pmap.c revision 295425
1281494Sandrew/*-
2281494Sandrew * Copyright (c) 1991 Regents of the University of California.
3281494Sandrew * All rights reserved.
4281494Sandrew * Copyright (c) 1994 John S. Dyson
5281494Sandrew * All rights reserved.
6281494Sandrew * Copyright (c) 1994 David Greenman
7281494Sandrew * All rights reserved.
8281494Sandrew * Copyright (c) 2003 Peter Wemm
9281494Sandrew * All rights reserved.
10281494Sandrew * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11281494Sandrew * All rights reserved.
12281494Sandrew * Copyright (c) 2014 Andrew Turner
13281494Sandrew * All rights reserved.
14281494Sandrew * Copyright (c) 2014 The FreeBSD Foundation
15281494Sandrew * All rights reserved.
16281494Sandrew *
17281494Sandrew * This code is derived from software contributed to Berkeley by
18281494Sandrew * the Systems Programming Group of the University of Utah Computer
19281494Sandrew * Science Department and William Jolitz of UUNET Technologies Inc.
20281494Sandrew *
21281494Sandrew * This software was developed by Andrew Turner under sponsorship from
22281494Sandrew * the FreeBSD Foundation.
23281494Sandrew *
24281494Sandrew * Redistribution and use in source and binary forms, with or without
25281494Sandrew * modification, are permitted provided that the following conditions
26281494Sandrew * are met:
27281494Sandrew * 1. Redistributions of source code must retain the above copyright
28281494Sandrew *    notice, this list of conditions and the following disclaimer.
29281494Sandrew * 2. Redistributions in binary form must reproduce the above copyright
30281494Sandrew *    notice, this list of conditions and the following disclaimer in the
31281494Sandrew *    documentation and/or other materials provided with the distribution.
32281494Sandrew * 3. All advertising materials mentioning features or use of this software
33281494Sandrew *    must display the following acknowledgement:
34281494Sandrew *	This product includes software developed by the University of
35281494Sandrew *	California, Berkeley and its contributors.
36281494Sandrew * 4. Neither the name of the University nor the names of its contributors
37281494Sandrew *    may be used to endorse or promote products derived from this software
38281494Sandrew *    without specific prior written permission.
39281494Sandrew *
40281494Sandrew * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41281494Sandrew * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42281494Sandrew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43281494Sandrew * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44281494Sandrew * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45281494Sandrew * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46281494Sandrew * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47281494Sandrew * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48281494Sandrew * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49281494Sandrew * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50281494Sandrew * SUCH DAMAGE.
51281494Sandrew *
52281494Sandrew *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53281494Sandrew */
54281494Sandrew/*-
55281494Sandrew * Copyright (c) 2003 Networks Associates Technology, Inc.
56281494Sandrew * All rights reserved.
57281494Sandrew *
58281494Sandrew * This software was developed for the FreeBSD Project by Jake Burkholder,
59281494Sandrew * Safeport Network Services, and Network Associates Laboratories, the
60281494Sandrew * Security Research Division of Network Associates, Inc. under
61281494Sandrew * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62281494Sandrew * CHATS research program.
63281494Sandrew *
64281494Sandrew * Redistribution and use in source and binary forms, with or without
65281494Sandrew * modification, are permitted provided that the following conditions
66281494Sandrew * are met:
67281494Sandrew * 1. Redistributions of source code must retain the above copyright
68281494Sandrew *    notice, this list of conditions and the following disclaimer.
69281494Sandrew * 2. Redistributions in binary form must reproduce the above copyright
70281494Sandrew *    notice, this list of conditions and the following disclaimer in the
71281494Sandrew *    documentation and/or other materials provided with the distribution.
72281494Sandrew *
73281494Sandrew * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74281494Sandrew * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75281494Sandrew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76281494Sandrew * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77281494Sandrew * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78281494Sandrew * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79281494Sandrew * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80281494Sandrew * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81281494Sandrew * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82281494Sandrew * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83281494Sandrew * SUCH DAMAGE.
84281494Sandrew */
85281494Sandrew
86281494Sandrew#include <sys/cdefs.h>
87281494Sandrew__FBSDID("$FreeBSD: head/sys/arm64/arm64/pmap.c 295425 2016-02-09 06:26:27Z wma $");
88281494Sandrew
89281494Sandrew/*
90281494Sandrew *	Manages physical address maps.
91281494Sandrew *
92281494Sandrew *	Since the information managed by this module is
93281494Sandrew *	also stored by the logical address mapping module,
94281494Sandrew *	this module may throw away valid virtual-to-physical
95281494Sandrew *	mappings at almost any time.  However, invalidations
96281494Sandrew *	of virtual-to-physical mappings must be done as
97281494Sandrew *	requested.
98281494Sandrew *
99281494Sandrew *	In order to cope with hardware architectures which
100281494Sandrew *	make virtual-to-physical map invalidates expensive,
101281494Sandrew *	this module may delay invalidate or reduced protection
102281494Sandrew *	operations until such time as they are actually
103281494Sandrew *	necessary.  This module is given full information as
104281494Sandrew *	to which processors are currently using which maps,
105281494Sandrew *	and to when physical maps must be made correct.
106281494Sandrew */
107281494Sandrew
108281494Sandrew#include <sys/param.h>
109281494Sandrew#include <sys/bus.h>
110281494Sandrew#include <sys/systm.h>
111281494Sandrew#include <sys/kernel.h>
112281494Sandrew#include <sys/ktr.h>
113281494Sandrew#include <sys/lock.h>
114281494Sandrew#include <sys/malloc.h>
115281494Sandrew#include <sys/mman.h>
116281494Sandrew#include <sys/msgbuf.h>
117281494Sandrew#include <sys/mutex.h>
118281494Sandrew#include <sys/proc.h>
119281494Sandrew#include <sys/rwlock.h>
120281494Sandrew#include <sys/sx.h>
121281494Sandrew#include <sys/vmem.h>
122281494Sandrew#include <sys/vmmeter.h>
123281494Sandrew#include <sys/sched.h>
124281494Sandrew#include <sys/sysctl.h>
125281494Sandrew#include <sys/_unrhdr.h>
126281494Sandrew#include <sys/smp.h>
127281494Sandrew
128281494Sandrew#include <vm/vm.h>
129281494Sandrew#include <vm/vm_param.h>
130281494Sandrew#include <vm/vm_kern.h>
131281494Sandrew#include <vm/vm_page.h>
132281494Sandrew#include <vm/vm_map.h>
133281494Sandrew#include <vm/vm_object.h>
134281494Sandrew#include <vm/vm_extern.h>
135281494Sandrew#include <vm/vm_pageout.h>
136281494Sandrew#include <vm/vm_pager.h>
137281494Sandrew#include <vm/vm_radix.h>
138281494Sandrew#include <vm/vm_reserv.h>
139281494Sandrew#include <vm/uma.h>
140281494Sandrew
141281494Sandrew#include <machine/machdep.h>
142281494Sandrew#include <machine/md_var.h>
143281494Sandrew#include <machine/pcb.h>
144281494Sandrew
145281494Sandrew#define	NPDEPG		(PAGE_SIZE/(sizeof (pd_entry_t)))
146281494Sandrew#define	NUPDE			(NPDEPG * NPDEPG)
147281494Sandrew#define	NUSERPGTBLS		(NUPDE + NPDEPG)
148281494Sandrew
149281494Sandrew#if !defined(DIAGNOSTIC)
150281494Sandrew#ifdef __GNUC_GNU_INLINE__
151281494Sandrew#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
152281494Sandrew#else
153281494Sandrew#define PMAP_INLINE	extern inline
154281494Sandrew#endif
155281494Sandrew#else
156281494Sandrew#define PMAP_INLINE
157281494Sandrew#endif
158281494Sandrew
159281494Sandrew/*
160281494Sandrew * These are configured by the mair_el1 register. This is set up in locore.S
161281494Sandrew */
162281494Sandrew#define	DEVICE_MEMORY	0
163281494Sandrew#define	UNCACHED_MEMORY	1
164281494Sandrew#define	CACHED_MEMORY	2
165281494Sandrew
166281494Sandrew
167281494Sandrew#ifdef PV_STATS
168281494Sandrew#define PV_STAT(x)	do { x ; } while (0)
169281494Sandrew#else
170281494Sandrew#define PV_STAT(x)	do { } while (0)
171281494Sandrew#endif
172281494Sandrew
173281494Sandrew#define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
174281494Sandrew
175281494Sandrew#define	NPV_LIST_LOCKS	MAXCPU
176281494Sandrew
177281494Sandrew#define	PHYS_TO_PV_LIST_LOCK(pa)	\
178281494Sandrew			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
179281494Sandrew
180281494Sandrew#define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
181281494Sandrew	struct rwlock **_lockp = (lockp);		\
182281494Sandrew	struct rwlock *_new_lock;			\
183281494Sandrew							\
184281494Sandrew	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
185281494Sandrew	if (_new_lock != *_lockp) {			\
186281494Sandrew		if (*_lockp != NULL)			\
187281494Sandrew			rw_wunlock(*_lockp);		\
188281494Sandrew		*_lockp = _new_lock;			\
189281494Sandrew		rw_wlock(*_lockp);			\
190281494Sandrew	}						\
191281494Sandrew} while (0)
192281494Sandrew
193281494Sandrew#define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
194281494Sandrew			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
195281494Sandrew
196281494Sandrew#define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
197281494Sandrew	struct rwlock **_lockp = (lockp);		\
198281494Sandrew							\
199281494Sandrew	if (*_lockp != NULL) {				\
200281494Sandrew		rw_wunlock(*_lockp);			\
201281494Sandrew		*_lockp = NULL;				\
202281494Sandrew	}						\
203281494Sandrew} while (0)
204281494Sandrew
205281494Sandrew#define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
206281494Sandrew			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
207281494Sandrew
208281494Sandrewstruct pmap kernel_pmap_store;
209281494Sandrew
210281494Sandrewvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211281494Sandrewvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212281494Sandrewvm_offset_t kernel_vm_end = 0;
213281494Sandrew
214281494Sandrewstruct msgbuf *msgbufp = NULL;
215281494Sandrew
216281494Sandrewstatic struct rwlock_padalign pvh_global_lock;
217281494Sandrew
218291246Sandrewvm_paddr_t dmap_phys_base;	/* The start of the dmap region */
219291246Sandrew
220281494Sandrew/*
221281494Sandrew * Data for the pv entry allocation mechanism
222281494Sandrew */
223281494Sandrewstatic TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
224281494Sandrewstatic struct mtx pv_chunks_mutex;
225281494Sandrewstatic struct rwlock pv_list_locks[NPV_LIST_LOCKS];
226281494Sandrew
227281494Sandrewstatic void	free_pv_chunk(struct pv_chunk *pc);
228281494Sandrewstatic void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
229281494Sandrewstatic pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
230281494Sandrewstatic vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
231281494Sandrewstatic void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
232281494Sandrewstatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
233281494Sandrew		    vm_offset_t va);
234281494Sandrewstatic vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
235281494Sandrew    vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
236281494Sandrewstatic int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
237281494Sandrew    pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
238281494Sandrewstatic boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
239281494Sandrew    vm_page_t m, struct rwlock **lockp);
240281494Sandrew
241281494Sandrewstatic vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
242281494Sandrew		struct rwlock **lockp);
243281494Sandrew
244281494Sandrewstatic void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
245281494Sandrew    struct spglist *free);
246281494Sandrewstatic int pmap_unuse_l3(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
247281494Sandrew
248288445Sandrew/*
249288445Sandrew * These load the old table data and store the new value.
250288445Sandrew * They need to be atomic as the System MMU may write to the table at
251288445Sandrew * the same time as the CPU.
252288445Sandrew */
253288445Sandrew#define	pmap_load_store(table, entry) atomic_swap_64(table, entry)
254288445Sandrew#define	pmap_set(table, mask) atomic_set_64(table, mask)
255288445Sandrew#define	pmap_load_clear(table) atomic_swap_64(table, 0)
256288445Sandrew#define	pmap_load(table) (*table)
257288445Sandrew
258281494Sandrew/********************/
259281494Sandrew/* Inline functions */
260281494Sandrew/********************/
261281494Sandrew
262281494Sandrewstatic __inline void
263281494Sandrewpagecopy(void *s, void *d)
264281494Sandrew{
265281494Sandrew
266281494Sandrew	memcpy(d, s, PAGE_SIZE);
267281494Sandrew}
268281494Sandrew
269281494Sandrewstatic __inline void
270281494Sandrewpagezero(void *p)
271281494Sandrew{
272281494Sandrew
273281494Sandrew	bzero(p, PAGE_SIZE);
274281494Sandrew}
275281494Sandrew
276281494Sandrew#define	pmap_l1_index(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
277281494Sandrew#define	pmap_l2_index(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
278281494Sandrew#define	pmap_l3_index(va)	(((va) >> L3_SHIFT) & Ln_ADDR_MASK)
279281494Sandrew
280281494Sandrewstatic __inline pd_entry_t *
281281494Sandrewpmap_l1(pmap_t pmap, vm_offset_t va)
282281494Sandrew{
283281494Sandrew
284281494Sandrew	return (&pmap->pm_l1[pmap_l1_index(va)]);
285281494Sandrew}
286281494Sandrew
287281494Sandrewstatic __inline pd_entry_t *
288281494Sandrewpmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
289281494Sandrew{
290281494Sandrew	pd_entry_t *l2;
291281494Sandrew
292288445Sandrew	l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
293281494Sandrew	return (&l2[pmap_l2_index(va)]);
294281494Sandrew}
295281494Sandrew
296281494Sandrewstatic __inline pd_entry_t *
297281494Sandrewpmap_l2(pmap_t pmap, vm_offset_t va)
298281494Sandrew{
299281494Sandrew	pd_entry_t *l1;
300281494Sandrew
301281494Sandrew	l1 = pmap_l1(pmap, va);
302288445Sandrew	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
303281494Sandrew		return (NULL);
304281494Sandrew
305281494Sandrew	return (pmap_l1_to_l2(l1, va));
306281494Sandrew}
307281494Sandrew
308281494Sandrewstatic __inline pt_entry_t *
309281494Sandrewpmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
310281494Sandrew{
311281494Sandrew	pt_entry_t *l3;
312281494Sandrew
313288445Sandrew	l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK);
314281494Sandrew	return (&l3[pmap_l3_index(va)]);
315281494Sandrew}
316281494Sandrew
317281494Sandrewstatic __inline pt_entry_t *
318281494Sandrewpmap_l3(pmap_t pmap, vm_offset_t va)
319281494Sandrew{
320281494Sandrew	pd_entry_t *l2;
321281494Sandrew
322281494Sandrew	l2 = pmap_l2(pmap, va);
323288445Sandrew	if (l2 == NULL || (pmap_load(l2) & ATTR_DESCR_MASK) != L2_TABLE)
324281494Sandrew		return (NULL);
325281494Sandrew
326281494Sandrew	return (pmap_l2_to_l3(l2, va));
327281494Sandrew}
328281494Sandrew
329286956Sandrewbool
330286956Sandrewpmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l1, pd_entry_t **l2,
331286956Sandrew    pt_entry_t **l3)
332286956Sandrew{
333286956Sandrew	pd_entry_t *l1p, *l2p;
334286956Sandrew
335286956Sandrew	if (pmap->pm_l1 == NULL)
336286956Sandrew		return (false);
337286956Sandrew
338286956Sandrew	l1p = pmap_l1(pmap, va);
339286956Sandrew	*l1 = l1p;
340286956Sandrew
341288445Sandrew	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
342286956Sandrew		*l2 = NULL;
343286956Sandrew		*l3 = NULL;
344286956Sandrew		return (true);
345286956Sandrew	}
346286956Sandrew
347288445Sandrew	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
348286956Sandrew		return (false);
349286956Sandrew
350286956Sandrew	l2p = pmap_l1_to_l2(l1p, va);
351286956Sandrew	*l2 = l2p;
352286956Sandrew
353288445Sandrew	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
354286956Sandrew		*l3 = NULL;
355286956Sandrew		return (true);
356286956Sandrew	}
357286956Sandrew
358286956Sandrew	*l3 = pmap_l2_to_l3(l2p, va);
359286956Sandrew
360286956Sandrew	return (true);
361286956Sandrew}
362286956Sandrew
363281494Sandrewstatic __inline int
364281494Sandrewpmap_is_current(pmap_t pmap)
365281494Sandrew{
366281494Sandrew
367281494Sandrew	return ((pmap == pmap_kernel()) ||
368281494Sandrew	    (pmap == curthread->td_proc->p_vmspace->vm_map.pmap));
369281494Sandrew}
370281494Sandrew
371281494Sandrewstatic __inline int
372281494Sandrewpmap_l3_valid(pt_entry_t l3)
373281494Sandrew{
374281494Sandrew
375281494Sandrew	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
376281494Sandrew}
377281494Sandrew
378281494Sandrewstatic __inline int
379281494Sandrewpmap_l3_valid_cacheable(pt_entry_t l3)
380281494Sandrew{
381281494Sandrew
382281494Sandrew	return (((l3 & ATTR_DESCR_MASK) == L3_PAGE) &&
383281494Sandrew	    ((l3 & ATTR_IDX_MASK) == ATTR_IDX(CACHED_MEMORY)));
384281494Sandrew}
385281494Sandrew
386281494Sandrew#define	PTE_SYNC(pte)	cpu_dcache_wb_range((vm_offset_t)pte, sizeof(*pte))
387281494Sandrew
388281494Sandrew/*
389281494Sandrew * Checks if the page is dirty. We currently lack proper tracking of this on
390281494Sandrew * arm64 so for now assume is a page mapped as rw was accessed it is.
