if_cpsw.c revision 312761
1/*-
2 * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3 * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * TI Common Platform Ethernet Switch (CPSW) Driver
30 * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
31 *
32 * This controller is documented in the AM335x Technical Reference
33 * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
34 * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
35 *
36 * It is basically a single Ethernet port (port 0) wired internally to
37 * a 3-port store-and-forward switch connected to two independent
38 * "sliver" controllers (port 1 and port 2).  You can operate the
39 * controller in a variety of different ways by suitably configuring
40 * the slivers and the Address Lookup Engine (ALE) that routes packets
41 * between the ports.
42 *
43 * This code was developed and tested on a BeagleBone with
44 * an AM335x SoC.
45 */
46
47#include <sys/cdefs.h>
48__FBSDID("$FreeBSD: stable/11/sys/arm/ti/cpsw/if_cpsw.c 312761 2017-01-25 16:10:35Z loos $");
49
50#include "opt_cpsw.h"
51
52#include <sys/param.h>
53#include <sys/bus.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/mbuf.h>
57#include <sys/module.h>
58#include <sys/mutex.h>
59#include <sys/rman.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/sysctl.h>
63
64#include <machine/bus.h>
65#include <machine/resource.h>
66#include <machine/stdarg.h>
67
68#include <net/ethernet.h>
69#include <net/bpf.h>
70#include <net/if.h>
71#include <net/if_dl.h>
72#include <net/if_media.h>
73#include <net/if_types.h>
74
75#include <arm/ti/ti_scm.h>
76#include <arm/ti/am335x/am335x_scm.h>
77
78#include <dev/mii/mii.h>
79#include <dev/mii/miivar.h>
80
81#include <dev/fdt/fdt_common.h>
82#include <dev/ofw/ofw_bus.h>
83#include <dev/ofw/ofw_bus_subr.h>
84
85#ifdef CPSW_ETHERSWITCH
86#include <dev/etherswitch/etherswitch.h>
87#include "etherswitch_if.h"
88#endif
89
90#include "if_cpswreg.h"
91#include "if_cpswvar.h"
92
93#include "miibus_if.h"
94
95/* Device probe/attach/detach. */
96static int cpsw_probe(device_t);
97static int cpsw_attach(device_t);
98static int cpsw_detach(device_t);
99static int cpswp_probe(device_t);
100static int cpswp_attach(device_t);
101static int cpswp_detach(device_t);
102
103static phandle_t cpsw_get_node(device_t, device_t);
104
105/* Device Init/shutdown. */
106static int cpsw_shutdown(device_t);
107static void cpswp_init(void *);
108static void cpswp_init_locked(void *);
109static void cpswp_stop_locked(struct cpswp_softc *);
110
111/* Device Suspend/Resume. */
112static int cpsw_suspend(device_t);
113static int cpsw_resume(device_t);
114
115/* Ioctl. */
116static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
117
118static int cpswp_miibus_readreg(device_t, int phy, int reg);
119static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
120static void cpswp_miibus_statchg(device_t);
121
122/* Send/Receive packets. */
123static void cpsw_intr_rx(void *arg);
124static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
125static void cpsw_rx_enqueue(struct cpsw_softc *);
126static void cpswp_start(struct ifnet *);
127static void cpsw_intr_tx(void *);
128static void cpswp_tx_enqueue(struct cpswp_softc *);
129static int cpsw_tx_dequeue(struct cpsw_softc *);
130
131/* Misc interrupts and watchdog. */
132static void cpsw_intr_rx_thresh(void *);
133static void cpsw_intr_misc(void *);
134static void cpswp_tick(void *);
135static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136static int cpswp_ifmedia_upd(struct ifnet *);
137static void cpsw_tx_watchdog(void *);
138
139/* ALE support */
140static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
141static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
142static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
143static void cpsw_ale_dump_table(struct cpsw_softc *);
144static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
145	int);
146static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
147
148/* Statistics and sysctls. */
149static void cpsw_add_sysctls(struct cpsw_softc *);
150static void cpsw_stats_collect(struct cpsw_softc *);
151static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
152
153#ifdef CPSW_ETHERSWITCH
154static etherswitch_info_t *cpsw_getinfo(device_t);
155static int cpsw_getport(device_t, etherswitch_port_t *);
156static int cpsw_setport(device_t, etherswitch_port_t *);
157static int cpsw_getconf(device_t, etherswitch_conf_t *);
158static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
159static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
160static int cpsw_readreg(device_t, int);
161static int cpsw_writereg(device_t, int, int);
162static int cpsw_readphy(device_t, int, int);
163static int cpsw_writephy(device_t, int, int, int);
164#endif
165
166/*
167 * Arbitrary limit on number of segments in an mbuf to be transmitted.
168 * Packets with more segments than this will be defragmented before
169 * they are queued.
170 */
171#define	CPSW_TXFRAGS		16
172
173/* Shared resources. */
174static device_method_t cpsw_methods[] = {
175	/* Device interface */
176	DEVMETHOD(device_probe,		cpsw_probe),
177	DEVMETHOD(device_attach,	cpsw_attach),
178	DEVMETHOD(device_detach,	cpsw_detach),
179	DEVMETHOD(device_shutdown,	cpsw_shutdown),
180	DEVMETHOD(device_suspend,	cpsw_suspend),
181	DEVMETHOD(device_resume,	cpsw_resume),
182	/* Bus interface */
183	DEVMETHOD(bus_add_child,	device_add_child_ordered),
184	/* OFW methods */
185	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
186#ifdef CPSW_ETHERSWITCH
187	/* etherswitch interface */
188	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
189	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
190	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
191	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
192	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
193	DEVMETHOD(etherswitch_getport,	cpsw_getport),
194	DEVMETHOD(etherswitch_setport,	cpsw_setport),
195	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
196	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
197	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
198#endif
199	DEVMETHOD_END
200};
201
202static driver_t cpsw_driver = {
203	"cpswss",
204	cpsw_methods,
205	sizeof(struct cpsw_softc),
206};
207
208static devclass_t cpsw_devclass;
209
210DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
211
212/* Port/Slave resources. */
213static device_method_t cpswp_methods[] = {
214	/* Device interface */
215	DEVMETHOD(device_probe,		cpswp_probe),
216	DEVMETHOD(device_attach,	cpswp_attach),
217	DEVMETHOD(device_detach,	cpswp_detach),
218	/* MII interface */
219	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
220	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
221	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
222	DEVMETHOD_END
223};
224
225static driver_t cpswp_driver = {
226	"cpsw",
227	cpswp_methods,
228	sizeof(struct cpswp_softc),
229};
230
231static devclass_t cpswp_devclass;
232
233#ifdef CPSW_ETHERSWITCH
234DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
235MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
236#endif
237
238DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
239DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
240MODULE_DEPEND(cpsw, ether, 1, 1, 1);
241MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
242
243#ifdef CPSW_ETHERSWITCH
244static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
245#endif
246
247static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
248
249static struct resource_spec irq_res_spec[] = {
250	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
251	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
252	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
253	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
254	{ -1, 0 }
255};
256
257static struct {
258	void (*cb)(void *);
259} cpsw_intr_cb[] = {
260	{ cpsw_intr_rx_thresh },
261	{ cpsw_intr_rx },
262	{ cpsw_intr_tx },
263	{ cpsw_intr_misc },
264};
265
266/* Number of entries here must match size of stats
267 * array in struct cpswp_softc. */
268static struct cpsw_stat {
269	int	reg;
270	char *oid;
271} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
272	{0x00, "GoodRxFrames"},
273	{0x04, "BroadcastRxFrames"},
274	{0x08, "MulticastRxFrames"},
275	{0x0C, "PauseRxFrames"},
276	{0x10, "RxCrcErrors"},
277	{0x14, "RxAlignErrors"},
278	{0x18, "OversizeRxFrames"},
279	{0x1c, "RxJabbers"},
280	{0x20, "ShortRxFrames"},
281	{0x24, "RxFragments"},
282	{0x30, "RxOctets"},
283	{0x34, "GoodTxFrames"},
284	{0x38, "BroadcastTxFrames"},
285	{0x3c, "MulticastTxFrames"},
286	{0x40, "PauseTxFrames"},
287	{0x44, "DeferredTxFrames"},
288	{0x48, "CollisionsTxFrames"},
289	{0x4c, "SingleCollisionTxFrames"},
290	{0x50, "MultipleCollisionTxFrames"},
291	{0x54, "ExcessiveCollisions"},
292	{0x58, "LateCollisions"},
293	{0x5c, "TxUnderrun"},
294	{0x60, "CarrierSenseErrors"},
295	{0x64, "TxOctets"},
296	{0x68, "RxTx64OctetFrames"},
297	{0x6c, "RxTx65to127OctetFrames"},
298	{0x70, "RxTx128to255OctetFrames"},
299	{0x74, "RxTx256to511OctetFrames"},
300	{0x78, "RxTx512to1024OctetFrames"},
301	{0x7c, "RxTx1024upOctetFrames"},
302	{0x80, "NetOctets"},
303	{0x84, "RxStartOfFrameOverruns"},
304	{0x88, "RxMiddleOfFrameOverruns"},
305	{0x8c, "RxDmaOverruns"}
306};
307
308/*
309 * Basic debug support.
310 */
311
312static void
313cpsw_debugf_head(const char *funcname)
314{
315	int t = (int)(time_second % (24 * 60 * 60));
316
317	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
318}
319
320static void
321cpsw_debugf(const char *fmt, ...)
