if_cpsw.c revision 310882
1/*-
2 * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3 * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * TI Common Platform Ethernet Switch (CPSW) Driver
30 * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
31 *
32 * This controller is documented in the AM335x Technical Reference
33 * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
34 * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
35 *
36 * It is basically a single Ethernet port (port 0) wired internally to
37 * a 3-port store-and-forward switch connected to two independent
38 * "sliver" controllers (port 1 and port 2).  You can operate the
39 * controller in a variety of different ways by suitably configuring
40 * the slivers and the Address Lookup Engine (ALE) that routes packets
41 * between the ports.
42 *
43 * This code was developed and tested on a BeagleBone with
44 * an AM335x SoC.
45 */
46
47#include <sys/cdefs.h>
48__FBSDID("$FreeBSD: stable/11/sys/arm/ti/cpsw/if_cpsw.c 310882 2016-12-31 01:54:48Z loos $");
49
50#include "opt_cpsw.h"
51
52#include <sys/param.h>
53#include <sys/bus.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/mbuf.h>
57#include <sys/module.h>
58#include <sys/mutex.h>
59#include <sys/rman.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/sysctl.h>
63
64#include <machine/bus.h>
65#include <machine/resource.h>
66#include <machine/stdarg.h>
67
68#include <net/ethernet.h>
69#include <net/bpf.h>
70#include <net/if.h>
71#include <net/if_dl.h>
72#include <net/if_media.h>
73#include <net/if_types.h>
74
75#include <arm/ti/ti_scm.h>
76#include <arm/ti/am335x/am335x_scm.h>
77
78#include <dev/mii/mii.h>
79#include <dev/mii/miivar.h>
80
81#include <dev/fdt/fdt_common.h>
82#include <dev/ofw/ofw_bus.h>
83#include <dev/ofw/ofw_bus_subr.h>
84
85#ifdef CPSW_ETHERSWITCH
86#include <dev/etherswitch/etherswitch.h>
87#include "etherswitch_if.h"
88#endif
89
90#include "if_cpswreg.h"
91#include "if_cpswvar.h"
92
93#include "miibus_if.h"
94
95/* Device probe/attach/detach. */
96static int cpsw_probe(device_t);
97static int cpsw_attach(device_t);
98static int cpsw_detach(device_t);
99static int cpswp_probe(device_t);
100static int cpswp_attach(device_t);
101static int cpswp_detach(device_t);
102
103static phandle_t cpsw_get_node(device_t, device_t);
104
105/* Device Init/shutdown. */
106static int cpsw_shutdown(device_t);
107static void cpswp_init(void *);
108static void cpswp_init_locked(void *);
109static void cpswp_stop_locked(struct cpswp_softc *);
110
111/* Device Suspend/Resume. */
112static int cpsw_suspend(device_t);
113static int cpsw_resume(device_t);
114
115/* Ioctl. */
116static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
117
118static int cpswp_miibus_readreg(device_t, int phy, int reg);
119static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
120static void cpswp_miibus_statchg(device_t);
121
122/* Send/Receive packets. */
123static void cpsw_intr_rx(void *arg);
124static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
125static void cpsw_rx_enqueue(struct cpsw_softc *);
126static void cpswp_start(struct ifnet *);
127static void cpsw_intr_tx(void *);
128static void cpswp_tx_enqueue(struct cpswp_softc *);
129static int cpsw_tx_dequeue(struct cpsw_softc *);
130
131/* Misc interrupts and watchdog. */
132static void cpsw_intr_rx_thresh(void *);
133static void cpsw_intr_misc(void *);
134static void cpswp_tick(void *);
135static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136static int cpswp_ifmedia_upd(struct ifnet *);
137static void cpsw_tx_watchdog(void *);
138
139/* ALE support */
140static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
141static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
142static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
143static void cpsw_ale_dump_table(struct cpsw_softc *);
144static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
145	int);
146static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
147
148/* Statistics and sysctls. */
149static void cpsw_add_sysctls(struct cpsw_softc *);
150static void cpsw_stats_collect(struct cpsw_softc *);
151static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
152
153#ifdef CPSW_ETHERSWITCH
154static etherswitch_info_t *cpsw_getinfo(device_t);
155static int cpsw_getport(device_t, etherswitch_port_t *);
156static int cpsw_setport(device_t, etherswitch_port_t *);
157static int cpsw_getconf(device_t, etherswitch_conf_t *);
158static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
159static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
160static int cpsw_readreg(device_t, int);
161static int cpsw_writereg(device_t, int, int);
162static int cpsw_readphy(device_t, int, int);
163static int cpsw_writephy(device_t, int, int, int);
164#endif
165
166/*
167 * Arbitrary limit on number of segments in an mbuf to be transmitted.
168 * Packets with more segments than this will be defragmented before
169 * they are queued.
170 */
171#define	CPSW_TXFRAGS		16
172
173/* Shared resources. */
174static device_method_t cpsw_methods[] = {
175	/* Device interface */
176	DEVMETHOD(device_probe,		cpsw_probe),
177	DEVMETHOD(device_attach,	cpsw_attach),
178	DEVMETHOD(device_detach,	cpsw_detach),
179	DEVMETHOD(device_shutdown,	cpsw_shutdown),
180	DEVMETHOD(device_suspend,	cpsw_suspend),
181	DEVMETHOD(device_resume,	cpsw_resume),
182	/* Bus interface */
183	DEVMETHOD(bus_add_child,	device_add_child_ordered),
184	/* OFW methods */
185	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
186#ifdef CPSW_ETHERSWITCH
187	/* etherswitch interface */
188	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
189	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
190	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
191	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
192	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
193	DEVMETHOD(etherswitch_getport,	cpsw_getport),
194	DEVMETHOD(etherswitch_setport,	cpsw_setport),
195	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
196	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
197	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
198#endif
199	DEVMETHOD_END
200};
201
202static driver_t cpsw_driver = {
203	"cpswss",
204	cpsw_methods,
205	sizeof(struct cpsw_softc),
206};
207
208static devclass_t cpsw_devclass;
209
210DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
211
212/* Port/Slave resources. */
213static device_method_t cpswp_methods[] = {
214	/* Device interface */
215	DEVMETHOD(device_probe,		cpswp_probe),
216	DEVMETHOD(device_attach,	cpswp_attach),
217	DEVMETHOD(device_detach,	cpswp_detach),
218	/* MII interface */
219	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
220	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
221	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
222	DEVMETHOD_END
223};
224
225static driver_t cpswp_driver = {
226	"cpsw",
227	cpswp_methods,
228	sizeof(struct cpswp_softc),
229};
230
231static devclass_t cpswp_devclass;
232
233#ifdef CPSW_ETHERSWITCH
234DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
235MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
236#endif
237
238DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
239DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
240MODULE_DEPEND(cpsw, ether, 1, 1, 1);
241MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
242
243#ifdef CPSW_ETHERSWITCH
244static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
245#endif
246
247static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
248
249static struct resource_spec irq_res_spec[] = {
250	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
251	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
252	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
253	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
254	{ -1, 0 }
255};
256
257static struct {
258	void (*cb)(void *);
259} cpsw_intr_cb[] = {
260	{ cpsw_intr_rx_thresh },
261	{ cpsw_intr_rx },
262	{ cpsw_intr_tx },
263	{ cpsw_intr_misc },
264};
265
266/* Number of entries here must match size of stats
267 * array in struct cpswp_softc. */
268static struct cpsw_stat {
269	int	reg;
270	char *oid;
271} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
272	{0x00, "GoodRxFrames"},
273	{0x04, "BroadcastRxFrames"},
274	{0x08, "MulticastRxFrames"},
275	{0x0C, "PauseRxFrames"},
276	{0x10, "RxCrcErrors"},
277	{0x14, "RxAlignErrors"},
278	{0x18, "OversizeRxFrames"},
279	{0x1c, "RxJabbers"},
280	{0x20, "ShortRxFrames"},
281	{0x24, "RxFragments"},
282	{0x30, "RxOctets"},
283	{0x34, "GoodTxFrames"},
284	{0x38, "BroadcastTxFrames"},
285	{0x3c, "MulticastTxFrames"},
286	{0x40, "PauseTxFrames"},
287	{0x44, "DeferredTxFrames"},
288	{0x48, "CollisionsTxFrames"},
289	{0x4c, "SingleCollisionTxFrames"},
290	{0x50, "MultipleCollisionTxFrames"},
291	{0x54, "ExcessiveCollisions"},
292	{0x58, "LateCollisions"},
293	{0x5c, "TxUnderrun"},
294	{0x60, "CarrierSenseErrors"},
295	{0x64, "TxOctets"},
296	{0x68, "RxTx64OctetFrames"},
297	{0x6c, "RxTx65to127OctetFrames"},
298	{0x70, "RxTx128to255OctetFrames"},
299	{0x74, "RxTx256to511OctetFrames"},
300	{0x78, "RxTx512to1024OctetFrames"},
301	{0x7c, "RxTx1024upOctetFrames"},
302	{0x80, "NetOctets"},
303	{0x84, "RxStartOfFrameOverruns"},
304	{0x88, "RxMiddleOfFrameOverruns"},
305	{0x8c, "RxDmaOverruns"}
306};
307
308/*
309 * Basic debug support.
310 */
311
312static void
313cpsw_debugf_head(const char *funcname)
314{
315	int t = (int)(time_second % (24 * 60 * 60));
316
317	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
318}
319
320static void
321cpsw_debugf(const char *fmt, ...)