391281494Sandrew */
392281494Sandrewstatic inline int
393281494Sandrewpmap_page_dirty(pt_entry_t pte)
394281494Sandrew{
395281494Sandrew
396281494Sandrew	return ((pte & (ATTR_AF | ATTR_AP_RW_BIT)) ==
397281494Sandrew	    (ATTR_AF | ATTR_AP(ATTR_AP_RW)));
398281494Sandrew}
399281494Sandrew
400281494Sandrewstatic __inline void
401281494Sandrewpmap_resident_count_inc(pmap_t pmap, int count)
402281494Sandrew{
403281494Sandrew
404281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
405281494Sandrew	pmap->pm_stats.resident_count += count;
406281494Sandrew}
407281494Sandrew
408281494Sandrewstatic __inline void
409281494Sandrewpmap_resident_count_dec(pmap_t pmap, int count)
410281494Sandrew{
411281494Sandrew
412281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
413281494Sandrew	KASSERT(pmap->pm_stats.resident_count >= count,
414281494Sandrew	    ("pmap %p resident count underflow %ld %d", pmap,
415281494Sandrew	    pmap->pm_stats.resident_count, count));
416281494Sandrew	pmap->pm_stats.resident_count -= count;
417281494Sandrew}
418281494Sandrew
419281494Sandrewstatic pt_entry_t *
420281494Sandrewpmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
421281494Sandrew    u_int *l2_slot)
422281494Sandrew{
423281494Sandrew	pt_entry_t *l2;
424281494Sandrew	pd_entry_t *l1;
425281494Sandrew
426281494Sandrew	l1 = (pd_entry_t *)l1pt;
427281494Sandrew	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
428281494Sandrew
429281494Sandrew	/* Check locore has used a table L1 map */
430281494Sandrew	KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
431281494Sandrew	   ("Invalid bootstrap L1 table"));
432281494Sandrew	/* Find the address of the L2 table */
433281494Sandrew	l2 = (pt_entry_t *)init_pt_va;
434281494Sandrew	*l2_slot = pmap_l2_index(va);
435281494Sandrew
436281494Sandrew	return (l2);
437281494Sandrew}
438281494Sandrew
439281494Sandrewstatic vm_paddr_t
440281494Sandrewpmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
441281494Sandrew{
442281494Sandrew	u_int l1_slot, l2_slot;
443281494Sandrew	pt_entry_t *l2;
444281494Sandrew
445281494Sandrew	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
446281494Sandrew
447281494Sandrew	return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
448281494Sandrew}
449281494Sandrew
450281494Sandrewstatic void
451291246Sandrewpmap_bootstrap_dmap(vm_offset_t l1pt, vm_paddr_t kernstart)
452281494Sandrew{
453281494Sandrew	vm_offset_t va;
454281494Sandrew	vm_paddr_t pa;
455281494Sandrew	pd_entry_t *l1;
456281494Sandrew	u_int l1_slot;
457281494Sandrew
458291246Sandrew	pa = dmap_phys_base = kernstart & ~L1_OFFSET;
459281494Sandrew	va = DMAP_MIN_ADDRESS;
460281494Sandrew	l1 = (pd_entry_t *)l1pt;
461281494Sandrew	l1_slot = pmap_l1_index(DMAP_MIN_ADDRESS);
462281494Sandrew
463291246Sandrew	for (; va < DMAP_MAX_ADDRESS;
464281494Sandrew	    pa += L1_SIZE, va += L1_SIZE, l1_slot++) {
465281494Sandrew		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
466281494Sandrew
467281494Sandrew		pmap_load_store(&l1[l1_slot],
468285537Sandrew		    (pa & ~L1_OFFSET) | ATTR_DEFAULT |
469285537Sandrew		    ATTR_IDX(CACHED_MEMORY) | L1_BLOCK);
470281494Sandrew	}
471281494Sandrew
472281494Sandrew	cpu_dcache_wb_range((vm_offset_t)l1, PAGE_SIZE);
473281494Sandrew	cpu_tlb_flushID();
474281494Sandrew}
475281494Sandrew
476281494Sandrewstatic vm_offset_t
477281494Sandrewpmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
478281494Sandrew{
479281494Sandrew	vm_offset_t l2pt;
480281494Sandrew	vm_paddr_t pa;
481281494Sandrew	pd_entry_t *l1;
482281494Sandrew	u_int l1_slot;
483281494Sandrew
484281494Sandrew	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
485281494Sandrew
486281494Sandrew	l1 = (pd_entry_t *)l1pt;
487281494Sandrew	l1_slot = pmap_l1_index(va);
488281494Sandrew	l2pt = l2_start;
489281494Sandrew
490281494Sandrew	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
491281494Sandrew		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
492281494Sandrew
493281494Sandrew		pa = pmap_early_vtophys(l1pt, l2pt);
494281494Sandrew		pmap_load_store(&l1[l1_slot],
495281494Sandrew		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
496281494Sandrew		l2pt += PAGE_SIZE;
497281494Sandrew	}
498281494Sandrew
499281494Sandrew	/* Clean the L2 page table */
500281494Sandrew	memset((void *)l2_start, 0, l2pt - l2_start);
501281494Sandrew	cpu_dcache_wb_range(l2_start, l2pt - l2_start);
502281494Sandrew
503281494Sandrew	/* Flush the l1 table to ram */
504281494Sandrew	cpu_dcache_wb_range((vm_offset_t)l1, PAGE_SIZE);
505281494Sandrew
506281494Sandrew	return l2pt;
507281494Sandrew}
508281494Sandrew
509281494Sandrewstatic vm_offset_t
510281494Sandrewpmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
511281494Sandrew{
512281494Sandrew	vm_offset_t l2pt, l3pt;
513281494Sandrew	vm_paddr_t pa;
514281494Sandrew	pd_entry_t *l2;
515281494Sandrew	u_int l2_slot;
516281494Sandrew
517281494Sandrew	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
518281494Sandrew
519281494Sandrew	l2 = pmap_l2(kernel_pmap, va);
520281494Sandrew	l2 = (pd_entry_t *)((uintptr_t)l2 & ~(PAGE_SIZE - 1));
521281494Sandrew	l2pt = (vm_offset_t)l2;
522281494Sandrew	l2_slot = pmap_l2_index(va);
523281494Sandrew	l3pt = l3_start;
524281494Sandrew
525281494Sandrew	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
526281494Sandrew		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
527281494Sandrew
528281494Sandrew		pa = pmap_early_vtophys(l1pt, l3pt);
529281494Sandrew		pmap_load_store(&l2[l2_slot],
530281494Sandrew		    (pa & ~Ln_TABLE_MASK) | L2_TABLE);
531281494Sandrew		l3pt += PAGE_SIZE;
532281494Sandrew	}
533281494Sandrew
534281494Sandrew	/* Clean the L2 page table */
535281494Sandrew	memset((void *)l3_start, 0, l3pt - l3_start);
536281494Sandrew	cpu_dcache_wb_range(l3_start, l3pt - l3_start);
537281494Sandrew
538281494Sandrew	cpu_dcache_wb_range((vm_offset_t)l2, PAGE_SIZE);
539281494Sandrew
540281494Sandrew	return l3pt;
541281494Sandrew}
542281494Sandrew
543281494Sandrew/*
544281494Sandrew *	Bootstrap the system enough to run with virtual memory.
545281494Sandrew */
546281494Sandrewvoid
547281494Sandrewpmap_bootstrap(vm_offset_t l1pt, vm_paddr_t kernstart, vm_size_t kernlen)
548281494Sandrew{
549281494Sandrew	u_int l1_slot, l2_slot, avail_slot, map_slot, used_map_slot;
550281494Sandrew	uint64_t kern_delta;
551281494Sandrew	pt_entry_t *l2;
552281494Sandrew	vm_offset_t va, freemempos;
553281494Sandrew	vm_offset_t dpcpu, msgbufpv;
554291246Sandrew	vm_paddr_t pa, min_pa;
555291246Sandrew	int i;
556281494Sandrew
557281494Sandrew	kern_delta = KERNBASE - kernstart;
558281494Sandrew	physmem = 0;
559281494Sandrew
560281494Sandrew	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
561281494Sandrew	printf("%lx\n", l1pt);
562281494Sandrew	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
563281494Sandrew
564281494Sandrew	/* Set this early so we can use the pagetable walking functions */
565281494Sandrew	kernel_pmap_store.pm_l1 = (pd_entry_t *)l1pt;
566281494Sandrew	PMAP_LOCK_INIT(kernel_pmap);
567281494Sandrew
568281494Sandrew 	/*
569281494Sandrew	 * Initialize the global pv list lock.
570281494Sandrew	 */
571281494Sandrew	rw_init(&pvh_global_lock, "pmap pv global");
572281494Sandrew
573291246Sandrew	/* Assume the address we were loaded to is a valid physical address */
574291246Sandrew	min_pa = KERNBASE - kern_delta;
575291246Sandrew
576291246Sandrew	/*
577291246Sandrew	 * Find the minimum physical address. physmap is sorted,
578291246Sandrew	 * but may contain empty ranges.
579291246Sandrew	 */
580291246Sandrew	for (i = 0; i < (physmap_idx * 2); i += 2) {
581291246Sandrew		if (physmap[i] == physmap[i + 1])
582291246Sandrew			continue;
583291246Sandrew		if (physmap[i] <= min_pa)
584291246Sandrew			min_pa = physmap[i];
585291246Sandrew		break;
586291246Sandrew	}
587291246Sandrew
588281494Sandrew	/* Create a direct map region early so we can use it for pa -> va */
589291246Sandrew	pmap_bootstrap_dmap(l1pt, min_pa);
590281494Sandrew
591281494Sandrew	va = KERNBASE;
592281494Sandrew	pa = KERNBASE - kern_delta;
593281494Sandrew
594281494Sandrew	/*
595281494Sandrew	 * Start to initialise phys_avail by copying from physmap
596281494Sandrew	 * up to the physical address KERNBASE points at.
597281494Sandrew	 */
598281494Sandrew	map_slot = avail_slot = 0;
599295157Sandrew	for (; map_slot < (physmap_idx * 2) &&
600295157Sandrew	    avail_slot < (PHYS_AVAIL_SIZE - 2); map_slot += 2) {
601281494Sandrew		if (physmap[map_slot] == physmap[map_slot + 1])
602281494Sandrew			continue;
603281494Sandrew
604281494Sandrew		if (physmap[map_slot] <= pa &&
605281494Sandrew		    physmap[map_slot + 1] > pa)
606281494Sandrew			break;
607281494Sandrew
608281494Sandrew		phys_avail[avail_slot] = physmap[map_slot];
609281494Sandrew		phys_avail[avail_slot + 1] = physmap[map_slot + 1];
610281494Sandrew		physmem += (phys_avail[avail_slot + 1] -
611281494Sandrew		    phys_avail[avail_slot]) >> PAGE_SHIFT;
612281494Sandrew		avail_slot += 2;
613281494Sandrew	}
614281494Sandrew
615281494Sandrew	/* Add the memory before the kernel */
616295157Sandrew	if (physmap[avail_slot] < pa && avail_slot < (PHYS_AVAIL_SIZE - 2)) {
617281494Sandrew		phys_avail[avail_slot] = physmap[map_slot];
618281494Sandrew		phys_avail[avail_slot + 1] = pa;
619281494Sandrew		physmem += (phys_avail[avail_slot + 1] -
620281494Sandrew		    phys_avail[avail_slot]) >> PAGE_SHIFT;
621281494Sandrew		avail_slot += 2;
622281494Sandrew	}
623281494Sandrew	used_map_slot = map_slot;
624281494Sandrew
625281494Sandrew	/*
626281494Sandrew	 * Read the page table to find out what is already mapped.
627281494Sandrew	 * This assumes we have mapped a block of memory from KERNBASE
628281494Sandrew	 * using a single L1 entry.
629281494Sandrew	 */
630281494Sandrew	l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
631281494Sandrew
632281494Sandrew	/* Sanity check the index, KERNBASE should be the first VA */
633281494Sandrew	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
634281494Sandrew
635281494Sandrew	/* Find how many pages we have mapped */
636281494Sandrew	for (; l2_slot < Ln_ENTRIES; l2_slot++) {
637281494Sandrew		if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0)
638281494Sandrew			break;
639281494Sandrew
640281494Sandrew		/* Check locore used L2 blocks */
641281494Sandrew		KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK,
642281494Sandrew		    ("Invalid bootstrap L2 table"));
643281494Sandrew		KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa,
644281494Sandrew		    ("Incorrect PA in L2 table"));
645281494Sandrew
646281494Sandrew		va += L2_SIZE;
647281494Sandrew		pa += L2_SIZE;
648281494Sandrew	}
649281494Sandrew
650281494Sandrew	va = roundup2(va, L1_SIZE);
651281494Sandrew
652281494Sandrew	freemempos = KERNBASE + kernlen;
653281494Sandrew	freemempos = roundup2(freemempos, PAGE_SIZE);
654281494Sandrew	/* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */
655281494Sandrew	freemempos = pmap_bootstrap_l2(l1pt, va, freemempos);
656281494Sandrew	/* And the l3 tables for the early devmap */
657281494Sandrew	freemempos = pmap_bootstrap_l3(l1pt,
658281494Sandrew	    VM_MAX_KERNEL_ADDRESS - L2_SIZE, freemempos);
659281494Sandrew
660281494Sandrew	cpu_tlb_flushID();
661281494Sandrew
662281494Sandrew#define alloc_pages(var, np)						\
663281494Sandrew	(var) = freemempos;						\
664281494Sandrew	freemempos += (np * PAGE_SIZE);					\
665281494Sandrew	memset((char *)(var), 0, ((np) * PAGE_SIZE));
666281494Sandrew
667281494Sandrew	/* Allocate dynamic per-cpu area. */
668281494Sandrew	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
669281494Sandrew	dpcpu_init((void *)dpcpu, 0);
670281494Sandrew
671281494Sandrew	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
672281494Sandrew	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
673281494Sandrew	msgbufp = (void *)msgbufpv;
674281494Sandrew
675281494Sandrew	virtual_avail = roundup2(freemempos, L1_SIZE);
676281494Sandrew	virtual_end = VM_MAX_KERNEL_ADDRESS - L2_SIZE;
677281494Sandrew	kernel_vm_end = virtual_avail;
678281494Sandrew
679281494Sandrew	pa = pmap_early_vtophys(l1pt, freemempos);
680281494Sandrew
681281494Sandrew	/* Finish initialising physmap */
682281494Sandrew	map_slot = used_map_slot;
683281494Sandrew	for (; avail_slot < (PHYS_AVAIL_SIZE - 2) &&
684281494Sandrew	    map_slot < (physmap_idx * 2); map_slot += 2) {
685281494Sandrew		if (physmap[map_slot] == physmap[map_slot + 1])
686281494Sandrew			continue;
687281494Sandrew
688281494Sandrew		/* Have we used the current range? */
689281494Sandrew		if (physmap[map_slot + 1] <= pa)
690281494Sandrew			continue;
691281494Sandrew
692281494Sandrew		/* Do we need to split the entry? */
693281494Sandrew		if (physmap[map_slot] < pa) {
694281494Sandrew			phys_avail[avail_slot] = pa;
695281494Sandrew			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
696281494Sandrew		} else {
697281494Sandrew			phys_avail[avail_slot] = physmap[map_slot];
698281494Sandrew			phys_avail[avail_slot + 1] = physmap[map_slot + 1];
699281494Sandrew		}
700281494Sandrew		physmem += (phys_avail[avail_slot + 1] -
701281494Sandrew		    phys_avail[avail_slot]) >> PAGE_SHIFT;
702281494Sandrew
703281494Sandrew		avail_slot += 2;
704281494Sandrew	}
705281494Sandrew	phys_avail[avail_slot] = 0;
706281494Sandrew	phys_avail[avail_slot + 1] = 0;
707281494Sandrew
708281494Sandrew	/*
709281494Sandrew	 * Maxmem isn't the "maximum memory", it's one larger than the
710281494Sandrew	 * highest page of the physical address space.  It should be
711281494Sandrew	 * called something like "Maxphyspage".
712281494Sandrew	 */
713281494Sandrew	Maxmem = atop(phys_avail[avail_slot - 1]);
714281494Sandrew
715281494Sandrew	cpu_tlb_flushID();
716281494Sandrew}
717281494Sandrew
718281494Sandrew/*
719281494Sandrew *	Initialize a vm_page's machine-dependent fields.
720281494Sandrew */
721281494Sandrewvoid
722281494Sandrewpmap_page_init(vm_page_t m)
723281494Sandrew{
724281494Sandrew
725281494Sandrew	TAILQ_INIT(&m->md.pv_list);
726281494Sandrew	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
727281494Sandrew}
728281494Sandrew
729281494Sandrew/*
730281494Sandrew *	Initialize the pmap module.
731281494Sandrew *	Called by vm_init, to initialize any structures that the pmap
732281494Sandrew *	system needs to map virtual memory.
733281494Sandrew */
734281494Sandrewvoid
735281494Sandrewpmap_init(void)
736281494Sandrew{
737281494Sandrew	int i;
738281494Sandrew
739281494Sandrew	/*
740281494Sandrew	 * Initialize the pv chunk list mutex.
741281494Sandrew	 */
742281494Sandrew	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
743281494Sandrew
744281494Sandrew	/*
745281494Sandrew	 * Initialize the pool of pv list locks.
746281494Sandrew	 */
747281494Sandrew	for (i = 0; i < NPV_LIST_LOCKS; i++)
748281494Sandrew		rw_init(&pv_list_locks[i], "pmap pv list");
749281494Sandrew}
750281494Sandrew
751281494Sandrew/*
752281494Sandrew * Normal, non-SMP, invalidation functions.
753281494Sandrew * We inline these within pmap.c for speed.
754281494Sandrew */
755281494SandrewPMAP_INLINE void
756281494Sandrewpmap_invalidate_page(pmap_t pmap, vm_offset_t va)
757281494Sandrew{
758281494Sandrew
759281494Sandrew	sched_pin();
760281494Sandrew	__asm __volatile(
761281494Sandrew	    "dsb  sy		\n"
762281494Sandrew	    "tlbi vaae1is, %0	\n"
763281494Sandrew	    "dsb  sy		\n"
764281494Sandrew	    "isb		\n"
765281494Sandrew	    : : "r"(va >> PAGE_SHIFT));
766281494Sandrew	sched_unpin();
767281494Sandrew}
768281494Sandrew
769281494SandrewPMAP_INLINE void
770281494Sandrewpmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
771281494Sandrew{
772281494Sandrew	vm_offset_t addr;
773281494Sandrew
774281494Sandrew	sched_pin();
775281494Sandrew	sva >>= PAGE_SHIFT;
776281494Sandrew	eva >>= PAGE_SHIFT;
777281494Sandrew	__asm __volatile("dsb	sy");
778281494Sandrew	for (addr = sva; addr < eva; addr++) {
779281494Sandrew		__asm __volatile(
780281494Sandrew		    "tlbi vaae1is, %0" : : "r"(addr));
781281494Sandrew	}
782281494Sandrew	__asm __volatile(
783281494Sandrew	    "dsb  sy	\n"
784281494Sandrew	    "isb	\n");
785281494Sandrew	sched_unpin();
786281494Sandrew}
787281494Sandrew
788281494SandrewPMAP_INLINE void
789281494Sandrewpmap_invalidate_all(pmap_t pmap)
790281494Sandrew{
791281494Sandrew
792281494Sandrew	sched_pin();
793281494Sandrew	__asm __volatile(
794281494Sandrew	    "dsb  sy		\n"
795281494Sandrew	    "tlbi vmalle1is	\n"
796281494Sandrew	    "dsb  sy		\n"
797281494Sandrew	    "isb		\n");
798281494Sandrew	sched_unpin();
799281494Sandrew}
800281494Sandrew
801281494Sandrew/*
802281494Sandrew *	Routine:	pmap_extract
803281494Sandrew *	Function:
804281494Sandrew *		Extract the physical page address associated
805281494Sandrew *		with the given map/virtual_address pair.
806281494Sandrew */
807281494Sandrewvm_paddr_t
808281494Sandrewpmap_extract(pmap_t pmap, vm_offset_t va)
809281494Sandrew{
810281494Sandrew	pd_entry_t *l2p, l2;
811281494Sandrew	pt_entry_t *l3p, l3;
812281494Sandrew	vm_paddr_t pa;
813281494Sandrew
814281494Sandrew	pa = 0;
815281494Sandrew	PMAP_LOCK(pmap);
816281494Sandrew	/*
817281494Sandrew	 * Start with the l2 tabel. We are unable to allocate
818281494Sandrew	 * pages in the l1 table.
819281494Sandrew	 */
820281494Sandrew	l2p = pmap_l2(pmap, va);
821281494Sandrew	if (l2p != NULL) {
822288445Sandrew		l2 = pmap_load(l2p);
823281494Sandrew		if ((l2 & ATTR_DESCR_MASK) == L2_TABLE) {
824281494Sandrew			l3p = pmap_l2_to_l3(l2p, va);
825281494Sandrew			if (l3p != NULL) {
826288445Sandrew				l3 = pmap_load(l3p);
827281494Sandrew
828281494Sandrew				if ((l3 & ATTR_DESCR_MASK) == L3_PAGE)
829281494Sandrew					pa = (l3 & ~ATTR_MASK) |
830281494Sandrew					    (va & L3_OFFSET);
831281494Sandrew			}
832281494Sandrew		} else if ((l2 & ATTR_DESCR_MASK) == L2_BLOCK)
833281494Sandrew			pa = (l2 & ~ATTR_MASK) | (va & L2_OFFSET);
834281494Sandrew	}
835281494Sandrew	PMAP_UNLOCK(pmap);
836281494Sandrew	return (pa);
837281494Sandrew}
838281494Sandrew
839281494Sandrew/*
840281494Sandrew *	Routine:	pmap_extract_and_hold
841281494Sandrew *	Function:
842281494Sandrew *		Atomically extract and hold the physical page
843281494Sandrew *		with the given pmap and virtual address pair
844281494Sandrew *		if that mapping permits the given protection.