322{
323	va_list ap;
324
325	va_start(ap, fmt);
326	vprintf(fmt, ap);
327	va_end(ap);
328	printf("\n");
329
330}
331
332#define	CPSW_DEBUGF(_sc, a) do {					\
333	if ((_sc)->debug) {						\
334		cpsw_debugf_head(__func__);				\
335		cpsw_debugf a;						\
336	}								\
337} while (0)
338
339/*
340 * Locking macros
341 */
342#define	CPSW_TX_LOCK(sc) do {						\
343		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
344		mtx_lock(&(sc)->tx.lock);				\
345} while (0)
346
347#define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
348#define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
349
350#define	CPSW_RX_LOCK(sc) do {						\
351		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
352		mtx_lock(&(sc)->rx.lock);				\
353} while (0)
354
355#define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
356#define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
357
358#define CPSW_PORT_LOCK(_sc) do {					\
359		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
360		mtx_lock(&(_sc)->lock);					\
361} while (0)
362
363#define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
364#define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
365
366/*
367 * Read/Write macros
368 */
369#define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
370#define	cpsw_write_4(_sc, _reg, _val)					\
371	bus_write_4((_sc)->mem_res, (_reg), (_val))
372
373#define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
374
375#define	cpsw_cpdma_bd_paddr(sc, slot)					\
376	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
377#define	cpsw_cpdma_read_bd(sc, slot, val)				\
378	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379#define	cpsw_cpdma_write_bd(sc, slot, val)				\
380	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
381#define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
382	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
383#define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
384	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
385#define	cpsw_cpdma_read_bd_flags(sc, slot)				\
386	bus_read_2(sc->mem_res, slot->bd_offset + 14)
387#define	cpsw_write_hdp_slot(sc, queue, slot)				\
388	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
389#define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
390#define	cpsw_read_cp(sc, queue)						\
391	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
392#define	cpsw_write_cp(sc, queue, val)					\
393	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
394#define	cpsw_write_cp_slot(sc, queue, slot)				\
395	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
396
397#if 0
398/* XXX temporary function versions for debugging. */
399static void
400cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
401{
402	uint32_t reg = queue->hdp_offset;
403	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
404	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
405	cpsw_write_4(sc, reg, v);
406}
407
408static void
409cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
410{
411	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
412	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
413	cpsw_write_cp(sc, queue, v);
414}
415#endif
416
417/*
418 * Expanded dump routines for verbose debugging.
419 */
420static void
421cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
422{
423	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
424	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
425	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
426	    "Port0"};
427	struct cpsw_cpdma_bd bd;
428	const char *sep;
429	int i;
430
431	cpsw_cpdma_read_bd(sc, slot, &bd);
432	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
433	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
434	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
435	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
436	printf("  Flags: ");
437	sep = "";
438	for (i = 0; i < 16; ++i) {
439		if (bd.flags & (1 << (15 - i))) {
440			printf("%s%s", sep, flags[i]);
441			sep = ",";
442		}
443	}
444	printf("\n");
445	if (slot->mbuf) {
446		printf("  Ether:  %14D\n",
447		    (char *)(slot->mbuf->m_data), " ");
448		printf("  Packet: %16D\n",
449		    (char *)(slot->mbuf->m_data) + 14, " ");
450	}
451}
452
453#define	CPSW_DUMP_SLOT(cs, slot) do {				\
454	IF_DEBUG(sc) {						\
455		cpsw_dump_slot(sc, slot);			\
456	}							\
457} while (0)
458
459static void
460cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
461{
462	struct cpsw_slot *slot;
463	int i = 0;
464	int others = 0;
465
466	STAILQ_FOREACH(slot, q, next) {
467		if (i > CPSW_TXFRAGS)
468			++others;
469		else
470			cpsw_dump_slot(sc, slot);
471		++i;
472	}
473	if (others)
474		printf(" ... and %d more.\n", others);
475	printf("\n");
476}
477
478#define CPSW_DUMP_QUEUE(sc, q) do {				\
479	IF_DEBUG(sc) {						\
480		cpsw_dump_queue(sc, q);				\
481	}							\
482} while (0)
483
484static void
485cpsw_init_slots(struct cpsw_softc *sc)
486{
487	struct cpsw_slot *slot;
488	int i;
489
490	STAILQ_INIT(&sc->avail);
491
492	/* Put the slot descriptors onto the global avail list. */
493	for (i = 0; i < nitems(sc->_slots); i++) {
494		slot = &sc->_slots[i];
495		slot->bd_offset = cpsw_cpdma_bd_offset(i);
496		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
497	}
498}
499
500static int
501cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
502{
503	const int max_slots = nitems(sc->_slots);
504	struct cpsw_slot *slot;
505	int i;
506
507	if (requested < 0)
508		requested = max_slots;
509
510	for (i = 0; i < requested; ++i) {
511		slot = STAILQ_FIRST(&sc->avail);
512		if (slot == NULL)
513			return (0);
514		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
515			device_printf(sc->dev, "failed to create dmamap\n");
516			return (ENOMEM);
517		}
518		STAILQ_REMOVE_HEAD(&sc->avail, next);
519		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
520		++queue->avail_queue_len;
521		++queue->queue_slots;
522	}
523	return (0);
524}
525
526static void
527cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
528{
529	int error;
530
531	if (slot->dmamap) {
532		if (slot->mbuf)
533			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
534		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
535		KASSERT(error == 0, ("Mapping still active"));
536		slot->dmamap = NULL;
537	}
538	if (slot->mbuf) {
539		m_freem(slot->mbuf);
540		slot->mbuf = NULL;
541	}
542}
543
544static void
545cpsw_reset(struct cpsw_softc *sc)
546{
547	int i;
548
549	callout_stop(&sc->watchdog.callout);
550
551	/* Reset RMII/RGMII wrapper. */
552	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
553	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
554		;
555
556	/* Disable TX and RX interrupts for all cores. */
557	for (i = 0; i < 3; ++i) {
558		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
559		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
560		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
561		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
562	}
563
564	/* Reset CPSW subsystem. */
565	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
566	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
567		;
568
569	/* Reset Sliver port 1 and 2 */
570	for (i = 0; i < 2; i++) {
571		/* Reset */
572		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
573		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
574			;
575	}
576
577	/* Reset DMA controller. */
578	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
579	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
580		;
581
582	/* Disable TX & RX DMA */
583	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
584	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
585
586	/* Clear all queues. */
587	for (i = 0; i < 8; i++) {
588		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
589		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
590		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
591		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
592	}
593
594	/* Clear all interrupt Masks */
595	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
596	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
597}
598
599static void
600cpsw_init(struct cpsw_softc *sc)
601{
602	struct cpsw_slot *slot;
603	uint32_t reg;
604
605	/* Disable the interrupt pacing. */
606	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
607	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
608	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
609
610	/* Clear ALE */
611	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
612
613	/* Enable ALE */
614	reg = CPSW_ALE_CTL_ENABLE;
615	if (sc->dualemac)
616		reg |= CPSW_ALE_CTL_VLAN_AWARE;
617	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
618
619	/* Set Host Port Mapping. */
620	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
621	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
622
623	/* Initialize ALE: set host port to forwarding(3). */
624	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
625	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
626
627	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
628
629	/* Enable statistics for ports 0, 1 and 2 */
630	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
631
632	/* Turn off flow control. */
633	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
634
635	/* Make IP hdr aligned with 4 */
636	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
637
638	/* Initialize RX Buffer Descriptors */
639	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
640	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
641
642	/* Enable TX & RX DMA */
643	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
644	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
645
646	/* Enable Interrupts for core 0 */
647	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
648	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
649	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
650	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
651
652	/* Enable host Error Interrupt */
653	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
654
655	/* Enable interrupts for RX and TX on Channel 0 */
656	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
657	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
658	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
659
660	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
661	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
662	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
663
664	/* Select MII in GMII_SEL, Internal Delay mode */
665	//ti_scm_reg_write_4(0x650, 0);
666
667	/* Initialize active queues. */
668	slot = STAILQ_FIRST(&sc->tx.active);
669	if (slot != NULL)
670		cpsw_write_hdp_slot(sc, &sc->tx, slot);
671	slot = STAILQ_FIRST(&sc->rx.active);
672	if (slot != NULL)
673		cpsw_write_hdp_slot(sc, &sc->rx, slot);
674	cpsw_rx_enqueue(sc);
675	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
676	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
677
678	/* Activate network interface. */
679	sc->rx.running = 1;
680	sc->tx.running = 1;
681	sc->watchdog.timer = 0;
682	callout_init(&sc->watchdog.callout, 0);
683	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
684}
685
686/*
687 *
688 * Device Probe, Attach, Detach.
