUSER_ADDRESS)
3138		pa |= ATTR_PXN;
3139
3140	/*
3141	 * Now validate mapping with RO protection
3142	 */
3143	if ((m->oflags & VPO_UNMANAGED) == 0)
3144		pa |= ATTR_SW_MANAGED;
3145	pmap_load_store(l3, pa);
3146	PTE_SYNC(l3);
3147	pmap_invalidate_page(pmap, va);
3148	return (mpte);
3149}
3150
3151/*
3152 * This code maps large physical mmap regions into the
3153 * processor address space.  Note that some shortcuts
3154 * are taken, but the code works.
3155 */
3156void
3157pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3158    vm_pindex_t pindex, vm_size_t size)
3159{
3160
3161	VM_OBJECT_ASSERT_WLOCKED(object);
3162	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3163	    ("pmap_object_init_pt: non-device object"));
3164}
3165
3166/*
3167 *	Clear the wired attribute from the mappings for the specified range of
3168 *	addresses in the given pmap.  Every valid mapping within that range
3169 *	must have the wired attribute set.  In contrast, invalid mappings
3170 *	cannot have the wired attribute set, so they are ignored.
3171 *
3172 *	The wired attribute of the page table entry is not a hardware feature,
3173 *	so there is no need to invalidate any TLB entries.
3174 */
3175void
3176pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3177{
3178	vm_offset_t va_next;
3179	pd_entry_t *l0, *l1, *l2;
3180	pt_entry_t *l3;
3181
3182	PMAP_LOCK(pmap);
3183	for (; sva < eva; sva = va_next) {
3184		l0 = pmap_l0(pmap, sva);
3185		if (pmap_load(l0) == 0) {
3186			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3187			if (va_next < sva)
3188				va_next = eva;
3189			continue;
3190		}
3191
3192		l1 = pmap_l0_to_l1(l0, sva);
3193		if (pmap_load(l1) == 0) {
3194			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3195			if (va_next < sva)
3196				va_next = eva;
3197			continue;
3198		}
3199
3200		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3201		if (va_next < sva)
3202			va_next = eva;
3203
3204		l2 = pmap_l1_to_l2(l1, sva);
3205		if (pmap_load(l2) == 0)
3206			continue;
3207
3208		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3209			l3 = pmap_demote_l2(pmap, l2, sva);
3210			if (l3 == NULL)
3211				continue;
3212		}
3213		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3214		    ("pmap_unwire: Invalid l2 entry after demotion"));
3215
3216		if (va_next > eva)
3217			va_next = eva;
3218		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
3219		    sva += L3_SIZE) {
3220			if (pmap_load(l3) == 0)
3221				continue;
3222			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
3223				panic("pmap_unwire: l3 %#jx is missing "
3224				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
3225
3226			/*
3227			 * PG_W must be cleared atomically.  Although the pmap
3228			 * lock synchronizes access to PG_W, another processor
3229			 * could be setting PG_M and/or PG_A concurrently.
3230			 */
3231			atomic_clear_long(l3, ATTR_SW_WIRED);
3232			pmap->pm_stats.wired_count--;
3233		}
3234	}
3235	PMAP_UNLOCK(pmap);
3236}
3237
3238/*
3239 *	Copy the range specified by src_addr/len
3240 *	from the source map to the range dst_addr/len
3241 *	in the destination map.
3242 *
3243 *	This routine is only advisory and need not do anything.
3244 */
3245
3246void
3247pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3248    vm_offset_t src_addr)
3249{
3250}
3251
3252/*
3253 *	pmap_zero_page zeros the specified hardware page by mapping
3254 *	the page into KVM and using bzero to clear its contents.
3255 */
3256void
3257pmap_zero_page(vm_page_t m)
3258{
3259	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3260
3261	pagezero((void *)va);
3262}
3263
3264/*
3265 *	pmap_zero_page_area zeros the specified hardware page by mapping
3266 *	the page into KVM and using bzero to clear its contents.
3267 *
3268 *	off and size may not cover an area beyond a single hardware page.
3269 */
3270void
3271pmap_zero_page_area(vm_page_t m, int off, int size)
3272{
3273	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3274
3275	if (off == 0 && size == PAGE_SIZE)
3276		pagezero((void *)va);
3277	else
3278		bzero((char *)va + off, size);
3279}
3280
3281/*
3282 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3283 *	the page into KVM and using bzero to clear its contents.  This
3284 *	is intended to be called from the vm_pagezero process only and
3285 *	outside of Giant.
3286 */
3287void
3288pmap_zero_page_idle(vm_page_t m)
3289{
3290	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3291
3292	pagezero((void *)va);
3293}
3294
3295/*
3296 *	pmap_copy_page copies the specified (machine independent)
3297 *	page by mapping the page into virtual memory and using
3298 *	bcopy to copy the page, one machine dependent page at a
3299 *	time.
3300 */
3301void
3302pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
3303{
3304	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
3305	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
3306
3307	pagecopy((void *)src, (void *)dst);
3308}
3309
3310int unmapped_buf_allowed = 1;
3311
3312void
3313pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3314    vm_offset_t b_offset, int xfersize)
3315{
3316	void *a_cp, *b_cp;
3317	vm_page_t m_a, m_b;
3318	vm_paddr_t p_a, p_b;
3319	vm_offset_t a_pg_offset, b_pg_offset;
3320	int cnt;
3321
3322	while (xfersize > 0) {
3323		a_pg_offset = a_offset & PAGE_MASK;
3324		m_a = ma[a_offset >> PAGE_SHIFT];
3325		p_a = m_a->phys_addr;
3326		b_pg_offset = b_offset & PAGE_MASK;
3327		m_b = mb[b_offset >> PAGE_SHIFT];
3328		p_b = m_b->phys_addr;
3329		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3330		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3331		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
3332			panic("!DMAP a %lx", p_a);
3333		} else {
3334			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
3335		}
3336		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
3337			panic("!DMAP b %lx", p_b);
3338		} else {
3339			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
3340		}
3341		bcopy(a_cp, b_cp, cnt);
3342		a_offset += cnt;
3343		b_offset += cnt;
3344		xfersize -= cnt;
3345	}
3346}
3347
3348vm_offset_t
3349pmap_quick_enter_page(vm_page_t m)
3350{
3351
3352	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
3353}
3354
3355void
3356pmap_quick_remove_page(vm_offset_t addr)
3357{
3358}
3359
3360/*
3361 * Returns true if the pmap's pv is one of the first
3362 * 16 pvs linked to from this page.  This count may
3363 * be changed upwards or downwards in the future; it
3364 * is only necessary that true be returned for a small
3365 * subset of pmaps for proper page aging.