322{
323	va_list ap;
324
325	va_start(ap, fmt);
326	vprintf(fmt, ap);
327	va_end(ap);
328	printf("\n");
329
330}
331
332#define	CPSW_DEBUGF(_sc, a) do {					\
333	if ((_sc)->debug) {						\
334		cpsw_debugf_head(__func__);				\
335		cpsw_debugf a;						\
336	}								\
337} while (0)
338
339/*
340 * Locking macros
341 */
342#define	CPSW_TX_LOCK(sc) do {						\
343		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
344		mtx_lock(&(sc)->tx.lock);				\
345} while (0)
346
347#define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
348#define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
349
350#define	CPSW_RX_LOCK(sc) do {						\
351		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
352		mtx_lock(&(sc)->rx.lock);				\
353} while (0)
354
355#define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
356#define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
357
358#define CPSW_PORT_LOCK(_sc) do {					\
359		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
360		mtx_lock(&(_sc)->lock);					\
361} while (0)
362
363#define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
364#define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
365
366/*
367 * Read/Write macros
368 */
369#define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
370#define	cpsw_write_4(_sc, _reg, _val)					\
371	bus_write_4((_sc)->mem_res, (_reg), (_val))
372
373#define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
374
375#define	cpsw_cpdma_bd_paddr(sc, slot)					\
376	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
377#define	cpsw_cpdma_read_bd(sc, slot, val)				\
378	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379#define	cpsw_cpdma_write_bd(sc, slot, val)				\
380	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
381#define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
382	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
383#define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
384	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
385#define	cpsw_cpdma_read_bd_flags(sc, slot)				\
386	bus_read_2(sc->mem_res, slot->bd_offset + 14)
387#define	cpsw_write_hdp_slot(sc, queue, slot)				\
388	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
389#define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
390#define	cpsw_read_cp(sc, queue)						\
391	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
392#define	cpsw_write_cp(sc, queue, val)					\
393	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
394#define	cpsw_write_cp_slot(sc, queue, slot)				\
395	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
396
397#if 0
398/* XXX temporary function versions for debugging. */
399static void
400cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
401{
402	uint32_t reg = queue->hdp_offset;
403	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
404	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
405	cpsw_write_4(sc, reg, v);
406}
407
408static void
409cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
410{
411	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
412	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
413	cpsw_write_cp(sc, queue, v);
414}
415#endif
416
417/*
418 * Expanded dump routines for verbose debugging.
419 */
420static void
421cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
422{
423	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
424	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
425	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
426	    "Port0"};
427	struct cpsw_cpdma_bd bd;
428	const char *sep;
429	int i;
430
431	cpsw_cpdma_read_bd(sc, slot, &bd);
432	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
433	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
434	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
435	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
436	printf("  Flags: ");
437	sep = "";
438	for (i = 0; i < 16; ++i) {
439		if (bd.flags & (1 << (15 - i))) {
440			printf("%s%s", sep, flags[i]);
441			sep = ",";
442		}
443	}
444	printf("\n");
445	if (slot->mbuf) {
446		printf("  Ether:  %14D\n",
447		    (char *)(slot->mbuf->m_data), " ");
448		printf("  Packet: %16D\n",
449		    (char *)(slot->mbuf->m_data) + 14, " ");
450	}
451}
452
453#define	CPSW_DUMP_SLOT(cs, slot) do {				\
454	IF_DEBUG(sc) {						\
455		cpsw_dump_slot(sc, slot);			\
456	}							\
457} while (0)
458
459static void
460cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
461{
462	struct cpsw_slot *slot;
463	int i = 0;
464	int others = 0;
465
466	STAILQ_FOREACH(slot, q, next) {
467		if (i > CPSW_TXFRAGS)
468			++others;
469		else
470			cpsw_dump_slot(sc, slot);
471		++i;
472	}
473	if (others)
474		printf(" ... and %d more.\n", others);
475	printf("\n");
476}
477
478#define CPSW_DUMP_QUEUE(sc, q) do {				\
479	IF_DEBUG(sc) {						\
480		cpsw_dump_queue(sc, q);				\
481	}							\
482} while (0)
483
484static void
485cpsw_init_slots(struct cpsw_softc *sc)
486{
487	struct cpsw_slot *slot;
488	int i;
489
490	STAILQ_INIT(&sc->avail);
491
492	/* Put the slot descriptors onto the global avail list. */
493	for (i = 0; i < nitems(sc->_slots); i++) {
494		slot = &sc->_slots[i];
495		slot->bd_offset = cpsw_cpdma_bd_offset(i);
496		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
497	}
498}
499
500static int
501cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
502{
503	const int max_slots = nitems(sc->_slots);
504	struct cpsw_slot *slot;
505	int i;
506
507	if (requested < 0)
508		requested = max_slots;
509
510	for (i = 0; i < requested; ++i) {
511		slot = STAILQ_FIRST(&sc->avail);
512		if (slot == NULL)
513			return (0);
514		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
515			device_printf(sc->dev, "failed to create dmamap\n");
516			return (ENOMEM);
517		}
518		STAILQ_REMOVE_HEAD(&sc->avail, next);
519		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
520		++queue->avail_queue_len;
521		++queue->queue_slots;
522	}
523	return (0);
524}
525
526static void
527cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
528{
529	int error;
530
531	if (slot->dmamap) {
532		if (slot->mbuf)
533			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
534		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
535		KASSERT(error == 0, ("Mapping still active"));
536		slot->dmamap = NULL;
537	}
538	if (slot->mbuf) {
539		m_freem(slot->mbuf);
540		slot->mbuf = NULL;
541	}
542}
543
544static void
545cpsw_reset(struct cpsw_softc *sc)
546{
547	int i;
548
549	callout_stop(&sc->watchdog.callout);
550
551	/* Reset RMII/RGMII wrapper. */
552	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
553	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
554		;
555
556	/* Disable TX and RX interrupts for all cores. */
557	for (i = 0; i < 3; ++i) {
558		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
559		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
560		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
561		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
562	}
563
564	/* Reset CPSW subsystem. */
565	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
566	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
567		;
568
569	/* Reset Sliver port 1 and 2 */
570	for (i = 0; i < 2; i++) {
571		/* Reset */
572		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
573		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
574			;
575	}
576
577	/* Reset DMA controller. */
578	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
579	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
580		;
581
582	/* Disable TX & RX DMA */
583	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
584	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
585
586	/* Clear all queues. */
587	for (i = 0; i < 8; i++) {
588		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
589		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
590		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
591		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
592	}
593
594	/* Clear all interrupt Masks */
595	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
596	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
597}
598
599static void
600cpsw_init(struct cpsw_softc *sc)
601{
602	struct cpsw_slot *slot;
603	uint32_t reg;
604
605	/* Disable the interrupt pacing. */
606	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
607	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
608	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
609
610	/* Clear ALE */
611	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
612
613	/* Enable ALE */
614	reg = CPSW_ALE_CTL_ENABLE;
615	if (sc->dualemac)
616		reg |= CPSW_ALE_CTL_VLAN_AWARE;
617	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
618
619	/* Set Host Port Mapping. */
620	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
621	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
622
623	/* Initialize ALE: set host port to forwarding(3). */
624	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
625	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
626
627	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
628
629	/* Enable statistics for ports 0, 1 and 2 */
630	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
631
632	/* Turn off flow control. */
633	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
634
635	/* Make IP hdr aligned with 4 */
636	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
637
638	/* Initialize RX Buffer Descriptors */
639	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
640	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
641
642	/* Enable TX & RX DMA */
643	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
644	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
645
646	/* Enable Interrupts for core 0 */
647	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
648	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
649	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
650	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
651
652	/* Enable host Error Interrupt */
653	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
654
655	/* Enable interrupts for RX and TX on Channel 0 */
656	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
657	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
658	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
659
660	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
661	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
662	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
663
664	/* Select MII in GMII_SEL, Internal Delay mode */
665	//ti_scm_reg_write_4(0x650, 0);
666
667	/* Initialize active queues. */
668	slot = STAILQ_FIRST(&sc->tx.active);
669	if (slot != NULL)
670		cpsw_write_hdp_slot(sc, &sc->tx, slot);
671	slot = STAILQ_FIRST(&sc->rx.active);
672	if (slot != NULL)
673		cpsw_write_hdp_slot(sc, &sc->rx, slot);
674	cpsw_rx_enqueue(sc);
675	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
676	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
677
678	/* Activate network interface. */
679	sc->rx.running = 1;
680	sc->tx.running = 1;
681	sc->watchdog.timer = 0;
682	callout_init(&sc->watchdog.callout, 0);
683	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
684}
685
686/*
687 *
688 * Device Probe, Attach, Detach.