689 *
690 */
691
692static int
693cpsw_probe(device_t dev)
694{
695
696	if (!ofw_bus_status_okay(dev))
697		return (ENXIO);
698
699	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
700		return (ENXIO);
701
702	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
703	return (BUS_PROBE_DEFAULT);
704}
705
706static int
707cpsw_intr_attach(struct cpsw_softc *sc)
708{
709	int i;
710
711	for (i = 0; i < CPSW_INTR_COUNT; i++) {
712		if (bus_setup_intr(sc->dev, sc->irq_res[i],
713		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
714		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
715			return (-1);
716		}
717	}
718
719	return (0);
720}
721
722static void
723cpsw_intr_detach(struct cpsw_softc *sc)
724{
725	int i;
726
727	for (i = 0; i < CPSW_INTR_COUNT; i++) {
728		if (sc->ih_cookie[i]) {
729			bus_teardown_intr(sc->dev, sc->irq_res[i],
730			    sc->ih_cookie[i]);
731		}
732	}
733}
734
735static int
736cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
737{
738	char *name;
739	int len, phy, vlan;
740	pcell_t phy_id[3], vlan_id;
741	phandle_t child;
742	unsigned long mdio_child_addr;
743
744	/* Find any slave with phy_id */
745	phy = -1;
746	vlan = -1;
747	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
748		if (OF_getprop_alloc(child, "name", 1, (void **)&name) < 0)
749			continue;
750		if (sscanf(name, "slave@%x", &mdio_child_addr) != 1) {
751			OF_prop_free(name);
752			continue;
753		}
754		OF_prop_free(name);
755		if (mdio_child_addr != slave_mdio_addr[port])
756			continue;
757
758		len = OF_getproplen(child, "phy_id");
759		if (len / sizeof(pcell_t) == 2) {
760			/* Get phy address from fdt */
761			if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
762				phy = phy_id[1];
763		}
764
765		len = OF_getproplen(child, "dual_emac_res_vlan");
766		if (len / sizeof(pcell_t) == 1) {
767			/* Get phy address from fdt */
768			if (OF_getencprop(child, "dual_emac_res_vlan",
769			    &vlan_id, len) > 0) {
770				vlan = vlan_id;
771			}
772		}
773
774		break;
775	}
776	if (phy == -1)
777		return (ENXIO);
778	sc->port[port].phy = phy;
779	sc->port[port].vlan = vlan;
780
781	return (0);
782}
783
784static int
785cpsw_attach(device_t dev)
786{
787	bus_dma_segment_t segs[1];
788	int error, i, nsegs;
789	struct cpsw_softc *sc;
790	uint32_t reg;
791
792	sc = device_get_softc(dev);
793	sc->dev = dev;
794	sc->node = ofw_bus_get_node(dev);
795	getbinuptime(&sc->attach_uptime);
796
797	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
798	    sizeof(sc->active_slave)) <= 0) {
799		sc->active_slave = 0;
800	}
801	if (sc->active_slave > 1)
802		sc->active_slave = 1;
803
804	if (OF_hasprop(sc->node, "dual_emac"))
805		sc->dualemac = 1;
806
807	for (i = 0; i < CPSW_PORTS; i++) {
808		if (!sc->dualemac && i != sc->active_slave)
809			continue;
810		if (cpsw_get_fdt_data(sc, i) != 0) {
811			device_printf(dev,
812			    "failed to get PHY address from FDT\n");
813			return (ENXIO);
814		}
815	}
816
817	/* Initialize mutexes */
818	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
819	    "cpsw TX lock", MTX_DEF);
820	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
821	    "cpsw RX lock", MTX_DEF);
822
823	/* Allocate IRQ resources */
824	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
825	if (error) {
826		device_printf(dev, "could not allocate IRQ resources\n");
827		cpsw_detach(dev);
828		return (ENXIO);
829	}
830
831	sc->mem_rid = 0;
832	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
833	    &sc->mem_rid, RF_ACTIVE);
834	if (sc->mem_res == NULL) {
835		device_printf(sc->dev, "failed to allocate memory resource\n");
836		cpsw_detach(dev);
837		return (ENXIO);
838	}
839
840	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
841	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
842		reg & 0xFF, (reg >> 11) & 0x1F);
843
844	cpsw_add_sysctls(sc);
845
846	/* Allocate a busdma tag and DMA safe memory for mbufs. */
847	error = bus_dma_tag_create(
848		bus_get_dma_tag(sc->dev),	/* parent */
849		1, 0,				/* alignment, boundary */
850		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
851		BUS_SPACE_MAXADDR,		/* highaddr */
852		NULL, NULL,			/* filtfunc, filtfuncarg */
853		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
854		MCLBYTES, 0,			/* maxsegsz, flags */
855		NULL, NULL,			/* lockfunc, lockfuncarg */
856		&sc->mbuf_dtag);		/* dmatag */
857	if (error) {
858		device_printf(dev, "bus_dma_tag_create failed\n");
859		cpsw_detach(dev);
860		return (error);
861	}
862
863	/* Allocate the null mbuf and pre-sync it. */
864	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
865	memset(sc->null_mbuf->m_data, 0, sc->null_mbuf->m_ext.ext_size);
866	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
867	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
868	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
869	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
870	    BUS_DMASYNC_PREWRITE);
871	sc->null_mbuf_paddr = segs[0].ds_addr;
872
873	cpsw_init_slots(sc);
874
875	/* Allocate slots to TX and RX queues. */
876	STAILQ_INIT(&sc->rx.avail);
877	STAILQ_INIT(&sc->rx.active);
878	STAILQ_INIT(&sc->tx.avail);
879	STAILQ_INIT(&sc->tx.active);
880	// For now:  128 slots to TX, rest to RX.
881	// XXX TODO: start with 32/64 and grow dynamically based on demand.
882	if (cpsw_add_slots(sc, &sc->tx, 128) ||
883	    cpsw_add_slots(sc, &sc->rx, -1)) {
884		device_printf(dev, "failed to allocate dmamaps\n");
885		cpsw_detach(dev);
886		return (ENOMEM);
887	}
888	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
889	    sc->tx.queue_slots, sc->rx.queue_slots);
890
891	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
892	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
893
894	if (cpsw_intr_attach(sc) == -1) {
895		device_printf(dev, "failed to setup interrupts\n");
896		cpsw_detach(dev);
897		return (ENXIO);
898	}
899
900#ifdef CPSW_ETHERSWITCH
901	for (i = 0; i < CPSW_VLANS; i++)
902		cpsw_vgroups[i].vid = -1;
903#endif
904
905	/* Reset the controller. */
906	cpsw_reset(sc);
907	cpsw_init(sc);
908
909	for (i = 0; i < CPSW_PORTS; i++) {
910		if (!sc->dualemac && i != sc->active_slave)
911			continue;
912		sc->port[i].dev = device_add_child(dev, "cpsw", i);
913		if (sc->port[i].dev == NULL) {
914			cpsw_detach(dev);
915			return (ENXIO);
916		}
917	}
918	bus_generic_probe(dev);
919	bus_generic_attach(dev);
920
921	return (0);
922}
923
924static int
925cpsw_detach(device_t dev)
926{
927	struct cpsw_softc *sc;
928	int error, i;
929
930	bus_generic_detach(dev);
931 	sc = device_get_softc(dev);
932
933	for (i = 0; i < CPSW_PORTS; i++) {
934		if (sc->port[i].dev)
935			device_delete_child(dev, sc->port[i].dev);
936	}
937
938	if (device_is_attached(dev)) {
939		callout_stop(&sc->watchdog.callout);
940		callout_drain(&sc->watchdog.callout);
941	}
942
943	/* Stop and release all interrupts */
944	cpsw_intr_detach(sc);
945
946	/* Free dmamaps and mbufs */
947	for (i = 0; i < nitems(sc->_slots); ++i)
948		cpsw_free_slot(sc, &sc->_slots[i]);
949
950	/* Free null mbuf. */
951	if (sc->null_mbuf_dmamap) {
952		bus_dmamap_unload(sc->mbuf_dtag, sc->null_mbuf_dmamap);
953		error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
954		KASSERT(error == 0, ("Mapping still active"));
955		m_freem(sc->null_mbuf);
956	}
957
958	/* Free DMA tag */
959	if (sc->mbuf_dtag) {
960		error = bus_dma_tag_destroy(sc->mbuf_dtag);
961		KASSERT(error == 0, ("Unable to destroy DMA tag"));
962	}
963
964	/* Free IO memory handler */
965	if (sc->mem_res != NULL)
966		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
967	bus_release_resources(dev, irq_res_spec, sc->irq_res);
968
969	/* Destroy mutexes */
970	mtx_destroy(&sc->rx.lock);
971	mtx_destroy(&sc->tx.lock);
972
973	/* Detach the switch device, if present. */
974	error = bus_generic_detach(dev);
975	if (error != 0)
976		return (error);
977
978	return (device_delete_children(dev));
979}
980
981static phandle_t
982cpsw_get_node(device_t bus, device_t dev)
983{
984
985	/* Share controller node with port device. */
986	return (ofw_bus_get_node(bus));
987}
988
989static int
990cpswp_probe(device_t dev)
991{
992
993	if (device_get_unit(dev) > 1) {
994		device_printf(dev, "Only two ports are supported.\n");
995		return (ENXIO);
996	}
997	device_set_desc(dev, "Ethernet Switch Port");
998
999	return (BUS_PROBE_DEFAULT);
1000}
1001
1002static int
1003cpswp_attach(device_t dev)
1004{
1005	int error;
1006	struct ifnet *ifp;
1007	struct cpswp_softc *sc;
1008	uint32_t reg;
1009	uint8_t mac_addr[ETHER_ADDR_LEN];
1010
1011	sc = device_get_softc(dev);
1012	sc->dev = dev;
1013	sc->pdev = device_get_parent(dev);
1014	sc->swsc = device_get_softc(sc->pdev);
1015	sc->unit = device_get_unit(dev);
1016	sc->phy = sc->swsc->port[sc->unit].phy;
1017	sc->vlan = sc->swsc->port[sc->unit].vlan;
1018	if (sc->swsc->dualemac && sc->vlan == -1)
1019		sc->vlan = sc->unit + 1;
1020
1021	if (sc->unit == 0) {
1022		sc->physel = MDIOUSERPHYSEL0;
1023		sc->phyaccess = MDIOUSERACCESS0;
1024	} else {
1025		sc->physel = MDIOUSERPHYSEL1;
1026		sc->phyaccess = MDIOUSERACCESS1;
1027	}
1028
1029	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1030	    MTX_DEF);
1031
1032	/* Allocate network interface */
1033	ifp = sc->ifp = if_alloc(IFT_ETHER);
1034	if (ifp == NULL) {
1035		cpswp_detach(dev);
1036		return (ENXIO);
1037	}
1038
1039	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1040	ifp->if_softc = sc;
1041	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1042	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1043	ifp->if_capenable = ifp->if_capabilities;
1044
1045	ifp->if_init = cpswp_init;
1046	ifp->if_start = cpswp_start;
1047	ifp->if_ioctl = cpswp_ioctl;
1048
1049	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1050	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1051	IFQ_SET_READY(&ifp->if_snd);
1052
1053	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1054	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1055	mac_addr[0] = reg & 0xFF;
1056	mac_addr[1] = (reg >>  8) & 0xFF;
1057	mac_addr[2] = (reg >> 16) & 0xFF;
1058	mac_addr[3] = (reg >> 24) & 0xFF;
1059
1060	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1061	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1062	mac_addr[4] = reg & 0xFF;
1063	mac_addr[5] = (reg >>  8) & 0xFF;
1064
1065	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1066	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1067	if (error) {
1068		device_printf(dev, "attaching PHYs failed\n");
1069		cpswp_detach(dev);
1070		return (error);
1071	}
1072	sc->mii = device_get_softc(sc->miibus);
1073
1074	/* Select PHY and enable interrupts */
1075	cpsw_write_4(sc->swsc, sc->physel,
1076	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1077
1078	ether_ifattach(sc->ifp, mac_addr);
1079	callout_init(&sc->mii_callout, 0);
1080
1081	return (0);
1082}
1083
1084static int
1085cpswp_detach(device_t dev)
1086{
1087	struct cpswp_softc *sc;
1088
1089	sc = device_get_softc(dev);
1090	CPSW_DEBUGF(sc->swsc, (""));
1091	if (device_is_attached(dev)) {
1092		ether_ifdetach(sc->ifp);
1093		CPSW_PORT_LOCK(sc);
1094		cpswp_stop_locked(sc);
1095		CPSW_PORT_UNLOCK(sc);
1096		callout_drain(&sc->mii_callout);
1097	}
1098
1099	bus_generic_detach(dev);
1100
1101	if_free(sc->ifp);
1102	mtx_destroy(&sc->lock);
1103
1104	return (0);
1105}
1106
1107/*
1108 *
1109 * Init/Shutdown.