3366 */
3367boolean_t
3368pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3369{
3370	struct md_page *pvh;
3371	struct rwlock *lock;
3372	pv_entry_t pv;
3373	int loops = 0;
3374	boolean_t rv;
3375
3376	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3377	    ("pmap_page_exists_quick: page %p is not managed", m));
3378	rv = FALSE;
3379	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3380	rw_rlock(lock);
3381	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3382		if (PV_PMAP(pv) == pmap) {
3383			rv = TRUE;
3384			break;
3385		}
3386		loops++;
3387		if (loops >= 16)
3388			break;
3389	}
3390	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
3391		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3392		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3393			if (PV_PMAP(pv) == pmap) {
3394				rv = TRUE;
3395				break;
3396			}
3397			loops++;
3398			if (loops >= 16)
3399				break;
3400		}
3401	}
3402	rw_runlock(lock);
3403	return (rv);
3404}
3405
3406/*
3407 *	pmap_page_wired_mappings:
3408 *
3409 *	Return the number of managed mappings to the given physical page
3410 *	that are wired.
3411 */
3412int
3413pmap_page_wired_mappings(vm_page_t m)
3414{
3415	struct rwlock *lock;
3416	struct md_page *pvh;
3417	pmap_t pmap;
3418	pt_entry_t *pte;
3419	pv_entry_t pv;
3420	int count, lvl, md_gen, pvh_gen;
3421
3422	if ((m->oflags & VPO_UNMANAGED) != 0)
3423		return (0);
3424	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3425	rw_rlock(lock);
3426restart:
3427	count = 0;
3428	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3429		pmap = PV_PMAP(pv);
3430		if (!PMAP_TRYLOCK(pmap)) {
3431			md_gen = m->md.pv_gen;
3432			rw_runlock(lock);
3433			PMAP_LOCK(pmap);
3434			rw_rlock(lock);
3435			if (md_gen != m->md.pv_gen) {
3436				PMAP_UNLOCK(pmap);
3437				goto restart;
3438			}
3439		}
3440		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3441		if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
3442			count++;
3443		PMAP_UNLOCK(pmap);
3444	}
3445	if ((m->flags & PG_FICTITIOUS) == 0) {
3446		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3447		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3448			pmap = PV_PMAP(pv);
3449			if (!PMAP_TRYLOCK(pmap)) {
3450				md_gen = m->md.pv_gen;
3451				pvh_gen = pvh->pv_gen;
3452				rw_runlock(lock);
3453				PMAP_LOCK(pmap);
3454				rw_rlock(lock);
3455				if (md_gen != m->md.pv_gen ||
3456				    pvh_gen != pvh->pv_gen) {
3457					PMAP_UNLOCK(pmap);
3458					goto restart;
3459				}
3460			}
3461			pte = pmap_pte(pmap, pv->pv_va, &lvl);
3462			if (pte != NULL &&
3463			    (pmap_load(pte) & ATTR_SW_WIRED) != 0)
3464				count++;
3465			PMAP_UNLOCK(pmap);
3466		}
3467	}
3468	rw_runlock(lock);
3469	return (count);
3470}
3471
3472/*
3473 * Destroy all managed, non-wired mappings in the given user-space
3474 * pmap.  This pmap cannot be active on any processor besides the
3475 * caller.
3476 *
3477 * This function cannot be applied to the kernel pmap.  Moreover, it
3478 * is not intended for general use.  It is only to be used during
3479 * process termination.  Consequently, it can be implemented in ways
3480 * that make it faster than pmap_remove().  First, it can more quickly
3481 * destroy mappings by iterating over the pmap's collection of PV
3482 * entries, rather than searching the page table.  Second, it doesn't
3483 * have to test and clear the page table entries atomically, because
3484 * no processor is currently accessing the user address space.  In
3485 * particular, a page table entry's dirty bit won't change state once
3486 * this function starts.
3487 */
3488void
3489pmap_remove_pages(pmap_t pmap)
3490{
3491	pd_entry_t *pde;
3492	pt_entry_t *pte, tpte;
3493	struct spglist free;
3494	vm_page_t m, ml3, mt;
3495	pv_entry_t pv;
3496	struct md_page *pvh;
3497	struct pv_chunk *pc, *npc;
3498	struct rwlock *lock;
3499	int64_t bit;
3500	uint64_t inuse, bitmask;
3501	int allfree, field, freed, idx, lvl;
3502	vm_paddr_t pa;
3503
3504	lock = NULL;
3505
3506	SLIST_INIT(&free);
3507	PMAP_LOCK(pmap);
3508	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3509		allfree = 1;
3510		freed = 0;
3511		for (field = 0; field < _NPCM; field++) {
3512			inuse = ~pc->pc_map[field] & pc_freemask[field];
3513			while (inuse != 0) {
3514				bit = ffsl(inuse) - 1;
3515				bitmask = 1UL << bit;
3516				idx = field * 64 + bit;
3517				pv = &pc->pc_pventry[idx];
3518				inuse &= ~bitmask;
3519
3520				pde = pmap_pde(pmap, pv->pv_va, &lvl);
3521				KASSERT(pde != NULL,
3522				    ("Attempting to remove an unmapped page"));
3523
3524				switch(lvl) {
3525				case 1:
3526					pte = pmap_l1_to_l2(pde, pv->pv_va);
3527					tpte = pmap_load(pte);
3528					KASSERT((tpte & ATTR_DESCR_MASK) ==
3529					    L2_BLOCK,
3530					    ("Attempting to remove an invalid "
3531					    "block: %lx", tpte));
3532					tpte = pmap_load(pte);
3533					break;
3534				case 2:
3535					pte = pmap_l2_to_l3(pde, pv->pv_va);
3536					tpte = pmap_load(pte);
3537					KASSERT((tpte & ATTR_DESCR_MASK) ==
3538					    L3_PAGE,
3539					    ("Attempting to remove an invalid "
3540					     "page: %lx", tpte));
3541					break;
3542				default:
3543					panic(
3544					    "Invalid page directory level: %d",
3545					    lvl);
3546				}
3547
3548/*
3549 * We cannot remove wired pages from a process' mapping at this time
3550 */
3551				if (tpte & ATTR_SW_WIRED) {
3552					allfree = 0;
3553					continue;
3554				}
3555
3556				pa = tpte & ~ATTR_MASK;
3557
3558				m = PHYS_TO_VM_PAGE(pa);
3559				KASSERT(m->phys_addr == pa,
3560				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3561				    m, (uintmax_t)m->phys_addr,
3562				    (uintmax_t)tpte));
3563
3564				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3565				    m < &vm_page_array[vm_page_array_size],
3566				    ("pmap_remove_pages: bad pte %#jx",
3567				    (uintmax_t)tpte));
3568
3569				if (pmap_is_current(pmap)) {
3570					if (lvl == 2 &&
3571					    pmap_l3_valid_cacheable(tpte)) {
3572						cpu_dcache_wb_range(pv->pv_va,
3573						    L3_SIZE);
3574					} else if (lvl == 1 &&
3575					    pmap_pte_valid_cacheable(tpte)) {
3576						cpu_dcache_wb_range(pv->pv_va,
3577						    L2_SIZE);
3578					}
3579				}
3580				pmap_load_clear(pte);
3581				PTE_SYNC(pte);
3582				pmap_invalidate_page(pmap, pv->pv_va);
3583
3584				/*
3585				 * Update the vm_page_t clean/reference bits.