845281494Sandrew */
846281494Sandrewvm_page_t
847281494Sandrewpmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
848281494Sandrew{
849281494Sandrew	pt_entry_t *l3p, l3;
850281494Sandrew	vm_paddr_t pa;
851281494Sandrew	vm_page_t m;
852281494Sandrew
853281494Sandrew	pa = 0;
854281494Sandrew	m = NULL;
855281494Sandrew	PMAP_LOCK(pmap);
856281494Sandrewretry:
857281494Sandrew	l3p = pmap_l3(pmap, va);
858285045Sandrew	if (l3p != NULL && (l3 = pmap_load(l3p)) != 0) {
859281494Sandrew		if (((l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) ||
860281494Sandrew		    ((prot & VM_PROT_WRITE) == 0)) {
861281494Sandrew			if (vm_page_pa_tryrelock(pmap, l3 & ~ATTR_MASK, &pa))
862281494Sandrew				goto retry;
863281494Sandrew			m = PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK);
864281494Sandrew			vm_page_hold(m);
865281494Sandrew		}
866281494Sandrew	}
867281494Sandrew	PA_UNLOCK_COND(pa);
868281494Sandrew	PMAP_UNLOCK(pmap);
869281494Sandrew	return (m);
870281494Sandrew}
871281494Sandrew
872281494Sandrewvm_paddr_t
873281494Sandrewpmap_kextract(vm_offset_t va)
874281494Sandrew{
875288445Sandrew	pd_entry_t *l2p, l2;
876281494Sandrew	pt_entry_t *l3;
877281494Sandrew	vm_paddr_t pa;
878281494Sandrew
879281494Sandrew	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
880281494Sandrew		pa = DMAP_TO_PHYS(va);
881281494Sandrew	} else {
882288445Sandrew		l2p = pmap_l2(kernel_pmap, va);
883288445Sandrew		if (l2p == NULL)
884281494Sandrew			panic("pmap_kextract: No l2");
885288445Sandrew		l2 = pmap_load(l2p);
886288445Sandrew		if ((l2 & ATTR_DESCR_MASK) == L2_BLOCK)
887288445Sandrew			return ((l2 & ~ATTR_MASK) |
888288445Sandrew			    (va & L2_OFFSET));
889281494Sandrew
890288445Sandrew		l3 = pmap_l2_to_l3(l2p, va);
891281494Sandrew		if (l3 == NULL)
892281494Sandrew			panic("pmap_kextract: No l3...");
893288445Sandrew		pa = (pmap_load(l3) & ~ATTR_MASK) | (va & PAGE_MASK);
894281494Sandrew	}
895281494Sandrew	return (pa);
896281494Sandrew}
897281494Sandrew
898281494Sandrew/***************************************************
899281494Sandrew * Low level mapping routines.....
900281494Sandrew ***************************************************/
901281494Sandrew
902281494Sandrewvoid
903285212Sandrewpmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
904281494Sandrew{
905281494Sandrew	pt_entry_t *l3;
906285212Sandrew	vm_offset_t va;
907281494Sandrew
908281494Sandrew	KASSERT((pa & L3_OFFSET) == 0,
909281494Sandrew	   ("pmap_kenter_device: Invalid physical address"));
910285212Sandrew	KASSERT((sva & L3_OFFSET) == 0,
911281494Sandrew	   ("pmap_kenter_device: Invalid virtual address"));
912281494Sandrew	KASSERT((size & PAGE_MASK) == 0,
913281494Sandrew	    ("pmap_kenter_device: Mapping is not page-sized"));
914281494Sandrew
915285212Sandrew	va = sva;
916281494Sandrew	while (size != 0) {
917281494Sandrew		l3 = pmap_l3(kernel_pmap, va);
918281494Sandrew		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
919285537Sandrew		pmap_load_store(l3, (pa & ~L3_OFFSET) | ATTR_DEFAULT |
920285537Sandrew		    ATTR_IDX(DEVICE_MEMORY) | L3_PAGE);
921281494Sandrew		PTE_SYNC(l3);
922281494Sandrew
923281494Sandrew		va += PAGE_SIZE;
924281494Sandrew		pa += PAGE_SIZE;
925281494Sandrew		size -= PAGE_SIZE;
926281494Sandrew	}
927285212Sandrew	pmap_invalidate_range(kernel_pmap, sva, va);
928281494Sandrew}
929281494Sandrew
930281494Sandrew/*
931281494Sandrew * Remove a page from the kernel pagetables.
932281494Sandrew * Note: not SMP coherent.
933281494Sandrew */
934281494SandrewPMAP_INLINE void
935281494Sandrewpmap_kremove(vm_offset_t va)
936281494Sandrew{
937281494Sandrew	pt_entry_t *l3;
938281494Sandrew
939281494Sandrew	l3 = pmap_l3(kernel_pmap, va);
940281494Sandrew	KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
941281494Sandrew
942281494Sandrew	if (pmap_l3_valid_cacheable(pmap_load(l3)))
943281494Sandrew		cpu_dcache_wb_range(va, L3_SIZE);
944281494Sandrew	pmap_load_clear(l3);
945281494Sandrew	PTE_SYNC(l3);
946285212Sandrew	pmap_invalidate_page(kernel_pmap, va);
947281494Sandrew}
948281494Sandrew
949281494Sandrewvoid
950285212Sandrewpmap_kremove_device(vm_offset_t sva, vm_size_t size)
951281494Sandrew{
952281494Sandrew	pt_entry_t *l3;
953285212Sandrew	vm_offset_t va;
954281494Sandrew
955285212Sandrew	KASSERT((sva & L3_OFFSET) == 0,
956281494Sandrew	   ("pmap_kremove_device: Invalid virtual address"));
957281494Sandrew	KASSERT((size & PAGE_MASK) == 0,
958281494Sandrew	    ("pmap_kremove_device: Mapping is not page-sized"));
959281494Sandrew
960285212Sandrew	va = sva;
961281494Sandrew	while (size != 0) {
962281494Sandrew		l3 = pmap_l3(kernel_pmap, va);
963281494Sandrew		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
964281494Sandrew		pmap_load_clear(l3);
965281494Sandrew		PTE_SYNC(l3);
966281494Sandrew
967281494Sandrew		va += PAGE_SIZE;
968281494Sandrew		size -= PAGE_SIZE;
969281494Sandrew	}
970285212Sandrew	pmap_invalidate_range(kernel_pmap, sva, va);
971281494Sandrew}
972281494Sandrew
973281494Sandrew/*
974281494Sandrew *	Used to map a range of physical addresses into kernel
975281494Sandrew *	virtual address space.
976281494Sandrew *
977281494Sandrew *	The value passed in '*virt' is a suggested virtual address for
978281494Sandrew *	the mapping. Architectures which can support a direct-mapped
979281494Sandrew *	physical to virtual region can return the appropriate address
980281494Sandrew *	within that region, leaving '*virt' unchanged. Other
981281494Sandrew *	architectures should map the pages starting at '*virt' and
982281494Sandrew *	update '*virt' with the first usable address after the mapped
983281494Sandrew *	region.
984281494Sandrew */
985281494Sandrewvm_offset_t
986281494Sandrewpmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
987281494Sandrew{
988281494Sandrew	return PHYS_TO_DMAP(start);
989281494Sandrew}
990281494Sandrew
991281494Sandrew
992281494Sandrew/*
993281494Sandrew * Add a list of wired pages to the kva
994281494Sandrew * this routine is only used for temporary
995281494Sandrew * kernel mappings that do not need to have
996281494Sandrew * page modification or references recorded.
997281494Sandrew * Note that old mappings are simply written
998281494Sandrew * over.  The page *must* be wired.
999281494Sandrew * Note: SMP coherent.  Uses a ranged shootdown IPI.
1000281494Sandrew */
1001281494Sandrewvoid
1002281494Sandrewpmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1003281494Sandrew{
1004281494Sandrew	pt_entry_t *l3, pa;
1005281494Sandrew	vm_offset_t va;
1006281494Sandrew	vm_page_t m;
1007281494Sandrew	int i;
1008281494Sandrew
1009281494Sandrew	va = sva;
1010281494Sandrew	for (i = 0; i < count; i++) {
1011281494Sandrew		m = ma[i];
1012285537Sandrew		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_AP(ATTR_AP_RW) |
1013285537Sandrew		    ATTR_IDX(m->md.pv_memattr) | L3_PAGE;
1014281494Sandrew		l3 = pmap_l3(kernel_pmap, va);
1015281494Sandrew		pmap_load_store(l3, pa);
1016281494Sandrew		PTE_SYNC(l3);
1017281494Sandrew
1018281494Sandrew		va += L3_SIZE;
1019281494Sandrew	}
1020285212Sandrew	pmap_invalidate_range(kernel_pmap, sva, va);
1021281494Sandrew}
1022281494Sandrew
1023281494Sandrew/*
1024281494Sandrew * This routine tears out page mappings from the
1025281494Sandrew * kernel -- it is meant only for temporary mappings.
1026281494Sandrew * Note: SMP coherent.  Uses a ranged shootdown IPI.
1027281494Sandrew */
1028281494Sandrewvoid
1029281494Sandrewpmap_qremove(vm_offset_t sva, int count)
1030281494Sandrew{
1031285212Sandrew	pt_entry_t *l3;
1032281494Sandrew	vm_offset_t va;
1033281494Sandrew
1034285212Sandrew	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1035285212Sandrew
1036281494Sandrew	va = sva;
1037281494Sandrew	while (count-- > 0) {
1038285212Sandrew		l3 = pmap_l3(kernel_pmap, va);
1039285212Sandrew		KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
1040285212Sandrew
1041285212Sandrew		if (pmap_l3_valid_cacheable(pmap_load(l3)))
1042285212Sandrew			cpu_dcache_wb_range(va, L3_SIZE);
1043285212Sandrew		pmap_load_clear(l3);
1044285212Sandrew		PTE_SYNC(l3);
1045285212Sandrew
1046281494Sandrew		va += PAGE_SIZE;
1047281494Sandrew	}
1048281494Sandrew	pmap_invalidate_range(kernel_pmap, sva, va);
1049281494Sandrew}
1050281494Sandrew
1051281494Sandrew/***************************************************
1052281494Sandrew * Page table page management routines.....
1053281494Sandrew ***************************************************/
1054281494Sandrewstatic __inline void
1055281494Sandrewpmap_free_zero_pages(struct spglist *free)
1056281494Sandrew{
1057281494Sandrew	vm_page_t m;
1058281494Sandrew
1059281494Sandrew	while ((m = SLIST_FIRST(free)) != NULL) {
1060281494Sandrew		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1061281494Sandrew		/* Preserve the page's PG_ZERO setting. */
1062281494Sandrew		vm_page_free_toq(m);
1063281494Sandrew	}
1064281494Sandrew}
1065281494Sandrew
1066281494Sandrew/*
1067281494Sandrew * Schedule the specified unused page table page to be freed.  Specifically,
1068281494Sandrew * add the page to the specified list of pages that will be released to the
1069281494Sandrew * physical memory manager after the TLB has been updated.
1070281494Sandrew */
1071281494Sandrewstatic __inline void
1072281494Sandrewpmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1073281494Sandrew    boolean_t set_PG_ZERO)
1074281494Sandrew{
1075281494Sandrew
1076281494Sandrew	if (set_PG_ZERO)
1077281494Sandrew		m->flags |= PG_ZERO;
1078281494Sandrew	else
1079281494Sandrew		m->flags &= ~PG_ZERO;
1080281494Sandrew	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1081281494Sandrew}
1082281494Sandrew
1083281494Sandrew/*
1084281494Sandrew * Decrements a page table page's wire count, which is used to record the
1085281494Sandrew * number of valid page table entries within the page.  If the wire count
1086281494Sandrew * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1087281494Sandrew * page table page was unmapped and FALSE otherwise.
1088281494Sandrew */
1089281494Sandrewstatic inline boolean_t
1090281494Sandrewpmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1091281494Sandrew{
1092281494Sandrew
1093281494Sandrew	--m->wire_count;
1094281494Sandrew	if (m->wire_count == 0) {
1095281494Sandrew		_pmap_unwire_l3(pmap, va, m, free);
1096281494Sandrew		return (TRUE);
1097281494Sandrew	} else
1098281494Sandrew		return (FALSE);
1099281494Sandrew}
1100281494Sandrew
1101281494Sandrewstatic void
1102281494Sandrew_pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1103281494Sandrew{
1104281494Sandrew
1105281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1106281494Sandrew	/*
1107281494Sandrew	 * unmap the page table page
1108281494Sandrew	 */
1109281494Sandrew	if (m->pindex >= NUPDE) {
1110281494Sandrew		/* PD page */
1111281494Sandrew		pd_entry_t *l1;
1112281494Sandrew		l1 = pmap_l1(pmap, va);
1113281494Sandrew		pmap_load_clear(l1);
1114281494Sandrew		PTE_SYNC(l1);
1115281494Sandrew	} else {
1116281494Sandrew		/* PTE page */
1117281494Sandrew		pd_entry_t *l2;
1118281494Sandrew		l2 = pmap_l2(pmap, va);
1119281494Sandrew		pmap_load_clear(l2);
1120281494Sandrew		PTE_SYNC(l2);
1121281494Sandrew	}
1122281494Sandrew	pmap_resident_count_dec(pmap, 1);
1123281494Sandrew	if (m->pindex < NUPDE) {
1124281494Sandrew		/* We just released a PT, unhold the matching PD */
1125281494Sandrew		vm_page_t pdpg;
1126281494Sandrew
1127281494Sandrew		pdpg = PHYS_TO_VM_PAGE(*pmap_l1(pmap, va) & ~ATTR_MASK);
1128281494Sandrew		pmap_unwire_l3(pmap, va, pdpg, free);
1129281494Sandrew	}
1130285212Sandrew	pmap_invalidate_page(pmap, va);
1131281494Sandrew
1132281494Sandrew	/*
1133281494Sandrew	 * This is a release store so that the ordinary store unmapping
1134281494Sandrew	 * the page table page is globally performed before TLB shoot-
1135281494Sandrew	 * down is begun.
1136281494Sandrew	 */
1137281494Sandrew	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
1138281494Sandrew
1139281494Sandrew	/*
1140281494Sandrew	 * Put page on a list so that it is released after
1141281494Sandrew	 * *ALL* TLB shootdown is done
1142281494Sandrew	 */
1143281494Sandrew	pmap_add_delayed_free_list(m, free, TRUE);
1144281494Sandrew}
1145281494Sandrew
1146281494Sandrew/*
1147281494Sandrew * After removing an l3 entry, this routine is used to
1148281494Sandrew * conditionally free the page, and manage the hold/wire counts.
1149281494Sandrew */
1150281494Sandrewstatic int
1151281494Sandrewpmap_unuse_l3(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1152281494Sandrew    struct spglist *free)
1153281494Sandrew{
1154281494Sandrew	vm_page_t mpte;
1155281494Sandrew
1156281494Sandrew	if (va >= VM_MAXUSER_ADDRESS)
1157281494Sandrew		return (0);
1158281494Sandrew	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1159281494Sandrew	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1160281494Sandrew	return (pmap_unwire_l3(pmap, va, mpte, free));
1161281494Sandrew}
1162281494Sandrew
1163281494Sandrewvoid
1164281494Sandrewpmap_pinit0(pmap_t pmap)
1165281494Sandrew{
1166281494Sandrew
1167281494Sandrew	PMAP_LOCK_INIT(pmap);
1168281494Sandrew	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1169281494Sandrew	pmap->pm_l1 = kernel_pmap->pm_l1;
1170281494Sandrew}
1171281494Sandrew
1172281494Sandrewint
1173281494Sandrewpmap_pinit(pmap_t pmap)
1174281494Sandrew{
1175281494Sandrew	vm_paddr_t l1phys;
1176281494Sandrew	vm_page_t l1pt;
1177281494Sandrew
1178281494Sandrew	/*
1179281494Sandrew	 * allocate the l1 page
1180281494Sandrew	 */
1181281494Sandrew	while ((l1pt = vm_page_alloc(NULL, 0xdeadbeef, VM_ALLOC_NORMAL |
1182281494Sandrew	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1183281494Sandrew		VM_WAIT;
1184281494Sandrew
1185281494Sandrew	l1phys = VM_PAGE_TO_PHYS(l1pt);
1186281494Sandrew	pmap->pm_l1 = (pd_entry_t *)PHYS_TO_DMAP(l1phys);
1187281494Sandrew
1188281494Sandrew	if ((l1pt->flags & PG_ZERO) == 0)
1189281494Sandrew		pagezero(pmap->pm_l1);
1190281494Sandrew
1191281494Sandrew	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1192281494Sandrew
1193281494Sandrew	return (1);
1194281494Sandrew}
1195281494Sandrew
1196281494Sandrew/*
1197281494Sandrew * This routine is called if the desired page table page does not exist.
1198281494Sandrew *
1199281494Sandrew * If page table page allocation fails, this routine may sleep before
1200281494Sandrew * returning NULL.  It sleeps only if a lock pointer was given.
1201281494Sandrew *
1202281494Sandrew * Note: If a page allocation fails at page table level two or three,
1203281494Sandrew * one or two pages may be held during the wait, only to be released
1204281494Sandrew * afterwards.  This conservative approach is easily argued to avoid
1205281494Sandrew * race conditions.
1206281494Sandrew */
1207281494Sandrewstatic vm_page_t
1208281494Sandrew_pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1209281494Sandrew{
1210281494Sandrew	vm_page_t m, /*pdppg, */pdpg;
1211281494Sandrew
1212281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1213281494Sandrew
1214281494Sandrew	/*
1215281494Sandrew	 * Allocate a page table page.
1216281494Sandrew	 */
1217281494Sandrew	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1218281494Sandrew	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1219281494Sandrew		if (lockp != NULL) {
1220281494Sandrew			RELEASE_PV_LIST_LOCK(lockp);
1221281494Sandrew			PMAP_UNLOCK(pmap);
1222281494Sandrew			rw_runlock(&pvh_global_lock);
1223281494Sandrew			VM_WAIT;
1224281494Sandrew			rw_rlock(&pvh_global_lock);
1225281494Sandrew			PMAP_LOCK(pmap);
1226281494Sandrew		}
1227281494Sandrew
1228281494Sandrew		/*
1229281494Sandrew		 * Indicate the need to retry.  While waiting, the page table
1230281494Sandrew		 * page may have been allocated.
1231281494Sandrew		 */
1232281494Sandrew		return (NULL);
1233281494Sandrew	}
1234281494Sandrew	if ((m->flags & PG_ZERO) == 0)
1235281494Sandrew		pmap_zero_page(m);
1236281494Sandrew
1237281494Sandrew	/*
1238281494Sandrew	 * Map the pagetable page into the process address space, if
1239281494Sandrew	 * it isn't already there.