1110 *
1111 */
1112
1113static int
1114cpsw_ports_down(struct cpsw_softc *sc)
1115{
1116	struct cpswp_softc *psc;
1117	struct ifnet *ifp1, *ifp2;
1118
1119	if (!sc->dualemac)
1120		return (1);
1121	psc = device_get_softc(sc->port[0].dev);
1122	ifp1 = psc->ifp;
1123	psc = device_get_softc(sc->port[1].dev);
1124	ifp2 = psc->ifp;
1125	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1126		return (1);
1127
1128	return (0);
1129}
1130
1131static void
1132cpswp_init(void *arg)
1133{
1134	struct cpswp_softc *sc = arg;
1135
1136	CPSW_DEBUGF(sc->swsc, (""));
1137	CPSW_PORT_LOCK(sc);
1138	cpswp_init_locked(arg);
1139	CPSW_PORT_UNLOCK(sc);
1140}
1141
1142static void
1143cpswp_init_locked(void *arg)
1144{
1145#ifdef CPSW_ETHERSWITCH
1146	int i;
1147#endif
1148	struct cpswp_softc *sc = arg;
1149	struct ifnet *ifp;
1150	uint32_t reg;
1151
1152	CPSW_DEBUGF(sc->swsc, (""));
1153	CPSW_PORT_LOCK_ASSERT(sc);
1154	ifp = sc->ifp;
1155	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1156		return;
1157
1158	getbinuptime(&sc->init_uptime);
1159
1160	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1161		/* Reset the controller. */
1162		cpsw_reset(sc->swsc);
1163		cpsw_init(sc->swsc);
1164	}
1165
1166	/* Set Slave Mapping. */
1167	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1168	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1169	    0x33221100);
1170	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1171	/* Enable MAC RX/TX modules. */
1172	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1173	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1174	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1175	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1176	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1177
1178	/* Initialize ALE: set port to forwarding, initialize addrs */
1179	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1180	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1181	cpswp_ale_update_addresses(sc, 1);
1182
1183	if (sc->swsc->dualemac) {
1184		/* Set Port VID. */
1185		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1186		    sc->vlan & 0xfff);
1187		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1188		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1189		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1190		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1191#ifdef CPSW_ETHERSWITCH
1192		for (i = 0; i < CPSW_VLANS; i++) {
1193			if (cpsw_vgroups[i].vid != -1)
1194				continue;
1195			cpsw_vgroups[i].vid = sc->vlan;
1196			break;
1197		}
1198#endif
1199	}
1200
1201	mii_mediachg(sc->mii);
1202	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1203	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1204	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1205}
1206
1207static int
1208cpsw_shutdown(device_t dev)
1209{
1210	struct cpsw_softc *sc;
1211	struct cpswp_softc *psc;
1212	int i;
1213
1214 	sc = device_get_softc(dev);
1215	CPSW_DEBUGF(sc, (""));
1216	for (i = 0; i < CPSW_PORTS; i++) {
1217		if (!sc->dualemac && i != sc->active_slave)
1218			continue;
1219		psc = device_get_softc(sc->port[i].dev);
1220		CPSW_PORT_LOCK(psc);
1221		cpswp_stop_locked(psc);
1222		CPSW_PORT_UNLOCK(psc);
1223	}
1224
1225	return (0);
1226}
1227
1228static void
1229cpsw_rx_teardown(struct cpsw_softc *sc)
1230{
1231	int i = 0;
1232
1233	CPSW_RX_LOCK(sc);
1234	CPSW_DEBUGF(sc, ("starting RX teardown"));
1235	sc->rx.teardown = 1;
1236	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1237	CPSW_RX_UNLOCK(sc);
1238	while (sc->rx.running) {
1239		if (++i > 10) {
1240			device_printf(sc->dev,
1241			    "Unable to cleanly shutdown receiver\n");
1242			return;
1243		}
1244		DELAY(200);
1245	}
1246	if (!sc->rx.running)
1247		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1248}
1249
1250static void
1251cpsw_tx_teardown(struct cpsw_softc *sc)
1252{
1253	int i = 0;
1254
1255	CPSW_TX_LOCK(sc);
1256	CPSW_DEBUGF(sc, ("starting TX teardown"));
1257	/* Start the TX queue teardown if queue is not empty. */
1258	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1259		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1260	else
1261		sc->tx.teardown = 1;
1262	cpsw_tx_dequeue(sc);
1263	while (sc->tx.running && ++i < 10) {
1264		DELAY(200);
1265		cpsw_tx_dequeue(sc);
1266	}
1267	if (sc->tx.running) {
1268		device_printf(sc->dev,
1269		    "Unable to cleanly shutdown transmitter\n");
1270	}
1271	CPSW_DEBUGF(sc,
1272	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1273	     sc->tx.active_queue_len));
1274	CPSW_TX_UNLOCK(sc);
1275}
1276
1277static void
1278cpswp_stop_locked(struct cpswp_softc *sc)
1279{
1280	struct ifnet *ifp;
1281	uint32_t reg;
1282
1283	ifp = sc->ifp;
1284	CPSW_DEBUGF(sc->swsc, (""));
1285	CPSW_PORT_LOCK_ASSERT(sc);
1286
1287	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1288		return;
1289
1290	/* Disable interface */
1291	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1292	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1293
1294	/* Stop ticker */
1295	callout_stop(&sc->mii_callout);
1296
1297	/* Tear down the RX/TX queues. */
1298	if (cpsw_ports_down(sc->swsc)) {
1299		cpsw_rx_teardown(sc->swsc);
1300		cpsw_tx_teardown(sc->swsc);
1301	}
1302
1303	/* Stop MAC RX/TX modules. */
1304	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1305	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1306	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1307
1308	if (cpsw_ports_down(sc->swsc)) {
1309		/* Capture stats before we reset controller. */
1310		cpsw_stats_collect(sc->swsc);
1311
1312		cpsw_reset(sc->swsc);
1313		cpsw_init(sc->swsc);
1314	}
1315}
1316
1317/*
1318 *  Suspend/Resume.
1319 */
1320
1321static int
1322cpsw_suspend(device_t dev)
1323{
1324	struct cpsw_softc *sc;
1325	struct cpswp_softc *psc;
1326	int i;
1327
1328	sc = device_get_softc(dev);
1329	CPSW_DEBUGF(sc, (""));
1330	for (i = 0; i < CPSW_PORTS; i++) {
1331		if (!sc->dualemac && i != sc->active_slave)
1332			continue;
1333		psc = device_get_softc(sc->port[i].dev);
1334		CPSW_PORT_LOCK(psc);
1335		cpswp_stop_locked(psc);
1336		CPSW_PORT_UNLOCK(psc);
1337	}
1338
1339	return (0);
1340}
1341
1342static int
1343cpsw_resume(device_t dev)
1344{
1345	struct cpsw_softc *sc;
1346
1347	sc  = device_get_softc(dev);
1348	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1349
1350	return (0);
1351}
1352
1353/*
1354 *
1355 *  IOCTL
1356 *
1357 */
1358
1359static void
1360cpsw_set_promisc(struct cpswp_softc *sc, int set)
1361{
1362	uint32_t reg;
1363
1364	/*
1365	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1366	 * That disables the ALE forwarding logic and causes every
1367	 * packet to be sent only to the host port.  In bypass mode,
1368	 * the ALE processes host port transmit packets the same as in
1369	 * normal mode.
1370	 */
1371	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1372	reg &= ~CPSW_ALE_CTL_BYPASS;
1373	if (set)
1374		reg |= CPSW_ALE_CTL_BYPASS;
1375	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1376}
1377
1378static void
1379cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1380{
1381	if (set) {
1382		printf("All-multicast mode unimplemented\n");
1383	}
1384}
1385
1386static int
1387cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1388{
1389	struct cpswp_softc *sc;
1390	struct ifreq *ifr;
1391	int error;
1392	uint32_t changed;
1393
1394	error = 0;
1395	sc = ifp->if_softc;
1396	ifr = (struct ifreq *)data;
1397
1398	switch (command) {
1399	case SIOCSIFCAP:
1400		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1401		if (changed & IFCAP_HWCSUM) {
1402			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1403				ifp->if_capenable |= IFCAP_HWCSUM;
1404			else
1405				ifp->if_capenable &= ~IFCAP_HWCSUM;
1406		}
1407		error = 0;
1408		break;
1409	case SIOCSIFFLAGS:
1410		CPSW_PORT_LOCK(sc);
1411		if (ifp->if_flags & IFF_UP) {
1412			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1413				changed = ifp->if_flags ^ sc->if_flags;
1414				CPSW_DEBUGF(sc->swsc,
1415				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1416				    changed));
1417				if (changed & IFF_PROMISC)
1418					cpsw_set_promisc(sc,
1419					    ifp->if_flags & IFF_PROMISC);
1420				if (changed & IFF_ALLMULTI)
1421					cpsw_set_allmulti(sc,
1422					    ifp->if_flags & IFF_ALLMULTI);
1423			} else {
1424				CPSW_DEBUGF(sc->swsc,
1425				    ("SIOCSIFFLAGS: starting up"));
1426				cpswp_init_locked(sc);
1427			}
1428		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1429			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1430			cpswp_stop_locked(sc);
1431		}
1432
1433		sc->if_flags = ifp->if_flags;
1434		CPSW_PORT_UNLOCK(sc);
1435		break;
1436	case SIOCADDMULTI:
1437		cpswp_ale_update_addresses(sc, 0);
1438		break;
1439	case SIOCDELMULTI:
1440		/* Ugh.  DELMULTI doesn't provide the specific address
1441		   being removed, so the best we can do is remove
1442		   everything and rebuild it all. */
1443		cpswp_ale_update_addresses(sc, 1);
1444		break;
1445	case SIOCGIFMEDIA:
1446	case SIOCSIFMEDIA:
1447		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1448		break;
1449	default:
1450		error = ether_ioctl(ifp, command, data);
1451	}
1452	return (error);
1453}
1454
1455/*
1456 *
1457 * MIIBUS
1458 *
1459 */
1460static int
1461cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1462{
1463	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1464
1465	while (--retries) {
1466		r = cpsw_read_4(sc, reg);
1467		if ((r & MDIO_PHYACCESS_GO) == 0)
1468			return (1);
1469		DELAY(CPSW_MIIBUS_DELAY);
1470	}
1471
1472	return (0);
1473}
1474
1475static int
1476cpswp_miibus_readreg(device_t dev, int phy, int reg)
1477{
1478	struct cpswp_softc *sc;
1479	uint32_t cmd, r;
1480
1481	sc = device_get_softc(dev);
1482	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1483		device_printf(dev, "MDIO not ready to read\n");
1484		return (0);
1485	}
1486
1487	/* Set GO, reg, phy */
1488	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1489	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1490
1491	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1492		device_printf(dev, "MDIO timed out during read\n");
1493		return (0);
1494	}
1495
1496	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1497	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1498		device_printf(dev, "Failed to read from PHY.\n");
1499		r = 0;
1500	}
1501	return (r & 0xFFFF);
1502}
1503
1504static int
1505cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1506{
1507	struct cpswp_softc *sc;
1508	uint32_t cmd;
1509
1510	sc = device_get_softc(dev);
1511	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1512		device_printf(dev, "MDIO not ready to write\n");
1513		return (0);
1514	}
1515
1516	/* Set GO, WRITE, reg, phy, and value */
1517	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1518	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1519	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1520
1521	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1522		device_printf(dev, "MDIO timed out during write\n");
1523		return (0);
1524	}
1525
1526	return (0);
1527}
1528
1529static void
1530cpswp_miibus_statchg(device_t dev)
1531{
1532	struct cpswp_softc *sc;
1533	uint32_t mac_control, reg;
1534
1535	sc = device_get_softc(dev);
1536	CPSW_DEBUGF(sc->swsc, (""));
1537
1538	reg = CPSW_SL_MACCONTROL(sc->unit);
1539	mac_control = cpsw_read_4(sc->swsc, reg);
1540	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1541	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1542
1543	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1544	case IFM_1000_SX:
1545	case IFM_1000_LX:
1546	case IFM_1000_CX:
1547	case IFM_1000_T:
1548		mac_control |= CPSW_SL_MACTL_GIG;
1549		break;
1550
1551	case IFM_100_TX:
1552		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1553		break;
1554	}
1555	if (sc->mii->mii_media_active & IFM_FDX)
1556		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1557
1558	cpsw_write_4(sc->swsc, reg, mac_control);
1559}
1560
1561/*
1562 *
1563 * Transmit/Receive Packets.