3586				 */
3587				if ((tpte & ATTR_AP_RW_BIT) ==
3588				    ATTR_AP(ATTR_AP_RW)) {
3589					switch (lvl) {
3590					case 1:
3591						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3592							vm_page_dirty(m);
3593						break;
3594					case 2:
3595						vm_page_dirty(m);
3596						break;
3597					}
3598				}
3599
3600				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
3601
3602				/* Mark free */
3603				pc->pc_map[field] |= bitmask;
3604				switch (lvl) {
3605				case 1:
3606					pmap_resident_count_dec(pmap,
3607					    L2_SIZE / PAGE_SIZE);
3608					pvh = pa_to_pvh(tpte & ~ATTR_MASK);
3609					TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
3610					pvh->pv_gen++;
3611					if (TAILQ_EMPTY(&pvh->pv_list)) {
3612						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3613							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
3614							    TAILQ_EMPTY(&mt->md.pv_list))
3615								vm_page_aflag_clear(mt, PGA_WRITEABLE);
3616					}
3617					ml3 = pmap_remove_pt_page(pmap,
3618					    pv->pv_va);
3619					if (ml3 != NULL) {
3620						pmap_resident_count_dec(pmap,1);
3621						KASSERT(ml3->wire_count == NL3PG,
3622						    ("pmap_remove_pages: l3 page wire count error"));
3623						ml3->wire_count = 0;
3624						pmap_add_delayed_free_list(ml3,
3625						    &free, FALSE);
3626						atomic_subtract_int(
3627						    &vm_cnt.v_wire_count, 1);
3628					}
3629					break;
3630				case 2:
3631					pmap_resident_count_dec(pmap, 1);
3632					TAILQ_REMOVE(&m->md.pv_list, pv,
3633					    pv_next);
3634					m->md.pv_gen++;
3635					if ((m->aflags & PGA_WRITEABLE) != 0 &&
3636					    TAILQ_EMPTY(&m->md.pv_list) &&
3637					    (m->flags & PG_FICTITIOUS) == 0) {
3638						pvh = pa_to_pvh(
3639						    VM_PAGE_TO_PHYS(m));
3640						if (TAILQ_EMPTY(&pvh->pv_list))
3641							vm_page_aflag_clear(m,
3642							    PGA_WRITEABLE);
3643					}
3644					break;
3645				}
3646				pmap_unuse_l3(pmap, pv->pv_va, pmap_load(pde),
3647				    &free);
3648				freed++;
3649			}
3650		}
3651		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
3652		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
3653		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
3654		if (allfree) {
3655			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3656			free_pv_chunk(pc);
3657		}
3658	}
3659	pmap_invalidate_all(pmap);
3660	if (lock != NULL)
3661		rw_wunlock(lock);
3662	PMAP_UNLOCK(pmap);
3663	pmap_free_zero_pages(&free);
3664}
3665
3666/*
3667 * This is used to check if a page has been accessed or modified. As we
3668 * don't have a bit to see if it has been modified we have to assume it
3669 * has been if the page is read/write.
3670 */
3671static boolean_t
3672pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3673{
3674	struct rwlock *lock;
3675	pv_entry_t pv;
3676	struct md_page *pvh;
3677	pt_entry_t *pte, mask, value;
3678	pmap_t pmap;
3679	int lvl, md_gen, pvh_gen;
3680	boolean_t rv;
3681
3682	rv = FALSE;
3683	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3684	rw_rlock(lock);
3685restart:
3686	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3687		pmap = PV_PMAP(pv);
3688		if (!PMAP_TRYLOCK(pmap)) {
3689			md_gen = m->md.pv_gen;
3690			rw_runlock(lock);
3691			PMAP_LOCK(pmap);
3692			rw_rlock(lock);
3693			if (md_gen != m->md.pv_gen) {
3694				PMAP_UNLOCK(pmap);
3695				goto restart;
3696			}
3697		}
3698		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3699		KASSERT(lvl == 3,
3700		    ("pmap_page_test_mappings: Invalid level %d", lvl));
3701		mask = 0;
3702		value = 0;
3703		if (modified) {
3704			mask |= ATTR_AP_RW_BIT;
3705			value |= ATTR_AP(ATTR_AP_RW);
3706		}
3707		if (accessed) {
3708			mask |= ATTR_AF | ATTR_DESCR_MASK;
3709			value |= ATTR_AF | L3_PAGE;
3710		}
3711		rv = (pmap_load(pte) & mask) == value;
3712		PMAP_UNLOCK(pmap);
3713		if (rv)
3714			goto out;
3715	}
3716	if ((m->flags & PG_FICTITIOUS) == 0) {
3717		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3718		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3719			pmap = PV_PMAP(pv);
3720			if (!PMAP_TRYLOCK(pmap)) {
3721				md_gen = m->md.pv_gen;
3722				pvh_gen = pvh->pv_gen;
3723				rw_runlock(lock);
3724				PMAP_LOCK(pmap);
3725				rw_rlock(lock);
3726				if (md_gen != m->md.pv_gen ||
3727				    pvh_gen != pvh->pv_gen) {
3728					PMAP_UNLOCK(pmap);
3729					goto restart;
3730				}
3731			}
3732			pte = pmap_pte(pmap, pv->pv_va, &lvl);
3733			KASSERT(lvl == 2,
3734			    ("pmap_page_test_mappings: Invalid level %d", lvl));
3735			mask = 0;
3736			value = 0;
3737			if (modified) {
3738				mask |= ATTR_AP_RW_BIT;
3739				value |= ATTR_AP(ATTR_AP_RW);
3740			}
3741			if (accessed) {
3742				mask |= ATTR_AF | ATTR_DESCR_MASK;
3743				value |= ATTR_AF | L2_BLOCK;
3744			}
3745			rv = (pmap_load(pte) & mask) == value;
3746			PMAP_UNLOCK(pmap);
3747			if (rv)
3748				goto out;
3749		}
3750	}
3751out:
3752	rw_runlock(lock);
3753	return (rv);
3754}
3755
3756/*
3757 *	pmap_is_modified:
3758 *
3759 *	Return whether or not the specified physical page was modified
3760 *	in any physical maps.