689 *
690 */
691
692static int
693cpsw_probe(device_t dev)
694{
695
696	if (!ofw_bus_status_okay(dev))
697		return (ENXIO);
698
699	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
700		return (ENXIO);
701
702	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
703	return (BUS_PROBE_DEFAULT);
704}
705
706static int
707cpsw_intr_attach(struct cpsw_softc *sc)
708{
709	int i;
710
711	for (i = 0; i < CPSW_INTR_COUNT; i++) {
712		if (bus_setup_intr(sc->dev, sc->irq_res[i],
713		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
714		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
715			return (-1);
716		}
717	}
718
719	return (0);
720}
721
722static void
723cpsw_intr_detach(struct cpsw_softc *sc)
724{
725	int i;
726
727	for (i = 0; i < CPSW_INTR_COUNT; i++) {
728		if (sc->ih_cookie[i]) {
729			bus_teardown_intr(sc->dev, sc->irq_res[i],
730			    sc->ih_cookie[i]);
731		}
732	}
733}
734
735static int
736cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
737{
738	char *name;
739	int len, phy, vlan;
740	pcell_t phy_id[3], vlan_id;
741	phandle_t child;
742	unsigned long mdio_child_addr;
743
744	/* Find any slave with phy_id */
745	phy = -1;
746	vlan = -1;
747	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
748		if (OF_getprop_alloc(child, "name", 1, (void **)&name) < 0)
749			continue;
750		if (sscanf(name, "slave@%x", &mdio_child_addr) != 1) {
751			OF_prop_free(name);
752			continue;
753		}
754		OF_prop_free(name);
755		if (mdio_child_addr != slave_mdio_addr[port])
756			continue;
757
758		len = OF_getproplen(child, "phy_id");
759		if (len / sizeof(pcell_t) == 2) {
760			/* Get phy address from fdt */
761			if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
762				phy = phy_id[1];
763		}
764
765		len = OF_getproplen(child, "dual_emac_res_vlan");
766		if (len / sizeof(pcell_t) == 1) {
767			/* Get phy address from fdt */
768			if (OF_getencprop(child, "dual_emac_res_vlan",
769			    &vlan_id, len) > 0) {
770				vlan = vlan_id;
771			}
772		}
773
774		break;
775	}
776	if (phy == -1)
777		return (ENXIO);
778	sc->port[port].phy = phy;
779	sc->port[port].vlan = vlan;
780
781	return (0);
782}
783
784static int
785cpsw_attach(device_t dev)
786{
787	bus_dma_segment_t segs[1];
788	int error, i, nsegs;
789	struct cpsw_softc *sc;
790	uint32_t reg;
791
792	sc = device_get_softc(dev);
793	sc->dev = dev;
794	sc->node = ofw_bus_get_node(dev);
795	getbinuptime(&sc->attach_uptime);
796
797	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
798	    sizeof(sc->active_slave)) <= 0) {
799		sc->active_slave = 0;
800	}
801	if (sc->active_slave > 1)
802		sc->active_slave = 1;
803
804	if (OF_hasprop(sc->node, "dual_emac"))
805		sc->dualemac = 1;
806
807	for (i = 0; i < CPSW_PORTS; i++) {
808		if (!sc->dualemac && i != sc->active_slave)
809			continue;
810		if (cpsw_get_fdt_data(sc, i) != 0) {
811			device_printf(dev,
812			    "failed to get PHY address from FDT\n");
813			return (ENXIO);
814		}
815	}
816
817	/* Initialize mutexes */
818	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
819	    "cpsw TX lock", MTX_DEF);
820	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
821	    "cpsw RX lock", MTX_DEF);
822
823	/* Allocate IRQ resources */
824	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
825	if (error) {
826		device_printf(dev, "could not allocate IRQ resources\n");
827		cpsw_detach(dev);
828		return (ENXIO);
829	}
830
831	sc->mem_rid = 0;
832	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
833	    &sc->mem_rid, RF_ACTIVE);
834	if (sc->mem_res == NULL) {
835		device_printf(sc->dev, "failed to allocate memory resource\n");
836		cpsw_detach(dev);
837		return (ENXIO);
838	}
839
840	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
841	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
842		reg & 0xFF, (reg >> 11) & 0x1F);
843
844	cpsw_add_sysctls(sc);
845
846	/* Allocate a busdma tag and DMA safe memory for mbufs. */
847	error = bus_dma_tag_create(
848		bus_get_dma_tag(sc->dev),	/* parent */
849		1, 0,				/* alignment, boundary */
850		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
851		BUS_SPACE_MAXADDR,		/* highaddr */
852		NULL, NULL,			/* filtfunc, filtfuncarg */
853		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
854		MCLBYTES, 0,			/* maxsegsz, flags */
855		NULL, NULL,			/* lockfunc, lockfuncarg */
856		&sc->mbuf_dtag);		/* dmatag */
857	if (error) {
858		device_printf(dev, "bus_dma_tag_create failed\n");
859		cpsw_detach(dev);
860		return (error);
861	}
862
863	/* Allocate the null mbuf and pre-sync it. */
864	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
865	memset(sc->null_mbuf->m_data, 0, sc->null_mbuf->m_ext.ext_size);
866	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
867	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
868	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
869	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
870	    BUS_DMASYNC_PREWRITE);
871	sc->null_mbuf_paddr = segs[0].ds_addr;
872
873	cpsw_init_slots(sc);
874
875	/* Allocate slots to TX and RX queues. */
876	STAILQ_INIT(&sc->rx.avail);
877	STAILQ_INIT(&sc->rx.active);
878	STAILQ_INIT(&sc->tx.avail);
879	STAILQ_INIT(&sc->tx.active);
880	// For now:  128 slots to TX, rest to RX.
881	// XXX TODO: start with 32/64 and grow dynamically based on demand.
882	if (cpsw_add_slots(sc, &sc->tx, 128) ||
883	    cpsw_add_slots(sc, &sc->rx, -1)) {
884		device_printf(dev, "failed to allocate dmamaps\n");
885		cpsw_detach(dev);
886		return (ENOMEM);
887	}
888	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
889	    sc->tx.queue_slots, sc->rx.queue_slots);
890
891	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
892	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
893
894	if (cpsw_intr_attach(sc) == -1) {
895		device_printf(dev, "failed to setup interrupts\n");
896		cpsw_detach(dev);
897		return (ENXIO);
898	}
899
900#ifdef CPSW_ETHERSWITCH
901	for (i = 0; i < CPSW_VLANS; i++)
902		cpsw_vgroups[i].vid = -1;
903#endif
904
905	/* Reset the controller. */
906	cpsw_reset(sc);
907	cpsw_init(sc);
908
909	for (i = 0; i < CPSW_PORTS; i++) {
910		if (!sc->dualemac && i != sc->active_slave)
911			continue;
912		sc->port[i].dev = device_add_child(dev, "cpsw", i);
913		if (sc->port[i].dev == NULL) {
914			cpsw_detach(dev);
915			return (ENXIO);
916		}
917	}
918	bus_generic_probe(dev);
919	bus_generic_attach(dev);
920
921	return (0);
922}
923
924static int
925cpsw_detach(device_t dev)
926{
927	struct cpsw_softc *sc;
928	int error, i;
929
930	bus_generic_detach(dev);
931 	sc = device_get_softc(dev);
932
933	for (i = 0; i < CPSW_PORTS; i++) {
934		if (sc->port[i].dev)
935			device_delete_child(dev, sc->port[i].dev);
936	}
937
938	if (device_is_attached(dev)) {
939		callout_stop(&sc->watchdog.callout);
940		callout_drain(&sc->watchdog.callout);
941	}
942
943	/* Stop and release all interrupts */
944	cpsw_intr_detach(sc);
945
946	/* Free dmamaps and mbufs */
947	for (i = 0; i < nitems(sc->_slots); ++i)
948		cpsw_free_slot(sc, &sc->_slots[i]);
949
950	/* Free null mbuf. */
951	if (sc->null_mbuf_dmamap) {
952		bus_dmamap_unload(sc->mbuf_dtag, sc->null_mbuf_dmamap);
953		error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
954		KASSERT(error == 0, ("Mapping still active"));
955		m_freem(sc->null_mbuf);
956	}
957
958	/* Free DMA tag */
959	if (sc->mbuf_dtag) {
960		error = bus_dma_tag_destroy(sc->mbuf_dtag);
961		KASSERT(error == 0, ("Unable to destroy DMA tag"));
962	}
963
964	/* Free IO memory handler */
965	if (sc->mem_res != NULL)
966		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
967	bus_release_resources(dev, irq_res_spec, sc->irq_res);
968
969	/* Destroy mutexes */
970	mtx_destroy(&sc->rx.lock);
971	mtx_destroy(&sc->tx.lock);
972
973	/* Detach the switch device, if present. */
974	error = bus_generic_detach(dev);
975	if (error != 0)
976		return (error);
977
978	return (device_delete_children(dev));
979}
980
981static phandle_t
982cpsw_get_node(device_t bus, device_t dev)
983{
984
985	/* Share controller node with port device. */
986	return (ofw_bus_get_node(bus));
987}
988
989static int
990cpswp_probe(device_t dev)
991{
992
993	if (device_get_unit(dev) > 1) {
994		device_printf(dev, "Only two ports are supported.\n");
995		return (ENXIO);
996	}
997	device_set_desc(dev, "Ethernet Switch Port");
998
999	return (BUS_PROBE_DEFAULT);
1000}
1001
1002static int
1003cpswp_attach(device_t dev)
1004{
1005	int error;
1006	struct ifnet *ifp;
1007	struct cpswp_softc *sc;
1008	uint32_t reg;
1009	uint8_t mac_addr[ETHER_ADDR_LEN];
1010
1011	sc = device_get_softc(dev);
1012	sc->dev = dev;
1013	sc->pdev = device_get_parent(dev);
1014	sc->swsc = device_get_softc(sc->pdev);
1015	sc->unit = device_get_unit(dev);
1016	sc->phy = sc->swsc->port[sc->unit].phy;
1017	sc->vlan = sc->swsc->port[sc->unit].vlan;
1018	if (sc->swsc->dualemac && sc->vlan == -1)
1019		sc->vlan = sc->unit + 1;
1020
1021	if (sc->unit == 0) {
1022		sc->physel = MDIOUSERPHYSEL0;
1023		sc->phyaccess = MDIOUSERACCESS0;
1024	} else {
1025		sc->physel = MDIOUSERPHYSEL1;
1026		sc->phyaccess = MDIOUSERACCESS1;
1027	}
1028
1029	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1030	    MTX_DEF);
1031
1032	/* Allocate network interface */
1033	ifp = sc->ifp = if_alloc(IFT_ETHER);
1034	if (ifp == NULL) {
1035		cpswp_detach(dev);
1036		return (ENXIO);
1037	}
1038
1039	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1040	ifp->if_softc = sc;
1041	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1042	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1043	ifp->if_capenable = ifp->if_capabilities;
1044
1045	ifp->if_init = cpswp_init;
1046	ifp->if_start = cpswp_start;
1047	ifp->if_ioctl = cpswp_ioctl;
1048
1049	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1050	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1051	IFQ_SET_READY(&ifp->if_snd);
1052
1053	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1054	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1055	mac_addr[0] = reg & 0xFF;
1056	mac_addr[1] = (reg >>  8) & 0xFF;
1057	mac_addr[2] = (reg >> 16) & 0xFF;
1058	mac_addr[3] = (reg >> 24) & 0xFF;
1059
1060	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1061	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1062	mac_addr[4] = reg & 0xFF;
1063	mac_addr[5] = (reg >>  8) & 0xFF;
1064
1065	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1066	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1067	if (error) {
1068		device_printf(dev, "attaching PHYs failed\n");
1069		cpswp_detach(dev);
1070		return (error);
1071	}
1072	sc->mii = device_get_softc(sc->miibus);
1073
1074	/* Select PHY and enable interrupts */
1075	cpsw_write_4(sc->swsc, sc->physel,
1076	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1077
1078	ether_ifattach(sc->ifp, mac_addr);
1079	callout_init(&sc->mii_callout, 0);
1080
1081	return (0);
1082}
1083
1084static int
1085cpswp_detach(device_t dev)
1086{
1087	struct cpswp_softc *sc;
1088
1089	sc = device_get_softc(dev);
1090	CPSW_DEBUGF(sc->swsc, (""));
1091	if (device_is_attached(dev)) {
1092		ether_ifdetach(sc->ifp);
1093		CPSW_PORT_LOCK(sc);
1094		cpswp_stop_locked(sc);
1095		CPSW_PORT_UNLOCK(sc);
1096		callout_drain(&sc->mii_callout);
1097	}
1098
1099	bus_generic_detach(dev);
1100
1101	if_free(sc->ifp);
1102	mtx_destroy(&sc->lock);
1103
1104	return (0);
1105}
1106
1107/*
1108 *
1109 * Init/Shutdown.