1564 *
1565 */
1566static void
1567cpsw_intr_rx(void *arg)
1568{
1569	struct cpsw_softc *sc;
1570	struct ifnet *ifp;
1571	struct mbuf *received, *next;
1572
1573	sc = (struct cpsw_softc *)arg;
1574	CPSW_RX_LOCK(sc);
1575	if (sc->rx.teardown) {
1576		sc->rx.running = 0;
1577		sc->rx.teardown = 0;
1578		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1579	}
1580	received = cpsw_rx_dequeue(sc);
1581	cpsw_rx_enqueue(sc);
1582	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1583	CPSW_RX_UNLOCK(sc);
1584
1585	while (received != NULL) {
1586		next = received->m_nextpkt;
1587		received->m_nextpkt = NULL;
1588		ifp = received->m_pkthdr.rcvif;
1589		(*ifp->if_input)(ifp, received);
1590		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1591		received = next;
1592	}
1593}
1594
1595static struct mbuf *
1596cpsw_rx_dequeue(struct cpsw_softc *sc)
1597{
1598	struct cpsw_cpdma_bd bd;
1599	struct cpsw_slot *last, *slot;
1600	struct cpswp_softc *psc;
1601	struct mbuf *mb_head, *mb_tail;
1602	int port, removed = 0;
1603
1604	last = NULL;
1605	mb_head = mb_tail = NULL;
1606
1607	/* Pull completed packets off hardware RX queue. */
1608	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1609		cpsw_cpdma_read_bd(sc, slot, &bd);
1610
1611		/*
1612		 * Stop on packets still in use by hardware, but do not stop
1613		 * on packets with the teardown complete flag, they will be
1614		 * discarded later.
1615		 */
1616		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1617		    CPDMA_BD_OWNER)
1618			break;
1619
1620		last = slot;
1621		++removed;
1622		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1623		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1624
1625		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1626		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1627
1628		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1629			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1630			m_freem(slot->mbuf);
1631			slot->mbuf = NULL;
1632			sc->rx.running = 0;
1633			sc->rx.teardown = 0;
1634			break;
1635		}
1636
1637		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1638		KASSERT(port >= 0 && port <= 1,
1639		    ("patcket received with invalid port: %d", port));
1640		psc = device_get_softc(sc->port[port].dev);
1641
1642		/* Set up mbuf */
1643		/* TODO: track SOP/EOP bits to assemble a full mbuf
1644		   out of received fragments. */
1645		slot->mbuf->m_data += bd.bufoff;
1646		slot->mbuf->m_len = bd.buflen;
1647		if (bd.flags & CPDMA_BD_SOP) {
1648			slot->mbuf->m_pkthdr.len = bd.pktlen;
1649			slot->mbuf->m_pkthdr.rcvif = psc->ifp;
1650			slot->mbuf->m_flags |= M_PKTHDR;
1651		}
1652		slot->mbuf->m_next = NULL;
1653		slot->mbuf->m_nextpkt = NULL;
1654		if (bd.flags & CPDMA_BD_PASS_CRC)
1655			m_adj(slot->mbuf, -ETHER_CRC_LEN);
1656
1657		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1658			/* check for valid CRC by looking into pkt_err[5:4] */
1659			if ((bd.flags &
1660			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1661			    CPDMA_BD_SOP) {
1662				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1663				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1664				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1665			}
1666		}
1667
1668		/* Add mbuf to packet list to be returned. */
1669		if (mb_tail) {
1670			mb_tail->m_nextpkt = slot->mbuf;
1671		} else {
1672			mb_head = slot->mbuf;
1673		}
1674		mb_tail = slot->mbuf;
1675		slot->mbuf = NULL;
1676		if (sc->rx_batch > 0 && sc->rx_batch == removed)
1677			break;
1678	}
1679
1680	if (removed != 0) {
1681		cpsw_write_cp_slot(sc, &sc->rx, last);
1682		sc->rx.queue_removes += removed;
1683		sc->rx.avail_queue_len += removed;
1684		sc->rx.active_queue_len -= removed;
1685		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1686			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1687		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1688	}
1689
1690	return (mb_head);
1691}
1692
1693static void
1694cpsw_rx_enqueue(struct cpsw_softc *sc)
1695{
1696	bus_dma_segment_t seg[1];
1697	struct cpsw_cpdma_bd bd;
1698	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1699	int error, nsegs, added = 0;
1700	uint32_t flags;
1701
1702	/* Register new mbufs with hardware. */
1703	first_new_slot = NULL;
1704	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1705	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1706		if (first_new_slot == NULL)
1707			first_new_slot = slot;
1708		if (slot->mbuf == NULL) {
1709			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1710			if (slot->mbuf == NULL) {
1711				device_printf(sc->dev,
1712				    "Unable to fill RX queue\n");
1713				break;
1714			}
1715			slot->mbuf->m_len =
1716			    slot->mbuf->m_pkthdr.len =
1717			    slot->mbuf->m_ext.ext_size;
1718		}
1719
1720		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1721		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1722
1723		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1724		KASSERT(error == 0, ("DMA error (error=%d)", error));
1725		if (error != 0 || nsegs != 1) {
1726			device_printf(sc->dev,
1727			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1728			    __func__, nsegs, error);
1729			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1730			m_freem(slot->mbuf);
1731			slot->mbuf = NULL;
1732			break;
1733		}
1734
1735		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1736
1737		/* Create and submit new rx descriptor. */
1738		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1739			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1740		else
1741			bd.next = 0;
1742		bd.bufptr = seg->ds_addr;
1743		bd.bufoff = 0;
1744		bd.buflen = MCLBYTES - 1;
1745		bd.pktlen = bd.buflen;
1746		bd.flags = CPDMA_BD_OWNER;
1747		cpsw_cpdma_write_bd(sc, slot, &bd);
1748		++added;
1749
1750		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1751		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1752	}
1753
1754	if (added == 0 || first_new_slot == NULL)
1755		return;
1756
1757	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1758
1759	/* Link new entries to hardware RX queue. */
1760	if (last_old_slot == NULL) {
1761		/* Start a fresh queue. */
1762		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1763	} else {
1764		/* Add buffers to end of current queue. */
1765		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1766		/* If underrun, restart queue. */
1767		if ((flags = cpsw_cpdma_read_bd_flags(sc, last_old_slot)) &
1768		    CPDMA_BD_EOQ) {
1769			flags &= ~CPDMA_BD_EOQ;
1770			cpsw_cpdma_write_bd_flags(sc, last_old_slot, flags);
1771			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1772			sc->rx.queue_restart++;
1773		}
1774	}
1775	sc->rx.queue_adds += added;
1776	sc->rx.avail_queue_len -= added;
1777	sc->rx.active_queue_len += added;
1778	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1779	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1780		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1781	}
1782}
1783
1784static void
1785cpswp_start(struct ifnet *ifp)
1786{
1787	struct cpswp_softc *sc;
1788
1789	sc = ifp->if_softc;
1790	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1791	    sc->swsc->tx.running == 0) {
1792		return;
1793	}
1794	CPSW_TX_LOCK(sc->swsc);
1795	cpswp_tx_enqueue(sc);
1796	cpsw_tx_dequeue(sc->swsc);
1797	CPSW_TX_UNLOCK(sc->swsc);
1798}
1799
1800static void
1801cpsw_intr_tx(void *arg)
1802{
1803	struct cpsw_softc *sc;
1804
1805	sc = (struct cpsw_softc *)arg;
1806	CPSW_TX_LOCK(sc);
1807	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1808		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1809	cpsw_tx_dequeue(sc);
1810	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1811	CPSW_TX_UNLOCK(sc);
1812}
1813
1814static void
1815cpswp_tx_enqueue(struct cpswp_softc *sc)
1816{
1817	bus_dma_segment_t segs[CPSW_TXFRAGS];
1818	struct cpsw_cpdma_bd bd;
1819	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1820	struct mbuf *m0;
1821	int error, nsegs, seg, added = 0, padlen;
1822
1823	/* Pull pending packets from IF queue and prep them for DMA. */
1824	last = NULL;
1825	first_new_slot = NULL;
1826	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1827	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1828		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1829		if (m0 == NULL)
1830			break;
1831
1832		slot->mbuf = m0;
1833		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1834		if (padlen < 0)
1835			padlen = 0;
1836
1837		/* Create mapping in DMA memory */
1838		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1839		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1840		/* If the packet is too fragmented, try to simplify. */
1841		if (error == EFBIG ||
1842		    (error == 0 &&
1843		    nsegs + (padlen > 0 ? 1 : 0) > sc->swsc->tx.avail_queue_len)) {
1844			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1845			if (padlen > 0) /* May as well add padding. */
1846				m_append(slot->mbuf, padlen,
1847				    sc->swsc->null_mbuf->m_data);
1848			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1849			if (m0 == NULL) {
1850				device_printf(sc->dev,
1851				    "Can't defragment packet; dropping\n");
1852				m_freem(slot->mbuf);
1853			} else {
1854				CPSW_DEBUGF(sc->swsc,
1855				    ("Requeueing defragmented packet"));
1856				IF_PREPEND(&sc->ifp->if_snd, m0);
1857			}
1858			slot->mbuf = NULL;
1859			continue;
1860		}
1861		if (error != 0) {
1862			device_printf(sc->dev,
1863			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1864			    __func__, error);
1865			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1866			m_freem(slot->mbuf);
1867			slot->mbuf = NULL;
1868			break;
1869		}
1870
1871		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1872				BUS_DMASYNC_PREWRITE);
1873
1874		CPSW_DEBUGF(sc->swsc,
1875		    ("Queueing TX packet: %d segments + %d pad bytes",
1876		    nsegs, padlen));
1877
1878		if (first_new_slot == NULL)
1879			first_new_slot = slot;
1880
1881		/* Link from the previous descriptor. */
1882		if (last != NULL)
1883			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1884
1885		slot->ifp = sc->ifp;
1886
1887		/* If there is only one segment, the for() loop