3761 */
3762boolean_t
3763pmap_is_modified(vm_page_t m)
3764{
3765
3766	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3767	    ("pmap_is_modified: page %p is not managed", m));
3768
3769	/*
3770	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3771	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3772	 * is clear, no PTEs can have PG_M set.
3773	 */
3774	VM_OBJECT_ASSERT_WLOCKED(m->object);
3775	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3776		return (FALSE);
3777	return (pmap_page_test_mappings(m, FALSE, TRUE));
3778}
3779
3780/*
3781 *	pmap_is_prefaultable:
3782 *
3783 *	Return whether or not the specified virtual address is eligible
3784 *	for prefault.
3785 */
3786boolean_t
3787pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3788{
3789	pt_entry_t *pte;
3790	boolean_t rv;
3791	int lvl;
3792
3793	rv = FALSE;
3794	PMAP_LOCK(pmap);
3795	pte = pmap_pte(pmap, addr, &lvl);
3796	if (pte != NULL && pmap_load(pte) != 0) {
3797		rv = TRUE;
3798	}
3799	PMAP_UNLOCK(pmap);
3800	return (rv);
3801}
3802
3803/*
3804 *	pmap_is_referenced:
3805 *
3806 *	Return whether or not the specified physical page was referenced
3807 *	in any physical maps.
3808 */
3809boolean_t
3810pmap_is_referenced(vm_page_t m)
3811{
3812
3813	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3814	    ("pmap_is_referenced: page %p is not managed", m));
3815	return (pmap_page_test_mappings(m, TRUE, FALSE));
3816}
3817
3818/*
3819 * Clear the write and modified bits in each of the given page's mappings.
3820 */
3821void
3822pmap_remove_write(vm_page_t m)
3823{
3824	struct md_page *pvh;
3825	pmap_t pmap;
3826	struct rwlock *lock;
3827	pv_entry_t next_pv, pv;
3828	pt_entry_t oldpte, *pte;
3829	vm_offset_t va;
3830	int lvl, md_gen, pvh_gen;
3831
3832	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3833	    ("pmap_remove_write: page %p is not managed", m));
3834
3835	/*
3836	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3837	 * set by another thread while the object is locked.  Thus,
3838	 * if PGA_WRITEABLE is clear, no page table entries need updating.
3839	 */
3840	VM_OBJECT_ASSERT_WLOCKED(m->object);
3841	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3842		return;
3843	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3844	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
3845	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
3846retry_pv_loop:
3847	rw_wlock(lock);
3848	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
3849		pmap = PV_PMAP(pv);
3850		if (!PMAP_TRYLOCK(pmap)) {
3851			pvh_gen = pvh->pv_gen;
3852			rw_wunlock(lock);
3853			PMAP_LOCK(pmap);
3854			rw_wlock(lock);
3855			if (pvh_gen != pvh->pv_gen) {
3856				PMAP_UNLOCK(pmap);
3857				rw_wunlock(lock);
3858				goto retry_pv_loop;
3859			}
3860		}
3861		va = pv->pv_va;
3862		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3863		if ((pmap_load(pte) & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3864			pmap_demote_l2_locked(pmap, pte, va & ~L2_OFFSET,
3865			    &lock);
3866		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3867		    ("inconsistent pv lock %p %p for page %p",
3868		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3869		PMAP_UNLOCK(pmap);
3870	}
3871	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3872		pmap = PV_PMAP(pv);
3873		if (!PMAP_TRYLOCK(pmap)) {
3874			pvh_gen = pvh->pv_gen;
3875			md_gen = m->md.pv_gen;
3876			rw_wunlock(lock);
3877			PMAP_LOCK(pmap);
3878			rw_wlock(lock);
3879			if (pvh_gen != pvh->pv_gen ||
3880			    md_gen != m->md.pv_gen) {
3881				PMAP_UNLOCK(pmap);
3882				rw_wunlock(lock);
3883				goto retry_pv_loop;
3884			}
3885		}
3886		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3887retry:
3888		oldpte = pmap_load(pte);
3889		if ((oldpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) {
3890			if (!atomic_cmpset_long(pte, oldpte,
3891			    oldpte | ATTR_AP(ATTR_AP_RO)))
3892				goto retry;
3893			if ((oldpte & ATTR_AF) != 0)
3894				vm_page_dirty(m);
3895			pmap_invalidate_page(pmap, pv->pv_va);
3896		}
3897		PMAP_UNLOCK(pmap);
3898	}
3899	rw_wunlock(lock);
3900	vm_page_aflag_clear(m, PGA_WRITEABLE);
3901}
3902
3903static __inline boolean_t
3904safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
3905{
3906
3907	return (FALSE);
3908}
3909
3910#define	PMAP_TS_REFERENCED_MAX	5
3911
3912/*
3913 *	pmap_ts_referenced:
3914 *
3915 *	Return a count of reference bits for a page, clearing those bits.
3916 *	It is not necessary for every reference bit to be cleared, but it
3917 *	is necessary that 0 only be returned when there are truly no
3918 *	reference bits set.
3919 *
3920 *	XXX: The exact number of bits to check and clear is a matter that
3921 *	should be tested and standardized at some point in the future for
3922 *	optimal aging of shared pages.