1240281494Sandrew	 */
1241281494Sandrew
1242281494Sandrew	if (ptepindex >= NUPDE) {
1243281494Sandrew		pd_entry_t *l1;
1244281494Sandrew		vm_pindex_t l1index;
1245281494Sandrew
1246281494Sandrew		l1index = ptepindex - NUPDE;
1247281494Sandrew		l1 = &pmap->pm_l1[l1index];
1248281494Sandrew		pmap_load_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1249281494Sandrew		PTE_SYNC(l1);
1250281494Sandrew
1251281494Sandrew	} else {
1252281494Sandrew		vm_pindex_t l1index;
1253281494Sandrew		pd_entry_t *l1, *l2;
1254281494Sandrew
1255281494Sandrew		l1index = ptepindex >> (L1_SHIFT - L2_SHIFT);
1256281494Sandrew		l1 = &pmap->pm_l1[l1index];
1257285045Sandrew		if (pmap_load(l1) == 0) {
1258281494Sandrew			/* recurse for allocating page dir */
1259281494Sandrew			if (_pmap_alloc_l3(pmap, NUPDE + l1index,
1260281494Sandrew			    lockp) == NULL) {
1261281494Sandrew				--m->wire_count;
1262281494Sandrew				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1263281494Sandrew				vm_page_free_zero(m);
1264281494Sandrew				return (NULL);
1265281494Sandrew			}
1266281494Sandrew		} else {
1267288445Sandrew			pdpg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK);
1268281494Sandrew			pdpg->wire_count++;
1269281494Sandrew		}
1270281494Sandrew
1271288445Sandrew		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1272281494Sandrew		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1273285537Sandrew		pmap_load_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1274281494Sandrew		PTE_SYNC(l2);
1275281494Sandrew	}
1276281494Sandrew
1277281494Sandrew	pmap_resident_count_inc(pmap, 1);
1278281494Sandrew
1279281494Sandrew	return (m);
1280281494Sandrew}
1281281494Sandrew
1282281494Sandrewstatic vm_page_t
1283281494Sandrewpmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1284281494Sandrew{
1285281494Sandrew	vm_pindex_t ptepindex;
1286281494Sandrew	pd_entry_t *l2;
1287281494Sandrew	vm_page_t m;
1288281494Sandrew
1289281494Sandrew	/*
1290281494Sandrew	 * Calculate pagetable page index
1291281494Sandrew	 */
1292281494Sandrew	ptepindex = pmap_l2_pindex(va);
1293281494Sandrewretry:
1294281494Sandrew	/*
1295281494Sandrew	 * Get the page directory entry
1296281494Sandrew	 */
1297281494Sandrew	l2 = pmap_l2(pmap, va);
1298281494Sandrew
1299281494Sandrew	/*
1300281494Sandrew	 * If the page table page is mapped, we just increment the
1301281494Sandrew	 * hold count, and activate it.
1302281494Sandrew	 */
1303285045Sandrew	if (l2 != NULL && pmap_load(l2) != 0) {
1304285045Sandrew		m = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
1305281494Sandrew		m->wire_count++;
1306281494Sandrew	} else {
1307281494Sandrew		/*
1308281494Sandrew		 * Here if the pte page isn't mapped, or if it has been
1309281494Sandrew		 * deallocated.
1310281494Sandrew		 */
1311281494Sandrew		m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1312281494Sandrew		if (m == NULL && lockp != NULL)
1313281494Sandrew			goto retry;
1314281494Sandrew	}
1315281494Sandrew	return (m);
1316281494Sandrew}
1317281494Sandrew
1318281494Sandrew
1319281494Sandrew/***************************************************
1320281494Sandrew * Pmap allocation/deallocation routines.
1321281494Sandrew ***************************************************/
1322281494Sandrew
1323281494Sandrew/*
1324281494Sandrew * Release any resources held by the given physical map.
1325281494Sandrew * Called when a pmap initialized by pmap_pinit is being released.
1326281494Sandrew * Should only be called if the map contains no valid mappings.
1327281494Sandrew */
1328281494Sandrewvoid
1329281494Sandrewpmap_release(pmap_t pmap)
1330281494Sandrew{
1331281494Sandrew	vm_page_t m;
1332281494Sandrew
1333281494Sandrew	KASSERT(pmap->pm_stats.resident_count == 0,
1334281494Sandrew	    ("pmap_release: pmap resident count %ld != 0",
1335281494Sandrew	    pmap->pm_stats.resident_count));
1336281494Sandrew
1337281494Sandrew	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l1));
1338281494Sandrew
1339281494Sandrew	m->wire_count--;
1340281494Sandrew	atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1341281494Sandrew	vm_page_free_zero(m);
1342281494Sandrew}
1343281494Sandrew
1344281494Sandrew#if 0
1345281494Sandrewstatic int
1346281494Sandrewkvm_size(SYSCTL_HANDLER_ARGS)
1347281494Sandrew{
1348281494Sandrew	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1349281494Sandrew
1350281494Sandrew	return sysctl_handle_long(oidp, &ksize, 0, req);
1351281494Sandrew}
1352281494SandrewSYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1353281494Sandrew    0, 0, kvm_size, "LU", "Size of KVM");
1354281494Sandrew
1355281494Sandrewstatic int
1356281494Sandrewkvm_free(SYSCTL_HANDLER_ARGS)
1357281494Sandrew{
1358281494Sandrew	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1359281494Sandrew
1360281494Sandrew	return sysctl_handle_long(oidp, &kfree, 0, req);
1361281494Sandrew}
1362281494SandrewSYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1363281494Sandrew    0, 0, kvm_free, "LU", "Amount of KVM free");
1364281494Sandrew#endif /* 0 */
1365281494Sandrew
1366281494Sandrew/*
1367281494Sandrew * grow the number of kernel page table entries, if needed
1368281494Sandrew */
1369281494Sandrewvoid
1370281494Sandrewpmap_growkernel(vm_offset_t addr)
1371281494Sandrew{
1372281494Sandrew	vm_paddr_t paddr;
1373281494Sandrew	vm_page_t nkpg;
1374281494Sandrew	pd_entry_t *l1, *l2;
1375281494Sandrew
1376281494Sandrew	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1377281494Sandrew
1378281494Sandrew	addr = roundup2(addr, L2_SIZE);
1379281494Sandrew	if (addr - 1 >= kernel_map->max_offset)
1380281494Sandrew		addr = kernel_map->max_offset;
1381281494Sandrew	while (kernel_vm_end < addr) {
1382281494Sandrew		l1 = pmap_l1(kernel_pmap, kernel_vm_end);
1383285045Sandrew		if (pmap_load(l1) == 0) {
1384281494Sandrew			/* We need a new PDP entry */
1385281494Sandrew			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
1386281494Sandrew			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1387281494Sandrew			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1388281494Sandrew			if (nkpg == NULL)
1389281494Sandrew				panic("pmap_growkernel: no memory to grow kernel");
1390281494Sandrew			if ((nkpg->flags & PG_ZERO) == 0)
1391281494Sandrew				pmap_zero_page(nkpg);
1392281494Sandrew			paddr = VM_PAGE_TO_PHYS(nkpg);
1393281494Sandrew			pmap_load_store(l1, paddr | L1_TABLE);
1394281494Sandrew			PTE_SYNC(l1);
1395281494Sandrew			continue; /* try again */
1396281494Sandrew		}
1397281494Sandrew		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1398285045Sandrew		if ((pmap_load(l2) & ATTR_AF) != 0) {
1399281494Sandrew			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1400281494Sandrew			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1401281494Sandrew				kernel_vm_end = kernel_map->max_offset;
1402281494Sandrew				break;
1403281494Sandrew			}
1404281494Sandrew			continue;
1405281494Sandrew		}
1406281494Sandrew
1407281494Sandrew		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
1408281494Sandrew		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1409281494Sandrew		    VM_ALLOC_ZERO);
1410281494Sandrew		if (nkpg == NULL)
1411281494Sandrew			panic("pmap_growkernel: no memory to grow kernel");
1412281494Sandrew		if ((nkpg->flags & PG_ZERO) == 0)
1413281494Sandrew			pmap_zero_page(nkpg);
1414281494Sandrew		paddr = VM_PAGE_TO_PHYS(nkpg);
1415281494Sandrew		pmap_load_store(l2, paddr | L2_TABLE);
1416281494Sandrew		PTE_SYNC(l2);
1417285212Sandrew		pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1418281494Sandrew
1419281494Sandrew		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1420281494Sandrew		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1421281494Sandrew			kernel_vm_end = kernel_map->max_offset;
1422281494Sandrew			break;
1423281494Sandrew		}
1424281494Sandrew	}
1425281494Sandrew}
1426281494Sandrew
1427281494Sandrew
1428281494Sandrew/***************************************************
1429281494Sandrew * page management routines.
1430281494Sandrew ***************************************************/
1431281494Sandrew
1432281494SandrewCTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1433281494SandrewCTASSERT(_NPCM == 3);
1434281494SandrewCTASSERT(_NPCPV == 168);
1435281494Sandrew
1436281494Sandrewstatic __inline struct pv_chunk *
1437281494Sandrewpv_to_chunk(pv_entry_t pv)
1438281494Sandrew{
1439281494Sandrew
1440281494Sandrew	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1441281494Sandrew}
1442281494Sandrew
1443281494Sandrew#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1444281494Sandrew
1445281494Sandrew#define	PC_FREE0	0xfffffffffffffffful
1446281494Sandrew#define	PC_FREE1	0xfffffffffffffffful
1447281494Sandrew#define	PC_FREE2	0x000000fffffffffful
1448281494Sandrew
1449281494Sandrewstatic const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1450281494Sandrew
1451281494Sandrew#if 0
1452281494Sandrew#ifdef PV_STATS
1453281494Sandrewstatic int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1454281494Sandrew
1455281494SandrewSYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1456281494Sandrew	"Current number of pv entry chunks");
1457281494SandrewSYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1458281494Sandrew	"Current number of pv entry chunks allocated");
1459281494SandrewSYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1460281494Sandrew	"Current number of pv entry chunks frees");
1461281494SandrewSYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1462281494Sandrew	"Number of times tried to get a chunk page but failed.");
1463281494Sandrew
1464281494Sandrewstatic long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1465281494Sandrewstatic int pv_entry_spare;
1466281494Sandrew
1467281494SandrewSYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1468281494Sandrew	"Current number of pv entry frees");
1469281494SandrewSYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1470281494Sandrew	"Current number of pv entry allocs");
1471281494SandrewSYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1472281494Sandrew	"Current number of pv entries");
1473281494SandrewSYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1474281494Sandrew	"Current number of spare pv entries");
1475281494Sandrew#endif
1476281494Sandrew#endif /* 0 */
1477281494Sandrew
1478281494Sandrew/*
1479281494Sandrew * We are in a serious low memory condition.  Resort to
1480281494Sandrew * drastic measures to free some pages so we can allocate
1481281494Sandrew * another pv entry chunk.
1482281494Sandrew *
1483281494Sandrew * Returns NULL if PV entries were reclaimed from the specified pmap.
1484281494Sandrew *
1485281494Sandrew * We do not, however, unmap 2mpages because subsequent accesses will
1486281494Sandrew * allocate per-page pv entries until repromotion occurs, thereby
1487281494Sandrew * exacerbating the shortage of free pv entries.
1488281494Sandrew */
1489281494Sandrewstatic vm_page_t
1490281494Sandrewreclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1491281494Sandrew{
1492281494Sandrew
1493286073Semaste	panic("ARM64TODO: reclaim_pv_chunk");
1494281494Sandrew}
1495281494Sandrew
1496281494Sandrew/*
1497281494Sandrew * free the pv_entry back to the free list
1498281494Sandrew */
1499281494Sandrewstatic void
1500281494Sandrewfree_pv_entry(pmap_t pmap, pv_entry_t pv)
1501281494Sandrew{
1502281494Sandrew	struct pv_chunk *pc;
1503281494Sandrew	int idx, field, bit;
1504281494Sandrew
1505281494Sandrew	rw_assert(&pvh_global_lock, RA_LOCKED);
1506281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1507281494Sandrew	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1508281494Sandrew	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1509281494Sandrew	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1510281494Sandrew	pc = pv_to_chunk(pv);
1511281494Sandrew	idx = pv - &pc->pc_pventry[0];
1512281494Sandrew	field = idx / 64;
1513281494Sandrew	bit = idx % 64;
1514281494Sandrew	pc->pc_map[field] |= 1ul << bit;
1515281494Sandrew	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
1516281494Sandrew	    pc->pc_map[2] != PC_FREE2) {
1517281494Sandrew		/* 98% of the time, pc is already at the head of the list. */
1518281494Sandrew		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1519281494Sandrew			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1520281494Sandrew			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1521281494Sandrew		}
1522281494Sandrew		return;
1523281494Sandrew	}
1524281494Sandrew	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1525281494Sandrew	free_pv_chunk(pc);
1526281494Sandrew}
1527281494Sandrew
1528281494Sandrewstatic void
1529281494Sandrewfree_pv_chunk(struct pv_chunk *pc)
1530281494Sandrew{
1531281494Sandrew	vm_page_t m;
1532281494Sandrew
1533281494Sandrew	mtx_lock(&pv_chunks_mutex);
1534281494Sandrew 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1535281494Sandrew	mtx_unlock(&pv_chunks_mutex);
1536281494Sandrew	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1537281494Sandrew	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1538281494Sandrew	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1539281494Sandrew	/* entire chunk is free, return it */
1540281494Sandrew	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1541281494Sandrew	dump_drop_page(m->phys_addr);
1542288256Salc	vm_page_unwire(m, PQ_NONE);
1543281494Sandrew	vm_page_free(m);
1544281494Sandrew}
1545281494Sandrew
1546281494Sandrew/*
1547281494Sandrew * Returns a new PV entry, allocating a new PV chunk from the system when
1548281494Sandrew * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1549281494Sandrew * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1550281494Sandrew * returned.
1551281494Sandrew *
1552281494Sandrew * The given PV list lock may be released.
1553281494Sandrew */
1554281494Sandrewstatic pv_entry_t
1555281494Sandrewget_pv_entry(pmap_t pmap, struct rwlock **lockp)
1556281494Sandrew{
1557281494Sandrew	int bit, field;
1558281494Sandrew	pv_entry_t pv;
1559281494Sandrew	struct pv_chunk *pc;
1560281494Sandrew	vm_page_t m;
1561281494Sandrew
1562281494Sandrew	rw_assert(&pvh_global_lock, RA_LOCKED);
1563281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1564281494Sandrew	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1565281494Sandrewretry:
1566281494Sandrew	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1567281494Sandrew	if (pc != NULL) {
1568281494Sandrew		for (field = 0; field < _NPCM; field++) {
1569281494Sandrew			if (pc->pc_map[field]) {
1570281494Sandrew				bit = ffsl(pc->pc_map[field]) - 1;
1571281494Sandrew				break;
1572281494Sandrew			}
1573281494Sandrew		}
1574281494Sandrew		if (field < _NPCM) {
1575281494Sandrew			pv = &pc->pc_pventry[field * 64 + bit];
1576281494Sandrew			pc->pc_map[field] &= ~(1ul << bit);
1577281494Sandrew			/* If this was the last item, move it to tail */
1578281494Sandrew			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
1579281494Sandrew			    pc->pc_map[2] == 0) {
1580281494Sandrew				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1581281494Sandrew				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1582281494Sandrew				    pc_list);
1583281494Sandrew			}
1584281494Sandrew			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1585281494Sandrew			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1586281494Sandrew			return (pv);
1587281494Sandrew		}
1588281494Sandrew	}
1589281494Sandrew	/* No free items, allocate another chunk */
1590281494Sandrew	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1591281494Sandrew	    VM_ALLOC_WIRED);
1592281494Sandrew	if (m == NULL) {
1593281494Sandrew		if (lockp == NULL) {
1594281494Sandrew			PV_STAT(pc_chunk_tryfail++);
1595281494Sandrew			return (NULL);
1596281494Sandrew		}
1597281494Sandrew		m = reclaim_pv_chunk(pmap, lockp);
1598281494Sandrew		if (m == NULL)
1599281494Sandrew			goto retry;
1600281494Sandrew	}
1601281494Sandrew	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1602281494Sandrew	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1603281494Sandrew	dump_add_page(m->phys_addr);
1604281494Sandrew	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1605281494Sandrew	pc->pc_pmap = pmap;
1606281494Sandrew	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1607281494Sandrew	pc->pc_map[1] = PC_FREE1;
1608281494Sandrew	pc->pc_map[2] = PC_FREE2;
1609281494Sandrew	mtx_lock(&pv_chunks_mutex);
1610281494Sandrew	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1611281494Sandrew	mtx_unlock(&pv_chunks_mutex);
1612281494Sandrew	pv = &pc->pc_pventry[0];
1613281494Sandrew	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1614281494Sandrew	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1615281494Sandrew	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1616281494Sandrew	return (pv);
1617281494Sandrew}
1618281494Sandrew
1619281494Sandrew/*
1620281494Sandrew * First find and then remove the pv entry for the specified pmap and virtual
1621281494Sandrew * address from the specified pv list.  Returns the pv entry if found and NULL
1622281494Sandrew * otherwise.  This operation can be performed on pv lists for either 4KB or
1623281494Sandrew * 2MB page mappings.
1624281494Sandrew */
1625281494Sandrewstatic __inline pv_entry_t
1626281494Sandrewpmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1627281494Sandrew{
1628281494Sandrew	pv_entry_t pv;
1629281494Sandrew
1630281494Sandrew	rw_assert(&pvh_global_lock, RA_LOCKED);
1631281494Sandrew	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
1632281494Sandrew		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1633281494Sandrew			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
1634281494Sandrew			pvh->pv_gen++;
1635281494Sandrew			break;
1636281494Sandrew		}
1637281494Sandrew	}
1638281494Sandrew	return (pv);
1639281494Sandrew}
1640281494Sandrew
1641281494Sandrew/*
1642281494Sandrew * First find and then destroy the pv entry for the specified pmap and virtual
1643281494Sandrew * address.  This operation can be performed on pv lists for either 4KB or 2MB
1644281494Sandrew * page mappings.
1645281494Sandrew */
1646281494Sandrewstatic void
1647281494Sandrewpmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1648281494Sandrew{
1649281494Sandrew	pv_entry_t pv;
1650281494Sandrew
1651281494Sandrew	pv = pmap_pvh_remove(pvh, pmap, va);
1652281494Sandrew	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1653281494Sandrew	free_pv_entry(pmap, pv);
1654281494Sandrew}
1655281494Sandrew
1656281494Sandrew/*
1657281494Sandrew * Conditionally create the PV entry for a 4KB page mapping if the required
1658281494Sandrew * memory can be allocated without resorting to reclamation.