1888		 * gets skipped and the single buffer gets set up
1889		 * as both SOP and EOP. */
1890		if (nsegs > 1) {
1891			next = STAILQ_NEXT(slot, next);
1892			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1893		} else
1894			bd.next = 0;
1895		/* Start by setting up the first buffer. */
1896		bd.bufptr = segs[0].ds_addr;
1897		bd.bufoff = 0;
1898		bd.buflen = segs[0].ds_len;
1899		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1900		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1901		if (sc->swsc->dualemac) {
1902			bd.flags |= CPDMA_BD_TO_PORT;
1903			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1904		}
1905		for (seg = 1; seg < nsegs; ++seg) {
1906			/* Save the previous buffer (which isn't EOP) */
1907			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1908			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1909			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1910			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1911
1912			/* Setup next buffer (which isn't SOP) */
1913			if (nsegs > seg + 1) {
1914				next = STAILQ_NEXT(slot, next);
1915				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1916			} else
1917				bd.next = 0;
1918			bd.bufptr = segs[seg].ds_addr;
1919			bd.bufoff = 0;
1920			bd.buflen = segs[seg].ds_len;
1921			bd.pktlen = 0;
1922			bd.flags = CPDMA_BD_OWNER;
1923		}
1924		/* Save the final buffer. */
1925		if (padlen <= 0)
1926			bd.flags |= CPDMA_BD_EOP;
1927		else {
1928			next = STAILQ_NEXT(slot, next);
1929			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1930		}
1931		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1932		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1933		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1934
1935		if (padlen > 0) {
1936			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1937
1938			/* Setup buffer of null pad bytes (definitely EOP). */
1939			bd.next = 0;
1940			bd.bufptr = sc->swsc->null_mbuf_paddr;
1941			bd.bufoff = 0;
1942			bd.buflen = padlen;
1943			bd.pktlen = 0;
1944			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1945			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1946			++nsegs;
1947
1948			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1949			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1950		}
1951
1952		last = slot;
1953
1954		added += nsegs;
1955		if (nsegs > sc->swsc->tx.longest_chain)
1956			sc->swsc->tx.longest_chain = nsegs;
1957
1958		// TODO: Should we defer the BPF tap until
1959		// after all packets are queued?
1960		BPF_MTAP(sc->ifp, m0);
1961	}
1962
1963	if (first_new_slot == NULL)
1964		return;
1965
1966	/* Attach the list of new buffers to the hardware TX queue. */
1967	if (last_old_slot != NULL &&
1968	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1969	     CPDMA_BD_EOQ) == 0) {
1970		/* Add buffers to end of current queue. */
1971		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1972		    first_new_slot);
1973	} else {
1974		/* Start a fresh queue. */
1975		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1976	}
1977	sc->swsc->tx.queue_adds += added;
1978	sc->swsc->tx.avail_queue_len -= added;
1979	sc->swsc->tx.active_queue_len += added;
1980	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1981		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1982	}
1983	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1984}
1985
1986static int
1987cpsw_tx_dequeue(struct cpsw_softc *sc)
1988{
1989	struct cpsw_slot *slot, *last_removed_slot = NULL;
1990	struct cpsw_cpdma_bd bd;
1991	uint32_t flags, removed = 0;
1992
1993	/* Pull completed buffers off the hardware TX queue. */
1994	slot = STAILQ_FIRST(&sc->tx.active);
1995	while (slot != NULL) {
1996		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1997
1998		/* TearDown complete is only marked on the SOP for the packet. */
1999		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2000		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2001			sc->tx.teardown = 1;
2002		}
2003
2004		if ((flags & CPDMA_BD_OWNER) != 0 && sc->tx.teardown == 0)
2005			break; /* Hardware is still using this packet. */
2006
2007		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2008		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2009		m_freem(slot->mbuf);
2010		slot->mbuf = NULL;
2011
2012		if (slot->ifp) {
2013			if (sc->tx.teardown == 0)
2014				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2015			else
2016				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2017		}
2018
2019		/* Dequeue any additional buffers used by this packet. */
2020		while (slot != NULL && slot->mbuf == NULL) {
2021			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2022			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2023			++removed;
2024			last_removed_slot = slot;
2025			slot = STAILQ_FIRST(&sc->tx.active);
2026		}
2027
2028		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2029
2030		/* Restart the TX queue if necessary. */
2031		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2032		if (slot != NULL && bd.next != 0 && (bd.flags &
2033		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2034		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2035			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2036			sc->tx.queue_restart++;
2037			break;
2038		}
2039	}
2040
2041	if (removed != 0) {
2042		sc->tx.queue_removes += removed;
2043		sc->tx.active_queue_len -= removed;
2044		sc->tx.avail_queue_len += removed;
2045		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2046			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2047		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2048	}
2049
2050	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2051		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2052		sc->tx.teardown = 0;
2053		sc->tx.running = 0;
2054	}
2055
2056	return (removed);
2057}
2058
2059/*
2060 *
2061 * Miscellaneous interrupts.
2062 *
2063 */
2064
2065static void
2066cpsw_intr_rx_thresh(void *arg)
2067{
2068	struct cpsw_softc *sc;
2069	struct ifnet *ifp;
2070	struct mbuf *received, *next;
2071
2072	sc = (struct cpsw_softc *)arg;
2073	CPSW_RX_LOCK(sc);
2074	received = cpsw_rx_dequeue(sc);
2075	cpsw_rx_enqueue(sc);
2076	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2077	CPSW_RX_UNLOCK(sc);
2078
2079	while (received != NULL) {
2080		next = received->m_nextpkt;
2081		received->m_nextpkt = NULL;
2082		ifp = received->m_pkthdr.rcvif;
2083		(*ifp->if_input)(ifp, received);
2084		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2085		received = next;
2086	}
2087}
2088
2089static void
2090cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2091{
2092	uint32_t intstat;
2093	uint32_t dmastat;
2094	int txerr, rxerr, txchan, rxchan;
2095
2096	printf("\n\n");
2097	device_printf(sc->dev,
2098	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2099	printf("\n\n");
2100	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2101	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2102	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2103	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2104
2105	txerr = (dmastat >> 20) & 15;
2106	txchan = (dmastat >> 16) & 7;
2107	rxerr = (dmastat >> 12) & 15;
2108	rxchan = (dmastat >> 8) & 7;
2109
2110	switch (txerr) {
2111	case 0: break;
2112	case 1:	printf("SOP error on TX channel %d\n", txchan);
2113		break;
2114	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2115		break;
2116	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2117		break;
2118	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2119		break;
2120	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2121		break;
2122	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2123		break;
2124	default: printf("Unknown error on TX channel %d\n", txchan);
2125		break;
2126	}
2127
2128	if (txerr != 0) {
2129		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2130		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2131		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2132		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2133		cpsw_dump_queue(sc, &sc->tx.active);
2134	}
2135
2136	switch (rxerr) {
2137	case 0: break;
2138	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2139		break;
2140	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2141		break;
2142	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2143		break;
2144	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2145		break;
2146	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2147		break;
2148	}
2149
2150	if (rxerr != 0) {
2151		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2152		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2153		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2154		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2155		cpsw_dump_queue(sc, &sc->rx.active);
2156	}
2157
2158	printf("\nALE Table\n");
2159	cpsw_ale_dump_table(sc);
2160
2161	// XXX do something useful here??
2162	panic("CPSW HOST ERROR INTERRUPT");
2163
2164	// Suppress this interrupt in the future.
2165	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2166	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2167	// The watchdog will probably reset the controller
2168	// in a little while.  It will probably fail again.
2169}
2170
2171static void
2172cpsw_intr_misc(void *arg)
2173{
2174	struct cpsw_softc *sc = arg;
2175	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2176
2177	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2178		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2179	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2180		cpsw_stats_collect(sc);
2181	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2182		cpsw_intr_misc_host_error(sc);
2183	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2184		cpsw_write_4(sc, MDIOLINKINTMASKED,
2185		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2186	}
2187	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2188		CPSW_DEBUGF(sc,
2189		    ("MDIO operation completed interrupt unimplemented"));
2190	}
2191	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2192}
2193
2194/*
2195 *
2196 * Periodic Checks and Watchdog.