3923 */
3924int
3925pmap_ts_referenced(vm_page_t m)
3926{
3927	struct md_page *pvh;
3928	pv_entry_t pv, pvf;
3929	pmap_t pmap;
3930	struct rwlock *lock;
3931	pd_entry_t *pde, tpde;
3932	pt_entry_t *pte, tpte;
3933	pt_entry_t *l3;
3934	vm_offset_t va;
3935	vm_paddr_t pa;
3936	int cleared, md_gen, not_cleared, lvl, pvh_gen;
3937	struct spglist free;
3938	bool demoted;
3939
3940	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3941	    ("pmap_ts_referenced: page %p is not managed", m));
3942	SLIST_INIT(&free);
3943	cleared = 0;
3944	pa = VM_PAGE_TO_PHYS(m);
3945	lock = PHYS_TO_PV_LIST_LOCK(pa);
3946	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3947	rw_wlock(lock);
3948retry:
3949	not_cleared = 0;
3950	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3951		goto small_mappings;
3952	pv = pvf;
3953	do {
3954		if (pvf == NULL)
3955			pvf = pv;
3956		pmap = PV_PMAP(pv);
3957		if (!PMAP_TRYLOCK(pmap)) {
3958			pvh_gen = pvh->pv_gen;
3959			rw_wunlock(lock);
3960			PMAP_LOCK(pmap);
3961			rw_wlock(lock);
3962			if (pvh_gen != pvh->pv_gen) {
3963				PMAP_UNLOCK(pmap);
3964				goto retry;
3965			}
3966		}
3967		va = pv->pv_va;
3968		pde = pmap_pde(pmap, pv->pv_va, &lvl);
3969		KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
3970		KASSERT(lvl == 1,
3971		    ("pmap_ts_referenced: invalid pde level %d", lvl));
3972		tpde = pmap_load(pde);
3973		KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
3974		    ("pmap_ts_referenced: found an invalid l1 table"));
3975		pte = pmap_l1_to_l2(pde, pv->pv_va);
3976		tpte = pmap_load(pte);
3977		if ((tpte & ATTR_AF) != 0) {
3978			/*
3979			 * Since this reference bit is shared by 512 4KB
3980			 * pages, it should not be cleared every time it is
3981			 * tested.  Apply a simple "hash" function on the
3982			 * physical page number, the virtual superpage number,
3983			 * and the pmap address to select one 4KB page out of
3984			 * the 512 on which testing the reference bit will
3985			 * result in clearing that reference bit.  This
3986			 * function is designed to avoid the selection of the
3987			 * same 4KB page for every 2MB page mapping.
3988			 *
3989			 * On demotion, a mapping that hasn't been referenced
3990			 * is simply destroyed.  To avoid the possibility of a
3991			 * subsequent page fault on a demoted wired mapping,
3992			 * always leave its reference bit set.  Moreover,
3993			 * since the superpage is wired, the current state of
3994			 * its reference bit won't affect page replacement.
3995			 */
3996			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
3997			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
3998			    (tpte & ATTR_SW_WIRED) == 0) {
3999				if (safe_to_clear_referenced(pmap, tpte)) {
4000					/*
4001					 * TODO: We don't handle the access
4002					 * flag at all. We need to be able
4003					 * to set it in  the exception handler.
4004					 */
4005					panic("ARM64TODO: "
4006					    "safe_to_clear_referenced\n");
4007				} else if (pmap_demote_l2_locked(pmap, pte,
4008				    pv->pv_va, &lock) != NULL) {
4009					demoted = true;
4010					va += VM_PAGE_TO_PHYS(m) -
4011					    (tpte & ~ATTR_MASK);
4012					l3 = pmap_l2_to_l3(pte, va);
4013					pmap_remove_l3(pmap, l3, va,
4014					    pmap_load(pte), NULL, &lock);
4015				} else
4016					demoted = true;
4017
4018				if (demoted) {
4019					/*
4020					 * The superpage mapping was removed
4021					 * entirely and therefore 'pv' is no
4022					 * longer valid.
4023					 */
4024					if (pvf == pv)
4025						pvf = NULL;
4026					pv = NULL;
4027				}
4028				cleared++;
4029				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4030				    ("inconsistent pv lock %p %p for page %p",
4031				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4032			} else
4033				not_cleared++;
4034		}
4035		PMAP_UNLOCK(pmap);
4036		/* Rotate the PV list if it has more than one entry. */
4037		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4038			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4039			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4040			pvh->pv_gen++;
4041		}
4042		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4043			goto out;
4044	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4045small_mappings:
4046	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4047		goto out;
4048	pv = pvf;
4049	do {
4050		if (pvf == NULL)
4051			pvf = pv;
4052		pmap = PV_PMAP(pv);
4053		if (!PMAP_TRYLOCK(pmap)) {
4054			pvh_gen = pvh->pv_gen;
4055			md_gen = m->md.pv_gen;
4056			rw_wunlock(lock);
4057			PMAP_LOCK(pmap);
4058			rw_wlock(lock);
4059			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4060				PMAP_UNLOCK(pmap);
4061				goto retry;
4062			}
4063		}
4064		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4065		KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
4066		KASSERT(lvl == 2,
4067		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4068		tpde = pmap_load(pde);
4069		KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
4070		    ("pmap_ts_referenced: found an invalid l2 table"));
4071		pte = pmap_l2_to_l3(pde, pv->pv_va);
4072		tpte = pmap_load(pte);
4073		if ((tpte & ATTR_AF) != 0) {
4074			if (safe_to_clear_referenced(pmap, tpte)) {
4075				/*
4076				 * TODO: We don't handle the access flag
4077				 * at all. We need to be able to set it in
4078				 * the exception handler.
4079				 */
4080				panic("ARM64TODO: safe_to_clear_referenced\n");
4081			} else if ((tpte & ATTR_SW_WIRED) == 0) {
4082				/*
4083				 * Wired pages cannot be paged out so
4084				 * doing accessed bit emulation for
4085				 * them is wasted effort. We do the
4086				 * hard work for unwired pages only.
4087				 */
4088				pmap_remove_l3(pmap, pte, pv->pv_va, tpde,
4089				    &free, &lock);
4090				pmap_invalidate_page(pmap, pv->pv_va);
4091				cleared++;
4092				if (pvf == pv)
4093					pvf = NULL;
4094				pv = NULL;
4095				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4096				    ("inconsistent pv lock %p %p for page %p",
4097				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4098			} else
4099				not_cleared++;
4100		}
4101		PMAP_UNLOCK(pmap);
4102		/* Rotate the PV list if it has more than one entry. */
4103		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4104			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4105			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4106			m->md.pv_gen++;
4107		}
4108	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4109	    not_cleared < PMAP_TS_REFERENCED_MAX);
4110out:
4111	rw_wunlock(lock);
4112	pmap_free_zero_pages(&free);
4113	return (cleared + not_cleared);
4114}
4115
4116/*
4117 *	Apply the given advice to the specified range of addresses within the
4118 *	given pmap.  Depending on the advice, clear the referenced and/or
4119 *	modified flags in each mapping and set the mapped page's dirty field.
4120 */
4121void
4122pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4123{
4124}
4125
4126/*
4127 *	Clear the modify bits on the specified physical page.