1110 *
1111 */
1112
1113static int
1114cpsw_ports_down(struct cpsw_softc *sc)
1115{
1116	struct cpswp_softc *psc;
1117	struct ifnet *ifp1, *ifp2;
1118
1119	if (!sc->dualemac)
1120		return (1);
1121	psc = device_get_softc(sc->port[0].dev);
1122	ifp1 = psc->ifp;
1123	psc = device_get_softc(sc->port[1].dev);
1124	ifp2 = psc->ifp;
1125	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1126		return (1);
1127
1128	return (0);
1129}
1130
1131static void
1132cpswp_init(void *arg)
1133{
1134	struct cpswp_softc *sc = arg;
1135
1136	CPSW_DEBUGF(sc->swsc, (""));
1137	CPSW_PORT_LOCK(sc);
1138	cpswp_init_locked(arg);
1139	CPSW_PORT_UNLOCK(sc);
1140}
1141
1142static void
1143cpswp_init_locked(void *arg)
1144{
1145#ifdef CPSW_ETHERSWITCH
1146	int i;
1147#endif
1148	struct cpswp_softc *sc = arg;
1149	struct ifnet *ifp;
1150	uint32_t reg;
1151
1152	CPSW_DEBUGF(sc->swsc, (""));
1153	CPSW_PORT_LOCK_ASSERT(sc);
1154	ifp = sc->ifp;
1155	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1156		return;
1157
1158	getbinuptime(&sc->init_uptime);
1159
1160	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1161		/* Reset the controller. */
1162		cpsw_reset(sc->swsc);
1163		cpsw_init(sc->swsc);
1164	}
1165
1166	/* Set Slave Mapping. */
1167	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1168	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1169	    0x33221100);
1170	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1171	/* Enable MAC RX/TX modules. */
1172	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1173	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1174	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1175	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1176	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1177
1178	/* Initialize ALE: set port to forwarding, initialize addrs */
1179	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1180	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1181	cpswp_ale_update_addresses(sc, 1);
1182
1183	if (sc->swsc->dualemac) {
1184		/* Set Port VID. */
1185		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1186		    sc->vlan & 0xfff);
1187		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1188		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1189		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1190		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1191#ifdef CPSW_ETHERSWITCH
1192		for (i = 0; i < CPSW_VLANS; i++) {
1193			if (cpsw_vgroups[i].vid != -1)
1194				continue;
1195			cpsw_vgroups[i].vid = sc->vlan;
1196			break;
1197		}
1198#endif
1199	}
1200
1201	mii_mediachg(sc->mii);
1202	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1203	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1204	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1205}
1206
1207static int
1208cpsw_shutdown(device_t dev)
1209{
1210	struct cpsw_softc *sc;
1211	struct cpswp_softc *psc;
1212	int i;
1213
1214 	sc = device_get_softc(dev);
1215	CPSW_DEBUGF(sc, (""));
1216	for (i = 0; i < CPSW_PORTS; i++) {
1217		if (!sc->dualemac && i != sc->active_slave)
1218			continue;
1219		psc = device_get_softc(sc->port[i].dev);
1220		CPSW_PORT_LOCK(psc);
1221		cpswp_stop_locked(psc);
1222		CPSW_PORT_UNLOCK(psc);
1223	}
1224
1225	return (0);
1226}
1227
1228static void
1229cpsw_rx_teardown(struct cpsw_softc *sc)
1230{
1231	int i = 0;
1232
1233	CPSW_RX_LOCK(sc);
1234	CPSW_DEBUGF(sc, ("starting RX teardown"));
1235	sc->rx.teardown = 1;
1236	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1237	CPSW_RX_UNLOCK(sc);
1238	while (sc->rx.running) {
1239		if (++i > 10) {
1240			device_printf(sc->dev,
1241			    "Unable to cleanly shutdown receiver\n");
1242			return;
1243		}
1244		DELAY(200);
1245	}
1246	if (!sc->rx.running)
1247		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1248}
1249
1250static void
1251cpsw_tx_teardown(struct cpsw_softc *sc)
1252{
1253	int i = 0;
1254
1255	CPSW_TX_LOCK(sc);
1256	CPSW_DEBUGF(sc, ("starting TX teardown"));
1257	/* Start the TX queue teardown if queue is not empty. */
1258	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1259		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1260	else
1261		sc->tx.teardown = 1;
1262	cpsw_tx_dequeue(sc);
1263	while (sc->tx.running && ++i < 10) {
1264		DELAY(200);
1265		cpsw_tx_dequeue(sc);
1266	}
1267	if (sc->tx.running) {
1268		device_printf(sc->dev,
1269		    "Unable to cleanly shutdown transmitter\n");
1270	}
1271	CPSW_DEBUGF(sc,
1272	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1273	     sc->tx.active_queue_len));
1274	CPSW_TX_UNLOCK(sc);
1275}
1276
1277static void
1278cpswp_stop_locked(struct cpswp_softc *sc)
1279{
1280	struct ifnet *ifp;
1281	uint32_t reg;
1282
1283	ifp = sc->ifp;
1284	CPSW_DEBUGF(sc->swsc, (""));
1285	CPSW_PORT_LOCK_ASSERT(sc);
1286
1287	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1288		return;
1289
1290	/* Disable interface */
1291	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1292	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1293
1294	/* Stop ticker */
1295	callout_stop(&sc->mii_callout);
1296
1297	/* Tear down the RX/TX queues. */
1298	if (cpsw_ports_down(sc->swsc)) {
1299		cpsw_rx_teardown(sc->swsc);
1300		cpsw_tx_teardown(sc->swsc);
1301	}
1302
1303	/* Stop MAC RX/TX modules. */
1304	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1305	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1306	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1307
1308	if (cpsw_ports_down(sc->swsc)) {
1309		/* Capture stats before we reset controller. */
1310		cpsw_stats_collect(sc->swsc);
1311
1312		cpsw_reset(sc->swsc);
1313		cpsw_init(sc->swsc);
1314	}
1315}
1316
1317/*
1318 *  Suspend/Resume.
1319 */
1320
1321static int
1322cpsw_suspend(device_t dev)
1323{
1324	struct cpsw_softc *sc;
1325	struct cpswp_softc *psc;
1326	int i;
1327
1328	sc = device_get_softc(dev);
1329	CPSW_DEBUGF(sc, (""));
1330	for (i = 0; i < CPSW_PORTS; i++) {
1331		if (!sc->dualemac && i != sc->active_slave)
1332			continue;
1333		psc = device_get_softc(sc->port[i].dev);
1334		CPSW_PORT_LOCK(psc);
1335		cpswp_stop_locked(psc);
1336		CPSW_PORT_UNLOCK(psc);
1337	}
1338
1339	return (0);
1340}
1341
1342static int
1343cpsw_resume(device_t dev)
1344{
1345	struct cpsw_softc *sc;
1346
1347	sc  = device_get_softc(dev);
1348	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1349
1350	return (0);
1351}
1352
1353/*
1354 *
1355 *  IOCTL
1356 *
1357 */
1358
1359static void
1360cpsw_set_promisc(struct cpswp_softc *sc, int set)
1361{
1362	uint32_t reg;
1363
1364	/*
1365	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1366	 * That disables the ALE forwarding logic and causes every
1367	 * packet to be sent only to the host port.  In bypass mode,
1368	 * the ALE processes host port transmit packets the same as in
1369	 * normal mode.
1370	 */
1371	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1372	reg &= ~CPSW_ALE_CTL_BYPASS;
1373	if (set)
1374		reg |= CPSW_ALE_CTL_BYPASS;
1375	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1376}
1377
1378static void
1379cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1380{
1381	if (set) {
1382		printf("All-multicast mode unimplemented\n");
1383	}
1384}
1385
1386static int
1387cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1388{
1389	struct cpswp_softc *sc;
1390	struct ifreq *ifr;
1391	int error;
1392	uint32_t changed;
1393
1394	error = 0;
1395	sc = ifp->if_softc;
1396	ifr = (struct ifreq *)data;
1397
1398	switch (command) {
1399	case SIOCSIFFLAGS:
1400		CPSW_PORT_LOCK(sc);
1401		if (ifp->if_flags & IFF_UP) {
1402			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1403				changed = ifp->if_flags ^ sc->if_flags;
1404				CPSW_DEBUGF(sc->swsc,
1405				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1406				    changed));
1407				if (changed & IFF_PROMISC)
1408					cpsw_set_promisc(sc,
1409					    ifp->if_flags & IFF_PROMISC);
1410				if (changed & IFF_ALLMULTI)
1411					cpsw_set_allmulti(sc,
1412					    ifp->if_flags & IFF_ALLMULTI);
1413			} else {
1414				CPSW_DEBUGF(sc->swsc,
1415				    ("SIOCSIFFLAGS: starting up"));
1416				cpswp_init_locked(sc);
1417			}
1418		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1419			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1420			cpswp_stop_locked(sc);
1421		}
1422
1423		sc->if_flags = ifp->if_flags;
1424		CPSW_PORT_UNLOCK(sc);
1425		break;
1426	case SIOCADDMULTI:
1427		cpswp_ale_update_addresses(sc, 0);
1428		break;
1429	case SIOCDELMULTI:
1430		/* Ugh.  DELMULTI doesn't provide the specific address
1431		   being removed, so the best we can do is remove
1432		   everything and rebuild it all. */
1433		cpswp_ale_update_addresses(sc, 1);
1434		break;
1435	case SIOCGIFMEDIA:
1436	case SIOCSIFMEDIA:
1437		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1438		break;
1439	default:
1440		error = ether_ioctl(ifp, command, data);
1441	}
1442	return (error);
1443}
1444
1445/*
1446 *
1447 * MIIBUS
1448 *
1449 */
1450static int
1451cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1452{
1453	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1454
1455	while (--retries) {
1456		r = cpsw_read_4(sc, reg);
1457		if ((r & MDIO_PHYACCESS_GO) == 0)
1458			return (1);
1459		DELAY(CPSW_MIIBUS_DELAY);
1460	}
1461
1462	return (0);
1463}
1464
1465static int
1466cpswp_miibus_readreg(device_t dev, int phy, int reg)
1467{
1468	struct cpswp_softc *sc;
1469	uint32_t cmd, r;
1470
1471	sc = device_get_softc(dev);
1472	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1473		device_printf(dev, "MDIO not ready to read\n");
1474		return (0);
1475	}
1476
1477	/* Set GO, reg, phy */
1478	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1479	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1480
1481	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1482		device_printf(dev, "MDIO timed out during read\n");
1483		return (0);
1484	}
1485
1486	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1487	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1488		device_printf(dev, "Failed to read from PHY.\n");
1489		r = 0;
1490	}
1491	return (r & 0xFFFF);
1492}
1493
1494static int
1495cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1496{
1497	struct cpswp_softc *sc;
1498	uint32_t cmd;
1499
1500	sc = device_get_softc(dev);
1501	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1502		device_printf(dev, "MDIO not ready to write\n");
1503		return (0);
1504	}
1505
1506	/* Set GO, WRITE, reg, phy, and value */
1507	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1508	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1509	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1510
1511	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1512		device_printf(dev, "MDIO timed out during write\n");
1513		return (0);
1514	}
1515
1516	return (0);
1517}
1518
1519static void
1520cpswp_miibus_statchg(device_t dev)
1521{
1522	struct cpswp_softc *sc;
1523	uint32_t mac_control, reg;
1524
1525	sc = device_get_softc(dev);
1526	CPSW_DEBUGF(sc->swsc, (""));
1527
1528	reg = CPSW_SL_MACCONTROL(sc->unit);
1529	mac_control = cpsw_read_4(sc->swsc, reg);
1530	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1531	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1532
1533	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1534	case IFM_1000_SX:
1535	case IFM_1000_LX:
1536	case IFM_1000_CX:
1537	case IFM_1000_T:
1538		mac_control |= CPSW_SL_MACTL_GIG;
1539		break;
1540
1541	case IFM_100_TX:
1542		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1543		break;
1544	}
1545	if (sc->mii->mii_media_active & IFM_FDX)
1546		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1547
1548	cpsw_write_4(sc->swsc, reg, mac_control);
1549}
1550
1551/*
1552 *
1553 * Transmit/Receive Packets.