2197 *
2198 */
2199
2200static void
2201cpswp_tick(void *msc)
2202{
2203	struct cpswp_softc *sc = msc;
2204
2205	/* Check for media type change */
2206	mii_tick(sc->mii);
2207	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2208		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2209			sc->mii->mii_media.ifm_media);
2210		cpswp_ifmedia_upd(sc->ifp);
2211	}
2212
2213	/* Schedule another timeout one second from now */
2214	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2215}
2216
2217static void
2218cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2219{
2220	struct cpswp_softc *sc;
2221	struct mii_data *mii;
2222
2223	sc = ifp->if_softc;
2224	CPSW_DEBUGF(sc->swsc, (""));
2225	CPSW_PORT_LOCK(sc);
2226
2227	mii = sc->mii;
2228	mii_pollstat(mii);
2229
2230	ifmr->ifm_active = mii->mii_media_active;
2231	ifmr->ifm_status = mii->mii_media_status;
2232	CPSW_PORT_UNLOCK(sc);
2233}
2234
2235static int
2236cpswp_ifmedia_upd(struct ifnet *ifp)
2237{
2238	struct cpswp_softc *sc;
2239
2240	sc = ifp->if_softc;
2241	CPSW_DEBUGF(sc->swsc, (""));
2242	CPSW_PORT_LOCK(sc);
2243	mii_mediachg(sc->mii);
2244	sc->media_status = sc->mii->mii_media.ifm_media;
2245	CPSW_PORT_UNLOCK(sc);
2246
2247	return (0);
2248}
2249
2250static void
2251cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2252{
2253	struct cpswp_softc *psc;
2254	int i;
2255
2256	cpsw_debugf_head("CPSW watchdog");
2257	device_printf(sc->dev, "watchdog timeout\n");
2258	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2259	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2260	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2261	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2262	cpsw_dump_queue(sc, &sc->tx.active);
2263	for (i = 0; i < CPSW_PORTS; i++) {
2264		if (!sc->dualemac && i != sc->active_slave)
2265			continue;
2266		psc = device_get_softc(sc->port[i].dev);
2267		CPSW_PORT_LOCK(psc);
2268		cpswp_stop_locked(psc);
2269		CPSW_PORT_UNLOCK(psc);
2270	}
2271}
2272
2273static void
2274cpsw_tx_watchdog(void *msc)
2275{
2276	struct cpsw_softc *sc;
2277
2278	sc = msc;
2279	CPSW_TX_LOCK(sc);
2280	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2281		sc->watchdog.timer = 0; /* Nothing to do. */
2282	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2283		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2284	} else if (cpsw_tx_dequeue(sc) > 0) {
2285		sc->watchdog.timer = 0;  /* We just did something. */
2286	} else {
2287		/* There was something to do but it didn't get done. */
2288		++sc->watchdog.timer;
2289		if (sc->watchdog.timer > 5) {
2290			sc->watchdog.timer = 0;
2291			++sc->watchdog.resets;
2292			cpsw_tx_watchdog_full_reset(sc);
2293		}
2294	}
2295	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2296	CPSW_TX_UNLOCK(sc);
2297
2298	/* Schedule another timeout one second from now */
2299	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2300}
2301
2302/*
2303 *
2304 * ALE support routines.
2305 *
2306 */
2307
2308static void
2309cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2310{
2311	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2312	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2313	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2314	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2315}
2316
2317static void
2318cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2319{
2320	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2321	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2322	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2323	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2324}
2325
2326static void
2327cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2328{
2329	int i;
2330	uint32_t ale_entry[3];
2331
2332	/* First four entries are link address and broadcast. */
2333	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2334		cpsw_ale_read_entry(sc, i, ale_entry);
2335		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2336		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2337		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2338			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2339			cpsw_ale_write_entry(sc, i, ale_entry);
2340		}
2341	}
2342}
2343
2344static int
2345cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2346	uint8_t *mac)
2347{
2348	int free_index = -1, matching_index = -1, i;
2349	uint32_t ale_entry[3], ale_type;
2350
2351	/* Find a matching entry or a free entry. */
2352	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2353		cpsw_ale_read_entry(sc, i, ale_entry);
2354
2355		/* Entry Type[61:60] is 0 for free entry */
2356		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2357			free_index = i;
2358
2359		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2360		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2361		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2362		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2363		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2364		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2365			matching_index = i;
2366			break;
2367		}
2368	}
2369
2370	if (matching_index < 0) {
2371		if (free_index < 0)
2372			return (ENOMEM);
2373		i = free_index;
2374	}
2375
2376	if (vlan != -1)
2377		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2378	else
2379		ale_type = ALE_TYPE_ADDR << 28;
2380
2381	/* Set MAC address */
2382	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2383	ale_entry[1] = mac[0] << 8 | mac[1];
2384
2385	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2386	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2387
2388	/* Set portmask [68:66] */
2389	ale_entry[2] = (portmap & 7) << 2;
2390
2391	cpsw_ale_write_entry(sc, i, ale_entry);
2392
2393	return 0;
2394}
2395
2396static void
2397cpsw_ale_dump_table(struct cpsw_softc *sc) {
2398	int i;
2399	uint32_t ale_entry[3];
2400	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2401		cpsw_ale_read_entry(sc, i, ale_entry);
2402		switch (ALE_TYPE(ale_entry)) {
2403		case ALE_TYPE_VLAN:
2404			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2405				ale_entry[1], ale_entry[0]);
2406			printf("type: %u ", ALE_TYPE(ale_entry));
2407			printf("vlan: %u ", ALE_VLAN(ale_entry));
2408			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2409			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2410			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2411			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2412			printf("\n");
2413			break;
2414		case ALE_TYPE_ADDR:
2415		case ALE_TYPE_VLAN_ADDR:
2416			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2417				ale_entry[1], ale_entry[0]);
2418			printf("type: %u ", ALE_TYPE(ale_entry));
2419			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2420				(ale_entry[1] >> 8) & 0xFF,
2421				(ale_entry[1] >> 0) & 0xFF,
2422				(ale_entry[0] >>24) & 0xFF,
2423				(ale_entry[0] >>16) & 0xFF,
2424				(ale_entry[0] >> 8) & 0xFF,
2425				(ale_entry[0] >> 0) & 0xFF);
2426			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2427			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2428				printf("vlan: %u ", ALE_VLAN(ale_entry));
2429			printf("port: %u ", ALE_PORTS(ale_entry));
2430			printf("\n");
2431			break;
2432		}
2433	}
2434	printf("\n");
2435}
2436
2437static int
2438cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2439{
2440	uint8_t *mac;
2441	uint32_t ale_entry[3], ale_type, portmask;
2442	struct ifmultiaddr *ifma;
2443
2444	if (sc->swsc->dualemac) {
2445		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2446		portmask = 1 << (sc->unit + 1) | 1 << 0;
2447	} else {
2448		ale_type = ALE_TYPE_ADDR << 28;
2449		portmask = 7;
2450	}
2451
2452	/*
2453	 * Route incoming packets for our MAC address to Port 0 (host).
2454	 * For simplicity, keep this entry at table index 0 for port 1 and
2455	 * at index 2 for port 2 in the ALE.
2456	 */
2457        if_addr_rlock(sc->ifp);
2458	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2459	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2460	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2461	ale_entry[2] = 0; /* port = 0 */
2462	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2463
2464	/* Set outgoing MAC Address for slave port. */
2465	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2466	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2467	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2468	    mac[5] << 8 | mac[4]);
2469        if_addr_runlock(sc->ifp);
2470
2471	/* Keep the broadcast address at table entry 1 (or 3). */
2472	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2473	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2474	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2475	ale_entry[2] = portmask << 2;
2476	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2477
2478	/* SIOCDELMULTI doesn't specify the particular address
2479	   being removed, so we have to remove all and rebuild. */
2480	if (purge)
2481		cpsw_ale_remove_all_mc_entries(sc->swsc);
2482
2483        /* Set other multicast addrs desired. */
2484        if_maddr_rlock(sc->ifp);
2485        TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2486                if (ifma->ifma_addr->sa_family != AF_LINK)
2487                        continue;
2488		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2489		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2490        }
2491        if_maddr_runlock(sc->ifp);
2492
2493	return (0);
2494}
2495
2496static int
2497cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2498	int untag, int mcregflood, int mcunregflood)
2499{
2500	int free_index, i, matching_index;
2501	uint32_t ale_entry[3];
2502
2503	free_index = matching_index = -1;
2504	/* Find a matching entry or a free entry. */
2505	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2506		cpsw_ale_read_entry(sc, i, ale_entry);
2507
2508		/* Entry Type[61:60] is 0 for free entry */
2509		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2510			free_index = i;
2511
2512		if (ALE_VLAN(ale_entry) == vlan) {
2513			matching_index = i;
2514			break;
2515		}
2516	}
2517
2518	if (matching_index < 0) {
2519		if (free_index < 0)
2520			return (-1);
2521		i = free_index;
2522	}
2523
2524	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2525	    (mcunregflood & 7) << 8 | (ports & 7);
2526	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2527	ale_entry[2] = 0;
2528	cpsw_ale_write_entry(sc, i, ale_entry);
2529
2530	return (0);
2531}
2532
2533/*
2534 *
2535 * Statistics and Sysctls.