4128 */
4129void
4130pmap_clear_modify(vm_page_t m)
4131{
4132
4133	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4134	    ("pmap_clear_modify: page %p is not managed", m));
4135	VM_OBJECT_ASSERT_WLOCKED(m->object);
4136	KASSERT(!vm_page_xbusied(m),
4137	    ("pmap_clear_modify: page %p is exclusive busied", m));
4138
4139	/*
4140	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4141	 * If the object containing the page is locked and the page is not
4142	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4143	 */
4144	if ((m->aflags & PGA_WRITEABLE) == 0)
4145		return;
4146
4147	/* ARM64TODO: We lack support for tracking if a page is modified */
4148}
4149
4150void *
4151pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4152{
4153
4154        return ((void *)PHYS_TO_DMAP(pa));
4155}
4156
4157void
4158pmap_unmapbios(vm_paddr_t pa, vm_size_t size)
4159{
4160}
4161
4162/*
4163 * Sets the memory attribute for the specified page.
4164 */
4165void
4166pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4167{
4168
4169	m->md.pv_memattr = ma;
4170
4171	/*
4172	 * If "m" is a normal page, update its direct mapping.  This update
4173	 * can be relied upon to perform any cache operations that are
4174	 * required for data coherence.
4175	 */
4176	if ((m->flags & PG_FICTITIOUS) == 0 &&
4177	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
4178	    m->md.pv_memattr) != 0)
4179		panic("memory attribute change on the direct map failed");
4180}
4181
4182/*
4183 * Changes the specified virtual address range's memory type to that given by
4184 * the parameter "mode".  The specified virtual address range must be
4185 * completely contained within either the direct map or the kernel map.  If
4186 * the virtual address range is contained within the kernel map, then the
4187 * memory type for each of the corresponding ranges of the direct map is also
4188 * changed.  (The corresponding ranges of the direct map are those ranges that
4189 * map the same physical pages as the specified virtual address range.)  These
4190 * changes to the direct map are necessary because Intel describes the
4191 * behavior of their processors as "undefined" if two or more mappings to the
4192 * same physical page have different memory types.
4193 *
4194 * Returns zero if the change completed successfully, and either EINVAL or
4195 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4196 * of the virtual address range was not mapped, and ENOMEM is returned if
4197 * there was insufficient memory available to complete the change.  In the
4198 * latter case, the memory type may have been changed on some part of the
4199 * virtual address range or the direct map.
4200 */
4201static int
4202pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4203{
4204	int error;
4205
4206	PMAP_LOCK(kernel_pmap);
4207	error = pmap_change_attr_locked(va, size, mode);
4208	PMAP_UNLOCK(kernel_pmap);
4209	return (error);
4210}
4211
4212static int
4213pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
4214{
4215	vm_offset_t base, offset, tmpva;
4216	pt_entry_t l3, *pte, *newpte;
4217	int lvl;
4218
4219	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
4220	base = trunc_page(va);
4221	offset = va & PAGE_MASK;
4222	size = round_page(offset + size);
4223
4224	if (!VIRT_IN_DMAP(base))
4225		return (EINVAL);
4226
4227	for (tmpva = base; tmpva < base + size; ) {
4228		pte = pmap_pte(kernel_pmap, va, &lvl);
4229		if (pte == NULL)
4230			return (EINVAL);
4231
4232		if ((pmap_load(pte) & ATTR_IDX_MASK) == ATTR_IDX(mode)) {
4233			/*
4234			 * We already have the correct attribute,
4235			 * ignore this entry.
4236			 */
4237			switch (lvl) {
4238			default:
4239				panic("Invalid DMAP table level: %d\n", lvl);
4240			case 1:
4241				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
4242				break;
4243			case 2:
4244				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
4245				break;
4246			case 3:
4247				tmpva += PAGE_SIZE;
4248				break;
4249			}
4250		} else {
4251			/*
4252			 * Split the entry to an level 3 table, then
4253			 * set the new attribute.
4254			 */
4255			switch (lvl) {
4256			default:
4257				panic("Invalid DMAP table level: %d\n", lvl);
4258			case 1:
4259				newpte = pmap_demote_l1(kernel_pmap, pte,
4260				    tmpva & ~L1_OFFSET);
4261				if (newpte == NULL)
4262					return (EINVAL);
4263				pte = pmap_l1_to_l2(pte, tmpva);
4264			case 2:
4265				newpte = pmap_demote_l2(kernel_pmap, pte,
4266				    tmpva & ~L2_OFFSET);
4267				if (newpte == NULL)
4268					return (EINVAL);
4269				pte = pmap_l2_to_l3(pte, tmpva);
4270			case 3:
4271				/* Update the entry */
4272				l3 = pmap_load(pte);
4273				l3 &= ~ATTR_IDX_MASK;
4274				l3 |= ATTR_IDX(mode);
4275				if (mode == DEVICE_MEMORY)
4276					l3 |= ATTR_XN;
4277
4278				pmap_update_entry(kernel_pmap, pte, l3, tmpva,
4279				    PAGE_SIZE);
4280
4281				/*
4282				 * If moving to a non-cacheable entry flush
4283				 * the cache.
4284				 */
4285				if (mode == VM_MEMATTR_UNCACHEABLE)
4286					cpu_dcache_wbinv_range(tmpva, L3_SIZE);
4287
4288				break;
4289			}
4290			tmpva += PAGE_SIZE;
4291		}
4292	}
4293
4294	return (0);
4295}
4296
4297/*
4298 * Create an L2 table to map all addresses within an L1 mapping.
4299 */
4300static pt_entry_t *
4301pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
4302{
4303	pt_entry_t *l2, newl2, oldl1;
4304	vm_offset_t tmpl1;
4305	vm_paddr_t l2phys, phys;
4306	vm_page_t ml2;
4307	int i;
4308
4309	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4310	oldl1 = pmap_load(l1);
4311	KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
4312	    ("pmap_demote_l1: Demoting a non-block entry"));
4313	KASSERT((va & L1_OFFSET) == 0,
4314	    ("pmap_demote_l1: Invalid virtual address %#lx", va));
4315	KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
4316	    ("pmap_demote_l1: Level 1 table shouldn't be managed"));
4317
4318	tmpl1 = 0;
4319	if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
4320		tmpl1 = kva_alloc(PAGE_SIZE);
4321		if (tmpl1 == 0)
4322			return (NULL);
4323	}
4324
4325	if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
4326	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4327		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
4328		    " in pmap %p", va, pmap);
4329		return (NULL);
4330	}
4331
4332	l2phys = VM_PAGE_TO_PHYS(ml2);
4333	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
4334
4335	/* Address the range points at */
4336	phys = oldl1 & ~ATTR_MASK;
4337	/* The attributed from the old l1 table to be copied */
4338	newl2 = oldl1 & ATTR_MASK;
4339
4340	/* Create the new entries */
4341	for (i = 0; i < Ln_ENTRIES; i++) {
4342		l2[i] = newl2 | phys;
4343		phys += L2_SIZE;
4344	}
4345	cpu_dcache_wb_range((vm_offset_t)l2, PAGE_SIZE);
4346	KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
4347	    ("Invalid l2 page (%lx != %lx)", l2[0],
4348	    (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
4349
4350	if (tmpl1 != 0) {
4351		pmap_kenter(tmpl1, PAGE_SIZE,
4352		    DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET, CACHED_MEMORY);
4353		l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
4354	}
4355
4356	pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
4357
4358	if (tmpl1 != 0) {
4359		pmap_kremove(tmpl1);
4360		kva_free(tmpl1, PAGE_SIZE);
4361	}
4362
4363	return (l2);
4364}
4365
4366/*
4367 * Create an L3 table to map all addresses within an L2 mapping.