1554 *
1555 */
1556static void
1557cpsw_intr_rx(void *arg)
1558{
1559	struct cpsw_softc *sc;
1560	struct ifnet *ifp;
1561	struct mbuf *received, *next;
1562
1563	sc = (struct cpsw_softc *)arg;
1564	CPSW_RX_LOCK(sc);
1565	if (sc->rx.teardown) {
1566		sc->rx.running = 0;
1567		sc->rx.teardown = 0;
1568		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1569	}
1570	received = cpsw_rx_dequeue(sc);
1571	cpsw_rx_enqueue(sc);
1572	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1573	CPSW_RX_UNLOCK(sc);
1574
1575	while (received != NULL) {
1576		next = received->m_nextpkt;
1577		received->m_nextpkt = NULL;
1578		ifp = received->m_pkthdr.rcvif;
1579		(*ifp->if_input)(ifp, received);
1580		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1581		received = next;
1582	}
1583}
1584
1585static struct mbuf *
1586cpsw_rx_dequeue(struct cpsw_softc *sc)
1587{
1588	struct cpsw_cpdma_bd bd;
1589	struct cpsw_slot *last, *slot;
1590	struct cpswp_softc *psc;
1591	struct mbuf *mb_head, *mb_tail;
1592	int port, removed = 0;
1593
1594	last = NULL;
1595	mb_head = mb_tail = NULL;
1596
1597	/* Pull completed packets off hardware RX queue. */
1598	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1599		cpsw_cpdma_read_bd(sc, slot, &bd);
1600
1601		/*
1602		 * Stop on packets still in use by hardware, but do not stop
1603		 * on packets with the teardown complete flag, they will be
1604		 * discarded later.
1605		 */
1606		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1607		    CPDMA_BD_OWNER)
1608			break;
1609
1610		last = slot;
1611		++removed;
1612		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1613		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1614
1615		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1616		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1617
1618		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1619			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1620			m_freem(slot->mbuf);
1621			slot->mbuf = NULL;
1622			sc->rx.running = 0;
1623			sc->rx.teardown = 0;
1624			break;
1625		}
1626
1627		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1628		KASSERT(port >= 0 && port <= 1,
1629		    ("patcket received with invalid port: %d", port));
1630		psc = device_get_softc(sc->port[port].dev);
1631
1632		/* Set up mbuf */
1633		/* TODO: track SOP/EOP bits to assemble a full mbuf
1634		   out of received fragments. */
1635		slot->mbuf->m_data += bd.bufoff;
1636		slot->mbuf->m_len = bd.pktlen - 4;
1637		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1638		slot->mbuf->m_flags |= M_PKTHDR;
1639		slot->mbuf->m_pkthdr.rcvif = psc->ifp;
1640		slot->mbuf->m_nextpkt = NULL;
1641
1642		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1643			/* check for valid CRC by looking into pkt_err[5:4] */
1644			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1645				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1646				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1647				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1648			}
1649		}
1650
1651		/* Add mbuf to packet list to be returned. */
1652		if (mb_tail) {
1653			mb_tail->m_nextpkt = slot->mbuf;
1654		} else {
1655			mb_head = slot->mbuf;
1656		}
1657		mb_tail = slot->mbuf;
1658		slot->mbuf = NULL;
1659		if (sc->rx_batch > 0 && sc->rx_batch == removed)
1660			break;
1661	}
1662
1663	if (removed != 0) {
1664		cpsw_write_cp_slot(sc, &sc->rx, last);
1665		sc->rx.queue_removes += removed;
1666		sc->rx.avail_queue_len += removed;
1667		sc->rx.active_queue_len -= removed;
1668		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1669			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1670		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1671	}
1672
1673	return (mb_head);
1674}
1675
1676static void
1677cpsw_rx_enqueue(struct cpsw_softc *sc)
1678{
1679	bus_dma_segment_t seg[1];
1680	struct cpsw_cpdma_bd bd;
1681	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1682	int error, nsegs, added = 0;
1683	uint32_t flags;
1684
1685	/* Register new mbufs with hardware. */
1686	first_new_slot = NULL;
1687	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1688	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1689		if (first_new_slot == NULL)
1690			first_new_slot = slot;
1691		if (slot->mbuf == NULL) {
1692			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1693			if (slot->mbuf == NULL) {
1694				device_printf(sc->dev,
1695				    "Unable to fill RX queue\n");
1696				break;
1697			}
1698			slot->mbuf->m_len =
1699			    slot->mbuf->m_pkthdr.len =
1700			    slot->mbuf->m_ext.ext_size;
1701		}
1702
1703		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1704		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1705
1706		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1707		KASSERT(error == 0, ("DMA error (error=%d)", error));
1708		if (error != 0 || nsegs != 1) {
1709			device_printf(sc->dev,
1710			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1711			    __func__, nsegs, error);
1712			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1713			m_freem(slot->mbuf);
1714			slot->mbuf = NULL;
1715			break;
1716		}
1717
1718		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1719
1720		/* Create and submit new rx descriptor. */
1721		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1722			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1723		else
1724			bd.next = 0;
1725		bd.bufptr = seg->ds_addr;
1726		bd.bufoff = 0;
1727		bd.buflen = MCLBYTES - 1;
1728		bd.pktlen = bd.buflen;
1729		bd.flags = CPDMA_BD_OWNER;
1730		cpsw_cpdma_write_bd(sc, slot, &bd);
1731		++added;
1732
1733		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1734		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1735	}
1736
1737	if (added == 0 || first_new_slot == NULL)
1738		return;
1739
1740	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1741
1742	/* Link new entries to hardware RX queue. */
1743	if (last_old_slot == NULL) {
1744		/* Start a fresh queue. */
1745		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1746	} else {
1747		/* Add buffers to end of current queue. */
1748		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1749		/* If underrun, restart queue. */
1750		if ((flags = cpsw_cpdma_read_bd_flags(sc, last_old_slot)) &
1751		    CPDMA_BD_EOQ) {
1752			flags &= ~CPDMA_BD_EOQ;
1753			cpsw_cpdma_write_bd_flags(sc, last_old_slot, flags);
1754			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1755			sc->rx.queue_restart++;
1756		}
1757	}
1758	sc->rx.queue_adds += added;
1759	sc->rx.avail_queue_len -= added;
1760	sc->rx.active_queue_len += added;
1761	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1762	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1763		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1764	}
1765}
1766
1767static void
1768cpswp_start(struct ifnet *ifp)
1769{
1770	struct cpswp_softc *sc;
1771
1772	sc = ifp->if_softc;
1773	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1774	    sc->swsc->tx.running == 0) {
1775		return;
1776	}
1777	CPSW_TX_LOCK(sc->swsc);
1778	cpswp_tx_enqueue(sc);
1779	cpsw_tx_dequeue(sc->swsc);
1780	CPSW_TX_UNLOCK(sc->swsc);
1781}
1782
1783static void
1784cpsw_intr_tx(void *arg)
1785{
1786	struct cpsw_softc *sc;
1787
1788	sc = (struct cpsw_softc *)arg;
1789	CPSW_TX_LOCK(sc);
1790	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1791		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1792	cpsw_tx_dequeue(sc);
1793	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1794	CPSW_TX_UNLOCK(sc);
1795}
1796
1797static void
1798cpswp_tx_enqueue(struct cpswp_softc *sc)
1799{
1800	bus_dma_segment_t segs[CPSW_TXFRAGS];
1801	struct cpsw_cpdma_bd bd;
1802	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1803	struct mbuf *m0;
1804	int error, flags, nsegs, seg, added = 0, padlen;
1805
1806	flags = 0;
1807	if (sc->swsc->dualemac) {
1808		flags = CPDMA_BD_TO_PORT |
1809		    ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1810	}
1811	/* Pull pending packets from IF queue and prep them for DMA. */
1812	last = NULL;
1813	first_new_slot = NULL;
1814	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1815	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1816		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1817		if (m0 == NULL)
1818			break;
1819
1820		slot->mbuf = m0;
1821		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1822		if (padlen < 0)
1823			padlen = 0;
1824
1825		/* Create mapping in DMA memory */
1826		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1827		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1828		/* If the packet is too fragmented, try to simplify. */
1829		if (error == EFBIG ||
1830		    (error == 0 &&
1831		    nsegs + (padlen > 0 ? 1 : 0) > sc->swsc->tx.avail_queue_len)) {
1832			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1833			if (padlen > 0) /* May as well add padding. */
1834				m_append(slot->mbuf, padlen,
1835				    sc->swsc->null_mbuf->m_data);
1836			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1837			if (m0 == NULL) {
1838				device_printf(sc->dev,
1839				    "Can't defragment packet; dropping\n");
1840				m_freem(slot->mbuf);
1841			} else {
1842				CPSW_DEBUGF(sc->swsc,
1843				    ("Requeueing defragmented packet"));
1844				IF_PREPEND(&sc->ifp->if_snd, m0);
1845			}
1846			slot->mbuf = NULL;
1847			continue;
1848		}
1849		if (error != 0) {
1850			device_printf(sc->dev,
1851			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1852			    __func__, error);
1853			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1854			m_freem(slot->mbuf);
1855			slot->mbuf = NULL;
1856			break;
1857		}
1858
1859		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1860				BUS_DMASYNC_PREWRITE);
1861
1862		CPSW_DEBUGF(sc->swsc,
1863		    ("Queueing TX packet: %d segments + %d pad bytes",
1864		    nsegs, padlen));
1865
1866		if (first_new_slot == NULL)
1867			first_new_slot = slot;
1868
1869		/* Link from the previous descriptor. */
1870		if (last != NULL)
1871			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1872
1873		slot->ifp = sc->ifp;
1874