1659281494Sandrew */
1660281494Sandrewstatic boolean_t
1661281494Sandrewpmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1662281494Sandrew    struct rwlock **lockp)
1663281494Sandrew{
1664281494Sandrew	pv_entry_t pv;
1665281494Sandrew
1666281494Sandrew	rw_assert(&pvh_global_lock, RA_LOCKED);
1667281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1668281494Sandrew	/* Pass NULL instead of the lock pointer to disable reclamation. */
1669281494Sandrew	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1670281494Sandrew		pv->pv_va = va;
1671281494Sandrew		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1672281494Sandrew		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
1673281494Sandrew		m->md.pv_gen++;
1674281494Sandrew		return (TRUE);
1675281494Sandrew	} else
1676281494Sandrew		return (FALSE);
1677281494Sandrew}
1678281494Sandrew
1679281494Sandrew/*
1680281494Sandrew * pmap_remove_l3: do the things to unmap a page in a process
1681281494Sandrew */
1682281494Sandrewstatic int
1683281494Sandrewpmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
1684281494Sandrew    pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
1685281494Sandrew{
1686281494Sandrew	pt_entry_t old_l3;
1687281494Sandrew	vm_page_t m;
1688281494Sandrew
1689281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1690281494Sandrew	if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(pmap_load(l3)))
1691281494Sandrew		cpu_dcache_wb_range(va, L3_SIZE);
1692281494Sandrew	old_l3 = pmap_load_clear(l3);
1693281494Sandrew	PTE_SYNC(l3);
1694285212Sandrew	pmap_invalidate_page(pmap, va);
1695281494Sandrew	if (old_l3 & ATTR_SW_WIRED)
1696281494Sandrew		pmap->pm_stats.wired_count -= 1;
1697281494Sandrew	pmap_resident_count_dec(pmap, 1);
1698281494Sandrew	if (old_l3 & ATTR_SW_MANAGED) {
1699281494Sandrew		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
1700281494Sandrew		if (pmap_page_dirty(old_l3))
1701281494Sandrew			vm_page_dirty(m);
1702281494Sandrew		if (old_l3 & ATTR_AF)
1703281494Sandrew			vm_page_aflag_set(m, PGA_REFERENCED);
1704281494Sandrew		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1705281494Sandrew		pmap_pvh_free(&m->md, pmap, va);
1706281494Sandrew	}
1707281494Sandrew	return (pmap_unuse_l3(pmap, va, l2e, free));
1708281494Sandrew}
1709281494Sandrew
1710281494Sandrew/*
1711281494Sandrew *	Remove the given range of addresses from the specified map.
1712281494Sandrew *
1713281494Sandrew *	It is assumed that the start and end are properly
1714281494Sandrew *	rounded to the page size.
1715281494Sandrew */
1716281494Sandrewvoid
1717281494Sandrewpmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1718281494Sandrew{
1719281494Sandrew	struct rwlock *lock;
1720281494Sandrew	vm_offset_t va, va_next;
1721281494Sandrew	pd_entry_t *l1, *l2;
1722281494Sandrew	pt_entry_t l3_paddr, *l3;
1723281494Sandrew	struct spglist free;
1724281494Sandrew	int anyvalid;
1725281494Sandrew
1726281494Sandrew	/*
1727281494Sandrew	 * Perform an unsynchronized read.  This is, however, safe.
1728281494Sandrew	 */
1729281494Sandrew	if (pmap->pm_stats.resident_count == 0)
1730281494Sandrew		return;
1731281494Sandrew
1732281494Sandrew	anyvalid = 0;
1733281494Sandrew	SLIST_INIT(&free);
1734281494Sandrew
1735281494Sandrew	rw_rlock(&pvh_global_lock);
1736281494Sandrew	PMAP_LOCK(pmap);
1737281494Sandrew
1738281494Sandrew	lock = NULL;
1739281494Sandrew	for (; sva < eva; sva = va_next) {
1740281494Sandrew
1741281494Sandrew		if (pmap->pm_stats.resident_count == 0)
1742281494Sandrew			break;
1743281494Sandrew
1744281494Sandrew		l1 = pmap_l1(pmap, sva);
1745285045Sandrew		if (pmap_load(l1) == 0) {
1746281494Sandrew			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
1747281494Sandrew			if (va_next < sva)
1748281494Sandrew				va_next = eva;
1749281494Sandrew			continue;
1750281494Sandrew		}
1751281494Sandrew
1752281494Sandrew		/*
1753281494Sandrew		 * Calculate index for next page table.
1754281494Sandrew		 */
1755281494Sandrew		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
1756281494Sandrew		if (va_next < sva)
1757281494Sandrew			va_next = eva;
1758281494Sandrew
1759281494Sandrew		l2 = pmap_l1_to_l2(l1, sva);
1760281494Sandrew		if (l2 == NULL)
1761281494Sandrew			continue;
1762281494Sandrew
1763288445Sandrew		l3_paddr = pmap_load(l2);
1764281494Sandrew
1765281494Sandrew		/*
1766281494Sandrew		 * Weed out invalid mappings.
1767281494Sandrew		 */
1768281494Sandrew		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
1769281494Sandrew			continue;
1770281494Sandrew
1771281494Sandrew		/*
1772281494Sandrew		 * Limit our scan to either the end of the va represented
1773281494Sandrew		 * by the current page table page, or to the end of the
1774281494Sandrew		 * range being removed.
1775281494Sandrew		 */
1776281494Sandrew		if (va_next > eva)
1777281494Sandrew			va_next = eva;
1778281494Sandrew
1779281494Sandrew		va = va_next;
1780281494Sandrew		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
1781281494Sandrew		    sva += L3_SIZE) {
1782281494Sandrew			if (l3 == NULL)
1783281494Sandrew				panic("l3 == NULL");
1784285045Sandrew			if (pmap_load(l3) == 0) {
1785281494Sandrew				if (va != va_next) {
1786281494Sandrew					pmap_invalidate_range(pmap, va, sva);
1787281494Sandrew					va = va_next;
1788281494Sandrew				}
1789281494Sandrew				continue;
1790281494Sandrew			}
1791281494Sandrew			if (va == va_next)
1792281494Sandrew				va = sva;
1793281494Sandrew			if (pmap_remove_l3(pmap, l3, sva, l3_paddr, &free,
1794281494Sandrew			    &lock)) {
1795281494Sandrew				sva += L3_SIZE;
1796281494Sandrew				break;
1797281494Sandrew			}
1798281494Sandrew		}
1799281494Sandrew		if (va != va_next)
1800281494Sandrew			pmap_invalidate_range(pmap, va, sva);
1801281494Sandrew	}
1802281494Sandrew	if (lock != NULL)
1803281494Sandrew		rw_wunlock(lock);
1804281494Sandrew	if (anyvalid)
1805281494Sandrew		pmap_invalidate_all(pmap);
1806281494Sandrew	rw_runlock(&pvh_global_lock);
1807281494Sandrew	PMAP_UNLOCK(pmap);
1808281494Sandrew	pmap_free_zero_pages(&free);
1809281494Sandrew}
1810281494Sandrew
1811281494Sandrew/*
1812281494Sandrew *	Routine:	pmap_remove_all
1813281494Sandrew *	Function:
1814281494Sandrew *		Removes this physical page from
1815281494Sandrew *		all physical maps in which it resides.
1816281494Sandrew *		Reflects back modify bits to the pager.
1817281494Sandrew *
1818281494Sandrew *	Notes:
1819281494Sandrew *		Original versions of this routine were very
1820281494Sandrew *		inefficient because they iteratively called
1821281494Sandrew *		pmap_remove (slow...)
1822281494Sandrew */
1823281494Sandrew
1824281494Sandrewvoid
1825281494Sandrewpmap_remove_all(vm_page_t m)
1826281494Sandrew{
1827281494Sandrew	pv_entry_t pv;
1828281494Sandrew	pmap_t pmap;
1829281494Sandrew	pt_entry_t *l3, tl3;
1830288445Sandrew	pd_entry_t *l2, tl2;
1831281494Sandrew	struct spglist free;
1832281494Sandrew
1833281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1834281494Sandrew	    ("pmap_remove_all: page %p is not managed", m));
1835281494Sandrew	SLIST_INIT(&free);
1836281494Sandrew	rw_wlock(&pvh_global_lock);
1837281494Sandrew	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1838281494Sandrew		pmap = PV_PMAP(pv);
1839281494Sandrew		PMAP_LOCK(pmap);
1840281494Sandrew		pmap_resident_count_dec(pmap, 1);
1841281494Sandrew		l2 = pmap_l2(pmap, pv->pv_va);
1842288445Sandrew		KASSERT(l2 != NULL, ("pmap_remove_all: no l2 table found"));
1843288445Sandrew		tl2 = pmap_load(l2);
1844288445Sandrew		KASSERT((tl2 & ATTR_DESCR_MASK) == L2_TABLE,
1845281494Sandrew		    ("pmap_remove_all: found a table when expecting "
1846281494Sandrew		     "a block in %p's pv list", m));
1847281494Sandrew		l3 = pmap_l2_to_l3(l2, pv->pv_va);
1848281494Sandrew		if (pmap_is_current(pmap) &&
1849281494Sandrew		    pmap_l3_valid_cacheable(pmap_load(l3)))
1850281494Sandrew			cpu_dcache_wb_range(pv->pv_va, L3_SIZE);
1851281494Sandrew		tl3 = pmap_load_clear(l3);
1852281494Sandrew		PTE_SYNC(l3);
1853285212Sandrew		pmap_invalidate_page(pmap, pv->pv_va);
1854281494Sandrew		if (tl3 & ATTR_SW_WIRED)
1855281494Sandrew			pmap->pm_stats.wired_count--;
1856281494Sandrew		if ((tl3 & ATTR_AF) != 0)
1857281494Sandrew			vm_page_aflag_set(m, PGA_REFERENCED);
1858281494Sandrew
1859281494Sandrew		/*
1860281494Sandrew		 * Update the vm_page_t clean and reference bits.
1861281494Sandrew		 */
1862281494Sandrew		if (pmap_page_dirty(tl3))
1863281494Sandrew			vm_page_dirty(m);
1864288445Sandrew		pmap_unuse_l3(pmap, pv->pv_va, tl2, &free);
1865281494Sandrew		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
1866281494Sandrew		m->md.pv_gen++;
1867281494Sandrew		free_pv_entry(pmap, pv);
1868281494Sandrew		PMAP_UNLOCK(pmap);
1869281494Sandrew	}
1870281494Sandrew	vm_page_aflag_clear(m, PGA_WRITEABLE);
1871281494Sandrew	rw_wunlock(&pvh_global_lock);
1872281494Sandrew	pmap_free_zero_pages(&free);
1873281494Sandrew}
1874281494Sandrew
1875281494Sandrew/*
1876281494Sandrew *	Set the physical protection on the
1877281494Sandrew *	specified range of this map as requested.
1878281494Sandrew */
1879281494Sandrewvoid
1880281494Sandrewpmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1881281494Sandrew{
1882281494Sandrew	vm_offset_t va, va_next;
1883281494Sandrew	pd_entry_t *l1, *l2;
1884281494Sandrew	pt_entry_t *l3p, l3;
1885281494Sandrew
1886281494Sandrew	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1887281494Sandrew		pmap_remove(pmap, sva, eva);
1888281494Sandrew		return;
1889281494Sandrew	}
1890281494Sandrew
1891281494Sandrew	if ((prot & VM_PROT_WRITE) == VM_PROT_WRITE)
1892281494Sandrew		return;
1893281494Sandrew
1894281494Sandrew	PMAP_LOCK(pmap);
1895281494Sandrew	for (; sva < eva; sva = va_next) {
1896281494Sandrew
1897281494Sandrew		l1 = pmap_l1(pmap, sva);
1898285045Sandrew		if (pmap_load(l1) == 0) {
1899281494Sandrew			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
1900281494Sandrew			if (va_next < sva)
1901281494Sandrew				va_next = eva;
1902281494Sandrew			continue;
1903281494Sandrew		}
1904281494Sandrew
1905281494Sandrew		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
1906281494Sandrew		if (va_next < sva)
1907281494Sandrew			va_next = eva;
1908281494Sandrew
1909281494Sandrew		l2 = pmap_l1_to_l2(l1, sva);
1910288445Sandrew		if (l2 == NULL || (pmap_load(l2) & ATTR_DESCR_MASK) != L2_TABLE)
1911281494Sandrew			continue;
1912281494Sandrew
1913281494Sandrew		if (va_next > eva)
1914281494Sandrew			va_next = eva;
1915281494Sandrew
1916281494Sandrew		va = va_next;
1917281494Sandrew		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
1918281494Sandrew		    sva += L3_SIZE) {
1919281494Sandrew			l3 = pmap_load(l3p);
1920281494Sandrew			if (pmap_l3_valid(l3)) {
1921281494Sandrew				pmap_set(l3p, ATTR_AP(ATTR_AP_RO));
1922281494Sandrew				PTE_SYNC(l3p);
1923285212Sandrew				/* XXX: Use pmap_invalidate_range */
1924285212Sandrew				pmap_invalidate_page(pmap, va);
1925281494Sandrew			}
1926281494Sandrew		}
1927281494Sandrew	}
1928281494Sandrew	PMAP_UNLOCK(pmap);
1929281494Sandrew
1930281494Sandrew	/* TODO: Only invalidate entries we are touching */
1931281494Sandrew	pmap_invalidate_all(pmap);
1932281494Sandrew}
1933281494Sandrew
1934281494Sandrew/*
1935281494Sandrew *	Insert the given physical page (p) at
1936281494Sandrew *	the specified virtual address (v) in the
1937281494Sandrew *	target physical map with the protection requested.
1938281494Sandrew *
1939281494Sandrew *	If specified, the page will be wired down, meaning
1940281494Sandrew *	that the related pte can not be reclaimed.
1941281494Sandrew *
1942281494Sandrew *	NB:  This is the only routine which MAY NOT lazy-evaluate
1943281494Sandrew *	or lose information.  That is, this routine must actually
1944281494Sandrew *	insert this page into the given map NOW.
1945281494Sandrew */
1946281494Sandrewint
1947281494Sandrewpmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1948281494Sandrew    u_int flags, int8_t psind __unused)
1949281494Sandrew{
1950281494Sandrew	struct rwlock *lock;
1951281494Sandrew	pd_entry_t *l1, *l2;
1952281494Sandrew	pt_entry_t new_l3, orig_l3;
1953281494Sandrew	pt_entry_t *l3;
1954281494Sandrew	pv_entry_t pv;
1955281494Sandrew	vm_paddr_t opa, pa, l2_pa, l3_pa;
1956281494Sandrew	vm_page_t mpte, om, l2_m, l3_m;
1957281494Sandrew	boolean_t nosleep;
1958281494Sandrew
1959281494Sandrew	va = trunc_page(va);
1960281494Sandrew	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1961281494Sandrew		VM_OBJECT_ASSERT_LOCKED(m->object);
1962281494Sandrew	pa = VM_PAGE_TO_PHYS(m);
1963285537Sandrew	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
1964285537Sandrew	    L3_PAGE);
1965281494Sandrew	if ((prot & VM_PROT_WRITE) == 0)
1966281494Sandrew		new_l3 |= ATTR_AP(ATTR_AP_RO);
1967281494Sandrew	if ((flags & PMAP_ENTER_WIRED) != 0)
1968281494Sandrew		new_l3 |= ATTR_SW_WIRED;
1969281494Sandrew	if ((va >> 63) == 0)
1970281494Sandrew		new_l3 |= ATTR_AP(ATTR_AP_USER);
1971281494Sandrew
1972285212Sandrew	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
1973285212Sandrew
1974281494Sandrew	mpte = NULL;
1975281494Sandrew
1976281494Sandrew	lock = NULL;
1977281494Sandrew	rw_rlock(&pvh_global_lock);
1978281494Sandrew	PMAP_LOCK(pmap);
1979281494Sandrew
1980281494Sandrew	if (va < VM_MAXUSER_ADDRESS) {
1981281494Sandrew		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
1982281494Sandrew		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
1983281494Sandrew		if (mpte == NULL && nosleep) {
1984285212Sandrew			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
1985281494Sandrew			if (lock != NULL)
1986281494Sandrew				rw_wunlock(lock);
1987281494Sandrew			rw_runlock(&pvh_global_lock);
1988281494Sandrew			PMAP_UNLOCK(pmap);
1989281494Sandrew			return (KERN_RESOURCE_SHORTAGE);
1990281494Sandrew		}
1991281494Sandrew		l3 = pmap_l3(pmap, va);
1992281494Sandrew	} else {
1993281494Sandrew		l3 = pmap_l3(pmap, va);
1994281494Sandrew		/* TODO: This is not optimal, but should mostly work */
1995281494Sandrew		if (l3 == NULL) {
1996281494Sandrew			l2 = pmap_l2(pmap, va);
1997281494Sandrew
1998281494Sandrew			if (l2 == NULL) {
1999281494Sandrew				l2_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2000281494Sandrew				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2001281494Sandrew				    VM_ALLOC_ZERO);
2002281494Sandrew				if (l2_m == NULL)
2003281494Sandrew					panic("pmap_enter: l2 pte_m == NULL");
2004281494Sandrew				if ((l2_m->flags & PG_ZERO) == 0)
2005281494Sandrew					pmap_zero_page(l2_m);
2006281494Sandrew
2007281494Sandrew				l2_pa = VM_PAGE_TO_PHYS(l2_m);
2008281494Sandrew				l1 = pmap_l1(pmap, va);
2009281494Sandrew				pmap_load_store(l1, l2_pa | L1_TABLE);
2010281494Sandrew				PTE_SYNC(l1);
2011281494Sandrew				l2 = pmap_l1_to_l2(l1, va);
2012281494Sandrew			}
2013281494Sandrew
2014281494Sandrew			KASSERT(l2 != NULL,
2015281494Sandrew			    ("No l2 table after allocating one"));
2016281494Sandrew
2017281494Sandrew			l3_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2018281494Sandrew			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2019281494Sandrew			if (l3_m == NULL)
2020281494Sandrew				panic("pmap_enter: l3 pte_m == NULL");
2021281494Sandrew			if ((l3_m->flags & PG_ZERO) == 0)
2022281494Sandrew				pmap_zero_page(l3_m);
2023281494Sandrew
2024281494Sandrew			l3_pa = VM_PAGE_TO_PHYS(l3_m);
2025281494Sandrew			pmap_load_store(l2, l3_pa | L2_TABLE);
2026281494Sandrew			PTE_SYNC(l2);
2027281494Sandrew			l3 = pmap_l2_to_l3(l2, va);
2028281494Sandrew		}
2029285212Sandrew		pmap_invalidate_page(pmap, va);
2030281494Sandrew	}
2031281494Sandrew
2032281494Sandrew	om = NULL;
2033281494Sandrew	orig_l3 = pmap_load(l3);
2034281494Sandrew	opa = orig_l3 & ~ATTR_MASK;
2035281494Sandrew
2036281494Sandrew	/*
2037281494Sandrew	 * Is the specified virtual address already mapped?
2038281494Sandrew	 */
2039281494Sandrew	if (pmap_l3_valid(orig_l3)) {
2040281494Sandrew		/*
2041281494Sandrew		 * Wiring change, just update stats. We don't worry about
2042281494Sandrew		 * wiring PT pages as they remain resident as long as there
2043281494Sandrew		 * are valid mappings in them. Hence, if a user page is wired,
2044281494Sandrew		 * the PT page will be also.
2045281494Sandrew		 */
2046281494Sandrew		if ((flags & PMAP_ENTER_WIRED) != 0 &&
2047281494Sandrew		    (orig_l3 & ATTR_SW_WIRED) == 0)
2048281494Sandrew			pmap->pm_stats.wired_count++;
2049281494Sandrew		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
2050281494Sandrew		    (orig_l3 & ATTR_SW_WIRED) != 0)
2051281494Sandrew			pmap->pm_stats.wired_count--;
2052281494Sandrew
2053281494Sandrew		/*
2054281494Sandrew		 * Remove the extra PT page reference.
2055281494Sandrew		 */
2056281494Sandrew		if (mpte != NULL) {
2057281494Sandrew			mpte->wire_count--;
2058281494Sandrew			KASSERT(mpte->wire_count > 0,
2059281494Sandrew			    ("pmap_enter: missing reference to page table page,"
2060281494Sandrew			     " va: 0x%lx", va));
2061281494Sandrew		}
2062281494Sandrew
2063281494Sandrew		/*
2064281494Sandrew		 * Has the physical page changed?
2065281494Sandrew		 */
2066281494Sandrew		if (opa == pa) {
2067281494Sandrew			/*
2068281494Sandrew			 * No, might be a protection or wiring change.