4368 */
4369static pt_entry_t *
4370pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
4371    struct rwlock **lockp)
4372{
4373	pt_entry_t *l3, newl3, oldl2;
4374	vm_offset_t tmpl2;
4375	vm_paddr_t l3phys, phys;
4376	vm_page_t ml3;
4377	int i;
4378
4379	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4380	l3 = NULL;
4381	oldl2 = pmap_load(l2);
4382	KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
4383	    ("pmap_demote_l2: Demoting a non-block entry"));
4384	KASSERT((va & L2_OFFSET) == 0,
4385	    ("pmap_demote_l2: Invalid virtual address %#lx", va));
4386
4387	tmpl2 = 0;
4388	if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
4389		tmpl2 = kva_alloc(PAGE_SIZE);
4390		if (tmpl2 == 0)
4391			return (NULL);
4392	}
4393
4394	if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
4395		ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
4396		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4397		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
4398		if (ml3 == NULL) {
4399			CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
4400			    " in pmap %p", va, pmap);
4401			goto fail;
4402		}
4403		if (va < VM_MAXUSER_ADDRESS)
4404			pmap_resident_count_inc(pmap, 1);
4405	}
4406
4407	l3phys = VM_PAGE_TO_PHYS(ml3);
4408	l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
4409
4410	/* Address the range points at */
4411	phys = oldl2 & ~ATTR_MASK;
4412	/* The attributed from the old l2 table to be copied */
4413	newl3 = (oldl2 & (ATTR_MASK & ~ATTR_DESCR_MASK)) | L3_PAGE;
4414
4415	/*
4416	 * If the page table page is new, initialize it.
4417	 */
4418	if (ml3->wire_count == 1) {
4419		for (i = 0; i < Ln_ENTRIES; i++) {
4420			l3[i] = newl3 | phys;
4421			phys += L3_SIZE;
4422		}
4423		cpu_dcache_wb_range((vm_offset_t)l3, PAGE_SIZE);
4424	}
4425	KASSERT(l3[0] == ((oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE),
4426	    ("Invalid l3 page (%lx != %lx)", l3[0],
4427	    (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE));
4428
4429	/*
4430	 * Map the temporary page so we don't lose access to the l2 table.
4431	 */
4432	if (tmpl2 != 0) {
4433		pmap_kenter(tmpl2, PAGE_SIZE,
4434		    DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET, CACHED_MEMORY);
4435		l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
4436	}
4437
4438	/*
4439	 * The spare PV entries must be reserved prior to demoting the
4440	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4441	 * of the L2 and the PV lists will be inconsistent, which can result
4442	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4443	 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
4444	 * PV entry for the 2MB page mapping that is being demoted.
4445	 */
4446	if ((oldl2 & ATTR_SW_MANAGED) != 0)
4447		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
4448
4449	pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
4450
4451	/*
4452	 * Demote the PV entry.
4453	 */
4454	if ((oldl2 & ATTR_SW_MANAGED) != 0)
4455		pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
4456
4457	atomic_add_long(&pmap_l2_demotions, 1);
4458	CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
4459	    " in pmap %p %lx", va, pmap, l3[0]);
4460
4461fail:
4462	if (tmpl2 != 0) {
4463		pmap_kremove(tmpl2);
4464		kva_free(tmpl2, PAGE_SIZE);
4465	}
4466
4467	return (l3);
4468
4469}
4470
4471static pt_entry_t *
4472pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
4473{
4474	struct rwlock *lock;
4475	pt_entry_t *l3;
4476
4477	lock = NULL;
4478	l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
4479	if (lock != NULL)
4480		rw_wunlock(lock);
4481	return (l3);
4482}
4483
4484/*
4485 * perform the pmap work for mincore
4486 */
4487int
4488pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4489{
4490	pd_entry_t *l1p, l1;
4491	pd_entry_t *l2p, l2;
4492	pt_entry_t *l3p, l3;
4493	vm_paddr_t pa;
4494	bool managed;
4495	int val;
4496
4497	PMAP_LOCK(pmap);
4498retry:
4499	pa = 0;
4500	val = 0;
4501	managed = false;
4502
4503	l1p = pmap_l1(pmap, addr);
4504	if (l1p == NULL) /* No l1 */
4505		goto done;
4506
4507	l1 = pmap_load(l1p);
4508	if ((l1 & ATTR_DESCR_MASK) == L1_INVAL)
4509		goto done;
4510
4511	if ((l1 & ATTR_DESCR_MASK) == L1_BLOCK) {
4512		pa = (l1 & ~ATTR_MASK) | (addr & L1_OFFSET);
4513		managed = (l1 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
4514		val = MINCORE_SUPER | MINCORE_INCORE;
4515		if (pmap_page_dirty(l1))
4516			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4517		if ((l1 & ATTR_AF) == ATTR_AF)
4518			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4519		goto done;
4520	}
4521
4522	l2p = pmap_l1_to_l2(l1p, addr);
4523	if (l2p == NULL) /* No l2 */
4524		goto done;
4525
4526	l2 = pmap_load(l2p);
4527	if ((l2 & ATTR_DESCR_MASK) == L2_INVAL)
4528		goto done;
4529
4530	if ((l2 & ATTR_DESCR_MASK) == L2_BLOCK) {
4531		pa = (l2 & ~ATTR_MASK) | (addr & L2_OFFSET);
4532		managed = (l2 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
4533		val = MINCORE_SUPER | MINCORE_INCORE;
4534		if (pmap_page_dirty(l2))
4535			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4536		if ((l2 & ATTR_AF) == ATTR_AF)
4537			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4538		goto done;
4539	}
4540
4541	l3p = pmap_l2_to_l3(l2p, addr);
4542	if (l3p == NULL) /* No l3 */
4543		goto done;
4544
4545	l3 = pmap_load(l2p);
4546	if ((l3 & ATTR_DESCR_MASK) == L3_INVAL)
4547		goto done;
4548
4549	if ((l3 & ATTR_DESCR_MASK) == L3_PAGE) {
4550		pa = (l3 & ~ATTR_MASK) | (addr & L3_OFFSET);
4551		managed = (l3 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
4552		val = MINCORE_INCORE;
4553		if (pmap_page_dirty(l3))
4554			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4555		if ((l3 & ATTR_AF) == ATTR_AF)
4556			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4557	}