1875		/* If there is only one segment, the for() loop
1876		 * gets skipped and the single buffer gets set up
1877		 * as both SOP and EOP. */
1878		if (nsegs > 1) {
1879			next = STAILQ_NEXT(slot, next);
1880			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1881		} else
1882			bd.next = 0;
1883		/* Start by setting up the first buffer. */
1884		bd.bufptr = segs[0].ds_addr;
1885		bd.bufoff = 0;
1886		bd.buflen = segs[0].ds_len;
1887		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1888		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER | flags;
1889		for (seg = 1; seg < nsegs; ++seg) {
1890			/* Save the previous buffer (which isn't EOP) */
1891			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1892			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1893			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1894			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1895
1896			/* Setup next buffer (which isn't SOP) */
1897			if (nsegs > seg + 1) {
1898				next = STAILQ_NEXT(slot, next);
1899				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1900			} else
1901				bd.next = 0;
1902			bd.bufptr = segs[seg].ds_addr;
1903			bd.bufoff = 0;
1904			bd.buflen = segs[seg].ds_len;
1905			bd.pktlen = 0;
1906			bd.flags = CPDMA_BD_OWNER | flags;
1907		}
1908		/* Save the final buffer. */
1909		if (padlen <= 0)
1910			bd.flags |= CPDMA_BD_EOP;
1911		else {
1912			next = STAILQ_NEXT(slot, next);
1913			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1914		}
1915		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1916		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1917		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1918
1919		if (padlen > 0) {
1920			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1921
1922			/* Setup buffer of null pad bytes (definitely EOP). */
1923			bd.next = 0;
1924			bd.bufptr = sc->swsc->null_mbuf_paddr;
1925			bd.bufoff = 0;
1926			bd.buflen = padlen;
1927			bd.pktlen = 0;
1928			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER | flags;
1929			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1930			++nsegs;
1931
1932			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1933			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1934		}
1935
1936		last = slot;
1937
1938		added += nsegs;
1939		if (nsegs > sc->swsc->tx.longest_chain)
1940			sc->swsc->tx.longest_chain = nsegs;
1941
1942		// TODO: Should we defer the BPF tap until
1943		// after all packets are queued?
1944		BPF_MTAP(sc->ifp, m0);
1945	}
1946
1947	if (first_new_slot == NULL)
1948		return;
1949
1950	/* Attach the list of new buffers to the hardware TX queue. */
1951	if (last_old_slot != NULL &&
1952	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1953	     CPDMA_BD_EOQ) == 0) {
1954		/* Add buffers to end of current queue. */
1955		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1956		    first_new_slot);
1957	} else {
1958		/* Start a fresh queue. */
1959		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1960	}
1961	sc->swsc->tx.queue_adds += added;
1962	sc->swsc->tx.avail_queue_len -= added;
1963	sc->swsc->tx.active_queue_len += added;
1964	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1965		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1966	}
1967	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1968}
1969
1970static int
1971cpsw_tx_dequeue(struct cpsw_softc *sc)
1972{
1973	struct cpsw_slot *slot, *last_removed_slot = NULL;
1974	struct cpsw_cpdma_bd bd;
1975	uint32_t flags, removed = 0;
1976
1977	/* Pull completed buffers off the hardware TX queue. */
1978	slot = STAILQ_FIRST(&sc->tx.active);
1979	while (slot != NULL) {
1980		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1981
1982		/* TearDown complete is only marked on the SOP for the packet. */
1983		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1984		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
1985			sc->tx.teardown = 1;
1986		}
1987
1988		if ((flags & CPDMA_BD_OWNER) != 0 && sc->tx.teardown == 0)
1989			break; /* Hardware is still using this packet. */
1990
1991		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1992		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1993		m_freem(slot->mbuf);
1994		slot->mbuf = NULL;
1995
1996		if (slot->ifp) {
1997			if (sc->tx.teardown == 0)
1998				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
1999			else
2000				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2001		}
2002
2003		/* Dequeue any additional buffers used by this packet. */
2004		while (slot != NULL && slot->mbuf == NULL) {
2005			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2006			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2007			++removed;
2008			last_removed_slot = slot;
2009			slot = STAILQ_FIRST(&sc->tx.active);
2010		}
2011
2012		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2013
2014		/* Restart the TX queue if necessary. */
2015		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2016		if (slot != NULL && bd.next != 0 && (bd.flags &
2017		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2018		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2019			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2020			sc->tx.queue_restart++;
2021			break;
2022		}
2023	}
2024
2025	if (removed != 0) {
2026		sc->tx.queue_removes += removed;
2027		sc->tx.active_queue_len -= removed;
2028		sc->tx.avail_queue_len += removed;
2029		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2030			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2031		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2032	}
2033
2034	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2035		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2036		sc->tx.teardown = 0;
2037		sc->tx.running = 0;
2038	}
2039
2040	return (removed);
2041}
2042
2043/*
2044 *
2045 * Miscellaneous interrupts.
2046 *
2047 */
2048
2049static void
2050cpsw_intr_rx_thresh(void *arg)
2051{
2052	struct cpsw_softc *sc;
2053	struct ifnet *ifp;
2054	struct mbuf *received, *next;
2055
2056	sc = (struct cpsw_softc *)arg;
2057	CPSW_RX_LOCK(sc);
2058	received = cpsw_rx_dequeue(sc);
2059	cpsw_rx_enqueue(sc);
2060	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2061	CPSW_RX_UNLOCK(sc);
2062
2063	while (received != NULL) {
2064		next = received->m_nextpkt;
2065		received->m_nextpkt = NULL;
2066		ifp = received->m_pkthdr.rcvif;
2067		(*ifp->if_input)(ifp, received);
2068		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2069		received = next;
2070	}
2071}
2072
2073static void
2074cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2075{
2076	uint32_t intstat;
2077	uint32_t dmastat;
2078	int txerr, rxerr, txchan, rxchan;
2079
2080	printf("\n\n");
2081	device_printf(sc->dev,
2082	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2083	printf("\n\n");
2084	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2085	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2086	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2087	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2088
2089	txerr = (dmastat >> 20) & 15;
2090	txchan = (dmastat >> 16) & 7;
2091	rxerr = (dmastat >> 12) & 15;
2092	rxchan = (dmastat >> 8) & 7;
2093
2094	switch (txerr) {
2095	case 0: break;
2096	case 1:	printf("SOP error on TX channel %d\n", txchan);
2097		break;
2098	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2099		break;
2100	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2101		break;
2102	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2103		break;
2104	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2105		break;
2106	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2107		break;
2108	default: printf("Unknown error on TX channel %d\n", txchan);
2109		break;
2110	}
2111
2112	if (txerr != 0) {
2113		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2114		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2115		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2116		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2117		cpsw_dump_queue(sc, &sc->tx.active);
2118	}
2119
2120	switch (rxerr) {
2121	case 0: break;
2122	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2123		break;
2124	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2125		break;
2126	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2127		break;
2128	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2129		break;
2130	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2131		break;
2132	}
2133
2134	if (rxerr != 0) {
2135		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2136		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2137		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2138		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2139		cpsw_dump_queue(sc, &sc->rx.active);
2140	}
2141
2142	printf("\nALE Table\n");
2143	cpsw_ale_dump_table(sc);
2144
2145	// XXX do something useful here??
2146	panic("CPSW HOST ERROR INTERRUPT");
2147
2148	// Suppress this interrupt in the future.
2149	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2150	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2151	// The watchdog will probably reset the controller
2152	// in a little while.  It will probably fail again.
2153}
2154
2155static void
2156cpsw_intr_misc(void *arg)
2157{
2158	struct cpsw_softc *sc = arg;
2159	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2160
2161	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2162		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2163	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2164		cpsw_stats_collect(sc);
2165	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2166		cpsw_intr_misc_host_error(sc);
2167	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2168		cpsw_write_4(sc, MDIOLINKINTMASKED,
2169		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2170	}
2171	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2172		CPSW_DEBUGF(sc,
2173		    ("MDIO operation completed interrupt unimplemented"));
2174	}
2175	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2176}
2177
2178/*
2179 *
2180 * Periodic Checks and Watchdog.