2069281494Sandrew			 */
2070281494Sandrew			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
2071281494Sandrew				new_l3 |= ATTR_SW_MANAGED;
2072281494Sandrew				if ((new_l3 & ATTR_AP(ATTR_AP_RW)) ==
2073281494Sandrew				    ATTR_AP(ATTR_AP_RW)) {
2074281494Sandrew					vm_page_aflag_set(m, PGA_WRITEABLE);
2075281494Sandrew				}
2076281494Sandrew			}
2077281494Sandrew			goto validate;
2078281494Sandrew		}
2079281494Sandrew
2080281494Sandrew		/* Flush the cache, there might be uncommitted data in it */
2081281494Sandrew		if (pmap_is_current(pmap) && pmap_l3_valid_cacheable(orig_l3))
2082281494Sandrew			cpu_dcache_wb_range(va, L3_SIZE);
2083281494Sandrew	} else {
2084281494Sandrew		/*
2085281494Sandrew		 * Increment the counters.
2086281494Sandrew		 */
2087281494Sandrew		if ((new_l3 & ATTR_SW_WIRED) != 0)
2088281494Sandrew			pmap->pm_stats.wired_count++;
2089281494Sandrew		pmap_resident_count_inc(pmap, 1);
2090281494Sandrew	}
2091281494Sandrew	/*
2092281494Sandrew	 * Enter on the PV list if part of our managed memory.
2093281494Sandrew	 */
2094281494Sandrew	if ((m->oflags & VPO_UNMANAGED) == 0) {
2095281494Sandrew		new_l3 |= ATTR_SW_MANAGED;
2096281494Sandrew		pv = get_pv_entry(pmap, &lock);
2097281494Sandrew		pv->pv_va = va;
2098281494Sandrew		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
2099281494Sandrew		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2100281494Sandrew		m->md.pv_gen++;
2101281494Sandrew		if ((new_l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
2102281494Sandrew			vm_page_aflag_set(m, PGA_WRITEABLE);
2103281494Sandrew	}
2104281494Sandrew
2105281494Sandrew	/*
2106281494Sandrew	 * Update the L3 entry.
2107281494Sandrew	 */
2108281494Sandrew	if (orig_l3 != 0) {
2109281494Sandrewvalidate:
2110281494Sandrew		orig_l3 = pmap_load_store(l3, new_l3);
2111281494Sandrew		PTE_SYNC(l3);
2112281494Sandrew		opa = orig_l3 & ~ATTR_MASK;
2113281494Sandrew
2114281494Sandrew		if (opa != pa) {
2115281494Sandrew			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
2116281494Sandrew				om = PHYS_TO_VM_PAGE(opa);
2117281494Sandrew				if (pmap_page_dirty(orig_l3))
2118281494Sandrew					vm_page_dirty(om);
2119281494Sandrew				if ((orig_l3 & ATTR_AF) != 0)
2120281494Sandrew					vm_page_aflag_set(om, PGA_REFERENCED);
2121281494Sandrew				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
2122281494Sandrew				pmap_pvh_free(&om->md, pmap, va);
2123281494Sandrew			}
2124281494Sandrew		} else if (pmap_page_dirty(orig_l3)) {
2125281494Sandrew			if ((orig_l3 & ATTR_SW_MANAGED) != 0)
2126281494Sandrew				vm_page_dirty(m);
2127281494Sandrew		}
2128281494Sandrew	} else {
2129281494Sandrew		pmap_load_store(l3, new_l3);
2130281494Sandrew		PTE_SYNC(l3);
2131281494Sandrew	}
2132285212Sandrew	pmap_invalidate_page(pmap, va);
2133281494Sandrew	if ((pmap != pmap_kernel()) && (pmap == &curproc->p_vmspace->vm_pmap))
2134281494Sandrew	    cpu_icache_sync_range(va, PAGE_SIZE);
2135281494Sandrew
2136281494Sandrew	if (lock != NULL)
2137281494Sandrew		rw_wunlock(lock);
2138281494Sandrew	rw_runlock(&pvh_global_lock);
2139281494Sandrew	PMAP_UNLOCK(pmap);
2140281494Sandrew	return (KERN_SUCCESS);
2141281494Sandrew}
2142281494Sandrew
2143281494Sandrew/*
2144281494Sandrew * Maps a sequence of resident pages belonging to the same object.
2145281494Sandrew * The sequence begins with the given page m_start.  This page is
2146281494Sandrew * mapped at the given virtual address start.  Each subsequent page is
2147281494Sandrew * mapped at a virtual address that is offset from start by the same
2148281494Sandrew * amount as the page is offset from m_start within the object.  The
2149281494Sandrew * last page in the sequence is the page with the largest offset from
2150281494Sandrew * m_start that can be mapped at a virtual address less than the given
2151281494Sandrew * virtual address end.  Not every virtual page between start and end
2152281494Sandrew * is mapped; only those for which a resident page exists with the
2153281494Sandrew * corresponding offset from m_start are mapped.
2154281494Sandrew */
2155281494Sandrewvoid
2156281494Sandrewpmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2157281494Sandrew    vm_page_t m_start, vm_prot_t prot)
2158281494Sandrew{
2159281494Sandrew	struct rwlock *lock;
2160281494Sandrew	vm_offset_t va;
2161281494Sandrew	vm_page_t m, mpte;
2162281494Sandrew	vm_pindex_t diff, psize;
2163281494Sandrew
2164281494Sandrew	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2165281494Sandrew
2166281494Sandrew	psize = atop(end - start);
2167281494Sandrew	mpte = NULL;
2168281494Sandrew	m = m_start;
2169281494Sandrew	lock = NULL;
2170281494Sandrew	rw_rlock(&pvh_global_lock);
2171281494Sandrew	PMAP_LOCK(pmap);
2172281494Sandrew	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2173281494Sandrew		va = start + ptoa(diff);
2174281494Sandrew		mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte, &lock);
2175281494Sandrew		m = TAILQ_NEXT(m, listq);
2176281494Sandrew	}
2177281494Sandrew	if (lock != NULL)
2178281494Sandrew		rw_wunlock(lock);
2179281494Sandrew	rw_runlock(&pvh_global_lock);
2180281494Sandrew	PMAP_UNLOCK(pmap);
2181281494Sandrew}
2182281494Sandrew
2183281494Sandrew/*
2184281494Sandrew * this code makes some *MAJOR* assumptions:
2185281494Sandrew * 1. Current pmap & pmap exists.
2186281494Sandrew * 2. Not wired.
2187281494Sandrew * 3. Read access.
2188281494Sandrew * 4. No page table pages.
2189281494Sandrew * but is *MUCH* faster than pmap_enter...
2190281494Sandrew */
2191281494Sandrew
2192281494Sandrewvoid
2193281494Sandrewpmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2194281494Sandrew{
2195281494Sandrew	struct rwlock *lock;
2196281494Sandrew
2197281494Sandrew	lock = NULL;
2198281494Sandrew	rw_rlock(&pvh_global_lock);
2199281494Sandrew	PMAP_LOCK(pmap);
2200281494Sandrew	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
2201281494Sandrew	if (lock != NULL)
2202281494Sandrew		rw_wunlock(lock);
2203281494Sandrew	rw_runlock(&pvh_global_lock);
2204281494Sandrew	PMAP_UNLOCK(pmap);
2205281494Sandrew}
2206281494Sandrew
2207281494Sandrewstatic vm_page_t
2208281494Sandrewpmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2209281494Sandrew    vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
2210281494Sandrew{
2211281494Sandrew	struct spglist free;
2212281494Sandrew	pd_entry_t *l2;
2213281494Sandrew	pt_entry_t *l3;
2214281494Sandrew	vm_paddr_t pa;
2215281494Sandrew
2216281494Sandrew	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2217281494Sandrew	    (m->oflags & VPO_UNMANAGED) != 0,
2218281494Sandrew	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2219281494Sandrew	rw_assert(&pvh_global_lock, RA_LOCKED);
2220281494Sandrew	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2221281494Sandrew
2222285212Sandrew	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
2223281494Sandrew	/*
2224281494Sandrew	 * In the case that a page table page is not
2225281494Sandrew	 * resident, we are creating it here.
2226281494Sandrew	 */
2227281494Sandrew	if (va < VM_MAXUSER_ADDRESS) {
2228281494Sandrew		vm_pindex_t l2pindex;
2229281494Sandrew
2230281494Sandrew		/*
2231281494Sandrew		 * Calculate pagetable page index
2232281494Sandrew		 */
2233281494Sandrew		l2pindex = pmap_l2_pindex(va);
2234281494Sandrew		if (mpte && (mpte->pindex == l2pindex)) {
2235281494Sandrew			mpte->wire_count++;
2236281494Sandrew		} else {
2237281494Sandrew			/*
2238281494Sandrew			 * Get the l2 entry
2239281494Sandrew			 */
2240281494Sandrew			l2 = pmap_l2(pmap, va);
2241281494Sandrew
2242281494Sandrew			/*
2243281494Sandrew			 * If the page table page is mapped, we just increment
2244281494Sandrew			 * the hold count, and activate it.  Otherwise, we
2245281494Sandrew			 * attempt to allocate a page table page.  If this
2246281494Sandrew			 * attempt fails, we don't retry.  Instead, we give up.
2247281494Sandrew			 */
2248285045Sandrew			if (l2 != NULL && pmap_load(l2) != 0) {
2249285045Sandrew				mpte =
2250285045Sandrew				    PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
2251281494Sandrew				mpte->wire_count++;
2252281494Sandrew			} else {
2253281494Sandrew				/*
2254281494Sandrew				 * Pass NULL instead of the PV list lock
2255281494Sandrew				 * pointer, because we don't intend to sleep.
2256281494Sandrew				 */
2257281494Sandrew				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
2258281494Sandrew				if (mpte == NULL)
2259281494Sandrew					return (mpte);
2260281494Sandrew			}
2261281494Sandrew		}
2262281494Sandrew		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
2263281494Sandrew		l3 = &l3[pmap_l3_index(va)];
2264281494Sandrew	} else {
2265281494Sandrew		mpte = NULL;
2266281494Sandrew		l3 = pmap_l3(kernel_pmap, va);
2267281494Sandrew	}
2268281494Sandrew	if (l3 == NULL)
2269281494Sandrew		panic("pmap_enter_quick_locked: No l3");
2270285212Sandrew	if (pmap_load(l3) != 0) {
2271281494Sandrew		if (mpte != NULL) {
2272281494Sandrew			mpte->wire_count--;
2273281494Sandrew			mpte = NULL;
2274281494Sandrew		}
2275281494Sandrew		return (mpte);
2276281494Sandrew	}
2277281494Sandrew
2278281494Sandrew	/*
2279281494Sandrew	 * Enter on the PV list if part of our managed memory.
2280281494Sandrew	 */
2281281494Sandrew	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2282281494Sandrew	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
2283281494Sandrew		if (mpte != NULL) {
2284281494Sandrew			SLIST_INIT(&free);
2285281494Sandrew			if (pmap_unwire_l3(pmap, va, mpte, &free)) {
2286281494Sandrew				pmap_invalidate_page(pmap, va);
2287281494Sandrew				pmap_free_zero_pages(&free);
2288281494Sandrew			}
2289281494Sandrew			mpte = NULL;
2290281494Sandrew		}
2291281494Sandrew		return (mpte);
2292281494Sandrew	}
2293281494Sandrew
2294281494Sandrew	/*
2295281494Sandrew	 * Increment counters
2296281494Sandrew	 */
2297281494Sandrew	pmap_resident_count_inc(pmap, 1);
2298281494Sandrew
2299285537Sandrew	pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
2300281494Sandrew	    ATTR_AP(ATTR_AP_RW) | L3_PAGE;
2301281494Sandrew
2302281494Sandrew	/*
2303281494Sandrew	 * Now validate mapping with RO protection
2304281494Sandrew	 */
2305281494Sandrew	if ((m->oflags & VPO_UNMANAGED) == 0)
2306281494Sandrew		pa |= ATTR_SW_MANAGED;
2307281494Sandrew	pmap_load_store(l3, pa);
2308281494Sandrew	PTE_SYNC(l3);
2309281494Sandrew	pmap_invalidate_page(pmap, va);
2310281494Sandrew	return (mpte);
2311281494Sandrew}
2312281494Sandrew
2313281494Sandrew/*
2314281494Sandrew * This code maps large physical mmap regions into the
2315281494Sandrew * processor address space.  Note that some shortcuts
2316281494Sandrew * are taken, but the code works.
2317281494Sandrew */
2318281494Sandrewvoid
2319281494Sandrewpmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
2320281494Sandrew    vm_pindex_t pindex, vm_size_t size)
2321281494Sandrew{
2322281494Sandrew
2323281846Sandrew	VM_OBJECT_ASSERT_WLOCKED(object);
2324281846Sandrew	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2325281846Sandrew	    ("pmap_object_init_pt: non-device object"));
2326281494Sandrew}
2327281494Sandrew
2328281494Sandrew/*
2329281494Sandrew *	Clear the wired attribute from the mappings for the specified range of
2330281494Sandrew *	addresses in the given pmap.  Every valid mapping within that range
2331281494Sandrew *	must have the wired attribute set.  In contrast, invalid mappings
2332281494Sandrew *	cannot have the wired attribute set, so they are ignored.
2333281494Sandrew *
2334281494Sandrew *	The wired attribute of the page table entry is not a hardware feature,
2335281494Sandrew *	so there is no need to invalidate any TLB entries.
2336281494Sandrew */
2337281494Sandrewvoid
2338281494Sandrewpmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2339281494Sandrew{
2340281494Sandrew	vm_offset_t va_next;
2341281494Sandrew	pd_entry_t *l1, *l2;
2342281494Sandrew	pt_entry_t *l3;
2343281494Sandrew	boolean_t pv_lists_locked;
2344281494Sandrew
2345281494Sandrew	pv_lists_locked = FALSE;
2346281494Sandrew	PMAP_LOCK(pmap);
2347281494Sandrew	for (; sva < eva; sva = va_next) {
2348281494Sandrew		l1 = pmap_l1(pmap, sva);
2349285045Sandrew		if (pmap_load(l1) == 0) {
2350281494Sandrew			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2351281494Sandrew			if (va_next < sva)
2352281494Sandrew				va_next = eva;
2353281494Sandrew			continue;
2354281494Sandrew		}
2355281494Sandrew
2356281494Sandrew		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2357281494Sandrew		if (va_next < sva)
2358281494Sandrew			va_next = eva;
2359281494Sandrew
2360281494Sandrew		l2 = pmap_l1_to_l2(l1, sva);
2361285045Sandrew		if (pmap_load(l2) == 0)
2362281494Sandrew			continue;
2363281494Sandrew
2364281494Sandrew		if (va_next > eva)
2365281494Sandrew			va_next = eva;
2366281494Sandrew		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2367281494Sandrew		    sva += L3_SIZE) {
2368285045Sandrew			if (pmap_load(l3) == 0)
2369281494Sandrew				continue;
2370285045Sandrew			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
2371281494Sandrew				panic("pmap_unwire: l3 %#jx is missing "
2372288445Sandrew				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
2373281494Sandrew
2374281494Sandrew			/*
2375281494Sandrew			 * PG_W must be cleared atomically.  Although the pmap
2376281494Sandrew			 * lock synchronizes access to PG_W, another processor
2377281494Sandrew			 * could be setting PG_M and/or PG_A concurrently.
2378281494Sandrew			 */
2379281494Sandrew			atomic_clear_long(l3, ATTR_SW_WIRED);
2380281494Sandrew			pmap->pm_stats.wired_count--;
2381281494Sandrew		}
2382281494Sandrew	}
2383281494Sandrew	if (pv_lists_locked)
2384281494Sandrew		rw_runlock(&pvh_global_lock);
2385281494Sandrew	PMAP_UNLOCK(pmap);
2386281494Sandrew}
2387281494Sandrew
2388281494Sandrew/*
2389281494Sandrew *	Copy the range specified by src_addr/len
2390281494Sandrew *	from the source map to the range dst_addr/len
2391281494Sandrew *	in the destination map.
2392281494Sandrew *
2393281494Sandrew *	This routine is only advisory and need not do anything.
2394281494Sandrew */
2395281494Sandrew
2396281494Sandrewvoid
2397281494Sandrewpmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2398281494Sandrew    vm_offset_t src_addr)
2399281494Sandrew{
2400281494Sandrew}
2401281494Sandrew
2402281494Sandrew/*
2403281494Sandrew *	pmap_zero_page zeros the specified hardware page by mapping
2404281494Sandrew *	the page into KVM and using bzero to clear its contents.
2405281494Sandrew */
2406281494Sandrewvoid
2407281494Sandrewpmap_zero_page(vm_page_t m)
2408281494Sandrew{
2409281494Sandrew	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2410281494Sandrew
2411281494Sandrew	pagezero((void *)va);
2412281494Sandrew}
2413281494Sandrew
2414281494Sandrew/*
2415281494Sandrew *	pmap_zero_page_area zeros the specified hardware page by mapping
2416281494Sandrew *	the page into KVM and using bzero to clear its contents.
2417281494Sandrew *
2418281494Sandrew *	off and size may not cover an area beyond a single hardware page.
2419281494Sandrew */
2420281494Sandrewvoid
2421281494Sandrewpmap_zero_page_area(vm_page_t m, int off, int size)
2422281494Sandrew{
2423281494Sandrew	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2424281494Sandrew
2425281494Sandrew	if (off == 0 && size == PAGE_SIZE)
2426281494Sandrew		pagezero((void *)va);
2427281494Sandrew	else
2428281494Sandrew		bzero((char *)va + off, size);
2429281494Sandrew}
2430281494Sandrew
2431281494Sandrew/*
2432281494Sandrew *	pmap_zero_page_idle zeros the specified hardware page by mapping
2433281494Sandrew *	the page into KVM and using bzero to clear its contents.  This
2434281494Sandrew *	is intended to be called from the vm_pagezero process only and
2435281494Sandrew *	outside of Giant.
2436281494Sandrew */
2437281494Sandrewvoid
2438281494Sandrewpmap_zero_page_idle(vm_page_t m)
2439281494Sandrew{
2440281494Sandrew	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2441281494Sandrew
2442281494Sandrew	pagezero((void *)va);
2443281494Sandrew}
2444281494Sandrew
2445281494Sandrew/*
2446281494Sandrew *	pmap_copy_page copies the specified (machine independent)
2447281494Sandrew *	page by mapping the page into virtual memory and using
2448281494Sandrew *	bcopy to copy the page, one machine dependent page at a
2449281494Sandrew *	time.