2536 *
2537 */
2538
2539#if 0
2540static void
2541cpsw_stats_dump(struct cpsw_softc *sc)
2542{
2543	int i;
2544	uint32_t r;
2545
2546	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2547		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2548		    cpsw_stat_sysctls[i].reg);
2549		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2550		    (intmax_t)sc->shadow_stats[i], r,
2551		    (intmax_t)sc->shadow_stats[i] + r));
2552	}
2553}
2554#endif
2555
2556static void
2557cpsw_stats_collect(struct cpsw_softc *sc)
2558{
2559	int i;
2560	uint32_t r;
2561
2562	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2563
2564	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2565		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2566		    cpsw_stat_sysctls[i].reg);
2567		sc->shadow_stats[i] += r;
2568		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2569		    r);
2570	}
2571}
2572
2573static int
2574cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2575{
2576	struct cpsw_softc *sc;
2577	struct cpsw_stat *stat;
2578	uint64_t result;
2579
2580	sc = (struct cpsw_softc *)arg1;
2581	stat = &cpsw_stat_sysctls[oidp->oid_number];
2582	result = sc->shadow_stats[oidp->oid_number];
2583	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2584	return (sysctl_handle_64(oidp, &result, 0, req));
2585}
2586
2587static int
2588cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2589{
2590	struct cpsw_softc *sc;
2591	struct bintime t;
2592	unsigned result;
2593
2594	sc = (struct cpsw_softc *)arg1;
2595	getbinuptime(&t);
2596	bintime_sub(&t, &sc->attach_uptime);
2597	result = t.sec;
2598	return (sysctl_handle_int(oidp, &result, 0, req));
2599}
2600
2601static int
2602cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2603{
2604	int error;
2605	struct cpsw_softc *sc;
2606	uint32_t ctrl, intr_per_ms;
2607
2608	sc = (struct cpsw_softc *)arg1;
2609	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2610	if (error != 0 || req->newptr == NULL)
2611		return (error);
2612
2613	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2614	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2615	if (sc->coal_us == 0) {
2616		/* Disable the interrupt pace hardware. */
2617		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2618		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2619		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2620		return (0);
2621	}
2622
2623	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2624		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2625	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2626		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2627	intr_per_ms = 1000 / sc->coal_us;
2628	/* Just to make sure... */
2629	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2630		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2631	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2632		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2633
2634	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2635	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2636
2637	/* Enable the interrupt pace hardware. */
2638	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2639	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2640	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2641	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2642
2643	return (0);
2644}
2645
2646static int
2647cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2648{
2649	struct cpsw_softc *swsc;
2650	struct cpswp_softc *sc;
2651	struct bintime t;
2652	unsigned result;
2653
2654	swsc = arg1;
2655	sc = device_get_softc(swsc->port[arg2].dev);
2656	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2657		getbinuptime(&t);
2658		bintime_sub(&t, &sc->init_uptime);
2659		result = t.sec;
2660	} else
2661		result = 0;
2662	return (sysctl_handle_int(oidp, &result, 0, req));
2663}
2664
2665static void
2666cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2667	struct cpsw_queue *queue)
2668{
2669	struct sysctl_oid_list *parent;
2670
2671	parent = SYSCTL_CHILDREN(node);
2672	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2673	    CTLFLAG_RD, &queue->queue_slots, 0,
2674	    "Total buffers currently assigned to this queue");
2675	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2676	    CTLFLAG_RD, &queue->active_queue_len, 0,
2677	    "Buffers currently registered with hardware controller");
2678	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2679	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2680	    "Max value of activeBuffers since last driver reset");
2681	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2682	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2683	    "Buffers allocated to this queue but not currently "
2684	    "registered with hardware controller");
2685	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2686	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2687	    "Max value of availBuffers since last driver reset");
2688	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2689	    CTLFLAG_RD, &queue->queue_adds, 0,
2690	    "Total buffers added to queue");
2691	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2692	    CTLFLAG_RD, &queue->queue_removes, 0,
2693	    "Total buffers removed from queue");
2694	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2695	    CTLFLAG_RD, &queue->queue_restart, 0,
2696	    "Total times the queue has been restarted");
2697	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2698	    CTLFLAG_RD, &queue->longest_chain, 0,
2699	    "Max buffers used for a single packet");
2700}
2701
2702static void
2703cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2704	struct cpsw_softc *sc)
2705{
2706	struct sysctl_oid_list *parent;
2707
2708	parent = SYSCTL_CHILDREN(node);
2709	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2710	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2711	    "Total number of watchdog resets");
2712}
2713
2714static void
2715cpsw_add_sysctls(struct cpsw_softc *sc)
2716{
2717	struct sysctl_ctx_list *ctx;
2718	struct sysctl_oid *stats_node, *queue_node, *node;
2719	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2720	struct sysctl_oid_list *ports_parent, *port_parent;
2721	char port[16];
2722	int i;
2723
2724	ctx = device_get_sysctl_ctx(sc->dev);
2725	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2726
2727	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2728	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2729
2730	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "rx_batch",
2731	    CTLFLAG_RW, &sc->rx_batch, 0, "Set the rx batch size");
2732
2733	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2734	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2735	    "Time since driver attach");
2736
2737	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2738	    CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
2739	    "minimum time between interrupts");
2740
2741	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2742	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2743	ports_parent = SYSCTL_CHILDREN(node);
2744	for (i = 0; i < CPSW_PORTS; i++) {
2745		if (!sc->dualemac && i != sc->active_slave)
2746			continue;
2747		port[0] = '0' + i;
2748		port[1] = '\0';
2749		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2750		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2751		port_parent = SYSCTL_CHILDREN(node);
2752		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2753		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2754		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2755	}
2756
2757	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2758				     CTLFLAG_RD, NULL, "CPSW Statistics");
2759	stats_parent = SYSCTL_CHILDREN(stats_node);
2760	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2761		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2762				cpsw_stat_sysctls[i].oid,
2763				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2764				cpsw_stats_sysctl, "IU",
2765				cpsw_stat_sysctls[i].oid);
2766	}
2767
2768	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2769	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2770	queue_parent = SYSCTL_CHILDREN(queue_node);
2771
2772	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2773	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2774	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2775
2776	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2777	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2778	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2779
2780	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2781	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2782	cpsw_add_watchdog_sysctls(ctx, node, sc);
2783}
2784
2785#ifdef CPSW_ETHERSWITCH
2786static etherswitch_info_t etherswitch_info = {
2787	.es_nports =		CPSW_PORTS + 1,
2788	.es_nvlangroups =	CPSW_VLANS,
2789	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2790	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2791};
2792
2793static etherswitch_info_t *
2794cpsw_getinfo(device_t dev)
2795{
2796	return (&etherswitch_info);
2797}
2798
2799static int
2800cpsw_getport(device_t dev, etherswitch_port_t *p)
2801{
2802	int err;
2803	struct cpsw_softc *sc;
2804	struct cpswp_softc *psc;
2805	struct ifmediareq *ifmr;
2806	uint32_t reg;
2807
2808	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2809		return (ENXIO);
2810
2811	err = 0;
2812	sc = device_get_softc(dev);
2813	if (p->es_port == CPSW_CPU_PORT) {
2814		p->es_flags |= ETHERSWITCH_PORT_CPU;
2815 		ifmr = &p->es_ifmr;
2816		ifmr->ifm_current = ifmr->ifm_active =
2817		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2818		ifmr->ifm_mask = 0;
2819		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2820		ifmr->ifm_count = 0;
2821	} else {
2822		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2823		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2824		    &psc->mii->mii_media, SIOCGIFMEDIA);
2825	}
2826	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2827	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2828
2829	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2830	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2831		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2832	if (reg & ALE_PORTCTL_INGRESS)
2833		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2834
2835	return (err);
2836}
2837
2838static int
2839cpsw_setport(device_t dev, etherswitch_port_t *p)
2840{
2841	struct cpsw_softc *sc;
2842	struct cpswp_softc *psc;
2843	struct ifmedia *ifm;
2844	uint32_t reg;
2845
2846	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2847		return (ENXIO);
2848
2849	sc = device_get_softc(dev);
2850	if (p->es_pvid != 0) {
2851		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2852		    p->es_pvid & ETHERSWITCH_VID_MASK);
2853	}
2854
2855	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2856	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2857		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2858	else
2859		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2860	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2861		reg |= ALE_PORTCTL_INGRESS;
2862	else
2863		reg &= ~ALE_PORTCTL_INGRESS;
2864	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2865
2866	/* CPU port does not allow media settings. */
2867	if (p->es_port == CPSW_CPU_PORT)
2868		return (0);
2869
2870	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2871	ifm = &psc->mii->mii_media;
2872
2873	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2874}
2875
2876static int
2877cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2878{
2879
2880	/* Return the VLAN mode. */
2881	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2882	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2883
2884	return (0);
2885}
2886
2887static int
2888cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2889{
2890	int i, vid;
2891	uint32_t ale_entry[3];
2892	struct cpsw_softc *sc;
2893
2894	sc = device_get_softc(dev);
2895
2896	if (vg->es_vlangroup >= CPSW_VLANS)
2897		return (EINVAL);
2898
2899	vg->es_vid = 0;
2900	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2901	if (vid == -1)
2902		return (0);
2903
2904	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2905		cpsw_ale_read_entry(sc, i, ale_entry);
2906		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2907			continue;
2908		if (vid != ALE_VLAN(ale_entry))
2909			continue;
2910
2911		vg->es_fid = 0;
2912		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2913		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2914		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2915	}
2916
2917	return (0);
2918}
2919
2920static void
2921cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2922{
2923	int i;
2924	uint32_t ale_entry[3];
2925
2926	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2927		cpsw_ale_read_entry(sc, i, ale_entry);
2928		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2929			continue;
2930		if (vlan != ALE_VLAN(ale_entry))
2931			continue;
2932		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2933		cpsw_ale_write_entry(sc, i, ale_entry);
2934		break;
2935	}
2936}
2937
2938static int
2939cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2940{
2941	int i;
2942	struct cpsw_softc *sc;
2943
2944	sc = device_get_softc(dev);
2945
2946	for (i = 0; i < CPSW_VLANS; i++) {
2947		/* Is this Vlan ID in use by another vlangroup ? */
2948		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2949			return (EINVAL);
2950	}
2951
2952	if (vg->es_vid == 0) {
2953		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2954			return (0);
2955		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2956		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2957		vg->es_untagged_ports = 0;
2958		vg->es_member_ports = 0;
2959		vg->es_vid = 0;
2960		return (0);
2961	}
2962
2963	vg->es_vid &= ETHERSWITCH_VID_MASK;
2964	vg->es_member_ports &= CPSW_PORTS_MASK;
2965	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2966
2967	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2968	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2969		return (EINVAL);
2970
2971	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2972	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2973	    vg->es_untagged_ports, vg->es_member_ports, 0);
2974
2975	return (0);
2976}
2977
2978static int
2979cpsw_readreg(device_t dev, int addr)
2980{
2981
2982	/* Not supported. */
2983	return (0);
2984}
2985
2986static int
2987cpsw_writereg(device_t dev, int addr, int value)
2988{
2989
2990	/* Not supported. */
2991	return (0);
2992}
2993
2994static int
2995cpsw_readphy(device_t dev, int phy, int reg)
2996{
2997
2998	/* Not supported. */
2999	return (0);
3000}
3001
3002static int
3003cpsw_writephy(device_t dev, int phy, int reg, int data)
3004{
3005
3006	/* Not supported. */
3007	return (0);
3008}
3009#endif
3010