2181 *
2182 */
2183
2184static void
2185cpswp_tick(void *msc)
2186{
2187	struct cpswp_softc *sc = msc;
2188
2189	/* Check for media type change */
2190	mii_tick(sc->mii);
2191	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2192		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2193			sc->mii->mii_media.ifm_media);
2194		cpswp_ifmedia_upd(sc->ifp);
2195	}
2196
2197	/* Schedule another timeout one second from now */
2198	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2199}
2200
2201static void
2202cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2203{
2204	struct cpswp_softc *sc;
2205	struct mii_data *mii;
2206
2207	sc = ifp->if_softc;
2208	CPSW_DEBUGF(sc->swsc, (""));
2209	CPSW_PORT_LOCK(sc);
2210
2211	mii = sc->mii;
2212	mii_pollstat(mii);
2213
2214	ifmr->ifm_active = mii->mii_media_active;
2215	ifmr->ifm_status = mii->mii_media_status;
2216	CPSW_PORT_UNLOCK(sc);
2217}
2218
2219static int
2220cpswp_ifmedia_upd(struct ifnet *ifp)
2221{
2222	struct cpswp_softc *sc;
2223
2224	sc = ifp->if_softc;
2225	CPSW_DEBUGF(sc->swsc, (""));
2226	CPSW_PORT_LOCK(sc);
2227	mii_mediachg(sc->mii);
2228	sc->media_status = sc->mii->mii_media.ifm_media;
2229	CPSW_PORT_UNLOCK(sc);
2230
2231	return (0);
2232}
2233
2234static void
2235cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2236{
2237	struct cpswp_softc *psc;
2238	int i;
2239
2240	cpsw_debugf_head("CPSW watchdog");
2241	device_printf(sc->dev, "watchdog timeout\n");
2242	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2243	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2244	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2245	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2246	cpsw_dump_queue(sc, &sc->tx.active);
2247	for (i = 0; i < CPSW_PORTS; i++) {
2248		if (!sc->dualemac && i != sc->active_slave)
2249			continue;
2250		psc = device_get_softc(sc->port[i].dev);
2251		CPSW_PORT_LOCK(psc);
2252		cpswp_stop_locked(psc);
2253		CPSW_PORT_UNLOCK(psc);
2254	}
2255}
2256
2257static void
2258cpsw_tx_watchdog(void *msc)
2259{
2260	struct cpsw_softc *sc;
2261
2262	sc = msc;
2263	CPSW_TX_LOCK(sc);
2264	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2265		sc->watchdog.timer = 0; /* Nothing to do. */
2266	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2267		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2268	} else if (cpsw_tx_dequeue(sc) > 0) {
2269		sc->watchdog.timer = 0;  /* We just did something. */
2270	} else {
2271		/* There was something to do but it didn't get done. */
2272		++sc->watchdog.timer;
2273		if (sc->watchdog.timer > 5) {
2274			sc->watchdog.timer = 0;
2275			++sc->watchdog.resets;
2276			cpsw_tx_watchdog_full_reset(sc);
2277		}
2278	}
2279	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2280	CPSW_TX_UNLOCK(sc);
2281
2282	/* Schedule another timeout one second from now */
2283	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2284}
2285
2286/*
2287 *
2288 * ALE support routines.
2289 *
2290 */
2291
2292static void
2293cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2294{
2295	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2296	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2297	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2298	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2299}
2300
2301static void
2302cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2303{
2304	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2305	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2306	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2307	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2308}
2309
2310static void
2311cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2312{
2313	int i;
2314	uint32_t ale_entry[3];
2315
2316	/* First four entries are link address and broadcast. */
2317	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2318		cpsw_ale_read_entry(sc, i, ale_entry);
2319		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2320		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2321		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2322			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2323			cpsw_ale_write_entry(sc, i, ale_entry);
2324		}
2325	}
2326}
2327
2328static int
2329cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2330	uint8_t *mac)
2331{
2332	int free_index = -1, matching_index = -1, i;
2333	uint32_t ale_entry[3], ale_type;
2334
2335	/* Find a matching entry or a free entry. */
2336	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2337		cpsw_ale_read_entry(sc, i, ale_entry);
2338
2339		/* Entry Type[61:60] is 0 for free entry */
2340		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2341			free_index = i;
2342
2343		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2344		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2345		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2346		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2347		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2348		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2349			matching_index = i;
2350			break;
2351		}
2352	}
2353
2354	if (matching_index < 0) {
2355		if (free_index < 0)
2356			return (ENOMEM);
2357		i = free_index;
2358	}
2359
2360	if (vlan != -1)
2361		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2362	else
2363		ale_type = ALE_TYPE_ADDR << 28;
2364
2365	/* Set MAC address */
2366	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2367	ale_entry[1] = mac[0] << 8 | mac[1];
2368
2369	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2370	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2371
2372	/* Set portmask [68:66] */
2373	ale_entry[2] = (portmap & 7) << 2;
2374
2375	cpsw_ale_write_entry(sc, i, ale_entry);
2376
2377	return 0;
2378}
2379
2380static void
2381cpsw_ale_dump_table(struct cpsw_softc *sc) {
2382	int i;
2383	uint32_t ale_entry[3];
2384	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2385		cpsw_ale_read_entry(sc, i, ale_entry);
2386		switch (ALE_TYPE(ale_entry)) {
2387		case ALE_TYPE_VLAN:
2388			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2389				ale_entry[1], ale_entry[0]);
2390			printf("type: %u ", ALE_TYPE(ale_entry));
2391			printf("vlan: %u ", ALE_VLAN(ale_entry));
2392			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2393			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2394			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2395			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2396			printf("\n");
2397			break;
2398		case ALE_TYPE_ADDR:
2399		case ALE_TYPE_VLAN_ADDR:
2400			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2401				ale_entry[1], ale_entry[0]);
2402			printf("type: %u ", ALE_TYPE(ale_entry));
2403			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2404				(ale_entry[1] >> 8) & 0xFF,
2405				(ale_entry[1] >> 0) & 0xFF,
2406				(ale_entry[0] >>24) & 0xFF,
2407				(ale_entry[0] >>16) & 0xFF,
2408				(ale_entry[0] >> 8) & 0xFF,
2409				(ale_entry[0] >> 0) & 0xFF);
2410			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2411			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2412				printf("vlan: %u ", ALE_VLAN(ale_entry));
2413			printf("port: %u ", ALE_PORTS(ale_entry));
2414			printf("\n");
2415			break;
2416		}
2417	}
2418	printf("\n");
2419}
2420
2421static int
2422cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2423{
2424	uint8_t *mac;
2425	uint32_t ale_entry[3], ale_type, portmask;
2426	struct ifmultiaddr *ifma;
2427
2428	if (sc->swsc->dualemac) {
2429		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2430		portmask = 1 << (sc->unit + 1) | 1 << 0;
2431	} else {
2432		ale_type = ALE_TYPE_ADDR << 28;
2433		portmask = 7;
2434	}
2435
2436	/*
2437	 * Route incoming packets for our MAC address to Port 0 (host).
2438	 * For simplicity, keep this entry at table index 0 for port 1 and
2439	 * at index 2 for port 2 in the ALE.
2440	 */
2441        if_addr_rlock(sc->ifp);
2442	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2443	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2444	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2445	ale_entry[2] = 0; /* port = 0 */
2446	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2447
2448	/* Set outgoing MAC Address for slave port. */
2449	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2450	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2451	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2452	    mac[5] << 8 | mac[4]);
2453        if_addr_runlock(sc->ifp);
2454
2455	/* Keep the broadcast address at table entry 1 (or 3). */
2456	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2457	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2458	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2459	ale_entry[2] = portmask << 2;
2460	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2461
2462	/* SIOCDELMULTI doesn't specify the particular address
2463	   being removed, so we have to remove all and rebuild. */
2464	if (purge)
2465		cpsw_ale_remove_all_mc_entries(sc->swsc);
2466
2467        /* Set other multicast addrs desired. */
2468        if_maddr_rlock(sc->ifp);
2469        TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2470                if (ifma->ifma_addr->sa_family != AF_LINK)
2471                        continue;
2472		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2473		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2474        }
2475        if_maddr_runlock(sc->ifp);
2476
2477	return (0);
2478}
2479
2480static int
2481cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2482	int untag, int mcregflood, int mcunregflood)
2483{
2484	int free_index, i, matching_index;
2485	uint32_t ale_entry[3];
2486
2487	free_index = matching_index = -1;
2488	/* Find a matching entry or a free entry. */
2489	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2490		cpsw_ale_read_entry(sc, i, ale_entry);
2491
2492		/* Entry Type[61:60] is 0 for free entry */
2493		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2494			free_index = i;
2495
2496		if (ALE_VLAN(ale_entry) == vlan) {
2497			matching_index = i;
2498			break;
2499		}
2500	}
2501
2502	if (matching_index < 0) {
2503		if (free_index < 0)
2504			return (-1);
2505		i = free_index;
2506	}
2507
2508	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2509	    (mcunregflood & 7) << 8 | (ports & 7);
2510	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2511	ale_entry[2] = 0;
2512	cpsw_ale_write_entry(sc, i, ale_entry);
2513
2514	return (0);
2515}
2516
2517/*
2518 *
2519 * Statistics and Sysctls.