2450281494Sandrew */
2451281494Sandrewvoid
2452281494Sandrewpmap_copy_page(vm_page_t msrc, vm_page_t mdst)
2453281494Sandrew{
2454281494Sandrew	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2455281494Sandrew	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2456281494Sandrew
2457281494Sandrew	pagecopy((void *)src, (void *)dst);
2458281494Sandrew}
2459281494Sandrew
2460281494Sandrewint unmapped_buf_allowed = 1;
2461281494Sandrew
2462281494Sandrewvoid
2463281494Sandrewpmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2464281494Sandrew    vm_offset_t b_offset, int xfersize)
2465281494Sandrew{
2466281494Sandrew	void *a_cp, *b_cp;
2467281494Sandrew	vm_page_t m_a, m_b;
2468281494Sandrew	vm_paddr_t p_a, p_b;
2469281494Sandrew	vm_offset_t a_pg_offset, b_pg_offset;
2470281494Sandrew	int cnt;
2471281494Sandrew
2472281494Sandrew	while (xfersize > 0) {
2473281494Sandrew		a_pg_offset = a_offset & PAGE_MASK;
2474281494Sandrew		m_a = ma[a_offset >> PAGE_SHIFT];
2475281494Sandrew		p_a = m_a->phys_addr;
2476281494Sandrew		b_pg_offset = b_offset & PAGE_MASK;
2477281494Sandrew		m_b = mb[b_offset >> PAGE_SHIFT];
2478281494Sandrew		p_b = m_b->phys_addr;
2479281494Sandrew		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2480281494Sandrew		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2481281494Sandrew		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
2482281494Sandrew			panic("!DMAP a %lx", p_a);
2483281494Sandrew		} else {
2484281494Sandrew			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
2485281494Sandrew		}
2486281494Sandrew		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
2487281494Sandrew			panic("!DMAP b %lx", p_b);
2488281494Sandrew		} else {
2489281494Sandrew			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
2490281494Sandrew		}
2491281494Sandrew		bcopy(a_cp, b_cp, cnt);
2492281494Sandrew		a_offset += cnt;
2493281494Sandrew		b_offset += cnt;
2494281494Sandrew		xfersize -= cnt;
2495281494Sandrew	}
2496281494Sandrew}
2497281494Sandrew
2498286296Sjahvm_offset_t
2499286296Sjahpmap_quick_enter_page(vm_page_t m)
2500286296Sjah{
2501286296Sjah
2502286296Sjah	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
2503286296Sjah}
2504286296Sjah
2505286296Sjahvoid
2506286296Sjahpmap_quick_remove_page(vm_offset_t addr)
2507286296Sjah{
2508286296Sjah}
2509286296Sjah
2510281494Sandrew/*
2511281494Sandrew * Returns true if the pmap's pv is one of the first
2512281494Sandrew * 16 pvs linked to from this page.  This count may
2513281494Sandrew * be changed upwards or downwards in the future; it
2514281494Sandrew * is only necessary that true be returned for a small
2515281494Sandrew * subset of pmaps for proper page aging.
2516281494Sandrew */
2517281494Sandrewboolean_t
2518281494Sandrewpmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2519281494Sandrew{
2520281494Sandrew	struct rwlock *lock;
2521281494Sandrew	pv_entry_t pv;
2522281494Sandrew	int loops = 0;
2523281494Sandrew	boolean_t rv;
2524281494Sandrew
2525281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2526281494Sandrew	    ("pmap_page_exists_quick: page %p is not managed", m));
2527281494Sandrew	rv = FALSE;
2528281494Sandrew	rw_rlock(&pvh_global_lock);
2529281494Sandrew	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2530281494Sandrew	rw_rlock(lock);
2531281494Sandrew	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
2532281494Sandrew		if (PV_PMAP(pv) == pmap) {
2533281494Sandrew			rv = TRUE;
2534281494Sandrew			break;
2535281494Sandrew		}
2536281494Sandrew		loops++;
2537281494Sandrew		if (loops >= 16)
2538281494Sandrew			break;
2539281494Sandrew	}
2540281494Sandrew	rw_runlock(lock);
2541281494Sandrew	rw_runlock(&pvh_global_lock);
2542281494Sandrew	return (rv);
2543281494Sandrew}
2544281494Sandrew
2545281494Sandrew/*
2546281494Sandrew *	pmap_page_wired_mappings:
2547281494Sandrew *
2548281494Sandrew *	Return the number of managed mappings to the given physical page
2549281494Sandrew *	that are wired.
2550281494Sandrew */
2551281494Sandrewint
2552281494Sandrewpmap_page_wired_mappings(vm_page_t m)
2553281494Sandrew{
2554281494Sandrew	struct rwlock *lock;
2555281494Sandrew	pmap_t pmap;
2556281494Sandrew	pt_entry_t *l3;
2557281494Sandrew	pv_entry_t pv;
2558281494Sandrew	int count, md_gen;
2559281494Sandrew
2560281494Sandrew	if ((m->oflags & VPO_UNMANAGED) != 0)
2561281494Sandrew		return (0);
2562281494Sandrew	rw_rlock(&pvh_global_lock);
2563281494Sandrew	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2564281494Sandrew	rw_rlock(lock);
2565281494Sandrewrestart:
2566281494Sandrew	count = 0;
2567281494Sandrew	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
2568281494Sandrew		pmap = PV_PMAP(pv);
2569281494Sandrew		if (!PMAP_TRYLOCK(pmap)) {
2570281494Sandrew			md_gen = m->md.pv_gen;
2571281494Sandrew			rw_runlock(lock);
2572281494Sandrew			PMAP_LOCK(pmap);
2573281494Sandrew			rw_rlock(lock);
2574281494Sandrew			if (md_gen != m->md.pv_gen) {
2575281494Sandrew				PMAP_UNLOCK(pmap);
2576281494Sandrew				goto restart;
2577281494Sandrew			}
2578281494Sandrew		}
2579281494Sandrew		l3 = pmap_l3(pmap, pv->pv_va);
2580285045Sandrew		if (l3 != NULL && (pmap_load(l3) & ATTR_SW_WIRED) != 0)
2581281494Sandrew			count++;
2582281494Sandrew		PMAP_UNLOCK(pmap);
2583281494Sandrew	}
2584281494Sandrew	rw_runlock(lock);
2585281494Sandrew	rw_runlock(&pvh_global_lock);
2586281494Sandrew	return (count);
2587281494Sandrew}
2588281494Sandrew
2589281494Sandrew/*
2590281494Sandrew * Destroy all managed, non-wired mappings in the given user-space
2591281494Sandrew * pmap.  This pmap cannot be active on any processor besides the
2592281494Sandrew * caller.
2593281494Sandrew *
2594281494Sandrew * This function cannot be applied to the kernel pmap.  Moreover, it
2595281494Sandrew * is not intended for general use.  It is only to be used during
2596281494Sandrew * process termination.  Consequently, it can be implemented in ways
2597281494Sandrew * that make it faster than pmap_remove().  First, it can more quickly
2598281494Sandrew * destroy mappings by iterating over the pmap's collection of PV
2599281494Sandrew * entries, rather than searching the page table.  Second, it doesn't
2600281494Sandrew * have to test and clear the page table entries atomically, because
2601281494Sandrew * no processor is currently accessing the user address space.  In
2602281494Sandrew * particular, a page table entry's dirty bit won't change state once
2603281494Sandrew * this function starts.
2604281494Sandrew */
2605281494Sandrewvoid
2606281494Sandrewpmap_remove_pages(pmap_t pmap)
2607281494Sandrew{
2608281494Sandrew	pd_entry_t ptepde, *l2;
2609281494Sandrew	pt_entry_t *l3, tl3;
2610281494Sandrew	struct spglist free;
2611281494Sandrew	vm_page_t m;
2612281494Sandrew	pv_entry_t pv;
2613281494Sandrew	struct pv_chunk *pc, *npc;
2614281494Sandrew	struct rwlock *lock;
2615281494Sandrew	int64_t bit;
2616281494Sandrew	uint64_t inuse, bitmask;
2617281494Sandrew	int allfree, field, freed, idx;
2618281494Sandrew	vm_paddr_t pa;
2619281494Sandrew
2620281494Sandrew	lock = NULL;
2621281494Sandrew
2622281494Sandrew	SLIST_INIT(&free);
2623281494Sandrew	rw_rlock(&pvh_global_lock);
2624281494Sandrew	PMAP_LOCK(pmap);
2625281494Sandrew	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2626281494Sandrew		allfree = 1;
2627281494Sandrew		freed = 0;
2628281494Sandrew		for (field = 0; field < _NPCM; field++) {
2629281494Sandrew			inuse = ~pc->pc_map[field] & pc_freemask[field];
2630281494Sandrew			while (inuse != 0) {
2631281494Sandrew				bit = ffsl(inuse) - 1;
2632281494Sandrew				bitmask = 1UL << bit;
2633281494Sandrew				idx = field * 64 + bit;
2634281494Sandrew				pv = &pc->pc_pventry[idx];
2635281494Sandrew				inuse &= ~bitmask;
2636281494Sandrew
2637281494Sandrew				l2 = pmap_l2(pmap, pv->pv_va);
2638281494Sandrew				ptepde = pmap_load(l2);
2639281494Sandrew				l3 = pmap_l2_to_l3(l2, pv->pv_va);
2640281494Sandrew				tl3 = pmap_load(l3);
2641281494Sandrew
2642281494Sandrew/*
2643281494Sandrew * We cannot remove wired pages from a process' mapping at this time
2644281494Sandrew */
2645281494Sandrew				if (tl3 & ATTR_SW_WIRED) {
2646281494Sandrew					allfree = 0;
2647281494Sandrew					continue;
2648281494Sandrew				}
2649281494Sandrew
2650281494Sandrew				pa = tl3 & ~ATTR_MASK;
2651281494Sandrew
2652281494Sandrew				m = PHYS_TO_VM_PAGE(pa);
2653281494Sandrew				KASSERT(m->phys_addr == pa,
2654281494Sandrew				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2655281494Sandrew				    m, (uintmax_t)m->phys_addr,
2656281494Sandrew				    (uintmax_t)tl3));
2657281494Sandrew
2658281494Sandrew				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
2659281494Sandrew				    m < &vm_page_array[vm_page_array_size],
2660281494Sandrew				    ("pmap_remove_pages: bad l3 %#jx",
2661281494Sandrew				    (uintmax_t)tl3));
2662281494Sandrew
2663281494Sandrew				if (pmap_is_current(pmap) &&
2664281494Sandrew				    pmap_l3_valid_cacheable(pmap_load(l3)))
2665281494Sandrew					cpu_dcache_wb_range(pv->pv_va, L3_SIZE);
2666281494Sandrew				pmap_load_clear(l3);
2667281494Sandrew				PTE_SYNC(l3);
2668285212Sandrew				pmap_invalidate_page(pmap, pv->pv_va);
2669281494Sandrew
2670281494Sandrew				/*
2671281494Sandrew				 * Update the vm_page_t clean/reference bits.
2672281494Sandrew				 */
2673281494Sandrew				if ((tl3 & ATTR_AP_RW_BIT) ==
2674281494Sandrew				    ATTR_AP(ATTR_AP_RW))
2675281494Sandrew					vm_page_dirty(m);
2676281494Sandrew
2677281494Sandrew				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
2678281494Sandrew
2679281494Sandrew				/* Mark free */
2680281494Sandrew				pc->pc_map[field] |= bitmask;
2681281494Sandrew
2682281494Sandrew				pmap_resident_count_dec(pmap, 1);
2683281494Sandrew				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2684281494Sandrew				m->md.pv_gen++;
2685281494Sandrew
2686281494Sandrew				pmap_unuse_l3(pmap, pv->pv_va, ptepde, &free);
2687281494Sandrew				freed++;
2688281494Sandrew			}
2689281494Sandrew		}
2690281494Sandrew		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2691281494Sandrew		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2692281494Sandrew		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2693281494Sandrew		if (allfree) {
2694281494Sandrew			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2695281494Sandrew			free_pv_chunk(pc);
2696281494Sandrew		}
2697281494Sandrew	}
2698281494Sandrew	pmap_invalidate_all(pmap);
2699281494Sandrew	if (lock != NULL)
2700281494Sandrew		rw_wunlock(lock);
2701281494Sandrew	rw_runlock(&pvh_global_lock);
2702281494Sandrew	PMAP_UNLOCK(pmap);
2703281494Sandrew	pmap_free_zero_pages(&free);
2704281494Sandrew}
2705281494Sandrew
2706281494Sandrew/*
2707281494Sandrew * This is used to check if a page has been accessed or modified. As we
2708281494Sandrew * don't have a bit to see if it has been modified we have to assume it
2709281494Sandrew * has been if the page is read/write.
2710281494Sandrew */
2711281494Sandrewstatic boolean_t
2712281494Sandrewpmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
2713281494Sandrew{
2714281494Sandrew	struct rwlock *lock;
2715281494Sandrew	pv_entry_t pv;
2716281494Sandrew	pt_entry_t *l3, mask, value;
2717281494Sandrew	pmap_t pmap;
2718281494Sandrew	int md_gen;
2719281494Sandrew	boolean_t rv;
2720281494Sandrew
2721281494Sandrew	rv = FALSE;
2722281494Sandrew	rw_rlock(&pvh_global_lock);
2723281494Sandrew	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2724281494Sandrew	rw_rlock(lock);
2725281494Sandrewrestart:
2726281494Sandrew	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
2727281494Sandrew		pmap = PV_PMAP(pv);
2728281494Sandrew		if (!PMAP_TRYLOCK(pmap)) {
2729281494Sandrew			md_gen = m->md.pv_gen;
2730281494Sandrew			rw_runlock(lock);
2731281494Sandrew			PMAP_LOCK(pmap);
2732281494Sandrew			rw_rlock(lock);
2733281494Sandrew			if (md_gen != m->md.pv_gen) {
2734281494Sandrew				PMAP_UNLOCK(pmap);
2735281494Sandrew				goto restart;
2736281494Sandrew			}
2737281494Sandrew		}
2738281494Sandrew		l3 = pmap_l3(pmap, pv->pv_va);
2739281494Sandrew		mask = 0;
2740281494Sandrew		value = 0;
2741281494Sandrew		if (modified) {
2742281494Sandrew			mask |= ATTR_AP_RW_BIT;
2743281494Sandrew			value |= ATTR_AP(ATTR_AP_RW);
2744281494Sandrew		}
2745281494Sandrew		if (accessed) {
2746281494Sandrew			mask |= ATTR_AF | ATTR_DESCR_MASK;
2747281494Sandrew			value |= ATTR_AF | L3_PAGE;
2748281494Sandrew		}
2749281494Sandrew		rv = (pmap_load(l3) & mask) == value;
2750281494Sandrew		PMAP_UNLOCK(pmap);
2751281494Sandrew		if (rv)
2752281494Sandrew			goto out;
2753281494Sandrew	}
2754281494Sandrewout:
2755281494Sandrew	rw_runlock(lock);
2756281494Sandrew	rw_runlock(&pvh_global_lock);
2757281494Sandrew	return (rv);
2758281494Sandrew}
2759281494Sandrew
2760281494Sandrew/*
2761281494Sandrew *	pmap_is_modified:
2762281494Sandrew *
2763281494Sandrew *	Return whether or not the specified physical page was modified
2764281494Sandrew *	in any physical maps.
2765281494Sandrew */
2766281494Sandrewboolean_t
2767281494Sandrewpmap_is_modified(vm_page_t m)
2768281494Sandrew{
2769281494Sandrew
2770281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2771281494Sandrew	    ("pmap_is_modified: page %p is not managed", m));
2772281494Sandrew
2773281494Sandrew	/*
2774281494Sandrew	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2775281494Sandrew	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2776281494Sandrew	 * is clear, no PTEs can have PG_M set.
2777281494Sandrew	 */
2778281494Sandrew	VM_OBJECT_ASSERT_WLOCKED(m->object);
2779281494Sandrew	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2780281494Sandrew		return (FALSE);
2781281494Sandrew	return (pmap_page_test_mappings(m, FALSE, TRUE));
2782281494Sandrew}
2783281494Sandrew
2784281494Sandrew/*
2785281494Sandrew *	pmap_is_prefaultable:
2786281494Sandrew *
2787281494Sandrew *	Return whether or not the specified virtual address is eligible
2788281494Sandrew *	for prefault.
2789281494Sandrew */
2790281494Sandrewboolean_t
2791281494Sandrewpmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2792281494Sandrew{
2793281494Sandrew	pt_entry_t *l3;
2794281494Sandrew	boolean_t rv;
2795281494Sandrew
2796281494Sandrew	rv = FALSE;
2797281494Sandrew	PMAP_LOCK(pmap);
2798281494Sandrew	l3 = pmap_l3(pmap, addr);
2799285045Sandrew	if (l3 != NULL && pmap_load(l3) != 0) {
2800281494Sandrew		rv = TRUE;
2801281494Sandrew	}
2802281494Sandrew	PMAP_UNLOCK(pmap);
2803281494Sandrew	return (rv);
2804281494Sandrew}
2805281494Sandrew
2806281494Sandrew/*
2807281494Sandrew *	pmap_is_referenced:
2808281494Sandrew *
2809281494Sandrew *	Return whether or not the specified physical page was referenced
2810281494Sandrew *	in any physical maps.
2811281494Sandrew */
2812281494Sandrewboolean_t
2813281494Sandrewpmap_is_referenced(vm_page_t m)
2814281494Sandrew{
2815281494Sandrew
2816281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2817281494Sandrew	    ("pmap_is_referenced: page %p is not managed", m));
2818281494Sandrew	return (pmap_page_test_mappings(m, TRUE, FALSE));
2819281494Sandrew}
2820281494Sandrew
2821281494Sandrew/*
2822281494Sandrew * Clear the write and modified bits in each of the given page's mappings.
2823281494Sandrew */
2824281494Sandrewvoid
2825281494Sandrewpmap_remove_write(vm_page_t m)
2826281494Sandrew{
2827281494Sandrew	pmap_t pmap;
2828281494Sandrew	struct rwlock *lock;
2829281494Sandrew	pv_entry_t pv;
2830281494Sandrew	pt_entry_t *l3, oldl3;
2831281494Sandrew	int md_gen;
2832281494Sandrew
2833281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2834281494Sandrew	    ("pmap_remove_write: page %p is not managed", m));
2835281494Sandrew
2836281494Sandrew	/*
2837281494Sandrew	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2838281494Sandrew	 * set by another thread while the object is locked.  Thus,
2839281494Sandrew	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2840281494Sandrew	 */
2841281494Sandrew	VM_OBJECT_ASSERT_WLOCKED(m->object);
2842281494Sandrew	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2843281494Sandrew		return;
2844281494Sandrew	rw_rlock(&pvh_global_lock);
2845281494Sandrew	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2846281494Sandrewretry_pv_loop:
2847281494Sandrew	rw_wlock(lock);
2848281494Sandrew	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
2849281494Sandrew		pmap = PV_PMAP(pv);
2850281494Sandrew		if (!PMAP_TRYLOCK(pmap)) {
2851281494Sandrew			md_gen = m->md.pv_gen;
2852281494Sandrew			rw_wunlock(lock);
2853281494Sandrew			PMAP_LOCK(pmap);
2854281494Sandrew			rw_wlock(lock);
2855281494Sandrew			if (md_gen != m->md.pv_gen) {
2856281494Sandrew				PMAP_UNLOCK(pmap);
2857281494Sandrew				rw_wunlock(lock);
2858281494Sandrew				goto retry_pv_loop;
2859281494Sandrew			}
2860281494Sandrew		}
2861281494Sandrew		l3 = pmap_l3(pmap, pv->pv_va);
2862281494Sandrewretry:
2863288445Sandrew		oldl3 = pmap_load(l3);
2864281494Sandrew		if ((oldl3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) {
2865281494Sandrew			if (!atomic_cmpset_long(l3, oldl3,
2866281494Sandrew			    oldl3 | ATTR_AP(ATTR_AP_RO)))
2867281494Sandrew				goto retry;
2868281494Sandrew			if ((oldl3 & ATTR_AF) != 0)
2869281494Sandrew				vm_page_dirty(m);
2870281494Sandrew			pmap_invalidate_page(pmap, pv->pv_va);
2871281494Sandrew		}
2872281494Sandrew		PMAP_UNLOCK(pmap);
2873281494Sandrew	}
2874281494Sandrew	rw_wunlock(lock);
2875281494Sandrew	vm_page_aflag_clear(m, PGA_WRITEABLE);
2876281494Sandrew	rw_runlock(&pvh_global_lock);
2877281494Sandrew}
2878281494Sandrew
2879281494Sandrewstatic __inline boolean_t
2880281494Sandrewsafe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
2881281494Sandrew{
2882281494Sandrew
2883281494Sandrew	return (FALSE);
2884281494Sandrew}
2885281494Sandrew
2886281494Sandrew#define	PMAP_TS_REFERENCED_MAX	5
2887281494Sandrew
2888281494Sandrew/*
2889281494Sandrew *	pmap_ts_referenced:
2890281494Sandrew *
2891281494Sandrew *	Return a count of reference bits for a page, clearing those bits.