4558
4559done:
4560	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4561	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4562		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4563		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4564			goto retry;
4565	} else
4566		PA_UNLOCK_COND(*locked_pa);
4567	PMAP_UNLOCK(pmap);
4568
4569	return (val);
4570}
4571
4572void
4573pmap_activate(struct thread *td)
4574{
4575	pmap_t	pmap;
4576
4577	critical_enter();
4578	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4579	td->td_pcb->pcb_l0addr = vtophys(pmap->pm_l0);
4580	__asm __volatile("msr ttbr0_el1, %0" : : "r"(td->td_pcb->pcb_l0addr));
4581	pmap_invalidate_all(pmap);
4582	critical_exit();
4583}
4584
4585void
4586pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
4587{
4588
4589	if (va >= VM_MIN_KERNEL_ADDRESS) {
4590		cpu_icache_sync_range(va, sz);
4591	} else {
4592		u_int len, offset;
4593		vm_paddr_t pa;
4594
4595		/* Find the length of data in this page to flush */
4596		offset = va & PAGE_MASK;
4597		len = imin(PAGE_SIZE - offset, sz);
4598
4599		while (sz != 0) {
4600			/* Extract the physical address & find it in the DMAP */
4601			pa = pmap_extract(pmap, va);
4602			if (pa != 0)
4603				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
4604
4605			/* Move to the next page */
4606			sz -= len;
4607			va += len;
4608			/* Set the length for the next iteration */
4609			len = imin(PAGE_SIZE, sz);
4610		}
4611	}
4612}
4613
4614int
4615pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
4616{
4617#ifdef SMP
4618	uint64_t par;
4619#endif
4620
4621	switch (ESR_ELx_EXCEPTION(esr)) {
4622	case EXCP_DATA_ABORT_L:
4623	case EXCP_DATA_ABORT:
4624		break;
4625	default:
4626		return (KERN_FAILURE);
4627	}
4628
4629#ifdef SMP
4630	PMAP_LOCK(pmap);
4631	switch (esr & ISS_DATA_DFSC_MASK) {
4632	case ISS_DATA_DFSC_TF_L0:
4633	case ISS_DATA_DFSC_TF_L1:
4634	case ISS_DATA_DFSC_TF_L2:
4635	case ISS_DATA_DFSC_TF_L3:
4636		/* Ask the MMU to check the address */
4637		if (pmap == kernel_pmap)
4638			par = arm64_address_translate_s1e1r(far);
4639		else
4640			par = arm64_address_translate_s1e0r(far);
4641
4642		/*
4643		 * If the translation was successful the address was invalid
4644		 * due to a break-before-make sequence. We can unlock and
4645		 * return success to the trap handler.
4646		 */
4647		if (PAR_SUCCESS(par)) {
4648			PMAP_UNLOCK(pmap);
4649			return (KERN_SUCCESS);
4650		}
4651		break;
4652	default:
4653		break;
4654	}
4655	PMAP_UNLOCK(pmap);
4656#endif
4657
4658	return (KERN_FAILURE);
4659}
4660
4661/*
4662 *	Increase the starting virtual address of the given mapping if a
4663 *	different alignment might result in more superpage mappings.
4664 */
4665void
4666pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4667    vm_offset_t *addr, vm_size_t size)
4668{
4669	vm_offset_t superpage_offset;
4670
4671	if (size < L2_SIZE)
4672		return;
4673	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4674		offset += ptoa(object->pg_color);
4675	superpage_offset = offset & L2_OFFSET;
4676	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
4677	    (*addr & L2_OFFSET) == superpage_offset)
4678		return;
4679	if ((*addr & L2_OFFSET) < superpage_offset)
4680		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
4681	else
4682		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
4683}
4684
4685/**
4686 * Get the kernel virtual address of a set of physical pages. If there are
4687 * physical addresses not covered by the DMAP perform a transient mapping
4688 * that will be removed when calling pmap_unmap_io_transient.
4689 *
4690 * \param page        The pages the caller wishes to obtain the virtual
4691 *                    address on the kernel memory map.
4692 * \param vaddr       On return contains the kernel virtual memory address
4693 *                    of the pages passed in the page parameter.
4694 * \param count       Number of pages passed in.
4695 * \param can_fault   TRUE if the thread using the mapped pages can take
4696 *                    page faults, FALSE otherwise.
4697 *
4698 * \returns TRUE if the caller must call pmap_unmap_io_transient when
4699 *          finished or FALSE otherwise.
4700 *
4701 */
4702boolean_t
4703pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
4704    boolean_t can_fault)
4705{
4706	vm_paddr_t paddr;
4707	boolean_t needs_mapping;
4708	int error, i;
4709
4710	/*
4711	 * Allocate any KVA space that we need, this is done in a separate
4712	 * loop to prevent calling vmem_alloc while pinned.
4713	 */
4714	needs_mapping = FALSE;
4715	for (i = 0; i < count; i++) {
4716		paddr = VM_PAGE_TO_PHYS(page[i]);
4717		if (__predict_false(!PHYS_IN_DMAP(paddr))) {
4718			error = vmem_alloc(kernel_arena, PAGE_SIZE,
4719			    M_BESTFIT | M_WAITOK, &vaddr[i]);
4720			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
4721			needs_mapping = TRUE;
4722		} else {
4723			vaddr[i] = PHYS_TO_DMAP(paddr);
4724		}
4725	}
4726
4727	/* Exit early if everything is covered by the DMAP */
4728	if (!needs_mapping)
4729		return (FALSE);
4730
4731	if (!can_fault)
4732		sched_pin();
4733	for (i = 0; i < count; i++) {
4734		paddr = VM_PAGE_TO_PHYS(page[i]);
4735		if (!PHYS_IN_DMAP(paddr)) {
4736			panic(
4737			   "pmap_map_io_transient: TODO: Map out of DMAP data");
4738		}
4739	}
4740
4741	return (needs_mapping);
4742}
4743
4744void
4745pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
4746    boolean_t can_fault)
4747{
4748	vm_paddr_t paddr;
4749	int i;
4750
4751	if (!can_fault)
4752		sched_unpin();
4753	for (i = 0; i < count; i++) {
4754		paddr = VM_PAGE_TO_PHYS(page[i]);
4755		if (!PHYS_IN_DMAP(paddr)) {
4756			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
4757		}
4758	}
4759}
4760