2520 *
2521 */
2522
2523#if 0
2524static void
2525cpsw_stats_dump(struct cpsw_softc *sc)
2526{
2527	int i;
2528	uint32_t r;
2529
2530	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2531		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2532		    cpsw_stat_sysctls[i].reg);
2533		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2534		    (intmax_t)sc->shadow_stats[i], r,
2535		    (intmax_t)sc->shadow_stats[i] + r));
2536	}
2537}
2538#endif
2539
2540static void
2541cpsw_stats_collect(struct cpsw_softc *sc)
2542{
2543	int i;
2544	uint32_t r;
2545
2546	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2547
2548	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2549		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2550		    cpsw_stat_sysctls[i].reg);
2551		sc->shadow_stats[i] += r;
2552		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2553		    r);
2554	}
2555}
2556
2557static int
2558cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2559{
2560	struct cpsw_softc *sc;
2561	struct cpsw_stat *stat;
2562	uint64_t result;
2563
2564	sc = (struct cpsw_softc *)arg1;
2565	stat = &cpsw_stat_sysctls[oidp->oid_number];
2566	result = sc->shadow_stats[oidp->oid_number];
2567	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2568	return (sysctl_handle_64(oidp, &result, 0, req));
2569}
2570
2571static int
2572cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2573{
2574	struct cpsw_softc *sc;
2575	struct bintime t;
2576	unsigned result;
2577
2578	sc = (struct cpsw_softc *)arg1;
2579	getbinuptime(&t);
2580	bintime_sub(&t, &sc->attach_uptime);
2581	result = t.sec;
2582	return (sysctl_handle_int(oidp, &result, 0, req));
2583}
2584
2585static int
2586cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2587{
2588	int error;
2589	struct cpsw_softc *sc;
2590	uint32_t ctrl, intr_per_ms;
2591
2592	sc = (struct cpsw_softc *)arg1;
2593	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2594	if (error != 0 || req->newptr == NULL)
2595		return (error);
2596
2597	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2598	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2599	if (sc->coal_us == 0) {
2600		/* Disable the interrupt pace hardware. */
2601		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2602		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2603		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2604		return (0);
2605	}
2606
2607	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2608		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2609	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2610		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2611	intr_per_ms = 1000 / sc->coal_us;
2612	/* Just to make sure... */
2613	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2614		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2615	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2616		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2617
2618	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2619	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2620
2621	/* Enable the interrupt pace hardware. */
2622	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2623	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2624	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2625	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2626
2627	return (0);
2628}
2629
2630static int
2631cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2632{
2633	struct cpsw_softc *swsc;
2634	struct cpswp_softc *sc;
2635	struct bintime t;
2636	unsigned result;
2637
2638	swsc = arg1;
2639	sc = device_get_softc(swsc->port[arg2].dev);
2640	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2641		getbinuptime(&t);
2642		bintime_sub(&t, &sc->init_uptime);
2643		result = t.sec;
2644	} else
2645		result = 0;
2646	return (sysctl_handle_int(oidp, &result, 0, req));
2647}
2648
2649static void
2650cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2651	struct cpsw_queue *queue)
2652{
2653	struct sysctl_oid_list *parent;
2654
2655	parent = SYSCTL_CHILDREN(node);
2656	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2657	    CTLFLAG_RD, &queue->queue_slots, 0,
2658	    "Total buffers currently assigned to this queue");
2659	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2660	    CTLFLAG_RD, &queue->active_queue_len, 0,
2661	    "Buffers currently registered with hardware controller");
2662	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2663	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2664	    "Max value of activeBuffers since last driver reset");
2665	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2666	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2667	    "Buffers allocated to this queue but not currently "
2668	    "registered with hardware controller");
2669	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2670	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2671	    "Max value of availBuffers since last driver reset");
2672	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2673	    CTLFLAG_RD, &queue->queue_adds, 0,
2674	    "Total buffers added to queue");
2675	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2676	    CTLFLAG_RD, &queue->queue_removes, 0,
2677	    "Total buffers removed from queue");
2678	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2679	    CTLFLAG_RD, &queue->queue_restart, 0,
2680	    "Total times the queue has been restarted");
2681	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2682	    CTLFLAG_RD, &queue->longest_chain, 0,
2683	    "Max buffers used for a single packet");
2684}
2685
2686static void
2687cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2688	struct cpsw_softc *sc)
2689{
2690	struct sysctl_oid_list *parent;
2691
2692	parent = SYSCTL_CHILDREN(node);
2693	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2694	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2695	    "Total number of watchdog resets");
2696}
2697
2698static void
2699cpsw_add_sysctls(struct cpsw_softc *sc)
2700{
2701	struct sysctl_ctx_list *ctx;
2702	struct sysctl_oid *stats_node, *queue_node, *node;
2703	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2704	struct sysctl_oid_list *ports_parent, *port_parent;
2705	char port[16];
2706	int i;
2707
2708	ctx = device_get_sysctl_ctx(sc->dev);
2709	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2710
2711	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2712	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2713
2714	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "rx_batch",
2715	    CTLFLAG_RW, &sc->rx_batch, 0, "Set the rx batch size");
2716
2717	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2718	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2719	    "Time since driver attach");
2720
2721	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2722	    CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
2723	    "minimum time between interrupts");
2724
2725	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2726	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2727	ports_parent = SYSCTL_CHILDREN(node);
2728	for (i = 0; i < CPSW_PORTS; i++) {
2729		if (!sc->dualemac && i != sc->active_slave)
2730			continue;
2731		port[0] = '0' + i;
2732		port[1] = '\0';
2733		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2734		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2735		port_parent = SYSCTL_CHILDREN(node);
2736		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2737		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2738		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2739	}
2740
2741	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2742				     CTLFLAG_RD, NULL, "CPSW Statistics");
2743	stats_parent = SYSCTL_CHILDREN(stats_node);
2744	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2745		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2746				cpsw_stat_sysctls[i].oid,
2747				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2748				cpsw_stats_sysctl, "IU",
2749				cpsw_stat_sysctls[i].oid);
2750	}
2751
2752	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2753	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2754	queue_parent = SYSCTL_CHILDREN(queue_node);
2755
2756	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2757	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2758	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2759
2760	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2761	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2762	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2763
2764	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2765	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2766	cpsw_add_watchdog_sysctls(ctx, node, sc);
2767}
2768
2769#ifdef CPSW_ETHERSWITCH
2770static etherswitch_info_t etherswitch_info = {
2771	.es_nports =		CPSW_PORTS + 1,
2772	.es_nvlangroups =	CPSW_VLANS,
2773	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2774	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2775};
2776
2777static etherswitch_info_t *
2778cpsw_getinfo(device_t dev)
2779{
2780	return (&etherswitch_info);
2781}
2782
2783static int
2784cpsw_getport(device_t dev, etherswitch_port_t *p)
2785{
2786	int err;
2787	struct cpsw_softc *sc;
2788	struct cpswp_softc *psc;
2789	struct ifmediareq *ifmr;
2790	uint32_t reg;
2791
2792	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2793		return (ENXIO);
2794
2795	err = 0;
2796	sc = device_get_softc(dev);
2797	if (p->es_port == CPSW_CPU_PORT) {
2798		p->es_flags |= ETHERSWITCH_PORT_CPU;
2799 		ifmr = &p->es_ifmr;
2800		ifmr->ifm_current = ifmr->ifm_active =
2801		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2802		ifmr->ifm_mask = 0;
2803		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2804		ifmr->ifm_count = 0;
2805	} else {
2806		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2807		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2808		    &psc->mii->mii_media, SIOCGIFMEDIA);
2809	}
2810	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2811	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2812
2813	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2814	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2815		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2816	if (reg & ALE_PORTCTL_INGRESS)
2817		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2818
2819	return (err);
2820}
2821
2822static int
2823cpsw_setport(device_t dev, etherswitch_port_t *p)
2824{
2825	struct cpsw_softc *sc;
2826	struct cpswp_softc *psc;
2827	struct ifmedia *ifm;
2828	uint32_t reg;
2829
2830	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2831		return (ENXIO);
2832
2833	sc = device_get_softc(dev);
2834	if (p->es_pvid != 0) {
2835		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2836		    p->es_pvid & ETHERSWITCH_VID_MASK);
2837	}
2838
2839	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2840	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2841		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2842	else
2843		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2844	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2845		reg |= ALE_PORTCTL_INGRESS;
2846	else
2847		reg &= ~ALE_PORTCTL_INGRESS;
2848	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2849
2850	/* CPU port does not allow media settings. */
2851	if (p->es_port == CPSW_CPU_PORT)
2852		return (0);
2853
2854	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2855	ifm = &psc->mii->mii_media;
2856
2857	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2858}
2859
2860static int
2861cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2862{
2863
2864	/* Return the VLAN mode. */
2865	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2866	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2867
2868	return (0);
2869}
2870
2871static int
2872cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2873{
2874	int i, vid;
2875	uint32_t ale_entry[3];
2876	struct cpsw_softc *sc;
2877
2878	sc = device_get_softc(dev);
2879
2880	if (vg->es_vlangroup >= CPSW_VLANS)
2881		return (EINVAL);
2882
2883	vg->es_vid = 0;
2884	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2885	if (vid == -1)
2886		return (0);
2887
2888	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2889		cpsw_ale_read_entry(sc, i, ale_entry);
2890		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2891			continue;
2892		if (vid != ALE_VLAN(ale_entry))
2893			continue;
2894
2895		vg->es_fid = 0;
2896		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2897		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2898		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2899	}
2900
2901	return (0);
2902}
2903
2904static void
2905cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2906{
2907	int i;
2908	uint32_t ale_entry[3];
2909
2910	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2911		cpsw_ale_read_entry(sc, i, ale_entry);
2912		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2913			continue;
2914		if (vlan != ALE_VLAN(ale_entry))
2915			continue;
2916		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2917		cpsw_ale_write_entry(sc, i, ale_entry);
2918		break;
2919	}
2920}
2921
2922static int
2923cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2924{
2925	int i;
2926	struct cpsw_softc *sc;
2927
2928	sc = device_get_softc(dev);
2929
2930	for (i = 0; i < CPSW_VLANS; i++) {
2931		/* Is this Vlan ID in use by another vlangroup ? */
2932		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2933			return (EINVAL);
2934	}
2935
2936	if (vg->es_vid == 0) {
2937		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2938			return (0);
2939		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2940		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2941		vg->es_untagged_ports = 0;
2942		vg->es_member_ports = 0;
2943		vg->es_vid = 0;
2944		return (0);
2945	}
2946
2947	vg->es_vid &= ETHERSWITCH_VID_MASK;
2948	vg->es_member_ports &= CPSW_PORTS_MASK;
2949	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2950
2951	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2952	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2953		return (EINVAL);
2954
2955	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2956	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2957	    vg->es_untagged_ports, vg->es_member_ports, 0);
2958
2959	return (0);
2960}
2961
2962static int
2963cpsw_readreg(device_t dev, int addr)
2964{
2965
2966	/* Not supported. */
2967	return (0);
2968}
2969
2970static int
2971cpsw_writereg(device_t dev, int addr, int value)
2972{
2973
2974	/* Not supported. */
2975	return (0);
2976}
2977
2978static int
2979cpsw_readphy(device_t dev, int phy, int reg)
2980{
2981
2982	/* Not supported. */
2983	return (0);
2984}
2985
2986static int
2987cpsw_writephy(device_t dev, int phy, int reg, int data)
2988{
2989
2990	/* Not supported. */
2991	return (0);
2992}
2993#endif
2994