2892281494Sandrew *	It is not necessary for every reference bit to be cleared, but it
2893281494Sandrew *	is necessary that 0 only be returned when there are truly no
2894281494Sandrew *	reference bits set.
2895281494Sandrew *
2896281494Sandrew *	XXX: The exact number of bits to check and clear is a matter that
2897281494Sandrew *	should be tested and standardized at some point in the future for
2898281494Sandrew *	optimal aging of shared pages.
2899281494Sandrew */
2900281494Sandrewint
2901281494Sandrewpmap_ts_referenced(vm_page_t m)
2902281494Sandrew{
2903281494Sandrew	pv_entry_t pv, pvf;
2904281494Sandrew	pmap_t pmap;
2905281494Sandrew	struct rwlock *lock;
2906288445Sandrew	pd_entry_t *l2p, l2;
2907281494Sandrew	pt_entry_t *l3;
2908281494Sandrew	vm_paddr_t pa;
2909281494Sandrew	int cleared, md_gen, not_cleared;
2910281494Sandrew	struct spglist free;
2911281494Sandrew
2912281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2913281494Sandrew	    ("pmap_ts_referenced: page %p is not managed", m));
2914281494Sandrew	SLIST_INIT(&free);
2915281494Sandrew	cleared = 0;
2916281494Sandrew	pa = VM_PAGE_TO_PHYS(m);
2917281494Sandrew	lock = PHYS_TO_PV_LIST_LOCK(pa);
2918281494Sandrew	rw_rlock(&pvh_global_lock);
2919281494Sandrew	rw_wlock(lock);
2920281494Sandrewretry:
2921281494Sandrew	not_cleared = 0;
2922281494Sandrew	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
2923281494Sandrew		goto out;
2924281494Sandrew	pv = pvf;
2925281494Sandrew	do {
2926281494Sandrew		if (pvf == NULL)
2927281494Sandrew			pvf = pv;
2928281494Sandrew		pmap = PV_PMAP(pv);
2929281494Sandrew		if (!PMAP_TRYLOCK(pmap)) {
2930281494Sandrew			md_gen = m->md.pv_gen;
2931281494Sandrew			rw_wunlock(lock);
2932281494Sandrew			PMAP_LOCK(pmap);
2933281494Sandrew			rw_wlock(lock);
2934281494Sandrew			if (md_gen != m->md.pv_gen) {
2935281494Sandrew				PMAP_UNLOCK(pmap);
2936281494Sandrew				goto retry;
2937281494Sandrew			}
2938281494Sandrew		}
2939288445Sandrew		l2p = pmap_l2(pmap, pv->pv_va);
2940288445Sandrew		KASSERT(l2p != NULL, ("pmap_ts_referenced: no l2 table found"));
2941288445Sandrew		l2 = pmap_load(l2p);
2942288445Sandrew		KASSERT((l2 & ATTR_DESCR_MASK) == L2_TABLE,
2943281494Sandrew		    ("pmap_ts_referenced: found an invalid l2 table"));
2944288445Sandrew		l3 = pmap_l2_to_l3(l2p, pv->pv_va);
2945285045Sandrew		if ((pmap_load(l3) & ATTR_AF) != 0) {
2946288445Sandrew			if (safe_to_clear_referenced(pmap, pmap_load(l3))) {
2947281494Sandrew				/*
2948281494Sandrew				 * TODO: We don't handle the access flag
2949281494Sandrew				 * at all. We need to be able to set it in
2950281494Sandrew				 * the exception handler.
2951281494Sandrew				 */
2952286073Semaste				panic("ARM64TODO: safe_to_clear_referenced\n");
2953285045Sandrew			} else if ((pmap_load(l3) & ATTR_SW_WIRED) == 0) {
2954281494Sandrew				/*
2955281494Sandrew				 * Wired pages cannot be paged out so
2956281494Sandrew				 * doing accessed bit emulation for
2957281494Sandrew				 * them is wasted effort. We do the
2958281494Sandrew				 * hard work for unwired pages only.
2959281494Sandrew				 */
2960288445Sandrew				pmap_remove_l3(pmap, l3, pv->pv_va, l2,
2961288445Sandrew				    &free, &lock);
2962281494Sandrew				pmap_invalidate_page(pmap, pv->pv_va);
2963281494Sandrew				cleared++;
2964281494Sandrew				if (pvf == pv)
2965281494Sandrew					pvf = NULL;
2966281494Sandrew				pv = NULL;
2967281494Sandrew				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
2968281494Sandrew				    ("inconsistent pv lock %p %p for page %p",
2969281494Sandrew				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
2970281494Sandrew			} else
2971281494Sandrew				not_cleared++;
2972281494Sandrew		}
2973281494Sandrew		PMAP_UNLOCK(pmap);
2974281494Sandrew		/* Rotate the PV list if it has more than one entry. */
2975281494Sandrew		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
2976281494Sandrew			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2977281494Sandrew			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2978281494Sandrew			m->md.pv_gen++;
2979281494Sandrew		}
2980281494Sandrew	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
2981281494Sandrew	    not_cleared < PMAP_TS_REFERENCED_MAX);
2982281494Sandrewout:
2983281494Sandrew	rw_wunlock(lock);
2984281494Sandrew	rw_runlock(&pvh_global_lock);
2985281494Sandrew	pmap_free_zero_pages(&free);
2986281494Sandrew	return (cleared + not_cleared);
2987281494Sandrew}
2988281494Sandrew
2989281494Sandrew/*
2990281494Sandrew *	Apply the given advice to the specified range of addresses within the
2991281494Sandrew *	given pmap.  Depending on the advice, clear the referenced and/or
2992281494Sandrew *	modified flags in each mapping and set the mapped page's dirty field.
2993281494Sandrew */
2994281494Sandrewvoid
2995281494Sandrewpmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
2996281494Sandrew{
2997281494Sandrew}
2998281494Sandrew
2999281494Sandrew/*
3000281494Sandrew *	Clear the modify bits on the specified physical page.
3001281494Sandrew */
3002281494Sandrewvoid
3003281494Sandrewpmap_clear_modify(vm_page_t m)
3004281494Sandrew{
3005281494Sandrew
3006281494Sandrew	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3007281494Sandrew	    ("pmap_clear_modify: page %p is not managed", m));
3008281494Sandrew	VM_OBJECT_ASSERT_WLOCKED(m->object);
3009281494Sandrew	KASSERT(!vm_page_xbusied(m),
3010281494Sandrew	    ("pmap_clear_modify: page %p is exclusive busied", m));
3011281494Sandrew
3012281494Sandrew	/*
3013281494Sandrew	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3014281494Sandrew	 * If the object containing the page is locked and the page is not
3015281494Sandrew	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
3016281494Sandrew	 */
3017281494Sandrew	if ((m->aflags & PGA_WRITEABLE) == 0)
3018281494Sandrew		return;
3019281846Sandrew
3020286073Semaste	/* ARM64TODO: We lack support for tracking if a page is modified */
3021281494Sandrew}
3022281494Sandrew
3023282221Sandrewvoid *
3024282221Sandrewpmap_mapbios(vm_paddr_t pa, vm_size_t size)
3025282221Sandrew{
3026282221Sandrew
3027282221Sandrew        return ((void *)PHYS_TO_DMAP(pa));
3028282221Sandrew}
3029282221Sandrew
3030282221Sandrewvoid
3031282221Sandrewpmap_unmapbios(vm_paddr_t pa, vm_size_t size)
3032282221Sandrew{
3033282221Sandrew}
3034282221Sandrew
3035281494Sandrew/*
3036281494Sandrew * Sets the memory attribute for the specified page.
3037281494Sandrew */
3038281494Sandrewvoid
3039281494Sandrewpmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3040281494Sandrew{
3041281494Sandrew
3042286080Sandrew	m->md.pv_memattr = ma;
3043286080Sandrew
3044286080Sandrew	/*
3045286080Sandrew	 * ARM64TODO: Implement the below (from the amd64 pmap)
3046286080Sandrew	 * If "m" is a normal page, update its direct mapping.  This update
3047286080Sandrew	 * can be relied upon to perform any cache operations that are
3048286080Sandrew	 * required for data coherence.
3049286080Sandrew	 */
3050286080Sandrew	if ((m->flags & PG_FICTITIOUS) == 0 &&
3051286080Sandrew	    PHYS_IN_DMAP(VM_PAGE_TO_PHYS(m)))
3052286080Sandrew		panic("ARM64TODO: pmap_page_set_memattr");
3053281494Sandrew}
3054281494Sandrew
3055281494Sandrew/*
3056281494Sandrew * perform the pmap work for mincore
3057281494Sandrew */
3058281494Sandrewint
3059281494Sandrewpmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
3060281494Sandrew{
3061287570Sandrew	pd_entry_t *l1p, l1;
3062287570Sandrew	pd_entry_t *l2p, l2;
3063287570Sandrew	pt_entry_t *l3p, l3;
3064287570Sandrew	vm_paddr_t pa;
3065287570Sandrew	bool managed;
3066287570Sandrew	int val;
3067281494Sandrew
3068287570Sandrew	PMAP_LOCK(pmap);
3069287570Sandrewretry:
3070287570Sandrew	pa = 0;
3071287570Sandrew	val = 0;
3072287570Sandrew	managed = false;
3073287570Sandrew
3074287570Sandrew	l1p = pmap_l1(pmap, addr);
3075287570Sandrew	if (l1p == NULL) /* No l1 */
3076287570Sandrew		goto done;
3077295425Swma
3078287570Sandrew	l1 = pmap_load(l1p);
3079295425Swma	if ((l1 & ATTR_DESCR_MASK) == L1_INVAL)
3080295425Swma		goto done;
3081295425Swma
3082287570Sandrew	if ((l1 & ATTR_DESCR_MASK) == L1_BLOCK) {
3083287570Sandrew		pa = (l1 & ~ATTR_MASK) | (addr & L1_OFFSET);
3084287570Sandrew		managed = (l1 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
3085287570Sandrew		val = MINCORE_SUPER | MINCORE_INCORE;
3086287570Sandrew		if (pmap_page_dirty(l1))
3087287570Sandrew			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3088287570Sandrew		if ((l1 & ATTR_AF) == ATTR_AF)
3089287570Sandrew			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3090287570Sandrew		goto done;
3091287570Sandrew	}
3092287570Sandrew
3093287570Sandrew	l2p = pmap_l1_to_l2(l1p, addr);
3094287570Sandrew	if (l2p == NULL) /* No l2 */
3095287570Sandrew		goto done;
3096295425Swma
3097287570Sandrew	l2 = pmap_load(l2p);
3098295425Swma	if ((l2 & ATTR_DESCR_MASK) == L2_INVAL)
3099295425Swma		goto done;
3100295425Swma
3101287570Sandrew	if ((l2 & ATTR_DESCR_MASK) == L2_BLOCK) {
3102287570Sandrew		pa = (l2 & ~ATTR_MASK) | (addr & L2_OFFSET);
3103287570Sandrew		managed = (l2 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
3104287570Sandrew		val = MINCORE_SUPER | MINCORE_INCORE;
3105287570Sandrew		if (pmap_page_dirty(l2))
3106287570Sandrew			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3107287570Sandrew		if ((l2 & ATTR_AF) == ATTR_AF)
3108287570Sandrew			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3109287570Sandrew		goto done;
3110287570Sandrew	}
3111287570Sandrew
3112287570Sandrew	l3p = pmap_l2_to_l3(l2p, addr);
3113287570Sandrew	if (l3p == NULL) /* No l3 */
3114287570Sandrew		goto done;
3115295425Swma
3116287570Sandrew	l3 = pmap_load(l2p);
3117295425Swma	if ((l3 & ATTR_DESCR_MASK) == L3_INVAL)
3118295425Swma		goto done;
3119295425Swma
3120287570Sandrew	if ((l3 & ATTR_DESCR_MASK) == L3_PAGE) {
3121287570Sandrew		pa = (l3 & ~ATTR_MASK) | (addr & L3_OFFSET);
3122287570Sandrew		managed = (l3 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
3123287570Sandrew		val = MINCORE_INCORE;
3124287570Sandrew		if (pmap_page_dirty(l3))
3125287570Sandrew			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3126287570Sandrew		if ((l3 & ATTR_AF) == ATTR_AF)
3127287570Sandrew			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3128287570Sandrew	}
3129287570Sandrew
3130287570Sandrewdone:
3131287570Sandrew	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
3132287570Sandrew	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
3133287570Sandrew		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3134287570Sandrew		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3135287570Sandrew			goto retry;
3136287570Sandrew	} else
3137287570Sandrew		PA_UNLOCK_COND(*locked_pa);
3138287570Sandrew	PMAP_UNLOCK(pmap);
3139287570Sandrew
3140287570Sandrew	return (val);
3141281494Sandrew}
3142281494Sandrew
3143281494Sandrewvoid
3144281494Sandrewpmap_activate(struct thread *td)
3145281494Sandrew{
3146281494Sandrew	pmap_t	pmap;
3147281494Sandrew
3148281494Sandrew	critical_enter();
3149281494Sandrew	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3150281494Sandrew	td->td_pcb->pcb_l1addr = vtophys(pmap->pm_l1);
3151281494Sandrew	__asm __volatile("msr ttbr0_el1, %0" : : "r"(td->td_pcb->pcb_l1addr));
3152285212Sandrew	pmap_invalidate_all(pmap);
3153281494Sandrew	critical_exit();
3154281494Sandrew}
3155281494Sandrew
3156281494Sandrewvoid
3157287105Sandrewpmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
3158281494Sandrew{
3159281494Sandrew
3160287105Sandrew	if (va >= VM_MIN_KERNEL_ADDRESS) {
3161287105Sandrew		cpu_icache_sync_range(va, sz);
3162287105Sandrew	} else {
3163287105Sandrew		u_int len, offset;
3164287105Sandrew		vm_paddr_t pa;
3165287105Sandrew
3166287105Sandrew		/* Find the length of data in this page to flush */
3167287105Sandrew		offset = va & PAGE_MASK;
3168287105Sandrew		len = imin(PAGE_SIZE - offset, sz);
3169287105Sandrew
3170287105Sandrew		while (sz != 0) {
3171287105Sandrew			/* Extract the physical address & find it in the DMAP */
3172287105Sandrew			pa = pmap_extract(pmap, va);
3173287105Sandrew			if (pa != 0)
3174287105Sandrew				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
3175287105Sandrew
3176287105Sandrew			/* Move to the next page */
3177287105Sandrew			sz -= len;
3178287105Sandrew			va += len;
3179287105Sandrew			/* Set the length for the next iteration */
3180287105Sandrew			len = imin(PAGE_SIZE, sz);
3181287105Sandrew		}
3182287105Sandrew	}
3183281494Sandrew}
3184281494Sandrew
3185281494Sandrew/*
3186281494Sandrew *	Increase the starting virtual address of the given mapping if a
3187281494Sandrew *	different alignment might result in more superpage mappings.
3188281494Sandrew */
3189281494Sandrewvoid
3190281494Sandrewpmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3191281494Sandrew    vm_offset_t *addr, vm_size_t size)
3192281494Sandrew{
3193281494Sandrew}
3194281494Sandrew
3195281494Sandrew/**
3196281494Sandrew * Get the kernel virtual address of a set of physical pages. If there are
3197281494Sandrew * physical addresses not covered by the DMAP perform a transient mapping
3198281494Sandrew * that will be removed when calling pmap_unmap_io_transient.
3199281494Sandrew *
3200281494Sandrew * \param page        The pages the caller wishes to obtain the virtual
3201281494Sandrew *                    address on the kernel memory map.
3202281494Sandrew * \param vaddr       On return contains the kernel virtual memory address
3203281494Sandrew *                    of the pages passed in the page parameter.
3204281494Sandrew * \param count       Number of pages passed in.
3205281494Sandrew * \param can_fault   TRUE if the thread using the mapped pages can take
3206281494Sandrew *                    page faults, FALSE otherwise.
3207281494Sandrew *
3208281494Sandrew * \returns TRUE if the caller must call pmap_unmap_io_transient when
3209281494Sandrew *          finished or FALSE otherwise.
3210281494Sandrew *
3211281494Sandrew */
3212281494Sandrewboolean_t
3213281494Sandrewpmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
3214281494Sandrew    boolean_t can_fault)
3215281494Sandrew{
3216281494Sandrew	vm_paddr_t paddr;
3217281494Sandrew	boolean_t needs_mapping;
3218281494Sandrew	int error, i;
3219281494Sandrew
3220281494Sandrew	/*
3221281494Sandrew	 * Allocate any KVA space that we need, this is done in a separate
3222281494Sandrew	 * loop to prevent calling vmem_alloc while pinned.
3223281494Sandrew	 */
3224281494Sandrew	needs_mapping = FALSE;
3225281494Sandrew	for (i = 0; i < count; i++) {
3226281494Sandrew		paddr = VM_PAGE_TO_PHYS(page[i]);
3227281494Sandrew		if (__predict_false(paddr >= DMAP_MAX_PHYSADDR)) {
3228281494Sandrew			error = vmem_alloc(kernel_arena, PAGE_SIZE,
3229281494Sandrew			    M_BESTFIT | M_WAITOK, &vaddr[i]);
3230281494Sandrew			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3231281494Sandrew			needs_mapping = TRUE;
3232281494Sandrew		} else {
3233281494Sandrew			vaddr[i] = PHYS_TO_DMAP(paddr);
3234281494Sandrew		}
3235281494Sandrew	}
3236281494Sandrew
3237281494Sandrew	/* Exit early if everything is covered by the DMAP */
3238281494Sandrew	if (!needs_mapping)
3239281494Sandrew		return (FALSE);
3240281494Sandrew
3241281494Sandrew	if (!can_fault)
3242281494Sandrew		sched_pin();
3243281494Sandrew	for (i = 0; i < count; i++) {
3244281494Sandrew		paddr = VM_PAGE_TO_PHYS(page[i]);
3245281494Sandrew		if (paddr >= DMAP_MAX_PHYSADDR) {
3246281494Sandrew			panic(
3247281494Sandrew			   "pmap_map_io_transient: TODO: Map out of DMAP data");
3248281494Sandrew		}
3249281494Sandrew	}
3250281494Sandrew
3251281494Sandrew	return (needs_mapping);
3252281494Sandrew}
3253281494Sandrew
3254281494Sandrewvoid
3255281494Sandrewpmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
3256281494Sandrew    boolean_t can_fault)
3257281494Sandrew{
3258281494Sandrew	vm_paddr_t paddr;
3259281494Sandrew	int i;
3260281494Sandrew
3261281494Sandrew	if (!can_fault)
3262281494Sandrew		sched_unpin();
3263281494Sandrew	for (i = 0; i < count; i++) {
3264281494Sandrew		paddr = VM_PAGE_TO_PHYS(page[i]);
3265281494Sandrew		if (paddr >= DMAP_MAX_PHYSADDR) {
3266286073Semaste			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
3267281494Sandrew		}
3268281494Sandrew	}
3269281494Sandrew}
3270